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Abstract

This thesis designs classification models from the area of artificial intelligence to
distinguish between urban noise and siren sounds. Audio recordings from the urban
environment and audio recordings capturing specific sound events are collected in a
basic data set. With audio signal processing suitable audio features for four classi-
fication approaches are extracted and selected from the obtained data environment.
Different machine learning classification algorithms are discussed for two classifica-
tion tasks: Two approaches for a binary classification task and one approach for a
classification task with three classes are presented. The last approach compares the
best binary classification solution with a deep learning classifier in the sense of trans-
fer learning. All classification models are tested with a self-recorded validation set
including car microphone recordings from the urban environment and the so-called
Martinshorn.

Zusammenfassung

In dieser Arbeit werden Klassifikationsmodelle aus dem Bereich der künstlichen
Intelligenz entworfen um Klänge aus der urbanen Umgebung von Sirenenklängen zu
unterscheiden. Audioaufnahmen aus der urbanen Umgebung und Audioaufnahmen,
die ausgewählte Schallereignisse erfassen, werden in einem Basisdatensatz gesam-
melt. Mit Audiosignalverarbeitung werden für vier Klassifikationsansätze geeignete
Audio-Features aus der erlangten Datenumgebung extrahiert und selektiert. Im Falle
von zwei Klassifikationsaufgaben werden verschiedene Klassifikationsalgorithmen
aus dem Bereich Machine Learning diskutiert: Es werden zwei Ansätze für eine
binäre Klassifikation und ein Ansatz für eine Klassifikation mit drei Klassen vor-
gestellt. Der letzte Klassifikationsansatz vergleicht das beste Ergebnis der binären
Klassifikation mit einem Deep Learning Ansatz im Sinne von Transfer Learning.
Alle Klassifikationsmodelle werden mit einem selbst-aufgenommenen Validierungs-
datensatz, welches an oder in einem Auto aufgezeichnete Mikrofonaufnahmen von
der urbanen Umgebung und dem sogenannten Martinshorn enthält, getestet.
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1 Introduction

The development of self-driving cars is a recent topic in industrial and scientific institu-
tions. The topic area includes a variety of technical fields for which further development
is necessary. In the area of computer vision much research is done to make self-driving
cars as safe as possible.
At this point the question arises: Instead of machine vision, are there other possibilities
to ensure the optimum driving safety? Are there other information in the driving environ-
ment, that can help self-driving cars to do even better?

In the end, self-driving cars are able to see their environment, but they are not able to listen
to their environment. Hence, to provide the optimum driving safety, a smart car should
recognize warning signals to respond correctly to the happenings in their environment.

This thesis discusses possible warning signals (e.g. from police cars, fire trucks, ambu-
lances, . . . ) and develops state-of-the-art machine learning algorithms to especially detect
the so-called Martinshorn, which in particular frequently occurs in Germany.

Hence, two approaches for a binary classification task, which are able to detect a Mar-
tinshorn, are presented. Furthermore, one approach for a classification task with three
classes, which additionally detects Environmental Sirenes, is introduced. Another ap-
proach compares the best binary classification solution with a deep learning classifier.
The so-called class zero is in all cases the sound of the urban noise, which is always
present.

For all approaches and with the knowledge of audio signal processing suitable feature
spaces, which should characterize the signal specifications as well as possible, are gener-
ated. The focus lies especially on audio features, which are adjusted to the Martinshorn
or more general to sirene sounds, to provide the best possible classification results.

The basic knowledge of all applied machine learning classification algorithms are de-
scribed in the second section. The used data set, information about the classes and the
Doppler effect are explained in section 3. The machine learning approaches are described
in section 4 and the deep learning approach is described in section 5.



2 CLASSIFICATION ALGORITHMS 8

2 Classification Algorithms

In Machine Learning (ML) there are different Tasks which can be solved by specific
models. This thesis focuses on Classification Tasks with different kinds of audio input
data (see section 3). The main idea is the training and optimization of a specific model
with a training and test data set. If a model has gratifying results, the prediction with
new unseen data should confirm the generalization of this model. Every step in a ML-
chain involves many different ways for optimization and it is the developer’s task to make
decisions for the best possible solution for a given problem. A basic machine learning
model is illustrated in Fig. 2.2.

This thesis discusses and presents the following classification algorithms: Perceptron, Lo-
gistic Regression, Naive Bayes Classifier, K-Nearest-Neighbor classifier, Support Vector
Machines and Multi-Layer-Perceptron.

Before explaining the different classifiers, the following paragraphs give an overview
about learning algorithms in respect of classification described in [1–3].

Classification Task The task T describes how a machine learning system should
handle an example. This example combines specific features, that have been measured
from an event (here: audio data) and that should be processed. The features are defined
by a feature vector x, where each entry describes another attribute.
In a classification task an algorithm which finds out, if the presented input belongs to a
category (or label) k, is developed with the help of a computer. The learning algorithm
usually models a function f : Rn → {1, . . . , k}. The function y = f(x) for example
assigns a numeric code y to the feature vector x, which than can be classified. Other
types of models find solutions with probabilities or distances.

Performance Measure The performance measure P rates the capacities of a machine
learning algorithm. A trained model is tested with unseen data to evaluate its performance.
In case of a classification task one measure is called the Accuracy of the model. Other
common performance measures are called Precision, Recall and F1-score. With the help
of a confusion matrix common performance measurements can be derived (see Table 1).
The rows of a confusion matrix correspond to the actual class label and the columns
to the predicted class label. Each entry of the matrix describes the percentage of how
many samples of the actual class are classified as the predicted class. In case of a binary
classification task the entries are called True Positive (tp), False Positive (fp), False
Negative (fn) and True Negative (tn).

The Accuracy of the model describes how many input samples are classified correctly by
the algorithm. In case of binary classification it can be formulated as:

Accuracy =
tp + tn

tp + tn + fp + fn
. (1)

The Precision or also true-positive-accuracy (tpa) describes how many chosen events
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Table 1 – Principle of a confusion matrix in case of binary classification. True classifica-
tions are placed on the diagonal of the matrix and false classifications elsewhere [4].

are relevant and is formulated as:

Precision = tpa =
tp

tp + fp
. (2)

The Recall or also true-positive-rate (tpr) describes how many relevant events are cho-
sen and can be calculated as follows:

Recall = tpr =
tp

tp + fn
. (3)

The F1-score combines the classification performance and can be derived from the mea-
sures Precision and Recall [5]:

F1-score = 2 · Precision · Recall
Precision + Recall

. (4)

This corresponds to the harmonic mean of the two performance measurements [6].

Experience The term machine learning combines supervised and unsupervised learn-
ing algorithms. In case of unsupervised learning algorithms the experience includes only
a data set of features. Hence, the algorithm has to learn how the data set is structured
by itself. In case of supervised learning algorithms the experience includes a data set of
features and corresponding labels (or targets), which categorize each observation. Here,
the target y helps the machine learning algorithm during the learning process.
In case of a supervised learning algorithm the feature data matrixX and the target vector
y have the form

X =


x1

x2
...
xN

 =


x1,1 x1,2 . . . x1,m
x2,1 x2,1 . . . x2,m

...
... . . . ...

xN,1 xN,2 . . . xN,m

 ,y =


y1
y2
...
yN

 , (5)

where N denotes the number of observations and m the number of features.
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Figure 2.1 – An exemplary training set is fitted with three different models. The true
function (black) is approximated by three models with different complexities. Underfit-
ting occurs in case of a linear model function (a) and overfitting occurs in case of a too
complex model function (c). No underfitting or overfitting occurs in case of a quadratic
model function (b). [7]

Overfitting and Underfitting The main goal in machine learning lies in finding an
algorithm which performs well on new unseen data (generalization). When evaluating the
performance of the developed model with an unseen validation set the generalization of
the model can be measured. In practice, the parameters of a machine learning model are
adjusted in such a way, that the training error is kept small, but ”the expected test error is
greater than or equal the expected value of [the] training error.” [1, p. 108]

On the one hand, the training error should be small and on the other also the difference
between the training and the test error should be small. Those two conditions are related
to the terms underfitting and overfitting. If the model is not able to keep the training error
small, it is called underfitting. If the difference between the training error and the test
error is large, it is called overfitting. An example in Fig. 2.1 shows how a true function is
approximated by three different model functions. The first linear model function underfits
the data (a), the second model function would generalize to unseen data (b) and the third
model function overfits the data, because it is too complex (c).
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Figure 2.2 – Basic machine learning model divided in its individual blocks. Each block
could involve additional processing steps: The block Preprocessing could for example
include Resampling, Feature Selection, Scaling or Dimensionality Reduction. In case of
Cross-Validation the feature set is divided into different training- and test-sets. The block
Learning contains the steps Model Selection and Performance Metrics for evaluation. In
the end the final model predicts labels with new unseen data and corresponding labels
(Prediction).
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2.1 Machine Learning Classifier

The following sections describe the applied machine learning classifiers. The Perceptron
forms the basis for the Multi-Layer-Perceptron presented in section 2.2.1. The Logistic
Regression resembles the model of a Perceptron but uses a sigmoid function for activation.
The Naive Bayes classifier works with conditional probabilities and the non-parametric
classifier K-Nearest-Neighbor calculates distances between the input samples. Support
Vector Machines try to find hyperplanes and enable calculations in higher dimensions.

The presented algortihms are implemented with scikit-learn, which is a software package
for machine learning in Python. The package involves different classification-, regression-
and clustering-algorithms.

When explaining the applied classifiers in the next sections, it is partially referred to the
type of implementations in the scikit-learn toolkit.

2.1.1 Perceptron

The concept of the Perceptron is based on the nervous activity, which was first described
in [8]. The main idea is an all-or-none behavior when transmitting information, which
involves a proportional logic. A schematic drawing of an artifical neuron is illustrated
in Fig. 2.3. The nerve cell can be seen as a logic gate, which receives several signals
at the Dendritic Tree, inserts them into the cell body and fires only when the arriving
signal oversteps a specific threshold (see Fig. 2.4) [9]. The first mathematical description
of the learning rule of a Perceptron was outlined in [10]. The rule finds optimal weight
coefficients which are multiplied with the input signals. If those summed up weighted
input features fulfill a certain threshold function, the neuron fires. Hence, the concept
could be used as a classification algorithm in the sense of supervised learning.

Definition of a Perceptron: The input signals xi and the weights w with xi,w ∈
Rm and i = [1, . . . , N ] input samples can be formalized as the vectors

xi =


xi,1
xi,2

...
xi,m

 (6)

and

w =

w1
...
wm

 . (7)

The summed up net input zi = w1xi,1 + · · · + wmxi,m is presented to the threshold
function Φ(zi). For a binary classification with a positive class +1 and a negative class
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Dendritic Tree
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Figure 2.3 – Schematic diagram of an artificial neuron with its Dendritic Tree (receiver),
the Cell Nucleus (signals inserted) and the Axon (signal passing).

−1 the output of the unit step function is

Φ(zi) =

{
1 if zi ≥ θ

−1 otherwise.
(8)

To enable a suitable decision rule an additional input and an additional weight are intro-
duced: The weightw0 is defined as the negative thresholdw0 = −θ and the corresponding
input x0 = 1. This leads to the new net input

zi = wTxi =
[
w0 w1 . . . wm

]


1
xi,1

...
xi,m

 =

= w0 + w1xi,1 + · · ·+ wmxi,m

(9)

and therefore to the new decision function

Φ(zi) =

{
1 if zi ≥ 0

−1 otherwise.
(10)

The weight w0 is also called the bias unit [9].

Learning Rule of a Perceptron: There are two possible output states for an artificial
neuron: It fires or it fires not. The learning rule in can be summarized as [9, 10]:

1. Initializing the weights w (0 or small random numbers)

2. Compute the output ŷi for each training sample xi,j , where j = [1, . . . ,m] features

3. Update the weights w
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Figure 2.4 – Basic concept of the Perceptron with input features xi and weights wi, where
x0 = 1 and w0 = −θ (bias unit).

The update of the weights wj for each training sample xi with feature values xi,j can be
denoted as

wj := wj + ∆wj, (11)

where

∆wj = η · (yi − ŷi) · xi,j. (12)

The constant η describes the learning rate, yi is the true class label and ŷI the predicted
class label of observation i. After the update of all weights ∆wj , the prediction ŷi for the
feature vector x(i) is calculated. The Perceptron converges only if the classes are linearly
separable, otherwise the weights updating would never stop. If the data is not linearly
separable, a maximum number of epochs (number of passes over the whole training set)
and (or rather or) a threshold for the number of permitted misclassifications can be set [9].

2.1.2 Logistic Regression

While the weights of the Perceptron only converge if the data is linearly separable, the
binary classification with Logistic Regression is more powerful [9]. The Logistic Regres-
sion algorithm is part of probabilistic supervised learning, where a probability distribution
p(y|x) is estimated [1].

Definition of Logistic Regression: The main difference to the Perceptron is the
use of an activation function before calculating a prediction (see Fig. 2.5). The natural
logarithm of the odds ratio is defined as the logit function

L(p) = ln

(
p

1− p

)
, (13)
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ŷ

∑
z

Net input
function

w2x2

...
...

wmxm

w1x1

w01

Figure 2.5 – Basic concept of the Logistic Regression with input features xi and weights
wj . The activation function is a sigmoid function.

where p denotes the probability that an event may occur and 1 − p the complementary
probability [11]. The input values (for one input sample) of the logit functions in the
range from 0 to 1 (probabilities) are mapped to the entire real-number range, which leads
to the following linear relationship [9]:

L [p(yi = 1|xi)] = w0 + w1xi,1 + · · ·+ wmxi,m = w0 +
m∑
j=1

wjxi,j = wTxi (14)

with the conditional probability p(yi = 1|xi) saying that an input sample with its features
xi belongs to the class yi = 1.

The inverse of the logit function is called the logistic sigmoid function

Φ(zi) =
1

1 + e−zi
(15)

with zi = wTxi = w0 + w1xi,1 + · · · + wmxi,m (x0 = 1 and bias w0) [9]. In Fig. 2.6
both functions are sketched. With the sigmoid activation function the net input wTxi is
mapped to the interval [0, 1] and interpreted as the probability, that this sample belongs
to the class yi = 1. As in the case with the Perceptron a threshold function can map the
probabilistic outcome into a binary outcome, which is the predicted class [9]:

ŷi =

{
1 if Φ(zi) ≥ 0.5

0 otherwise.
(16)

Learning Rule of Logistic Regression: When deriving a cost function J(w) the
likelihood estimator L with classes yi ∈ {0, 1} has to be maximized [12]. It is supposed,
that the samples in the dataset are distributed independently:
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Figure 2.6 – Logit function L(p) (left) maps probability values in the range [0, 1] to the
whole real-number range and its inverse the logistic sigmoid function Φ(z) (right).

L(w) =
N∏
i=1

p(yi|xi) =
N∏
i=1

(Φ(zi))
yi (1− Φ(zi))

1−yi . (17)

Taking the natural logarithm of the likelihood estimator leads to the sum:

ln (L(w)) =
N∑
i=1

[yi ln (Φ(zi)) + (1− yi) ln (1− Φ(zi))] (18)

This equation is equivalent to the loss function which needs to be minimized:

J(w) =
N∑
i=1

[−yi ln (Φ(zi))− (1− yi) ln (1− Φ(zi))] . (19)

In case of one given input sample this cost function could be formalized as:

J(Φ(z), y;w) =

{
− ln (Φ(z)) if y = 1

− ln (1− Φ(z)) if y = 0.
(20)

In Fig. 2.7 the loss function J(w) for a input sample x with weightsw is illustrated. The
higher the output of the activation function Φ(z) for class y = 1, the lower is the cost
J(w) which should be minimal.

With the Gradient Descent method the local minimum can be found by moving along the
gradients, which leads to the optimum weights w:

∇J(w) = −
N∑
i=1

(yi − Φ(xi)) · xi, (21)

where Φ(·) is the logistic sigmoid function (see Eq. 15). Now, the weight update can be
formalized as:
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Figure 2.7 – Loss function J(w) for a single sample (feature vector) with net input z =
wTx for y = ±1 depending on the probabilistic output of the sigmoid function Φ(z).

w := w + ∆w (22)

w := w − η · ∇J(w) = w + η ·
N∑
i=1

(yi − Φ(xi)) · xi (23)

Regularization Parameter for Logistic Regression There is a trade-off between
high variance (overfitting) and high bias (underfitting) when designing a model [9]. If the
model fits the parameter too closely and if it is not generalizing on new data it could be a
sign for overfitting. To find a good solution, the regularization parameter λ is introduced
by adding a regularization term with additional information (bias) to the cost function.
This ensures, that the sum of all weights wj are finite or rather minimal. In case of
logistic regression the cost function with L2 regularization gets

J(w) =
N∑
i=1

[−yi ln (Φ(zi))− (1− yi) ln (1− Φ(zi))] +
λ

2

m∑
j=1

w2
j . (24)

For a λ = 0 no penalty is added to the cost function, which could lead to overfitting. For
high values of λ the weights get close to zero, which results in a simpler model with high
bias 1.

2.1.3 Naive Bayes Classifier

The so-called Bayes’ rule describes the conditional probability ([13], [1])

p(y|x) =
p(y)p(x|y)

p(x)
, (25)

1. In scikit-learn the regularization parameter is introduced by the parameter C = 1
λ . This parameter

plays an important role for support vector machines, because high values of C increase the regularization
strength which is equivalent to allowing a smaller margin (see section 2.1.5)
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where p(y|x) is called the posterior probability of class y with given feature vector x,
p(y) the prior probability of class y, p(x|y) the likelihood of x with given class y and
p(x) the prior probability of x.

