
TOWARDS FULLY AUTOMATED object -VERIFICATION

IOhannes m zmölnig
Institute of Electronic Music and Acoustics

University of Music and Dramatic Arts
Graz, Austria
zmoelnig@iem.at

ABSTRACT

While other sound synthesis systems have made the
switch to 64-bit floating point values for signal pro-
cessing a while ago, Pure Data (Pd) seems to be stuck
with single precision numbers. An initial port to 64-
bit precision has been presented in 2011, but 5 years
later little progress has been made. One of the al-
leged showstoppers for switching to 64-bit precision
is the plethora of available 3rd party externals, many
of which might start malfunctioning in subtle ways.
In this work we try to solve this problem by means of
automatic object verification.
Keywords. unit tests, fuzz testing, automatic test-
ing, double precision Pd, Pure data

1. INTRODUCTION

In 2006, Csound5 was released and featured a
Csound64 flavor, which uses double precision signal
processing throughout [6]. It took until 2011, when
Vetter created an initial 64-bit precision build of Pd
[7], but 5 years later we are practically still using
only single precision builds, with the double precision
amendments that made it into the Pd-core silently bit
rotting away.

There are a number of reasons why we see so little
adoption. One of the alleged showstoppers for switch-
ing to 64-bit precision is the plethora of available 3rd
party externals, many of which might appear to work
fine (e.g. it is possible to compile these external with
setting the Pd-data types to double precision). But
when those objects are actually used, they might turn
out to be fundamentally broken [8].

The two obvious ways to deal with this problem
are to either optimistically introduce the change and
hope that people will report any problems so they
can promptly be fixed (at the expense that the users
will have a broken system until all those issues are
fixed), or to proactively inspect the source code of all
those externals for potential problems with the pro-
posed change. Neither of the two ways is especially
appealing.

In software industries the „standard” way to auto-
matically verify whether a piece of code is working as
expected (e.g. after doing a major refactoring of the

source code), is by running it through a number of
unit tests, that check whether a „program” produces
the expected result when fed with known input data.

Unit tests for Pd are nothing new: a few libraries
come with their own ad-hoc unit test suites (e.g.
zexy, including a bash-script for running about 100
unit tests since late 2005 [11] (although about 70% of
the tests check for trivial parameters like existence),
or PuREST JSON, featuring a python-based system
since 2014 with 20 functional tests).

There have also been several proposals for formal-
ized unit test frameworks, starting with PureUnity
[1] up to testtools [3].

Incidentally, the latter was designed (among other
things) to provide a means to automatically verify
whether an object is fit for double precision Pd.

One big disadvantage of unit testing is that some-
body has to write the actual unit tests, which is time
consuming and unrewarding, resulting in poor adop-
tion: of more than 160 libraries found on the Pure
Data SVN on Sourceforge, only six (6!) have a test
suite than can be run automatically.

However, poor adaption of unit testing can also
be observed in the software industry in general [4].
This has led to the development of automatic testing
systems, like American Fuzzy Lop [9], which auto-
matically creates a corpus of test data that will test
as many lines of code as possible. These systems are
normally used to find security flaws and crasher bugs,
by feeding unexpected input data to a program. No-
tably, such unsupervised testing is not targeted at
verifying whether a program produces the correct out-
put given a known input. However, a synthesized test
corpus can be used to verify, whether the software be-
ing tested behaves the same in different environments.

The underlying assumption is, that if we have a
test corpus that - when fed into a software unit run-
ning in an environment A - triggers execution of all
possible code paths in that unit, then the unit’s be-
havior is fully determined. If we then use this very
same test corpus on that unit in a different environ-
ment B and the unit’s response is the „same” (within
limits), then the object can be considered to work the
same in both environments. Finally, if the unit is al-
ready known to work correctly in environment A, we
can conclude that it is then also working correctly

mailto:zmoelnig@iem.at


in environment B.
For Pd, those units could be single objects, while

environments could be different supported platforms
(Linux, OSX, W32,…), but they could also be dif-
ferent flavors of Pd, such as the traditional single
precision Pd or the double precision Pd. Further-
more, such environments could be the different forks
of the Pd-engine, such as Pd-devel, Desire Data, Pd-
extended, Pd-l2ork or Purr Data. Given that many
Pd objects have been heavily tested over the last few
years on Pd-vanilla (and Pd-extended), we assume
that they are working correctly (though not neces-
sarily bug-free) in this environment.

