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Abstract

This thesis deals with compact rigid microphone arrays and their acoustic
modal representation for sound field reconstruction and beamforming. A
method for obtaining surface modes of arbitrarily shaped rigid microphone
arrays based on the boundary element method (BEM) and the singular value
decomposition (SVD) is introduced and an analysis of spherical and cylindri-
cal arrays is presented. The modal functions are found to be frequency depen-
dent except for frequencies below kr ≈ 1. This indicates that a simplification
of the array signal processing can be applied for low frequencies. Further,
the spatial resolution properties of different rigid spherical and cylindrical
array shapes were analyzed. The different configurations simulated using the
BEM were found to have similar vertical and horizontal resolution.

Keywords : acoustic radiation modes, boundary element method, micro-
phone arrays, scattering, singular value decomposition, modal array process-
ing, array modes.

Zusammenfassung

Diese Arbeit beschäftigt sich mit kompakten und festen Mikrofonanordnug-
nen und deren akustischer modaler Beschreibung. Eine Methode zur Berech-
nung von Oberflächenmoden, die auf der Singulärwertzerlegung und der Ran-
delementmethode basiert, wird vorgestellt, und eine Analyse von Kugel- und
Zylinderanordnungen wird gezeigt. Die modalen Funktionen sind frequenz-
abhängig außer für Frequenzen unter kr ≈ 1. Dies weist darauf hin, dass
die Array-Signalverarbeitung für tiefe Frequenzen vereinfacht werden kann.
Weiters wurde die räumliche Auflösung von verschiedenen Kugel- und Zylin-
deranordnungen analysiert und es wurde gezeigt, dass diese Anordnungen
sich nicht essentiell unterscheiden in ihrer Fähigkeit, verschiedene Schallein-
fallsrichtungen zu diskriminieren.
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Chapter 1

Introduction

Microphone arrays are used for the analysis of acoustic scenes (acoustic scene
analysis) where several sound sources can either be of interest or disturbing
(Fig. 1.1). The engineering task is to extract information out of a sound
field, e.g., the location of sound sources or the number of sound sources.
Further, the aim could be to focus on specific sound sources and to try to
extract the source sound field and suppress sound sources from other locations
(beamforming, beamsteering). These techniques are of interest for acoustic
surveillance systems and speech recognition- and telecommunication systems.
Other applications of microphone arrays are 3D sound recording and room
acoustic analysis.

Sound Field Analysis by Microphone Arrays

When using acoustic models to predict sound propagation [MF53] it is nec-
essary to estimate the parameters of the model. Microphone arrays state the
practical method to acquire boundary values with which the model param-
eters can be solved for [GG06]. The measured signals of microphone arrays
form a spatial function in frequency domain and therefore a decomposition
is achieved by projection on orthogonal spatial basis functions. Any further
processing is done using the coefficients of the decomposition instead of the
microphone signals themselves and if the set of basis functions is complete,
a reconstruction is possible without loss. This paradigm of microphone ar-
ray signal processing and acoustic modeling is based on generalized Fourier
transforms [Wil99, Teu07]. The transformation considerably simplifies the
necessary signal processing for tasks like localization of sound sources or
beamforming. Related applications are Near-Field Acoustical Holography
[Wil99, Sar90, VW04], sound field reconstruction [Faz10] and active control
of sound [NE93, EJ93].

7
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Speech

MusicNoise

Reverberation

Figure 1.1: Acoustic problem scenario where several sound source are either
of interest or should be suppressed in the recording.

Solution methods and solutions for acoustic problems are well docu-
mented in the literature [MF53, AW05, AS64]. Of interest in the context
of this work is the separation of variables of the Helmholtz equation and
the solutions of the resulting ordinary differential equations. The separa-
tion of the Helmholtz equation and the resulting basis functions are given
in different separable coordinate systems, e.g., the cylindrical and the spher-
ical coordinate system [Wei12]. However, these solutions are not always of
practical relevance or applicability, e.g., in the case of a finite-length cylinder
[Teu07]. In some cases, geometries which do not correspond to an orthogonal
coordinate systems can be of interest but the corresponding functions for the
decomposition are not known. Therefore, methods have been proposed to
compute basis functions for unconventional geometries [Bor90, Sar91]. This
work deals with the problem of obtaining such functions.

Generalized Modal Beamformer

The process to extract sound of a certain area in space only is called beam-
forming and beamforming based on a generalized Fourier series using orthog-
onal functions or “modal functions”1 is called modal beamforming [Teu07].
Spherical microphone arrays and the corresponding spherical modal beam-
former are well-described [ME02, AW02, Raf05]. The hardware requirements
and the practical complexity of spherical microphone arrays is high and as the

1The modal functions in this context mean vibration modes of the surface of a body
and have to be clearly differentiated from structural modes.
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Figure 1.2: Block scheme of the processing steps of a spherical microphone
array. The measured frequency domain signals are projected on the spheri-
cal harmonics, then equalized and then the a beam is formed using specific
weigths.

resolution of full 3D space may be redundant, alternative array shapes have
been investigated. Circular arrays state an evident alternative [Mey01, TK06]
but also a hemispherical array has been proposed [LD05].

A modal beamformer relies on the knowledge of orthogonal modal func-
tions. As mentioned, these functions are well-described for simple array
shape like the sphere, but other shapes have no such simple description. Fig.
1.2 plots a block-diagram of the modal array signal processing necessary to
achieve modal beamforming using a spherical microphone array. The ques-
tion is if we can find a similar processing scheme for other, unconventional
array shapes.

Spatial Resolution

The modal sound field analysis approach relies on the modal functions to
be a complete set of orthogonal functions. Completeness requires an infinite
set or at least a very large number of modal functions [Kre06]. However,
practical microphone arrays cannot be realized having a continuous sound
pressure sensitive surface and therefore systems having a finite number of
degrees of freedom can be achieved only. Due to the discrete sampling of
space it is impossible to retrieve an infinite number of modes, and spatial
aliasing effects, equivalent to time aliasing, will occur [RWB07]. This means
that a modal beamformer cannot resolve space with infinite precision. The
shape of the beam, and therefore the spatial resolution is determined by the
number of modal functions used. The more functions are used, the higher the
resolution. However, specific shapes and configurations of microphone arrays
might support the resolution of certain areas in space while the resolution of
other areas is reduced. Also this will be addressed in the thesis.
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1.1 This Work

This work investigates the modal representation of unconventional micro-
phone array shapes and their spatial resolution properties. A goal is to
apply a modal decomposition over the measurement surface separated into
frequency independent functions and functions that are dependent on the
ratio of wavelength to body dimensions. The case of a spherical microphone
array is well described and will be used as a reference case. However, the
modal processing for unconventional array shapes has not been described in
the same detail in the available literature. The main research question raised
in this work are:

• Can modal functions for alternative array shapes be found? Do they
behave similar to the functions of the spherical case in terms of fre-
quency independence? Are they real-valued?

• How do the spatial resolution properties change when the array shape
is changed? Can certain areas in space be emphasized over others?

The investigations presented focus on the acoustic front-end of the whole
engineering chain of microphone arrays.

The thesis is structured as follows. In chapter 2 the basic theory of an-
alytical acoustics is reviewed and the tools necessary for later chapters are
presented. Chapter 3 introduces the boundary element method (BEM) which
offers a numerical treatment of radiation and scattering problems in nearly
arbitrary geometries. The reader familiar with analytical and numerical con-
cepts of acoustics can jump right to chapter 4, which is the main part of
this thesis. It introduces a method to compute modal functions of general
scatterers based on the BEM and the singular value decomposition (SVD).
The method is similar to other methods of literature but it differs in that
the scattering problem is regarded more closely in contrast to the radiation
problem. In principal, also array modes of open microphone arrays can be
computed using the SVD but this is not regarded here. Finally, chapter 5
introduces a method to describe the spatial resolution of general microphone
arrays. The method is based on the determinant of a correlation matrix of
the array response to two incoming plane wave field of different incidence
angle. In both chapters 4 and 5 cylindrical arrays of different dimension are
exemplified and the simulation results are compared to spherical arrays. In
appendix A the Fourier analysis is reviewed and in appendix B some special
function, e.g. the spherical harmonics are defined. App. C explains the
inverse problem a beamforming task states and App. D reviews the method
for obtaining modal functions based on the Green’s function matrix.



Chapter 2

Analytical Description of
Sound Fields

The mathematical model of sound propagation is given by the wave equa-
tion1 which describes the relation of sound pressure in time and space. Solu-
tions for radiation and scattering problems have been given in the literature
[MF53, MI86, Wil99]. In many cases it is sufficient and easier to describe
time-harmonic sound propagation only. This leads to the reduced wave equa-
tion, also called the Helmholtz equation.

The coming sections show the mathematical formulations of linear and
lossless wave propagation which are used as basics throughout this thesis.

2.1 Helmholtz Equation

The Helmholtz equation is named after Hermann von Helmholtz2. It de-
scribes time-harmonic processes, i.e., p(x, t) = Re{p(x, ω)eiωt}, and it is
equivalent to the Fourier transform of the wave equation. The inhomoge-
neous Helmholtz equation is written as

(∆ + k2)p(x, ω) = −q(x, ω) , (2.1)

where k = ω
c

= 2π
λ

is the wavenumber, ω = 2πf and f is the frequency, c is
the speed of sound, p is the sound pressure, q is a source term and ∆ is the
Laplacian operator, in cartesian coordinates defined by

1For a detailed derivation of the wave equation see [MF53, Ch. 6]
2Hermann von Helmholtz (1821-1894), German physician and physicist.

11
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∆ ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.2)

A further important equation is the Euler equation given by

iωρ0 ~v(x, ω) = ∇p(x, ω) . (2.3)

where ρ0 is the air density, ~v is the particle velocity and ∇ is the gradient
defined by

∇ ≡ ∂

∂x
~ex +

∂

∂y
~ey +

∂

∂z
~ez , (2.4)

where ~ex, ~ey, ~ez are the standard unit vectors. Euler’s equation originates

from Newtons second law, ~F = m~a, and relates the change of sound pres-
sure in space to the acceleration of particles. The dependence on ω will be
dropped for the rest of this thesis, to simplify the notation.

