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Abstract

Binaural reproduction of Ambisonic sound scenes is an active research area. Potential
applications are to be found in gaming and virtual reality, simulation and auralization, or
music production. Fundamentally different approaches for binaural rendering exist. The
well-known least-squares decoder suffers from poor resolution and externalization, and,
most notably, a severe roll-off towards higher frequencies if the order of the input signal is
low. The latter is due to the significant amount of energy contained in HRTFs in higher-
order modes. While various methods exist to remedy timbral artifacts or to enhance the
spatial resolution, the benefit of signal-independent rendering methods appears to be
limited for lower-order input signals. A signal-dependent binaural renderer in form of an
open-source audio plug-in is presented in this thesis. The plug-in implements a recently
published method which is a parametric extension of the least-squares decoder, whereby
direct sound impinging from the most prominent direction of arrival is reproduced exactly,
and diffuse sound is reproduced unaltered in terms of the stochastic parameters.
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1 Introduction

Immersive technologies are on the rise. The term immersion describes the sensation of
losing oneself in an artificially created environment while the level of awareness of the
underlying reality diminishes. While the visual component tends to attract the main
focus of research as well as the public attention, virtual three-dimensional sound scenes
are an integral part of the experience, and can also stand for themselves. Potential
applications can be found in gaming and virtual reality, simulation and auralization, 3D
music recording and production, or teleconferencing.

Because of the expense and space requirements of loudspeaker arrays, it is desirable
to present 3D audio over headphones, or binaural, while the perceived position and
orientation of the listener in the sound field are adapted according to head or body
movements. Binaural audio requires to emulate the very physical cues that evoke the
spatial impression, and make use of psychoacoustic effects that occur when sound waves
impinge on the ears.

By which criteria can the authenticity of an acoustic virtual reality experience be
evaluated? Depending on the application, a prerequisite is that point-like sound sources
must be presented in a way that allows precise localization. The listener should
furthermore be able to judge the width and distance of sound sources, and get a natural
impression of the virtual space, i.e., early reflections and diffuse reverberation. Interactive
response to head movements within the virtual environment increases the immersive
effect. Finally, any quality impairments or artifacts, e.g., sound colorations, need to
be avoided, as they potentially draw the observer’s attention to the presence of the
employed technology.

Ambisonics is a widely used and flexible scene-based format for 3D audio. Ambisonic
signals can be directly recorded or obtained from an object-based audio representation.
Binaural decoding is particularly interesting for Ambisonic input signals because it easily
allows for coordinate rotations; Ambisonics is therefore well suited for virtual reality
applications. The orthogonality and completeness (assuming sufficiently high order) of
the Ambisonic sound field description in the angular domain makes it convenient for the
application of various transformations, spatial filtering or source extraction. The problem
of Ambisonics-to-binaural decoding is subject to intensive research.

Due to restrictions of feasible microphone arrays and limited computational power, it
is difficult to obtain high-quality Ambisonic recordings of natural sound fields with high
order. Over the past few years, different methods to increase the spatial resolution
of low-order Ambisonics have been proposed. Some include binaural decoding; if not,
they can be employed as an intermediate step before binaural decoding with established
methods.

Unfortunately, many rendering approaches suffer from severe artifacts, such as the roll-
off towards high frequencies for low input orders of the least-squares decoder. Despite
recent progress in the field of Ambisonic-to-binaural rendering, this problem remains
especially for data-independent methods. Data-dependent rendering can further improve
the results; not only by reducing artifacts, but also by trying to increase the directional
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sharpness beyond the resolution of the input signal.

This thesis focuses on a data-dependent super-resolution binaural rendering method that
has recently been proposed. This method tries to increase the directional sharpness while
preserving the perceptual qualities of the original sound field, such as the impression of
diffuseness and spaciousness. Similarly to Directional Audio Coding (DirAC), the method
is based on frequency-bin-wise estimation of the directional of arrival; however, the diffuse
part is reproduced correctly without the need to estimate the signal-to-diffuse ratio.

The main contribution of this work is the efficient implementation of an Ambisonics-
to-binaural renderer that applies the new method for real-time rendering, and the pre-
computation of the filter weights for arbitrary HRTF sets. The renderer is implemented
in C++ as an audio plug-in that can be used in any common digital audio workstation.
However, due to object-oriented design, the algorithm source code can easily be
integrated into other projects.

Section 2 provides a theoretical basis, starting with Ambisonics and the spherical
harmonic transform. After a subsequent introduction to localization and binaural audio,
a short review of different signal-independent binaural rendering methods will be provided.
Three different approaches to enhance the resolution of Ambisonics signals will be
presented in Section 2.4.

Section 3 derives the new signal-dependent method after expounding the signal model
and the underlying assumptions.

The pre-computation of the filter weights and implementation-specific details will be
discussed in Section 4.

This thesis closes with a summary in Section 5.

Notice

Parts of this thesis have been published subsequently, including a listening experiment
comparing different binaural rendering strategies. Please refer to [1] for the most recent
version of this project.
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2 Theoretical Background

2.1 Ambisonics

Ambisonics is a spatial audio format that relies on the spatial decomposition of a sound
field. Rather than describing the loudspeaker feeds for a fixed playback configuration
(channel-based), it holds the components which together add up to the original sound
field at a certain point in space (scene-based). Ambisonics is not bound to a fixed
playback setup like, e.g., Dolby 5.1 is. The requirements regarding the playback setup
rather concern the total number of loudspeakers and their distribution. Furthermore,
Ambisonics allows for various transformations, such as rotation, warping of the coordinate
space, or directional loudness modifications [2]. Ambisonic signals can be obtained by
recording a real sound field with a microphone array, or by superposition of direct encoded
point-like sources.

The concept of Ambisonics is strongly related to the spherical harmonic decomposition
or spherical Fourier transform which will be also explained later on.

2.1.1 Ambisonic Signal Representation

Ambisonics is based on the spatial decomposition of two- or three-dimensional sound
fields at the surface of a sphere. The extent of decomposition, indicated by
the Ambisonics order, determines the angular resolution. The decomposition into
components up to a certain order N includes all lower-order components 0 ≤ n ≤ N .

First Order Ambisonics (FOA), also known as B-Format, was first described by Michael A.
Gerzon in the 1970s [3]. It consists of four channels which can be thought of as the
output of a set of microphones located at the coordinate origin that have either monopole
or dipole characteristics. The zeroth order component, usually referred to as the W
signal, corresponds to the output signal of an omnidirectional microphone, whereas the
first order components X, Y , and Z, each correspond to a figure-of-eight characteristic
aligned with the respective coordinate direction. The described configuration can already
be used to make Ambisonic recordings. However, it is more common to obtain the four
B-Format signals by a linear combination of the outputs of an array consisting of four
cardioid microphones at the corners of a regular tetrahedron. In this case, the distance
of all four capsules of a tetrahedral array to the center is the same, and the spherical
sampling is optimal (cf. Section 2.1.2).

The microphone characteristics of the four FOA channels form an orthonormal basis on
the sphere. Every incoming sound wave is projected onto this basis, i.e., decomposed
into a linear combination of these functions. Note that the purely angular formulation
assumes the incident waves to be plane, and therefore discards any distance information.

The superposition of the omnidirectional component and each of the dipoles results in
a cardioid characteristic. Since achievable polar patterns are restricted to cardioid-like
characteristics, it is intuitively clear that spatial resolution of FOA is limited.
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Encoding of a point source to a direction Ω0 in FOA can be achieved if the point source
signal is weighted by the respective basis function evaluated at Ω0 for each Ambisonics
channel.

The concept of Ambisonics can be extended to arbitrary orders if the sound field is
further decomposed. Higher-order Ambisonics is based on the projection onto additional
basis functions with increased directional selectivity. A suitable set of basis functions is
formed by the so-called spherical harmonics (SHs).

The real-valued spherical harmonics of order n and degree m are given by

Y m
n (Ω) =

C
m
n cos(mϕ)Pm

n (cosϑ) if m ≥ 0
C |m|n sin(|m|ϕ)P |m|n (cosϑ) if m < 0

, n ∈ N0, m ∈ Z, |m| ≤ n, (1)

where Cm
n is a normalization term, Pm

n is the associated Legendre polynomial, and
Ω = (ϑ, ϕ) is the set of angular coordinates on the unit sphere. ϑ ∈ [0, π) is the
elevation angle starting at the negative z axis, and ϕ ∈ [0, 2π) is the azimuth angle
which is zero in positive x direction and increases towards the y axis.

The spherical harmonics are orthogonal, but the normalization term Cm
n can be chosen

with respect to the convention used in order to ensure they are also orthonormal, i.e.,
the inner product

∫
Ω∈S2

Y m
n (Ω)Y m

′

n
′ (Ω)dΩ = δnn′δmm′ (2)

of two spherical harmonics on the surface of the unit sphere, denoted by S2, where∫
Ω∈S2 dΩ =

∫ π
−π
∫ π

0 dϕ cosϑdϑ, is one if they are of the same order and degree, and zero
otherwise. δij is the Kronecker delta function,

δij =

1 i = j

0 i 6= j
. (3)

We define an Ambisonics signal of order N as a vector of Ambisonic components

z(t) =
[
z0

0(t) z−1
1 (t) z0

1(t) z1
1(t) · · · z−NN (t) · · · zNN (t)

]T
(4)

that each correspond to to a signal recorded by a virtual microphone with directivity
pattern corresponding to the spherical harmonic of same order and degree.
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2.1.2 Spherical Harmonic Transform

Any square-integrable function on the sphere f(Ω) can be decomposed into a weighted
sum of spherical harmonics

f(Ω) =
∞∑
n=0

n∑
m=−n

fnmY
m
n (Ω) (5)

with coefficients fnm. The coefficients fnm can be computed by the inner product of
f(Ω) and the spherical harmonics Y m

n :

fnm =
∫

Ω∈S2
f(Ω)Y m

n (Ω)dΩ. (6)

Due to its equivalence to a Fourier series expansion at the unit sphere, the spherical
harmonic decomposition is also known as spherical Fourier transform.