2. GOAL

This project’s goal is the automatic creation of test
corpora for any Pd object. We are targeting primarily
at externals (compiled objects, written in C), since
the environments we want to investigate (single resp.
double precision Pd) are mainly differing on the low,
binary level. If all objects that interact with the low-
level data representation are working correctly, we
don’t expect any environment-specific problems with
objects that only operate on the high level.

However, the methods we are using can equally be
applied to abstractions.

3. DESIGN

For the task at hand we created the PeDAnT frame-
work (an acronym for Pure Data Automatic Testing
framework).

The purpose of this testing framework is to gen-
erate a corpus of test data, and to provide a way to
run each test case through the object: e.g. by send-
ing messages or signals to its inlet s, or letting time
pass. It also needs to provide a way to record all
output of the object (whatever message or signal was
sent to its outlet s at which time), so test runs in
different environments can be compared.

3.1. Corpus Synthesis

The most complicated part in this endeavor is cer-
tainly the creation of a test corpus, that covers all
aspects of our object. For this task, we propose to
utilize fuzz testing tools. In fuzz testing, software is
tested by feeding it generated random data as input,
and watching the software’s reaction. It is mostly
used to detect vulnerabilities, such as memory leaks
or even crashes that depend on the input data. How-
ever, naïvely generating random data is unlikely to
find many of these „interesting” edge cases in finite
time. A promising technique to solve this problem is
to use program-flow analysis of the tested binary as
a fitness indicator for a genetic algorithm, which is
used to (per)mutate a small starting corpus.

Figure 1. Automatically connecting all iolets of
mtx_*∼ 3 5 100 under test

One popular (and fast) tool that utilizes this ap-
proach is Michał Zalewski’s American Fuzzy Lop
(afl-fuzz), which uses code instrumentation to gen-
erate a test corpus that triggers the execution of a
maximum number of source code lines in the tested
program. afl-fuzz also features a „fork server” to
rapidly start numerous test runs (e.g. we found that
it could start up Pd up to 1000 times per second -
with Pd opening a test patch, loading the test data,
feeding data into the test object and the quitting).

However, despite the astonishing performance of
the test runs and a corpus generation that is sped up
by code coverage analysis, fuzz testing is still a very
laborious undertaking: testing a single program can
easily take days!

Since afl-fuzz will keep generating data forever, a
termination condition is needed. Using gcov (the test
coverage program that comes with the GNU Compiler
Collection), it is easy to create a (human readable)
report on how many lines of code are already cov-
ered by the test corpus. Once a maximum of code is
covered, the test corpus can be considered complete.
In practice this maximum will often be below 100%,
mostly because some branches in the code are sim-
ply unreachable (e.g. a debugging function that is
compiled but not actually used).

3.2. PeDAnT Framework

A small support library has been written that instan-
tiates an object, fully connects its iolets (Fig.1) and
then feeds test data to the object and records any
response it gets.

This library is used in an abstraction
pedant-run.pd that executes a single test run
and then quits Pd. It is to be used in -batch mode
for speedy execution (this is important as the tests
also include (randomized) time, so running a test in
real time might take years).

The rest consists of a set of Python scripts, mainly
wrapping a correct invocation of afl-fuzz (and
gcov), so it uses the Pd-patch to instantiate the
tested object and feed it the synthesized test corpus.

There are also scripts to feed a (completed) corpus
to a tested object and record it’s responses, and to



compare the responses of two test runs (e.g. within
different environments).

Most scripts take a configuration file (Listing 1)
that can be shared among the various tasks.

