
Computer-assisted manual segmentation of music recordings

An on-the-fly approach to ’sample’-selection for music production

Toningenieur-Projekt

Felix Rothmund

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn Alois Sontacchi

Graz, January 9, 2018

institut für elektronische musik und akustik

Abstract

The goal of this project was to develop a tool that allows musicians to easily
select interesting parts of a music recording during playback in order to re-arrange
them for new compositions.
The manual selection and cropping of so called samples can be a tedious and often
uninspiring task. This project aims to develop a way to select interesting parts in
a recording more efficiently and intuitively:
While the user listens to a music recording, he or she marks interesting parts by
pressing a key or switch. The computer then corrects the timing to select the
parts that the user intended to select and that make sense musically.
The underlying algorithm considers the rhythmic structure of the musical piece,
as well as the user’s timing.

Zusammenfassung

Ziel dieser Arbeit war die Entwicklung eines Algorithmus, dass es MusikerInnen
erlaubt, interessante Stellen einer Musik-Aufnahme zu markieren, um diese dann
in neuen Kompositionen neu arrangieren zu können.
Das manuelle Auswählen und Schneiden von so genannten Samples kann langwie-
rig und ermüdend sein. Das entwickelte Tool soll es ermöglichen, die Auswahl der
Samples intuitiver und effizienter zu gestalten:
Während der Wiedergabe eines Musikstückes markiert der/die MusikerIn inter-
essante Stellen durch das Drücken einer Taste. Der Computer korrigiert dann das
Timing, um jene Teile auszuwählen, die der/die MusikerIn tatsächlich auswählen
wollte und die musikalisch sinnvolle Einheiten ergeben.
Der verwendete Algorithmus berücksichtigt dabei sowohl die rhythmische Struktur
des Musikstückes, als auch die Reaktionszeit der Nutzerin oder des Nutzers.

Rothmund: Computer-assisted manual segmentation of music 3

Contents

1 Introduction 4

1.1 Problem Description . 4

1.2 Related Work . 4

1.3 Proposed Algorithm . 5

2 Implementation 7

2.1 User Input . 7

2.1.1 Hardware - Akai MPD 32 . 7

2.1.2 Puredata patch . 8

2.1.3 Latency Compensation . 9

2.1.4 Audio and MIDI input data . 11

2.2 Analysis . 12

2.2.1 Onset Detection . 12

2.2.2 Tempo and tatum estimation 14

2.3 Segmentation . 16

2.3.1 Auditory-motor interaction . 16

2.3.2 Timing Correction . 18

2.4 Pitch Shift and Tempo Normalization 21

3 Evaluation 22

A Code Handbook / Tutorial 26

Rothmund: Computer-assisted manual segmentation of music 4

1 Introduction

1.1 Problem Description

In today’s computer-based music production environments, the process of recording
audio material into a Digital Audio Workstation (DAW) and selecting sound segments
in order to re-arrange them later, can be tedious and uninspiring, as it usually involves
a lot of mouse clicking.
The goal of this project is to develop an assistive tool that makes manual segmentation
of music into so called ’samples’ intuitive and efficient.

Sampling:
In music production, the term ’sampling’ describes the act of re-using pre-recorded
audio in a new context. So called ’samples’ can be of varying length. For example,
short samples can be used to achieve realistic virtual instruments, whereas longer song
segments are often used as loops.
In certain genres of music, such as Hip-Hop or House, it is common practice to use sound
segments found on records as a foundation for new songs. The most used samples in
those genres come from recordings of Soul, Funk and Jazz music of the late 60s and
70s.
However, the techniques of sampling are not limited to pre-recorded music but can be
applied to any source of audio [2].

General Idea:
The basic idea was to approach sample selection in a manner similar to looping using
so-called loop pedals for electric guitars:
When playing the guitar with a loop pedal, the user hits the pedal at the start of a
pattern or riff and hits it again, when the pattern ends.
When using the proposed algorithm, the user segments so-called ’samples’ in a similar
fashion. Audio clips are selected by pressing and releasing a pad on a hardware controller
whenever an interesting audio segment starts and ends respectively.
’Sample’ start and end points are then aligned with the desired positions, based on the
rhythmic structure of the audio segment.

1.2 Related Work

In previous work at the Institute of Electronic Music (IEM), Daniel Rudrich proposed an
algorithm [5] that optimizes loop start and end times for guitar loop pedals based on
beat estimation. This work is in great parts based on his master thesis [13].