In practice, the order can not be chosen close to infinity. Not only are audio computations
at very high orders highly expensive; moreover, in the case of spherical microphone array
processing, the maximum achievable order is very limited. Most of the Ambisonics
recordings are restricted to orders below 5 due to the difficulty of placing a large number
of high-quality microphones within a sufficiently small array. First-order Ambisonics is by
far the most widespread case. Hence, the series expansion from (5) is usually truncated
at a certain order N :

f(Ω) ≈
N∑
n=0

n∑
m=−n

fnmY
m
n (Ω) (7)

In analogy to the Nyquist-Shannon sampling theorem, perfect reconstruction of f is now
only possible if f is band-limited in the angular domain, i.e., the maximum order of f
does not exceed N . Natural sound fields are, in general, not order-limited. Therefore,
sampling may introduce aliasing of higher-order components into lower orders, depending
on the spherical wavelength and the aperture of the microphone array.

Given an order-limited sound field, the maximum possible order of the SH decomposition
depends on the number of samples available, as well as their distribution on the sphere.
Sampling approximates analysis integral (6) by a discrete sum,

fnm =
J∑
j=1

gjf(Ωj)Y m
n (Ωj), (8)

where {f(Ωj)} is a finite set of samples on the sphere at positions Ωj. The quadrature
weights gj are introduced to support the approximation. Exact sampling (perfect
reconstruction of f(Ω)) requires to maintain orthonormality. Substituting (5) in (8),
the modified orthonormality criterion becomes (cf. [4]):
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J∑
j=1

gjY
m

′

n
′ (Ωj)Y m

n (Ωj) = δnn′δmm′ (9)

Among the different sampling schemes – to name but a few, e.g., equi-angle, spiral, or
Gaussian sampling – those are of particular interest which lead to an approximation that
is proportional to the analysis integral. Spherical t-designs provide a set of coordinates
M on the unit sphere that guarantees orthogonality, i.e.,

∑
Ωj∈M

Y m
′

n
′ (Ωj)Y m

n (Ωj) ∝ δnn′δmm′ , (10)

and allows to replace the integral of a t-th order polynomial Pt on the sphere surface
S2 by a discrete sum with equal weights [5]

∫
Ω∈S2

Pt(Ω)dΩ = 4π
J

∑
Ωj∈M

Pt(Ωj). (11)

In order to formulate the spherical harmonic transform in matrix notation, we express
{f(Ωj)} by a vector f = [f(Ω1) · · · f(ΩJ)]T and denote the discrete spherical Fourier
transform of f by

f̊N = SHT {f}, (12)

where f̊N = [f00 f1−1 f10 f11 · · · fNN ]T. The forward spherical harmonic transform in
matrix notation for the general case is given by

f̊N = YN G f , (13)

which is equivalent to the analysis sum (8), where the matrix of order-N spherical harmon-
ics is YN = [y(Ω1) · · · y(ΩJ)] for directions {Ωj} with yN (Ω) = [Y 0

0 (Ω) Y −1
1 (Ω) · · · Y N

N (Ω)]T,

and G = diag{gi}. The inverse spherical harmonic transform (ISHT) of f̊ is given by

f = ISHT {f̊N} = Y T
N f̊N . (14)

Again, (13) depends on the choice of G and the sampling locations. The least squares
solution is given by

f̊N = Y †N f , (15)

where Y †N is the Moore-Penrose pseudoinverse of Y T
N . The orthogonality criterion

translated into matrix notation is given by
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Y H
N GHGYN ∝ I, Ωj ∈M. (16)

If the set of coordinates constitutes a t-design, and if YN = [yN(Ωj)]Ωj∈M, and
f = [f(Ωj)]Ωj∈M, the orthogonality criterion holds for unit weights

Y H
N YN ∝ I, Ωj ∈M, (17)

and the solution

f̊N = SHT {f} = YN f ≡ Y †N f , Ωj ∈M (18)

is optimal in the least-squares sense. The Moore-Penrose pseudoinverse can be
determined via singular value decomposition (SVD):

Y T
N = USV T (19)

In the above equation, U and V contain the left- and right-eigenvectors, respectively,
and S is a diagonal matrix containing the singular values of Y T

N . The pseudoinverse of
Y T
N is then given by

Y †N = US−1V T. (20)

In many cases, the inverse of S is ill-conditioned due to singular values which are close
to zero. A numerically stable inverse can be obtained using Tichonov regularization

Y †N = U(S + λI)−1V T, (21)

or by discarding all singular values that fall below a certain threshold (truncated SVD).
The result is the regularized least squares solution

Y †N = U

[
S̃−1 0
0 0

]
V T, (22)

where S̃ contains the singular values that lie above the threshold.
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2.2 Binaural Audio

The need for relatively large and expensive loudspeaker arrays for playback is a downside
of Ambisonics (and other high-resolution surround techniques). Thus, it is desirable to
find a way to decode Ambisonics for binaural presentation, rather than for loudspeakers,
without altering the impression of sound, space, and diffuseness. But beyond being only
a workaround for listening to Ambisonics recordings without having access to adequate
loudspeaker arrays, combining binaural techniques with Ambisonics enables us to create
rotatable sound scenes and realistic virtual spaces via earphones. The following section
outlines the mechanisms of localization and binaural audio. In the following, different
binaural rendering approaches are presented.

2.2.1 Localization

Localization refers to the ability to judge the positions of sound sources in geometrical
space relative to the listener’s head position in a natural or artificial sound field. Given
the case of a natural sound field, the sound sources are perceived to be located outside
the listener’s own head (externalized). Inter-aural time differences (ITD) and inter-aural
level differences (ILD) are considered to be the predominant cues for localization. ITDs
describe the difference in arrival time of incident sound waves that results from the
different path lengths from the source to each of the two ears. Because of the phase
ambiguity at higher frequencies, ITDs are expected to provide localization cues for low
frequencies, while ILDs rather contribute to localization at high frequencies due to the
diffraction around the head at lower frequencies.

Purely virtual phantom sources can be created by a combination of two (or more)
loudspeaker signals if the level and delay differences of each signal relative to the
other signals are manipulated. The relationship between panning configurations and
the perceived location is complex and shall not be treated in this thesis. However, if
the loudspeakers are positioned close to or inside the auditory canal or, more specifically,
if earphones are used, phantom sources are perceived to be located on the inter-aural
(lateral) axis inside the head. This phenomenon is the most important problem binaural
techniques need to overcome.

In order to manipulate audio signals in such a way that they are externalized, we need
to identify and apply the very cues our hearing evaluates for localization of physical
sound sources. While the Duplex Theory [6] finds that ILDs and ITDs are sufficient for
localization, it does not explain the localization of sources that have the same ILD and
ITD. These points are located at the mantle of a cone symmetric around inter-ear axis
with its apex at the center of the head (the so-called Cones of Confusion). The fact
that we are able to discriminate between these positions is, besides possible visual cues,
due to reflections at pinnae, and torso (which are not axisymmetric), that contribute to
the direction-dependent frequency response from the source to each of the ears. This
leads to frequency-dependent ITDs and a more complex frequency dependency of ILDs
compared to the Duplex Theory.
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2.2.2 Head-Related Transfer Function

Binaural techniques make use of the assumption that sound waves entering the ear
canal already contain all relevant directional cues. Consequently, a sound scene which
is first recorded and then played back inside or close to the auditory canal of the very
same human subject should be perceived to be identical to the original sound scene
(neglecting the impact of microphone and loudspeaker on the recorded signal). A naive
approach to obtain a binaural recording could be to provide the target listener with in-ear
microphones, which is impractical for obvious reasons. Using artificial or dummy heads
instead turns out to work reasonably well for many listeners, despite the inter-individual
differences in geometry of pinnae, head, and torso.

In order to encode virtual sources for binaural presentations, we apply frequency-
dependent ITDs and ILDs in the form of a filtering operation with the head-related
transfer functions (HRTF s). A HRTF characterizes the transfer path from a source
position to each of the two ears by means of frequency-dependent gains and phase shifts.
HRTFs can be measured for individual subjects and also for artificial heads. A virtual
source can be positioned if a signal is convolved with the head-related impulse response
(HRIR) that was measured from the desired direction. If the HRTF for a certain direction
is not available, adjacent HRTFs may be interpolated.

2.3 Signal-independent Binaural Rendering Methods

Now that we learned how to encode a monophonic signal for binaural audio, how can we
apply this knowledge to more complex signals like Ambisonics recordings that probably
contain a large number of direct sources, reflections, and reverberation from arbitrary
directions? Obviously, direct encoding of all partial sources is not feasible since it would
involve the extraction of an unimaginable number of partial sources and very likely
produce severe artifacts.

In this section, the two most widely used signal-independent binaural rendering
approaches will be presented: the virtual loudspeaker decoder and the least squares
decoder. Subsequently, different recently published strategies are presented which strive
to reduce the artifacts typically introduced the latter method.

2.3.1 Binaural Rendering Using Virtual Loudspeakers

Fig. 1 shows the block diagram of a widely used binaural decoder that is based on a very
straightforward approach. Instead of decoding an N -th order Ambisonics input signal
z = [z0

0 . . . z
N
N ]T for a physically present loudspeaker array, it is decoded for a set of

L virtual loudspeakers. Each virtual loudspeaker feed sl is convolved with the left and
right HRIR evaluated for the direction of each loudspeaker, or multiplied by the HRTF
coefficients in frequency-domain

h(Ωl, ω) = [HL(Ωl, ω) HR(Ωl, ω)]T l = 1, . . . , L.
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Thus, the resulting output signals for the left and right ear

x̂(ω) = [x̂L(ω) x̂R(ω)]T =
L∑
l=1

sl(ω) h(Ωl, ω)

are the sum of all virtual loudspeaker signals filtered with the left or right HRTF,
respectively.