The following classification rule assumes a positive and a negative class (y = ±1) and
is described in [14]. The word naive signifies that the algorithm assumes independence
between all attributes. The feature vector x is classified as the class y = 1 if and only if
the Bayesian classifier

fb(x) =
p(y = 1|x)

p(y = −1|x)
≥ 1. (26)

In case of independence of all attributes (j = 1, . . . ,m) with a given class variable y the
likelihood

p(x|y) = p(x1, x2, . . . , xm|y) =
m∏
j=1

p(xj|y) (27)

results in the naive Bayesian classifier (since p(x) is constant)

fnb(x) =
p(y = 1)

p(y = −1)

m∏
j=1

p(xj|y = 1)

p(xj|y = −1)
. (28)

In other words the probability that the observation x belongs to class y can also be for-
mulated as [15]

p(y|x) ∝ p(y)
m∏
j=1

p(xj|y), (29)

which requests the Maximum A Posteriori (MAP) estimation

yMAP = arg max
y

p(y)
m∏
j=1

p(xj|y) (30)

with the predicted class yMAP and learned estimated probabilities p(xj|y) [15].

The Gaussian Naive Bayes classifier assumes, that each attribute (or feature) is distributed
by a gaussian likelihood function

p(xj|y) =
1√

2πσ2
y

· e
−

(xj−µy)
2

2σ2y (31)

with during the learning process with the training data calculated standard deviation σy
and mean value µy [15].
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2.1.4 K-Nearest-Neighbor

The non-parametric classification with K-Nearest-Neighbor (KNN) compares the training
data with the new data point by calculating the distance. The class is assigned by a
majority decision by the next k-nearest points (see Fig. 2.8). The distances between the
points could for example be calculated with the Euclidean distance or the Mahalanobis
distance.

x1

x2

2

2

2

2

2
4

4

4

4

4

F

k = 5

k = 3

Figure 2.8 – K-Nearest-Neighbor classification with the classes y = 4 and y = 2. The
circles indicate the k = 3 or k = 5 nearest neighbors to the data point x = F, which
needs to be classified. With k = 3 the classifier would choose the class y = 2 (22 > 14)
as a prediction. In case of k = 5 the class y = 4 (34 > 22) would be the assigned class.

High values of k lead to smoother decision boundaries and ensure more robustness against
noise, on the other hand higher computational costs have to be accepted. As a common
practice the choice of k =

√
N with N as the number of training samples has proven

to work well [16]. The neighbors-based classification generates not a model, but simply
stores samples of the training data set [17].
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2.1.5 Support Vector Machines

The Support Vector Machine (SVM) is a widely used learning algorithm. The basic idea
is the maximization of the margin, which describes the smallest distance between a sep-
arating hyperplane and specific data samples. The so called Support Vectors are the just
described closest data points.

Case with Separable Data: The positive and negative hyperplanes can be described
as

H1 : b+wTx+ = 1, (32)

H2 : b+wTx− = −1. (33)

The hyperplanes in Eq. (32) and (33) are parallel, because they have the same normal
w [18]. The points for which the equalites hold (support vectors) lie all on one of the
hyperplanes, where |1−b|||w|| is the distance to the origin for H1 and |−1−b|||w|| the distance to the
origin for H2. A typical solution for the two-dimenstional space is depicted in Fig. 2.9.

The subtraction of those two linear hyperplane equations

wT (x+ − x−) = 2 (34)

and a normalization of the normal vector

||w|| =

√√√√ m∑
j=1

w2
j . (35)

leads to

wT (x+ − x−)

||w||
=

2

||w||
. (36)

The left side of Eq. (36) represents the distance between the two hyperplanes, which is
defined as the margin. Hence, the summed up distances d+ = d− = 1

||w|| define this
margin with length 2

||w|| [18]. The task requires the maximization of the term 2
||w|| on

condition that the samples are classified correctly [9]. The following constraints must be
fulfilled by the training data:

b+wTxi ≥ 1, if yi = 1,

b+wTxi ≤ −1, if yi = −1,

where i = 1 . . . N.

(37)

The two equations can be combined to one term:
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Figure 2.9 – Hyperplanes separating the points x+ (y = 1) and x− (y = −1) in the
separable case. The support vectors are marked with thick black circles.

yi · (b+wTxi) ≥ 1, ∀i. (38)

In practice, instead of maximizing the term 2
||w|| , it is easier to minimize the objective

function 1
2
||w||2 [9].

The problem can be solved with the primal Lagrangian LP with positive Lagrange multi-
pliers αi:

LP ≡
1

2
||w||2 −

l∑
i=1

αiyi(xi ·w + b) +
l∑

i=1

αi. (39)

There are two set of constraints which formulate the dual problem [18]:

— The Lagrangian LP has to be minimized with respect to w and b. Concurrent the
derivatives of LP with respect to the multipliers αi have to disappear (with the
constraints: αi ≥ 0)

— The Lagrangian LP needs to be maximized with the constraints that the gradient
of LP with respect to w and b vanishes (with the constraints: αi ≥ 0)

To ensure that the gradient of LP vanishes the conditions for w and b are:

∇wLP = w −
∑
i

αiyixi
!

= 0→ w =
∑
i

αiyixi, (40)

∇bLP = −
∑
i

αiyi
!

= 0→
∑
i

αiyi = 0. (41)

Substituting the conditions in Eq. (39) leads to the dual Lagrangian
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LD =
1

2

∑
i,j

αiαjyiyjxi · xj −
∑
i,j

αiαjyiyjxi · xj −
∑
i

αiyib︸ ︷︷ ︸
=0

+
∑
i

αi = (42)

=
∑
i

αi −
1

2

∑
i,j

αiαjyiyjxi · xj. (43)

The two Lagrangian LP and LD are formed by the same objective function 1
2
||w||2, but

with different constraints. The solution can be achieved by minimizingLP or by maximiz-
ing LD. There exists a Lagrange multiplier αi for every point: If αi > 0, the associated
point is called a support vector lying on one of the hyperplanes (see Eq. (32), (33)). For
all other points with αi = 0, the points lie either on one of the hyperplanes (see equality in
Eq. (38)) or on the associated side of one of the hyperplanes (see inequality in Eq. (38))
[18].

The Karush-Kuhn-Tucker (KKT) conditions for the primal Lagrangian LP result in a
workable optimization problem. The conditions can be stated as [18]:

∂

∂wν
LP = wν −

∑
i

αiyixiν = 0, ν = 1, . . . ,m, (44)

∂

∂b
LP = −

∑
i

αiyi = 0, (45)

yi(xi ·w + b)− 1 ≥ 0, i = 1, . . . , N, (46)
αi ≥ 0, ∀i (47)

αi[yi(xi ·w + b)− 1] = 0, ∀i. (48)

If the KKT conditions are fulfilled also the SVM problem is solved [18].

The decision rule can be formalized as

g(xnew) = g(b+wTxnew) = (49)

= g(b+
∑
i

αiyixi · xnew), (50)

where g(z) = 1 for z ≥ 0 and g(z) = −1 otherwise.

Case with Non-Separable Data: The described algorithm gives a solution for sep-
arable data. If the data is not separable there is no manageable solution, therefore the
constraints in Eq. (37) have to be adjusted when necessary. The objective function needs
to be increased which can be done by introducing the slack variables ξi, i = 1, . . . , N to
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Figure 2.10 – Hyperplanes separating the points x+ (y = 1) and x− (y = −1) in the
non-separable case with consideration of the slack variable ξ.

the constraints [19]. Hence, the soft-margin classification with the introduced slack vari-
able ξi relaxes linear constraints and enables nonlinear separation by adding the variable
to the linear relations:

b+wTxi ≥ 1− ξi, if yi = 1,

b+wTxi ≤ −1 + ξi, if yi = −1,

where i = 1 . . . N.

(51)

The result of a non-separable case is illustrated in Fig. 2.10. Now, the objective function
1
2
||w||2 +C

∑
i ξi needs to be minimized, where C is a constant. The variable C controls

the penalty for misclassification [9]. For large values of C the margin gets smaller, which
implies the permission of less misclassifications. On the other hand, small values of C
allow more misclassifications. For this reason the parameter C is an important parameter
for optimizing a machine learning model. In Fig. 2.11 the influence of the parameter C
for a SVM with polynomial kernel (see below) is illustrated.

When maximizing the dual Lagrange from Eq. (43) with subject to 0 ≤ αi ≤ C and∑
i αiyi = 0 the solution is presented by w =

∑NS
i=1 αiyixi, with NS as the number

of support vectors [18]. The only difference is now the upper limit C for the Lagrange
multiplier αi.

In comparison to Eq. (39) the primal problem will now be extended to:

LP =
1

2
||w||2 + C

∑
i

ξi −
l∑

i=1

αi[yi(xi ·w + b)− 1 + ξi]−
l∑

i=1

µiξi. (52)

The Lagrange multipliers µi enforce positivity of the slack variable ξi [18].

The KKT-conditions, which need to be solved, can now be stated as [18]:
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C = 0.001

Support Vectors: 33

C = 0.1

Support Vectors: 21

C = 1

Support Vectors: 18

C = 100

Support Vectors: 13

Figure 2.11 – Influence of the parameter C for a SVM with polynomial kernel (order = 5).
Higher Values of C lead to a smaller margin, less misclassifications (less support vectors)
and a more complex function. Small Values lead to a larger margin, more misclassifica-
tions (more support vectors) and a more simple function.

∂

∂wν
LP = wν −

∑
i

αiyixiν = 0, ν = 1, . . . ,m, (53)

∂

∂b
LP = −

∑
i

αiyi = 0, (54)

∂

∂ξi
LP = C − αi − µi = 0, (55)

yi(xi ·w + b)− 1 + ξi ≥ 0, i = 1, . . . , N, (56)
ξi ≥ 0, ∀i (57)
αi ≥ 0, ∀i (58)
µi ≥ 0, ∀i (59)

αi[yi(xi ·w + b)− 1 + ξi] = 0, ∀i (60)
µiξi = 0, ∀i (61)

Kernel Function If the decision function (function which should classify the data as
1 or −1) is non-linear, the presence of the training data only as dot products (see Eq.
(43)) can be exploited. If the data is mapped to the Euclidean space H with the mapping
Φ : Rd 7−→ H, the algorithm is only based on a dot product of the data in the spaceH. If
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(a) Radial separable data (b) Transformed data with a radial kernel

Figure 2.12 – Exemplary pulling apart of radial separable data with a radial Kernel func-
tion. The similarities of two vectors x and y are rated. This means, that the distance or
rather the accordance between those vectors is calculated. Hence, the projections are not
really performed, but the images show, that the inner data points with a smaller radius can
be thought of being adjusted upwards more strongly.

there is a Kernel function, the dot product can be solved in an arbitrary space:

K(xi,xj) = Φ(xi) · Φ(xj). (62)

The advantage of this Kernel Trick is that all previous thoughts of the algorithm hold,
because the data is still separated linear, but in a different space [18].

Common kernels are linear, polynomial (degree p) or radial kernels (where x · y denotes
the scalar product):

K(x,y) = x · y, (63)
K(x,y) = (γ · x · y + c0)

p, (64)

K(x,y) = e−γ·||x−y||
2

. (65)

The value γ in the radial kernel regulates the flatness of the multivariate Gaussian dis-
tribution (see Fig. 2.13). For higher values of γ the radial basis function (RBF) has a
sharper peak. An example of the pulling apart of radial distributed data points with the
radial kernel by rating their similarities is illustrated in Fig. 2.12.

K(x, y) = e−γ·||x−y||2
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(a) Gaussian with γ = 1. (b) Gaussian with γ = 10.

Figure 2.13 – Bivariate Gaussian distribution with different values of γ. The value regu-
lates the flatness of the RBF.

Multi-class In case of a multi-class classification with the number of classes NC > 2,
there are two common techniques: The One-versus-Rest (OvR) or the One-versus-One
technique. In both cases a binary classifier is extended to a multi-class classifier.

With the OvR technique for each class a classifier is trained, where the specific class is
labeled as the positive class and the other classes are labeled as the negative class. This
leads to NC classifiers, where the class label with the highest confidence is chosen. In
case of a SVM e.g. the maximum distance to the decision boundary can be used as a
confidence score.

With the One-versus-One technique NC ·(NC−1)
2

binary classifiers are modeled. Therefore
all combinations of two classes (e.g. 3 classes with string labels S, M and U lead to the 3
classification models, that distinguish between {S,M}, {S,U} and {M,U}) build an own
model. As a result, the combined classifier gives the decision by counting the number of
positive predictions [20].
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2.2 Deep Learning Classifier

Deep learning can be seen as a subcategory of machine learning. An artificial neuron
(see classifier Perceptron in section 2.1) builds the basis of a neural network. Here, a
set of developed algorithms should train different kinds of artificial neuron nets the most
promising way [9]. Depending on the difficulty of a given classification problem, the
amount of hidden layers determines the complexity of the developed function.

2.2.1 Multilayer Perceptron

The multilayer perceptron (MLP) is the quintessetial example of a feedforward deep
learning network [1]. A MLP can be seen as a mathematical function which maps input
values to output values. The more complex main function is a compilation of different
simpler functions.

The following descriptions and notations of the MLP-classifier can be found in [9]. Look-
ing at the Logistic Regression classifier (see section 2.1.2) and stating that the activation
function a = φ(z) could also be a different function, builds the basis of a MLP-classifier.
Here, the calculation steps are explained with an example neural net with one hidden layer
(see Fig. 2.15). Nevertheless, the amount of hidden layers could of course be arbitrary
high (network with more than one hidden layer results in a deep artificial neural network).

Activation Functions At first three common activation functions are presented. The
first one is the logistic sigmoid function, which is already discussed in section 2.1.2. In
the case of binary classification the logistic function maps the net input z to a probability,
that it belongs e.g. to a positive or negative class. The function is defined as

Φ(z) =
1

1 + e−z
. (66)

Another activation function is the hyperbolic tangent function, which is related to the
logistic function. Here, the output scales the input to a wider range from −1 . . . 1:

Φ(z) = tanh (z). (67)

A third activation function is the nonlinear function

Φ(z) = max (0, z) (68)

with the name Rectified Linear Unit (ReLU). It maps an input smaller than zero to zero,
and passes the input in case of positive values (see Fig. 2.14). This activation function
can improve neural nets regarding acoustic models [21].
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Figure 2.14 – Common activation functions used in artificial neurons. The logistic func-
tion maps the net input to values between 0 and 1, the hyperbolic tangent function has a
similar shape, but maps the net input to values between −1 and +1. The ReLU-function
is linear for z ≥ 0 and 0 otherwise.

Softmax function In a binary classification task the logistic function is useful in the
output layer, because it maps the net input to a probability. This holds not in case of a
multiclass problem, because the sum of the output values would not be 1 anymore. Hence,
the outputs could not be handled as probabilities. A softmax function on the other hand
gives again probabilities at the output in case of a multiclass problem:

Φ(zj) =
ezj∑NC
i=1 e

zi
, j = 1, . . . , NC . (69)

Forward Propagation The first input feature (a(in)0 = x0 = 1) and the first activation
element in the hidden layer (a(h)0 = 1) are defined as the bias units. All elements of the
input layer are fully connected to the hidden layer and all elements of the hidden layer
are fully connected to the output layer. The activation elements ai(l) describes the ith

activation function in the lth layer. Here, the input layer is defined with l = 0, the hidden
layers could have l = 1 . . . L elements and the output layer is given with l = L+ 1.

Referring again to the example network in Fig. 2.15, one hidden layer with the superscript
l = h and i = 1 . . . d activation elements is taken into account. The activation functions
of the input layer describe the input features, which leads to the vector

a(in) =


a
(in)
1

a
(in)
2
...

a
(in)
m

 =


x
(in)
1

x
(in)
2
...

x
(in)
m

 . (70)

The connection between the kth element of the lth layer to the jth element of the (l +

1)(th) layer is given with the weight vector w(l+1)
k,j . Hence, both weight matrices can be

formalized as
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W (h) =


w

(h)
1,1 w

(h)
1,2 . . . w

(h)
1,d

w
(h)
2,1 w

(h)
2,2 . . . w

(h)
2,d

...
... . . . ...

w
(h)
m,1 w

(h)
m,2 . . . w

(h)
m,d

 ,W (out) =


w

(out)
1,1 w

(out)
1,2 . . . w

(out)
1,NC

w
(out)
2,1 w

(out)
2,2 . . . w

(out)
2,NC

...
... . . . ...

w
(out)
d,1 w

(out)
d,2 . . . w

(out)
d,NC

 . (71)

The bias units are therefore given with

b(h) =


w

(h)
0,1

w
(h)
0,2
...

w
(h)
0,d


T

, b(out) =


w

(out)
0,1

w
(out)
0,2
...

w
(out)
0,NC


T

. (72)

In case of a binary classification task one element in the output layer is enough. If more
than two classification results are needed, a generalized One-versus-All (OvA) multiclass
classification can be performed. The one-hot encoding of three class labels could be
formalized as

y0 =

1
0
0

T ,y1 =

0
1
0

T ,y2 =

0
0
1

T , (73)

where e.g. each vector yi stands for a different class (or sound), that needs to be classified.
Those target vectors can then be compared to the estimated output a(out). Encoding each
label to a one-hot-vector enables an arbitrary amount of class labels.

Introducing the activation function in the input layer a(in) (see above) with size [m × 1]
and generalizing the layer to a training set with N input samples, the result is the input
layer matrix

A(in) =


a
(in)
1,1 a

(in)
1,2 . . . a

(in)
1,m

a
(in)
2,1 a

(in)
2,2 . . . a

(in)
2,m

...
... . . . . . .

a
(in)
N,1 a

(in)
N,2 . . . a

(in)
N,m

 =


x
(in)
1,1 x

(in)
1,2 . . . x

(in)
1,m

x
(in)
2,1 x

(in)
2,2 . . . x

(in)
2,m

...
... . . . ...

x
(in)
N,1 x

(in)
N,2 . . . x

(in)
N,m

 . (74)

with N rows as input samples and m columns as features.