Rothmund: Computer-assisted manual segmentation of music 5

1.3 Proposed Algorithm

The proposed prototype consists of five stages that can be seen in figure 1.

I. RECORDINGMIDI In Audio In

II. ANALYSIS
Onset detection and
tatum estimation

III. SEGMEN-
TATION

timing correction

IV. TEMPO
EQUALISATION
/ PITCH SHIFT
resampling and time
scale modification

desired tempo
and pitch

V. PLAYBACKMIDI In Audio Out

Figure 1 – Block diagram showing the five stages of the proposed prototype system and the basic signal
flow. Dashed lines represent user input.

I. RECORDING During the first stage, audio and midi data is recorded. The user
selects audio segments by tapping along with the music being recorded. Pressing a pad
signifies the start of a desired audio segment, releasing it marks the end of the segment
respectively.

II. ANALYSIS In this stage, an onset detection function is calculated for the recorded
audio material. Based on the detected onsets, a tempo and tatum estimation is carried
out, where ’tatum’ describes the lowest metrical level in a musical piece [3].

Rothmund: Computer-assisted manual segmentation of music 6

III. SEGMENTATION In the third stage, the user’s timing is corrected by taking the
estimated tempo and tatum grid into account. The audio material is then segmented
into audio slices, one for each recorded midi note event.

IV. TEMPO EQUALISATION / PITCH SHIFT In the fourth stage, tempo and
pitch of the audio slices are manipulated based on desired tempo and pitch values pro-
vided by the user.

V. PLAYBACK In this last stage, the user triggers playback of the individual slices
by pressing the respective pad on the midi device.

Rothmund: Computer-assisted manual segmentation of music 7

2 Implementation

The prototyping environment, as shown in figure 2, consists of the user input device
(MIDI device) and a PC running a Puredata (PD) patch for recording and playback, as
well as an analysis script in MATLAB. The audio interface (RME HDSP 9632) runs at
24bit and a sample rate of 44.1kHz, using a buffer size of 64 samples. PD runs on the
standard MMIO windows drivers with a block size of 64 samples and a delay of 32ms.
An analogue mixer is used to route audio to the near-field monitor speakers and the
audio interface’s inputs.

PC

RME HDSP 9632:
24bit@44.1kHz,
64 samples

pd-patch

MATLAB

Analog
Mixer

Audio Input

MIDI
device

User

MIDI via USB

Figure 2 – prototyping environment consisting of a PC running PD and MATLAB, an analog mixer,
near-field monitoring speakers and a MIDI Input device.

2.1 User Input

2.1.1 Hardware - Akai MPD 32

One of the most iconic series of hardware samplers is the Akai MIDI Production Center
(MPC) series. The MPC has been around for decades and is still relevant today. Its
pads are regarded as very ergonomic and highly expressive [10], which is why a similar
pad-based controller Akai MPD 32 (see figure 3) was chosen as an input device.

A custom settings preset was created for the device, so that it sends MIDI note values
from 60 (C4) to 75 (E5). During recording, pressing and releasing pads marks start
and end times of individual audio slices. When in playback mode, pressing pads triggers
playback of the respective slices.
Besides its 16 pads, the device’s transport buttons are used to start and stop recording,
and trigger loading the sliced audio material for playback.

Rothmund: Computer-assisted manual segmentation of music 8

Figure 3 – Akai MPD 32 MIDI Controller

As the device uses standard midi protocol, the software should work with any other midi
controller sending the respective values.

2.1.2 Puredata patch

While the use of PD has certain drawbacks, such as the added delay (see section 2.1.3),
it can be a very flexible prototyping tool.

Figure 4 – GUI of the pd-Extended patch

The PD patch (shown in figure 4) records audio and midi data, and is also used for
audio playback. Recording is triggered by pressing the red ’REC’ button on the midi
device (see figure 3) or within the PD patch. This will start the recording of audio and

Rothmund: Computer-assisted manual segmentation of music 9

midi events inside the sub-patches [pd record_audio] and [pd record_midi]. For
now, the prototype allows 16 discrete midi notes as input, which correspond to 16 audio
slices in the end.
The end of the recording is triggered by pressing the ’STOP’ button on the device or
inside the pd-patch. A short delay is added to ensure that all desired audio material is
recorded.
The audio data is stored in .wav-files for analysis in MATLAB. Recorded midi events are
stored in a text file.
After successful analysis in Matlab, the playback mode is triggered by pressing ’PLAY’
on either the device or inside the pd-patch. [pd load_slices] will then load the
audio slices stored in separate .wav-files. Playback is then triggered when hitting the
respective pad. For now, playback is monophonic, meaning that triggering a slice mutes
all previously playing slices ([pd play]).
The puredata patch also allows to play audio files ([pd soundfile_player]) and
provides visual feedback for midi input, an audio monitor, as well as controls for input
and output gain respectively.