Ambisonics 
microphone

array or
encoder

Ambisonics 
decoder

Convolve
and sum

L Virtual 
loudspeaker

positions

Left and right
HRTF

(ω, t)z1

(ω, t)z2

(ω, t)z3

(ω, t)z(N+1)2

(ω, t)s1

(ω, t)s2

(ω, t)s3

(ω, t)sL

,… ,Ω1 Ω(L+1)2

h( ,ω),… ,h( ,ω)Ω1 ΩL

(ω, t)x ̂ �

(ω, t)x ̂ �

z(ω, t) s(ω, t) (ω, t)x̂ 

Figure 1: Binaural rendering using virtual loudspeakers.

2.3.2 The Least Squares Decoder

The Ambisonics decoder and the virtual loudspeaker setup have a major impact on the
results of the binaural rendering method presented in the previous section. A bad choice
can introduce colorations or reduce the spatial resolution. Since only linear operations
are involved, the method could be conflated into a single multiple-input multiple-output
filtering operation

x̂(ω) =
[
x̂L
x̂R

]
=
[
wH

L z

wH
Rz

]
, (23)

omitting the intermediate step of decoding to a virtual loudspeaker array (compare
Fig. 2). It is more efficient to directly determine the filter weights subject to a set of given
constraints, so that the resulting signal complies with known objective specifications. The
filter weights for the left and right estimated binaural signal, wL and wR, are the SH
domain representation of a complex-valued function on the sphere that is supposed to
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zw
�

(ω)w�,�

z(ω) (ω)x ̂ �,�

Figure 2: Binaural rendering filter.

assign the correct gain and delay to signals from any direction Ω. For the least squares
decoder, we will come to the result that this function is the HRTF itself.

The goal is to minimize an objective function J that describes the error between between
the estimated signal x̂ and a desired signal x

w∗(ω) = arg min
w

J(ω,Ω) (24)

For a plane wave s(ω) from direction Ω0 at the input, encoded in N -th order Ambisonics

z(ω) = s(ω) yN(Ω0), (25)

the estimated signal can be expressed by

x̂(ω) = s(ω)
[
wH

L (ω)yN(Ω0)
wH

R(ω)yN(Ω0)

]
. (26)

The desired signal consists of the HRTF-filtered plane wave

x(ω) = s(ω)
[
HL(ω,Ω0)
HR(ω,Ω0)

]
. (27)

Assuming that left and right HRTFs are symmetric, and dropping the frequency index,
the cost function that minimizes the least squares error between the estimated and the
desired signal for all directions on the sphere can be written as

J =
∫

Ω∈S2
|wHy(Ω)−H(Ω)|2dΩ, (28)

and the filter weights that minimize the above expression are optimal in the lest-squares
sense:

w∗ = arg min
w∈K

∫
Ω∈S2

|wHy(Ω)−H(Ω)|2dΩ (29)
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In this equation, K is the domain over which w is optimized. In case of an unconstrained
problem, K = CJ . If the problem is discretized, i.e., the sphere is sampled at a dense
set of directions M, the approximation of the above integral is given by

w∗ = arg min
w∈K

∑
Ωj∈M

|wHy(Ωj)−H(Ωj)|2 ≡ arg min
w∈K

‖YMNw − hM‖2
2, (30)

where YMN = [yN (Ωj)]Ωj∈M and hM = [H(Ωj)]Ωj∈M. The solution to problems of this
kind can be found by multiplication with a pseudo-inverse. In case of the unconstrained
LS problem, the solution is

w∗LS = Y †MNhM = YMNhM = SHT MN {hM}, (31)

which can be interpreted as the spherical harmonic transform of the HRTF set.

Unfortunately, the unconstrained least squares decoder introduces colorations (spectral
roll-off towards higher frequencies) if the input signal has a low order – which is the
most common case. The least squares decoder tries to approximate the HRTFs for the
whole sphere by means of a weighted linear combination of orthogonal basis functions
(spherical harmonics). The weights are the spherical harmonic transform coefficients
of the HRTF set. In case of an input signal with low order, less basis functions are
available for the linear combination and the HRTFs can only be approximated with less
spatial detail. But due to the off-center location of the ears, phase fluctuations between
neighboring source positions lead to increasing spatial complexity with frequency. Thus,
higher orders substantially contribute to the total energy.

If the SH transform in (31) is truncated at order N , the energy contained in the higher
orders is dropped, leading to a roll-off towards higher frequencies. Consider the HRTF
coefficients

h = [H(Ωj)]j=1,...,J = ISHT {h̊M} = Y T
M h̊M (32)

as the inverse SHT of the SH domain representation of the same HRTF with sufficiently
high order M to represent the highest contained spatial frequency. The order-N SHT
in (31) can be regarded as the projection of Y T

M h̊M onto YN . Due to the order mismatch
M � N , higher-order basis functions of Y T

M , i.e., the orders N+1, . . . ,M , are projected
onto the nullspace of YN (and vanish).

The least squares decoder in (26) can be interpreted as a virtual loudspeaker decoder
which employs all HRTF measurement points as virtual loudspeakers. Based on this
interpretation, Fig. 3 illuminates the problem from a different perspective. Consider the
head of a listener placed at the coordinate origin, facing positive x direction, with the
inter-aural axis lying on the y axis, and a single plane wave arriving from a point source
in positive y direction. The point source corresponds to a spatial Dirac impulse in the
ideal case. Order-truncated reproduction of this point source in Ambisonics entails the
degeneration of the spatial Dirac impulse driving the virtual loudspeakers into a main
lobe and various side lobes. The main lobe can be modeled as an array of isophasic
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monopoles (corresponding to the HRTF measurement positions) located at the cap of
a sphere around the origin.

rH rH

x

z
y

Figure 3: Isophasic monopoles driven by a degenerated beam lead to destructive
interference in case of eccentric receivers, cf. [7].

Assume first that the head radius rH approaches zero (Fig. 3, left), so that both ears
would be located in the coordinate origin. Any two monopoles located on a sphere around
the origin would have the same distance to the center, and therefore sound would arrive in-
phase at the ears and interfere constructively. If the ears are moved off-center by rH � 0
in ±y direction (Fig. 3, center), the path lengths from each of the monopoles to the
ears vary slightly, leading to phase differences. Phase differences increase towards high
frequencies and lead to destructive interference at multiple frequencies. The increased
density of cancellations at high frequencies is perceived as a low-pass effect. If the point
source is moved towards the frontal direction, the phase differences further increase, and
so does the roll-off towards higher frequencies.

2.3.3 Binaural Modal Order Reduction

The authors in [7] propose to use only a reduced subset of the available |M|measurement
points. This reduces the number of sources in the above model. If less sources interfere
at the receivers, the attenuation of high frequencies is reduced while the total energy is
retained. This is equivalent to spherical sub-sampling. While the maximum contained
spatial frequency, which is determined by the spatial complexity of the HRTFs, remains
constant, the number of available support points is reduced and higher-order components
are thus aliased into lower orders. Even though the method yields good results in a
listening test, it should be considered that, as the directional distribution of energy in
the aliased components is not related to the original source distribution in a meaningful
way anymore, localization is likely to be adversely affected.
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2.3.4 Diffuse Field Equalization

The authors in [8] propose a global diffuse field equalization filter which is equivalent to
restricting the optimization domain to [9]

K =
{

w ∈ CJ : wHw =
∫

Ω
|H(Ω)|2 = ‖hM‖2

2

}
, (33)

i.e., to require the norm of the rendering weights to be equal to the total norm of the
HRTFs for all directions and frequencies. The solution to the constrained problem is

wLS eq = ‖hM‖2

‖Y H
MhM‖2

Y H
MhM. (34)

While reducing the low-pass effect on average, direction-dependent distortions remain
for low input orders because the modal order of each HRTF coefficient depends on the
respective direction.

2.3.5 ITD Equalization

Fig. 4(a) shows the average energy contained in each order of an SH-transformed HRTF
set over frequency. As can be seen from the figure, higher orders substantially contribute
to the total energy. The increase in spatial complexity of HRTFs at high frequencies
is due to rapid phase changes at high frequencies. In a recent contribution [10], it
was shown that removing the linear phase, i.e., the phase differences between the left
and right ear, reduces the amount of energy contained in higher order components.
Consequently, HRTFs can be represented with a lower order in the SH domain, as shown
in Fig. 4(b), without causing the low-pass effect that arises if the energy contained in
higher orders is dropped. It has been shown that inter-aural phase differences (ITDs)
do not contribute to localization at high frequencies. Hence, ITD equalization can
be applied with no perceptual ramifications if the phase of lower frequencies remains
unchanged.

Frequency-dependent equalization can be achieved by multiplication of the original
HRTFs with an an all-pass filter

H(ω,Ω) = H(ω,Ω)A(ω,Ω) (35)

with the frequency response

A(ω,Ω) =

1 if ω < ωc

e−i(ω−ωc)τ(Ω) if m < 0
, (36)

where i is the imaginary unit, and ωc = 2π · 1.5 kHz is the cut-on frequency above
which the linear phase is compensated. τL(Ω) and τR(Ω) are the time difference between
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(a) HRTF prior to modification (b) Modified above 3 kHz

Figure 4: Relative modal energy distribution of an HRTF set over frequency and impact
of ITD equalization (HRTF of Neuman KU-100, cf. [11]).

the center and left or right ear, respectively. τ can be estimated from HRTF sets, but
approximation on the basis of a spherical head model

τR(Ω) ≡ τR(ϑ, ϕ) = cosϑ sinϕrHc−1, τR(Ω) = −τL(Ω), (37)

where c is the speed of sound, and the head radius is set to rH = 8.5 cm, works sufficiently
well.

From the perspective of Fig. 3, the receivers are virtually shifted to the center for
the upper freqency range. Since sound from all monopoles arrives in-phase destructive
interference is prevented.

2.3.6 Magnitude Least Squares Decoder

In the previous section it was shown that subtracting the linear phase ϕl(Ω) at higher
frequencies, i.e., setting the phase of the HRTFs to γ(Ω) := ∠H(Ω)− ϕl(Ω), reduces
the spatial complexity of HRTFs and, therefore, the required SH expansion order for
accurate reproduction. However, the residual phase does not necessarily lead to the
lowest spatial complexity.