The net input matrix of the hidden layer can be written as

Z(h)

N×d
= A(in)

N×m
·W (h)

m×d
+ b(h)

1×d
. (75)
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Figure 2.15 – Basic concept of the multilayer peceptron with m input features in the input
layer, d activation functions in the hidden layer andNC classification outputs in the output
layer.

Knowing that

A(h) = Φ
(
Z(h)

)
(76)

leads to the net input matrix of the output layer

Z(out)

N×NC
= A(h)

N×d
·W (out)

d×NC
+ b(out)

1×NC
. (77)

Hence, the net output of a neural net with one hidden layer and N input samples is

A(out) = Φ
(
Z(out)

)
. (78)

Logistic Cost Function The loss function of the logistic regression classifier (or the
cross entropy [22, 23]) with the regularization term can also be formalized as

J(w) = −

(
N∑
i=1

y(i) ln(a(i)) + (1− y(i)) ln(1− a(i))

)
+
λ

2

m∑
j=1

w2
j , (79)
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where N denotes the number of samples in the training set and m the number of weights
(see section 2.1.2). Here, the superscripts denote the target values or rather the activation
results for each training sample i.

In case of a multiclass classification an output vector a(out) with NC elements is returned,
where each of them is compared to the target vector yi. A generalization of this cost
function leads to a common cost function for a neural net, where all NC activation units
are involved:

J(W ) =

(
N∑
i=1

NC∑
j=1

−yj ln(a
(out)
j )− (1− yj) ln(1− a(out)j )

)
+
λ

2

L−1∑
l=0

ul∑
k=1

ul+1∑
v=1

(w
(l+1)
k,v )2.

(80)

The regularization term is now the sum of all quadratic weights of the network, where ul
is the number of units in layer l. With the regularization term overfitting can be avoided
during training. With the backpropagation algortihm this cost function can be minimized
by taking the partial derivatives with respect to each weight w(l)

k,v. The weight matrix
W is composed of various weight matrices (e.g. W (h) and W (out)), with each having
a different size. The size and the amount of those matrices depends on the size and the
amount of the input layer, the output layer and the introduced hidden layers.

Backpropagation Algorithm The complex cost function can be calculated efficiently
with the backpropagation algorithm. The idea of this algorithm is, that the calculations
propagate from the right side of the network to the left side of the network. The following
example shows, how the backpropagation algorithm is calculated with the given example
network (see Fig. 2.15).

The error vector on the right side of the network is

δ(out) = a(out) − y, (81)

where y stands for the true class label of one given feature vector. The error vector of the
hidden layer can then be calculated with

δ(h) = δ(out)
(
W (out)

)T � δΦ(z(h))

δz(h)
. (82)

The gradients of the cost function with respect to the weights and the gradients of the cost
function with respect to the bias units at the outputs are

δ

δW (out)
J(W ) = a(h)δ(out), (83)

δ

δb(out)
J(W ) = δ(out). (84)
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The gradients of the cost function with respect to the weights at the hidden layer are

δ

δW (h)
J(W ) = a(in)δ(h), (85)

δ

δb(h)
J(W ) = δ(h). (86)

Note, that the errors (δ(out), δ(h)) can also be expressed as matrices by generalizing them
to the number of input samplesN . Hence, the gradients of the weights could be calculated
with matrix operations by executing the dot product between the transposed activation
layer matrices (A(in),A(out)) and those error matrices.

After adding the regularization term only to the gradients of the weights

δ

δW (l)
J(W )← δ

δW (l)
J(W ) + λW (l), (87)

the gradients of the weight matrices and the bias vectors can be updated with an optimiza-
tion function g(·):

W (l) ←W (l) + g

(
δ

δW (l)
J(W )

)
(88)

b(l) ← b(l) + g

(
δ

δb(l)
J(W )

)
. (89)

Stochastic gradient descent In case of stochastic gradient descent the weights and
the biases for each training observation are updated with the following optimization rule:

g

(
δ

δW (l)
J(W )

)
= −η · δ

δW (l)
J(W ), (90)

g

(
δ

δb(l)
J(b)

)
= −η · δ

δb(l)
J(W ). (91)

(92)

Hence, this method finds the optimal coefficients by moving in the direction of the steepest
descent of the error plane, where the parameter η describes the learning rate. For high
values of η the new weights could go beyond the global minimum, which could result in
finding no optimal solution. In case of small values of η the learning process could take a
very long time.
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Adam Adam is a stochastic optimization rule presented in [24]. For simplicity the
weight matrices W (l) and the bias vectors b(l) are indicated as the parameter vector θ.
Adam is similar to the idea of momentum, where a partition of the previous weight update
vector is added to the gradient descent update rule [25]:

θ ← θ + ∆θ = θ − η · ∂
∂θ
J(θ) + β∆θ. (93)

Momentum tends to accelerate the gradients into the right direction, because it prevents
oscillation. Therefore, the gradient of the loss function gets estimated more accurate.
With Adam the meanm and the variance v is estimated by past gradients. To begin with,
the two moment vectorsm and v and a time step t are initialized to zero. During training,
the time step t is incremented:

t← t+ 1. (94)

Then, the biased first moment estimate and the biased second raw moment estimate are
updated like this:

m← β1 ·m+ (1− β1) ·
δ

δθ
J(θ), (95)

v ← β2 · v + (1− β2) ·
(
δ

δθ
J(θ)

)2

. (96)

After that, the bias-corrected first moment estimate and the bias-corrected second raw
moment estimate are computed:

m← m

(1− βt1)
, (97)

v ← v

(1− βt2)
. (98)

This leads to the update rule

g

(
δ

δθ
J(θ)

)
= −η · m√

v + ε
. (99)

The authors in [24] propose the choice of the parameters: β1 = 0.9, β2 = 0.999, γ =
0.001 and ε = 10−8.

Stochastic, Batch and Mini-Batch learning A comparison of stochastic and batch
learning is presented in [26]. In case of batch learning the updates of the parameters are
calculated by evaluating the entire training setNtrain. With stochastic learning the updates
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are calculated with a single feature vector x. With mini-batch trainingNmb feature vectors
from the randomized training set are taken into account, resulting in Ntrain

Nmb
parameter

updates per epoch.

Epoch If the entire training set passed through the neural net it is called an epoch.
Generally the training error decreases over time (amount of epochs), where the validation
error begins to rise again from a certain time point [1]. In this case an early stopping
can be initiated: The training process stops, when the validation error is not improving
anymore.



3 DATA GENERATION 35

3 Data Generation

The main focus of this thesis lies on the distinction of the warning signals Martinshorn
(M) and Environmental Sirene (S). On the other hand those signals should always be
distinguished from the class Urban Noise (U). However, data for other classes (Acci-
dents, Honks and Wail/Yelp) were also made available for possible further development.
In section 3.2 descriptions for the different classes are given. Section 3.3 describes a self-
recorded validation data set at a fire station with microphones fixed on specific positions
on a car.

3.1 Basic Dataset

Basic Dataset: The main dataset consists of 1970 wave-files, where each file has a
different duration. The files were arranged with the software REAPER [27] and then
saved in respective class-subfolders. In Table 2 a listing of the basic data is provided.

Class Duration Quantity
Accidents 00:42:24 h 979

Environmental Sirene 00:57:49 h 213
Honks 01:06:02 h 245

Martinshorn 01:00:29 h 183
Wail/Yelp 00:49:10 h 322

Urban Noise 01:12:55 h 28

Table 2 – Listing of the class names with the duration and the quantity of the consisting
wave-files of the created basic dataset.

The basic dataset is a compilation of both, clean and undisturbed sound-files and noisy
sound-files. Noisy sound-files are basically superimposed by environmental noise com-
posed of traffic, people or bird sounds.

Working Dataset: The basic dataset gets divided into a working dataset, where 70%
of the dataset is used for training and testing and 30% of the dataset is used for testing as
a validation data set. Table 3 shows for each class the amount of data which is used for
training and the amount of data which is used for validation 2.

2. Note, that the validation data set for class U has only 1 file, but on the other hand there is an additional
self-recorded validation data set and also a k-fold cross validation with the entire training set is performed
for each classifier
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Class Training (t) Training (Nf ) Validation (t) Validation (Nf )
Accidents 00:29:41 h 686 00:12:42 h 293

Environmental Sirene 00:40:39 h 150 00:17:10 h 63
Honks 00:46:40 h 172 00:19:21 h 73

Martinshorn 00:42:40 h 125 00:17:48 h 58
Wail/Yelp 00:34:31 h 224 00:14:39 h 98

Urban Noise 00:46:07 h 6 00:15:37 h 1

Table 3 – Working dataset with listed class names and the duration t and quantity Nf of
each respective training- and validation-dataset (30%).

The developed machine learning models for the classes S, M and U show, that the amount
of data is adequate for generalization. However, in this thesis the developed features of the
best machine learning approach are also used for a deep learning approach (classification
with a neural net) to give a comparison.

3.2 Classes

The particular data for each class is downloaded from online platforms [28],[29]. This
chapter gives basic information about each class and describes their signal characteristics.

3.2.1 Description

Accidents It could be useful for drivers and it is necessary for smart cars to react
when an accident is recognized. Sounds are taken from YouTube-videos recorded by mi-
crophones of Dash-cams (accidents on the road), customary cameras and mobile phones
(mostly accidents on racetracks) or professional equipment (crash tests). Accidents are
temporary incidents, which leads to predominant short durations for each sound file.

Environmental Sirene Environmental Sirenes in Germany are not consistent since
the abolition of the "Zivilschutznetz" in 1992 [30]. Each state in Germany can decide for
itself which signals they use and if it the signal is even triggered. Still, there are five types
of signals which are commonly in use [31]:

— Warning of the population: Rising and falling tone sequence (RF) with an overall
duration of one minute. Each RF lasts approximately 3s

— ABC-alarm: RF with a specific sequence: [12s RF, 12s break, 12s RF, 12s break,
12s RF]. This sequence is repeated after a 30 second break, which leads to an
alarm with a duration of 150s in total.

— All-clear signal: Consistent permanent tone with approximately 1s attack and 1s
release (PT) with an overall duration of one minute.

— Fire alarm: PT with an overall duration of one minute and a specific sequence:
[12s PT, 12s break, 12s PT, 12s break, 12s PT].
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Figure 3.1 – Obligated sequence of sounds with total sequence time T (within (3 ± 0.5)
s) of the sirene Martinshorn formalized in [33].

— Practice alarm: PT with a duration of 5s or 12s seconds.

The collected sound material from YouTube-videos mostly contains testings with differ-
ent types of sirenes. Most of the data captures a sirene sequence which similar to the
fire alarm. Therefore, a large part of the training data of class S involves a consistent
permanent tone.

Honks Different kinds of vehicle honks (e.g. from cars or fire trucks) are taken into
account. In Germany, each motor vehicle has to have at least one warning device. Honks
or horns with a consistent fundamental frequency or harmonic chord are permitted [32].

Martinshorn The Martinshorn or in German the so called Folgetonhorn is an audible
warning device and an approved special signal. An audible warning device produces a
sequence of two sounds with two different fundamental frequencies (see Fig. 3.1). The
fundamental frequencies have to have a frequency ratio of 4

3
(musical interval of a fourth).

The fundamental frequencies need to be within the bounds of the frequencies 360 Hz and
630 Hz. The total sequence time T of a signal cycle (each fundamental frequency has
been played two times) has to have (3 ± 0.5) s [33]. This means that each sound could
last in the range from 0.625s to 0.875s.

Wail/Yelp The class Wail/Yelp includes signals, that are more widespread throughout
the world. In this case the dataset contains two in the United States widely used types
of signals, which are characterized by their cycle rate and fundamental frequency range
[34]. The tones of both, the Wail-Signal and the Yelp-Signal, increase and decrease with
a specific continuous rate, where the Yelp-Signal is actually a speeded up version of the
Wail-Signal [35]. The frequency and cycle rate requirements according to the Society of
Automotive Engineers (SAE) J1849 (recommended practice) for both signals are depicted
in Table 4 [34].
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(a) Sketch of sirene sound Wail with T = 6s.
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(b) Sketch of sirene sound Yelp with T = 6s.

Parameter Wail-Signal Yelp-Signal
Cycles per minute (lower limit) 10 150
Cycles per minute (upper limit) 30 250

Minimum range of fundamental frequency 850 Hz 850 Hz
Minimum fundamental frequency 650 Hz 650 Hz
Maximum fundamental frequency 2000 Hz 2000 Hz

Table 4 – Frequency and cycle rate requirements for the Wail-Signal and the Yelp-Signal
according to SAE J1849 [34].

Urban Noise The class Urban Noise (U) includes all sorts of sounds, which could be
perceived in a real world environment. To give a good representation of the urban envi-
ronment, the attempt was made to cover as many as possible sounds, that could emerge.
It involves for example urban sounds, traffic sounds, rain, speech, cars and birds. It was
ensured that no sirene-like sounds are involved in this class.

3.2.2 Doppler Effect

When considering the Doppler effect regarding e.g. a sirene from an emergency vehicle,
there are three possible situations during recognition:

— observer stationary, signal source in motion
— observer in motion, signal source stationary
— observer and signal source in motion (movement toward or away from one an-

other)

A general description of the relations of the frequency behaviour is

fobs = fsource
c± vobs
c∓ vsource

, (100)

where fobs is the perceived frequency at the observer position, fsource the signal source
frequency, vo the velocity of the observer, vsource the velocity of the signal source and c
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the speed of sound.

In Tables 5, 6 and 7 the impacts of the Doppler effect on the fundamental frequencies of
the Martinshorn in different situations are demonstrated. Tables 6 and 7 illustrate how the
lower and upper bounds of a bandpass region could change. The possible lower or rather
upper frequency limit of the related fundamental frequency with a maximum velocity of
90 km h−1 depending on the driving direction is 311 Hz (for f1 = 360 Hz) or 730 Hz (for
f2 = 630 Hz).

vsource fsource
towards
observer

away from
observer fsource

towards
observer

away from
observer

0 km h−1 360 Hz 360 Hz 360 Hz 630 Hz 630 Hz 630 Hz
10 km h−1 360 Hz 363 Hz 357 Hz 630 Hz 635 Hz 625 Hz
30 km h−1 360 Hz 369 Hz 351 Hz 630 Hz 646 Hz 615 Hz
50 km h−1 360 Hz 375 Hz 346 Hz 630 Hz 657 Hz 605 Hz
70 km h−1 360 Hz 382 Hz 341 Hz 630 Hz 668 Hz 596 Hz

Table 5 – Impacts of the Doppler effect on both possible fundamental frequencies f1 =
360Hz and f2 = 630Hz with the source in motion and vobs = 0 km h−1 (e.g. waiting at
junctions).

vobs

vsource 10 km h−1 30 km h−1 50 km h−1 70 km h−1 90 km h−1

10 km h−1 354 Hz 348 Hz 342 Hz 337 Hz 331 Hz
30 km h−1 349 Hz 343 Hz 337 Hz 332 Hz 326 Hz
50 km h−1 343 Hz 337 Hz 332 Hz 326 Hz 320 Hz
70 km h−1 338 Hz 332 Hz 327 Hz 321 Hz 315 Hz
90 km h−1 333 Hz 327 Hz 322 Hz 316 Hz 311 Hz

Table 6 – Impacts of the Doppler effect on the lowest possible fundamental frequency
f1 = 360Hz with the source and the observer moving away from one another.

vobs

vsource 10 km h−1 30 km h−1 50 km h−1 70 km h−1 90 km h−1

10 km h−1 640 Hz 651 Hz 661 Hz 672 Hz 682 Hz
30 km h−1 651 Hz 662 Hz 672 Hz 683 Hz 693 Hz
50 km h−1 662 Hz 673 Hz 684 Hz 694 Hz 705 Hz
70 km h−1 674 Hz 685 Hz 696 Hz 706 Hz 717 Hz
90 km h−1 686 Hz 697 Hz 708 Hz 719 Hz 730 Hz

Table 7 – Impacts of the Doppler effect on the highest possible fundamental frequency
f2 = 630Hz with the source and the observer moving towards each other.

Depending on the relative condition of movement, the range of the fundamental frequen-
cies can be shifted, but the ratio f2

f1
is independent of this shift, because the shift affects

both frequencies (f1 and f2) simultaneously.
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3.3 Validation Data: Car Microphone Recordings

The final algorithm should be able to classify sirens while driving in a car. For this reason
another validation set was recorded at a fire station with 5 microphones fixed at specific
positions on or rather in a car: 2 microphones were placed in the engine compartment.
From the driver’s perspective 1 microphone was placed midway on the left side of the roof
of the car, 1 microphone was placed on the lateral right side of the car (next to the door
pull of the passenger door) and 1 microphone was placed at the back of the car (below the
number plate).

Table 8 shows the durations and the quantity of the recorded classes M and U. There was
a difficulty on one classification task with the recorded class U, which is discussed in
section 4.2.5: The engine compartment of the ventilation of the car produced a sirene-like
sound, which tended to be confused with class S.

Class Validation (t) Validation (N )
Martinshorn 00:25:20 h 24
UrbanNoise 00:23:05 h 5

Table 8 – Working dataset with listed class names, the duration t and quantity N of the
self-recorded validation-dataset.
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4 Machine Learning Approach

The different machine learning classification tasks are described in the following sections.
At first a binary classification of the classes Martinshorn (M) and Urban Noise (U) is pre-
sented, which constitutes the main part of this thesis. Secondly classification algorithms
for the three classes Martinshorn, Environmental Sirene (S) and Urban Noise are devel-
oped. In the end the new findings from the three-class-model are applied again to the
binary classification task, which lead to a improvement of the results.

4.1 Binary Classification

This section shows the development of an analytic model, which is trained by specific
conclusive features. At first the selected features and the resulting feature space are pre-
sented, then the feature selection is described and in the end the classification results are
presented.

