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Abstract

Modi�cations of the time- and pitch-scale of polyphonic music are usually

performed by manipulating the time-frequency representation of an audio

signal. Most of the approaches proposed in the past are thereby based on

the short-time Fourier transform (STFT) although its linear frequency bin

spacing is known to be inadequate to some degree for analyzing and process-

ing music signals. For this signal class the constant-Q transform (CQT) is

superior to the STFT as it features a geometrical bin spacing and high Q-

factors (typically equivalent to 12-96 bins per octave). In music processing

applications, however, the CQT has been playing only a minor role due to

its computational complexity and the lack of an inverse transform. Recently,

solutions to these problems have been proposed, thus rendering the CQT a

feasible alternative to the STFT for music processing applications. In this

thesis time- and pitch-scaling algorithms based on the CQT representation of

music signals are proposed that improve upon the quality achieved by simple

STFT based approaches.
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Kurzfassung

Algorithmen zur Zeit- und Frequenzskalierung polyphoner Musiksignale be-

ruhen überwiegend auf einer Manipulation der Zeit-Frequenz-Repräsentation

des Eingangssignals. Dabei wird beim Groÿteil der Ansätze die in der Ver-

gangenheit vorgestellt wurden auf die Fouriertransformation zurückgegrif-

fen. Es ist allerdings bekannt, dass diese Transformation durch die lineare

Verteilung der Frequenzbins keine optimale Darstellung für Musiksignale lie-

fert. Die geometrische Verteilung der Frequenzbins bei gleichzeitig hohen

Q-Faktoren (üblicherweise entsprechen diese einer Au�ösung von 12-96 Bins

pro Oktave) die durch die Constant-Q Transform (CQT) erreicht wird, lie-

fert für diese Signalklasse eine wesentlich geeignetere Darstellung. Im Bereich

der Musiksignalverarbeitung wurde die CQT in der Vergangenheit allerdings

aufgrund des gröÿeren Rechenaufwands und vorallem aufgrund der fehlen-

den Rücktransformation nur wenig Beachtung geschenkt. Für beide Proble-

me wurden kürzlich Lösungen vorgeschlagen, wodurch die CQT mittlerweile

eine brauchbare Alternative zur Kurzzeit-Fouriertransformation (STFT) dar-

stellt. In dieser Diplomarbeit werden CQT basierte Algorithmen zur Zeit- und

Frequenzskalierung von polyphonen Musiksignalen präsentiert, die bezüglich

der Signalqualität einfache STFT basierte Ansätze übertre�en.
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Chapter 1

Introduction

Time-frequency representations are ubiquitous tools in today's digital au-

dio signal processing applications. However, the accuracy with which the

time and frequency evolution of a signal can be determined simultaneously

is limited as a frequency can never be precisely localized in time - a fact

that is closely related to Heisenberg's uncertainty principle [Mal09]. Due to

this inevitable trade-o� between time- and frequency-resolution, one and the

same time-domain signal can be speci�ed by an in�nite number of di�erent

time-frequency representations. This inherent ambiguity has led to a great

diversity of de�nitions of time-frequency transformations [HA08] proposed

in the last decades. Amongst these numerous transformations, arguably the

short-time Fourier transform (STFT) is the most prominent one being the

standard tool when it comes to time-frequency processing of digital (audio)

signals. The main reasons for the supremacy of the STFT are probably its

very e�cient implementation, its perfect reconstruction property and the

ease of interpreting the produced data.

In the �eld of music processing, however, the shortcomings of the STFT

representation are well known. The frequency resolution of the STFT is

linear, that is the frequency di�erence between the sampling points in fre-

quency (bins) is constant. Contrary, the fundamental frequencies (F0s) of

1



2 CHAPTER 1. INTRODUCTION

the tones in Western music are geometrically spaced: in the standard 12-tone

equal temperament, for example, the F0s obey Fk = 440Hz × 2k/12, where

k ∈ [−50, 40] is an integer. Thus, in order to resolve single tones at lower

frequencies, a very high frequency resolution is desired. In higher frequency

regions on the other hand, rapid temporal changes call for a high temporal

resolution. Hence, with its linear frequency bin spacing stemming from the

�xed window size, the STFT cannot fully meet the needs when it comes to

analyzing musical signals.

1.1 Constant-Q Transform

The Q-factor of a band-pass �lter is de�ned as the ratio of the center fre-

quency to its bandwidth. Considering the STFT's frequency bins as being

band-pass �lters, their Q-factors increase from low to high frequencies as

their absolute bandwidths are constant. From an auditory perspective, this

is in contrast with the frequency resolution of the peripheral hearing sys-

tem of humans which is approximately constant-Q over a wide range from

20kHz down to approximately 500Hz, below which the Q-factors get progres-

sively smaller [Moo95]. Hence, a constant-Q time-frequency representation

providing a high frequency resolution for low frequencies and a high tempo-

ral resolution for high frequencies is well motivated from both musical and

perceptual viewpoints.

The �rst formal de�nition of a constant-Q transform (CQT) for audio signal

processing was proposed by Judith Brown [Bro91] in 1991. An e�cient algo-

rithm for the calculation of the CQT has been proposed in 1992 [BP92]. Here

the CQT is a generalization of the STFT concerning the window lengths: in

order to keep the Q-factor constant, windows get progressively smaller as fre-

quency indices increase. Hence, the CQT is essentially a wavelet transform,

but here the term CQT is preferred since it underlines the fact that trans-

forms with relatively high Q-factors, equivalent to 12-96 bins per octave are

considered. This renders many of the conventional wavelet transform tech-



1.1. CONSTANT-Q TRANSFORM 3

niques inadequate; for example methods based on iterated �lterbanks would

require �ltering the input signal hundreds of times.

Although the logarithmic frequency resolution of the CQT is clearly advan-

tageous for broadband music signals, it has not replaced the STFT in audio

signal processing. There are at least three reasons for this: Firstly, the al-

gorithm is still computationally intensive when broadband music signals are

considered. Secondly, the CQT proposed in [BP92] lacks an inverse transform

that would allow reconstruction of the original signal from its transform co-

e�cients. Thirdly, the CQT produces a data structure that is more di�cult

to work with than the time-frequency matrix (spectrogram) obtained by the

STFT. The last problem is due to the fact that in CQT, the time resolution

varies for di�erent frequency bins, in e�ect meaning that the `sampling' of

di�erent frequency bins is not synchronized. In chapter 2 solutions to these

three problems are proposed.

As already mentioned above, constant-Q transform can be viewed as a wavelet

transform. The wavelet literature is well-matured (see e.g. [Mal09]) and

constant-Q (wavelet) transforms have been proposed that lead to perfect re-

construction. However, most of the work has focused on critically-sampled

dyadic wavelet transforms where the frequency resolution is only one bin per

octave � this is clearly insu�cient for music signal analysis. Recently, per-

fect reconstruction wavelet transforms have been proposed that have rational

dilation factors, meaning that the center frequencies of the bins are spaced

by p/q, where p and q are integers [BS09] [KV93] [Sel11]. However, these

are based on iterated �lter banks and are therefore less attractive computa-

tionally when high Q-factors, such as 12�96 bins per octave, are required.

Another interesting direction of research has been the application of fre-

quency warping on a time-domain signal in such a way that the DFT of the

warped signal is related to the DFT of the original signal via a frequency

warping function [HKS+00, BS06]. A problem with these is that the warp-

ing �lters have in�nite impulse responses which makes it hard to design an

inverse transform.
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Brown and Puckette proposed a computationally e�cient technique for com-

puting constant-Q transforms with high Q-factors based on the fast Fourier

transform (FFT) and a frequency-domain kernel [Bro91] [BP92]. A draw-

back of this CQT implementation is that there is no inverse transform for

it. Recently, FitzGerald has shown that a good quality approximate inverse

transform can be obtained if the signal to be inverted has a sparse represen-

tation in the discrete Fourier transform domain [FCC06]. However, this is

not true for music signals in general.

In chapter 2 speci�c solutions to the three problems of the CQT mentioned

above are proposed. The solution to the problem of computational e�ciency

is based on the technique proposed by Brown and Puckette in [BP92] which

is extended to improve further its computational e�ciency. Secondly, we

propose to structure the transform kernel in such a way that reasonable-

quality inverse transform (approximately 55dB signal-to-noise ratio) is ob-

tained using the conjugate transpose of the CQT transform kernel. The

reconstruction is achieved introducing only a moderate amount of redun-

dancy (by factor four or �ve) to the transform (here redundancy refers to the

number of elements in the transform compared to the samples in the origi-

nal time-domain signal). Thirdly, interface tools for the data structure that

facilitate working with the signal in the transform domain are proposed. A

reference implementation of the proposed methods is provided as a Matlab

toolbox at http://www.elec.qmul.ac.uk/people/anssik/cqt/. In [SK10]

the approach outlined in chapter 2 is given in a more compact form.

1.1.1 A Note on the Inverse CQT

In [SK10] we showed that the original input signal can be e�ciently recon-

structed from its CQT coe�cients with reasonable quality using the same

kernel for forward and inverse transform. Very recently another approach to

invertible constant-Q transforms featuring high Q-factors has been proposed,

yielding even perfect reconstruction [VHDG11]. The suggested transform

is based on frame theory [KC07] and utilizes nonstationary Gabor frames

http://www.elec.qmul.ac.uk/people/anssik/cqt/
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[BDJ+11] to achieve geometrically spaced frequency bins and the property

of invertibility. Loosely speaking, a frame is an overcomplete set of basis

functions (think kernel matrix Θ consisting of time-frequency atoms an,k) al-

lowing for redundant signal representations. Signal reconstruction from the

redundant representation is then obtained by applying a dual frame (think

inverse kernel matrix Θ̃ consisting of dual atoms bn,k) such that x = ΘΘ̃x for

an input signal x. A computational e�cient implementation of the constant-

Q transform is proposed in [VHDG11] where atoms an,k are designed in the

frequency domain and subsequently applied to the Fourier transform of the

input signal.

Although the CQT proposed in [VHDG11] is very much appreciated, it is not

considered throughout this thesis since the level of artifacts in time- or pitch-

scaled music signals is usually far beyond the signal-to-noise ratio achieved

by the inverse CQT we proposed in [SK10].

1.2 Scope of Work

As outlined above, the logarithmic frequency resolution obtained by the CQT

is more adequate to represent audio signals in the time-frequency domain

than the linear frequency resolution of the standard STFT. With the tools

at hand proposed in [SK10], providing both a computational e�cient im-

plementation of the CQT and a reasonable quality inverse transform, it is

natural to exploit this bene�cial time-frequency representation for existing

music processing applications that su�er from STFT resolution issues. In a

�rst e�ort the scope of this thesis is to investigate into the applicability of

the CQT to time- and pitch-scale modi�cations of polyphonic music signals.

1.2.1 Time-Scale Modi�cations

The aim of altering the time-scale of an audio signal is to change the overall

duration of the signal while retaining the perceived pitch and timbre of the
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material. This can be approached either in time-domain or in frequency-

domain. While techniques that operate in time-domain are often preferred

when monophonic music signals or speech signals are considered, frequency

domain or hybrid approaches usually yield better results when time-scale

modi�cations of polyphonic music signals are desired. Amongst the latter

phase vocoder based techniques ([AKZ+02], [DGBA00]) are the most promi-

nent ones. Literature on time-scale modi�cations based on the phase vocoder

is well matured and algorithms able to produce high quality output signals

have been proposed [Puc95] [LD97] [LD99a] [Röb03] [Roe10]. However, these

algorithms are all based on STFT representations of audio signals and arti-

facts stemming from the inadequate frequency resolution are still an issue.

Hence the objective is to improve the quality of the time-scaled output signal

by replacing the STFT in a standard phase vocoder implementation with the

CQT.

1.2.2 Pitch Transpositions

Pitch-scale modi�cations of audio signals aim at keeping the duration the

input signal constant while altering its frequency content. The term pitch

transposition refers to pitch-scale modi�cations expressed in musical terms.