If the HRTFs are decomposed into the product of a matrix M = diag|hM| containing
the absolute values and a phase vector p = [eiγΩ]Ω∈M, where γ(Ω) = ∠H(Ω), the cost
function (30) can be written as [9]

min
w∈K
‖YMw −Mp‖2

2. (38)

After this decomposition it is possible to perform joint minimization over w and p
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min
w,p
‖YMw −Mp‖2

2 (39)

s.t. |pj| = 1 ∀j = 1, . . . , |M|, (40)

i.e., determine the optimal filter coefficients and the optimal HRTF phase modification
at the same time. Since the phase constraint is equivalent to ignoring the phase error
and just minimizing over the magnitudes of the HRTFs, problem can be reformulated as
min

w
‖|YMw| − |hM|‖2

2. Similar to the phase modification in the previous section, the

phase modification is only applied above the cut-on frequency ωc:

w∗MagLS = arg min
w

‖YMw − hM‖2
2, ω ≤ ωc

‖|YMw| − |hM|‖2
2, ω > ωc

(41)

2.4 Methods for the Enhancement of the Spatial Resolution

The spatial resolution of first-order Ambisonics (FOA), and of binaural signals derived
from it, is often insufficient. Various methods exist that try to enhance the resolution,
of which a selection will be presented in the following.

2.4.1 Directional Audio Coding

Directional Audio Coding (DirAC) [12] is a parametric time-frequency domain method
for the reproduction and enhancement of spatial audio for variable reproduction systems.
In [13], it was combined with a method for generation of binaural output. The underlying
assumption of DirAC is that the auditory system is limited to decoding only one cue for
source direction, and one for diffuseness at a single time instant in each critical band. The
directional cue is obtained from inter-aural time differences, inter-aural level differences
and spectral cues, whereas the diffuseness cue refers to inter-aural coherence. It is
assumed that the original signal is resynthesized perceptively correct if those very cues
are faithfully reproduced within the respective frequency bands.

DirAC is subdivided into an analysis and a synthesis stage, which makes it applicable
for transmission and storage of spatial audio. The analysis stage derives a parametric
time-frequency representation of the B-Format input signal, consisting of the estimated
direction of arrival Ω, the estimated diffuseness coefficient ψ, and one or multiple
audio signals extracted from the input (depending on whether the focus lies on bit
rate reduction for transmission or high quality reproduction). The direction of arrival
(DOA) is defined as the negative intensity vector

D = −I = −pu, (42)

where p is the omnidirectional sound pressure and u is the particle velocity vector. If the
sound pressure p is replaced by the omnidirectional w signal, the particle velocity vector
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u is replaced by a vector containing the three figure-of-eight signals x, y, z, the result

D ∝ −Avgτ1

w∗
xy
z


 (43)

is proportional to D. The temporal average over a time interval τ1, denoted by Avgτ1
{·},

is introduced in order to reduce artifacts caused by fast directional variations of the
intensity vector. The temporal average is implemented as a weighted moving average,
i.e., the samples in the interval [t, t + τ1] are multiplied by a window function W1 and
then summed up. Since the length of D is irrelevant for the application,

D′ := −
t
′
1∑

m=t1
w(n+m)v(n+m)W1(m) (44)

can be used as an estimate for the DOA. The diffuseness coefficient ψ is defined as one
minus the relative fraction of direct sound, which is the ratio between the fraction of
sound energy impinging from the DOA and the total sound energy:

ψ = 1− ‖E{I}‖
cE{E}

≈ 1−

∥∥∥Avgτ2
{I}

∥∥∥
cAvgτ2

{E}
, ψ ∈ [0, 1], (45)

where c is the speed of sound, Avgτ2
{·} denotes the temporal average over the time

interval [t, t+ τ2], and

E = ρ0

2

(
p2

Z2
0

+ u2
)

(46)

is the instantaneous sound energy. The diffuseness for B-Format signals can be computed
with

ψ ≈ 1−
√

2‖∑t
′
2
m=t2 w(n+m)v(n+m)W2(m)‖∑t

′
2
m=t2

(
|w(n+m)|2 + 1

2 |v(n+m)|2
)
W2(m)

. (47)

The synthesis stage receives the DOA and diffuseness parameters from the analysis stage,
and also either the omnidirectional w signal or virtual microphone signals, for the low-
bandwidth or high-quality variant, respectively. The synthesis stage tries to resynthesize
the sound field as the superposition of a directional and a diffuse sound component.
Thus, the audio signals are split up into a diffuse and a direct stream which are then
multiplied by

√
ψ or

√
1− ψ, respectively. The diffuse stream is then decorrelated and

fed to the loudspeakers. Decorrelation is needed to reduce the coherence between the
loudspeaker signals in order to achieve the impression of a diffuse sound field. The direct
stream is used to create point-like virtual sources at positions corresponding to the DOA.
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The omnidirectional channel contains a mixture of direct and diffuse sound. It is
desirable to increase the amount of direct sound in the point source signals, while,
at the same time, to reduce the coherence between the diffuse loudspeaker signals. This
is achieved by extracting the signals of virtual microphones pointing in the direction of
each loudspeaker. In principle, different reproduction techniques can be applied, such
as Vector Based Amplitude Panning (VBAP), or Ambisonics. In the case of VBAP,
this corresponds to three virtual microphone signals pointing to the loudspeaker triangle
currently playing (direct component) and one virtual microphone signal per loudspeaker
(diffuse component). Another benefit of using virtual microphones is that the diffuse
signals only have to be mildly decorrelated (decorrelation is a major source of artifacts).
The creation of virtual microphones, however, requires transmission of the full B-Format
signal instead only transmitting the w component.

For binaural reproduction, as proposed in [13], the loudspeakers are replaced by virtual
loudspeakers. Each virtual loudspeaker signal is convolved with the HRIR corresponding
to the loudspeaker position and then summed up for both ears. Using a fixed setup of
virtual loudspeakers, there is no need for HRTF interpolation in real-time. Furthermore,
sound scene rotation according to head movements of the listener (head-tracking) can
be achieved by transformation of the direction metadata and the virtual microphone
positions.

2.4.2 High Angular Resolution Planewave Expansion

High Angular Resolution Planewave Expansion, or HARPEX, is a time-frequency domain
method to enhance B-Format signals. In [14], it was proposed for decoding to general
surround loudspeaker configurations, and can therefore be combined with arbitrary
panning methods, such as pairwise panning, Ambisonics, or wave field synthesis. In [15],
the authors extend the method to generate binaural output signals.

HARPEX is based on source separation by plane wave decomposition and subsequent
higher-order encoding of the extracted plane waves. A B-Format input vector X is
decomposed into the matrices V and A,


√

2w
x
y
z


︸ ︷︷ ︸

X

=


1 1
x1 x2
y1 y2
z1 z2


︸ ︷︷ ︸

V

[
a1
a2

]
︸ ︷︷ ︸

A

, (48)

where the lower 3 × 2 matrix of V contains the incidence directions, and A contains
the complex amplitudes of two plane waves. X is split into its real and imaginary part
and then decomposed by means of a QR decomposition. The QR decomposition finds
the matrices Q and R which satisfy

[Re(X) Im(X)] = QR, (49)
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where the columns of the 4 × 2 matrix Q form an orthonormal basis for the column
space of the decomposed matrix, and R contains the linear combination coefficients. Q
is then transformed into V with respect to the conditions that (i) the square of the top
element of V is equal to the squared norm of the bottom three elements, and (ii) the
top element is equal to 1. A matrix

D = QC (50)

that satisfies (i) can be found by multiplying the matrix Q by a ’mixing matrix’ C, where
C is given by

C = Q11

[
1 1
−b b

]
+Q12

[
b −b
1 1

]
, (51)

b =
√

2(Q2
11 +Q2

12)− 1. (52)

In order to satisfy (ii), the columns of D are divided by their top elements

V = D

[
D−1

11 0
0 D−1

12

]
. (53)

The plane wave amplitudes A are not required for the further processing steps, but can
be determined from D, C, and R.

If Q2
11 + Q2

12 <
1
2 , the solution to (52) is not defined and the decomposition does not

exist. In these cases, an alternative method must be employed. The authors claim that
the choice of the fall-back method does not make any perceptible difference because it
affects only a small fraction of all samples.

The basic decoder extracts two plane waves and uses the directions of arrival of the
extracted plane waves as virtual loudspeaker positions. An HRTF set is evaluated at
the directions of arrival, which may require interpolation, and the HRTF coefficients are
then multiplied by the complex amplitude of the respective plane wave. The number of
extracted plane waves, which is two, is derived from the available degrees of freedom of
the input vector X, which is eight: real and imaginary part of the 4 B-Format signals.
The authors further argue that discriminating of two sources per time-frequency bin is
already at the limit of the capability of the auditory system.

However, the basic decoder introduces artifacts because of sharp edges in the transfer
function of the resulting system. Smoothing can only be applied to the transfer function
if it is known. The transfer function can be obtained by multiplying the input-to-
plane-waves decoder by the plane waves-to-binaural decoder (the so-called output mode
vectors), where the input-to-plane-waves decoder is the inverse of a matrix containing
the plain wave representation (the so-called input mode vectors), similar to V . The
result is a decoding matrix that decodes the input vector to the binaural output signals.
In order to be able to compute the inverse of the input mode matrix, and to ensure
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it is well-conditioned, two more plane waves are added to the input mode vectors at
complementary directions.

Another source of artifacts are DOA estimation errors. These errors lead to phase
noise. The phase difference between the correct HRTF coefficient and the one selected
at the noisy DOA increases with frequency. While phase noise is audible over the
whole frequency range, phase, or more specifically, inter-aural time differences are only
evaluated at low and mid frequencies. Since phase noise in the low range is tolerable,
the phase for high frequencies is replaced by another less accurate, but also less noisy
estimate. The new estimate is obtained by summing up the group delays over frequency.
It may be affected by offset errors, which are, however, inaudible at high frequencies.