2.1.3 Latency Compensation

The total amount of delay introduced by PD (and other parts of the prototyping en-
vironment) is not relevant during recording. What is of interest though, is the relative
offset between a recorded midi event and the corresponding audio signal.
To measure the relative delay, the pads where tapped while recording midi events and
impact sounds simultaneously using a microphone very close (d < 5cm) to the input
device (see figure 5). Higher precision could have been achieved using an accelerometer,
but was not considered necessary here.

PC

RME HDSP 9632:
24bit@44.1kHz,
64 samples

pd-patch

Analog
Mixer

MIDI device
MIDI via USB

Figure 5 – measuring time offset between finger tap and registered MIDI note onset.

Rothmund: Computer-assisted manual segmentation of music 10

As shown in figures 6 (a) - (c), detected offsets range from around 3 ms to 10 ms with
a median of around 7 ms and a variance of around 3 ms. All data for 56 recorded midi
events is summarized in a histogram (figure 7). A respective delay compensation of 7
ms was added in the analysis stage.
The data shows that the current setup with PD is not ideal for time critical tasks. The
offset may be due to the way the operating system (Windows 10 Pro) buffers MIDI
events or the experimental implementation of MIDI handling for Windows in PD.
However, when putting the variance of 3 ms into perspective, it becomes negligible:
3 ms equal 0.6 percent of one beat interval at 120 bpm or 2 percent of one semi-quaver
note.

-2 0 2 4 6 8 10

offset in ms

-1

0

1

(b) A 6.83 ms !

-2 0 2 4 6 8 10

offset in ms

-1

0

1

(c) A 10.00 ms !

-2 0 2 4 6 8 10

offset in ms

-1

0

1

(a) A 3.38 ms !

Figure 6 – smallest (a) to largest (c) latency offset - the vertical line at 0ms marks the registered MIDI
note event, the dashed vertical line the corresponding audio onset (tapping noise).

Rothmund: Computer-assisted manual segmentation of music 11

3 4 5 6 7 8 9 10

offset in ms

0

2

4

6

8

10

12

of

 o
cc

ur
re

nc
es

Median: 6.80 ms !

Figure 7 – histogram showing distribution of recorded latency offsets between MIDI note events and
corresponding audio. The overall latency offset is around 7ms with a jitter of around 3ms.

2.1.4 Audio and MIDI input data

In figure 8 recorded audio and MIDI input data are shown. The dashed lines represent
recorded slice start positions, the dotted lines recorded slice end positions. As can be
seen, recorded MIDI note events are slightly off the desired onsets. Especially the first
slice end position and the second slice start position are noticeably too early.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time in s

-1

-0.5

0

0.5

1

am
pl

itu
de

 1 2

Figure 8 – recorded audio and midi data - dashed vertical lines mark detected MIDI note on events
signalling slice start positions, dotted vertical lines mark MIDI note off events signalling slice end
positions.

In order to better align the MIDI note events with their corresponding audio events, the
MIDI and audio signals are analysed as follows (section 2.2). Timing offsets are then
compensated based on prior experiments (see section 2.3.1).

Rothmund: Computer-assisted manual segmentation of music 12

2.2 Analysis

In order to align the recorded MIDI events with their corresponding audio events, an
onset detection is carried out (section 2.2.1). Then, a tempo and tatum estimation
based on [5] is calculated from the estimated onset detection function (section 2.2.2).

All analysis is done in Matlab. A more detailed explanation and a short tutorial are
provided in the appendix A on page 26.

2.2.1 Onset Detection

A good onset detection is crucial for various tasks in music information retrieval (MIR),
especially for segmentation tasks.
For this project, the onset detection method ’Spectral flux log filtered’ (SFLF) proposed
by Böck et al. [14] was used with adaptive whitening as proposed by Stowell and Plumbley
[4] and implemented by Daniel Rudrich [13].