That is, rather than implementing arbitrary scaling factors, the desired fre-

quency shift is given in semitones (or cents). Since time- and pitch-scale

modi�cations are dual operations, shifting the frequency content of a signal

is often implemented by applying a time-scaling stage followed by a resam-

pling stage (or vice versa). On the other hand, approaches to manipulate the

frequency content directly in the STFT representation have been proposed

[LD99b] [JSBA08]. Although these approaches are able to achieve reason-

able results they su�er from the inadequate frequency resolution featured by

the STFT. The objective of this thesis is to exploit the advantageous fre-

quency bin spacing provided by the CQT for pitch-scale modi�cations in the

frequency domain.
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1.3 Thesis Layout

In chapter 2 the constant-Q transform is derived as a generalization of the

windowed Fourier transform. The algorithm to compute the CQT coe�cients

as proposed in [Bro91] and [BP92] is outlined and an improved algorithm

that reduces further the computational complexity is proposed. The novel

approach to reconstruct the original input signal from its CQT coe�cients

we proposed in [SK10] is described in detail and the achieved results are

presented.

Chapter 3 provides a short overview of existing time-scale modi�cation tech-

niques whereas the phase vocoder is discussed in more detail. A phase

vocoder based on the CQT representation is derived and the quality of the

produced time-scaled output signals is compared to the standard STFT based

approach.

In chapter 4 the implementation of a frequency-domain pitch transposition

algorithm that operates on the CQT representation of the input signal is out-

lined. The ease of manipulating the pitch of single notes within a polyphonic

music signal in the CQT domain (note selective transpositions) rather than

transposing the entire input signal is demonstrated.

Chapter 5 provides a summary of the main contributions of the thesis and

suggests a number of possible routes for future work.
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Chapter 2

The Constant-Q Transform

2.1 Time vs. Frequency

When it comes to analyzing time-invariant signals in the frequency domain,

usually the Fourier transform is the tool of choice. As soon as signals change

over time, however, it is desired to localize information not only in frequency

but also in time so as to transform a one-dimensional time-domain signal

into a two-dimensional time-frequency representation. This can be achieved

by multiplying the basis functions of the Fourier transform with a function

that tapers o� to zero at its ends (window function), thus localizing the

frequency information in time (windowed Fourier transform or short-time

Fourier transform). Following the de�nition of Gabor in his 'Theory Of

Communication' [Gab46] published in 1946, this new set of basis functions

that are now localized both in frequency and time, are called time-frequency

atoms. Unfortunately, due to the uncertainty principle, the energy spread of

a function and its Fourier transform cannot be arbitrarily small at the same

time [Mal09]. The basis functions of the Fourier transform, that is, which are

in�nitely concentrated in frequency (but in�nitely spread in time), get spread

in frequency while localizing them in time. This matter is best visualized by

considering the basis functions (atoms) as rectangles (or ellipses) in the time-

9
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Figure 2.1: Area in the time-frequency plane that captured by a single time-
frequency atom. The Area K is constant: As the atom is shrunk in time
(shorter window length), it simultaneously gets dilated in frequency

frequency plane. Figure 2.1 illustrates, that the area of such a rectangles is

�xed. As the atoms are dilated in time they are shrunk in frequency and

vice versa. The exact value for the area K in �gure 2.1 depends on the

window function and reaches its minimum for a Gaussian function (since it

is invariant under the Fourier transform), however, also other functions are

used1.

2.2 Fourier Transform: A Gabor Approach

There are several ways to look at the short-time Fourier transform (STFT) or

the windowed discrete Fourier transform (wDFT), respectively. Probably the

most common viewpoint in engineering is to think of cutting a time-domain

1The Gaussian function is optimal in this theoretical sense. However, for several prac-
tical reasons (e.g. reduced frequency smearing), Hann, Hamming or Blackman windows
are most frequently used.
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signal into (overlapping) blocks, multiplying them with a window function

to reduce leakage [OSB+89] and Fourier analyzing them. However, if the

window function is thought to be applied to the basis functions rather than

the signal, and the signal is thought of as a time-frequency plane rather than

just a time-domain signal, we end up with the Gabor approach. Following

this interpretation the windowed discrete Fourier transform XDFT(k, n) of a

discrete time-domain signal x(n) is de�ned by

XDFT(k, n) =

n+bN
2
c∑

m=n−bN/2c

x(m)a∗ (m− n+N/2) (2.1)

where k = 0, 1, . . . , N − 1 indexes the complex-valued transform coe�cients

(frequency bins) of the DFT, b·c denotes rounding towards negative in�nity

and a∗(n) denotes the complex conjugate of a(n). The basis functions a(n)

are complex-valued waveforms, the time-frequency atoms, and are de�ned by

a(n) = w
( n
N

)
exp

[
i2πn

fk
fs

]
(2.2)

where fk is the center frequency of bin k, fs denotes the sampling rate,

and w(t), is a continuous window function (for example Hann or Blackman

window), sampled at points determined by t. N is the window length in

samples2, the window function is zero outside the range t ∈ (0, 1). Note that

in (2.1) the windows are centered at sample n of the input signal.

The bins center frequencies fk obey

2For simplicity it is assumed that the number of DFT coe�cients (the DFT size) and
the window length (the window size) is the same, i.e. the signal blocks are not zero-padded.
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fk = k
fs

N
(2.3)

and are thus linearly spaced along the frequency axis. In most applications

XDFT(k, n) is not computed for every n (unless a sliding DFT as described

in [JL03] is applied), but for every Hth sample, with H being the hop size.

Figure 2.2 illustrates how a signal is captured in the time-frequency plane by

the wDFT. Each tile in �gure 2.2 represents one time-frequency atom a(n)

centered at fk in frequency and n in time. Note that time-frequency atoms

actually are not box-shaped: Figure 2.3(a)-(d) shows an example atom using

a Hann window function in the time-domain, the frequency domain and the

time-frequency plane, respectively. The atom is centered in time at sample

nc and in frequency at ωk = 2Πfk. In order to capture the signal uniformly

over the entire time-frequency plane, the atoms need to overlap both in time

and frequency such that the power sum is equal to unity in both domains

(see section 2.7).

2.3 A Musical Ear vs. the Fourier Transform

The (w)DFT is the standard tool when digital signals are to be analyzed or

processed in the frequency domain. And indeed it has quite a few properties

that render the DFT a really neat transform: invertibility, fast computation

via the FFT [BM67] and a data structure that is easily interpretable. When

the class of signals to be analyzed is music, however, the DFT lacks the abil-

ity to capture all important features. The fundamental frequencies (F0s) of

the tones in Western music are geometrically spaced: in the standard 12-tone

equal temperament, for example, the F0s obey Fk = 440Hz × 2k/12, where

k ∈ [−50, 40] is an integer. Thus, in order to resolve single tones in the

spectrum in lower frequencies, a very high frequency resolution is desired.

For higher frequencies on the other hand, the frequency di�erence between
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Figure 2.2: Spacing of time-frequency atoms for the wDFT: ∆f = fs/N and
∆t = H/fs.

tones is much higher but rapid time changes call for a high temporal reso-

lution. As depicted in �gure 2.2, the atoms are uniformly distributed across

the time-frequency plane, hence, the absolute time/frequency resolution is

constant over the entire frequency range. The parameter for this trade-o�

between time and frequency resolution is the window length N in (2.1) and

(2.2), respectively. Since σf ∝ 1/N and σt ∝ N in �gure 2.2, a large N

accounts for a high frequency resolution but a low time resolution and vice

versa. The rigidity of the DFT concerning this trade-o� is also apparent

when looking at the frequency responses of the atoms a(n) in �gure 2.4 for

a 8-point DFT (Gaussian window). Each atom forms a bandpass �lter with

a 3-dB bandwidth δf and a center frequency fk (the bin-frequency). The

Q-factor of a bandpass-�lter is de�ned by
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(a) Time domain (b) Frequency domain

(c) Time-frequency plane (d) Time-frequency plane (3D)

Figure 2.3: Exemplary time-frequency atom using a Hann window. (a) shows
the atom a(n) in time domain as de�ned in (2.2), (b) shows the atom in the
frequency domain whereas A(ω) = F {a(n)}, (c) shows the region in the
time-frequency plane captured by the atom, and (d) shows a 3-dimensional
model of the atom in the time-frequency plane. The z-axis in (d) corresponds
to the amplitude product |a(n)| · |A(ω)|.

Q
def.

=
fk
δf

(2.4)

that is, the Q-factor is the ratio of the center frequency of a �lter to its

bandwidth. As illustrated in �gure 2.4 the Q-factor increases from low to

high frequency bins since the absolute bandwidth δf is equal for all �lters.

This is in contrast to the peripheral hearing system of humans where the
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Figure 2.4: Frequency responses of the atoms (bandpass-�lters) of a 8-point
DFT using a Gaussian window. Each �lter represents one DFT bin.

frequency resolution exhibits approximately a constant Q-factor over a wide

range from 20kHz down to about 500Hz. Below this, the Q-values get pro-

gressively smaller as the bandwidths of the patterns of vibration on the

basilar membrane in response to sinusoidal stimulation are approximately

constant [Moo03]. So from both musical and perceptual viewpoints it seems

obvious, that, as far as music signals are considered, the wDFT lacks the

ability to adequately represent the signal over the entire frequency range.

2.4 The Notion of a Constant-Q Transform

There are two requirements that a time-frequency transform has to ful�ll

when the class of signals to be analyzed is music: the frequency bins have to

be geometrically spaced (i.e., linear on a logarithmic frequency scale) and the

bandwidths of the �lters have to change with their center frequencies (i.e.,

the Q-factors of the �lters should be constant rather than their bandwidths).

Over the past few decades there have been several approaches to bypass

the linear frequency resolution of the Fourier transform ([Har76], [YB78],

[OJS71], [BO74], [Gam71], [Gam79], [KMR85]), however, in 1990 Judith
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Brown was the �rst to propose a constant Q spectral transform [Bro91] that

was speci�cally suitable for the analysis of musical signals. This constant-Q

transform (CQT) is a generalization of the DFT: each time-frequency atom

does not only have a distinct frequency but also a distinct length. Applying

this notion to (2.1)-(2.2), the CQT transform XCQ(k, n) of a discrete time-

domain signal x(n) is de�ned by

XCQ(k, n) =

n+bNk/2c∑
m=n−bNk/2c

x(m)a∗k(m− n+Nk/2) (2.5)

with its basis functions ak(n) (time-frequency atoms, or in the sequel kernel)

de�ned by

ak(n) =
1∑

nw(n/Nk)
w

(
n

Nk

)
exp

[
i2πn

fk
fs

]
, (2.6)

whereas the window lengths Nk ∈ R in (2.5)-(2.6) are real-valued and in-

versely proportional to fk in order to have the same Q-factor for all bins

k.

Since a bin spacing corresponding to the equal temperament is desired, the

center frequencies fk obey

fk = f12
k−1
B (2.7)

where f1 is the center frequency of the lowest-frequency bin (due to the de-

sired logarithmic frequency resolution there is no DC-bin) , and B determines

the number of bins per octave. For B = 12 each CQT bin corresponds to one

semitone, however, higher values may be chosen. In practice, B is the most

important parameter of choice when using the CQT, because it determines

the time-frequency resolution trade-o�.

In (2.4) the Q-factor of a �lter was de�ned as the ratio of the center fre-

quency to its 3-dB bandwidth. Figure 2.5 shows an example of the frequency

responses of the atoms for B = 12 and one octave only. The Q-factor of bin
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Figure 2.5: Frequency responses of the atoms (bandpass-�lters) of a CQT
using a Gaussian window with B = 12 and for one octave only. Each �lter
represents one CQT bin.

k in �gure 2.5 is thus de�ned by

Qk
def.

=
fk
δfk

(2.8)

where δfk denotes the 3-dB bandwidth of the frequency response of the atom

ak(n) and fk its center frequency. The bandwidth is given by

δfk = δω
fs

Nk

= δω∆fk (2.9)

where ∆fk is the frequency distance between to adjacent bins (the bin spac-

ing) and δω is the 3-dB bandwidth of the main lobe of the used window

function in DFT bins. In [Har78] δω is tabulated for several window func-

tions, being δω ≈ 1.30 for Hamming and δω ≈ 1.68 for Blackman windows,

for example. The bin spacing ∆fk (see �gure 2.5) for the CQT is de�ned by

∆fk
!