2.4.3 Sparse Plane Wave Decomposition

In [16], a method was proposed that tries to estimate higher order Ambisonic signals
from an Ambisonic input signal via convolution with a filter matrix. The filter matrix
is obtained using sparse plane wave decomposition. Plane wave decomposition tries to
explain acoustic observations as the superposition of plane wave signals. The plane wave
decomposition of an order-L Ambisonic input signal vector b = [b0

0 b
−1
0 · · · bLL]T in the

time/frequency domain is given by

b(t, k) = Y s(t, k), (54)

where k is the index of the frequency band, t is the index of the time frame, s is a vector
containing the plane wave source signals corresponding to the directions Ω1 . . .ΩP , and

Y =
[
y(Ω1) y(Ω2) · · · y(ΩP )

]
, (55)

which the authors refer to as a spatial dictionary for the plane-wave decomposition, is a
matrix of spherical harmonic vectors evaluated for a set of P points regularly distributed
on the sphere with y(Ωi) = [Y 0

0 (Ωi)Y −1
0 (Ωi) · · · Y L

L (Ωi)]T. The size of dictionary
must be much greater than the number of Ambisonics signals P � (L + 1)2, and
P ≥ (L′ + 1)2, where L′ > L is the order of the Ambisonic output signal. Since (54) is
an underdetermined linear system, infinitely many solutions exist.

Solving for s using the Moore-Penrose pseudoinverse leads to the least-norm solution
which, however, is not necessarily the best choice in a perceptual sense. It distributes
the plane wave energy evenly over the sphere, but since in most cases sound sources
playing at the same time and in the same frequency band are expected to be discrete
in space and their number is expected to be small, it is makes sense to solve for the
solution most sparsely distributed in space instead. This kind of problem is known from
compressed sensing (CS) techniques, and a common approach would be to minimize the
`1 norm of s subject to Y s(n, k) = b(n, k). The `1 norm

‖s‖1 :=
P∑
i=1
|si| (56)
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is the sum of the absolute values of each element of s. Minimizing the `1 norm leads to
a convex optimization problem that needs to be solved for each time/frequency sample
separately. But discontinuities between neighboring bins can lead to artifacts. In order to
reduce these artifacts, multiple time slices of the input signal must be considered, which
transforms the problem into a multiple-measurement vector type optimization problem:

minimize ‖S(n, k)‖12 (57)

subject to Y S(n, k) = B(n, k), (58)

where

B(n, k) = [b(nτ + 1, k) b(nτ + 2, k) · · · b(nτ + T, k)] n ∈ N (59)

and

S(n, k) = [s(nτ + 1, k) s(nτ + 2, k) · · · s(nτ + T, k)]. (60)

‖ · ‖12 denotes the `1 norm of the row-wise `2 norm of a matrix, i.e.,

‖A‖12 :=
∑
i

√∑
j

|aij|2. (61)

If the problem is considered as finding a demixing matrix D with

S(n, k) = D(n, k)B(n, k) (62)

which computes the plane wave vectors from the Ambisonic input vectors, it can be
reformulated as

minimize ‖D(n, k)B(n, k)‖12 (63)

subject to Y D(n, k) = I, (64)

and can be solved using the Iteratively Re-weighted Least Squares algorithm (IRLS). The
successive measurement vectors are not necessarily linearly independent. Thus, solving
in the subspace spanned by the first (L+ 1)2 singular vectors can effectively reduce the
complexity of the problem. An upscaling matrix

U(n, k) = (1− α)U(n− 1, k) + αY ′D(n, k) (65)

is computed from the demixing matrix, where the forgetting factor α ∈ [0, 1] is used for
smoothing, and Y ′ is a matrix of SH vectors defined identically to (55), but expanded
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up to order L′. The increased-order Ambisonic output signal can be obtained via
multiplication by U in the frequency domain,

B′(n, k) = U(n, k)B(n, k), (66)

or via time-frame-wise convolution in the time domain,

b′(n)(t) = (U (n) ∗ b(n))(t), (67)

followed by overlap and add.
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3 Single-Parametric Binaural Rendering

In Section 2.3.2, the least-squares method for rendering Ambisonics to binaural signals
was explained. For input signals with a low order, the unconstrained least squares
solution introduces severe artifacts, and the attained resolution is low. These problems
arise from the difficulty to approximate the complex directivity pattern of unmodified
HRTFs adequately by a linear combination of lower-order spherical harmonics. The
performance of the least-squares decoder can be improved with various approaches, e.g.,
global diffuse field equalization or reduction of the spatial complexity of the HRTFs by
phase modification. Note that these approaches are unable to increase the resolution
above the resolution of the input signal.

However, different methods exist which try to increase the spatial resolution. In contrast
to the least-squares decoder, which is a time-invariant linear filter and independent of the
input, the methods presented in the previous section are parametric and time-variant, and
aim at the resynthesis of the input signal in order to gain a higher resolution. Ultimately,
resynthesis is either based on the explanation of each observation (frame) by a number of
plane waves (HARPEX, Sparse Plane Wave Decomposition), or a single plane wave and
diffuse sound (DirAC) and requires the extraction of parameters from the input signal
(direction of arrival, diffuseness, number and distribution of plane waves)

This section presents a recently proposed method [17] that uses a parametric linear
filtering approach. In addition to minimizing the least-squares error for the whole
sphere, two constraints are imposed upon this optimization problem to yield accurate
reproduction of direct sound while preserving the statistical characteristics of diffuse
sound. To begin with, the underlying signal model will be explained. Subsequently, after
formulating the constraints, the approach to solving this optimization problem will be
explained.

3.1 Signal Model

We model a sound field in the Ambisonics domain with limited order P by the sum of
a direct sound component zd, which is the superposition of D source signals sδ arriving
from directions Ωδ, and a diffuse component zn. The frequency-domain input signal
z(ω, t) at a given time instant t is given by

z(ω, t) = zd(ω, t) + zn(ω, t)

=
D∑
δ=1

zδ(ω, t) + zn(ω, t)

=
D∑
δ=1

sδ(ω, t) yP (Ωδ) + zn(ω, t), (68)

where z(ω, t) = [z0
0(ω, t) · · · zPP (ω, t)]T holds the Ambisonic signals, sδ(ω, t) is the direct

sound signal of the δ-th plane wave, and yP (Ωδ) = [Y 0
0 (Ωδ) · · ·Y P

P (Ωδ)]T is a vector
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of real-valued spherical harmonics up to order P evaluated at Ωδ. If we assume only a
single plane wave s0(ω, t) arriving from Ω0 to contribute to the sound field at a given
time instant and frequency index, (68) simplifies to

z(ω, t) = s0(ω, t) yP (Ω0) + zn(ω, t). (69)

This assumption is already familiar from Directional Audio Coding, cf. Section 2.4.1.
Similarly, we model the binaural signal as the superposition of a direct and a diffuse
binaural signal

x(ω, t) = xd(ω, t) + xn(ω, t)

=
D∑
δ=1

xδ(ω, t) + xn(ω, t)

=
D∑
δ=1

sδ(ω, t) h(Ωδ, ω) + xn(ω, t), (70)

where x(ω, t) = [xL(ω, t) xR(ω, t)]T contains the signals for the left and right ear, xδ is
δ-th direct signal arriving from direction Ωδ, xn is the diffuse binaural component, and

h(Ωδ, ω) = [hL(Ωδ, ω) hR(Ωδ, ω)]T (71)

is the HRTF for each of the two ears evaluated at frequency ω and direction Ωδ. Again,
if we assume only a single source to be active at each time/frequency sample, the model
can be simplified to

x(ω, t) = s0(ω, t) h(Ω0, ω) + xn(ω, t). (72)

3.2 Formulation of the Constraints

We estimate the binaural signal by means of a linear transformation

x̂(ω, t) = W (Ω0, ω) z(ω, t), (73)

where x̂(ω, t) is the estimated binaural signal, and the 2×(P+1)2 matrix W = [wL wR]H
is a complex weighting matrix. The vectors wL and wR are the weights of the linear
combination of the Ambisonic input signal yielding signals for the left and right ear,
respectively. Note that W depends on the direction of arrival, Ω0. It can be regarded as
the solution to a beamforming problem that meets the following conditions at the same
time:

(1) Best possible localization of direct sound

(2) Unaltered impression of the diffuse sound field
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If both conditions are met, we expect perceptual equivalence. A mathematical
formulation of the problem is developed in the following. Note that the frequency and
time indices are omitted for the sake of readability.

3.2.1 Linear Constraint

Best possible localization of the direct component is achieved if

x̂d = xd, (74)

i.e., the estimated direct component is equal to the product of the unknown direct
source signal and the HRTF coefficient of the respective direction and frequency. In
Section 2.3.5 it was shown that we can reduce the spatial complexity of an HRTF
by ITD equalization for high frequencies without detrimental perceptual effects. We
therefore define

xd := h(Ω0)s0, (75)

where the underline indicates that phase modification was applied. Inserting (75) and
the estimated binaural signal

x̂d = W (Ω0)yP (Ω0)s0 (76)

into (74) leads to a linear constraint on W (Ω0):

W (Ω0)yP (Ω0) = h(Ω0) (77)

3.2.2 Covariance Constraint

In order to take the diffuse field into account, we need to find another constraint on
the weighting matrix. For correct encoding of the diffuse component, the diffuse field
energy and the interaural coherence of the sound field should not be altered. A sufficient
stochastic description of the binaural signals is provided by the auto-covariance matrix
of the desired signal, which holds the variances (signal power) of the left and right ear
signals along the main diagonal, and their covariance (joint variability) as the top right
and bottom left element. The covariance matrix, which is identical to the correlation
matrix for zero-mean signals, has the form

Φx = E
{
xxH

}
=
[
E{xLx

∗
L} E{xLx

∗
R}

E{x∗LxR} E{xRx
∗
R}

]
=
[
σ2

L r∗LR
rLR σ2

R

]
, (78)

where E{·} denotes the expectation operator, i.e., the average over multiple realizations
of the same stochastic process. If the diffuse field is unaltered, the covariance matrices
of the estimated and the desired signal must be identical:
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E
{
x̂x̂H