The Helmholtz equation is a partial differential equation (PDE). In order
to ensure existence and uniqueness of solutions, boundary conditions have to
be defined. The inhomogeneous problem stated by Eq. 2.1 is solved under
physical conditions by two different approaches. One approach is to use el-
ementary solutions which solves an inhomogeneous problem excited at one
point in space. More general inhomogeneous problems are solved by super-
imposing this elementary solution by shifting and weighting in space. This
is based on the theory of Green’s function [MF53, CK98, GG06, Wil99] and
will be shortly reviewed in section 2.3. Another approach is to use elemen-
tary solutions for the homogeneous problem that can be found for dedicated
coordinate systems. Combinations of different elementary solutions fulfill
boundary conditions that are easily described in the respective coordinate
system and can be used to solve an inhomogeneous problem. This approach
is based on the generalized Fourier transforms [MF53, Wil99, GG06] and will
be introduced in section 2.4.

2.2 Boundary Conditions

As it is the case with every kind of PDE, also the wave equation can only
be solved subject to certain boundary conditions and it will be seen that a
boundary condition forcing the normal particle velocity to zero is of interest
in this work. Basically there are three types of boundary conditions. Either
the functions of interest is directly prescribed or its derivative or a mix of
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both. In acoustics, a specification of the sound pressure p(x) leads to so
called Dirichlet boundary conditions,

p(x) = p̄ , (2.5)

where x ∈ S with S being a boundary surface and p̄ indicates a known value,
e.g. p̄ = 0 which corresponds to a homogeneous Dirichlet condition (pressure
release case).

If the normal derivative of the function is prescribed it is called a Neu-
mann boundary condition

∂p(x)

∂n
= p̄n , (2.6)

and if the known or measured value p̄n = 0 it corresponds to a homogeneous
Neumann condition, (rigid case).

The third case applies when a mix of Neumann and Dirichlet conditions
are prescribed

α p(x) + β vn(x) = γ (2.7)

where α, β, γ are arbitrary complex constants and vn is the normal particle
velocity. This type of condition is called an impedance boundary conditions
or Robin boundary conditions [Wei12]. If we reorder for the velocity, Eq. 2.7
is written as

vn(x) = −α
β
p(x) +

γ

β
(2.8)

where the left term on the right side α
β

is an acoustic admittance Y and the
right term is a forced or prescribed velocity vs

vn(x) = −Y p(x) + vs(x) . (2.9)

In this equation, vs is the velocity of vibration of a structure and Y p(x) the
velocity boundary layer of the fluid in connection to the structure [KP11]
[MH99]. A vibrating structure having absorbing material stitched to it cor-
responds to the case when Y is non-zero.

2.2.1 Interior and Exterior Solutions

Solutions of the Helmholtz equation found using boundary conditions are
often described as regular or singular solutions. This is done by defining
two regions in space, the interior and the exterior domain or a mix (see Fig.
2.1). Solutions for the interior region have to be finite and no singularities
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Figure 2.1: Exterior, interior and a mixed (or combined) problem [Wil99].

are allowed. Therefore they are called, regular solutions. Solutions for the
exterior region just have to satisfy the Sommerfeld radiation condition, which
assures that no sources exist in infinity. Therefore they are called singular
solutions.

The values on the boundary separating the regions can be used to solve
the acoustic model and compute the sound field in the source-free region. The
boundary values are either known, numerically calculated or measured. In
this way a direct solution of the PDE with its inhomogenuity is circumvented
and an indirect approach where the boundary values determine the sound
field is taken. For a more detailed description of boundary value problems
see [MF53, Ch. 6],[CK91, Ch. 3] and [Zot09].

2.2.2 Sommerfeld Radiation Condition

For exterior problems, where the domain extends to infinity, the Sommerfeld
radiation condition has to be fulfilled as a boundary condition

lim
R→∞

[
R
∣∣∂p(x)

∂R
− ikp(x)

∣∣] = 0 (2.10)

where R is the radius of a sphere which circumscribes the radiating or
scattering object [Som92]. It ensures that the infinitely extended radiat-
ing/scattered sound field is free from components that are not bounded in
space and therefore not caused by the source/scatterer of finite energy and
size.
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2.3 Solutions of the Elementary Inhomoge-

neous Problem

The solved inhomogeneous Helmholtz equation can be reformulated as an
integral with the elementary solution, the Green’s functions, as its kernel.
Given the inhomogenous problem stated in Eq. 2.1 and knowing the free-
field Green’s function G(x|x0), the solution is given by

p(x) =

∫
V

q(x0)G(x|x0) dV , (2.11)

where V indicates a volume integral [Wil99, sec. 8.6].
Using Green’s third integral identity yields a well known boundary in-

tegral where the sound pressure is measured or given on a boundary sur-
rounding or excluding the sound sources. This boundary integral is called
the Helmholtz integral equation (HIE).

2.3.1 Green’s Function

A Green’s function is the elementary solution to the inhomogeneous Helmholtz
equation subject to possible additional boundary conditions. A special case
is the free-field Green’s function, which is the solution in infinite domain of
the set of equations: (∆ + k2)G(x|x0) = −δ(x− x0) ,

lim
r→∞

G(x|x0) = 0 ,
(2.12)

where δ(x − x0) is the Dirac delta distribution. In three-dimensional space
Green’s function is given as

G(x|x0) =
e−ik||x−x0||

4π||x− x0||
. (2.13)

It is the solution to a point source in free-space at x = x0. It is a
spatio-temporal transfer function and as mentioned, a solution to any inho-
mogenuity can be found through the convolution with the Green’s function
[Wei12]. In Fig. 2.2 the real and imaginary part of Eq. 2.13 are plotted.

The Green’s function fulfills the principle of acoustic reciprocity,

G(x|x0) = G(x0|x) , (2.14)

which states that the source and receiver are interchangeable with the
receiver response staying the same [MF53] .
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(a) real part (b) imaginery part

Figure 2.2: Green’s function.

2.3.2 Helmholtz Integral Equation

The Helmholtz integral equation3 (HIE) is the basis of many techniques in
acoustics, e.g. wave field synthesis [SRA08], and represents the mathemati-
cal model of Huygen’s principle [Jes73, GG06]. Assuming a time-harmonic
sound field and no sources inside the domain of resolution Vi with a smooth
boundary S (see Fig. 2.3) which is twice differentiable the HIE is given as

C(x)p(x) =

∫∫
S

(
G(x|y)

∂p(y)

∂n
− p(y)

∂G(x|y)

∂n

)
dS(y) , (2.15)

where G(x|y) is a Green’s function satisfying any kind of boundary condition
with x ∈ R3 and y ∈ S, ∂

∂n
indicates the normal derivative, dS(y) means

the integration wrt. the coordinate y and C(x) is a constant defined as

C(x) =


0, x ∈ Ve ,
1
2
, x ∈ S ,

1, x ∈ Vi .
(2.16)

The HIE states that a continuous distribution of monopole and dipole
sources on the surface of a closed domain weighted by the sound pressure
and its normal derivative is sufficient to represent any kind of homogeneous
and source-free sound field.

If the given problem requires specific boundary conditions, the Green’s
function satisfying these conditions has to be known. In case of a homo-

3In time domain this is usually called Kirchoff’s integral equation. It is also often
referred to as Kirchoff-Helmholtz integral (KHI).
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S

n

Vi

Ve

Figure 2.3: Region of definition for the HIE.

geneous Dirichlet boundary condition on the integration surface the HIE is
reformulated as

C(x)p(x) = −
∫∫

S

p(y)
∂GD(x|y)

∂n
dS(y) , (2.17)

where GD(x|y) is the Dirichlet Green’s function. In case of the homogeneous
Neumann boundary condition the HIE becomes

C(x)p(x) =

∫∫
S

GN(x|y)
∂p(y)

∂n
dS(y) , (2.18)

where GN(x|y) is the Neumann Green’s function.
Green’s functions, except for the free-field case, are usually not known and

not trivial to derive for an arbitrarily shaped surface. Therefore, one can try
to compute numerically from the HIE with free-field Green’s function and its
numerical implementation (cf. Ch. 3 and App. D) [Wil99].

2.4 Elementary Solutions of the Homogeneous

Problem

This section sums up the solution of the homogeneous Helmholtz equation
[MF53, Wil99, Zot09]. If a boundary value problem is given, it is evident
to choose a coordinate system in which the boundary has a simple repre-
sentation, e.g. a constant coordinate surface. The homogenous Helmholtz
equation is solved by the separation of variables in the dedicated coordinate
system. This always yields two types of harmonic solutions. If they fulfill the
boundary conditions and the radiation condition as required, a superposition
of these solutions leads to solutions of the inhomogeneous problem.
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x

y

z

φ
ρ

(ρ,φ,z)

z

(a) Cylindrical

x

y

z

φ

r

ϑ

(r,φ,ϑ)

(b) Spherical

Figure 2.4: Cylindrical and spherical coordinate system. Cylinder: ρ =√
x2 + y2, ϕ = arctan( y

x
) and z = z. Sphere: r =

√
x2 + y2 + z2, ϕ =

arctan( y
x
) and ϑ = arccos z

r
. The domain of definitions are r, ρ ∈ [0,∞),

ϕ ∈ [0, 2π), z ∈ (−∞,∞) and ϑ ∈ [0, π].

Here, the solutions in two orthogonal coordinate systems, the cylindrical
and the spherical coordinates are presented (Fig. 2.4).

2.4.1 Cylindrical Coordinates

The separation of variables in cylindrical coordinates is given by

p(r) = R(kρ)Φ(ϕ)Z(z) . (2.19)

which yields three ordinary differential equations:

∂2R(kρ)

∂ρ2
+

1

ρ

∂R(kρ)

∂ρ
+ (k2

ρ −
n2

ρ2
)R(kρ) = 0 ,

∂2Φ(ϕ)

∂ϕ2
+m2Φ(ϕ) = 0 ,

∂2Z(z)

∂z2
+ k2

zZ(z) = 0 .