= fk+1 − fk = fk

(
2

1
B − 1

)
, (2.10)
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hence, after substituting (2.10) in (2.9) and (2.8) , the Q-factors are given by

Q =
q

δω(2
1
B − 1)

(2.11)

where the subscript of Qk has been omitted since the Q-factors are by de�-

nition all equal and 0 < q / 1 is an additional scaling factor, and typically

q = 1. Values of q smaller than 1 can be used to improve the time resolution

at the cost of degrading the frequency resolution. Important to note is that

setting for example q = 0.5 and B = 48 leads to exactly the same time-

frequency resolution trade-o� as setting q = 1 and B = 24, but the former

contains twice more frequency bins per octave. In this sense, values q < 1

can be seen to implement oversampling of the frequency axis, analogously

to the use of zero padding when calculating the DFT. For example q = 0.5

corresponds to oversampling factor of 2: the e�ective frequency resolution is

equivalent to B/2 bins per octave, although B bins per octave are computed.

After substituting (2.9) in (2.8) and (2.11) and solving for Nk, the window

size of the atom ak(n) is given by

Nk =
qfs

fk(2
1
B − 1)

(2.12)

where it can be observed, that the dependency on δω has disappeared.

In the process of computing the transform basis of the CQT, for each desired

frequency bin at fk a window function with length Nk is used. In �gure

2.6(a)-(d) CQT atoms are compared to DFT atoms. It can be observed that,

in contrast to the DFT atoms, the length of the CQT atoms decreases as

their center frequency increases. Hence, the number of cycles Θ in the CQT

atoms is constant and given by

Θ =
fk

∆fk
= δω Q =

q

2
1
B − 1

(2.13)

being only dependent on the number of bins per Octave B and the scaling

factor q. Since all atoms ak(n) are only dilated and scaled versions of a1(n),
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(a) DFT atom a1(n) (b) CQT atom a1(n)

(c) DFT atom a2(n) (d) CQT atom a2(n)

Figure 2.6: Real part of temporal atoms using a Hann window. (a) and (c)
are DFT atoms for two di�erent frequencies, (b) and (d) are CQT atoms for
two di�erent frequencies.

the CQT in fact is a wavelet transform [Mal09].

It is not computationally reasonable to calculate the coe�cients XCQ(k, n) at

time instants n of the input signal. To enable signal reconstruction from the

CQT coe�cients, successive atoms can be placed Hk samples apart, where

Hk is the hop size between atoms corresponding to frequency bin k. In order

to analyze all parts of the signal properly and to achieve reasonable signal

reconstruction (see section 2.7), values 0 < Hk / 1
2
Nk are useful.
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2.5 A Faster Algorithm

The computationally-e�cient forward CQT proposed here is based on the

principles proposed by Brown and Puckette in [BP92]. Therefore, the tech-

nique proposed in [BP92] is explained �rst, extensions are described in sub-

section 2.5.2.

2.5.1 Algorithm by Brown and Puckette

Calculating the CQT transform coe�cients XCQ(k, n), the direct evaluation

of (2.5) at one time instant n for an input signal x(n) obviously requires

the computation of the inner products of the input signal with each of the

transform bases. Figure 2.7(a) illustrates the real part of the transform bases

ak(n), assuming here for simplicity B = 12 bins per octave and a frequency

range of only two octaves.

In [BP92] Brown and Puckette proposed a computationally more e�cient

way to compute the transform coe�cients by utilizing the identity

N−1∑
n=0

x(n)a∗(n) =
1

N

N−1∑
j=0

X(j)A∗(j) (2.14)

where X(j) denotes the DFT of x(n) and A(j) denotes the DFT of a(n).

Equation (2.14) holds for any discrete signals x(n) and a(n) and stems from

Parseval's theorem [Mal09]. Note that in the sequel the factor 1
N
is omitted

as this normalization can be applied to A(j) prior to summation.

Using (2.14), the CQT transform in (2.5) can be written as

XCQ(k,N/2) =
N∑
j=0

X(j)A∗k(j) (2.15)

where Ak(j) is the complex-valued N -point DFT of the transform basis ak(n)

so that the bases ak(n) are centered at the point N/2 within the transform
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frame. To be consistent with the terminology in [BP92], Ak(j) and ak(n) will

be referred to as the spectral and the temporal kernels, respectively.

Figure 2.7(b) illustrates the absolute values of the spectral kernels Ak(j)

corresponding to the temporal kernels ak(n) in �gure 2.7(a). As observed by

Brown and Puckette, the spectral kernels Ak(j) are sparse: most of the values

being near zero because they are Fourier transforms of modulated sinusoids.

Therefore, the summation in (2.15) can be limited to values near the peak in

the spectral kernel to achieve su�cient numerical accuracy. Near-zero values

in Ak(j) can be omitted by setting values Ak(j) < ε to zero, where ε is a

threshold that has to be chosen such that the error is negligible. This is the

main idea of the e�cient CQT transform proposed in [BP92]. It is also easy

to see that the summing has to be carried out for positive frequencies only,

followed by a multiplication by two.

For convenience, the spectral kernels Ak(j) are stored as columns in matrix

A. The transform in (2.15) can then be written in matrix form as

XCQ = A∗X (2.16)

where A∗ denotes the conjugate transpose of A. Matrices X and XCQ have

only one column each, containing the DFT valuesX(j) and the corresponding

CQT coe�cients, respectively.

Figure 2.8 illustrates how the CQT atoms capture the time-frequency plane.

The representation thus computed produces minimum redundancy while en-

abling reasonable quality signal reconstruction (see section 2.7) if the window

functions overlap by 75% for each bin in time domain, for example. However,

the calculation of the CQT using (2.15) and (2.16), respectively, implies that

the points in time n (where the atoms are centered on the time-frequency

plane), can no longer be arbitrarily chosen for each bin k. Thus, the hop size

of the kernels is the same for all frequency bins. This increases the redun-

dancy and puts special demands on the window function (see section 2.8 )

in order to capture the signal uniformly across the time-frequency plane. On
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(a) Temporal kernel (b) Spectral kernel

Figure 2.7: (a) illustrates the real part of the transform bases (temporal
kernel) that can be used to calculate the CQT of two octaves, with 12 bins per
octave. (b) shows the absolute values of the corresponding spectral kernel.

the plus side, using the same hop size for all bins increases the usability of

the produced data structure.

2.5.2 Processing One Octave at a Time

Although increasing the computational e�ciency, the method outlined in the

previous subsection still exhibits two problems when broadband music sig-

nals, for example eight octaves from 60Hz to 16kHz, are considered. For

the atom a1(n) corresponding to the lowest frequency bin (f1 = 60 Hz), the

window size N1 ≈ 25000 for the sampling rate fs = 44100 and B = 24, hence

the DFT transform blocks need to be at least N1 samples long3. On the

other hand, the window size of the temporal kernel aK(n) corresponding to

the highest frequency bin fK is NK ≈ 94. Two problems arise from this big

range of window sizes: �rstly, due to their small window sizes and the long

DFT transform blocks, the spectral kernels for higher frequencies will have

many non-zero coe�cients and will no longer be very sparse. Secondly, in

order to analyze all parts of the input signal adequately, the CQT transform

for the highest frequency bins has to be calculated at least every NK/2 sam-

ples apart. Both of these factors reduce the computational e�ciency of the

3If a standard FFT algorithm is used, the block length would be NDFT = 2dlog2(N1)e.
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Figure 2.8: Spacing of time-frequency atoms for the CQT. The time resolu-
tion increases for higher frequencies and the frequency resolution increases
for lower frequencies.

method.

To address these problems, two extensions are proposed here. The �rst is

processing by octaves4. The spectral kernel matrix A is chosen, such that it

produces the CQT for the highest octave of interest only. After computing

the CQT bins for the highest octave for the entire signal, the input signal

is low-pass �ltered and down-sampled by factor two. The same process is

repeated to calculate the CQT bins for the next octave, using exactly the

same DFT block size and the same spectral kernel A (due to the down

sampling of the input signal, the lengths of the atoms ak(n) e�ectively has

been doubled). This process is repeated iteratively until the desired number

of octaves has been covered. Figure 2.9 illustrates this process.

Since the spectral kernel A now represents frequency bins that are at maxi-

4J. Brown mentions this possibility already in [Bro91], although octave-by-octave pro-
cessing was not implemented in [Bro91, BP92]
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Figure 2.9: An overview of computing the CQT one octave at the time. Here
G(f) is a low-pass �lter and ↓ 2 denotes down-sampling by factor two.

mum one octave apart, the length of the DFT block can be made quite short

(according to Nk of the lowest CQT bin) and the matrix A is very sparse

even for the highest-frequency bins.

Another computational e�ciency improvement is obtained by using several

temporally translated versions of the transform bases ak(n) within the same

spectral kernel matrixA. In other words, successive columns ofA contain the

DFTs of ak(n) that have been temporally shifted to di�erent locations. As a

result, DFT transforms of the input signal x(n) to obtain the DFT spectrum

X(j) in (2.15) need to be computed less often: if there are P successive atoms

within the same spectral kernel, the DFTs need to be computed P times less

often. Note, that this method also enables the use of a di�erent number of

atoms for di�erent frequency bins. Figure 2.10(a)-(b) illustrates the general

structure of the kernel matrix applied in this thesis. In the shown example,

the number of bins per octave B = 12. By looking closely, it can be seen

that the highest four kernel functions have the same center frequency, but

correspond to four di�erent temporal locations. The detailed structure of

the spectral kernel will be discussed in Sec. 2.8; here it su�ces to say that

the kernel structure is crucial for high-quality reconstruction (inverse CQT)

of the input signal x(n) from the CQT coe�cients.

The transform for a single octave (indicated by "CQT for one octave" in
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(a) Temporal kernel (b) Spectral kernel

Figure 2.10: Illustration of the general structure of the kernel matrices that
are used here. (a) shows the real part of the temporal kernel used to compute
the CQT for one octave. (b) shows the absolute values of the corresponding
spectral kernel.

�gure 2.9) is de�ned as follows. Let xd(n) denote a signal that is obtained by

decimating the input signal d times by factor two. The sampling rate of xd(n)

is therefore fs/2
d. The signal xd(n) is blocked into DFT transform frames

of length NDFT which are positioned HDFT samples apart (i.e., successive

frames overlap by NDFT−HDFT samples). Each frame is Fourier transformed

using a rectangular window and the resulting spectrogram is stored in a

matrix X, where column m contains the complex-valued spectrum of frame

m (positive frequencies only). Then the CQT transform XCQ
d for this octave

d is calculated as

XCQ
d = A∗Xd (2.17)

where A∗ is the conjugate transpose of the complex-valued spectral kernel

matrix for one octave as described above. The column m of XCQ
d contains the

CQT coe�cients representing DFT block m and the di�erent rows of XCQ
d

correspond to the di�erent spectral kernels that are stored in the di�erent

columns of matrix A.

The above process is repeated for each successive octave, as illustrated in

�gure 2.9. Note that the kernel remains the same for all octaves. Also, the
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Figure 2.11: Magnitude response of the low-pass �lter G(f).

DFT length NDFT (in samples) remains the same despite the decimations,

therefore the e�ective FFT length (in seconds) doubles in each decimation.

The �rst octave is computed using signal x0(n), which is identical to the

input, x(n).

The decimated signals xd(n) are obtained from xd−1(n) by low-pass �ltering

and down-sampling by factor two. For the low-pass �lter G(f), zero-phase

forward-and-reverse �ltering with a sixth-order Butterworth IIR �lter that

has a cut-o� frequency fs/4 is used. Forward-and-reverse �ltering means

that after �ltering in the forward direction, the �ltered sequence is reversed

and run back through the �lter and the result of the second �ltering is then

reversed once more. The result has precisely zero phase distortion and mag-

nitude modi�ed by the square of the �lter's magnitude response. Figure 2.11

shows the magnitude response of the low-pass �lter G(f) (square of the mag-

nitude response of sixth-order Butterworth �lter). Down-sampling by factor

two is then done simply by removing every second sample of the time-domain

signal.

A �nal practical consideration is to deal with the beginning and end of the

input signal x(n). This problem is addressed by padding 2D−1N1 zeros at be

beginning of the signal and 2D−1NDFT zeros at the end of the signal, where

N1 is the window length of the lowest-frequency bin within the one-octave

kernel, D is the number of octaves calculated, and NDFT is the length of the
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DFT frame. The zero padding is done before any of the CQT computations,

and the zeros are then removed at the inverse transform stage. Note that a

smaller number of zeros is needed, if the zero padding is done separately for

each octave, but this would make the implementation less clear and therefore

it is assumed that the number of zeros padded is negligible in comparison to

the length of the input signal x(n).