4.1.1 Preprocessing

When looking at the spectrogram of the exemplary audio-file (see Fig. 4.4) of class M
it should be noted, that the total sequence time T of this signal cycle (playback of ap-
proximately 4 sounds or rather fundamental frequencies) is about 3s. To ensure that the
entire signal cycle is captured, the length of a sound snippet for which a feature matrix
(see section 4.1.3) is calculated is set to 4s and each wave-file with its different duration
is cut to a multiple of 4. If a signal is too short, it is removed from the data set.
This consideration also takes into account, that a signal from the class S may in the case
of shorter durations not be distinguishable from a signal from the class M. A distinction
of those two classes requires larger time frames.
All files are resampled to the sampling frequency fs = 5000Hz. The main reason for this
is the focus on the signal information in the frequency range below the Nyquist frequency
of fs

2
= 2500Hz and of course the reduction of the computational costs. Hence, an analy-

sis window with length of 4s leads to NAW = 4s · fs = 20000 samples.
After that, an A-weighting is performed to each signal to reduce the energy in the lower
frequency range and to emphasize the important frequency band in the area of 1000Hz.
The preprocessing steps are illustrated in Fig. 4.1.

Audio Input
fs = 44.1kHz

Resample to
fs = 5kHz A-weighting

Cut to
4s-snippets

Figure 4.1 – Preprocessing of each audio input with resampling, A-weighting and cutting
to snippets with length of 4s. Each input signal has a different length and belongs either
to class U or to class M. The audio files are divided into blocks, where each has a length
of 4s.
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4.1.2 Conclusive Audio Features

This section describes the calculations of the conclusive audio features. For this analytic
approach 9 audio features, which may include enough relevant information to classify the
described sound events, are taken into account (see Table 9).

The majority of the calculated features has a higher time resolution than the duration of a
snippet. For this reason the features are transferred as matrices to the feature space. The
FFR is the only feature, which is calculated over the entire snippet. Hence, the result is a
scalar, which describes one property of a snippet. Therefore a specific amount of copies
of this calculated value is transferred to the feature space (see section 4.1.3).

Note, that the term number of samples in some descriptions of the x-label of all subsequent
figures does not relate to the sampled data, but to the number of training samples, which
is often used in the ML-literature.

Symbol Description
STER short-time energy ratio
LSTFT logarithmic short-time fourier transform

C chromagram
CE chromatic entropy

MELS mel-scaled spectrogram
MFCC mel frequency cepstral coefficients
FFR fundamental frequency ratio

Table 9 – Calculated audio features with corresponding symbol and their descriptions.

Short-Time Energy Ratio The short-time energy ratio (STER) is the short-time en-
ergy in a bandpass-region in relation to the short-time energy in a baseband-region. The
short-time energy (STE) of a signal’s frame with length Nste is the assessed root mean
square

STE =

√√√√ 1

Nste

Nste−1∑
n=0

x2[n]. (101)

With the presumed bandpass-filtered signal xbp[n] the short-time energy ratio can be cal-
culated by dividing the energy of the frequency band by the entire energy of the signal:

STER =

√
1

Nste

∑Nste−1
n=0 x2bp[n]√

1
Nste

∑Nste−1
n=0 x2[n]

. (102)

The frequency response with different orders of the used Butterworth Band-pass filter is
illustrated in Fig. 4.3. The bandpass-region lies between 280Hz and 670Hz, because the
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Figure 4.2 – Resulting short-time energy ratio (STER) and respective boxplots of the
training set with classes M and U.
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Figure 4.3 – Frequency response of the used Butterworth Band-pass filter with the orders
1 (black) to 6 (grey). The grey dashed lines show the bandpass-region in which the two
fundamental frequencies of class M are located.

fundamental frequencies of a Martinshorn usually are located within those bounds 3. For
the order of the filter a value of 5 was chosen. Here, the frame length is set toNste = 1024.
Fig. 4.2 shows the calculated STER of the training set with the two classes. The boxplot
in Fig. 4.2b exhibit clearly separable median values of both classes.

Logarithmic Short-time Fourier Transform The energy distribution across the
frequency range is represented by the spectrum [36]. For a digital signal x[n], the spec-
trum is the discrete fourier transform

3. Note, that the bandpass-region was not precisely adjusted to the region, in which the fundamental fre-
quencies could occur due to the Doppler-effect. One reason is that in the available data sets the fundamental
frequencies primary lie in this region. Furthermore better results were achieved with those frequency limits.
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X[k] = DFT (x[n]) =

Nfft−1∑
n=0

x[n]e
−j 2πnk

Nfft = |X[k]|e−jϕ[k] = Re(X[k]) + j Im(X[k]).

(103)

The transformed signalX[k] with its frequency component k is complex-valued and char-
acterized by its magnitude |X[k]| and phase ϕ[k]. The absolute value or magnitude at a
frequency bin index k [37] is

|X[k]| =
√

Re(X[k])2 + j Im(X[k])2, (104)

and the corresponding phase, which gives the phase spectrum, is

ϕ[k] = arctan
(

Im(X[k])

Re(X[k])

)
. (105)

The magnitude spectrum |X[k]| is often plotted on a decadic logarithmic scale to clarify
relationships for lower values:

SdB[k] = 20 · log10|X[k]|. (106)

In comparison with the power spectrum S[k] = |X[k]|2, the logarithmic representation of
the magnitude as a feature lead to better results in the use case. For this reason only the
logarithmic spectrum is considered as a feature in the preselection of this approach.

The short-time Fourier transform (STFT) splits the data into usually overlapping frames.
To avoid the leakage effect (discontinuities at segment boundaries), each frame m is mul-
tiplied with a Nfft-length Hann window w[n]:

S[k,m] =

Nfft−1∑
n=0

x[n]w[m− n]e
−j 2πnk

Nfft . (107)

The feature LSTFT, which is used in this approach, is the logarithmic representation of
the STFT:

SdB[k,m] = 20 · log10 (|S[k,m]|) . (108)

Here, the frame length is Nfft = 1024 and the hop-size is R = 512. Fig. 4.4 shows the
calculated LSTFT of exemplary time frames of the training data. The spectrogram of class
M demonstrates its characteristic sound sequence (see section 3.2) and the spectrogram
of class U shows the noisy environment.

Chromagram The energy distribution of a signal in relation to the 12 pitches of a
musical octave can be described with a chromagram (C) [38]. The chromagram filter bank
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(a) LSTFT of class M
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(b) LSTFT of class U

Figure 4.4 – Exemplary time frames showing the logarithmic short-time fourier transform
(LSTFT) of each class. The frame length is Nfft = 1024 and the hop-size is R = 512.
The window shape is a Hann window. Spectrogram of class M demonstrates its character-
istic sound sequence with its fundamental frequencies in the area of 500Hz. Class U has
a noisy frequency distribution, which in this case includes inter alia street sounds, speech
sounds and sounds of a restaurant.

W [k, k̃] with k ∈ {1, . . . , 12} pitch classes (see Fig. 4.5) weights the power spectrum S[k̃]
with frequency bins k̃ resulting in the chromagram

C[k] =
N∑
k̃=1

S[k̃] ·W [k, k̃]. (109)

Fig. 4.6 illustrates the chromagrams of both classes. In comparison with the LSTFT (see
Fig. 4.4), the harmonics of class M are combined to pitch classes. Dominant estimated
pitches in this exemplary audio extraction in the beginning are the pitches D, E, and A.
Later on the pitches C# and G# are more prominent (transition to next audio file of the
training set with different pitches due to the Doppler effect). Pitch classes of class U are
distributed similar over all pitches.

Chromatic Entropy Each value of each pitch class in a snippet of the chromagram
can be seen as a probability. Here, for each snippet the chromagram is normalized leading
to the interpreted probabilities

p[k,m] =
C[k,m]∑12
k=1 C[k,m]

. (110)

Thus, the sum over all probabilities in each frame m is
∑12

k=1 p[k,m] = 1. The chromatic
entropy (CE) can then be calculated with the relation

CE[m] = −
12∑
k=1

p[k,m] ln (p[k,m]) . (111)
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Figure 4.5 – Pitch helix illustrating the connection between octave intervals (above). An
octave interval is defined by a spacing of 12 semitones (e.g. pitch C2 to C3). The link
between those octaves is used for the calculations of the pitch classes of the chromagram.
The power spectrum of each snippet is filtered with a scaled filter bank (below), where
all related pitches (e.g. A0,A1,A2, . . . ) in each frame are weighted by gaussian bumps
and then are summed up to a pitch value for the specific pitch class. Dashed vertical lines
show the locations of pitches A3, A4, A5 and A6 with its corresponding frequencies. The
related bumps for each pitch are illustrated in different shades of grey. Hence, the filtering
converts the power spectrum to a chromagram with its 12 pitch classes.
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Figure 4.6 – Exemplary time frames showing the chromagram of class M (left) and class
U (right). In the chromagram of class M the dominant pitch classes of the fundamental
frequencies can be seen. For class U usually each pitch class has a similar distribution.

It is assumed, that class U has a higher chromatic entropy than class M. In Fig. 4.7 the
chromatic entropy of both classes are illustrated. Boxplots show, that the data of each
class is distributed slightly different. For class M the median value is CEmed ≈ 1.7, for
class U the median is a bit higher with CEmed ≈ 2.42. Hence, for class M between 4
and 5 dominant pitch classes with each having a probability of p ≈ 0.2 are present in the
training data set. This can be explained by the fact, that the dominant pitch classes are
also surrounded by pronounced semitones (see Fig. 4.6a). In case of class U it can be
expected, that each of the 12 pitch classes has a probability of p = 1

12
≈ 0.083.
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Figure 4.7 – Resulting chromatic entropy (CE) and respective boxplots of the training set
with classes U and M.

Mel-Scaled Spectrogram The mel-scaled spectrogram (MELS) filters the power
spectrum S[k̃] with k̃ frequency bins based on the mel scale.

To understand the unit mel an introduction to the frequency-to-place transformation in the
cochlea of the inner ear of a human being is given [39]. The cochlea includes the basilar
membrane, where mechanical oscillations lead to impulses, which are then transmitted
in the auditory nerve. The unfurled cochlea has a length of approximately 32mm. The
vibrating air molecules enter the basilar membrane through the oval window and the organ
of Corti (located above the basilar membrane) receives the vibrations with hair cells,
which are then transmitted to the auditory nerve. At the end of the basilar membrane the
so called heliocotrema is located. Higher frequencies are stimulated near the oval window
and lower frequencies are stimulated near the heliocotrema. The transformations of those
frequencies in the basilar membrane can be understood as a filter bank.

Hence, this psychoacoustic process leads to a frequency dependent spectral resolution in
the hearing system of a human being, which results in the mel scale. In Fig. 4.8 the mel
scale mapping and the resulting filter bank with 128 mel bins is illustrated. The feature
was calculated with the python package librosa [40], which uses the mel scale from the
Auditory Toolbox of Malcolm Slaney [41]:

Mel =


f
fsp

if f < fc
f
fsp

+ log
(
f
fc

)
27

log (6.4)
otherwise.

(112)

The spacing frequency fsp ≈ 66Hz and the frequencies are mapped linearly to the mel
scale below the frequency of fc = 1000Hz. The corresponding mel-scaled spectrogram
with k ∈ {1, . . . , 128} bins is calculated by weighting the power spectrum S[k̃] with the
filter bank W [k, k̃]

XMel[k] =
N∑
k̃=1

S[k̃] ·W [k, k̃]. (113)
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(a) Mapping frequencies from 0Hz to
2500Hz to the mel-scale in accordance with
the Auditory Toolbox of Malcolm Slaney
[41].
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(b) Mel filter bank in the area of the fun-
damental frequencies of a Martinshorn used
for calculating the mel-scaled spectrogram.
128 triangular filters shape the power spec-
trum S[k̃] resulting in a mel-scaled spectro-
gram SMel[k,m] with 128 mel bins.

Figure 4.8 – Frequency to mel-scale mapping (a) and used mel filters in the frequency
area from 70Hz to 700Hz in case of 128 mel bins. In this area the frequency values are
mapped linearly to the mel bins. It can be seen, that the magnitudes of the triangular filters
decrease with higher frequencies to preserve the same amount of energy within a filter.
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(a) MELS of class M
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(b) MELS of class U

Figure 4.9 – Exemplary time frames showing the mel-scaled spectrogram (MELS) of
each class. For a better visibility of the signal characteristics the spectrogram is presented
logarithmic. As with the LSTFT the specific signal fundamental frequencies can be rec-
ognized in case of class M.

In Fig. 4.9 the mel-scaled spectrograms for both classes are illustrated (mel frequency
bin labels k on the y-axis are converted to corresponding frequencies). The images re-
semble the illustrations of the LSTFT. Nevertheless, the harmonic frequency components
of class M appear more blurred, but on the other hand less bins are necessary to trans-
mit similar information. Even less mel bins could also have been chosen in this specific
case. However, in this first approach the idea of keeping the frequency resolution high
was paramount.

Mel Frequency Cepstral Coefficients The mel frequency cepstral coefficients
(MFCC) describe the shape of the spectral envelope of a signal. The discrete cosine trans-
form (DCT) of the logarithmic mel-scaled spectrogram XMel[k̃,m] with k̃ mel frequency
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(a) MFCCs of class M
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(b) MFCCs of class U

Figure 4.10 – Mel frequency cepstral coefficients (MFCCs) of two exemplary audio files.
As with the chromagram in case of class M specific signal components stand out (e.g.
cyclic ninth MFCC of class M).

bins results in the coefficients

MFCC[k,m] = DCT
(

20 · log10(XMel[k̃,m])
)

(114)

with k mel frequency cepstral coefficients. In Fig 4.10 the first 19 MFCCs (without DC-
component) of two exemplary audio files of classes M and U are illustrated. The repetitive
structure of a Martinshorn can also be recognized in specific mel bins.

Fundamental Frequency Ratio This feature is optimized for the specific character-
istic of the siren sound of a Martinshorn. In order to calculate the Fundamental Frequency
Ratio (FFR) both defined fundamental frequencies of the Martinshorn should be present
within the analysis frame. Therefore, the chosen audio snippet length is set to 4s. The fun-
damental frequencies of the sound event Martinshorn are located in the bandpass-region
between 360Hz and 630Hz. Here, the signal is filtered with a Butterworth Band-pass filter
within the region of 280Hz and 490Hz. The reason for choosing this frequency region is
founded in the fact that in spite of the definition in the norm (see section 3.2.1) by looking
at the data set the frequencies f̃1 = 330Hz and f̃2 = 440Hz most frequently occur. Con-
sequently better results are found with this type of filtering. Next, the short-time fourier
transform of the bandpass-filtered snippet is calculated. The frame length is Nfft = 1024
and the hop-size R = 512. Each frame was before windowed with a Hann window. Now
the resulting spectrogram is smoothed with the following steps:

— Averaging each DFT-frame m over frequency with a moving average filter of the
form 1

7
·
∑6

i=0Xbp[k− i,m], where Xbp[k,m] is the bandpass-filtered spectrum of
each frame m with k frequency components

— Median-filtering of each frequency component over time (or rather frames) with
order Nmed = 21

In the end, the means of each frequency bin over time of the smoothed spectrogram is
selected for the calculation of the fundamental frequency ratio (a calculation of the ratio
in each frame did not improve the results) and Nbuf − 1 = 39 copies of this calculated
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value are transferred to the feature space.

The evaluation criterion, which involves the ratio between the first two detected funda-
mental frequencies f1 and f2, is calculated in the following way 4

FFR =

∣∣∣∣f2f1 − 1.33

∣∣∣∣p =

∣∣∣∣f2f1 − 1.33

∣∣∣∣2 . (115)

If the corresponding musical interval is close to the perfect fourth, the ratio would be
1.33− 1.33 = 0. In case of noisy data and a search of more distant located peaks (here at
least 75Hz difference) it frequently occurs, that there are less than two peaks detected. In
this case the ratio is calculated with f2 = 280Hz.
Fig. 4.11 shows an exemplary detection process for training files of the two classes. In
this case class M is near to the expected ratios of FFR ≈ 1.33 in both cases. However, in
case of class U other ratios occur.
The resulting ratios of the fundamental frequencies of the training data set are illustrated
in Fig. 4.12. Class M has a median of FFR ≈ 0.008 and class U has a median of
FFR ≈ 0.39.

4. Also other attempts with different exponents p > 2 (stronger penalty) or a bias unit(
1 +

∣∣∣ f2f1 − 1.33
∣∣∣)p were made. However, those attempts did not improve the results sufficiently enough.
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(a) Class M with FFR ≈ 0.00001
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(b) Class M with FFR ≈ 0.00368
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(c) Class U with FFR ≈ 0.01925
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(d) Class U with FFR = 0.21423

Figure 4.11 – Detection of peaks (×) of the fundamental frequencies f1 and f2 for the
feature fundamental frequency ratio (FFR) of two exemplary files with class M (first row)
and class U (second row). Exemplary results show that a FFR for class M is near to the
desired ratio in both cases and a FFR for class U detects a different ratio (c) or only one
peak, which leads to a more penalized ratio (d).
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Figure 4.12 – Fundamental frequency ratio (FFR) of the training data set for each time
frame described by the number of samples (left) and the corresponding boxplot (right).
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4.1.3 Resulting Feature Space

The basic feature space for this approach consists of 675 features and 49179 observations
(or rather 49179

39
= 1261 snippets with a length of 4s), which leads to a feature matrix

X with size [49179 × 675] 5. Here, each row of the feature matrix (observations) is
characterized by a time frame of Nfft = 1024 samples and for each of those time frames
a respective feature vector is delivered. The hop-size within each analysis window of 4s
is R = 512.

The used buffer-function [42] divides the snippet as follows: The first 512 and also the
last 480 values of each snippet with NAW = 20000 samples are set to 0. This leads to
20000 + 480 = 20480 samples which are buffered to Nbuf = 40 frames (therefore the
first frame involves 512 zeros followed by the first 512 samples of the signal and the last
frame involves the last 544 samples of the signal followed by 480 zeros).