}
= E

{
xxH

}
(79)

The covariance matrix of the desired signal can be computed by substituting (70) into
the definition

E
{
xxH

}
= E

{
(s0 h(Ω0) + xn)(s0 h(Ω0) + xn)H

}
= E

{
s2

0h(Ω0)hH(Ω0) + 2s0h(Ω0)xH
n + xnxH

n

}
. (80)

In the above equation, E
{
s2

0

}
= σ2

d is the variance of the direct signal, and E
{
xnxH

n

}
=

σ2
nΦH is the product of the variance of the diffuse signal and the diffuse field covariance

matrix of the HRTF set. After the term 2s0h(Ω0)xH
n vanishes because the input signal is

assumed to be uncorrelated with the diffuse signal, the covariance matrix finally becomes

E
{
xxH

}
= σ2

dh(Ω0)hH(Ω0) + σ2
nΦH . (81)

ΦH is the diffuse field covariance matrix of the (unmodified) HRTF set, i.e., the spatial
integral over the covariance matrix of the HRTF directional patterns, weighted with
the probability of each incidence direction. A perfectly diffuse sound field is defined as
the superposition of an infinite number of plane waves with unit amplitude and random
phase. Thus, each direction has equal probability and ΦH is given by

ΦH = E
{
hhH

}
=
∫
S2

h(Ω)hH(Ω)dΩ. (82)

This integral can be approximated by the discrete sum over directions Ωj,

ΦH ≈
J∑
j=1

gjh(Ωj)hH(Ωj) = HTGH∗, (83)

where H = [h(Ω1) · · ·h(ΩJ)]T. The diffuse field covariance matrix can also be expressed
in the spherical Fourier domain with H = ISFT {H̊N} by

ΦH ≈HTGH∗ = H̊T
NYNGY T

N H̊∗
N = H̊T

NH̊∗
N . (84)

The covariance matrix of the estimated signal is given by

Φx̂ = E
{
x̂x̂H

}
= E

{
W (Ω0)zzHW H(Ω0)

}
. (85)

After computing the expectation of zzH, which is

E
{
zzH

}
= σ2

dyP (Ω0)yH
P (Ω0) + σ2

nI, (86)
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where σ2
d and σ2

n are the variances of the direct and diffuse signal, respectively, the
covariance matrix of the estimated signal can be written as

E
{
x̂x̂H

}
= σ2

dW (Ω0)yP (Ω0)yH
P (Ω0)W H(Ω0) + σ2

nW (Ω0)W H(Ω0) (87)

Inserting the linear constraint (77) into the above equation, and inserting expressions
for the covariance matrix of the estimated and the desired signals into (79) leads to a
second, quadratic constraint

W (Ω0)W H(Ω0) = ΦH , (88)

which will be referred to as the covariance constraint in the following.

3.3 Problem Formulation

The problem can be formulated as a constrained optimization problem,

W0 = arg min
W

J (W ) (89)

subject to: (1) W y0 = glh0 (90)

(2) W W H = g2
cΦH , (91)

where W0 is defined as the matrix W that minimizes a cost function J for the direction
of arrival (DOA) Ω0 in the least-squares sense subject to the linear (90) and the quadratic
constraint (91) derived before. gl and gc are positive scalars that are ideally equal to
one. In case the constraints can not be exactly met, the constraints can be weighted
with α(gl − 1)2 + (1− α)(gc − 1)2 = min. by the choice of α ∈ [0, 1].
We define the cost function as the least squares error for all directions on the sphere:

J (W ) =
∫
S2
d(Ω)‖W yP (Ω)− h(Ω)‖2

2dΩ, (92)

The cost function is identical to the cost function for the least-squares decoder in (28),
except for the optional factor d(Ω) that can be used to put more weight on certain
directions. If the cost function is constrained by (90) and (91), the weights optimized
for a certain DOA are the matrix that minimizes the least squares error for all directions
on the sphere while exactly meeting the linear constraint for plane waves arriving from
the DOA and the quadratic constraint for the diffuse sound field.
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3.4 Solution

All matrices W that satisfy the covariance constraint (91) can be expressed by

W = gcKP , (93)

where KKH = ΦH and P is an arbitrary matrix such that P P H = I, i.e., P is unitary.
The matrix K can be computed with a suitable decomposition of ΦH . Employing the
eigen decomposition ΦH = UHSHUH

H yields

K = UHSH . (94)

The matrix P is a means to parametrize the remaining degrees of freedom in order to
meet the linear constraint as well. Note that due to the introduction of P we can modify
the solution of the above equation, while the solution of

W W H = g2
cKP P HKH = g2

cΦH (95)

remains unchanged, so that the covariance constraint is still met.

Inserting (93) into the linear constraint (90) yields

P y0 = gK−1h0, (96)

where g = gl/gc. The least-norm solution of the above equation is

Pl = g

q2 K−1h0y
H
0 . (97)

However, the least-norm solution to (96) does not necessarily satisfy the covariance
constraint. But, since we are allowed to add any expression to the solution that lies
inside the nullspace of yP without changing the solution to P y0, we can write

P = Pl + RNy, (98)

where Ny constitutes an orthonormal basis for the nullspace of y0, and R is an arbitrary

matrix such that P is unitary. With NyP
H
l = 0 and NyN

H
y = I, we have

I = P P H

= (Pl + RNy)(Pl + RNy)H

= PlP
H
l + RRH. (99)
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If we define

RRH = C := I − g2

q2 K−1h0h
H
0 K−H

︸ ︷︷ ︸
PlP

H
l

, (100)

it becomes clear that this problem is similar to (91), and we can use the same ansatz,

R := KCPC , (101)

where KCKH
C = C and PC is an arbitrary 2 × (P + 1)2 − 1 matrix with orthonormal

rows and PCP H
C = I. Hence, the solution for W0 is given by

W0 = gcK(Pl + RNy) = gl
q2 h0y

H
0 + gcKKCPCNy, (102)

where KC = UCΣC , and PC is yet to be determined. We reformulate the problem:

P ∗C = arg min
PC

∫
S2
d(Ω)‖W yP (Ω)− h(Ω)‖2

2dΩ (103)

subject to: (1) W = gl
q2 h0y

H
0 + gcKKCPCNy (104)

(2) PCP H
C = I (105)

we rewrite the problem in matrix form, i.e., approximate the integral numerically for a
given set of points,

PC = arg min
PC

∥∥∥(W YP −HT
)

G
1
2 D

1
2
∥∥∥2

F
(106)

subject to: (1) W = gl
q2 h0y

H
0 + gcKKCPCNy (107)

(2) PCP H
C = I, (108)

where || · ||F denotes the Frobenius norm, YP = [yP (Ω1) · · · yP (ΩJ)], and D =
diag d(Ωj). The sampling positions on the sphere Ωj and the quadrature weights
G = diag g(Ωj) have to be carefully chosen in order to yield a good approximation.
Inserting (107) into the cost function and expanding the Frobenius norm, while constant
terms can be dropped, yields
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min tr
PC

(
g2
cKKCPCNyMNH

y P H
C KKC

)
(109)

+2Re

{
tr
(
glgc
q2 KKCPCNyMy0h

H
0

)}
(110)

−2Re

{
tr
(
gcKKCPCNyYPGDH∗

)}
, (111)

where M = YPGDY H
P . In general, this can not be solved analytically, but if D ∝ I,

the first term is constant under the identity constraint since NyMNH
y = I, the second

term vanishes since Nyy0 = 0. The problem is thus reduced to the residual problem

max tr
PC

(PCA) (112)

subject to PCP H
C = I, (113)

where

A := KKCNyH̊
∗
P . (114)

It follows that PC is the unitary matrix that maximizes (112) is the conjugate transpose
of the closest unitary rectangular matrix to A [18]. Via singular value decomposition of

A = UAΣAV H
A (115)

it can be found that

PC = UA

[
vA,1 vA,2

]
. (116)
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4 Implementation

Real-time audio applications require that all computations performed on the input
samples are finished within a certain interval of time. In audio applications, usually
a callback function is used which receives a block of input samples as a parameter and
returns the output samples. Failing to return the block of samples within the time limit
causes output underflow or input overflow, which result in audible artifacts.

It is thus essential to avoid any operations that take an unpredictable amount of time
during the execution of the callback function. Such operations may be, e.g., memory
allocations and deallocations, or file read and write operations. Furthermore, resources
required by the callback function must not be blocked by other threads.

In order to reduce the computation time as much as possible, the time-consuming
optimization is performed off-line. The plug-in is provided with a functionality to
pre-compute the weights for custom HRTFs and save them to a preset file which
can be loaded later on. Furthermore, since each frequency bin undergoes the same
computations, speed can be easily improved by parallelization. This can be achieved by
splitting the range of frequency bins into a number of partitions which are processed each
in a separate thread. An alternative way to achieve parallelization could be to make use
of the SIMD functionality of modern processors, or to perform part of the computations
on the GPU. However, the current implementation confines itself to the use of threads.
The number of partitions that can be processed in parallel is limited by the number of
CPU kernels. However, this maximum can not be guaranteed, mainly because the CPU
may be busy processing other threads running at the same time, including the plug-in
main thread, the host DAW thread, or threads of other applications and the operating
system.

4.1 Pre-Computation of the Filter Weights

In Section 3, the optimal filter weights in a least squares sense were derived. The
optimization problem needs to be solved for each frequency bin of each time frame. One
way to reduce the amount of computations per time frame is to pre-compute the filter
weights. Since the weights constitute a function on a sphere surface, it is convenient
to express them in the spherical harmonic domain. Compared to saving the weights
evaluated for a fixed coordinate grid directly, the SH representation brings the advantage
of implicit interpolation when the SH coefficients are evaluated for a certain direction.
Thus, they can be evaluated continuously, instead of having to map the DOA to the
closest point of the grid or to employ an additional interpolation step.

Because it is sufficient to produce a perceptively sufficient result, perfect reconstruction
is not necessarily required. The expansion order Q′ of the weights may therefore be
chosen lower than the expansion order Q of the HRTFs in many cases, which further
reduces the amount of computations. To gain flexibility, the weights are stored at a
sufficiently high order, while the user is free to choose a lower order, e.g., if a lower order
already produces perceptively accurate results, or if the computational load is too high.