Spectrogram with Adaptive Whitening
First, the music signal is segmented into N overlapping frames, with K = 1024

xn(t) = x(t+ nh) · w(t), n ∈ [0, N − 1], t ∈ [0, K − 1] (1)

and transformed using the Short-Term Fourier Transform (STFT) 1

X(n, k) =
K−1∑
t=0

xn(t) · e
−2πjkt
K , (2)

yielding the so-called spectrogram X(n, k) with time instances n = 0, 1, 2, ... and fre-
quency bins k = 0, 1, 2, ..., K − 1.

The resulting magnitude spectrum |X(n, k)| is then whitened as follows:

P (n, k) =

{
max (|X(n, k)|, r) for n = 0

max (|X(n, k)|, r, µP (n− 1, k)) otherwise

X̂(n, k) =
X(n, k)

P (n, k)
,

(3)

with µ = 0.997 being the forgetting factor and r = 0.6 being the floor parameter.

1. In practice the so-called Fast Fourier Transform (FFT) is used, which is the most efficient imple-
mentation of the STFT for power-of-2 analysis window sizes.

Rothmund: Computer-assisted manual segmentation of music 13

Mel-scaling the Spectrogram:
Contrary to the human auditory system, the Fourier Transform’s frequency resolution
is linear across the frequency range. To match the human auditory system’s non-linear
frequency resolution (The noticable difference in pitch is smaller, i.e. more precise, in
the lower frequency range and increases with rising frequeny.), the magnitude spectrum
is combined to B = 50 overlapping sub-bands using a triangular filter matrix M(k, b)
which corresponds to the Mel-scale 2 with center frequencies between 94 and 15375 Hz.
The triangular filters get wider with higher frequencies. No magnitude normalization is
applied, so that higher frequencies are emphasized even more.

Xmel(n, b) = log(λ · |X̂(n, k)| ·M(k, b) + 1) (4)

Finally, the spectral difference, or better known as Spectral Flux (SF) is computed:

SFLF (n) =
B∑
b=1

H (Xmel(n, b)−Xmel(n− 1, b)) (5)

A moving median threshold was used to find onset times, as can be seen in figure 9.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time in seconds

0

0.5

1

on
se

t s
co

re

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

time in seconds

0

0.5

1

on
se

t s
co

re

Figure 9 – onset detection and thresholding - (top) ’spectral flux log filtered’ (SFLF) onset detection
function (ODF) (straight line) and moving median threshold (dotted line).
(bottom) deducted threshold from ODF and applied temporal thresholding. dashed vertical lines mark
detected onset locations.

2. The Mel-scale is a psychoacoustic scale, modelling the non-linear frequency resolution of the
human auditory system and was first introduced by Steven et al. in 1937 [15].

Rothmund: Computer-assisted manual segmentation of music 14

2.2.2 Tempo and tatum estimation

In order to find possible ’sample’ start and end points, a so-called tatum grid is esti-
mated, where tatum describes the lowest metrical unit in a musical piece [3]. The tatum
estimation is mostly taken from Daniel Rudrich’s master thesis [13].

The basic idea is to place different tatum grids over an onset detection function and see
which grid fits best (see figure 10).

Figure 10 – Basic approach: Find tatum grid that best matches the onset detection function. Source:
Daniel Rudrich [5, p.452]

First however, a quick tempo estimation is done based on the general state of the beat
estimation proposed by Davies et al. [11]. Basically, the algorithm works by aligning the
unbiased auto-correlation function of the onset detection function with comb templates
for different tempi. Assuming that most music will be at tempi close to 120bpm, the
different templates are weighted with a skewed distribution function, representing the
estimated a-priori distribution of tempi. After estimating the beat-period or tempo, the
beat locations are estimated by aligning the onset detection function with different beat
alignment templates. Instead of the Complex Spectral Difference, the above-described
SFLF onset detection function was used.
In essence, the tempo and beat estimation yields a musical piece’s estimated tempo
and on-beat locations. For a more detailed description please refer to the corresponding
paper and comments in the Matlab code.

The estimated tempo T̂ is expected to be within 50 to 150 beats per minute and used
to define fine tempo tatum grids, as well as on-beat locations.