The calculated values of the first frame of each snippet are not transferred to the feature
space. This leads to Nbuf − 1 = 39 transmitted observations, where all samples of the
snippet are involved, because also the second frame captures the samples 0 . . . 1024 (see
Table 10).

Frame Time Samples
1 0s . . . 0.1s 0 . . . 512
2 0s . . . 0.2s 0 . . . 1024
3 0.1s . . . 0.3s 512 . . . 1536
4 0.2s . . . 0.4s 1024 . . . 2048
...

...
...

37 3.5s . . . 3.7s 17920 . . . 18944
38 3.6s . . . 3.8s 18432 . . . 19456
39 3.7s . . . 3.9s 18944 . . . 19968
40 3.8s . . . 4s 19456 . . . 20480

Table 10 – Buffered snippet with 40 frames. The first column describes the frame number,
the second column the corresponding time periods and the third column the associated
samples. Both, the first and the second frame involve the starting samples of a snippet
with a length of 4s.

The first 512 (= Nfft
2

) features describe the amplitudes of the LSTFT with size [39×512],
which in this case are mapped to the frequency range from 1Hz to 2500Hz. With the
chosen sampling frequency the frequency resolution is fres = fs

Nfft
= 5000Hz

1024
≈ 4.88Hz.

The chromagram with its 12 pitch classes and size [39 × 12] and the chromatic entropy
with size [39× 1] are the next attached features. Then, the mel-scaled spectrograms with
size [39×128] and the resulting MFCCs with size [39×20] are added to the feature space.

5. In section 4.3.3 it is shown, that this kind of approach (time resolution of Nfft

fs
= 1024

5000Hz ≈ 200ms
per observation) also delivers good results in case of transitions between the two classes M and U.



4 MACHINE LEARNING APPROACH 53

39 x 512

LSTFT

39 x 12

C

39 x 1

CE

39 x 128

MELS

39 x 20

MFCC

39 x 1

FFR

39 x 1

STER

Figure 4.13 – Sketch of the feature matrix for each snippet with length of 4s illustrated
by blocks with varying sizes. The logarithmic short-time fourier transform (LSTFT) with
its 512 bins is the largest block. In comparison, the features chromatic entropy (CE),
fundamental frequency ratio (FFR) and short-time energy ratio (STER) are defined by
only one value per observation.

The two last features describe the FFR with size [39×1] and the STER with size [39×1].
In case of the FFR feature there is only one value calculated for a snippet of 4s. Hence,
there are Nbuf − 1 copies of this value transferred to the feature space. The different
feature blocks and its size in case of one 4s-snippet are depicted in Fig. 4.13.

4.1.4 Feature Selection

The applied feature selection algorithm computes the χ2-statistics [43, 44]

χ2 =

NC∑
i

(Oi − Ei)2

Ei
(116)

of each feature, where χ2 is Pearson’s cumulative test statistic, Oi the number of obser-
vations of class i, Ei the expected number of class i and NC the number of classes. The
number of observations Oi is the sum over each feature per class i. The expected number
Ei is the sum over each feature for all classes multiplied with the empirical probability
p(yi) (percentage share of class i in the available data set).

Before applying the χ2 feature selection the features were scaled into the range [0, 1],
because the statistic is designed for non-negative values. The scaling can be denoted as

Xscaled =
X −Xmin

Xmax −Xmin

. (117)

With the scaled features and with Eq. 116 the dependencies of the stochastic variables
within each feature can be calculated.
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Table 11 shows the χ2-scores of the first 20 features which are calculated with the χ2-
selection algorithm. The worst rated features were especially specific frequency bins of
the LSTFT greater than≈ 1200Hz. In the case of binary classification the features STER,
FFR and almost all chromagram-features have the best scores. With regard to this feature
selection and a simpler calculation in case of a future possible real-time implementation
the models were trained with the features STER (1), FFR (1), C (12) and CE (1), which
leads to 15 features in sum. It is assumed, that the generalization with new unknown test
data be better afterwards, if all pitches of the chromagram are taken into account (also
because of the Doppler effect). The feature MFCC_2 is not taken into account, because
it did not improve the results (especially with regard to the self-recorded validation set)
and simultaneously the calculation steps to obtain the MFCCs do not have to be made.
Even if the feature CE has a lower score, its consideration in combination with the other
features did improve the results 6.

Count Symbol Number χ2

1 STER 674 7463.35
2 FFR 675 7055.25
3 C_G 520 6480.37
4 C_C 513 6130.74
5 C_G# 521 4484.82
6 C_E 517 4039.09
7 C_C# 514 3714.61
8 C_D 515 3485.31
9 C_H 524 3397.43

10 C_F# 519 3134.95
11 C_D# 516 2965.08
12 C_F 518 2867.61
13 MFCC_2 655 1804.87
14 CE 525 1141.14
15 MFCC_4 657 1024.69
16 MELS_508Hz 551 975.51
17 MELS_684Hz 560 952.93
18 LSTFT_103Hz 21 889.22
19 MELS_2129Hz 634 799.93
20 MELS_527Hz 552 708.34
...

...
...

...

Table 11 – Feature Ranking with the 20 highest scores of χ2 statistics.

6. Note, that all used feature selection algorithms served as an indication for a good feature set. Nonethe-
less, many other feature combinations were tried and tested by hand. In practice and especially with respect
to the self-recorded validation set it turned out, that also other at first sight irrelevant features could make a
good contribution in combination with at first sight relevant features.
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4.1.5 Classification Results

In this first approach the two classes M and U are classified with the described feature
selection. All applied classification algorithms are described in section 2. Information
about the data set and the calculated features for the two classes are described in section
3 and section 4.1.2.

Finding a model which performs best in Recall in case of the self-recorded validation set
is the main goal of all classification task. Each classifier was also tested with a k-fold
cross validation to measure the ability of generalization: The training set is split into k
stratified folds (test sets), where the percentage of samples for each class is preserved
[45].

In a first attempt also the feature vector dimension was reduced with a linear discrimi-
nance analyse (LDA). The LDA tries to maximize the distance between the means (within-
class scatter matrix) and minimize the spread within a class (between-class scatter matrix)
[46]. However, this dimensionality reduction did not lead to a better performance with
the self-recorded validation set. This lead to a rejection of this idea, because regardless of
the computational costs a search for the best solution was paramount 7.

Also the mean values of the resulting 15 features for the 39 frames could have been cho-
sen as one feature vector for a 4s-snippet. This attempt resulted in a slightly worse per-
formance in the first place and was therefore not further investigated.

The data is standardized before the machine learning models are trained and tested.
Hence, the mean value µ and the standard deviation σ of each feature is calculated from
all observations of the training data set (here in each case 15 mean values and standard
deviations). Then each feature is transformed to zero mean and unit variance:

Xstandard =
X − µ
σ

. (118)

This standardization lead to better results with all machine learning models. Features with
high variance could have a strong impact on the objective function, which could result in
an inability to learn from other features [47].

The results of each developed model (Perceptron, Logistic Regression, Naive Bayes Clas-
sifier, K-Nearest-Neighbor and Support Vector Machine with a radial kernel) are de-
scribed in the following paragraphs.

7. Nevertheless, at a later step (see section 4.3.1) a feature selection algorithm, which involves the
principles of the LDA, is applied.
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Perceptron Results for the classifier Perceptron (PPN) are listed in Tables 12, 13 and
Fig. 4.14. In case of the self-recorded validation set this classifier is not able to classify
M correctly.

Data Accuracy
Test data from training set 0.977

Cross validation with training set 0.98± 0.02
Basic validation set 0.981

Self-recorded validation set 0.715

Table 12 – Accuracies for test data from the training set (30%), a k-fold cross validation
with k = 5 (mean value and twofold standard deviation), a basic validation set and the
self-recorded validation set in case of the classifier PPN.

Class Precision Recall F1 score Quantity
U 0.968 0.99 0.979 8050
M 0.988 0.961 0.974 6704

(a) Test data from training set (30%)

Class Precision Recall F1 score Quantity
U 0.965 0.997 0.981 9126
M 0.997 0.964 0.98 9165

(b) Basic validation data

Class Precision Recall F1 score Quantity
U 0.637 0.962 0.767 13455
M 0.93 0.479 0.633 14157

(c) Self-recorded validation data

Table 13 – Precision, Recall and F1 score of the classifier PPN for the different test data
sets with respective amounts of feature vectors.
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Figure 4.14 – Confusion matrices of the different test data sets with the classifier PPN.
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Logistic Regression Results for the classifier Logistic Regression (LR) are listed in
Tables 14, 15 and Fig. 4.15. For the best over the two classes averaged Recall a parameter
of C = 0.3 was chosen. In case of the self-recorded validation set this classifier is slightly
better in classifying M correctly.

Data Accuracy
Test data from training set 0.983

Cross validation with training set 0.98± 0.02
Basic validation set 0.983

Self-recorded validation set 0.822

Table 14 – Accuracies for test data from the training set (30%), a k-fold cross validation
with k = 5 (mean value and twofold standard deviation), a basic validation set and the
self-recorded validation set in case of the classifier LR.

Class Precision Recall F1 score Quantity
U 0.979 0.991 0.985 8050
M 0.989 0.975 0.982 6704

(a) Test data from training set (30%)

Class Precision Recall F1 score Quantity
U 0.972 0.995 0.983 9126
M 0.995 0.971 0.983 9165

(b) Basic validation data

Class Precision Recall F1 score Quantity
U 0.742 0.973 0.842 13455
M 0.963 0.679 0.796 14157

(c) Self-recorded validation data

Table 15 – Precision, Recall and F1 score of the classifier PPN for the different test data
sets with respective amounts of feature vectors.

U M
Predicted label

U

M

T
ru

e
 l
a
b
e
l

0.991 0.009

0.025 0.975

(a) Test data from training set

U M
Predicted label

U

M

T
ru

e
 l
a
b
e
l

0.995 0.005

0.029 0.971

(b) Basic validation data

U M
Predicted label

U

M

T
ru

e
 l
a
b
e
l

0.973 0.027

0.321 0.679

(c) Self-recorded validation data

Figure 4.15 – Confusion matrices of the different test data sets with the classifier LR.
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Naive Bayes Classifier Results for the Naive Bayes (NB) classifier are listed in Ta-
bles 16, 17 and Fig. 4.16. This classifier leads to a good performance with the self-
recorded validation set.

Data Accuracy
Test data from training set 0.974

Cross validation with training set 0.97± 0.01
Basic validation set 0.973

Self-recorded validation set 0.848

Table 16 – Accuracies for test data from the training set (30%), a k-fold cross validation
with k = 5 (mean value and twofold standard deviation), a basic validation set and the
self-recorded validation set in case of the classifier NB.

Class Precision Recall F1 score Quantity
U 0.969 0.984 0.976 8050
M 0.98 0.962 0.971 6704

(a) Test data from training set (30%)

Class Precision Recall F1 score Quantity
U 0.964 0.982 0.973 9126
M 0.982 0.963 0.972 9165

(b) Basic validation data

Class Precision Recall F1 score Quantity
U 0.857 0.826 0.841 13455
M 0.84 0.869 0.854 14157

(c) Self-recorded validation data

Table 17 – Precision, Recall and F1 score of the classifier NB for the different test data
sets with respective amounts of feature vectors.
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Figure 4.16 – Confusion matrices of the different test data sets with the classifier NB.
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K-Nearest-Neighbor Results for the K-Nearest-Neighbor (KNN) classifier with k =√
N ≈ 185 are listed in Tables 18, 19 and Fig. 4.17. In case of the self-recorded validation

set this classifier is comparable the classifier NB.

Data Accuracy
Test data from training set 0.97

Cross validation with training set 0.96± 0.02
Basic validation set 0.965

Self-recorded validation set 0.854

Table 18 – Accuracies for test data from the training set (30%), a k-fold cross validation
with k = 5 (mean value and twofold standard deviation), a basic validation set and the
self-recorded validation set in case of the classifier KNN.

Class Precision Recall F1 score Quantity
U 0.954 0.994 0.973 8050
M 0.992 0.942 0.966 6704

(a) Test data from training set (30%)

Class Precision Recall F1 score Quantity
U 0.94 0.993 0.966 9126
M 0.992 0.937 0.964 9165

(b) Basic validation data

Class Precision Recall F1 score Quantity
U 0.868 0.825 0.846 13455
M 0.841 0.881 0.861 14157

(c) Self-recorded validation data

Table 19 – Precision, Recall and F1 score of the classifier KNN for the different test data
sets with respective amounts of feature vectors.
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Figure 4.17 – Confusion matrices of the different test data sets with the classifier KNN.
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Support Vector Machine For the Support Vector Machine a radial kernel (SVMR)
resulting in a non-linear decision boundary was chosen. The parameterization of C and γ
is based on a grid search, which is depicted in Fig. 4.19. Results for the SVMR are listed
in Tables 20, 21 and Fig. 4.18. On the whole, the SVMR lead to the best results.

Data Accuracy
Test data from training set 0.993

Cross validation with training set 0.98± 0.03
Basic validation set 0.989

Self-recorded validation set 0.911

Table 20 – Accuracies for test data from the training set (30%), a k-fold cross validation
with k = 5 (mean value and twofold standard deviation), a basic validation set and the
self-recorded validation set in case of the classifier SVMR.

Class Precision Recall F1 score Quantity
U 0.991 0.997 0.994 8050
M 0.997 0.989 0.993 6704

(a) Test data from training set (30%)

Class Precision Recall F1 score Quantity
U 0.979 0.999 0.989 9126
M 0.999 0.978 0.988 9165

(b) Basic validation data

Class Precision Recall F1 score Quantity
U 0.859 0.978 0.915 13455
M 0.976 0.847 0.907 14157

(c) Self-recorded validation data

Table 21 – Precision, Recall and F1 score of the classifier SVMR for the different test
data sets with respective amounts of feature vectors.
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Figure 4.18 – Confusion matrices of the different test data sets with the classifier SVMR.
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Figure 4.19 – Grid search for the best over the two classes averaged Recall with the clas-
sifier SVMR. Best parameters are located in the range γ = [0.001, 1] and C = [0.1, 1000]
(left). The right figure shows a finer grid with γ = [0.001, 1] and C = [0.1, 100]. The best
parameters are chosen with γ = 0.1 and C = 3.

Summary All models perform well on the test data from the training set and on the
basic validation data set. The goal of this classification task is an optimized performance
with the self-recorded validation data set. Significant classification results for the self-
recorded validation set are summarized in Table 22: The Accuracy of the classifier PPN
with 71.5% is the worst. All other classifier have a Accuracy greater than 80%. Never-
theless, the performance measures Precision, Recall and F1 score for the class M play an
important role when analyzing the results. Especially a higher Recall should be achieved
to guarantee, that the model really reacts when class M is present. Best Recall of≈ 87% is
given with NB, but on the other hand Precision and F1 score are lower than 87%. SVMR
shows better results for Precision and F1 score and yet has a Recall of ≈ 84.7%.

Model Accuracy Precision (M ) Recall (M ) F1 score (M )
PPN 0.715 0.93 0.479 0.633
LR 0.822 0.963 0.679 0.796
NB 0.848 0.84 0.869 0.854

KNN 0.854 0.841 0.881 0.861
SVMR 0.911 0.976 0.847 0.907

Table 22 – Summary of specific performance measures of the self-recorded validation
data set for the applied models in the binary classification task.

In another attempt, the self-recorded validation set was also preprocessed with a noise
suppression algorithm and than classified again for a comparison. This attempt did not
improve the results.
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4.2 Classification of the classes Martinshorn, Environmental
Siren and Urban Noise

Results of the first approach show, that the two classifiers PPN and LR did not perform
sufficiently well on the self-recorded validation data set. For this reason those classifiers
are excluded in the next two machine learning approaches.
During initial trials on this classification task it appeared, that a distinction between the
classes M and S was not good enough with the available feature set. For this reason more
features are introduced for this classification task to provide a better distinctness between
those two classes.

4.2.1 Preprocessing

This approach performs the same preprocessing steps as in the binary classification task
(see Section 4.1.1 and Table 10). It is assumed, that the length of a sound snippet of 4s
guarantees enough distinctive information when comparing the classes S and M. Also the
sampling frequency fs = 5000Hz has been retained, because higher frequency areas may
not necessarily contain additional information.

4.2.2 Conclusive Audio Features

The feature selection of the first approach showed, that specific features make no deter-
mining contribution on classification. This knowledge is used for the new feature space,
which leads to the preselection: C, CE, STER and FFR.

However, first results with the existing feature set on the classification task with three
classes showed, that other new features could lead to an even better performance. The
focus of those features lies on the distinction between the three classes S, M and U. It is
assumed, that classes S and M can get confused more easily because of their similarities.

Each new calculated feature of this classification task (see chosen symbols and descrip-
tions in Table 23) is described in the following paragraphs: At first the features MPDR,
ZCR and COV are explained, then all chromagram features (CP, CC, CS and CF), which
in this case are all derived from the median-filtered chromagram (CM), are described. The
calculations of the spectral features (CC, CS and CF) are derived from [48] and they were
also applied in [49].
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Symbol Description
MPDR maximum peak density ratio
ZCR zero-crossing rate
COV covariance vector

C chromagram
CM chromagram median-filtered
CE chromatic entropy

CEM chromatic entropy median-filtered
CP chroma prominence
CC chroma centroid
CS chroma spread
CF chroma flux

STER short-time energy ratio
FFR fundamental frequency ratio

Table 23 – Calculated audio features with corresponding symbol and their descriptions.
The chromagram-features C, CM and CP involve the 12 pitch classes.