(2.20)

The numbers m ∈ Z, kz ∈ (−∞,∞) and kρ ∈ [0,∞), are the separation con-
stants used for the product ansatz, where kρ satisfies the dispersion relation
kρ =

√
k2 − k2

z . Particularly, these equations are two second-order linear
differential equations (in ϕ and z) and the Bessel equation (in kρ).

Cylindrical Base-Solutions After solving these equations and choosing
the solutions that are physical, the cylindrical base-solutions can be written
as
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p(kρ, ϕ, z) =
∞∑

n=−∞

einϕ
1

2π

∫ ∞
−∞

[
bnJn(kρρ) + cnH

(2)
n (kρρ)

]
eikzzdkz (2.21)

where n ∈ Z and kz ∈ R, the coefficients bn and cn are the wave spectra of
the interior and exterior wave field [Wil99], Jn are the Bessel functions and

H
(2)
n are the Hankel functions of second kind.

Eq. 2.21 is a complete synthesis operator, i.e., knowing the coefficients
bn and cn of a certain problem means that homogeneous sound fields, valid
in a given range of ρ, can be perfectly reconstructed. This is because the set
of cylindrical basis functions are complete (cf. App. A). The corresponding
analysis operator for the interior and exterior problem is given by ([GG06])

bn
cn

=

∫
ρ

∫
ϕ

∫
z

p(kρ, ϕ, z)
Jn(kρρ)

H
(2)
n (kρρ)

ei(nφ+kzz) ρ dρ dϕ dz . (2.22)

Scattering off a Rigid Cylinder

The scattering of a plane wave incident on a rigid cylinder is most often
described by assuming the cylinder to be of infinite length. The one dimen-
sional plane waves scattered on an infinite cylinder only need to satisfy the
radiation condition in the cylindrical radius. Hence the following solution is
correct, cf. [Teu07, MI86, Wil99], for the sound pressure on the cylinder due
to a plane wave from ϕ0, ϑ0

p(k, z, ϕ) =
∞∑

m=−∞

2π im+1 Φm(ϕ0) Φm(ϕ) eik cosϑ0 z

kR sinϑ0H
′(2)
m (kR sinϑ0)

, (2.23)

where R is the radius of the cylinder, H
′(2)
n (kR sinϑ0) is the first derivative

of the Hankel function of the second kind, and Φm(ϕ) are the normalized
trigonometric functions

Φm =

√
2− δm

2π

{
cos(mϕ), for m ≤ 0,

sin(mϕ), for m < 0.
(2.24)

The term kR sinϑ0H
′(2)
n (kR sinϑ0) will not become zero for ϑ0 = 0; it is

proportional to
(

2
kR sinϑ0

)n
for small arguments.
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The solution for a finite-length cylinder cannot be given in closed form
[Teu07, p. 31], and fulfilling of the 3D radiation condition becomes neces-
sary. It seems the scattering off a finite-length cylinder has to be simulated
numerically.

2.4.2 Spherical Coordinates

Applying the separation of variables in spherical coordinates,

p(r) = R(kr)Φ(ϕ)Θ(ϑ) (2.25)

it yields three ordinary differential equations:



1

r2

∂

∂r

(
r2∂R(kr)

∂r

)
+ k2r − n(n+ 1)

r2
R(kr) = 0 ,

∂2Φ(ϕ)

∂ϕ2
+m2Φ(ϕ) = 0 ,

1

sinϑ

∂

∂ϑ

(
sinϑ

∂Θ(ϑ)

∂ϑ

)
+ [n(n+ 1)− m2

sin2 ϑ
]Θ(ϑ) = 0 .

(2.26)

The numbers n ∈ Z and m ∈ Z are the separation constants used for the
product ansatz. Particularly, these equations are the spherical Bessel’s equa-
tion, a standard second-order linear differential equation and an associated
Legendre equation.

Spherical Base-Solutions After solving these equations and choosing the
solutions that are physical [Zot09] the spherical base-solutions can be written
as

p(kr,θ) =
∞∑
n=0

n∑
m=−n

(
bnm jn(kr) + cnm h

(2)
n (kr)

)
Y m
n (θ) , (2.27)

where the unit vector θ = (ϕ, ϑ)T , the indices n,m ∈ Z are called the “or-
der” and the “degree” of the expansion, the coefficients bnm and cnm are also
called the wave spectra of the interior and exterior wave fields [Wil99], jn(kr)

are the spherical Bessel functions, h
(2)
n are the spherical Hankel functions of

second kind and Y m
n (θ) are the normalized real-valued spherical harmonics..

For a definition of these special functions see App. B.
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Eq. 2.27 is a complete synthesis operator, i.e., knowing the coefficients
bnm and cnm of a certain problem means the sound field bounded by one
or two radii, can be perfectly reconstructed. The corresponding analysis
operator for the interior and exterior problem is given by (cf. [GG06])

bnm
cnm

=

∫
r

∫
θ

p(kr,θ)
jn(kr)Y m

n (kr,θ)

h
(2)
n (kr)Y m

n (kr,θ)
r2drdθ . (2.28)

Scattering off a Rigid Sphere

Assuming an incoming plane wave field impinging from the direction θ0, the
scattering response on the surface of a rigid sphere is given by

p(k,θ) =
∞∑
n=0

n∑
m=−n

4πin−1 Y m
n (θ0)Y m

n (θ)

(kR)2 h
′(2)
n (kR)

, (2.29)

where h
′(2)
n (kR) is the derivative of the Hankel function of second kind and

R is the radius of the sphere [Teu07].

2.5 Summary

This chapter reviewed some basics of analytical acoustics which are essential
to this work. Especially the HIE will be used to represent scattering problems
having homogeneous Neumann boundary conditions, similar to those results
shown using homogeneous solutions. For the actual computation, a numerical
implementation of the HIE has to be used. This is shown in the next chapter.



Chapter 3

Boundary Element Method

The boundary element method (BEM) is a numerical method to simulate
homogeneous sound fields based on the knowledge of its boundary values
or conditions on a discretized, arbitrarily shaped enclosing surface, so called
boundary elements. It is based on the formulation of the physical problem as
(boundary-) integral equations which is why the method was often referred
to as boundary integral equation method1 in its origins in the 1960’s [Sch68,
BM71]. The common formulation of the BEM in acoustics is based on the
Helmholtz integral equation (HIE, cf. sec. 2.3.2).

The HIE is treated by approximation as a sum of integrals over boundary
elements. The sound pressure has to be collocated to these elements using
interpolating functions (shape functions) and the remaining integrals for each
element are solved by numerical integration. The result is a linear system of
equations characterized by two complex and fully occupied matrices. Further,
the matrices are usually unsymmetric because of the non-uniform ares of the
elements of a mesh [PKM12]. The solution of the matrix equation is costly.

An advantage of BEM is that the Sommerfeld radiation condition is in-
herently fulfilled. However, the reduction of dimensionality of the BEM also
results in difficulties of non-uniqueness which do not exist in the original
problem [BM71].

3.1 Basics

The basis of the BEM is the HIE, which is derived from the divergence
theorem using Green’s identities [CB91]. For the reader’s connivance the

1This can still be the case when the derivation and analysis of the method is addressed
rather than the implementation or application.

22
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HIE for interior and exterior problems is rewritten here. The Helmholtz
integral equation for interior problems is

C(x)p(x) =

∫∫
S

(
iρock vn(x)G(x|y)− p(x)

∂G(x|y)

∂n

)
dS(y) + p(inc) , (3.1)

and the Helmholtz integral equation for exterior problems is

C(x)p(x) =

∫∫
S

(
p(x)

∂G(x|y)

∂n
− iρock vn(x)G(x|y)

)
dS(y) + p(inc) , (3.2)

where x ∈ R3 and y ∈ S, G(x|y) is the free-field Green’s function given in
Eq. 2.13, p(x) is the sound pressure, p(inc) is the sound pressure of an incom-
ing field at the free-field boundary nodes (vanishes for a radiation problem),
∂
∂n

indicates the normal derivative and C(x) is a constant defined depending
on the problem. For the exterior problem it is

C(x) =


1, x ∈ Ve ,
Ω(x)
4π
, x ∈ S ,

0, x ∈ Vi .

(3.3)

where Ω(x) is the solid angle defined by [Wei12]

Ω(x) ≡ 1

r2

∫∫
S

dS(x) . (3.4)

where for smooth surfaces Ω(x)
4π

= 1
2
. The interior problem defines C(x) just

the other way around. In Fig. 2.3 the region of definition for the interior
problem is shown.

3.1.1 Existence and Uniquness

There is one major shortcoming of the BEM. The HIE for exterior problems
does not have a unique solution at certain frequencies. These characteris-
tic eigenfrequencies are associated with the corresponding interior Dirichlet
problem. If we consider an exterior problem with Dirichlet boundary condi-
tion the issue can be explained [WO02]. The HIE with x ∈ S becomes

iρock

∫
S

vn(x)G(x|y) dS(y) = −1

2
p(x)−

∫
S

p(x)
∂G(x|y)

∂n
dS(y) . (3.5)

Further we have a look at the interior Dirichlet problem. With the surface
normal unchanged the interior HIE becomes
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iρock

∫
S

vn(x)G(x|y) dS(y) =
1

2
p(x)−

∫
S

p(x)
∂G(x|y)

∂n
dS(y) . (3.6)

As the latter equation applies to interior problems it exhibits eigenfrequen-
cies. The exterior problem does not have any eigenfrequencies but it shares
the same term on the left-hand side. Hence, the non-uniqueness of the interior
problem at certain frequencies also occurs in the HIE of the exterior problem.
This issue arises purely from the mathematical approach and doesn’t have
any physical meaning. It is circumvented by additional strategies.

CHIEF

One simple method to overcome the non-uniqueness problem is the combined
Helmholtz integral equation formulation (CHIEF) suggested by Schenk in
1968 [Sch68]. The idea is to add the HIE for interior points to the HIE for
exterior points in order to remove the non-uniqueness due to interior modes.
The interior HIE for exterior problems is∫∫

S

(
p(x)

∂G(x|y)

∂n
− iρock vn(x)G(x|y)

)
dS(y) = 0 . (3.7)

This equation enforces a zero pressure condition inside the volume V and
it can be seen as a constraint to the surface HIE. In general, the constraint
equations for selected interior control points, the CHIEF points, are enough
for the exterior problem to have a unique solution.