Tatum grids are defined for tempi 10 bpm slower than the estimated tempo and four times
the estimated tempo plus 10 bpm. Tatum grid templates are spaced logarithmically. For
example if the estimated tempo is 80 bpm, tatum grids will be defined to tempi ranging
from 80 bpm - 10 bpm = 70 bpm to (80 + 10) · 4 = 360 bpm.

A tempogram is then computed, describing the tatum presence, i.e. the degree of match-
ing between the onset detection function and the defined tatum grids. The tempogram
visualizes the temporal structure of a musical piece as shown in figure 11. To find the
lowest underlying metrical level of a musical recording, the optimum tatum path is esti-
mated by minimizing a utility function, which punishes jumps along the path and rewards
high tatum presence. For a detailed description of the algorithm, please refer to [13].

Rothmund: Computer-assisted manual segmentation of music 15

Figure 11 – tempogram and optimum tatum path

The on-beat locations estimated using the general state of the beat estimation by Davies
et al. [11] (see above), are moved to the closest estimated tatum, as they are expected
to be more precise.

From the tempo and tatum estimation, we now have the audio signal along with esti-
mated onset locations, tatum locations and on-beat locations (as seen in the lower plot
of figure 14). These are the candidates, where ’samples’ can start or end.

Rothmund: Computer-assisted manual segmentation of music 16

2.3 Segmentation

Audio clips are segmented, considering both the rhythmic structure and the user’s timing.

2.3.1 Auditory-motor interaction

According to Zatorre et al. [12], auditory-motor interactions during musical performances
can be characterized as feed-forward and feedback interactions. In feed-forward inter-
actions such as tapping along a rhythm, where there is no auditive feedback, timing is
predominantly influenced by the auditory system in a predictive manner. As music is
generally temporally organized, it allows the listener to make predictions about future
events [9].

To understand the anticipative behaviour in auditory-motor interactions, a small informal
empirical study was carried out. Two test subjects, both in their mid-twenties and with
some musical background, where asked to tap along a metronome for four bars of a 4/4-
measure at different tempi. In figure 12 the results of the measurement at 125bpm are
shown. In the upper plot, the audio signal (metronome) and the corresponding recorded
midi note events are shown (dashed lines). The lower plot shows the distribution of
temporal offsets between midi note events and audio cues in milliseconds.

-100 -50 0 50 100

Offset in ms

0

2

4

6

N
um

be
r

of
 o

cc
ur

en
ce

s

0 1 2 3 4 5 6 7 8

Time in Seconds

-1

-0.5

0

0.5

1

A
m

pl
itu

de

Figure 12 – (top) metronome input signal and detected taps, (bottom) histogram showing detected
taps following a metronome at 125 beats per minute.

Rothmund: Computer-assisted manual segmentation of music 17

The results for all measurements are listed in table 1.

Tempo (bpm) 60 70 80 90 100 105 110 115 120 125 130 140
TISI (ms) 1000 857 750 667 600 571 545 522 500 480 462 429
Median (ms) -24 -7 -41 -8 -1 -44 -7 -8 -21 -11 -12 -11
Median (%) -2.4 -0.8 -5.5 -1.2 -0.1 -7.7 -1.3 -1.5 -4.2 -2.3 -2.6 -2.6

Table 1 – tempi and results for the tapping experiment

In figure 13 the combined distribution in percent of one inter-stimulus onset interval
(ISI) is shown for all measurements from 60bpm to 140bpm. As one can clearly see,
the test subjects tend to hit the pads early. This corresponds to the findings of Mates
et al. [8], who have observed that in tapping experiments, the response onsets precedes
the onsets of the stimuli by some tens of milliseconds.

The median relative offset of 3% of one beat interval is to be considered when selecting
the timing for ’sample’ start and end points.

-15 -10 -5 0 5

relative offset in percent

0

5

10

15

20

25

30

of

 o
cc

ur
en

ce
s

Median: -3 !

Figure 13 – Histogram showing relative offset times in percent of one beat interval/ISI

Rothmund: Computer-assisted manual segmentation of music 18

2.3.2 Timing Correction

Detected onsets, as shown in figure 9 on page 13, are possible slice start and end
positions. In the segmentation step, recorded slice start and end positions are moved to
the best possible candidate onset.