Maximum Peak Density Ratio The maximum peak density ratio (MPDR) leads to
a better distinction between the sounds of sirens (M/S) with high peaks in the frequency
domain and the class U. The MPDR is calculated in the logarithmic domain and can be
formulated as

MPDRdB = SdB,max[k]− SdB,min [krange] ,

with krange ∈ [ploc [P/2]− a,ploc [P/2] + a] , (119)

where the vector ploc gives the indices of all detected peak locations in the given log-
arithmic spectrum SdB[k] with frequency bins k. The length of the vector is given by
the maximum number of detected peaks P . The minimum is searched in the vicinity of
the peak location ploc[P/2]. The parameter a should be chosen with respect to the fft-
size Nfft. It should lead to a suitable frequency range for which the minimum value is
searched (here a = 10).
Hence, instead of choosing the minimum value of the entire spectrum, a minimum value
of a segment with a high peak density of the spectrum is chosen. This ratio lead to good
results when comparing the distributions of each class.
Fig. 4.20 shows how the MPDR is calculated with an exemplary audio frame of class M
and Fig. 4.21 shows how the MPDR is calculated for an exemplary audio frame of class
U.
Fig. 4.22 shows the course of the MPDR of the training set and the corresponding box-
plots for each class. It can be seen, that the scattering and the median value of class U is
lower in comparison to the siren sounds.
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Figure 4.20 – Calculation of the maximum peak density ratio (MPDR) of an exemplary
audio file of Class M: Left figure shows the logartihmic short-time fourier transform with
123 detected peaks and right figure shows the two detected peaks for which the MPDR
is calculated. Here, the minimum is searched within the region of 1066Hz and 1462Hz.
The maximum is the highest detected peak resulting in a maximum peak density ratio of
MPDR ≈ 63dB.
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Figure 4.21 – Calculation of the maximum peak density ratio (MPDR) of an exemplary
audio file of Class U: Left figure shows the logartihmic short-time fourier transform with
134 detected peaks and right figure shows the two detected peaks for which the MPDR
is calculated. Here, the minimum is searched within the region of 1125Hz and 1482Hz.
The maximum is the highest detected peak resulting in a maximum peak density ratio of
MPDR ≈ 29dB.
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Figure 4.22 – Resulting maximum peak density ratio (MPDR) and respective boxplots of
the training set with classes S, M and U.

Zero-crossing Rate Definitions of the zero-crossing rate (ZCR) can be found in [48,
50]. The feature has been calculated with the python toolbox librosa [40]. The Zero-
crossing rate describes the rate of sign-changes along time and can be formalized as
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Figure 4.23 – Resulting zero-crossing rate (ZCR) and respective boxplots of the training
set with classes S, M and U.

ZCR =
1

N − 1

N−1∑
n=1

|sign(x[n])− sign(x[n− 1])|, (120)

with N as the number of samples and the signum function

sign(x[n]) =


1, if x[n] > 0

0, if x[n] = 0

−1, if x[n] < 0

(121)

There is some sort of relation between the ZCR and the fundamental frequency. Hence,
higher values of the ZCR indicate higher estimations of the fundamental frequency (f =
ZCR·fs

2
) or indicate more or less stochastic, noisy signal components.

Fig. 4.23 illustrates the ZCR of the training set. Boxplots show, that the ZCR of class
U has the lowest scattering, which could lead to better classification results. Apparently
the estimated fundamental frequencies of class M (between approximately 0.2 and 0.4 or
rather 500Hz and 1000Hz) are mostly higher when compared to class S.

It is assumed, that the estimated fundamental frequencies of class M are not accurate
enough, because of the signal’s noise and the A-weighting of the preprocessing step (more
damped lower fundamental frequency). Nevertheless, the first harmonic of the lower fun-
damental frequency seems to be well captured and has also a relevant signal information.
The higher scattering of class S on the other hand results from the fact, that the sweeps at
the start and at the end are measured very well.

Covariance Vector The Covariance Vector (COV) combines variances and covari-
ances of specific time frames. Each 4s-snippet is cut into 4 bandpass-filtered signals
(here, the signal is filtered within the region of 280Hz and 670Hz), where each of them
has a length of 1s (corresponding time ranges: 0s . . . 1s, 1s . . . 2s, 2s . . . 3s and 3s . . . 4s).
This leads to a vector of the form
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Figure 4.24 – Covariance Vector with variances of signals s11, s22, s33 and s44 (left) and
covariances si,j = |COV(si, sj)| related to the examined signal combinations (right).

COV =



Var(s1)
Var(s2)
Var(s3)
Var(s4)

|COV(s1, s2)|
|COV(s1, s3)|
|COV(s1, s4)|
|COV(s2, s3)|
|COV(s2, s4)|
|COV(s3, s4)|



T

, (122)

where Var(si) = E[(si − µi)2] is the variance of the respective signal and |Cov(si, sj)|
(where i 6= j) the absolute value of the covariance of the two compared signals. For each
snippet N copies of each entry of the vector are repeated, resulting in a matrix with size
[N × 10], which can be added to the feature space.
The idea behind this feature is the relationship between two estimated time regions in
which one of the two fundamental frequencies of the Martinshorn could lie. Even if
the frequencies are changing within a time region of approximately 1s, the variances
and covariances of those regions have characteristic differences in comparison to noise
sounds. Fig. 4.24 shows, that in all cases class S has a much higher scattering than
classes M and U.

Chromagram Median-filtered The median-filtered chromagram (CM[k,m] with k
pitch classes and m ∈ [0, Nbuf − 1] frames) is calculated with a spectrogram decompo-
sition algorithm from the audio analysis toolbox librosa [51, 52]. The basis is formed by
the normalized chromagram (see section 4.1.2). The idea behind the algorithm is em-
phasizing repeating elements within a snippet. A recurrence matrix with size [(Nbuf −
1) × (Nbuf − 1)] is derived from a sparse k-nearest neighbor graph, which shows the
connections between neighboring points [17]. Here, for each time frame m the kNN =

2 ·
⌈√

(Nbuf − 1)− 1

⌉
+ 2 = 16 nearest neighbors are calculated with a cosine distance



4 MACHINE LEARNING APPROACH 67

0 10000 20000 30000 40000 50000 60000 70000
number of samples

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

CE
M

S M U

(a) CEM

S M U
class

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

CE
M

(b) Boxplot of CEM

Figure 4.25 – Resulting chromatic entropy median-filtered (CEM) and respective boxplots
of the training set with classes S, M and U.

metric. The cosine distance can be derived from the cosine similarity. Hence, the distance
between two time frames of the chromagram can be written as

d(ja, jb) = 1− cos(θ) = 1−
∑12

k=1 C[k, ja]C[k, jb]√∑12
k=1 C[k, ja]2

√∑12
k=1 C[k, jb]2

, (123)

where ∀ja, jb ∈ [1,m], which indicates a brute-force search. The identified repeating
nearest-neighbor elements with indices Jj are then median-filtered, what leads to the de-
noised chromagram

CM[k,m] = median
l∈[1,kNN ]

{C[k, Jj(l)]}. (124)

An exemplary time frame of a sirene sound from the training data set shows, that one
pitch is strongly emphasized (see Fig. 4.26a). This should lead to a good separation for a
model with three classes.

Chromatic Entropy Median-filtered The median-filtered chromatic entropy (CEM)
is derived from the median-filtered chromagram. The calculation is analogous to the
calculation of the chromatic entropy of the unfiltered chromagram (see section 4.1.2).
Fig. 4.25 shows the resulting feature values of each sample of the training set and the
respective boxplots. Median values of classes S and M are similar, only the median value
of class U is a bit higher.

Chroma Prominence Ideally the chromagram of class S has one emphasized pitch
(see Fig. 4.26a) and the chromagram of class M two emphasized pitches (see Fig. 4.6a).
For this reason the idea to count the quantity of the highest peaks of each pitch class
within a snippet came up. The feature with size [12 × (Nbuf − 1)] is designated as the
Chroma Prominence. In each frame m of the median-filtered chromagram the pitch k
with the highest magnitude (here, the maximum value max {CM[k,m]} in each frame m
is equal to 1) is detected and stored in a counter. This results in a vector with 12 entries,
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Figure 4.26 – Exemplary time frames of the training data set showing the median-filtered
chromagram (first row) and the respective chroma prominence (second row) of class S
(left) and class U (right). One dominant pitch can be recognized in case of class S. In
case of class U the median-filtered chromagram is similar distributed. Second row illus-
trates the chroma prominence feature of class S (c) and class M (d). For class S only the
pitch G# always has the highest amplitude, in case of class M mostly 3 (fundamental
frequencies plus dominant harmonics) or 2 (only fundamental frequencies) pitches are
emphasized.

each describing the quantity of maximum peaks of each pitch class within a snippet. Next,
for each snippet N copies of each entry of the vector are repeated, resulting in the matrix
with size [(Nbuf − 1)× 12].
Fig. 4.26c shows, that in case of an exemplary time frame of class S only one pitch is
emphasized. On the other hand, an exemplary time frame of class M has 2 or 3 dominant
pitch classes within a snippet.



4 MACHINE LEARNING APPROACH 69

0 10000 20000 30000 40000 50000 60000 70000
number of samples

0

2

4

6

8

10

12

CC

S M U

(a) CC

S M U
class

0

2

4

6

8

10

12

CC

(b) Boxplot of CC

Figure 4.27 – Resulting chroma centroid (CC) and respective boxplots of the training set
with classes S, M and U.

Chroma Centroid The chroma centroid is an experimental feature, which describes
the emphasis of the median-filtered chromagram. The chromagram is considered as a
distribution, where the chroma bins describe the values and the amplitudes describe the
probabilities. It can be written as

CC[m] =

∑12
k=1 k · CM[k,m]∑12
k=1 CM[k,m]

. (125)

Fig. 4.27 illustrates the distributions of the chroma centroid in the training set. It can been
seen, that sirene sounds have a much higher scattering compared to urban noise sounds.

Chroma Spread The chroma spread gives a measure of the spread around the chroma
centroid and is tested additionally to the related feature chromatic entropy. It can be
considered as the shape of the median-filtered chromagram in each frame and is calculated
as

CS[m] =

∑12
k=1(k − CC[m])2 · CM[k,m]∑12

k=1 CM[k,m]
. (126)

Fig. 4.28 shows the distributions of the chroma spread of the training set. Once more, the
scattering of class U is lower in comparison to classes S and M. On the other hand the
median value of class U is a bit higher.

Chroma Flux The magnitudes of each pitch class vary over time. Those differences
are measured and summed by the chroma flux

CF[m] =
12∑
k=1

|CM[k,m]− CM[k,m− 1]|, (127)
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Figure 4.28 – Resulting chroma spread (CS) and respective boxplots of the training set
with classes S, M and U.
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Figure 4.29 – Resulting chroma flux (CF) and respective boxplots of the training set with
classes S, M and U.

which is summing up all pitch class changes over time. Note, that for this feature the
magnitude of the subsequent frame is necessary to calculate the actual value. This means,
that only Nbuf − 1 = 39 values can be calculated for each snippet, if it was buffered to
Nbuf = 40 frames. Here, for a better statistical representation Nbuf − 1 = 39 copies of
the mean value of all frames per snippet are illustrated. In case of class U, the scattering
and also the median value of CF is higher when compared to classes S and M (see Fig.
4.29).

Short-Time Energy Ratio The calculation of the STER is analogous to the before
described calculation (see 4.1.2). The distributions of the classes M and U stay the same
(compare Fig. 4.2 and 4.30). In case of class S the median value amounts approximately
0.6 and the ratio values have a high scattering, which makes it difficult to distinguish
between the class S and the classes M and U. The feature distribution shows, that the
amplitudes in the training data of class S vary widely.

Fundamental Frequency Ratio The calculation of the FFR is analogous to the be-
fore described calculation (see 4.1.2). In Fig. 4.31 the resulting FFR feature of the training
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Figure 4.30 – Short-time energy ratio (STER) over time (a) and boxplot of STER (b) of
training data with the three classes S, M and U.
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Figure 4.31 – Resulting fundamental frequency ratio (FFR) and respective boxplots of the
training set with classes S, M and U.

set and the corresponding boxplots of each class are illustrated. Classes S and U are pe-
nalized very often in comparison to class M. Nevertheless, when looking at the boxplot
of class U the median value is higher than the median values of classes S and M.



4 MACHINE LEARNING APPROACH 72

39 x 1

MPDR

39 x 1

ZCR

39 x 10

COV

39 x 12

C

39 x 12

CM

39 x 1

CE

39 x 1

CEM

39 x 12

CP

39 x 1

CC

39 x 1

CS

39 x 1

CF

39 x 1

STER

39 x 1

FFR

Figure 4.32 – Sketch of the feature set illustrated by blocks with varying sizes. The
feature matrices chromagram (C), chromagram median-filtered (CM) and chroma promi-
nence (CP) with its 12 pitch classes are the largest blocks, followed by the feature matrix
covariance vector (COV) with its 10 measures of variation. In comparison, the features
maximum peak density ratio (MPDR), zero-crossing rate (ZCR), chromatic entropy (CE),
chromatic entropy median-filtered (CEM), chroma centroid (CC), chroma spread (CS),
chroma flux (CF), short-time energy ratio (STER) and fundamental frequency ratio (FFR)
are defined by only one value per observation, where the FFR feature includes copies for
one in the 4s-snippet calculated fundamental frequency ratio.

4.2.3 Resulting Feature Space

The basic feature space for this approach consists of 95 features and 70161 observations,
which leads to a feature matrixX with size [70161× 95]. Again, each row of the feature
matrix is characterized by a time frame of Nfft = 1024 samples and the hop-size is
R = 512 (see Table 10).

The resulting feature set is illustrated in Fig. 4.32. In comparison to the first binary clas-
sification task the features LSTFT, MELS and MFCC are removed from the feature set.
The remaining features C, CE, FFR and STER were calculated again for this classification
task. In addition, the features MPDR, ZCR, COV, CM, CEM, CP, CC, CS, CF, STER and
FFR are appended to the feature space.

There are 3 matrices with respect to the 12 chromagram pitch classes appended to the
features space (C, CM and CP). The covariance matrix COV has 10 feature values, which
are delivered as Nbuf − 1 = 39 copies in the feature matrix of one snippet with a length
of 4s.

Only Nbuf − 1 = 39 values can be calculated in case of the feature CF, because the
calculation of a value for the actual frame depends on the knowledge of the value of one
preceding frame. Hence, it is only possible to transmit Nbuf − 1 samples to the feature
space.
In case of the FFR feature again 39 copies of the calculated value are transferred to the
feature space. For all remaining features 39 different feature values for each time frame
of approximately 0.2s are transmitted to the feature space.
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4.2.4 Feature Selection

The features are again selected with the χ2-statistics (see section 4.1.4). In Table 24
the first 20 ranked features are depicted. The selection shows, that the median-filtered
chromagram (CM), the fundamental frequency ratio (FFR) and the short-time energy ra-
tio (STER) give the highest values for the χ2-statistics. However, when thinking of the
Doppler effect, a consideration of the entire median-filtered chromagram makes sense.
Another feature selection without consideration for the unfiltered chromagram showed,
that also the feature ZCR (χ2 = 3085.97) improved the results in this classification task.

For this reason the chosen feature selection involves the features ZCR (1), CM (12) and
FFR (1).

Count Symbol Number χ2

1 CM_G 32 10839.93
2 CM_C 25 10595.67
3 CM_F# 31 9312.47
4 CM_F 30 8917.08
5 CM_D 27 8769.64
6 CM_H 36 8710.08
7 C_G 20 8585.76
8 C_C 13 8368.51
9 CM_C# 26 8141.59

10 CM_E 29 8011.36
11 CM_D# 28 7631.8
12 FFR 55 7355
13 C_F# 19 6798.59
14 C_H 24 6555.32
15 STER 54 6378.74
16 C_F 18 6352.24
17 C_D 15 6250.57
18 C_C# 14 5913.24
19 C_E 17 5728.6
20 CM_G# 33 5636.58
...

...
...

...

Table 24 – Feature Ranking with the 20 highest scores of χ2 statistics.
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4.2.5 Classification Results

There is no self-recorded validation set for class S available. However, when evaluating
the classification results of the existing self-recorded validation set (see section 3) with
classes M and U a problem occurred with the microphones positioned in the engine com-
partment. In the recordings of class U the ventilation of the car temporarily produced
a sound, which exhibits a similar sound characteristic like recorded sirene-sounds. Fig.
4.33 shows the median-filtered chromagram of the self-recorded validation set of classes
M and U. If we compare Fig. 4.33b with Fig. 4.26a it gets understandable that class U
could mistakenly be classified as a sirene. This led to a situation in which about 20% of
class U is classified as class S.
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Figure 4.33 – Exemplary time frames showing the median-filtered chromagram of class
M (left) and class U (right) of the self-recorded validation set. In case of class U the
median-filtered chromagram shows a sirene-like sound produced by the ventilation of the
car, which leads to confusions with class S.

With the unfiltered chromagram this confusion was less pronounced, but on the other hand
a distinction between the two sirene sounds (classes S and M) became worse. This classi-
fication task intends to demonstrate, that the two classes S and M can be distinguished in
a more promising way. For this reason the data of the self-recorded validation set at those
microphone positions was removed in the following classification results.

It is suggested for future experiments with car recordings to choose more suitable mi-
crophone positions, to prevent sirene-like urban noise sounds. The positioning of the
microphones has a strong influence on the classification task and should be researched
additionally. Hence, the provision of representative microphone recordings is the most
decisive factor when developing a sound event detection algorithm for cars, especially if
more than two classes are taken into account.

In this approach only the classifiers NB, KNN and SVMR were taken into account, which
are described in the following paragraphs. Again all features are transformed to zero mean
and unit variance before fitting the classification algorithms and also results of a k-fold
cross validation are presented.
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Naive Bayes Classifier Results for the NB classifier are listed in Tables 25, 26 and
Fig. 4.34. In case of the self-recorded validation set more than 58% of class M is classified
incorrectly as class S.