[pedant]
subject=limiter~
[pd]
#binary=/usr/bin/puredata
args=-path /home/pedant/src/zexy/src/
[afl-fuzz]
tests=workbench/limiter~/seedtest/
#dict=workbench/limiter~/dict/
out=workbench/limiter~
[afl-cov]
binary=/home/pedant/bin/afl-cov
codedir=/home/pedant/src/zexy/src/
args=--coverage-at-exit

Listing 1: PeDAnT shared configuration

3.3. Test Input Data

So far we found three different types of input data
that determine the behavior of an object. Any con-
crete object may not necessarily require all three
types to be fully determined.

3.3.1. Signals:

Signals consist of a series of numbers (signal blocks).
For every DSP-tick all inlet∼ s need to be filled)
with full signal blocks (each of equal length).

3.3.2. Messages:

Messages consist only of serializable data (numbers
and symbols), that are send immediately („now”) to
the specified inlet of the object.

3.3.3. Time:

The time data type allows to schedule messages (and
signals) by advancing the logical time („now”). Some
objects exhibit their specific behavior only over time
(e.g. delay ), and this data type provides a way to
make (logical) time pass.

3.4. File Format

afl-fuzz is capable of synthesizing test data of al-
most arbitrary complexity [10]. However, the synthe-
sizing algorithm mostly alters existing test cases by
randomly flipping bits, or by cutting up test cases
and splicing them together anew.

A file format with the following characteristics
should greatly improve the speed of test data gen-
eration:

• expressive: randomly flipping bits should create
(very) different test-cases.

• robust: randomly splicing test-data should cre-
ate valid test-cases again.

• precise: it should be easy to express any number
and any string.

• extensible: it should be easy to add new data
types.

These requirements led to the design of a binary
format as described in Listing 2.

To allow for an arbitrary number of data points
(e.g. messages or signals) each holding arbitrary data
(including typical EOL characters like CRLF or NUL),
each data point is SLIP-encoded [5]. The data rep-
resentation of the actual values are modeled closely
after the values found in current (32-bit) Pd-vanilla:
all numbers (including samples) are 32-bit floating
point values. Timestamps are stored as double pre-
cision (64-bit) floating point values, and are actually
time increments (in [ms]): in order to guarantee a
monotonic clock those values must therefore always
be positive.

Signals are stored as an arbitrary length list of
numbers. The actually used signal samples are then
calculated by repeating the sequence as needed, until
all inlet∼ s are filled. In order to fully determine
the signal input to an object, an additional parameter
signalblocksize is therefore required. To keep the sig-
nal block size in a reasonable range, the actual value
stored is an exponent in the range 0..16 (which gives
possible block sizes 1..65536).

Data generated by an object during a test run can
be stored for later comparison by prefixing each data
frame with a *. When reading a data file as input, any
lines prefixed with * are simply ignored. (In general,
unknown prefixes are ignored).

4. WORKFLOW

4.1. Generating Input Data

The central task of the framework is the synthesis of
a meaningful test corpus. This is done with the help
of the fuzzer tool afl-fuzz.

4.1.1. Instrumenting the Tested Objects

afl-fuzz works best if it can instrument the binary
under test, by adding marker points that allow a quick
evaluation whether a given code path has been exe-
cuted or not. Instrumenting the binary also allows
afl-fuzz to apply its fork server during the tests,
which greatly speeds up testing as it doesn’t need to
spawn a new process for each test run.



; data points are SLIP-encoded before being stored in the file
datapoint = direction (message / timeincrement / signal / signalblocksize)
direction = ["*"] ; the optional '*' prefix indicates result data (not used as input)
message = %s"m" iolet *(string / float)
timeincrement = %s"t" float64 ; positive delta time in [ms]
signal = %s"s" *float32
signalblocksize = %s"b" bsize ; the actual bufsize is 2^bsize
string = %s"s" *CHAR *1%x00
float = %s"f" float32
float32 = 4OCTET ; 4byte float (big-endian)
float64 = 8OCTET ; 8byte float (big-endian)
iolet = OCTET ; unsigned char
bsize = OCTET ; unsigned char

Listing 2: ABNF of the test file format

Instrumenting is done by by building the object
with a special compiler afl-gcc 1 , an enhanced vari-
ant of gcc. Any reasonable build system allows to
override the compiler via the CC (or CXX, in case of
C++-projects) variable.