To do so, a candidate score is defined, resembling the values of the thresholded ODF
at onset times. On-beat onset scores are emphasized by multiplying with scaling factor
2 and clipped to limit 1. An onset is considered on-beat, when it is within the range
of one 32th note of the estimated beat location (assuming a 4/4- measure). Figure 14
shows the enhanced ODF and respective onset score at onset times.

0 0.5 1 1.5 2 2.5 3

time in seconds

0

0.5

1

O
D

F
 /

 o
n

s
e

t
s
c
o

re

0 0.5 1 1.5 2 2.5 3

time in seconds

0

0.5

1

a
m

p
lit

u
d

e

Figure 14 – (top) thresholded onset detection function (gray line) and onset scores at detected onsets
(marked with x), (bottom) estimated tatum grid (dashed lines) and on-beat locations (bold lines)

To take the predictive nature in feed-forward auditory-motor interactions into account
(see section 2.3.1) an asymmetrical analysis window and a right-skewed distribution
function was used, in order to weight the candidate score to find the most likely onset
that the user anticipated to select within an analysis frame.

Rothmund: Computer-assisted manual segmentation of music 19

Several distribution functions were evaluated. The best results were achieved using a
beta distribution with α = 2 and β = 4 or a Rayleigh distribution with σ = 0.15. The
beta distribution is defined as

f(x, α, β) =
1

B(α, β)
· xα−1 · (1− x)β−1, (6)

with B(α, β) being the beta function, which normalizes the total integral to 1.
The Rayleigh distribution is given as

f(x, σ) =
x

σ2
e−

x2

2σ2 , x ≥ 0. (7)

Both distribution functions are shown in figure 15 with different values for α, β and σ:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

1

2

3

y

, = 2, - = 3
, = 2, - = 4
, = 2, - = 5
, = 2, - = 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

2

4

6

y

< = 0.15
< = 0.20
< = 0.25
< = 0.30

Figure 15 – right-skewed distribution functions - (top) Beta distribution f(α, β, x),
(bottom) Rayleigh distribution f(σ, x)

An analysis frame length of one beat interval (a quarter note assuming a 4/4-measure)
was chosen. A weighted analysis frame is placed around each recorded midi event, so
that the distribution function reaches its maximum 3% of one beat interval after the
recorded MIDI event.

The candidate within the frame that has the highest weighted onset/candidate score is
then taken as the new slice start or end position.

In figure 16, an onset analysis frame is shown. The midi note event is shown as a thick
vertical line. The weighted onset candidate with the highest score is chosen as the new
slice start position (dotted line). This applies to both ’sample’ start and end points. As

Rothmund: Computer-assisted manual segmentation of music 20

intended, the onset shortly after the registered MIDI event is considered the most likely
candidate.

5.8 5.9 6 6.1 6.2 6.3 6.4

time in seconds

0

0.5

1

w
e

ig
h

te
d

 o
n

s
e

t
s
c
o

re

 0.45

 ← Rayleigh Distribution σ = 0.2

5.8 5.9 6 6.1 6.2 6.3 6.4

time in seconds

-1

-0.5

0

0.5

1

a
u

d
io

Figure 16 – timing correction - (top) recorded MIDI note event (thick vertical line) and onset candidates
(marked as x) after applying weighting with Rayleigh distribution. (bottom) audio signal (gray) with
original timing (thick line) and corrected timing (dotted line)

If no onset candidates can be found within an analysis window, the closest tatum will
be chosen.

To reduce cracking noise at sample start positions, the exact position is moved to the
next zero-crossing.

Rothmund: Computer-assisted manual segmentation of music 21

2.4 Pitch Shift and Tempo Normalization

In order to use the audio segments in a loop-based music production environment, tempo
normalization is applied to compensate variances in tempo in the original recording. This
not only allows the tempo-synchronous playback of ’samples’ and tempo changes to any
desired tempo but also allows the change of pitch. This is done by resampling the audio
prior to time-stretching.

All time-scale modification was done using the Time-Scale Modification (TSM) toolbox
for Matlab, developed by J. Drieger and M. Müller at Audio Labs Erlangen [6]. The
TSM toolbox implements several time-stretching algorithms, which can be selected in
the main analysis Matlab script (see also appendix A). Figure 17 shows the original and
modified signal are shown for one audio segment.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

time in seconds

-1

-0.5

0

0.5

1

am
pl

itu
de

TSM of slice 2 (HPSS)

original
tsm signal

Figure 17 – time-scale modification of an audio segment using the TSM toolbox [7].