Data Accuracy
Test data from training set 0.904

Cross validation with training set 0.88± 0.08
Basic validation set 0.868

Self-recorded validation set 0.571

Table 25 – Accuracies for test data from the training set (30%), a k-fold cross validation
with k = 5 (mean value and twofold standard deviation), a basic validation set and the
self-recorded validation set in case of the classifier NB.

Class Precision Recall F1 score Quantity
U 0.977 0.981 0.979 8050
M 0.893 0.833 0.862 6704
S 0.825 0.88 0.852 6295

(a) Test data from training set (30%)

Class Precision Recall F1 score Quantity
U 0.961 0.982 0.971 9126
M 0.875 0.756 0.811 9165
S 0.775 0.867 0.819 8853

(b) Basic validation data

Class Precision Recall F1 score Quantity
U 0.929 0.936 0.932 7987
M 0.998 0.374 0.585 14157

(c) Self-recorded validation data

Table 26 – Precision, Recall and F1 score of the classifier NB for the different test sets
with respective amounts of feature vectors.
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(c) Self-recorded validation data

Figure 4.34 – Confusion matrices of the different test data sets with the classifier NB.
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K-Nearest-Neighbor In this case the KNN classifier was chosen with k =
√
N ≈

221. Results are listed in Tables 27, 28 and Fig. 4.35. Here, in case of the self-recorded
validation set only 23% of class M is classified incorrectly as class S.

Data Accuracy
Test data from training set 0.948

Cross validation with training set 0.86± 0.1
Basic validation set 0.906

Self-recorded validation set 0.794

Table 27 – Accuracies for test data from the training set (30%), a k-fold cross validation
with k = 5 (mean value and twofold standard deviation), a basic validation set and the
self-recorded validation set in case of the classifier KNN.

Class Precision Recall F1 score Quantity
U 0.942 1 0.97 8050
M 0.952 0.924 0.937 6704
S 0.951 0.906 0.928 6295

(a) Test data from training set (30%)

Class Precision Recall F1 score Quantity
U 0.88 1 0.936 9126
M 0.939 0.879 0.908 9165
S 0.905 0.839 0.871 8853

(b) Basic validation data

Class Precision Recall F1 score Quantity
U 0.905 0.941 0.923 7987
M 0.9999 0.714 0.831 14157

(c) Self-recorded validation data

Table 28 – Precision, Recall and F1 score of the classifier KNN for the different test sets
with respective amounts of feature vectors.

U M S
Predicted label

U

M

S

T
ru

e
 l
a
b
e
l

1.000 0.000 0.000

0.033 0.924 0.043

0.044 0.050 0.906

(a) Test data from training set

U M S
Predicted label

U

M

S

T
ru

e
 l
a
b
e
l

1.000 0.000 0.000

0.036 0.879 0.085

0.103 0.059 0.839

(b) Basic validation data

U M S
Predicted label

U

M

S

T
ru

e
 l
a
b
e
l

0.941 0.000 0.058

0.056 0.714 0.230

nan nan nan

(c) Self-recorded validation data

Figure 4.35 – Confusion matrices of the different test data sets with the classifier KNN.
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Support Vector Machine Results for a the classifier SVMR are listed in Table 29,
Tables 30 and Fig. 4.36. The parameterization of C and γ is based on a grid search, which
is depicted in Fig. 4.37.

Data Accuracy
Test data from training set 0.996

Cross validation with training set 0.93± 0.06
Basic validation set 0.957

Self-recorded validation set 0.87

Table 29 – Accuracies for test data from the training set (30%), a k-fold cross validation
with k = 5 (mean value and twofold standard deviation), a basic validation set and the
self-recorded validation set in case of the classifier SVMR.

Class Precision Recall F1 score Quantity
U 0.997 0.9999 0.998 8050
M 0.996 0.994 0.995 6704
S 0.995 0.994 0.995 6295

(a) Test data from training set (30%)

Class Precision Recall F1 score Quantity
U 0.958 0.998 0.978 9126
M 0.968 0.927 0.947 9165
S 0.945 0.945 0.945 8853

(b) Basic validation data

Class Precision Recall F1 score Quantity
U 0.932 0.931 0.932 7987
M 0.999 0.837 0.91 14157

(c) Self-recorded validation data

Table 30 – Precision, Recall and F1 score of the classifier SVMR for the different test sets
with respective amounts of feature vectors.
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(c) Self-recorded validation data

Figure 4.36 – Confusion matrices of the different test data sets with the classifier SVMR.
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Figure 4.37 – Grid search for the best over the three classes averaged Recall with the clas-
sifier SVMR. Best parameters are located in the range γ = [0.001, 1] and C = [0.1, 100]
(left). Right figure shows a finer grid with γ = [0.001, 1] and C = [0.1, 100]. The best
parameters are chosen with γ = 0.2 and C = 10.

Summary Again, all models perfom very well on the test data from the training set and
on the basic validation data set. Table 31 summarizes the most meaningful classification
results for the self-recorded validation data set: With the classifier NB the Accuracy is
only 57.1% and just 37.4% of the actual class M is predicted as class M. The classifier
KNN gives a better distinction between classes M and S: 23% of the sounds of the actual
class M are predicted as class S. With the classifier SVMR the results are most promising:
83.5% of the actual class M are predicted as class M and 12.5% of the actual class M are
predicted as class S. This confusion is reasonable due to the fact, that the sirene sounds
(classes M and S) have similar signal characteristics. Especially the sweeps at the start
and at the end of the sound of a Environmental Sirene make it difficult to distinguish
between the two classes. On the other hand a clear distinction between urban and sirene
sounds is guaranteed.

Model Accuracy Precision (M ) Recall (M ) F1 score (M )
NB 0.571 0.998 0.374 0.585

KNN 0.794 0.999 0.712 0.831
SVMR 0.87 0.999 0.835 0.91

Table 31 – Summary of specific performance measures of the self-recorded validation
data set for the applied models in the classification task with three classes.
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4.3 Binary Classification with additional Features

In this approach the new developed features from the classification task with the three
classes (see section 4.2.2) are now also used for the binary classification task again with
the classes M and U. The preprocessing steps stay the same as in the already described
classification tasks. In comparison with the first binary classification task, the feature
space is different and also another feature selection algorithm is tested.

4.3.1 Feature Selection

This time, the features are selected by a combination of a Sequential Forward Selection
(SFS) and a Sequential Backward Selection (SBS). The resulting selection algorithm is
called Plus-L Minus-R Selection (LRS). Information about the calculation of this selection
algorithm can be found in [53, 54]. This sequential feature selection algorithm tries to
find an optimal subset of features by adding or rather removing features with respect
to a relevance criterion (called filter-technique). Here, the objective function (statistical
measurement, which describes the properties of a data set) of a feature subset Y is the
trace ratio of the within-class scatter matrix Sw and the between-class scatter matrix Sb:

J(Y ) =
Tr{Sb}
Tr{Sw}

. (128)

The trace operator Tr{·} of a matrix calculates the sum over all diagonal elements.
The matrix Sw gives a measurement for the variances (compactness) within a class and is
defined as

Sw =

NC∑
i=1

Ni

N
·Ci, (129)

where N is the total amount of observations, NC the number of classes, Ni the amount of
observations in class i and Ci the covariance matrix of class i.

The matrix Sb gives a measurement for the means (separability) between the classes and
can be formalized as

Sb =

NC∑
i=1

Ni

N
(µi − µ)(µi − µ)T , (130)

where NC is again the number of classes, µ is the global mean of all classes and µi the
mean of class i.
Hence, the trace ratio gets maximal, if the average distance to the global mean (Tr{Sb})
is high and the average variance over all classes (Tr{Sw}) is small.
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The LRS for the two classes is performed by executing the following steps:

— initialize an empty feature set Y0 (where the subscript k = 0 is a counter for the
actual feature subset)

— selection of the first feature: Add the feature with the highest Fisher’s Ratio 8 score
to the feature set

— L times sequential adding of features Yk+1 = Yk + xadd, which maximizes the
objective function J(Yk + x)

— R times sequential removing of features Yk+1 = Yk − xremove, which minimizes
the objective function J(Yk − x)

— stop when objective function converges

There is no theoretical basis about the choice of the parameters L and R. Here, the first
20 selected features with L = 10 forward steps and R = 5 backward steps are calculated
and shown in Table 32.

Count Symbol Number DP
1 STER 54 1.0728
2 COV_13 8 1.0737
3 COV_24 11 1.0737
4 COV_14 9 1.0737
5 COV_34 12 1.0737
6 COV_23 10 1.0737
7 COV_12 7 1.0737
8 COV_1 3 1.0737
9 ZCR 2 1.0737

10 CM_C 25 1.0731
11 COV_3 5 1.0737
12 COV_2 4 1.0737
13 COV_4 6 1.0737
14 CM_G 32 1.0732
15 CM_E 29 1.0735
16 CM_G# 33 1.0736
17 CM_D 27 1.0737
18 CM_C# 26 1.0738
19 C_C 13 1.0739
20 C_D 20 1.0739
...

...
...

...

Table 32 – Feature Ranking of the first 25 features with SFS and SBS feature selection
with .

8. Definition of Fisher’s Ratio for one feature in case of the classes M and U with the means µ1 and µ2

and the variances σ2
1 and σ2

2 : FR = (µ1−µ2)
2

σ2
1+σ

2
2
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The selected features indicate, that a combination of STER, COV, ZCR, CM and C lead
to good results. However, the selected features give an idea for a good feature set.

Experiments with the feature set showed, that a feature vector with MPDR (1), ZCR (1),
C (12), CE (1), STER (1) and specific combinations of COV (here: a combination of 2
variances) lead to the most promising results with the self-recorded validation set. Even
if the features CE and MPDR are not taken into account with the used feature selection
algorithm (see Table 32), it could be established after many attempts, that the results
improved with this final feature selection 9. This leads to a final feature vector with 18
features.

For a binary classification the de-noised chromagram (CM) does not perform as well as
the basic chromagram (C). This is again explained with the fact, that the self-recorded val-
idation set temporarily shows a sirene-like sound (see section 4.2.5), which is supported
by the median-filtered chromagram. The median-filtered chromagram enhances recurring
frames, which in this case highlights the sirene-like behavior and leads to a confusion with
class M. Hence, there is a danger, that the median-filtered chromagram performs worse
in predicting class U correctly. On the other hand, when looking at the classification
task with three classes, the median-filtered chromagram performs better in distinguishing
classes M and S. This leads to a trade-off, which needs to be considered when developing
an embedded system.

The covariance vector compares 4 one-second intervals of a snippet and it turned out, that
specific combinations can be more helpful than taking all of the 10 measures of dispersion
into account. Variances Var(s2) (COV_2) and Var(s3) (COV_3) lead to a good statistic
representation of a snippet. Hence, those measures outperformed in the classification
task with the self-recorded validation set. Therefore, this feature takes each of the inner
variances of a snippet (variances of 1s . . . 2s and 2s . . . 3s).

4.3.2 Classification Results

This third approach combines the gained knowledge of the first two approaches to intro-
duce better classification results in case of the binary classification task.

Models for with the three classifiers NB, KNN and SVMR are designed and the results are
described in the following paragraphs. Again all features are transformed to zero mean
and unit variance before fitting the classification algorithms and also results of a k-fold
cross validation are presented.

9. Note, that regardless of the ratings of the used feature selection algorithms at all times further attempts
were made by hand, because it was established, that the results could always be further improved. Hence,
the final feature selection always additionally depended on the achieved results (especially with regard to
the self-recorded validation set).
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Naive Bayes Classifier Results of the NB classifier are listed in Tables 33, 34 and
Fig. 4.39. This classifier predicts class M ≈ 2% better than in the first approach.

Data Accuracy
Test data from training set 0.987

Cross validation with training set 0.98± 0.03
Basic validation set 0.99

Self-recorded validation set 0.859

Table 33 – Accuracies for test data from the training set (30%), a k-fold cross validation
with k = 5 (mean value and twofold standard deviation), a basic validation set and the
self-recorded validation set in case of the classifier NB.

Class Precision Recall F1 score Quantity
U 0.983 0.993 0.988 8050
M 0.991 0.979 0.985 6704

(a) Test data from training set (30%)

Class Precision Recall F1 score Quantity
U 0.987 0.994 0.99 9126
M 0.994 0.987 0.99 9165

(b) Basic validation data

Class Precision Recall F1 score Quantity
U 0.88 0.823 0.85 13455
M 0.841 0.893 0.866 14157

(c) Self-recorded validation data

Table 34 – Precision, Recall and F1 score of the classifier NB for the different test sets
with respective amounts of feature vectors.
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Figure 4.38 – Confusion matrices of the different test data sets with the classifier NB.
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K-Nearest-Neighbor Results of the KNN classifier with k =
√
N = 185 are listed in

Tables 35, 36 and Fig. 4.39. In comparison to the first approach the results in case of the
self-recorded validation set are a bit better.

Data Accuracy
Test data from training set 0.982

Cross validation with training set 0.94± 0.02
Basic validation set 0.977

Self-recorded validation set 0.876

Table 35 – Accuracies for test data from the training set (30%), a k-fold cross validation
with k = 5 (mean value and twofold standard deviation), a basic validation set and the
self-recorded validation set in case of the classifier KNN.

Class Precision Recall F1 score Quantity
U 0.969 0.999 0.984 8050
M 0.998 0.962 0.98 6704

(a) Test data from training set (30%)

Class Precision Recall F1 score Quantity
U 0.957 1 0.978 9126
M 1 0.955 0.977 9165

(b) Basic validation data

Class Precision Recall F1 score Quantity
U 0.883 0.859 0.871 13455
M 0.87 0.892 0.881 14157

(c) Self-recorded validation data

Table 36 – Precision, Recall and F1 score of the classifier KNN for the different test sets
with respective amounts of feature vectors.
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(a) Test data from training set

U M
Predicted label

U

M

T
ru

e
 l
a
b
e
l

1.000 0.000

0.045 0.955

(b) Basic validation data

U M
Predicted label

U

M

T
ru

e
 l
a
b
e
l

0.859 0.141

0.108 0.892
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Figure 4.39 – Confusion matrices of the different test data sets with the classifier KNN.
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Support Vector Machine Results for the SVMR are listed in Tables 37, 38 and Fig.
4.40. Again, the parameterization of C and γ is based on a grid search, which is depicted
in Fig. 4.41. This classifier gives the best results, because in case of the self-recorded
validation set the Recall of both classes is greater than 91%.

Data Accuracy
Test data from training set 0.996

Cross validation with training set 0.98± 0.02
Basic validation set 0.994

Self-recorded validation set 0.919

Table 37 – Accuracies for test data from the training set (30%), a k-fold cross validation
with k = 5 (mean value and twofold standard deviation), a basic validation set and the
self-recorded validation set in case of the classifier NB.

Class Precision Recall F1 score Quantity
U 0.993 0.999 0.996 8050
M 0.999 0.991 0.995 6704

(a) Test data from training set (30%)

Class Precision Recall F1 score Quantity
U 0.988 1 0.994 9126
M 1 0.988 0.994 9165

(b) Basic validation data

Class Precision Recall F1 score Quantity
U 0.918 0.916 0.917 13455
M 0.92 0.923 0.922 14157

(c) Self-recorded validation data

Table 38 – Precision, Recall and F1 score of the classifier SVMR for the different test sets
with respective amounts of feature vectors.
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Figure 4.40 – Confusion matrices of the different test data sets with the classifier SVMR.
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(b) Grid search for best Recall (fine)

Figure 4.41 – Grid search for the best over the two classes averaged Recall with the
classifier SVMR. A rough analysis in the range γ = [0.001, 1000] and C = [0.001, 1000]
shows, that best parameters are located in the range γ = [0.001, 1] and C = [0.1, 1000]
(left). Right figure shows a finer grid with γ = [0.001, 1] and C = [0.1, 100]. However
with respect to the self-recorded validation set, the best parameters are chosen with γ =
0.1 and C = 0.3 (the parameter C is chosen a little lower, because this lead to better
results with the self-recorded validation set and on the other hand this choice prevents the
risk of overfitting.).

Summary The results on the test data from the training set and on the basic validation
set are again very good. The key results of the self-recorded validation data set are listed
in Table 39: The Accuracies of all classifiers are greater than 85%. Also the measures
Precision, Recall and F1 score of class M have scores greater than 84% in case of all
classifiers. The classifiers NB and KNN perform similar well, but the classifier SVMR
outperforms the other results, because the score of each performance measure is greater
than 91%. It can be expected, that this developed algorithm is able to provide good results
when it is integrated in a car.

But it is important to consider carefully where and how to place the microphones on or in
a car, because too much interfering noise in the input signal (e.g. ventilation of the car,
wind noise at high velocities, . . . ) makes a distinction more difficult or nearly impossible.
One could say, all developed algorithms are living on usable microphone recordings.

Model Accuracy Precision (M ) Recall (M ) F1 score (M )
NB 0.859 0.841 0.893 0.866

KNN 0.876 0.87 0.892 0.881
SVMR 0.919 0.92 0.923 0.922

Table 39 – Summary of specific performance measures of the self-recorded validation
data set for the applied models in the improved binary classification task with additional
features.
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4.3.3 Transition results with Support Vector Machine

The binary classification task with additional features and a support vector machine with
radial kernel function leads to the most promising results. However, it is interesting to
analyze classification results for the best developed classifier with different amounts of
class M or class U within an analysis window of 4s (note that for this additional analysis
for each snippet now all N = 40 feature vectors were transferred to the feature space;
see section 4.1.3 for more details). The described algorithms classify 4s-snippets of either
class M or class U. It does not deal with transitions between both classes (e.g. classifica-
tion of a 4s-snippet with 2s amount of class M and 2s amount of class U). This paragraph
describes an exemplary transition of two audio files from the validation data set, where
either a 4s-snippet of class U passes over to a 4s-snippet of class M or a 4s-snippet of
class M passes over to a 4s-snippet of class U (see Fig. 4.42).
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(a) Chromagram illustrating transitions from class U to class M
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(b) Chromagam illustrating transitions from class M to class U

Figure 4.42 – Chromagrams illustrating the first 12 types of transitions from class U to
class M (a) and from class M to class U (b). Two exemplary audio files are taken from
the validation data set with each having a length of 4s. Red vertical lines indicate each
analysis window with a hop size of 0.1s.