A challenge when using this method is the choice of suitably located
CHIEF points. In particular if they are located at an interior nodal surface
of an eigenfrequency the constraint becomes ineffective. This is especially
problematic for higher frequencies where the nodal surfaces of the eigenfre-
quencies become more dense [Wu00, p. 27].

3.2 Numerical Implementation

The discretization of the HIE is done in two steps. First the boundary surface
in consideration has to be discretized and second the boundary variables have
to be discretized. In principal this can be done independently but in practice
the geometry and the variables are mostly discretized in the same way which
yields so called isoparametric elements. The shape of the elements in three-
dimensions can either be of triangular or quadrilateral shape (Fig. 3.1 ).
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(a) (b)

Figure 3.1: Real element (left) and parent element (right) a) Triangular b)
Quadrilateral. From [Bee08].

The geometry is represented by nodes and so called shape functions which
interpolate between the nodes. The number of nodes on an element deter-
mines the order of the shape functions. A constant element places one node
at the centroid of the element. A linear element places nodes at the corners
of the element. A quadratic element places nodes at the corners and in the
middle of the edges. The integration is usually generalized and made on
a parent or master element which means that every real element is trans-
formed into local coordinates of the master element for integration. Part of
the numerical error in the result is due to the approximation of the boundary.
Therefore higher-order elements might be preferable. For a comprehensive
treatment of elements and shape functions the reader is referred to standard
BEM textbooks, e.g., [BW92] or a standard FEM book [ZT89].

Discretizing the boundary integral of the HIE leads to (the coordinate
variables are left out for readability)

Cp =
M∑
j=1

∫
Sj

p
∂G

∂n
dS − iρ0ck

M∑
j=1

∫
Sj

vn GdS . (3.8)

where M is the number of elements. Next, the coordinates of the sound
pressure are discretized using

p =
l∑

i=1

piNi(ξ1, ξ2), (3.9)

where the index i indicates the nodal points, pi is the collocated sound pres-
sure, l is the number of nodes in that element and Ni are the shape functions
defined on a master element in local coordinates ξ1, ξ2 [Wu00, p. 55]. This
is called collocation or nodal collocation. Inserting Eq. 3.9 then yields
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Cp =
M∑
j=1

l∑
i=1

pij hij −
M∑
j=1

l∑
i=1

vn,ij gij . (3.10)

where

hij =

∫
Sj

∂G

∂n
Ni dS (3.11)

are the dipole terms and

gij = iρ0ck

∫
Sj

GNi dS (3.12)

are the monopole terms. Finally, a matrix equation can be set up

Cp = Hp−Gvn , (3.13)

where L the number of nodes, C is a L×M diagonal matrix containing the
solid angles, p and vn are vectors of length L containing the sound pressure
and the normal particle velocities at the nodes and G and H are L ×M
matrices given by

G =

( gij · · · giM
...

. . .
...

gLj · · · gLM

)
,H =

( hij · · · hiM
...

. . .
...

hLj · · · hLM

)
.

For the solution of Eq. 3.13, first, the surface variables are solved for
(x ∈ S) where either the particle velocity or the sound pressure on the
boundary is known. Then the computed vectors are inserted again into Eq.
3.13. This time it is solved for the sound pressure in the field (x ∈ Vi or
x ∈ Ve). In general a matrix equation of form

Ax = b , (3.14)

has to be solved where matrix A and vector b contains the knowns and the
vector x contains the unknowns.

3.3 Axisymmetric Formulation

A simplification of the HIE formulation for the BEM can be applied when a
boundary is rotationally symmetric around the z-axis, as suggested by Juhl
[Juh93] (axisymmetric formulation). In this case the HIE can be represented
by an azimuthally harmonic Fourier series
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p =
∞∑
m=0

pm cos(mϕ), v =
∞∑
m=0

vm cos(mϕ) (3.15)

where m is the order of the expansion and ϕ is the angle in cylindrical
coordinates. The discretization of the HIE is then carried out using Eq. 3.15.
The advantage is that only a 2D contour of a 3D body has to be discretized. A
full 3D solution is then achieved by assembling the solutions for single m. The
Fourier expansion needs to be truncated and is therefore an approximation.
However, depending on the problem a small number of expansion term can
be sufficient. If a full axisymmetric description is required, the expansion
with m = 0 is sufficient [CH01].

3.4 Summary

The BEM is the numerical implementation of the HIE and it therefore allows
the computation of acoustic problems of arbitrary geometry. The accuracy
of the results is depdendent on the density and the form of the mesh and
on the frequency of interest. A very high mesh density is necessary for com-
putations at high kr (λ/6 rule, cf. [Mar02]) and therefore the memory and
computational load becomes high [CW07]. The Axisymmetric formulation
reduces this problem and will be used in this thesis.



Chapter 4

Modal Analysis of Free-Field
Scatterers

Methods to find an acoustic modal representation of possible vibration pat-
terns of the surface of arbitrary geometries were introduced since the be-
ginning of the 1990’s. Borgiotti [Bor90] suggested the use of the singular
value decomposition (SVD) applied to a radiation operator representing the
radiated power. Investigations on this concept for different applications can
be found in [Pho90, Sar91, CC94]. Cunefare and Currey [CNC01] identified
that the surface modes exhibit a grouping behavior concerning their modal
strength and that the ones for a spherical geometry correspond to the spheri-
cal harmonics. These functions were named acoustic radiation modes (ARM)
and the corresponding radiation efficiency. Nelson and Kahana [NK01] also
used the SVD but applied it to a matrix of transfer functions (Green function
matrix) acting in between a radiator and points in the far-field. The result-
ing functions corresponding to the ARM from before were named “source
modes” and “field modes”. Pasqual et al. [PdFAH10, PM11] applied the
SVD analysis to obtain modal functions for the directivity control of loud-
speaker arrays. They noted that insted of using spherical harmonics using
ARMs has the advantage of optimally using all available degrees of freedom
of the controlled surface is discretized.

In this work a slightly different approach is used. As we are interested in
the modal representation of microphone arrays the SVD will be applied to the
response of the microphone array to an impinging sound field. The scatter-
ing response on the boundary surface is computed employing the boundary
element method (BEM, cf. Ch. 3) and the SVD is applied directly to the
synthesized sound pressure. A spherical point-source distribution in the far-
field is assumed to generated the incoming sound field. The results of this
approach are similar to those of the cited works from above, but as the defini-
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(a)

(b)

Figure 4.1: Block diagram of the signal processing steps for obtaining the
acoustic model parameters. (a) shows the generic case where a matrix of
transfer functions has to be inverted for each frequency. Fig. (b) shows the
simplification using frequency independent array modes.

tions are different, the presented approach is not fully equivalent. Therefore,
the terms array modes and modal strength will be used in contrast to acous-
tic radiation modes and radiation efficiencies, respectively.

The goal of this analysis is to find frequency and real-valued modal array
modes. Fig. 4.1 shows a block-diagram of the signal processing necessary
for beamforming or sound field reconstruction. Using frequency independent
functions reduces the computational effort of the filtering steps considerably.

4.1 The Scattering Operator

In general, the scattered response of a rigid body p(tot) can be described as
a superposition of an incoming sound field p(inc) and a scattered sound field
p(scat)

p(tot) = p(inc) + p(scat) . (4.1)

The scattered sound field can be thought of as a radiating sound field (due
to acoustic reciprocity) that forces the normal particle velocity of the total
field p(tot) on the boundary surface to zero.
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...

...
...

......

...
...

...

S

V

Ω

p(tot)

f

Figure 4.2: Region of definitions for the scattering problem with a continuous
distribution of plane waves.

The scattering problem can be defined using integral operators [Faz10]
in a similar manner to the HIE, presented in section 2.3.2. A sketch of the
scattering problem is shown in Fig. 4.2. The sound pressure on the boundary
surface S due to a spherical source distribution on Ω can be written as

p(tot)(x) =

∫
Ω

f(y)P (x|y) dΩ(y) . (4.2)

where f(x) is the source strenght or density function and P (x|y) is a wave
satisfying 

(∆ + k2)P (x|y) = −δ(x− y), x ∈ R3\V,y ∈ Ω

∂P (x|y)

∂n
= 0 , x ∈ S ,

(4.3)

where S is the surface of the scattering body V . This equation demands
that P satisfies the homogeneous Helmholtz equation in all space except
the region V and additionally satisfies the Neumann boundary condition on
the scattering surface S. P represents a general wave field, but in fact a
Green’s function or a Herglotz wave function (plane wave) satisfying the
same conditions could be used. In order to write down Eq. 4.2 in a more
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Figure 4.3: Spherical basis functions for n=0-3 and m=n.

compact way, operator notation is used,

p(tot)(x) = (P f)(x) , (4.4)

where the operator P is defined as acting from the source distribution Ω to
the rigid boundary S (P : Ω→ S) and represents the integral operation from
the right-hand side of Eq. 4.2.

When a reconstruction of these parameters is demanded the operator P
has to be inverted. This is the problem beamforming and source reconstruc-
tion techniques try to solve [Wil99, VW04, Faz10].