TSM was added, to provide a proof-of-concept demonstration of the segmentation al-
gorithm. The quality of the different TSM methods was not evaluated. Different algo-
rithms work better for different kinds of audio signals. For a detailed description and
advantages/disadvantages for each algorithm, please refer to [7].

Rothmund: Computer-assisted manual segmentation of music 22

3 Evaluation

As the audio material is subject to the user’s musical taste, it is difficult to find an objec-
tive measure of how well the algorithm works. The evaluation is thus rather subjective.

Another problem is that it is highly dependant on how well the user knows the musical
pieces. If a user listens to a song for the first time, there is no chance of him or her
being able to hit the pads on time. On the other hand, if the user knows the songs well,
even short sounds like isolated drums can be easily sliced using the prototype system.

There is a also a strong learning effect. The authorgot more and more confident when
slicing ’samples’ on the fly, after playing with the prototype for while.

To evaluate the prototype environment samples from 13 songs were recorded with a
total of 191 recorded slices (see table 2). All songs are among the most sampled songs
according to whosampled.com [1] and well-known to the author. Most selected samples
started and ended at on-beat locations (no syncopation). All are either 4/4- or 6/8-
measure. Most feature drums, which leads to a strong onset detection.

Artist Title # of slices correct
Bobb Byrd Hot Pants 8 8
Bob James Nautilus 16 15
Bob James Take Me to the Mardi Grass 13 13
Commodores Assembly Line 11 11
Curtis Mayfield Move On Up 16 8
Dexter Wansel Theme For the Planets 16 16
Isaac Hayes Ike’s Rap II 16 16
James Brown Funky President 16 16
James Brown The Playback 16 15
Kool & the Gang Summer Madness 15 15
Lyn Collins You can’t love me if You Don’t Respect Me 16 16
Marvin Gaye Got to Give it Up 16 16
Parliament Mothership 16 16
Total 191 181

Table 2 – evaluation set

181 slices or around 95% were segmented correctly. A ’sample’ was considered correct
when both start and end time of the slice were as intended by the author, when listening
to them. Of the 10 slices that were sliced incorrectly, 6 started at the right onset but
ended too early. This indicates that releasing a key or pad in a musical context might
follow different principles than tapping-experiments suggest and should be investigated
more thoroughly.

8 out 10 incorrectly sliced segments are from the song ’Move On Up’ by Curtis Mayfield.
This song features a complex rhythm with high-tempo percussion patterns, leading to a
complex onset detection function.

Rothmund: Computer-assisted manual segmentation of music 23

Note that the examples chosen for this evaluation only cover a limited range of musical
genres and all are rhythmically expressive, i.e. with prominent drums or rhythm sections.
The 95% thus only provide an indication for best-case performance.

Other test with songs featuring less percussive instruments, or songs not as well known to
the author have not been as successful. However, interesting happy accidents occurred
quite often especially when experimenting with extreme TSM settings.

In summary, the developed prototype works as intended at reasonable tempi, especially
when there are drums present and the rhythmic structure is not overly complex - given
the user knows the musical pieces well. For less percussive sounds, when the onset
detection function is not reliable, the algorithm fails to find the right timing.

Outlook:
While the current prototyping setup is limited in performance (see section 2.1.3), max-
imum slice count, ..., it did allow the author to easily select different song segments of
various kinds from a wide range of input audio material.

For future projects, i.e. when integrating an algorithm like this into hardware and software
samplers, recording, analysis and playback should be done in a more robust and efficient
environment (i.e. with native code, such as C/C++).

Rothmund: Computer-assisted manual segmentation of music 24

References

[1] WhoSampled.com - Most Sampled Tracks. https://www.whosampled.com/
most-sampled-tracks/1/. Accessed: March 2017.

[2] Wikipedia - Sampling (music). https://en.wikipedia.org/wiki/Sampling_
(music). Accessed: March 2017.

[3] J. Bilmes. Timing is of the essence: Perceptual and computational techniques for
representing, learning, and reproducing expressive timing in percussive rhythm. PhD
thesis. Massachusetts Institute of Technology, Program in Media Arts and Sciences,
1993.

[4] M. Plumbley D. Stowell. Adaptive whitening for improved realtime audio onset
detection. In Proceedings of the International Computer Music Conference (ICMC),
2007.