2.6 Computational Complexity

Let L denote the length of the input signal x(n) after the zero padding at

the beginning and the end. The number of DFT frames m to cover the

entire signal before any decimation is b(L−NDFT)/HDFTc+ 1. For the next

octave, the number of fast Fourier transforms (FFTs) is roughly twice smaller,

b(L/2−NDFT)/HDFTc+1, in fact a bit more than twice smaller. For the next

octave, the number of DFT transforms is roughly four times smaller, and so

forth. Since 1 + 1
2

+ 1
4

+ 1
8

+ . . . ≈ 2, the total number C of FFTs to compute

is

C ≤ 2 (b(L−NDFT)/HDFTc+ 1) (2.18)

regardless of the number of octaves computed.

For each of the C DFT frames, the complex-valued DFT spectrum (a column

vector) has to be multiplied by the conjugate transpose of the spectral kernel

A∗ (see (2.17)). However, since A is sparse, the number of multiplications

is quite small. In our reference Matlab implementation, the matrix is imple-

mented as a sparse matrix, therefore also the memory complexity of storing

A is quite low. The exact number of non-zero elements in A depends on the

kernel structure and the threshold below which the near-zero elements are

rounded to zero (see 2.15). The number of low-pass �lterings is proportional

to the number of octaves D and causes a non-negligible computational load

too.

To compare the complexity of the proposed method with that of the original
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method by Brown and Puckette [BP92], consider a case where the CQT is

computed over an eight-octave range. If atoms over all octaves are stored

into a single kernel, the frequency kernels in the highest octave will have

27 = 128 times more non-zero elements than the corresponding atoms in the

lowest octave, and the number of multiplications in (2.16) increases in the

same proportion. The lengths of the DFT transform frames, in turn, have

to be 128 times larger in order to accommodate the lowest-frequency atoms

without decimation.

2.7 Reconstruction from the CQT Coe�cients

The proposed methods for further reducing the computational complexity of

the CQT extend the methods proposed in [BP92] and thus make the CQT

more attractive to be applied to musical signal analysis tasks. However, if

the signal is to be altered in the frequency domain, a method to reconstruct

the time domain signal from its CQT coe�cients is required. Mathematically

speaking, invertibility of a transform is assured when the transform kernel is

a (orthonormal) basis - implying that the transform is non-redundant. How-

ever, since the conditions to a bases are very restrictive and often very hard

or even impossible to meet, frame theory5 has proven to be a more �exible

tool to enable invertibility for redundant transforms while not demanding or-

thonormality [Chr03][KC07]. The approach to signal reconstruction from its

CQT coe�cients as proposed in this thesis, however, is straight forward and

not mathematically rigorous, while being strongly related to frame theory

[Dör02]. Loosely speaking, a signal can be reconstructed from its transform

coe�cients, if the transform kernel is designed so that it captures the time-

frequency plane uniformly (in the range of interest). In section 2.8 the kernel

design proposed here is described. For now it is assumed that the kernel is

properly designed, hence the reconstruction process is straight forward.

Figure 2.12 shows an overview of the inverse CQT transform (ICQT), where

5It is generally acknowledged, that frames where �rst mentioned in [DS52].
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Figure 2.12: An overview of the inverse CQT transform (ICQT), where an
approximation x̂(n) of the input signal x(n) is reconstructed from the octave-
wise CQT coe�cient matrices XCQ

d .

an approximation x̂(n) of the input signal x(n) is reconstructed from the

octave-wise CQT coe�cient matrices XCQ
d . The process is analogous to the

forward transform, except that all is done in reverse order.

The block indicated by "ICQT for one octave" in �gure 2.12 corresponds to

the reconstruction of a time-domain signal yd(n) that represents only one-

octave range of the input signal x(n). The signal yd(n) is obtained as follows.

First, an inverse spectral kernel V is applied to reconstruct the complex-

valued DFT bins within this single octave:

Yd = V∗XCQ
d (2.19)

where the column m of Yd contains the complex-valued DFT approximating

the column m of Xd in (2.17), but only over the frequency bins that belong

to this octave - outside this octave, Yd is zero. The structure of the inverse

spectral kernel V will be described in section 2.8: here kernels for which

V = A∗ are used, meaning that the inverse kernel is a conjugate transpose

of the forward transform kernel. 6

Since each column of Yd only contains the DFT spectrum for the positive fre-

6Note that then Yd = V∗XCQ
d = AA∗Xd, where multiplication by AA∗ actually

implements a near-perfect one-octave bandpass �lter.
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quencies, each column is augmented with its complex conjugate spectrum to

reconstruct the negative frequencies (for real-valued time-domain signals, the

DFT spectrum is conjugate-symmetric). The resulting columns are inverse

DFT transformed to obtain the time-domain signals within each DFT block,

and successive DFT blocks are then overlap-added to construct the entire

signal yd(n) over time (note that time-domain windowing of the DFT-blocks

at the synthesis stage is included in the inverse CQT kernel V).

The resulting time-domain signal yd(n) contains a reconstruction of one oc-

tave of the original input signal x(n). This signal is added to a signal that al-

ready contains a reconstruction of all the lower octaves (d+1, d+2, . . . , D−1)

in order to obtain a signal x̂d(n) that approximates the input signal for oc-

taves d, d + 1, . . . , D − 1. The signal x̂d(n) is then up-sampled by factor

two by inserting zeros between the original samples, multiplying the signal

by two, and low-pass �ltering using zero-phase forward-and-reverse �ltering

with a sixth-order Butterworth IIR �lter having cut-o� frequency fs/4 (the

same that was used at the analysis stage).

The above process is repeated for each octave at a time, as illustrated in

�gure 2.12. After reconstructing all the octaves, d = 0, 1, . . . , D − 1, the

resulting signal x̂0(n) ≡ x̂(n) is an approximate reconstruction of the input

signal x(n).

The computational complexity of the inverse transform is approximately the

same as that of the forward transform: here, instead of FFTs, inverse FFTs

are computed, and instead of the spectral kernel, the inverse kernel is applied.

Since the used inverse kernel

V = A∗, the inverse kernel is sparse too. The number of low-pass �ltering

operations is the same as that at the forward transform stage.
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2.8 Kernel Design

To enable reconstruction of the input signal from its CQT coe�cients, the

transform atoms need to cover the time-frequency plane uniformly. Since the

transform kernel, as mentioned in section 2.5.2, contains frequency bins that

cover one octave, the requirement of uniform coverage considering the design

of the kernel matrix is con�ned to this one-octave range, too. Splitting

up this requirement this means, that in time domain, successive window

functions w(n) for bin k should sum up to unity over the entire signal. In

frequency domain, on the other hand, the spectral kernels (bins) should some

up to unity. In the case of an analysis-synthesis system (CQT followed by

ICQT) using the same kernel for both analysis and synthesis, this requirement

is directed at the product AA∗. Hence, in time domain, the squares of

successive window functions [w(n)]2 have to sum to unity because the signal

will be windowed twice at the time-frequency location of each atom: once

when applying A∗ for the CQT, and second time when applying V∗ ≡ A for

the ICQT (thus audible artifacts are avoided if the signal is manipulated in

the CQT transform domain).

Typically, then, the window function w(n) is de�ned to be the square root of

one of the commonly used window functions (e.g. Hann or Blackman). For

analysis-only applications, the square root can be omitted to improve the

time-frequency localization properties of the window.

As described in 2.5.2, the kernel matrix contains several temporal translated

atoms. Thus, the window functions w(n) for bin k have to sum up to unity

within the kernel, as well as over successive, overlapping DFT blocks. Most

window functions, e.g. the Hann window, sum to a constant value only when

the distance between successive windows Hk = 1
z
Nk, where z ≥ 2 is an

integer and Nk is the window size for atom k. For an individual frequency

bin k, the DFT frame hop HDFT can be chosen to be an integer multiple

of 1
z
Nk so that exactly an integer number of time-shifted atoms would �t

between the beginnings of frame m and m+ 1, and these time-shifted atoms

would be stored in the kernel A. However, this requirement for HDFT cannot
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be simultaneously satis�ed for all frequency bins k with di�erent Nk. A

reasonable solution is obtained by using a relatively large DFT frame size, in

which case HDFT can be made large relative to atom sizes Nk, and thereby

HDFT approximately divisible by 1
z
Nk for all k. This approach leads to a

reasonable quality results, however, there are some disadvantages. Firstly,

the obtained data structure is inconvenient to work with, since there is a

di�erent number of CQT coe�cients for every bin k and thus the bins are

not temporally synchronized. Secondly, due to the large DFT frame size, the

spectral kernel A is less sparse and thus computationally less e�cient.

Due to this drawbacks, the kernel structure proposed here uses atoms that are

temporally synchronized within each octave. This means that the temporal

atoms within the kernel are centered at the same, successive points in time for

all bins. The spacing between those points in time is de�ned by the common

hop size HATOM, hence the individual hop size factor and the relative hop

size HATOM/Nk, respectively, is di�erent for each bin, but only up to a factor

of two since the kernel contains only atoms covering one octave.

In order to synchronize the atom positions in time also across octaves, the

position of the �rst atom stack within one DFT frame is not arbitrary but

has to be an integer multiple of the common atom hop size.

Figure 2.13 illustrates the error er due to time-domain ripple for di�erent

window functions over the overlap factor. The overlap factor is given by

1−HATOM/Nk and the error is de�ned by

er =

√∑
L

(
ν − 1

L

∑
L ν
)2∑

L ν
2

(2.20)

where ν is obtained by summing successive window functions and truncating

at its ends to eliminate edge e�ects and L is length of ν.

From �gure 2.13 it can be seen that, e.g. for the Hann window, er = 0 only

for overlap factors z
z+1

Nk, z ∈ N - otherwise er � 0. Since the overlap factors

vary across bins in the proposed kernel structure, using a Hanning window



2.8. KERNEL DESIGN 33

Figure 2.13: Error er due to time domain ripple over the overlap factor for
di�erent window functions.

will therefore result in a low quality of the reconstructed signal. This is

also true for the Hamming window as depicted in �gure 2.13. The Blackman

window produces a lower error for overlap factors greater than 66%, however,

the best choice for the given kernel structure is the Blackman-Harris window,

since the error is almost negligible for a wide range of overlap factors, as long

as the overlap factor ≥ 75% (from here the error still gets progressively

smaller). Thus, using the Blackman-Harris window, successive windows will

sum up to approximately a constant value which can be normalized to unity.

The parameter HATOM determines a trade-o� between reconstruction quality

(SNR of the signal reconstructed by ICQT) and redundancy of the represen-

tation. Having small value of HATOM leads to high quality, but also more

redundancy, that is, larger number of CQT coe�cients in proportion to the

number of samples in the input signal. However, a default value for HATOM

is easy to calculate: it is recommended to use HATOM/NK ≈ 1
4
, where NK

denotes the length of the shortest atom within the one-octave kernel. This

leads to redundancy factors around �ve and reasonable quality of the recon-

structed signal (see section 2.11).
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The requirement of summation of the atoms (bins) to unity in the frequency

domain is ful�lled, by choosing B ≥ 12. Figure 2.14(a)-(d) shows the im-

pulse responses of AA∗ for di�erent values for B. It can be observed, that

as B increases, the impulse response gets increasingly �at. This behavior

is best understood by looking at one individual bin and its right and left

neighbor: if B is large, the distance between the bin and its two neighbors

is very similar - as well as their bandwidths, since their lengths Nk are only

slightly di�erent. Thus, locally, the CQT bins behave very much like DFT

bins and therefore sum up to approximately unity. This approximation gets

increasingly accurate with increasing values for B.

The quality of the reconstruction can thus be increased, by increasing the

number of bins per octave (B) and by decreasing the hop size. Detailed

�gures and plots concerning the quality of reconstruction for di�erent kernel

parameters are provided in section 2.11.

2.9 Redundancy

The redundancy factor R of the proposed CQT transform is given by

R =
2CCQT

CIN
(2.21)

where CCQT and CIN denote the amount of CQT coe�cients and the amount

of samples in the input signal, respectively. The factor 2 is due to the fact

that CQT coe�cients are complex-valued.

The amount of CQT coe�cients produced by processing the highest octave

is given by

COCT =
CINB

hNK

(2.22)

where h = HATOM/NK is the atom hop size relative to the length NK of the

shortest atom (highest-frequency bin).
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(a) B = 6 (b) B = 12

(c) B = 24 (d) B = 96

Figure 2.14: Transfer functions of AA∗ for di�erent values of bins per octave.