4.1.1 Spherical Source Distribution

The incoming sound field is generated assuming a spherical distribution of
point sources at the radius rs. The Helmholtz equation excited by this source
distribution is written as

(∆ + k2)p(inc)(r,θ) = −δ(r − rs)

rs
2

f(θ) , (4.5)
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where ∆ is the Laplace operator, k the wavenumber, δ a Dirac delta distri-
bution, p(inc) is the sound pressure with (r,θ) ∈ R3 and f(θ) is a continuous
source strength equivalent to the one form the previous section. The solution
of this problem for r < rs can be given as (cf. [ZPF09])

p(inc)(kr,θ) = −ik
∞∑
n=0

h(2)
n (krs) jn(kr)

n∑
m=−n

φnm Y
m
n (θ) , (4.6)

where jn are the spherical Bessel functions, h
(2)
n the spherical Hankel functions

of second kind, Y m
n are the real-valued spherical harmonics (cf. App. B.3)

and

f(θ) =
∞∑
n=0

n∑
m=−n

φnmY
m
n (θ) ,

φnm =

∫
Ω

f(θ)Y m
n (θ) dΩ , (4.7)

are the coefficients of the expansion. Moreover, assuming the source distri-
bution to be in the far-field (rs >> r), using the far-field approximation of

the spherical Hankel functions (h
(2)
n (kr) = in+1e−ikr

kr
) and equalizing by 4πr

e−ikr

results in a continuous distribution of plane waves given by

p(inc)(kr,θ) = 4π
∞∑
n=0

in jn(kr)
n∑

m=−n

φnm Y
m
n (θ) . (4.8)

Now, we let φnm = δnn′δmm′ , where δ indicates the Kronecker delta and
nm = n2 + n+m+ 1 is the running index of the spherical harmonics. This
creates a superposition of plane waves expressed by spherical wave functions
where on wave is given by

p(inc)
nm (kr,θ) = 4πin jn(kr)Y m

n (θ) . (4.9)

In [GD04] these waves were called spherical basis functions and Fig. 4.3
shows some of them. Fig. 4.2 depicts a model of the incoming sound field.

Using this kind of representation of the incoming sound field the scattering
operator can be rewritten to

p(tot)(x) =
(
Pnm φnm

)
(y) , (4.10)

where p(tot)(x) is the total sound pressure and Pnm is the spherical basis
function expanded operator P . The expansion coefficients φnm define the
sound field of the source and hence they represent the parameters of the
acoustic model.
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4.2 Scattering Matrix via BEM

The scattered sound field for arbitrary geometries can be written in terms of
the Helmholtz integral equation (HIE) presented in section 2.3.2. Applying

a boundary condition for a rigid surface, ∂p(y)
∂n

= 0, the total sound pressure
is

α p(tot)(x) =

∫
S

p(tot)(y)
∂G(x|y)

∂n
dS(y) + p(inc) , (4.11)

where y ∈ S, x ∈ R3\V and α is the solid angle and for smooth surface
α = 1

2
. Discretizing the boundary using L elements and nodes (standard

collocation) results in a matrix equation

Cp(tot) = Hp(tot) + p(inc) , (4.12)

where H ∈ RL×L is the matrix of the normal derivatives of the Green’s
functions integrated over a single element (cf. 3), p(tot) ∈ RL×1 and p(inc) ∈
RL×1 are the vectors of the unknown sound pressures and the sound pressure
of the incoming field at the surface nodes in the open field, respectively, and
C ∈ RL×L is a diagonal matrix containing the solid angles.

Furthermore, using the incoming sound field defined in Eq. 4.8 in matrix
form yields

p(inc) = Rφ , (4.13)

where φ ∈ R(N+1)2×1 are the spherical harmonics coefficients and R ∈
RL×(N+1)2 is a matrix including the single spherical wave components from
Eq. 4.9

R =

 j0(kr0)Y 0
0 (θ0) · · · jN(kr0)Y N

N (θ0)
...

. . .
...

j0(krL)Y 0
0 (θL) · · · jN(krL)Y N

N (θL)

 , (4.14)

where N is the order of the spherical harmonics expansion and (N + 1)2 is
the number of spherical waves for which n ≤ N . The discrete total scattered
sound pressure on the boundary surface S is then given by

p(tot) = −(H −C)−1R︸ ︷︷ ︸
Pnm

φ , (4.15)

where Pnm is the scattering matrix and consists of the responses to the single
spherical wave pnm. It is the discrete equivalent to the scattering operator
Eq. 4.10 and given by

Pnm = (p00, . . . ,pnm, . . . ,pNN) . (4.16)
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Reconstruction of the sound field or beamforming demand the inversion of
the scattering matrix (cf. C).

4.2.1 SVD of the Scattering Matrix

The SVD of the scattering matrix is given by

P = UΣV H, (4.17)

where U ∈ RL×L contains the left singular vectors in its columns, V ∈
R(N+1)2×(N+1)2 contains the right singular vectors and Σ ∈ RL×(N+1)2 is a
diagonal matrix of the singular values in decreasing order

|σ1| ≥ |σ2| ≥ . . . ≥ |σN |. (4.18)

The left and right singular vectors form a set of orthonormal vectors

UHU = I , V HV = I , (4.19)

where I is the identity matrix. The physical interpretation of the singular
vectors and values in this context is not that easy. We can try to understand
them when the SVD is related to the eigenvalue decomposition. Multiplying
the scattering matrix from the right by its complex conjugate yields

PPH = UΣΣHUH . (4.20)

In this case PPH ∈ RL×L represent the scalar product of the row vectors
of P with the complex conjugated row vectors of P . The corresponding
eigenvectors U yield basis vectors which are only dependent on the geometry
of S (the array) and the frequency. The can be seen as being equivalent to
the ARMs mentioned in the introduction and will be called array modes.

Similarly, multiplying the scattering matrix by its complex conjugate
yields

PHP = V HΣHΣV . (4.21)

In this case PHP ∈ R(N+1)2×(N+1)2 means the scalar product of the column
vectors of P and the complex conjugated column vectors of P . As the
incoming sound field is defined by a set of orthogonal functions and if the
scattering response does not shape these functions severely the matrix V
yields the identity matrix. It will be shown that this is the case for low
frequencies. However, as soon as the wavelength corresponds to the size of
the scattering body this holds no longer.
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In both cases the singular values Σ are the square-roots of the eigenvalues
and they relate the impinging spherical wave components to the modes of
the array.

4.2.2 Joint SVD

As claimed in the introduction, the goal is to find array modes that are real
and independent of frequency and therefore a separation of the sound field
into functions dependent on the surface variable and functions dependent on
frequency and/or scaling can be achieved. The SVD, as described above,
yields singular vectors only for one frequency. It has be shown that for
certain array geometries these functions are frequency independent [PM11].
However, as soon as the singular values of the decomposition do not follow a
clear degenerative pattern anymore, the singular vectors will be different for
each frequency. Nevertheless, it may be possible that these matrices share
the same diagonalization and we can try to find these vectors using a joint
SVD or joint eigendecomposition [CS96]. The principle is as follows:

Given Z matrices Az ∈ Rj×j

{A1,A2, . . . ,AZ} (4.22)

one can try to find a joint eigendecomposition so that

{Σ1,Σ2, . . . ,ΣZ} = {UHA1V , U
HA2V , . . . , U

HAZV } (4.23)

where each Σk is as diagonal as possible. Further, if Az ∈ Rj×l then the joint
SVD using a joint eigendecomposition can be defined as [Hor09]

{Σ1Σ
H
1 ,Σ2Σ

H
2 , . . . ,ΣZΣH

Z} = {UA1A
H
1U

H, UA2A
H
2U

H, . . . , UAZA
H
ZU

H} .
(4.24)

Of course an exact solution of this problem is only achievable if the matri-
ces Az actually share the same singular vectors. If otherwise, an approxima-
tion has to be used. An algorithm which tries to minimize the off-diagonal
terms of Σz can be found in [CS96].

In the context of this work a joint SVD will be computed, of several scat-
tering matrices Pnm for different frequencies, using the algorithm mentioned
before.
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Figure 4.4: Generator meshes used for the BEM.

4.3 Simulation Results

Two examples are shown to evaluate the presented method. The first case is
a rigid spherical array and as a second case rigid cylindrical arrays of different
dimensions are simulated.

For the computation of the scattering matrix, the axisymmetric BEM
formulation is used [Juh93]. This means that the problem is reduced to
one dimension and modal functions can be found that dependent on one
coordinate and the frequency only. Further, only the generator of the rigid
body has to be discretized. For the BEM the open source Matlab toolbox
OpenBEM is used which was written by Peter Juhl and Vicente Cutanda-
Henriquez [CHJ10].

Fig. 4.4 shows the generators used for simulation. It has to be noted that
the density of the nodal points on the generators is large which yields “quasi-
continuous” singular functions. An example of practical relevance having less
sampling points is not presented here. The incoming sound field is generated
for single spherical waves up to fifth order and positive degree m only.
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4.3.1 Sampling of the Generator

Nelson and Kahana [NK01] have already found that the results of the SVD
are dependent on the choice of the mesh used for the BEM. Furthermore,
Peters and Marburg [PKM12] remarked that the BEM matrices are not sym-
metric and therefore yield ARMs that are complex and unphysical in the
context of radiated power.

Here, the sampling of the generator is chosen so that the generated surface
areas are of equal area. It is evident that the choice of the axisymmetric
BEM formulation yields a further advantage because a regular discretization
is fairly easier to fulfill.

4.3.2 Sphere

The modal representation based on spherical waves of a plane wave scattered
by a rigid sphere is given by (cf. [Zot09])

p(tot)(kr,θ) =
∞∑
n=0

4πin
(
jn(kr)− j

′
n(kR)

h
(2)′
n (kR)

h(2)
n (kr)

)
×

n∑
m=−n

Y m
n (θ)Y m∗

n (θ0) , (4.25)

where θ0 represents the incidence direction, R is the radius of the sphere
and the prime indicates the first derivative. Using the Wronski determinant

jn(kR)h
(2)′
n (kR)− j ′n(kry)h

(2)
n (kry) = 1

i(kR)2
it becomes

p(tot)(kR,θ) = 4π
∞∑
n=0

in−1

(kR)2 h
(2)′
n (kR)

n∑
m=−n

Y m
n (θ)Y m∗

n (θ0). (4.26)

This directly indicates that the SVD will give singular vectors corresponding
to the spherical harmonics and the singular values that correspond to the
derivative and inverse of the Hankel functions (cf. [NK01]). The singular
values must be real, however.

SVD for various frequencies

The SVD was conducted at different logarithmically spaced frequencies (kr =
0.1− 10, using 12 values) and the dimensions are kept fixed throughout the
simulations. The development of the singular values can be seen in Fig.
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Figure 4.5: Sphere. The colored lines show the ten strongest singular values
over frequency (kr = 0.1− 10 in 12 logarithmically spaced steps). The black
dashed line plots 1

(kr)2h
(2)
n (kr)

.