4.1.2. Seeding the Test Data

In order to quickly create „interesting” test data, the
genetic algorithm needs to be seeded with some initial
„meaningful” test cases. For this purpose we pursued
the following strategies, all of which can at least be
semi-automated:

1. Harvesting existing (help-)patches for messages
that make sense to the object: For this we
simply extracted any message (as found in
message boxes ) from patches that use the ob-
ject, and created one test case per found mes-
sage. We relied on the splicing capabilities of the
fuzzer to create meaningful message sequences
from these solitary messages.

2. Keyword dictionaries: afl-fuzz can use dictio-
naries of keywords to build additional tests. By
extracting strings/symbols from the source code
and binary files of the object, we built a small
set of keywords that are hopefully useful when
testing the object.

3. Existing tests: Many Pd objects have similar in-
terfaces. Therefore the test corpus of one object
can serve as a good starting point for another ob-
ject. However, this can quickly give a too large
seed corpus, which will slow down the genetic al-
gorithm, especially if many tests do not fit the
object’s interface (e.g. a message for which the
object has no method). afl provides a tool for
corpus minimization, which will remove superflu-
ous tests from a corpus that do not trigger any
new execution paths.

1 or afl-clang if that is preferred, though we haven’t used
that in our tests so far.

4.1.3. Synthesizing Data

Once a suitable seed corpus has been created, the
fuzzer can start generating a full test corpus.

pedant-fuzz \
--config mytest.conf \
--fuzz-out <inputcorpus>

The fuzzer will then start to generate thousands of
test cases, and run them through the tested object.
Whenever it detects that new execution paths have
been triggered by a given test, it will use that test as
the new seed for generating even more tests.

Targeting the fuzzer at the zexy’s limiter∼ , it
took about 10 days (with 4 synchronized fuzzer in-
stances) to generate a total of 11643 test cases (see
Fig.2).

4.1.4. Minimizing Input Data

The generated corpus is usually rather large and cov-
ers a lot of redundant tests. Many items in the corpus
will contain garbage data (due to the random nature
of the test generation), which can easily be eliminated
by parsing the test file, discarding invalid data points
and saving the remaining ones. Any duplicates cre-
ated during this process can be safely eliminated.

Also, afl provides a corpus minimization tool,
afl-cmin, which can further reduce the corpus to a
minimum set of files that covers all code paths.

pedant-cmin \
--config mytest.conf \
<inputcorpus> <reducedcorpus>

This was able to reduce the 11643 test cases for
limiter∼ to 696. (while at the same time reducing
the memory footprint from 90MB to 3.4MB).

4.1.5. Creating Tests

Once a sufficiently large corpus of test data has been
generated, one more test run is needed to generate



Figure 2. code paths discovered by one of four parallel fuzzer instances over the period of 10 days, targeting
zexy’s limiter∼ . After one week, a fundamentally new code path was discovered, creating a new set of
test-cases to be explored.

a set of comparable tests. This time, the output of
the tested object is stored alongside its input, thus
recording the entire interaction of the object (modulo
side effects). Output data has the very same format
and available types as input data (see 3.3) (though
this time the outlet number is stored along with a
message), but is marked with an asterisk (*) prefix
within the file.

pedant-run \
--config mytest.conf \
<inputcorpus> <resultsA>

4.2. Running Tests

The test corpus (consisting of input and output data)
can then be used to verify the object in a different
environment, simply by using it as input (discarding
any output data present in the corpus) and storing
the results in a different directory:

pedant-run \
--config mytest.conf \
<resultsA> <resultsB>

4.3. Comparing Results

Verifying the object is done by comparing
<resultsA> and <resultsB>, data item by data
item: if any of the output data differs the test has
failed (if the input data differs, the test run itself was
faulty). Symbols and integer values in the test data,
are compared for absolute equality, but floating point
data needs special consideration [2] and is compared
with both an absolute and a relative (in relation to
the reference (input) data) ε. One can also specify
a value for ∞ (any data that has a bigger absolute
value, will be treated as inf). This is useful, since an
intermediate inf value can poison the final result, and
when doing double precision calculations this poison-
ing is less likely to happen.