Classification results for the two types of transitions are illustrated in Fig. 4.43:
Fig. 4.43a shows the prediction of class M with a transition from class U to class M. Going
through each vertical block (columns), the amount of class M within a 4s-snippet increases
(per step 0.1s less data of class U and 0.1s more data of class M). After 1s, there are 3s
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of class U and 1s of class M within an analysis window. At this point, a moving average
filter over 1s indicates, that approximately 12% of the preceding predictions belong to
class M. When approximately 1.6s of the audio snippet involves parts of a Martinshorn,
50% of the predictions of the preceding second involve class M. In this exemplary case
an amount of 1.8s of class M is sufficient that only class M is predicted. With the same
amount of class U and class M approximately 80% of the moving averaged preceding
predictions indicate that a sirene is present.

Fig. 4.43b shows the prediction of class M with a transition from class M to class U. With
an amount of 4s . . . 2s of class M primary - with a few minor exceptions - a Martinshorn
is predicted. From then on class U is increasingly predicted.
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(a) Predicted class M when passing over from class U to class M
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(b) Predicted class M when passing over from class M to class U

Figure 4.43 – Real and averaged predicted class M for a transition from class U to class
M (a) and a transition from class M to class U (b). X-axis describes the amount of class
M or class U within an analysis window (grid columns). Predicted classes are averaged
with a moving average filter over Navg = 400 training samples (=̂1s).
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4.3.4 Computational Costs

In this section the calculation efforts of each used classifier of this approach are com-
pared. In this approach m = 18 features are taken into account. Before classification, the
same feature set needs to be calculated with new unseen data xnew. Assuming those new
features have been calculated, it is interesting to describe how many calculations in terms
of additions, subtractions, multiplications and divisions each classifier requires before a
classification result can be presented.

Memory requirements of each classifier and the amount of required instructions is de-
scribed in the next paragraphs. Within a 4s-snippet (40 · 18) = 720 feature values in
double-precision floating-point format need to be calculated. First of all, this leads to
a memory requirement of (40 · 18 · 8 · 1024−1) kB ≈ 5.63kB (when considering 64 Bit
double-precision floating-point format).

Naive Bayes Classifier The NB classifier calculates the means and variances of the
gaussian likelihood functions

p(xj|y) =
1√

2πσ2
y

· e
−

(xj−µy)
2

2σ2y (131)

for each feature of each class. After that, the MAP estimation

yMAP = arg max
y

p(y)
m∏
j=1

p(xj|y) (132)

gives the estimated label.

The final model from the scikit-learn toolkit provides the prior probabilities of the two
classes (model.class_prior_), the means for each feature of each class (model.theta_)
and the corresponding variances (model.sigma_).

In this developed final model, for one input vector xnew with m = 18 features the follow-
ing calculations need to be done Nclass = 2 (number of classes) times:

— 18 subtractions: x̂j = xj − µ
— 18 squares/multiplications and 17 additions: x̃ = x̂21 + x̂22 + · · ·+ x̂222
— 1 multiplication, 1 division and 1 function call: f(x̃) = e−

x̃
2σ2

— 3 multiplications, 1 square root and 1 division: 1√
2πσ2
· f(x̃)

— 18 multiplications: p(y)
∏m

j=1 p(xj|y)

After that, the MAP decision gives the predicted label. Consequently one prediction with
the developed NB classifier needs (2 · 18) = 36 subtractions, (2 · 17) = 34 additions,
[2 · (18 + 3 + 1)] = 44 multiplications and [2 · (1 + 1)] = 4 divisions.

If the exponential function is a 5th-order exponential series
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ex = 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5, (133)

this would imply further 5 additions, 10 multiplications (powers) and 4 multiplications
for each input sample xnew. This results in (2 · 5) = 10 additions and [2 · (10 + 4)] = 28
multiplications.

The 5th-order Taylor series of a square root is

√
x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 +

7

256
x5. (134)

Consequently further 3 additions, 2 subtractions, 10 multiplications (powers) and 5 multi-
plications are required. This results in another (2·3) = 6 additions, (2·2) = 4 subtractions
and [2 · (10 + 5)] = 30 multiplications.

This leads to (36 + 34 + 44 + 4 + 6 + 4 + 30) = 158 instructions. If e.g. every 0.1s

a new snippet with 40 frames (feature vectors) is read, this would result in (158·40)
0.1s

=
63200 instructions per second (IPS) or rather 0.0632 millions of instructions per second
(MIPS) 10.

If the stored values of the model have a double-precision floating-point format, the mem-
ory requirement for the 2 prior probabilities, the [Nclass×m] = [2× 18] mean values and
the [Nclass ×m] = [2× 18] variances is [(2 + 2 · 18 + 2 · 18) · 8 · 1024−1]kB ≈ 0.58kB.

K-Nearest-Neighbor Here, the KNN classifier calculates the Minkowski distances
with order p = 2. The distance between two vectors x and xnew can be formalized as:

D(xi, xnew,i) =

(
m∑
i=1

|xi − xnew,i|p
) 1

p

. (135)

For the prediction the k = 3 nearest neighbors of a new unseen feature vector xnew are
detected and a majority decision determines the classification.

For one unseen sample xnew with m feature values the following calculations need to be
done Ntrain = 34425 times:

— 18 subtractions: x̂i = xi − xnew,i
— 18 squares/multiplications and 17 additions: x̃ = x̂21 + x̂22 + · · ·+ x̂222
— 1 square root:

√
x̃

This leads to (34425 · 18) = 619650 subtractions, (34425 · 18) = 619650 multiplications
and (34425 · 17) = 585225 additions.

The square root expressed again as a 5th-order Taylor series needs further 3 additions, 2
subtractions, 10 multiplications (powers) and 5 multiplications (see above). Therefore,

10. Note, that after 0.1s only one new training sample could be added to the 39 preceding frames. Here,
this would result in 158

0.1s = 1580 instructions per second (the same applies to the other machine learning
algorithms).
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another (34425 · 3) = 103275 additions, (34425 · 2) = 68850 subtractions and [34425 ·
(10 + 5)] = 516375 multiplications need to be considered.

This leads to (619650 + 619650 + 585225 + 103275 + 68850 + 516375) = 2513025

instructions. With a hop of 0.1s and 40 frames per snippet this results in (2513025·40)
0.1s

=
100521000 IPS or rather 1005.21 MIPS.

A KNN classifier stores 70% of the training set (the other 30% are the test set), where the
training set involves 30% of the basic data set (see section 3). Here, this set has a size of
[Ntrain ×m] = [34425 × 18]. If each value is stored in a double-precision floating-point
format, the memory requirement is 34425 · 18 · 8 · 1024−1kB ≈ 4841kB.

Due to the high computational costs with the KNN classifier, which compares the entire
training set to a new unseen data vector another attempt with a slight deterioration of
the results (self-recorded validation recall U: 83.8%; self-recorded validation recall M:
80.9%) can be proposed: Per class each feature of the training set with Ntrain = 34425 is
median-filtered resulting in a modified training feature set with two class-related vectors
(Ntrain,new = 2). This would lead to 2513025 · 2

34425
· 40
0.1s

= 58400 IPS and a memory
requirement of 2 · 18 · 8 · 1024−1kB ≈ 0.281kB. However, this attempt was not further
investigated and solely provides another calculation method to save computational costs.

Support Vector Machine A radial kernel is used for the support vector machine (see
section 2). The result of each radial kernel function

K(xi,xnew) = e−γ·||xi−xnew||
2

, (136)

with i = 1, . . . , NSV and NSV as the amount of support vectors needs to be multiplied
and summed up to get the decision

g(xnew) = g

(
b+

NSV∑
i

αiyiK(xi,xnew)

)
. (137)

The amount of support vectors depends on the size of the training set and the parameteri-
zation of the SVM (penalty parameter C and kernel coefficient γ).

The final model from the scikit-learn toolkit provides the index of each support vector
(model.support_), the constant b in the decision function (model.intercept_)
and the combined coefficients a = αiyi (model.dual_coef_).

In this developed final mode, for one input sample xnew with m = 18 features the follow-
ing calculations need to be done NSV = 1213 times:

— 18 subtractions: x̂ = x− xnew
— 18 squares/multiplications and 17 additions: x̃ = x̂21 + x̂22 + · · ·+ x̂222
— 1 multiplication and 1 function call: f(x̃) = e−γ·x̃

— 1 multiplication: a · f(x̃)

After that, the results of those NSV = 1213 calculations need to be summed up and also
the constant b needs to be added. Hence, this leads to NSV = 1213 further Additions. In
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the end the decision rule gives the predicted label: g(z) = 1 for z ≥ 0 and g(z) = −1
otherwise. Consequently one prediction with the developed SVMR needs (1213 · 18) =
21834 subtractions, [1213 · (17+1)+1213] = 23047 additions and [1213 · (18+1+1)] =
24260 multiplications.

If the exponential function is a 5th-order exponential series

ex = 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5, (138)

this would imply further 5 additions, 10 multiplications (powers) and 4 multiplications
for each input sample xnew. Again, repeating those calculations NSV = 1213 times, this
results in further (1213·5) = 6065 additions and [1213·(10+4)] = 16982 multiplications.

Hence, this leads to (21834 + 23047 + 24260 + 6065 + 16982) = 92188 instructions.
If every 0.1s a new snippet with 40 frames (feature vectors) is read, this would result in
(92188·40)

0.1s
= 36875200 IPS or rather 36.8752 MIPS.

On the other hand the developed SVMR model stores a matrix with [NSV × m] =
[1213 × 18] values in double-precision floating-point format. Therefore, the memory re-
quirement for the support vectors of the model is (1213 · 18 · 8 · 1024−1) kB ≈ 170.58kB.
Additionally the constant b and the parameter γ are stored in the model.

Summary In Table 40 the memory requirement and the MIPS of each of the three
classifiers are summarized. A calculation with the NB classifier needs the least amount of
memory and also very few MIPS. The KNN classifier needs the most memory and also
has the most MIPS, because an unseen feature vector is compared with each vector of the
training set.

Classifier Memory Requirement [kB] MIPS
NB 0.58 0.0632

KNN 4841 1005.21
SVMR 170.58 36.8752

Table 40 – Memory requirement and MIPS of each classifier

In any case also the calculation and the memory requirement of the feature space (≈
5.63kB) of each snippet has to be respected.
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5 Deep Learning Approach

The best results of the binary classification task (see section 4.3) show, that suitable solu-
tions are achievable with machine learning classifiers. However, it is interesting to search
for a comparable solution when considering the idea of deep learning. Hence, this section
introduces a neural net model, which keeps up with the best binary classification results.

5.1 Binary Classification with a Neural Net

The binary classification task with additional features provided the best classification re-
sults for classes U and M with the classifier SVMR (see section 4.3). Hence, the same
features (see section 4.3.1) are used to compare those results with the classification results
of a neural net (classification with a Multi-Layer Perceptron). It can be shown, that the
found results are comparable to this best machine learning approach.

The following paragraph describes a grid search to find a suitable model with a reasonable
network structure. By default, in case of binary classification the scikit-learn toolkit uses
a logistic sigmoid function (see Eq. 15) at the output layer.

5.1.1 Multi-Layer Perceptron Grid Search

There are many different neural network structures with e.g. different hidden layer sizes,
activation functions, penalty values for the regularization term, learning rates or opti-
mization functions. Instead of testing one specific topology of a neural net given in the
literature, a grid search with different combinations of the indicated terms was performed.

One found rule of thumb recommends the amount of neurons in the hidden layers to be
between the input layer size (amount of input features) and the output layer size (one
neuron in case of a binary classification task) [55]. This idea was considered in this
deep learning approach. The amount of hidden layers depends on the complexity of the
classification task. For reproducibility, the following descriptions of the parameters are
related to the nomenclature of the scikit-learn toolkit.

To find a suitable model a grid search with the following parameter space was made 11:

— one hidden layer with size: (i) ∀i ∈ 2 . . . 21
— two hidden layers with sizes: (i, j) ∀i, j ∈ 2 . . . 21
— three hidden layers with sizes: (i, j, k) ∀i, j, k ∈ 2 . . . 21
— three activation functions: tanh, logistic and relu
— 4 penalty values α for the regularization term: [0.0001, 0.001, 0.1, 1, 10]

11. Note, that this grid search was based on a slightly different feature selection with 22 input fea-
tures. The 4 additional features were: |Cov(s1, s2)| (COV_12), |Cov(s2, s4)| (COV_24), |Cov(s1, s3)|
(COV_13) and |Cov(s3, s4)| (COV_34). But due to the results of the feature selection (see table 32) it is
not absolutely necessary to keep those features in the selection. However, the developed models can be
used as an indication for suitable neural net models, because the remaining 18 features were also part of the
initial feature set.
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— two learning rates: constant and adaptive
— two solver (optimization functions): sgd and adam

The parameters were updated with mini-batch training (Nmb = 200) and by default the
number of epochs was 200. If the loss function converges earlier the learning process
stops automatically. A ranking of the models is provided with the best over the two
classes averaged Recall as a performance measure. Each model was evaluated with a k-
fold cross validation with k = 3. Here, 3 randomized folds involving 30% of the training
data as test data are used. This results in [20+(20 ·20)+(20 ·20 ·20)] ·3 ·5 ·2 ·2 = 505200
tested model designs. It turned out, that the Recalls of 147 models with one hidden layer,
5549 models with two hidden layers and 110529 with three hidden layers are greater or
equal than 95%. Hence, a suitable solution can also be found with only one hidden layer.

Therefore, the 50 best models with one hidden layer were tested with the self-recorded
validation set resulting in a chosen suitable model with the following parameters:

— hidden layer with size: (17)
— activation function: logistic
— penalty value α for the regularization term: [0.0001]
— learning rate: constant
— solver (optimization function): adam

In the scikit-learn toolkit the constant learning rate has the value η = 0.001 by default.
In case of an adaptive learning rate this value would be kept constant as long as the loss
decreases or it would be divided by 5, if it is not at least decreased by a tolerance value of
0.0001 [56].

The results in Section 5.1.2 show, that all performance measures of the MLP classifier
score as well as the performance measures of the SVMR (see section 4.3). Hence, also
a suitable solution of the classification task with a neural net can be proposed. For the
prediction of one new input sample xnew the following calculations (forward propagation)
need to be done (see section 2.2.1):

a(h)

1×17
= Φ

(
xnew
1×18

·W (h)

18×17
+ b(h)

1×17

)
,

a(out)

1×1
= Φ

(
a(h)

1×17
·w(out)

17×1
+ b(out)

1×1

)
,

where Φ(z) is the logistic sigmoid function, which at the output estimates the probability
a(out) for the feature vector xnew belonging to class y = +1 (M).

5.1.2 Classification Results

Again all features were transformed to zero mean and unit variance before fitting the
classification algorithms and also results of a k-fold cross validation are presented.
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Multi-Layer Perceptron Classification results with a Multi-Layer Perceptron (MLP)
are listed in tables 41, 42 and Fig. 5.1. In case of the self-recorded validation set the
measures Precision, Recall and F1 score are all greater than 90% for both classes.

Data Accuracy
Test data from training set 0.997

Cross-Validation with training set 0.98± 0.04
Basic validation set 0.995

Self-recorded validation set 0.913

Table 41 – Accuracies for test data from the training set (30%), a k-fold cross validation
with k = 5 (mean value and twofold standard deviation), a basic validation set and the
self-recorded validation set in case of the classifier MLP.

Class Precision Recall F1 score Quantity
U 0.996 0.999 0.997 8050
M 0.999 0.995 0.997 6704

(a) Test data from training set (30%)

Class Precision Recall F1 score Quantity
U 0.99 1 0.995 9126
M 1 0.99 0.995 9165

(b) Basic validation data

Class Precision Recall F1 score Quantity
U 0.915 0.906 0.911 13455
M 0.912 0.92 0.916 14157

(c) Self-recorded validation data

Table 42 – Precision, Recall and F1 score of the classifier MLP for the different test sets
with respective amounts of feature vectors.
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(a) Test data from training set
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Figure 5.1 – Confusion matrices of the different test data sets with the classifier MLP.
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6 Summary

Within the scope of this thesis several classification algorithms to distinguish between
sirene sounds and urban sounds were developed. Three approaches provide a solution
for a binary classification task to predict a Martinshorn correctly and one approach gives
a solution for a classification task with three classes to predict a Martinshorn and En-
vironmental Sirenes. The approaches involve different state-of-the-art machine learning
algorithms: Perceptron, Logistic Regression, Naive Bayes Classifier, K-Nearest-Neigbor
classifier, Support Vector Machine and Multi-Layer-Perceptron.

It turned out, that with the provision of a sufficient feature space good results can be
achieved. Especially features, which are strongly related to the specific signal character-
istics of sirenes (e.g. the ratio of the fundamental frequencies, the energy distributions in
the spectrum or the chromagram) play an important role for the classification task.

The classification task with three classes showed, that it is also possible to distinguish
between the two different sirene sounds, but a few confusions must be accepted. This is
due to the fact, that there are similarities in the signal characteristics of sirene sounds.

A classification with a Support Vector Machine with a radial kernel lead to the best binary
classification result and provides very good performance measures. On the other hand
it appeared, that also the classification with the same feature set with a Multi-Layer-
Perceptron gives comparable results. This is surely due to the reason, that there are many
different possibilities to configure the structure and the parameters of a neural net.

In the end transition results with the best binary classification task are presented. It was
shown, that an analysis window of approximately 2s is also enough to predict a Martin-
shorn correctly.
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