4.5. The clear frequency dependence and the correspondence to the inverse
of the derivative of the spherical Hankel functions can be seen. Fig. 4.6
shows the singular vectore U corresponding to the strongest six singular
values. The modes for kr = {0.1, 0.5, 1} are plotted. It can be seen that the
modes are nearly equal. Fig. 4.7 shows the singular vectors V for different
frequencies. At low frequencies V is the identity matrix which means the
scattering response of one spherical wave component is independent of all
other responses. For frequencies k > 1 this does not hold anymore.

4.3.3 Cylinder

The modal analysis is applied to finite-length cylindrical arrays of different
dimensions. The generator models are shown in Fig. 4.4, where R is the
radius and 2L the height of the cylinder. The dimensions are kept fixed
throughout the simulations.

SVD for various frequencies

Figs. 4.8 (a)-(c) show the singular values over frequency. Dependending on
the dimensions the values differ compared to the sphere and also inside the
groups the values change. Further, the singular values become more uniform
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Figure 4.6: Sphere. Singular vectors U at {kR = 0.1, 0.5, 1} colored and
associated Legendre functions in black dashed.

up from kr ≈ 1. Figs. 4.9 - 4.11 show the singular vectors U for low fre-
quencies. It can be seen that the shape differs compared to the sphere but
the zero-crossing and peaks of the modes remain the same. This indicates
that the cylindrical array modes are distorted version of the spherical array
modes. Figs. 4.12-4.14 show the singular vectors V . Again, at low frequen-
cies the identity matrix results and for higher frequencies the SVD starts to
mix the modes and is not unique anymore.
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4.4 Discussion

In this chapter, a method for the modal analysis of general rotational-symmetric
array geometries was presented. The method is based on the SVD of the
scattering response of a rigid body due to a continuous incident plane wave
distribution represented by single spherical waves. The obtained singular vec-
tors and values can be interpreted as physical surface modes (array modes
and mode strength) similar to functions known from classical acoustics.

Two examples were presented. For the spherical array, it was found that
the method yields at low frequencies array modes and modal strengths cor-
responding to the spherical wave functions. In case of the cylinders, a similar
behavior of the modes is observable but dependent on the dimensions of the
cylinders the array modes are distorted versions of the spherical ones.

In general, in all cases real-valued vectors (or at least constant phase vec-
tors) could be found and the modes are approximately frequency independent
up to k ≈ 1. Above this frequency the SVD starts to mix the singular func-
tions because the singular values become more uniform (less degenerative).
A joint SVD was applied to a set of scattering matrices P at different fre-
quencies in between k = 0.1 − 10. Basically singular vectors equivalent to
the ones of low frequencies can be found (not shown here). However, as can
be seen in Fig. 4.15, the singular values resulting from the diagonalization
using the joint singular vectors are not diagonal at no frequency (shown for
sphere only). Using a joint diagonalization for frequencies below k ≈ 1 yields
better results (not shown either). This needs further investigation.
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Chapter 5

Spatial Resolution of
Cylindrical Microphone Arrays

This chapter basically reprints a publication that evolved out of the work
during this thesis and was presented at an international conference [KPZ12].
The paper was written together with co-authors, Hannes Pomberger and
Franz Zotter.

5.1 Introduction

Compact microphone arrays are used for sound field analysis (source local-
ization, source identification), spatial sound recording, spatial filtering of
sound (beamforming) and can be found in various applications from speech
recognition to room acoustical measurements. Especially compact spherical
microphone arrays received special attention over the last decade because of
the uniform treatment of all directions which is crucial for the capture and
reproduction of 3D acoustical scenes, cf. [ME02, AW02, Raf05]. However,
in some given acoustical scenes the sound sources can be constrained only
to a certain area, letting spherical arrays seem redundant. For that purpose
hemispherical arrays have been investigated, see [LD05], and also circular
arrays mounted on a rigid cylinder, cd. [ZDG10, TK06].

Fig. 5.1 shows different rigid shapes for microphone array geometries.
The sound pressure distribution is assumed to be available on the horizon-
tal ring in Fig. 5.1(a), on a ribbon around the horizon in Fig. 5.1(b) or on
the full array Fig. 5.1(c). As this pressure distribution is the basis of array
signal processing, it is simulated and used in order to compare the different
resolution properties of these array types. Correlations of the pressure dis-
tributions due to different plane waves carry information about the spatial

49
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(a) (b)

(c)

Figure 5.1: Different array shapes whose resolution properties are to be es-
timated: (a) ring arrays on a sphere and cylinders of different lengths, (b)
ribbon arrays on a sphere and cylinders of different lengths., and (c) the
entire shape used as array

resolution. We propose a method to find the resolution limits by investigat-
ing the correlation matrices of paired plane waves. The determinant of these
correlation matrices measures the discriminability and is used to indicate
difference angles above which two plane waves can be distinguished.

5.2 Analysis of Spatial Resolution

The scattering response for a rigid scatterer due to an incoming sound field
pI can be computed using the BEM (Ch. 3). The term pI describes the free
field sound pressure on the boundary and is expressed by

pI = ei k (x cosϕ0 sinϑ0+y sinϕ0 sinϑ0+z sinϑ0) (5.1)

for a plane wave impinging from ϕ0, ϑ0. The sound pressure distribution
for the array design in response to any plane wave is calculated in this way.
In order to evaluate the horizontal and vertical resolution as illustrated in
Fig. 5.2, a set of 2 plane waves are assumed to form the matrix of quasi con-
tinuous sound pressure samples P I = [pI(ϕ1, ϑ1), pI(ϕ2, ϑ2)]. For solutions
obtained with BEM, the corresponding surface sound pressure is calculated
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Figure 5.2: Geometry of a “vertical” and “horizontal” resolution angle with
regard to a reference zenith angle ϑ0.

according to the equation

P = (H −C)−1P I . (5.2)

One of our particular interests is to find out how the resolution changes
with the elevation angle if a cylindrical array is used, in comparison with a
spherical array that offers a uniform resolution. Let’s assume a set of two
plane waves from ϕ = 0, centered around the zenith angle ϑ0 and separated
by a space of ∆ϑ, i.e. P I = [pI(ϑ0−∆ϑ/2), pI(ϑ0 + ∆ϑ/2)]; another pair of
plane waves that is 90◦ rotated with respect to ϑ0 is used to determine the
“horizontal” resolution.

The correlation of the two plane waves with regard to their surface sound
pressure P obtained by Eq. (5.2) gives us a 2× 2 matrix

R(ϑ0,∆ϑ) = P HP =

(
pH

1 p1 pH
1 p2

pH
2 p1 pH

2 p2

)
=

(
r11 r12

r∗12 r22

)
. (5.3)

In order to distinguish between these two plane waves, the determinant

|R(ϑ0,∆ϑ)| = r11r22 − r∗12r12 (5.4)

must be big enough, i.e.
√
|R(ϑ0,∆ϑ)| ≥ Rth. Herein, Rth is a threshold

proportional to the squared sound pressure. This measure can be seen to
reflect the acoustic properties of a certain geometry concerning the discrim-
ination capabilities of different sound pressure distributions due to different
incidence directions.
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5.3 Simulation Results

(a) R=1, L=0.5 (b) R=1, L=1 (c) R=1, L=2

Figure 5.3: Cylinders models for BEM at different ratios (2:1, 1:1, 1:2) be-
tween height and diameter.

3 The three different configurations shown in Fig. 5.3 (ring, ribbon, whole
surface array) are simulated assuming a dense enough sampling, i.e. the ab-
sence of spatial aliasing. For the ribbon-shaped array surface, a fixed height
of ±0.5R is used. Fig. 5.4-5.6 show the spatial resolution that was calculated
using Eqs. 5.3 and 5.4 choosing a threshold of Rth ≥ 0.5 and two different
wavenumbers k = 0.4 and k = 6. All diagrams are divided into a left half
depicting the “vertical” resolution and a right half depicting the “horizontal”
resolution.

Fig. 5.4 shows that ring arrays on the different scatterers cannot resolve
waves that are symmetric around the equatorial plane ϑ0 = π/2. This ac-
counts for the typical half space confusion of symmetrical planar arrays. The
resolution improves for directions closer to the zenith and nadir, where it
is similar to the approximately constant horizontal resolution. Naturally,
the resolution is better for the higher wavenumber where one or more wave-
lengths are sampled by the array. Overall, the resolution of all cylindrical
scatterers is similar to the one of the sphere, except for ϑ0 around zenith or
nadir, where it is slightly smaller.

Fig. 5.5 plots the resolution of ribbon-shaped arrays on the different
scatterers. The best horizontal and vertical resolution is similar, and the
resolution around the equatorial plane ϑ0 = π/2 strongly improves as the
array extends in three dimensional. Again, cylindrical scatterers seem slightly
inferior to a spherical one.

Fig. 5.6 shows the spatial resolution for an active array aperture covering
the entire surface of the scatterer. As expected, the full-sampled sphere yields
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Figure 5.4: Spatial resolution for a ring array on different bodies, cf. Fig.
??. The solid line represents a sphere, the dashed line a cylinder with R =
1, L = 0.5 and the dash-dotted line a cylinder with R = 1, L = 2.

constant resolution in all directions, whereas it is only constant horizontally
for the cylinders. The vertical resolution of long cylindrical scatterers with
an array spread on the entire surface is naturally better around ϑ0 = π/2
than for a sphere of the same radius.

5.4 Discussion

We proposed a horizontal and vertical resolution measure to evaluate ring
and ribbon-shaped array apertures on cylindrical scatterers. The observation
was mostly based on numerical simulations, and analytic formulations were
included for the cases of a rigid sphere and the infinite cylinder.
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Figure 5.5: Spatial resolution for a ribbon array on different bodies, cf. Fig.
??. The solid line represents a sphere, the dashed line a cylinder with R =
1, L = 0.5 and the dash-dotted line a cylinder with R = 1, L = 2.
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Figure 5.6: Spatial resolution for an array fully sampling different bodies, cf.
Fig. ??. The solid line represents a sphere, the dashed line a cylinder with
R=1, L=0.5 and the dash-dotted line a cylinder with R=1,L=2.
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Concluding, the horizontal resolution does not vary much for arrays on
different scatterers, even at different zenith angles ϑ0. It seems that the
vertical resolution is merely affected around ϑ = π/2 and the difference is
determined by the height of the effective array aperture. Hence, only the
cylinder that is twice as high as wide clearly outperforms a spherical array
in its vertical resolution around the horizontal plane.