pedant-compare \
--absolute-tolerance 3e-5 \
--relative-tolerance 1e-5 \
--infinity 1e30 \
<resultsA> <resultsB>

5. DISCUSSION

5.1. Interpreting Failed Tests

Even when fuzzily comparing test results (as dis-
cussed in 4.3), verifying a double precision build of
limiter∼ against a single precision reference still
yields a few false positives. These happen with very
large input values that make the single precision
binary unstable. There are a number of false posi-
tives like this, where a failing test is actually desired
behavior, as it hints at the advantages of the tested
environment: e.g. that it is possible to do things with
a double precision environment that are impossible
to do in a single precision environment.

It turns out that interpreting the result of a failed
test (the differences between the output data sets gen-
erated by multiple test runs) is surprisingly hard, as
it lacks meaningful context data. Is the failed test a
false positive? If it hints at a real problem, where to
start looking for in the source code?

5.2. Performance

So far, we have only conducted experimental test runs
on a very small scale. The hardware used to conduct
the tests was an Intel®Core™i7-870 CPU, running at
2.93GHz, where 4 cores where used to run four fuzzer
instances in parallel.

The corpus synthesis for a slightly complex object
like limiter∼ already took quite a lot of time - in the
order of days to weeks, raising the question on how
useful the proposed technique would be in testing the
hundreds of objects commonly used.

On the other hand, simple objects like sgn∼ take
considerably less time: starting from a single generic



seed test case, it took less than five minutes to create
200 test cases (before minimization) that cover 97.2%
of the entire code.

5.3. Automation

As of now, the automation of the framework consists
of a few scripts that still require some human inter-
vention. Most notably the corpus generation requires
supervision to determine the halting condition.

5.4. Limitations of Testable Objects

Currently the only kind of objects that can be
tested without user intervention are functional ob-
jects. That is, only objects that generate their out-
put solely from their input data (and their internal
state, as defined by creation arguments). This ex-
cludes any object whose acquire input data from ex-
ternal sources (such as files, user-input, hardware,…).
Also, the tests depend on the object sending any out-
put through its outlet s and currently do not check
for any side-effects (such as created files, or controlled
hardware).

Objects that depend on other objects (e.g. r foo
or tabread bar ) can be tested, but require a (hu-
man) agent to create a functional abstraction that
wraps the interaction of the object with it’s peers and
presents an interface where only serializable data is
sent via inlet / outlet s.

5.5. The Bad News: Code Coverage as a Ter-
minating Condition

Unfortunately, it was easy to proof that the primary
assumption of the framework (that by executing a
maximum of code-paths we can reliably trigger all
bugs that produce different results on single resp.
double precision builds) can be falsified.

E.g. running aggressive minimization on the cor-
pus for limiter∼ , reduced the number of test cases
to 260, which cover 98.1% of the limiter~.c source
code (a local maximum: the remaining 7 lines of
code were never executed because they were gener-
ally unreachable or because the creation arguments
to limiter∼ were kept fixed). Running those tests
in single resp. double precision environments re-
vealed 11 test cases that would produce different re-
sults, thus failing the tests.

Removing these interesting test cases from the set
(thus producing a non-failing test corpus) and re-
evaluating the covered code-paths resulted in a cov-
erage of 98.1%, which is exactly the same coverage
as when those test cases were included.

Therefore, maximizing the code-coverage is not a
sufficient strategy to catch all errors introduced by
double precision builds (since the generated test cor-
pus could have well not-included the interesting test

cases, and still would have been considered „com-
plete”). This also suggests that aggressive corpus
minimization based on coverage analysis, might even-
tually drop interesting test cases.