[5] Alois Sontacchi Daniel Rudrich. Beat-aligning guitar looper. In Proceedings of the
International Conference on Digital Audio Effects (DAFx), pages 451–458, Edin-
burgh, UK, 2017.

[6] Jonathan Driedger and Meinard Müller. Time Scale Modification (TSM)
Matlab Toolbox. https://www.audiolabs-erlangen.de/resources/MIR/
TSMtoolbox/. Accessed: April 2017.

[7] Jonathan Driedger and Meinard Müller. Tsm toolbox: Matlab implementations of
time-scale modification algorithms. In Proceedings of the International Conference
on Digital Audio Effects (DAFx), pages 249–256, Erlangen, Germany, 2014.

[8] T. Radil Ernst Pöppel J. Mates, U. Müller. Temporal integration in sensimotor
synchronization. Journal of Cognitive Neuroscience, 6:4:pp.332 – 340, 1994.

[9] E. W. Large and C. Palmer. Perceiving temporal regularity in music. Cognitive
Science, 2002.

[10] Patrick McGlynn. Interaction design for digital musical instruments. PhD thesis.
National University of Ireland Maynooth, 2014.

[11] M.D. Plumbley M.E.P. Davies. Context-dependent beat tracking of musical audio.
In IEEE Transactions on Audio, Speech and Language Processing, volume vol. 15,
no. 3, pages pp. 1009–1020.

[12] Virginia B. Penhune Robert J. Zatorre, Joyce L. Chen. When the brain plays music:
auditory-motor interactions in music perception and production. Nature Reviews
Neuroscience, 8:547 – 558, July 2007.

[13] Daniel Rudrich. Timing-Improved Guitar Loop Pedal based on Beat Tracking. Mas-
ter Thesis. Institute of Electronic Music, Univiersity of Music and Performing Arts
Graz, 2017.

[14] M. Schedl S. Böck, F. Krebs. Evaluating the onset capabilities of onset detection
methods. In International Society for Music Information Retrieval Conference -
ISMIR, 2012.

Rothmund: Computer-assisted manual segmentation of music 25

[15] S. S. Stevens, J. Volkmann, and E. B. Newman. A scale for the measurement of the
psychological magnitude pitch. The Journal of the Acoustical Society of America,
8(3):185–190, 1937.

Rothmund: Computer-assisted manual segmentation of music 26

A Code Handbook / Tutorial

The code is structured as follows:

Puradata:
The folder ./puredata/ contains the puredata patch chopper.pd which is used for
recording audio and midi data, as well as playback of the sliced audio ’samples’. It
contains several subscripts [pd record_audio] and [pd record_midi],
[pd load_slices] and [pd play] as already described in section 2.1.2. The folder
is also where the recorded samples will be stored as .wav-files. All audio is summed to
mono and stored with 24 bit and a sample rate of 44100Hz. Registered midi events are
written to text files, which will be analysed by the Matlab scripts along with the recorded
audio.

Note that the script requires pd version 0.43.4-extended.

Matlab:
The folder ./matlab/ contains the main Matlab script for analysis, segmentation and
time-scale modification.

At the top of the main script ./matlab/main.m, some global preferences can be set,
such as desired output tempo, pitch shift, minimum slice length and several logging
options:

. . .
m in_s l i c e_ l eng th = 1 ; % minimum s l i c e l e n g t h i n tatums

% paramete r s f o r t ime s c a l e mo d i f i c a t i o n and p i t c h s h i f t
TS_type = ’WSOLA ’ ; % ’OLA’ ’WSOLA’ ’PV’ ’PVPL ’ ’HPSS ’ ’ none ’

des i red_tempo = 0 ; % 0 f o r ave r age d e t e c t e d tempo
t r a n s p o s e = −3; % in s em i tone s −12 to 12 , 0 f o r no change
. . .

./matlab/functions/ contains required functions called by the main analysis script.

The code requires the TSM toolbox [6] to be installed and was designed for Matlab
Version R2016a.

Running the Code:
To use the prototype make sure Puredata is configured to receive audio and MIDI data.
Start the the recording as described in section 2.1.2.

After recording, simply run the main matlab script (press ’Run’ or hit F5). The audio
slices are saved to ./puredata/.

To activate playback of the slices using the respective pads on the MIDI device, hit
’PLAY’ on the device or in the Puredata patch chopper.pd.