Exploiting the scattering off a cylinder to build microphone arrays does
not seem to yield a substantially different spatial resolution compared to
the sphere and should be further investigated because in general cylindrical
arrays are easier to realize practically.



Chapter 6

Conclusions

This work is concerned with microphone arrays and the influence of different
array shapes on the involved signal processing and the spatial performance.
Basic analytic and numeric tools were introduced and used to analyze spher-
ically and cylindrically shaped rigid microphone arrays. This work focussed
on the acoustic front-end of microphone arrays and not the signal processing
as such.

The main part of this thesis introduced a method to compute sets of basis
functions for the decomposition of signals measured with the array. The
method is based on the singular value decomposition of a scattering operator
computed using the BEM. The difference to the techniques presented in
literature is that the scattering operator includes a spherical wave transform
and the corresponding inverse problem tries to reconstruct the expansion
coefficients from the measured signals rather then the source strength or
density.

The array modes for a spherical shaped array are well-know from acoustic
literature and correspond to the spherical harmonics. These functions are
frequency independent and real-valued which simplifies the subsequent signal
processing severely. The question was raised if we can find functions with
similar properties also for other shapes and the cylinder was used as an
example. For low frequencies, below kr ≈ 1 such functions could be found.
Above that frequency the SVD is not unique anymore. The try to diagonalize
the operators for several frequencies did not directly provide good results,
which may be due to numerical issues. This need further investigations.
Nevertheless, it can be stated that uniform functions for low frequencies can
be provided using this method. At higher frequencies the basis functions are
dependent on the frequency, however, the overall complexity of the signal
processing can be reduced.

The second major part of this thesis was already presented in a publi-
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cation and was reprinted with a few adjustments. The spatial resolution of
different array shapes was investigated by looking at the correlation of the
array response to incident plane wave of varying direction. Again, this is
not concerned with properties of the signal processing but with the basic
acoustic properties of a rigid array. The resolution of different cylindrical
array configurations were not found to be of essential difference compared
to equivalent spherical arrays layouts. This indicates that cylindrical arrays
yield a similar performance as spherical arrays but may have the advantage
of simpler practical realization.



Appendix A

Fourier Analysis

A.1 Fourier Series

Using a Fourier series any kind of periodic function defined in an interval
a ≤ x ≤ b can be represented by an infinite sum of cosine and sine functions.
It is given by

f(x) = a0 +
∞∑
n=1

(
an cosnx+ bn sinnx

)
, (A.1)

where f(x) is a 2π-periodic function and an and bn are the Fourier coefficients.
The coefficients can be computed by the Euler formulas

a0 =
1

2π

∫ π

−π
f(x) dx ,

an =
1

π

∫ π

−π
f(x) cosnx dx , (A.2)

bn =
1

π

∫ π

−π
f(x) sinnx dx.

The Fourier series simplifies some mathematical relations and made it
possible to solve the wave equation in cartesian coordinates. The trigono-
metric functions, e.g., can be seen as the fundamental modes of vibration of
a string.

A.2 Generalized Fourier Series

The Fourier series is an orthogonal expansion which is based on the trigono-
metric system. This can be generalized by using any kind of orthogonal
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system.
May y0, y1, y2, . . . be a set of orthogonal functions on an interval a ≤ x ≤ b

defined by

(yk, yi) =

∫ b

a

w(x)yk(x)yi(x) dx = δki =
{ 0 if k 6= i

1 if k = i
, (A.3)

where δki is the Kronecker delta, w(x) is a weighting function and the norm
||yk|| is given by

||y|| =
√

(yk, yk) =

√∫ b

a

w(x) y2(x)dx . (A.4)

Then, any function f(x) on the interval can be represented as

f(x) =
∞∑
k=0

ak yk(x) , (A.5)

where ak are the coefficients (Fourier constants) of the orthogonal expansion
(generalized Fourier series) [Kre06, Sec. 11.6].

The orthogonality allows for deriving a generalized form of Euler’s for-
mulas for obtaining the coefficients. This is done by multiplying both sides
of Eq. A.5 by yi and integrate from a to b (omitting the variable x)∫ b

a

f yi dx =

∫ b

a

( ∞∑
k=0

akyk

)
yi dx . (A.6)

The term on the right hand side can be simplified using the orthogonality of
the functions yk (with nonzero norm),

∞∑
k=0

ak

∫ b

a

ykyi dx =
∞∑
k=0

ak δki ||yi||2 = ai ||yi||2 (for k=i). (A.7)

Finally, the Fourier coefficients can be obtained by

ak =
1

||yk||2

∫ b

a

f(x) yk(x) dx . (A.8)
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Completeness A set of orthogonal function is complete if the mean square
error converges to zero,

lim
k→∞
||f(x)−

∞∑
k=0

akyk(x)||2 = 0 . (A.9)

Further, a finite set of orthogonal functions is also said complete if the mean
square error is smaller than a threshold ε > 0 [Kre06, Ch. 5.8],

||f(x)−
K∑
k=0

akyk(x)||2 < ε . (A.10)

where K is the number of orthogonal functions. In this case Bessel’s inequal-
ity holds

K∑
k=0

ak ≤ ||f(x)||2 . (A.11)

If a set of orthogonal functions is infinite, this becomes Parseval’s theorem
[Wei12]

∞∑
k=0

a2
k = ||f(x)||2 =

∫ b

a

f(x)2 dx . (A.12)

Examples of general Fourier series are the Fourier-Legendre series and the
Fourier-Bessel series [Kre06, Sec. 11.6].

A.3 Fourier Transform

The Fourier series is applicable on periodic functions only. An extension
of this is to generalize the Fourier series by using any kind of orthogonal
basis defined on a finite interval only. A second extension is found when the
Fourier series is extended to nonperiodic functions. This leads to the Fourier
integrals and the Fourier transform. In general, an integral transform changes
a function into a new function that is dependent on another variable. It is
an important tool for solving differential- and integral equations, because
differentiations are converted into algebraic operations.

The Fourier transform shown here is a complex transform, in contrast to
the Fourier cosine or sine transforms. It is derived from the complex form of
the Fourier integral which is the extension of the Fourier series to non-periodic
functions (see [Kre06, Sec. 11.9]). As in the framework of array signal
processing, both, the spatial Fourier transform and the temporal Fourier
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transform are of interest, they shell both be defined here. The temporal
Fourier transform F (ω) of a time-domain function f(t) is given by

F (ω) =

∫ ∞
−∞

f(t)e−iωtdt , (A.13)

and it’s inverse

f(t) =
1

2π

∫ ∞
−∞

F (ω)eiωtdt , (A.14)

where ω = 2πf is the radial frequency. It yields the relation between a
time-domain function and it’s frequency-domain representation.

The spatial Fourier transform F (kx) of a spatial function f(x) is given by

F (kx) =

∫ ∞
−∞

f(x)eikxxdx , (A.15)

and it’s inverse

f(x) =
1

2π

∫ ∞
−∞

F (kx)e
−ikxxdx , (A.16)

where kx = ω
c

= 2π
λ

is the wave number with c the speed of sound and λ
the wave-length. This yields a relation between a spatial function and it’s
angular spectrum [Wil99, Sec. 2.9].



Appendix B

Special Functions

B.1 Bessel Functions

The Bessel functions of first and second kind, Jn(kr) and Yn(kr), are the
solutions to Bessel’s equation (Eq. 2.20) which arises from the separation of
variables of the Helmholtz equation in cylindrical coordinates [Wil99]. They
state the standing wave solutions. Traveling wave solutions can be achieved
by combining both functions which yields the Hankel functions of first and
second kind (with time dependence eiωt)

H
(1)
n (kr) = Jn(kr)− iYn(kr) ,

H
(2)
n (kr) = Jn(kr) + iYn(kr) .

(B.1)

Equivalently, the spherical Bessel functions of first and second kind are
the standing wave solutions of spherical Bessel’s equation (Eq. 2.26) which
originates from the separation of variables of the Helmholtz equation in spher-
ical coordinates. Again, traveling wave solutions are achieved by composing
the spherical Bessel functions in the same way as before.

As remarked in [Zot09] not all solutions are physical and thus some so-
lutions have to be omitted. Figure B.1 depicts the feasible cylindrical radial
solutions and Fig. B.2 depicts the feasible spherical radial solutions.

B.2 Associated Legendre Functions

The separation of variables of the Helmholtz equation in spherical coordinates
yield the associated Legendre equation (Eq. 2.26) for the zenith coordinate ϑ.
The solution yields the associated Legendre function of first and second kind,
Pm
n (cosϑ) and Qm

n (cosϑ), where the functions of second kind are usually
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Figure B.1: Bessel function of first kind (a) and Hankel function of second
kind (b).

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

kr

 

 

n=0

n=1

n=2

n=3

(a)

10
−2

10
−1

10
0

10
1

−20

0

20

40

60

80

100

kr

d
B

 

 

n=0

n=1

n=2

n=3

(b)

Figure B.2: Spherical Bessel function of first kind (a) and spherical Hankel
function of second kind (b).



B.3. Spherical Harmonics 65

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

 

 

n=0,m=0

n=1,m=0

n=2,m=0

n=3,m=0

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x

 

 

n=1,m=1

n=2,m=1

n=3,m=1

(b)

Figure B.3: Associated Legendre function up to order 3 for m=0 (a) and
m=1 (b).

discarded because they have singularities at the poles. However they have
to be used in the solutions of the Helmholtz equation on prolate and oblate
spheroidal coordinates [Wei12]. Fig. B.3 depicts the associated Legendre
functions of first kind.