Substituting the length NK from (2.12)

COCT =
CINfKB(2

1
B − 1)

h q fs

≈ 0.7CINfK
h q fs

(2.23)

where the latter approximation is obtained by noting that B(2
1
B − 1) ≈ 0.7

when B ≥ 12. Here it is assumed that the number of bins per octave B ≥ 12

(however, this is also a reasonable approximation for B < 12).

Since the length of the input signal decreases by the factor of two at each

decimation, it is easy to see from (2.23) that the number of CQT coe�cients

decreases by the same factor for each octave down. Therefore, the overall

amount of data for a large number of octaves is COCT(1 + 1
2

+ 1
4

+ 1
8

+ . . .) ≈
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2COCT. Substituting this to (2.21), the overall redundancy of the CQT trans-

form is

R =
2× 2× COCT

CIN
=

2.8fK
h q fs

. (2.24)

where the redundancy is proportional to the highest frequency analyzed, fK ,

and inversely proportional to the relative atom hop size h and the Q-value

scaling factor q (see 2.11).

2.10 Data Structure

Due to the proposed kernel structure, the data that is produced by the CQT

for one octave is of matrix form. However, since the input signal is down

sampled by factor 2 to calculate the CQT of the next octave, the number

of points where XCQ(k, n) is evaluated decreases by factor 2 as well. Figure

2.15 depicts the produced data points of the CQT proposed here in the time-

frequency plane. Note, that even though the number of coe�cients for one

octave is equal for all frequency bins (the absolute hop size is constant), the

time resolution decreases from high to low frequencies since the atoms lengths

vary. The default representation of the CQT coe�cients in the proposed

toolbox, is in the form of a sparse matrix, where for the second to highest

octave one zeros is inserted after every calculated coe�cient, for the third

to highest octave three zeros are inserted after every calculated coe�cients,

and so on.

In order to allow the user an easy access to the information without mind-

ing the inherent time sampling technique, the reference implementation of

the toolbox in Matlab contains interface tools to access the CQT data in

a representation that is regularly sampled in time. This 'rasterized' CQT

data structure is achieved by interpolating the magnitudes between the time

points XCQ(k, n) that have been computed by the CQT (the sampling fre-

quency of the rasterized CQT representation is set according to the atom hop

size of the highest octave). With the interface tools, the user can obtain the

entire CQT matrix representing the input data, or access only extracts of it.
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Figure 2.15: Points in the time-frequency plain where XCQ(k, n) is evaluated.

It is also possible to access only a certain time slice n of the CQT transform

XCQ(k, n) or all the CQT coe�cients of a certain frequency bin over time.

Another important tool is a function for plotting the magnitude of the CQT

transform XCQ(k, n) in a form similar to the DFT spectrogram using the

described interpolation technique. Figure 2.17 shows the CQT of a signal

containing bass, guitar, synthesizer sounds and a singing voice thus gener-

ated. The decrease of temporal resolution due to the increase of frequency

resolution towards low frequencies is demonstrated in �gure 2.16. The signal

depicted contains pure sinusoids with their frequencies being a major triad

apart from each other.

If a rasterized CQT representation is desired not only for the magnitudes,

but the complex coe�cients, the toolbox provides functionality to actually

calculate all desired data points with reasonable computational e�ciency.

With this tool, several time shifted versions of the spectral kernel are applied

to the DFT blocks, that is, the number of FFTs as well as the number of

�lter operations (down-sampling �lters) is unchanged.
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Figure 2.16: CQT of a six-second signal containing sinusoids with frequencies
four semitones apart from each other.

2.11 Quality of Reconstruction

Figure 2.18 shows the quality of the reconstructed time-domain signal x̂(n) as

a function of the redundancy R (see (2.21)) and di�erent window functions

w(n). Here the number of bins per octave was B = 48. In this plot, the

redundancy was increased by decreasing the relative hop-size h of the shortest

atom from 0.6 to 0.1. A constant Q scaling factor q = 1 has been used,

which means that only time-domain redundancy has been added. Using

q = 0.5 (frequency-domain oversampling) would improve the quality further

by ≈ 3dB but also increase the redundancy by factor two, therefore results

are shown only for q = 1.

The input signal was Gaussian random noise, bandpass �ltered to contain

only frequency components within the range being analyzed: we used fK =

fs/3 = 14.7kHz for the highest CQT bin, and analyzed eight octaves down

to 57Hz. Random noise represents a �worst case�: for music signals, the
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Figure 2.17: CQT transform of a music excerpt containing singing, acoustic
guitar, bass, and synthesizer sounds.

reconstruction quality is typically a few decibels better. Redundancy factors

were calculated by substituting fK = 14.7kHz and fs = 2 × 14.7kHz into

(2.24), where the latter is the sampling rate required to represent the time

domain signal up to 14.7kHz.7

Signal-to-noise ratios (SNRs) were calculated by comparing the reconstructed

signal x̂(n) after inverse CQT with the input signal x(n):

SNR = 10 log10

∑
n[x(n)]2∑

n[x̂(n)− x(n)]2
(2.25)

It can be observed that the choice of the window function has crucial in-

�uence on the quality of the reconstruction. For a very low redundancy,

corresponding to a large atom hop size, the highest SNR values are achieved

using a Hann window. For the redundancy range from 3 to 4.5 the Blackman

window performs best, whereas for R > 4.5 the Blackman-Harris window

7Note that if an input signal is to be analyzed up to the Nyquist frequency (fK = fs/2),
the input signal has to be slightly up-sampled (say, f ′s = 4

3fs) before applying the proposed
method, since the low-pass �lter G(f) in Fig. 2.11 is not ideal.
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Figure 2.18: Quality of the reconstructed signal as a function of the window
function w(n) and the redundancy R.

achieves the highest SNR values. This result can be explained by consider-

ing the time ripple of the di�erent window functions for varying hop sizes.

The Blackman-Harris window shows large time ripple with small overlap

values, but for overlap values greater than 75%, consecutive windows sum

up to unity almost perfectly. The Blackman window has similar properties

but converges slower to a low level of ripple. Figure 2.18 shows that us-

ing Blackman-Harris window, SNR values of about 55dB are achieved with

R ≈ 5.

Fig. 2.19 shows the quality of the reconstructed time-domain signal x̂(n) as a

function of the redundancy R (see (2.21)) using a Blackman-Harris window

and di�erent values for B (bins per octave). It can be observed that the

quality of the reconstructed signal improves by increasing the number of

bins per octave, achieving up to 60 dB SNR using B = 96. The property of

the Blackman-Harris window obtaining the highest SNR values already for

low redundancy values is independent of the number of bins per octave.
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Figure 2.19: Quality of the reconstructed signal as a function of the number
of bins per octave, B, and redundancy R.
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Chapter 3

Time-Scale Modi�cation of Audio

Signals

The aim of altering the time-scale of an audio signal, is to change the overall

duration of the signal while retaining the perceived pitch and timbre of the

material. The ultimate goal is to obtain an audio signal that sounds as

if the piece of music was played at a di�erent tempo or the speaker has

spoken at di�erent rate, respectively. This very common digital audio e�ect

is a standard tool in todays music production environments and has a long

history of research leading to steadily improving algorithms, able to produce

high quality results. However, the mitigation of artifacts in the modi�ed

audio signal is still an issue.

The problem of time-scale modi�cation can either be tackled in the time

domain or in the time-frequency domain (more generally, in a transform

domain). The principle of early approaches that operated directly in the

(analog) time domain, such as [Gar53] and [FEJ54], was to simply segment

the signal into non-overlapping frames and discard or repeat every kth frame

to achieve the desired compression ratio. In [Lee72] a digital implementation

of this process is presented. Obviously, this simple approach leads to arti-

facts caused by the discontinuities at the boundaries of the non-overlapping

43
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segments and pitch distortions.

A �rst attempt to mitigate these errors, is to divide the input signal into

overlapping segments of a �xed size using an input hop size R and overlap-

add (OLA) the segments using the output hop size αR, whereas overlapping

segments are cross-faded to produce a smooth output signal ([ABLS02]). In

[RW85], this methodology has been extended towards what is called the Syn-

chronous Overlap and Add (SOLA). Here the cross correlation of the over-

lapping segments is computed and the output hop size is adjusted according

to the time lag where the cross correlation has its maximum. A variation of

the SOLA algorithm is the Pitch Synchronous Overlap and Add (PSOLA)

proposed in [MC90] [HMC89], especially aiming at voice processing. In this

approach the segmentation of the input signal is based upon the pitch peri-

ods, which are obtained by �rst analyzing the input signal. There is number

of related algorithms, such as the Adaptive Overlap and Add (AOLA) [LF99]

or the Waveform Similarity Overlap and Add (WSOLA) technique [VR93],

that are all operating directly on the unprocessed time-domain input signal.

The bene�t of such approaches is the low computational complexity, however,

they are restricted to speech or monophonic audio signals (or polyphonic mu-

sic for small time-scaling factors), since they are based on the existence of

quasi-periodic signals. For these classes of signals, time-domain approaches

are able to produce high quality output signals.

In order to apply time-domain techniques to polyphonic audio signals, in

[SVW94] a sub-band approach to time-scale modi�cation has been proposed.

Here the complex (i.e. polyphonic) input signal is �rst split into several

less complex sub-bands using perfect reconstruction �lter banks. Since the

requirement of the existence of quasi-periodic signals is likely to be met in

these sub-bands, time-domain techniques discussed above can by applied.

After time-scaling the individual sub-bands they are added together to form

the output signal. In [SVW94] it is stated, that the main source of error

in this approach is the problem of sub-band synchronization, an issue that,

for example, has been addressed in [DL04]. For a comprehensive comparison

of di�erent time domain time-scale modi�cation algorithms, the interested
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reader is referred to [CDL06].

Since the scope of this thesis is the assessment of the applicability of the CQT

(plus inverse) to digital audio signal processing, frequency domain techniques

for time-scale modi�cations are discussed more speci�cally in the sequel.

Amongst these approaches, phase vocoder techniques are the most prominent

ones and seem especially suitable for replacing the commonly used DFT with

the CQT due to its logarithmic frequency resolution. Thus, the standard

DFT based phase vocoder will be described in the next section. For the

sake of completeness, however, two other frequency domain approaches to

time-scale modi�cation only be mentioned and referenced here.

In [GL84] an iterative method is proposed to obtain a signal estimation from a

modi�ed STFT representation or only from the modi�ed STFT magnitudes,

respectively. The method in [GL84] is based on the fact, that not every

STFT representation is valid in the sense that there is no signal that has this

particular STFT representation. Time-scale modi�cation is then performed

by modifying the magnitudes of the original STFT representation so that

the desired scaling factor is achieved. Using an initial estimate for the phase

values, the output signal is estimated iteratively.

Sound modi�cations, such as time-scaling, can also be achieved by repre-

senting an audio signal as a sum of slowly varying sinusoidal trajectories.

This sinusoidal modeling approach was proposed in [MQ86] and [SS87] and

comprises three analysis stages: spectral peak detection, estimation of exact

frequency, amplitude and phase values for spectral peaks and partial track-

ing, that is linking spectral peaks to several sinusoidal trajectories. Using

these extracted and potentially modi�ed parameters, the audio signal can

be resynthesized by synthesizing and summing the sinusoidal trajectories.

The synthesis step is usually performed by an oscillator bank in time do-

main (additive synthesis). Since the sinusoidal model, however, is not able

to represent noisy signal parts, in [SS90] and [Ser89] the model has been ex-

tended towards a sinusoidal (deterministic) plus noise (stochastic) represen-

tation. This technique is commonly referred to as spectral modeling synthesis
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(SMS) and aims at modeling time-varying spectra as a collection of sinu-

soids controlled through time by piecewise linear amplitude and frequency

envelopes (deterministic part) and a time-varying �ltered noise component

(stochastic part). In the analysis stage, the identi�ed sinusoidal trajectories

are removed by spectral subtraction and the remaining residual (noise) is

modeled as white noise through a time-varying �lter. The system proposed

in [SS90] is designed to model speech and single instrument signals whereas

an ideal time/frequency resolution trade-o� is achieved by employing pitch-

synchronous DFT window lengths. Since this approach cannot be applied to

polyphonic music signals, a multiresolution approach to sinusoidal modeling

has been proposed in [LVS98]. Furthermore, as transient signal components

are very expensive to be modeled as a sum of sinusoids and sharp attacks

can not be modeled by �ltered noise either, in [LI98] a sinusoidal + transient

+ noise model for audio representation has been proposed. The transition

from a multiresolution DFT system to a spectral modeling approach based

on the CQT seems natural, however, the application of the CQT for spectral

modeling purposes is beyond the scope of this thesis.