Super-Resolution Ambisonics-to-Binaural Rendering Plug-In 38

Choosing an order which is too low may lead to inaccurate results. We observed that if
the order is reduced below 5-6, the decrease of spatial resolution is clearly perceptible.
Very high orders, however, do not seem to result in significant improvements, especially
compared against the increase of computational load.

The weights are computed for the full sphere at a dense sampling grid. The SH transform
is well-conditioned if a sufficiently dense spherical t-design is used as a grid.

Recall that one time-frequency bin of the estimated binaural signal vector x̂ originating
from a sound source located at the DOA Ω0 is given by the product

x̂ = W0 z =
[
wL,0
wR,0

]
z, (117)

where the (2×NP ) matrix W0 contains the beamformer weights optimal for Ω0, and z
is the order-P Ambisonic input signal vector.

In order to find a function on the sphere that can be transformed into the SH domain,
the optimization problem in Section 3 is solved for a set of Leval points, yielding two
(Leval ×NP ) matrices WL and WR. The SH transforms of these matrices are given by

W̊L = Y †
Q

′WL (118)

W̊R = Y †
Q

′WR, (119)

and have the dimensions (NQ
′ × NP ). They are given by the product of the partial

matrices for the left and right channel and Y †
Q

′ , which is the pseudoinverse of

Y T
Q

′ =
[
yQ′(Ω1) yQ′(Ω2) · · · yQ′(ΩLeval)

]
. (120)

The estimated binaural signal x̂ = W (Ω) z can now be computed for arbitrary Ω, where

W (Ω) :=
[
wL(Ω)
wR(Ω)

]
=
yT

Q
′(Ω)W̊L

yT
Q

′(Ω)W̊R

 (121)

is the SH domain weighting matrix evaluated at a single point Ω with dimensions
(2×NP ).

Direct evaluation of the spherical harmonic polynomials involves expensive trigonometric
computations. It is more efficient to make use of recurrence relations and to evaluate a
pre-factored form, optionally using SIMD instructions, as shown by the authors in [19].
The authors also provide a source code generator1 which was used to generate the SH
evaluation functions the plug-in uses.

1http://jcgt.org/published/0002/02/06/

http://jcgt.org/published/0002/02/06/
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Figure 5: Block diagram of all computations performed at runtime.

4.1.1 Perceptual and Numeric Evaluation

Fig. 5 shows the signal flow at runtime for precomputed weights available in the SH
domain. This is the core of the plug-in and the computations are performed on every
STFT frame.

The DOA is estimated analogously to DirAC (see Sec. 2.4.1) based on the intensity
vector. Informal listening showed that, in contrast to DirAC, no short-time averaging of
the instantaneous intensity vector is required because no artifacts were produced.

The weighting coefficients are stored as time-domain impulse responses which are zero-
padded according to the required FFT size and resampled according to the sampling
frequency setting in the DAW when loaded. The expansion order can be freely chosen
by the user. The effect of the SH transformation and successive dynamic evaluation at
truncated order depending on the user setting of the accuracy of the filter coefficients
is being investigated in the following. Fig. 6 compares the original impulse responses
before SH transformation wref and the impulse responses weval after SH transformation
and evaluation at the exact same coordinates the filter weights were optimized for. The
weights were generated up to order Q′ = 20 and for B-Format with HRTFs obtained
from a spherical far-field HRIR of the Neumann KU 100 artificial head [11] with 2702
measurement positions (HRIR_L2702.sofa). The impulse responses are compared by
correlation

ρw = wH
eval wref

||weval|| ||wref||
(122)

in order to obtain a scalar similarity measure between 0 and 1 that can be displayed on
a sphere surface. ρw can be interpreted as the angle between the impulse responses,
where ρw = 1 indicates that the impulse responses are parallel (high similarity) and
ρw = 0 indicates orthogonality (no similarity). The sphere surface is mapped onto a
2-dimensional plane using the azimuth as the horizontal and the elevation as the vertical
axis, while the horizontal axis was contracted depending on the elevation. The data
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points were linearly interpolated. The rows of Fig. 6 show the minimum values of the
correlation of the left and right impulse responses for the four components of a first-order
input signal and increasing expansion order up to Q′ = 20. Processing with Q′ = 20 is
close to the upper limit for processing in real-time, but still feasible depending on the
FFT size, while Q′ = 14 is unproblematic. For the lower expansion orders deviations
become visible. Values below 0.9 are not individually resolved because ρw ≤ 0.9 was
considered insufficient. Since plots for Q′ = 14, 20 show a high correlation, a sufficient
resolution is feasible. Reducing the order can be interpreted as smoothing the filter
weights. The choice of the expansion order is left to the user so that he or she can make
a compromise between accuracy and required computational power if necessary.

4.2 Handling of Incomplete HRTF Data

HRTFs are usually measured for a grid of discrete positions around a subject’s or artificial
head. In order to interpolate the HRTF set for arbitrary positions, the spherical harmonic
transform (SHT) can be employed. The reliability of the SHT depends on the number of
grid points and their distribution on the sphere. Appropriate sampling can not be ensured
for measured HRTFs in general, as, especially if a human subject is used, certain angles
can not be covered (usually a cap at the bottom of the sphere) and the available amount
of time for the measurement is limited. Since the underlying continuous data is unknown
and not available for comparison, the quality of the approximation must be judged on
the basis of similarity of the original data and the SHT evaluated for the same positions,
and how plausible the values in between are in a perceptual sense.

The discrete spherical harmonic transform of an HRTF set is an approximation of the
unknown continuous analysis integral (cf. (6))

hnm =
∫

Ω∈S2
h(Ω)Y m

n (Ω)dΩ. (123)

By the choice of an appropriate coordinate grid Ωj ∈ M, and, if necessary, quadrature
weights G = diag{gj} for each sample on the sphere, the order-N SHT of an HRTF set
H = [h(Ωj)]Ωj∈M, where each h(Ωj) consists of the left and right HRTF coefficient
for direction Ωj, is given by

H̊N = YN G H , (124)

where YN = [yN(Ωj)]Ωj∈M contains vectors of spherical harmonic coefficients up to
order N for all Ωj. The pseudoinverse of YN may be used instead of determining the
integration weights, yielding the least squares solution:

H̊N = Y †N H (125)

In case of inappropriate sampling, the pseudoinverse may be ill-conditioned, leading to
numerical instability. Since the plug-in should not only be compatible with dense artificial
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(a) 1st ch., 1st order (b) 1st ch., 7th order (c) 1st ch., 14th order (d) 1st ch., 20th order

(e) 2nd ch., 1st order (f) 2nd ch., 7th order (g) 2nd ch., 14th order (h) 2nd ch., 20th order

(i) 3rd ch., 1st order (j) 3rd ch., 7th order (k) 3rd ch., 14th order (l) 3rd ch., 20th order

(m) 4th ch., 1st order (n) 4th ch., 7th order (o) 4th ch., 14th order (p) 4th ch., 20th order

Figure 6: Correlation (angle) ρw between original and SH-evaluated impulse responses
(minimum of left and right channel). Values below 0.9 are mapped to 0.9.

head HRTF sets, but also possibly sparse HRTF sets measured with a human-subject, a
way must be found to cope with the difficulties arising from incomplete HRTF data.

One approach is to regularize the least squares fit in (125), as shown in [20]. The
authors of [21] propose a very simple alternative to that approach. The original data
is transformed into the SH domain using the least squares method with low order, e.g.,
N = 3. In this case, the problem should be well-behaved since pseudoinverse is expected
to be well-conditioned. In a next step, new samples are generated by evaluating the
obtained low-order SH coefficients for any desired grid points in the unknown regions.
The incomplete HRTF set is complemented with these new samples and a higher-order
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SHT can be performed on the combined set. Of course, this method can not reconstruct
missing data, but it ensures numerical stability, has little effect on the measured samples,
and does not lead to severe artifacts if the SHT is evaluated in the unknown regions.
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(c) Inverse SH transform of incomplete data (d) Inverse SH transform of complemented data

Figure 7: Impact of complementary points on the SH transform of an HRTF
(subject 003.sofa, right ear) for the 1 kHz band.

To determine the locations where new samples should be added, this implementation
compares the original grid with a dense t-design. At each coordinate point of the t-design
which is further away from any measurement position than a fixed maximum angle, a
new sample is generated. The maximum distance the implementation uses was set to
3◦.
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Fig. 7 shows an example. An HRTF from the CIPIC HRTF Database [22] (subject_
003.sofa) with 1250 source positions was used. As it can be seen in Fig. 7(a), the
original source positions (red ◦) are located on an arc that is rotated around the inter-
aural axis. The measurement grid is less dense close to the rotation axis, and a large
surface element at the bottom is not covered at all. Fig. 7(b) shows the magnitude
of the right HRTF at 1 kHz in dB. The data points are interpolated using the nearest-
neighbor method for smoother visualization. The blank areas correspond to the points
that will be added in the interpolation step, i.e., all coordinates from a t-design (t = 57
and 1720 points) which are further away than 3◦ from any original data point, as shown
in Fig. 7(a) (black ×). Fig. 7(c) shows the original HRTF data after SH transformation
and successive evaluation with order 20. The SH coefficients were evaluated for the
combined set of the original and the complementary points. It is clearly visible that the
multiplication by the ill-conditioned matrix inverse in (125) leads to excessive magnitude
levels at the missing areas. Obviously, this is not a desirable behavior. Fig. 7(d) shows,
in contrast, that if the presented method is applied and new interpolated points are
added, the magnitude level stays within the expected range with smooth transitions to
the surrounding original values, and the original values are not noticeably altered.

4.3 File Format

The common exchange format for HRTF measurements is the SOFA format (Spatially
Oriented Format for Acoustics). The plug-in should be compatible with files following
the SOFA convention2 [23]. The format is based on NetCDF which is an exchange
format for scientific data that provides storage functionality for multi-dimensional data
and corresponding metadata. In the case of SOFA files, the HRIRs are stored together
with the respective source and receiver coordinates, and the definition of the coordinate
system.