5.6. The Good News

While the initial goal of verifying objects across en-
vironments cannot be achieved reliably, the proposed
methodology is still able to generate interesting test
corpora that can help improve the implementation of
the tested object.

For instance, running the fuzzer on a couple of
zexy objects quickly revealed a systematic program-
ming error that would trigger a crash of Pd. Conse-
quently, these have now been fixed.

Despite not having a reliable metric for the corpus
completeness regarding different precisions, we found
that in practice the large number of generated tests
makes it still probable that at least one of the tests
will expose issues in the problem domain.

Also, for different problem domains (e.g. compar-
ing different implementations of the Pd-engine, like
Pd-vanilla vs Pd-l2ork) the initial assumption might
still hold true.

6. FUTURE WORKS

As shown in 5.5, code coverage is not a sufficient met-
ric to determine whether a test corpus will expose
certain problems. More research is required to find
an indicator that can reliably guide the test synthesis
algorithm to produce test cases that expose problems
with 64-bit precision builds.

6.1. Harvesting for Seed Data

The current approach to generate an initial seed cor-
pus for the fuzzer uses human-guided brute force. It
includes all messages the happen to occur in some
help patch, regardless of whether these messages
are actually sent to the object under test. Better
data might be harvested by actually running such
a patch, triggering all user-interaction (e.g. by ran-
domly clicking any message-boxes, toggles and simi-
lar) and recording all messages as they are received by
the tested object (e.g. by replacing the test-subject
with a dummy object with identical interfaces).

Also the compiled object itself could be harvested
more efficiently than just extracting all the strings
(which returns a lot of garbage). A good start would
be to check which message selectors are accepted on
which inlet (and what argument they take).

6.2. Testing Creation Arguments

So far the creation arguments of an object are fixed,
and test synthesis does not vary them during the test
runs. Since some objects have parameters that can



only be set via creation arguments (e.g. the number
of iolets), this possibly leaves a substantial part of the
code untested.

We are currently investigating the most stable way
to allow the fuzzer to also control the way an object
is instantiated. One choice is to interpret a message
at the very beginning of the test data as creation
arguments.

6.3. Intelligent Corpus Minimization

The current strategy for corpus minimization (code
coverage analysis) has been shown to be problematic.
A simple strategy to remove garbage from the test
data is partly applied, by reading a data file, dis-
carding any unknown messages and writing it back
to disk. This can further be improved, by discard-
ing any message that is not understood by the tested
object (The no method for 'bong' case).

This will also create more meaningful seed corpora
for new objects from existing test sets.

6.4. Interpretation Help

In most cases, one has to understand why a test fails
in order to fix the code. However, the current rep-
resentation of failed test results (basically the differ-
ing values are displayed in a human readable format,
value by value) is not very helpful. A representa-
tion with diff-highlighting that also provides a bit of
context depending on the data type, will most likely
make the interpretation of the test results easier. For
signal data, a graphical representation might make
even more sense.

6.5. A Central Repository for Test Corpora

On the long run it would be nice to have a cen-
tral repository of test corpora for „all” objects. This
would make it possible to quickly validate new en-
vironments. Having a largish set of tests available,
can also speed up the synthesis of a new corpus for a
yet-untested object.

7. CONCLUSIONS

We have presented the afl-based fuzz-test framework
PeDAnT for semi-automated testing of Pd-objects.
The main strength of the framework is that little hu-
man interaction is required for the chores of writing
tests: PeDAnT is able to synthesize test corpora with
a maximum code coverage of the tested object on its
own, trying to find as many different issues as possi-
ble.

While our original objective - fully verifying an ob-
ject’s functionality for double precision builds of Pd -
has not (yet) been met, the framework can give useful
hints when problems are likely. Even without com-
paring test results from different environments, the

test framework has already proven useful for finding
a number of crasher bugs.

https://git.iem.at/pd/pedant

8. REFERENCES

[1] M. Bouchard. PureUnity [online]. 2005.
URL: https://git.puredata.info/cgit/
svn2git/libraries/pureunity.git/ [accessed
2016-10-05].