3.1 The Phase Vocoder

The �rst form of the phase vocoder was proposed in [Fla66] and has been

translated into its modern FFT based form in [Por76]. In [Moo78] [Dol86] the

phase vocoder was further investigated in a musical context. Today the phase

vocoder is a standard tool in digital audio signal processing as a means of

time- and pitch/frequency-scaling, respectively. The theoretical background

of the standard phase vocoder approach is very well documented, e.g. in

[AKZ+02], [DGBA00] and [KLB06], and thus will only be brie�y described

here.

The algorithm basically comprises three stages: analyses, transformation and

synthesis. In the analyses stage, the STFT representation of the input signal

is calculated according to (2.1). Since the hop size that is used to compute
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the STFT is a crucial parameter in the phase vocoder, (2.1) can be altered

to incorporate the analysis hop size Ra as follows:

XDFT(v, k) =
N−1∑
m=0

w
(m
N

)
x

(
m+ vRa −

N

2

)
e−iΩkm (3.1)

with the STFT frame number v and the bins normalized center frequency

Ωk = 2πk
N

and k = 0, 1, ..., N − 1.

In order to obtain a time-scaled output signal, the STFT representation is

modi�ed in the transformation stage. In the standard phase vocoder ap-

proach time-scaling is achieved by altering the hop size, that is, the synthesis

hop size Rs 6= Ra (unlike the approach proposed by Bonada in [Bon00] where

the hop size is kept constant and STFT frames are repeated or omitted to

obtain a time-scaled output signal). Thus the magnitudes of the STFT rep-

resentation are kept unchanged so that

|Y DFT(v, k)| = |XDFT(v, k)| (3.2)

with Y DFT(v, k) being the modi�ed STFT representation, while the phases

have to be updated in order to be consistent with the synthesis hop size Rs.

This phase update process is based on an estimation of a partials instanta-

neous frequency at bin k. In order to estimate the instantaneous frequency,

the unwrapped phase di�erence at bin k between two consecutive STFT

frames has to be determined by

∆ϕa(v, k) = [ϕa(v, k)−RaΩk − ϕa(v − 1, k)]±π (3.3)

where ϕa(v, k) = ∠XDFT(v, k) and [·]±π denotes the principle argument (be-

tween ±π). The estimated instantaneous frequency at frame v and bin k is

given by

ω̂(v, k) = Ωk +
∆ϕa(v, k)

Ra

(3.4)
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The synthesis phases are set according to a phase-propagation formula, which,

in its simplest form, is given by

ϕs(v, k) = ϕs(v − 1, k) +Rsω̂(v, k) (3.5)

where ϕs(v, k) = ∠Y DFT(v, k).

The time-scaled output signal is obtained by transforming the modi�ed DFT

frames back into the time domain using the inverse FFT and by overlap

adding consecutive frames. To reduce artifacts, usually a window function is

applied to the frames in the time-domain prior to the overlap-add process.

3.1.1 Phase Coherence

The phase update process described above (which is usually referred to as

phase unwrapping), ensures that the phase values of overlapping DFT frames

are consistent. Picturing a constant-frequency, constant-amplitude sinusoid

that means, that the synthesized sinusoid in frame v picks up the phase

of the synthesized sinusoid in frame v − 1, thus adding constructive in the

region of overlap. This is what commonly is referred to as horizontal phase

coherence [LD97]. If phase unwrapping is skipped or erroneous, the loss of

horizontal phase coherence introduces amplitude and frequency modulations

to the synthesized partials.

Since the window functions in (3.1) do not only overlap in time, but also

in the frequency domain (bandpass �lters), the phase values of the modi�ed

STFT representation also have to meet strong consistency conditions within

one frame along the DFT bins (vertical phase coherence). Depending on the

main lobe width of the window function that is used, a constant-frequency,

constant-amplitude sinusoid causes several neighboring bins to have non-zero

coe�cients. The phases of these neighboring bins are identical if the win-

dow function is centered at the beginning of the frame and exhibit a ±π
alternation if the window function is centered at the STFT frame center, re-

spectively (note that this is true only if the window function is periodic, that
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is the continuous window function is sampled such that only one coe�cient is

zero). In order to obtain a valid STFT representation, these phase relations

have to be retained during the phase update process. In general, the phase

unwrapping process to ensure horizontal phase coherence destroys vertical

phase coherence causing artifacts in the output signal that are perceived as

'phasiness' or added reverberation.

3.1.2 Phase Locking

A �rst attempt to force both horizontal and vertical phase coherence at the

same time, was proposed in [Puc95]. In the original paper the proposed

method is generally called phase locking, however, in order to discern this

approach from approaches proposed later, today it is referred to as loose

phase-locking. in [Puc95] a certain degree of vertical phase coherence is ob-

tained by a simple post-processing step after the phase unwrapping. The idea

is, to steer the phases of low magnitude bins towards the phase of a neigh-

boring high magnitude bin. This is achieved by altering the phase of each

complex coe�cient Y (v, k) after phase unwrapping in the following way1:

ϕs(v, k) = ∠ (Y (v, k) + Y (v, k − 1) + Y (v, k + 1)) (3.6)

Applying (3.6) does not exactly establish vertical phase coherence since the

phases of the bins around a peak are not forced to be exactly equal, however,

the phases will be similar (hence the term loose phase locking). The advan-

tage of this approach is its computational e�ciency since the spectral peaks

do not have to be identi�ed (this makes it a very elegant approach). The

downside is, that the reduction of artifacts in the time-scaled output signal

is very signal-dependent and never dramatic [LD99a].

Although less elegant, due to the lack of quality improvement applying the

concept of loose phase locking, it seems like analyzing the signal to a certain

1In the original paper the signs of this formula are di�erent because the DFT windows
were assumed to be centered at the frame center and thus neighboring bins are 180◦ apart
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extent is inevitable. As a consequence, in [LD97] a method was proposed that

introduces a stage where the spectral peaks in each frame are identi�ed and

considered to stem from a single sinusoidal component in the input signal.

In this simple peak-picking stage a peak is de�ned as a bin whose magnitude

is greater than the magnitudes of its four nearest neighbors. The spectrum

is then divided into regions of in�uence whereas the region boundaries can

either be set halfway between two peaks or at the bin with the lowest ampli-

tude between two peaks. Since the spectral peaks are assumed to stem from

sinusoidal components in the signal, the phase unwrapping can now be con-

�ned to the peak bins in each frame. The phases of all other bins in a peaks

region of in�uence are then locked to the peak bins phase. In [LD99a] two

di�erent implementations of this rigid phase locking concept are proposed:

In the �rst implementation, that is referred to as identity phase locking, the

phase di�erences between the peak bins and the bins in the corresponding

regions of in�uence of the original STFT representation X(v, k) are applied

to the modi�ed STFT representation Y (v, k) after phase unwrapping, so that

ϕs(v, k)− ϕs(v, k1)
!

= ϕa(v, k)− ϕa(v, k1) (3.7)

where k1 denotes a peak bin and k covers all bins in its region of in�uence.

The second implementation proposed in [LD99a] is referred to as identical

phase locking and applies two modi�cations to the identity phase locking

technique. Firstly, (3.3) is modi�ed to allow for the case, when a peak at bin

k0 in frame v−1 migrates to bin k1 in frame v. Hence, the unwrapped phase

di�erence for a peak bin ∆ϕa(v, k1) is given by

∆ϕa(v, k1) = [ϕa(v, k1)−RaΩk − ϕa(v − 1, k0)]±π (3.8)

With the instantaneous frequency ω̂(v, k1) at bin k1 given by (3.4) the phase-

propagation formula (3.5) is now given by

ϕs(v, k1) = ϕs(v − 1, k0) +Rsω̂(v, k1) (3.9)
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Secondly, a slightly generalized form of (3.7) is used and now reads as

ϕs(v, k) = ϕs(v, k1) + β [ϕa(v, k)− ϕa(v, k1)] (3.10)

where β is a scaling factor and β = 1 performs identity phase locking. How-

ever, in [LD99a] it is stated, that empirical tests have shown that the audio

quality of the output signal can be improved when 1 < β < Rs

Ra
is used,

however, there is no mathematical explanation.

In terms of audio quality, the concept of rigid phase locking outperforms the

loose phase locking concept at the cost of higher computational complexity.

A high quality time-scaled output signal can be achieved for a variety of

audio signals including polyphonic music.

3.1.3 Shape Invariance

The phase locking scheme outlined above aims at retaining vertical phase

coherence for neighboring DFT bins. This is a local operation on spectral

peaks and is applied independently to each sinusoidal component. Hence,

inter-sinusoidal phase relations, e.g. phase relations between harmonics, are

not retained by this method. If these inter-sinusoidal phase relations are

altered, the waveform (shape) of the input signal is altered as well. How-

ever, in general the human ear is quite insensitive to phase relations, that is,

that two waveforms that seem completely di�erent can sound almost exactly

the same. This is true for most music signals, however, if speech signals

are considered the shape of the waveform is perceptually critical as the loss

of inter-sinusoidal phase coherence a�ects the perception of the underlying

glottal excitation pulses and leads to audible artifacts. In order to retain the

phase relations between sinusoidal components for speech signals, shape in-

variant time-scaling methods has been proposed in [QM92] and more recently

in [Roe10]. Since the scope of this thesis is to investigate the applicability of

the CQT for time- and pitch-scale modi�cations for polyphonic music signals,

however, the issue of shape invariance has not been considered throughout



52 CHAPTER 3. TIME-SCALE MODIFICATION OF AUDIO SIGNALS

this work.

3.1.4 Transient Processing

The two main groups of artifacts that remain in the output signal are tran-

sient smearing and phasiness. One major reason for both is the remaining

lack of phase coherence of the modi�ed STFT representation.

The obvious explanation for the loss of sharp attack transients is, that the de-

scribed approaches do not take into account transients, since phase coherence

is only maintained for spectral peaks, i.e. sinusoidal components. However,

if phase coherence at an attack transient is lost, its energy is spread in time

which causes the perception of smeared transients.

Several approaches to retain sharp attacks in the time-scaled output signal

has been proposed in the past. An appealing way to deal with transients

is to detect and separate them from the input signal prior to time-scaling

[LI98]. The remaining transient part can then be time-scaled in time domain

(time translation of transients). The main problem with this approach usu-

ally is the unreliability and/or the computational complexity of separation

algorithms, however, improvements in that �eld have been made recently

([OMLR+08], [Fit10]).

Another approach to transient processing is to detect transient regions in the

input signal and use a synthesis hop size unequal to the analysis hop size only

for non-transient regions ([MB96], [Ham01], [Bon00], [DDS02]), thus leaving

transients regions unchanged. It has been shown, that this signi�cantly im-

proves the characteristics of transients in the time-scaled output signal. In

order to achieve the overall desired stretch-factor, however, the time-scale

factor has to be higher in stationary regions of the signal, which can be a

problem when the signal contains very dense transient patterns.

In [Röb03] an approach to transient preservation has been proposed where the

time-scale factor is kept constant throughout the entire signal. The sharpness
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of attack transients is retained by resetting the phase values to the original

phases for frames where attack transients where detected near the center of

the frame (in [Röb03] also a novel transient detection technique based on the

frames center of gravity [Coh95] has been proposed). In frames prior to the

detected transient, the amplitude and phase values of the preceding steady

part are used to avoid pre-echoing, whereas the amplitude of the transient

frame is multiplied with a constant factor to compensate for the loss of level.