B.3 Spherical Harmonics

The angular solutions of the Helmholtz equation in spherical coordinates are
usually combined to yield the so called spherical harmonics Y m

n . The real
valued spherical harmonics are defined as

Y m
n (ϕ, ϑ) = N |m|n P |m|n (cosϑ)

{
cos(mϕ) , for m > 0

sin(mϕ) , for m ≤ 0
, (B.2)

where Nm
n is a normalization constant given by

Nm
n = (−1)m

√
(2n+ 1)(2− δm)

4π

(n− |m|)!
(n+ |m|)!

, (B.3)

and P
|m|
n are the associated Legendre functions. The spherical harmonics

form a complete set of orthonormal functions∫ 2π

0

∫ π

0

Y m
n (ϕ, ϑ)Y m′

n′ (ϕ, ϑ) sinϑdϑdφ = δnn′δmm′ (B.4)
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Figure B.4: Plot of the spherical harmonics up to order 3.

where δnn′ is the Kronecker delta given by

δij =

{
0 , for i 6= j

1 , for i = j
. (B.5)

The orthogonality means that any kind of function f(ϕ, ϑ) defined on a sphere
can be expanded using the spherical harmonics

f(ϕ, ϑ) =
∞∑
n=0

n∑
m=−n

anmY
m
n (ϕ, ϑ) , (B.6)

where anm are the coefficients of the expansion given by

anm =

∫ 2π

0

∫ π

0

f(ϕ, ϑ)Y m
n (ϕ, ϑ) sinϑdϑdφ . (B.7)

In case only the rotational symmetric harmonics (zonal harmonics) are of
interest, Eq. B.2 reduces to [Wil99]

Y 0
n (ϕ, ϑ) =

√
2n+ 1

4π
Pn(cosϑ) , (B.8)

where Pn are the Legendre polynomials. Figure B.4 depicts the spherical
harmonics up to order 3.



Appendix C

Beamforming as an Inverse
Problem

The sound field due to a source distribution was represented as an integral
operator in chapter 4. The main questions were concerned with the decom-
position of this operator. However, the purpose of using microphone arrays
is to reconstruct the incoming sound field or to focus only on a certain area in
space. This problem can be formulated as an inverse problem [NE93, Faz10].
The discretely measured sound pressure due to an irradiating sound field can
be written as

p = Pϕ (C.1)

where P is a matrix representing transfer functions, p is the vector of mea-
sured sound pressures and ϕ is the source density or source strength. P is
acting from the source space S0 and the receiver space S. The reconstruction
of the sources demands a matrix inversion

ϕ = P−1p . (C.2)

This inversion can be done by representing P using the SVD

P = UΣV H, P−1 = V Σ−1UH , (C.3)

or explicitly written

P =
K∑
i=1

σi〈vi, ui〉, P−1 =
K∑
i=1

1

σi
〈ui, vi〉 . (C.4)

where K is the number of singular vectors and 〈·〉 is the scalar product.
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Practically the inversion of P using the SVD has to be regularized [Han87,
Faz10]. The simplest way is to truncate the singular values and set every
singular value to zero that falls below a certain threshold. This yields an
approximate ϕa

ϕa = P−1
a p = V Σ−1

a U
H . (C.5)

The goal is to make the error as small as possible, ||p−pa|| = 0, which leads
to

Paϕa = Pϕ ,

ϕa = P−1
a Pϕ ,

ϕa = V Σ−1
a UHU︸ ︷︷ ︸

I

ΣV Hϕ . (C.6)

Setting ϕ to be driving only one source direction, the expression V Σ−1
a ΣV H

can be seen as a beamforming operation where the term Σ−1
a Σ states a loss

of information.



Appendix D

Modal Analysis of Free-Field
Radiators

D.1 The Radiation Problem

The radiated or scattered1 sound field from sound sources in an arbitrarily
shaped region V with surface S can be represented in the free-field using
Green’s functions satisfying the homogeneous Neumann boundary condition
on the surface of the body. The Green’s function can be seen as a point
source placed on an otherwise rigid body. This, so called Neumann Green’s
function GN(x|y), satisfies the following set of equations [Wil99]:

(∆ + k2)GN(x|y) = −δ(x− y), x ∈ R3,

∇GN(x|y) = 0 , y ∈ S ,
lim
r→∞

GN(x|y) = 0 ,

(D.1)

where x = (xx, yx, zx) is a coordinate vector anywhere in the field and y =
(xy, yy, zy) is a coordinate vector on the surface S. Using Neumann Green’s
function in the HIE (Eq. 2.15), it becomes

C(x)p(x) = iρ0ω

∫∫
S

vn(y)GN(x|y) dS(y), (D.2)

where ρ0 is the air density and vn is the normal particle velocity defined by
vn = v · ny with ny the normal vector to S. Eq. D.2 states that the sound
pressure anywhere in the field can be expressed by a superposition of contin-
uously distributed point sources placed on a rigid boundary S knowing the

1Due to the principle of acoustic reciprocity the radiated and the scattered sound field
are equal.
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normal particle velocity on the surface only. Because the particle velocity on
a boundary is explicitly related to the sound pressure, this integral equation
is similar to Rayleigh’s integral formulas [VW04]. Further it can be seen as a
transfer impedance operator relating the sound pressure in the field and the
particle velocity on the boundary S [NK01].

This relation is dependent on frequency and the geometry. Changing
the geometry of the source or the field boundary, changes the Neumann
Green’s function and also changing the frequency influences the outcome of
the integration.

D.1.1 Singular Functions of the Radiation Operator

Using operator notation, Eq. D.2 can be written as

p(x) = (GN vn)(x), (D.3)

where GN is the operator representing the integral operation of Eq. D.2
defined as GN : S → S0 where S0 is the space of the observation points in
the far-field. The singular system or spectral decomposition of this radiation
operator is given by

GN =
∞∑
j=1

uj(x)σj vj(y) (D.4)

where σj are the singular values and uj(x) and vj(y) are the left and right
singular functions, respectively [CK98] [Bor90], [Faz10, Ch. 3]. Eq. D.4 is
analogous to the SVD of a matrix. The singular functions form two sets of
orthogonal functions and the singular values relate the singular functions to
each other. Using the spectral decomposition in Eq. D.3 it becomes

p(x) = (GN vn)(x) =
∞∑
n=1

uj(x)σj 〈vj|vn〉, (D.5)

where 〈vj|vn〉 is the scalar product of the velocity pattern with the singular
functions of the radiator defined by

〈vj|vn〉 =

∫
vn(y) v∗j (y) dy , (D.6)

where v∗j indicates the complex conjugate.
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The singular vectors are as the acoustic radiation modes of the radiating
boundary S and the field or measurement boundary S0 and the singular values
correspond to the radiation efficiencies of the modes [CNC01]. Equivalentely
Nelson [NK01] calls them the “source modes” and the “field modes”.

D.1.2 Neumann Green’s Function Matrix

The Green’s function satisfying specific boundary conditions is not easy to
express unless the geometry of the problem corresponds to one of the sepa-
rable ones [MF53, Ch. 5]. However, using the free-field Green’s function one
can express the Neumann or the Dirichlet Green’s function using the HIE
[Wil99, VW04, NK01]. This is not exliciltly shown here. The practical way
of calculating a matrix containing the single contributions of the Neuman
Green’s function is presented now.

The discretized version of the HIE is given by (cf. Ch. 3 for more detail)

Cp = Hp−Gpn . (D.7)

where p and pn are the sound pressure and its normal derivative in vector
form and (C,G,H) ∈ RL×L are the BEM matrices where L is the number
of surface points. Now, the radiated sound field can be calculated in two
steps assuming pn to be known. First, the sound pressure on the boundary
(x ∈ S) is expressed by

ps = (H(s) −C(s))−1G(s)p(s)
n , (D.8)

where the subscript s indicates the relations on the surface. Secondly, know-
ing the sound pressure and its normal derivative on the boundary S, the
sound pressure exterior to the region V (x ∈ R3\V ) can be written as

p(f) = H(f)(H(s) −C(s))−1G(s)p(f)
n −Gfp

(f)
n , (D.9)

where the subscript f indicates the matrix relations from the boundary to the
field and (Gf ,H f) ∈ RL×F where F is the number of field points. Further,

p(f) =
(
H(f)(H(s) −C(s))−1G(s) −G(f)

)
︸ ︷︷ ︸

GN

p(f)
n , (D.10)

where GN is the Neumann Green’s function GN in matrix representation.
The radiation problem can be written in matrix form

p = GN vn . (D.11)
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D.1.3 SVD of Neumann Green’s Function Matrix

Using the SVD of the Neumann Green’s function matrix, Eq. D.11 can be
written to

p = UΣV H vn (D.12)

where U ∈ RL×L contains the left singular-vectors in columns, V ∈ RF×F

contains the right singular vectors and Σ ∈ RL×F is a diagonal matrix con-
taining the singular values. When rewriting this equation to

UH p = ΣV H vn , (D.13)

it becomes clear that the singular vectors U state a set of basis vectors for
the space of p and V represents the same for the space of vn. This indicates
a correspondence of the results of the SVD and the basis functions derived
for separable geometry’s [NK01].

Equivalent to the singular functions from before the singular vectors are
the acoustic radiation modes and the singular values are the corresponding
radiation efficiencies. Again, it has to be clearly stated that the result of
the SVD is dependent on the frequency and the geometric relations of the
radiating surface S and the receiving surface S0.

D.2 Radiation Modes for Varying Scalings

As a thorough modal analysis of a sphere and a cylinder is presented in Ch.
4 and the array modes obtained using the SVD of Green’s function matrix
yields equivalent modes, this is not repeated here. However, with both meth-
ods described in this thesis, a modal analysis for different scalings (distances)
of the field points or the source distribution can be achieved. This is inter-
esting because the singular values will correspond to functions representing
sound propagation.

The simulations were conducted using the axisymmetric BEM formula-
tion for m = 0. Fig. D.1 (a) shows the singular values over different scalings
of the field points for the sphere. It can be seen that they correspond exactly
to the magnitude of the spherical Hankel functions. In Fig. D.1 (b) the same
simulation is shown but for a cylinder of dimensions R

L
= 1

1
. It can be seen

that also the cylinder follows the Hankel functions but the values for order
N > 0 are higher.
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