[2] B. Dawson. Comparing Floating Point Num-
bers, 2012 Edition [online]. 2012. URL: https:
//randomascii.wordpress.com/2012/02/25/
comparing-floating-point-numbers-2012-edition/
[accessed 2016-10-05].

[3] F. J. Kraan and K. Vetter. testtools [on-
line]. 2011. URL: https://puredata.info/
downloads/testtools [accessed 2016-10-05].

[4] X. Qu and B. Robinson. A Case Study of
Concolic Testing Tools and their Limitations.
In 2011 International Symposium on Empirical
Software Engineering and Measurement, pages
117–126. IEEE, 2011.

[5] J. L. Romkey. A Nonstandard for Transmission
of IP Datagrams over Serial Lines: SLIP. RFC
1055, RFC Editor, June 1988. URL: http://
www.rfc-editor.org/rfc/rfc1055.txt.

[6] B. Vercoe, J. ffitch, J. Piché, P. Nix,
R. Boulanger, R. Ekman, D. Boothe, K. Conder,
S. Yi, M. Gogins, and A. Cabrera. The canoni-
cal Csound reference manual. MIT Media Lab,
2007.

[7] K. Vetter. Double precision Pd [online].
2011. URL: http://www.katjaas.nl/
doubleprecision/doubleprecision.html
[accessed 2016-10-05].

[8] J. Wilkes. What’s the deal with
[utime] object? [online]. 2016. URL:
https://lists.puredata.info/pipermail/
pd-list/2016-02/113637.html [accessed
2016-10-05].

[9] M. Zalewski. American Fuzz Lop [online]. 2013.
URL: http://lcamtuf.coredump.cx/afl/ [ac-
cessed 2016-10-05].

[10] M. Zalewski. Finding Bugs in SQLite,
the Easy Way [online]. 2015. URL:
http://lcamtuf.blogspot.co.at/2015/
04/finding-bugs-in-sqlite-easy-way.html
[accessed 2016-10-05].

[11] IO. m. zmölnig. zexy [online]. 2005. URL:
https://git.iem.at/pd/zexy [accessed 2016-
10-05].

https://git.iem.at/pd/pedant
https://git.puredata.info/cgit/svn2git/libraries/pureunity.git/
https://git.puredata.info/cgit/svn2git/libraries/pureunity.git/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
https://puredata.info/downloads/testtools
https://puredata.info/downloads/testtools
http://www.rfc-editor.org/rfc/rfc1055.txt
http://www.rfc-editor.org/rfc/rfc1055.txt
http://www.katjaas.nl/doubleprecision/doubleprecision.html
http://www.katjaas.nl/doubleprecision/doubleprecision.html
https://lists.puredata.info/pipermail/pd-list/2016-02/113637.html
https://lists.puredata.info/pipermail/pd-list/2016-02/113637.html
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.blogspot.co.at/2015/04/finding-bugs-in-sqlite-easy-way.html
http://lcamtuf.blogspot.co.at/2015/04/finding-bugs-in-sqlite-easy-way.html
https://git.iem.at/pd/zexy

	 Introduction
	 Goal
	 Design
	 Corpus Synthesis
	 PeDAnT Framework
	 Test Input Data 
	 Signals:
	 Messages:
	 Time:

	 File Format

	 Workflow
	 Generating Input Data
	 Instrumenting the Tested Objects
	 Seeding the Test Data
	 Synthesizing Data
	 Minimizing Input Data
	 Creating Tests

	 Running Tests
	 Comparing Results 

	 Discussion
	 Interpreting Failed Tests
	 Performance
	 Automation
	 Limitations of Testable Objects
	 The Bad News: Code Coverage as a Terminating Condition 
	 The Good News

	 Future Works
	 Harvesting for Seed Data
	 Testing Creation Arguments
	 Intelligent Corpus Minimization
	 Interpretation Help
	 A Central Repository for Test Corpora

	 Conclusions
	 References