It is convenient to use NetCDF also for storing the precomputed weights. The expansion
order is provided among the metadata, and the plug-in can adapt to files generated for
arbitrary orders.

For reading and writing NetCDF files the netcdf-cxx-4.2 library3 was used.

4.4 Class Structure

The plug-in is written in C++ using the JUCE framework4. JUCE allows to build various
plug-in formats as well as standalone applications for Windows, Mac OS X, and Linux
platforms. It provides a ready-to-use environment for audio processing including the
audio callback and a graphical user interface (GUI).

A minimal JUCE plug-in consists of the PluginProcessor (audio processing) and the

2https://www.sofaconventions.org
3https://www.unidata.ucar.edu/downloads/netcdf/netcdf-cxx/index.jsp
4https://www.juce.com/

https://www.sofaconventions.org
https://www.unidata.ucar.edu/downloads/netcdf/netcdf-cxx/index.jsp
https://www.juce.com/
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PluginEditor (user interface). Several classes were added in the current implementation.
The following is an overview of the classes. An excerpt of the inheritance diagram of
the BinauralAudioProcessor, which is the implementation of the PluginProcessor of
this plug-in, is provided in Fig. 8.

BinauralAudioProcessor 

public AudioProcessor private OSCReceiver public
AdaptiveBinauralDecoder 

public STFT public ProcessWeights 

Figure 8: Inheritance diagram of the BinauralAudioProcessor.

BinauralAudioProcessor This is the main processing class. It inherits general audio
processing functionality from AudioProcessor. This includes, e.g., the audio callback.
It is a generic implementation that can be wrapped as different plug-in formats or
standalone applications. The implementation of the binaural renderer is inherited from
AdaptiveBinauralDecoder.

BinauralPluginEditor Implements the graphical user interface (GUI), inherited from
the JUCE class AudioProcessorEditor.

AdaptiveBinauralDecoder This is the actual implementation of the Ambisonics-to-
binaural rendering algorithm. It holds the algorithm parameters, and performs all steps
of the binaural rendering algorithm. First, the input audio data are passed to an STFT
(short-time Fourier transform) routine inherited from the STFT base class. Frequency-
domain audio processing is implemented in a pure virtual method of STFT that has to
be overridden by the inheriting class. In this method, the DOA is estimated and a vector
of spherical harmonics is evaluated at the DOA for each frequency bin. Subsequently,
the filter weights are evaluated at the DOA and multiplied with the input data. The
corresponding methods are inherited from the second base class, ProcessWeights,
which furthermore provides functionality for loading the filter weights.

STFT A framework for performing the short time Fourier transform using the FFTW
library [24].
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ProcessWeights Used to load and prepare the filter weights, and to multiply the filter
weights evaluated for the DOA with the audio input data. Preparing the filter weights
refers to loading all coefficients up to the specified SH order, resampling, zero padding,
and FFT.

GenWeights This class is used for loading an HRTF set from a SOFA file, computing,
and storing the filter weights. It inherits from ThreadWithProgressWindow. A
GenWeights object launches a thread for parallel computation of the weights without
halting the main processing thread (DAW). When the inherited run method is called,
a window is opened with a progress bar which is continuously updated to give the user
feedback about the state of the computations.

4.5 Usage Example

The following steps are an example of the workflow for using the plug-in. Note that, as
the plug-in is continuously under development, the GUI and certain features may change
in the future. The present GUI is depicted in Fig. 9.

Figure 9: Graphical user interface of the plug-in.

1. Open a DAW of your choice and load the plug-in into a 4-channel track or bus.

2. Choose appropriate audio material for processing, i.e., first-order Ambisonics
(B-Format). The plug-in works with ACN channel ordering and SN3D or
N3D normalization. If the channel ordering and normalization differ from this
convention, you may use a converter plug-in.

3. The plug-in requires a preset file which contains the filter weights generated for a
HRTF set.

4. To create a preset file, click the Create Preset button and open a HRTF set.
Valid HRTF sets follow the SOFA convention and have the file ending .sofa.

5. To load a preset file, navigate to the directory where your preset files are stored
by clicking the Select Folder button. Choose a preset file using the combo box
which lists all preset files with the ending .nc in the current directory.
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6. Adjust the plug-in settings if necessary. The optimal FFT Size parameter may

differ for different types of audio material, e.g., music or speech. The Accuracy
parameter may be chosen between 1 and the maximum evaluation order used for
generation of the current preset. A lower value than the maximum may be sufficient
depending on the audio material and will lead to less CPU usage. However, note,
that choosing a too low value will lead to inaccurate reproduction.

7. Hint: You can read the data and metadata of SOFA and preset files using software
tools like, e.g., ncdump.
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5 Conclusion

Binaural rendering of Ambisonic signals can be interpreted as the approximation of the
HRTF directional patterns by means of a set of basis functions (spherical harmonics).
The spatial complexity of HRTFs increases with frequency. Consequently, a significant
amount of the total energy is contained in higher order modes. Modeling the directivity
patterns of the ears (HRTFs) requires spherical harmonic orders up to 35. The
unconstrained least squares binaural decoder introduces sound colorations due to the
modal order mismatch between a lower-order Ambisonic input signal and the HRTF.
Moreover, lower-order Ambisonics yields poor directional resolution.

Different strategies exist to cope with these problems. Sound colorations can be reduced
by aliasing higher-order modes into lower orders by spatial sub-sampling [7], or by
applying global diffuse field equalization [8]. The spatial complexity of HRTFs at high
frequencies can be reduced by removing the linear phase [10] above the frequency above
which phase information is not evaluated for localization anymore. The magnitude least
squares method [9] tries to find the optimal phase modification while minimizing the
magnitude squared error between the decoder and the HRTFs. Note that the listed
methods operate independently of the input signal.

Various methods try to obtain a signal with enhanced resolution from B-Format input.
Based on the assumption of a single direct source per frequency bin plus a diffuse
component, Directional Audio Coding (DirAC) [12] [13] separates the input signal into
a direct and a diffuse stream, which are weighted according to the estimated diffuseness
parameter. The direct component is encoded as point sources in the direction of the
estimated direction of arrival (DOA), while the diffuse component is a decorrelated
version of the input. Critical parameters are the estimated DOA and diffuseness, and
the time constants for averaging. High Angular Resolution Plane Wave Expansion
(HARPEX) [14] decomposes the input into four plane waves per frequency bin which are
then encoded with higher order. The authors of [16] use compressed sensing techniques
to yield a plane wave decomposition with a low number of discrete sources that can be
encoded in higher order by convolution with a time-domain filter matrix.

The heart of this thesis was the presentation of a recently proposed parametric binaural
rendering method for Ambisonics signals. This method uses signal-dependent linear
filtering in the frequency domain. Similar to DirAC, it is assumed that a single direction of
arrival (DOA) per frequency bin and time frame substantially contributes to localization.
The sound field is modeled as a single plane wave from the direction of arrival (DOA) plus
diffuse sound. According to this model, a complete description of the sound field is given
by the DOA and complex amplitude of each of the point sources, and the inter-aural
covariance matrix of the diffuse component.

The proposed method is a signal-dependent extension to the least-squares decoder.
Based on the assumption of a single predominant direction of arrival (DOA) per
time/frequency bin, a constrained beamformer is directed towards the DOA. The
beamformer weights, which are the weights of a linear combination of spherical
harmonic functions of the same order as the input signal, are subject to a doubly
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constrained optimization problem. While the error between the directional response of
the beamformer and the HRTF coefficients is minimized in the least-squares sense for all
directions on the sphere, the constraints must be exactly met. The constraints demand
that (i) the transfer function of the beamformer in direction of the most dominant plane
wave must be identical to the HRTF for the respective direction, and (ii) the covariance
matrix of the estimated binaural signal is identical to the covariance matrix of the desired
signal. In contrast to DirAC, there is no need to estimate the signal-to-diffuse ratio, or
to generate a decorrelated diffuse signal because these parameters are implicitly captured
by the covariance constraint.

In the course of this thesis, a plug-in was developed that implements the new method.
The plug-in has two main functionalities. The first and most important task is, of course,
binaural rendering of Ambisonics input signals in real-time. Although the method works
for arbitrary input orders, we decided to limit the input to first-order Ambisonics since
the computational load massively increases for higher orders, while the advantage over
static binaural rendering methods, like, e.g., [9], decreases. The second task is the
pre-computation of the filter weights, as the optimization process would take too long
to be performed in real-time. The weights are only signal-dependent with regard to
the DOA. Hence, the weights are precomputed for a closely spaced grid of azimuth and
elevation angles on the sphere surface and transformed to the spherical harmonic domain
subsequently. If the weights are computed for a sufficiently dense grid, the transform is
usually well-conditioned. For each direction in this grid, a binaural HRTF must be known.
However, this can not be ensured, especially for HRTFs resulting from measurements
with human subjects. Therefore, the plug-in compares the HRTF grid to a dense t-design
and adds new interpolated grid points in insufficiently covered regions (or maybe rather
extrapolates to the unknown regions) using the method presented in [21]. The HRTF
set can now be represented in the SH domain at a sufficiently high order and evaluated
for the desired directions.

While the described rendering method appears to yield excellent localization and very
little artifacts, future work should concern subjective evaluation in a listening experiment.
The errors made in DOA estimation and interpolation of the SH transformed filter
weights need to be characterized by an objective measure. Furthermore, reliability of
the computed weights depending on the number and distribution of HRTF measurement
points could be investigated. An interesting research question would be whether the new
method can be applied for parametric Ambisonics decoding for microphone arrays. A
possible feature to complement the plug-in could be to use measured directivity patterns
of the microphones used for recording the input signals, instead of implicitly assuming
ideal microphone characteristics. This could include estimation of the beamformer
weights for custom microphone setups. In addition, headphone equalization could be
implemented in order to further improve localization by reducing the influence of the
transfer path of the headphones.
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