3.1.5 Resolution Issues

DFT based phase vocoder implementations that maintain phase coherence

by identifying spectral peaks as sinusoidal components (rigid phase locking)

have proven to signi�cantly improve the quality of the time-scaled output

signal. Such methods mark a merging of phase vocoder techniques and si-

nusoidal modeling techniques - and thus are prone to the same errors. Since

phase coherence, both horizontal and vertical, is only maintained for spec-

tral peaks, it is crucial that all sinusoidal components in the audio signal are

properly resolved. As discussed in section 2.3, the linear bin spacing of the

DFT does not seem to be the best tool to capture the logarithmic spacing

of the fundamental frequencies in music signals. While for low frequencies a

high frequency resolution is needed to resolve sinusoidal components prop-

erly, for higher frequencies a better time resolution is desired to capture fast

temporal changes. Oversampling in the frequency domain, i.e. zero-padding

the frames, improves the ability to identify spectral peaks that otherwise

would not be visible in the spectrum, however, a correct phase unwrapping

requires the absence of interference between sinusoidal components. The use

of zero-padding can not eliminate such interferences, thus the bandwidths of

the bandpass-�lters at lower frequencies actually have to be smaller than at

higher frequencies. In [Bon00] this problem is addressed by applying three

DFTs with di�erent window sizes in parallel. The proposed window sizes are

93 ms, 46.5 ms and 35 ms, respectively, and the desired upper cuto� frequen-

cies are 700Hz, 2400Hz and 2250Hz, whereas the cuto� frequencies are time
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varying to prevent peaks to occur in two di�erent bands simultaneously. It

has been shown that this multiresolution approach improves the quality of

the time-scaled output signal signi�cantly. To avoid prominent partials in the

transition bands, however, the exact cuto� frequencies of the �lters need to

be steadily adapted. This can be avoided when this discrete multiresolution

approach based on the DFT is replaced with the CQT providing a somewhat

continuous multiresolution.

3.2 A CQT Phase Vocoder

With the CQT toolbox proposed in chapter 2 at hand, providing an e�cient

implementation of the constant-Q transform and a reasonable quality recon-

struction, it seems worthwhile to investigate its applicability to the phase

vocoder technique for time-scaling audio signals. The reported bene�ts of

the use of a multi-resolution DFT in [Bon00] suggest a further improvement

of the quality of the time-scaled output signal when the three band DFT is

replaced by the CQT. In the following, the applicability of the phase vocoder

concepts discussed in section 3.1 to the CQT representation are investigated.

3.2.1 Applying the Concepts

In the previous sections the two main issues that determine the quality of the

phase vocoder's time-scaled output signal have been identi�ed as horizontal

and vertical phase coherence. Horizontal phase coherence is maintained by

the process referred to as phase unwrapping where the frequencies of the

sinusoidal components present in the audio signal are estimated. Vertical

phase coherence can (partly) be maintained by applying one of the two dis-

cussed rigid phase locking techniques. In the sequel the validity of this two

techniques for CQT representations will be discussed.
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Horizontal Phase Coherence: Phase unwrapping

In the absence of noise or other interfering signal components, the frequency

of a constant-amplitude constant-frequency sinusoid x(n) = sin(2πfx

fs
n) can

be precisely estimated. The only condition that has to be met, is, that the

di�erence ∆̃ϕa between the cumulated (unwrapped) phases of the x(n), i.e.

Ra
2πfx

fs
, and a bins center frequency, i.e. RaΩk, is smaller than π, that is

−π < ∆̃ϕa < +π (3.11)

where

∆̃ϕa = Ra
2πfx
fs

−RaΩk = Ra
2πfx
fs

−Ra
2πfk
fs

= 2πRa
∆fxk
fs

(3.12)

If condition (3.11) is not met, phase unwrapping is ambiguous and the use

of (3.3) will result in an erroneous frequency estimation. In the DFT case,

solving (3.11) for the absolute value of the frequency di�erence yields

|∆fxk| = |∆bxk
fs

N
| < fs

2Ra

(3.13)

where ∆bxk is the frequency deviation in DFT bins, assuming no frequency

oversampling.

If phase unwrapping is only applied to the spectral peaks, |∆bxk| ≤ 1
2
, hence

condition (3.11) simpli�es to

Ra

N
< 1 (3.14)

meaning, that for all overlap factors greater than 0% horizontal phase coher-

ence can be maintained for the DFT phase vocoder.

For the proposed CQT implementation, the overlap of successive atoms is

not constant but at a minimum for the highest bin within the one octave

kernel. Since the maximal possible frequency deviation between the bins

center frequency and fx reaches its maximum also for the highest bin in the
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kernel, it su�ces to check condition (3.11) for the highest bin only. Hence,

for the CQT (3.13) reads as 2

|∆fxk| ≈ fK

(
2

1
2B − 1

)
<

fs

2Ra

(3.15)

where fK is the center frequency of the highest-frequency bin in the kernel.

The atom hop size Ra (in chapter 2 this parameter was labeled HATOM) is

given by

Ra = hNK (3.16)

where h is the atom hop size relative to the length NK of the shortest atom

(highest-frequency bin). Substituting (2.12) in (3.16) and (3.15) yields

fK

(
2

1
2B − 1

)
<
(
21/B − 1

) fK
2hq

(3.17)

hq <
2

1
B − 1

2
(

2
1

2B − 1
) (3.18)

and for arbitrary values forB

hq < 1 (3.19)

That is, assuming no frequency domain oversampling (q = 1), for all overlap

factors greater 0% horizontal phase coherence can be maintained also for the

CQT phase vocoder.

2The approximation in (3.15) stems from the fact, that due to the logarithmic bin
spacing and the slightly di�erent bandwidths of neighboring bandpass �lters, the frequency
between bin k and bin k + 1 where the magnitudes of both coe�cients are equal is not

exactly fk

(
2

1
2B − 1

)
. The exact frequency position depends on B and the used window

function, however, the this frequency deviation is negligible
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Vertical Phase Coherence: Phase Locking

The phase locking schemes to retain vertical phase coherence for sinusoidal

components rely on predictable phase relations between neighboring bins.

For the DFT case this relation is given by a ±π phase alteration if the window
is centered at the frame center. That is, an impulse in the frame center will

exhibit a �at magnitude spectrum and a phase spectrum that alternates

between π and 0. The reason for this can be seen in �gure 3.1(a)-(b) where

the �rst four harmonics of the complex basis function Ak(n) = e−iΩkn are

depicted. At the frame center, the real part (i.e. cos(iΩkn)) alternates

between +1 and −1, whereas the imaginary part (i.e. −sin(iΩkn)) is 0, what

explains the 180◦ phase di�erence between neighboring bins for an impulse

in the frame center.

The explanation why this ±π alteration between neighboring bins not only

occurs for an impulse, but also for a sinusoid when a frame centered win-

dow is used, is best approached in the frequency domain. In �gure 3.2 the

continuous magnitude and phase spectra of three adjacent windowed DFT

bases functions w(n)e−iωkn with center frequencies ωk−1, ωk and ωk+1 , re-

spectively, are sketched. Since the windows are (periodic) symmetric and

centered within the DFT frame, it is easy to see that the group delay [Boa03]

of each bandpass �lter is constant and equal to N/2, where N is the DFT

frame size. The group delay is de�ned as the negative derivative of the phase

response with respect to frequency, whereas the frequency is de�ned on the

interval ω ∈ [0, 2π). In the discrete-time discrete-frequency case of the DFT,

the group delay τd = −∆φ(ω)/∆ω. Since ∆ω = 2π/N , a group delay of

τd = N/2 corresponds to a phase slope ∆φ(ω) = ∠A(ωk−1)− ∠A(ωk) = −π
within the main lobe of the bandpass �lters. In �gure 3.2 it can be observed,

that a sinusoidal component with frequency ωx (red line) 'samples' the main

lobes of the three bandpass �lters (bins) with exactly π phase di�erence

between neighboring bins.

Usually it is preferred to obtain equal phases for all signi�cant bins excited

by a sinusoidal component. For the DFT representation, there are two im-



58 CHAPTER 3. TIME-SCALE MODIFICATION OF AUDIO SIGNALS

(a) Real parts (b) Imaginary parts

Figure 3.1: Real and imaginary parts of the �rst four harmonic basis functions
within one DFT frame

plementations to achieve this: The �rst implementation is, to modify the

DFT de�nition so that the point of zero phase for all basis functions is not

at the beginning but at the center of the DFT frame. Thus, the modi�ed

STFT de�nition is given by

XDFT(v, k) =
N−1∑
m=0

w
(m
N

)
x

(
m+ vRa −

N

2

)
e−iΩk(m−N

2 ) (3.20)

The real and imaginary parts of four of the phase shifted bases functions are

depicted in �gure 3.3(a)-(b). It can be observed, that the same result could

have been achieved by simply inverting all odd harmonics, that is

XDFT(v, k) =
N−1∑
m=0

w
(m
N

)
x

(
m+ vRa −

N

2

)
e−iΩkm(−1)k (3.21)

= (−1)kF
{
w
(m
N

)
x

(
m+ vRa −

N

2

)}
(3.22)

where the factor (−1)k implements a circular shift by N/2 samples in the

frequency domain. 3

3This is because a circular time shift by N0 samples can be implemented in the fre-
quency domain by applying a phase shift of ei

2π
N kN0 . If the time shift N0 = N/2 the factor

simpli�es to ei
2π
N kN2 = eiπk = cos(πk) = (−1)k.
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Figure 3.2: Continuous magnitude and phase spectra of three adjacent win-
dowed DFT bases functions.

The second implementation to obtain the same result, is to apply this circular

time shift not in the frequency domain but in the time domain. That is, a

circular shift by N/2 samples has to be applied to the windowed input signal

what merely means to swap the �rst and the second half of the frame4. After

applying this time shift, either in the frequency or in the time domain, the

phase spectrum of the bandpass �lters (bins) is zero (zero-phase �lters) and

thus neighboring bins excited by a single sinusoidal component will exhibit

equal phases.

In the CQT de�nition given in chapter 2, the starting phases of the complex

exponential in (2.6) are bounded to the beginning of the windows (just like

in the standard STFT de�nition). In �gure 3.4(a)-(b) the real and imagi-

nary parts of four (unnormalized) CQT atoms are depicted. As discussed

above, the bounding of the starting phase of the complex exponentials to

the beginning of the window, causes a 180◦ phase jump between neighboring

bins in the DFT representation. In the proposed CQT, atoms are centered

4In Matlab, for example, this operation is implemented in the function �tshift.
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(a) Real parts (b) Imaginary parts

Figure 3.3: Real and imaginary parts of the �rst four harmonic basis functions
within one DFT frame (zero-phase)

at the same position within the frame (stacked atoms) and the window size

decreases as the center frequency increases. Hence, the phases of all atoms

are equal at the atom center, that is, the phase di�erence between neigh-

boring bin is exactly zero. However, this is only the case if all windows are

exactly symmetric about the same point and Nk ∝ 1
fk
. For practical reasons,

the window sizes Nk are rounded towards the nearest integer and standard

window implementations are used in the �rst version of the toolbox pro-

posed in [SK10], thus violating both conditions. In �gure 3.5(a)-(b) it can

be observed, that it is not possible to de�ne a common center point for both

even and odd length windows with standard window function implementa-

tions. Hence, the group delays of neighboring bins potentially di�er by half

a sample. That is, the phase slopes of neighboring bins are no longer parallel

(unlike for the DFT case depicted in �gure 3.2) and the phase di�erences

between bins considering a constant-frequency sinusoidal input signal with

frequency ωx are dependent on ωx. One way to ensure equal group delays for

all bins would be to allow only even (or odd) Nk. This, however, will change

the phase value at the window center, which is given by

Φc =
2πfk
fs

· Nk

2
=
πfkNk

fs

=
qπ

21/B − 1
(3.23)
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(a) Real parts (b) Imaginary parts

Figure 3.4: Real and imaginary parts of four CQT atoms

(a) 13 point Hann window (periodic) (b) 14 point Hann window (periodic)

Figure 3.5: Standard implementation of the Hann window

Rounding Nk to the nearest even (or odd) integer N̂k adds a phase error term

yielding the altered center phase

Φ̂c = Φc +
πfk
fs

(
N̂k −Nk

2

)
︸ ︷︷ ︸

Φe

(3.24)

with the maximum value of the error term Φerr given by

|Φmax
e (fk) | =

πfk
2fs

(3.25)
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To avoid this phase error, modi�ed window implementations which allow

fractional window sizes are required. In �gure 3.6(a)-(b) two modi�ed Hann

windows with fractional window sizes are depicted. In order to be able to

de�ne a common center point for di�erent window sizes, the sample grid is

shifted to capture the center of the window regardless of its length. Note

that the number of samples returned by the modi�ed Hann window imple-

mentation is always odd as the window function is sampled at its center and

at m ∈ N positions both right and left of the center.

Using modi�ed window functions yields equal phases of neighboring bins,

however, if zero phase bandpass �lters are desired (so that an impulse in the

center of an atom stack is zero phase), the phases of the complex exponential

in the CQT de�nition have to be modi�ed, yielding a CQT de�nition that

reads

XCQ(k, n) =

n+bNk/2c∑
m=n−bNk/2c

x(m)a∗k(m− n+Nk/2) (3.26)

with its basis functions ak(n) de�ned by

ak(n) =
1∑

nw(n/Nk)
w

(
n

Nk

)
exp

[
i2π

(
n− Nk

2

)
fk
fs

]
, (3.27)

In �gure 3.7(a)-(b) the real and imaginary parts of four zero-phase atoms

obtained by this altered CQT de�nition are depicted.

A note on the quality of reconstruction

In section 2.11 it was shown that the quality of the reconstructed signal

from its CQT coe�cients can be maximized when a Blackman-Harris window

is used. Hence, instead using a modi�ed Hann window the obvious thing

to do would be to use modi�ed Blackman-Harris windows that allow for

fractional window sizes and guarantee center sampling. However, the Hann

window is preferred for phase vocoder applications since its main lobe width
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(a) 13.4 point modi�ed Hann window (b) 14.4 point modi�ed Hann window

Figure 3.6: Modi�ed Hann windows allow for fractional window sizes and
always sample the center of the window.

(a) Real parts (b) Imaginary parts

Figure 3.7: Real and imaginary parts of four zero-phase CQT atoms

is smaller than the main lobe width of a Blackman-Harris window and thus

introduces less interference when closely spaced sinusoids need to be resolved.

Fortunately it was found that if a squared modi�ed Hann window is used5 the

reconstruction quality is similar or even higher compared to Blackman-Harris

windows. In table 3.1 the quality of reconstruction for the Blackman-Harris

window and the squared modi�ed Hann window is compared.

5A squared modi�ed Hann window since the window function is applied when the CQT
is performed and again at the inverse CQT. For this reason, when a Blackman-Harris
window is used, it's square root is applied.
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R B Blackman-Harris window squared mod. Hann window
4 24 39.0 dB SNR 44.9 dB SNR
4 48 40.5 dB SNR 47.2 dB SNR
5 24 55.8 dB SNR 53.0 dB SNR
5 48 57.8 dB SNR 54.5 dB SNR
6 24 56.9 dB SNR 57.6 dB SNR
6 48 58.6 dB SNR 57.9 dB SNR

Table 3.1: Quality of reconstruction for di�erent settings and window func-
tions. R is the redundancy factor (see section 2.9) and B is the CQT resolu-
tion (bins per octave). The test signal was white noise, what marks a worst
case scenario. For real world music signals the achieved quality usually is a
few dB higher.

Transient Processing with the CQT Phase Vocoder

The problem of transient smearing discussed for the DFT phase vocoder is

an issue also for the CQT phase vocoder. However, due to the improved

temporal resolution at high frequencies (short window lengths), attack tran-

sients at higher frequencies do not require further processing since the onset

softening is negligible. This is also true for percussive transients that exhibit

most of their energy in the upper frequency regions (e.g. Hi-Hat, cymbals,

etc.). Transient smearing for attack transients and percussive transients at

low frequencies (e.g. bass notes, kick drum, etc.), where quite long windows

are used, however, remains an issue.

To prevent transient smearing at lower frequencies, similar approaches as

discussed in section 3.1.4 for the DFT phase vocoder could be used, however,

not all of them are feasible for the CQT phase vocoder. In �gure 3.8 the

CQT representation of an impulse (Kronecker delta) is depicted. Due to the

increasing window lengths towards low frequencies, the representation of the

impulse gets widened. Trying to prevent transient smearing by using a local

speed constraint, i.e. setting the scaling factor to 1 for transient regions, is

not reasonable for the CQT phase vocoder since the number of time frames

a�ected by a transient event depends on the frequency. Hence, a transient

region cannot be isolated in time in the CQT representation. Additionally, a
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Figure 3.8: Kronecker delta: Magnitude values of the rasterized CQT repre-
sentation

local speed constraint cannot be set in the sparse representation of the CQT

but only in the less e�cient full matrix (rasterized) representation.

An approach that obviously works for both the DFT and CQT phase vocoder,

is to separate transients from the input signal prior to time-scaling. As men-

tioned in section 3.1.4, this method solely relies on the ability of the applied

transient separation algorithm to subtract all transients from the input sig-

nal without a�ecting sinusoidal components. This approach has not been

implemented for CQT phase vocoder, however, due to steadily improving

separation algorithms, this could be an interesting topic for future research.

Following the notion of Röbel [Röb03], sharp attacks can also be retained

by only adjusting the coe�cients phases and amplitudes. In the sequel, the

required phase/amplitude adjustments for transients in the CQT represen-
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tation will be discussed by means of a single impulse input signal.

When the hop size of the CQT representation is altered, the main issue

is to maintain phase coherence. For sinusoidal components, the horizontal

phase progression needs to be adjusted so that no phase jumps between

consecutive frames occur and vertical phases had to be locked to retain the

spectral shape of the sinusoid to mitigate artifacts commonly referred to as

'phasiness'. For an impulse, however, vertical phase coherence is essential

to keep the temporal shape of the signal within one frame. If vertical phase

coherence is lost, a noise-like event will be generated during inverse transform

rather than an impulse. Horizontal phase coherence, on the other hand, is

essential to ensure that the impulses generated by successive frames add up

at at the same point in time. If horizontal phase coherence is lost, several

closely spaced impulses will be generated causing the sensation of multiple

attacks. The phase update process for an impulse thus comprises two stages:

• Horizontal phase unwrapping: An impulse is a broadband event,

hence the phases need to be unwrapped not only for spectral peaks, but

for the entire representation (or region around the impulse). In �gure

3.9(a) the horizontal phase di�erences (phase di�erences between con-

secutive atoms for each bin) of the original input signal are depicted.

Figure 3.9(b) shows the horizontal phase di�erences after phase un-

wrapping.

• Vertical phase realignment: For the case of sinusoidal components,

vertical phase coherence can be retained by applying the phase di�er-

ences from the original signal around a spectral peak to the modi�ed

representation (phase locking). This method can not be applied to

impulses (or transients in general). In �gure 3.10(a)-(b) the phase dif-

ferences between adjacent bins within one time-slice (vertical phase dif-

ferences) are depicted prior to, and after horizontal phase unwrapping,

respectively. Since the phases just before the impulse depend on the

entire signal content prior to the impulse, horizontal phase unwrapping

causes a scrambling of the vertical phase di�erences. The idea of phase



3.2. A CQT PHASE VOCODER 67

realignment is to rotate all phase values so that frameM , for which the

impulse is close to its center, is equal to frame M of the input signal.

Thus, the realigned CQT representation Y (k, n) is given by

Y (k, n) = X̃(k, n)eΦr(k) (3.28)

with CQT coe�cients after phase unwrapping X̃(k, n) and

Φr(k) = ∠X(k,M)− ∠X̃(k,M) (3.29)

where X(k,M) is the CQT representation of the original input signal

and M is the frame number where the impulse is close to the center of

the frame. Note that this notation is only valid for the rasterized CQT

representation, however, the concept can also be applied to the sparse

representation.

The vertical phase di�erences thus realigned are depicted in �gure 3.11.

The same result can be obtained when the phases are unwrapped in

two di�erent directions. That is, starting at frame M , the phases are

unwrapped to the left and to the right, hence, the phase realignment

stage can be omitted.

Contrary to the case when steady sinusoidal components are considered, tran-

sients cannot be fully recovered with mere phase modi�cations. For example,

consider an impulse that is centered at frame N : when the synthesis hop size

is greater than the analysis hop size, the magnitude decay from frame N to

frame N + 1 should increase, and vice versa. When the phases are adjusted

properly, the erroneous amplitude decay between frames only causes an am-

pli�cation or attenuation of the impulse, respectively, that is, no artifacts

are introduced and the original impulse can be recovered by rescaling the

amplitudes. However, one error that actually changes the transient charac-

teristic remains: not all atoms that captured the impulse during analysis still

capture the impulse when the synthesis hop size is greater than the analysis
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(a) Horizontal phase di�erences (original) (b) Horizontal phase di�erences (un-
wrapped)

Figure 3.9: Kronecker delta: horizontal phase di�erences of the rasterized
CQT representation.

hop size. In these cases the transient energy can no longer be shifted to the

correct point in time but rather will be shifted in the wrong direction due to

circular shifting. In �gure 3.11 this e�ect can be observed causing a 'phase

jump' from π to −π and from −π to π, respectively, in horizontal direction.

This e�ect is mitigated by the fact that the amplitude values in these regions

are quite small, however, for increasing scaling factors artifacts stemming

from this error are no longer negligible. One possible solution to that prob-

lem would be to discard the coe�cients in this circular shifting region and

use amplitude and phase values from coe�cients outside the transient region

instead (similar to the approach proposed in [Röb03]).

To demonstrate that the phase realignment method does not only work for

the theoretical case of a Kronecker delta but also for real world transient

signals, a kick drum (the original waveform is depicted in �gure 3.12(a)) is

time-scaled applying a time-scaling factor of 1.7. Using a CQT resolution of

24 bins per octave, the phases for the entire signal are unwrapped, realigned

and the amplitudes are rescaled. The time-scaled output signals with and

without vertical phase realignment are depicted in �gure 3.12(b) and 3.12(c),

respectively. It can be observed that the shape of the waveform is heavily
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(a) Vertical phase di�erences (original) (b) Vertical phase di�erences (after phase
unwrapping)

Figure 3.10: Kronecker delta: vertical phase di�erences of the rasterized
CQT representation.

degraded when no phase realignment is applied In 3.12(c) it can be observed

that amplitude errors occur prior to and after the actual transient due to

'circular shifting' frames. The overall shape of the waveform, however, is

preserved very well when phase realignment is applied. The corresponding

audio examples are given in sample 1.

original | phase unwrapped | phases realigned |

Sample 1: kick drum (original and time-scaled by

factor 1.7)

In order to incorporate the phase realignment method for transients in the

CQT phase vocoder, the exact positions of transients need to be detected

and the regions around these positions where phase realignment is applied

have to be de�ned. This non-trivial stage has not been implemented in the

the CQT phase vocoder in the course of this thesis and remains a task for

future work.

http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample01_original.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample01_unwrapped.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample01_realigned.wav


70 CHAPTER 3. TIME-SCALE MODIFICATION OF AUDIO SIGNALS

Figure 3.11: Kronecker delta: vertical phase di�erences of the rasterized
CQT representation after phase realignment.

Practical Considerations

A �nal practical consideration when applying the CQT to the phase vocoder

concept, is the decreasing number of time-frequency sampling points for lower

octaves. If a spectral peak is detected at the highest frequency bin in octave

P−1, the phase of the lowest frequency bin of octave P needs to be locked to

to the peak's phase. However, since octave P has two times more coe�cients

that octave P−1, the missing coe�cients in octave P−1 have to be computed.

To solve this problem, all octaves except for the highest can be time-domain

oversampled by factor 2 by applying a second, time shifted kernel. The

time-frequency sampling grid thus obtained is depicted in �gure 3.13.

Additionally, when the kernel is populated by more than one atom per center

frequency, a di�erent kernel with altered window hop sizes has to be used in
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(a) original (b) time-scaled by factor 1.7 (no phase re-
alignment)

(c) time-scaled by factor 1.7 (phase re-
alignment

Figure 3.12: Waveforms of the original and the time-scaled versions of a kick
drum sound.

the inverse CQT.

3.2.2 CQT vs. DFT Phase Vocoder

In the sections above, the theoretical considerations for the implementation

of a CQT phase vocoder were outlined. In the following, the time-scaled

output signals produced by a phase-locked phase vocoder based on the DFT

and the CQT, respectively, are presented. The di�erences between the two

approaches are discussed by means of analytical signals and real world music

signals.
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Figure 3.13: Increased density sample grid of the CQT representation by
factor 2. The black dots correspond to the original sampling grid of the time-
frequency plane, the red dots correspond to the additional sample points.

Close Sinusoids

The expected bene�ts of using the logarithmic bin spacing provided by the

CQT are the improved frequency resolution for low frequencies and the im-

proved time resolution for high frequencies. To demonstrate the former, an

input signal is composed of two pure sinusoids with respective frequencies of

98 Hz (G2) and 130.8 Hz (C3), that is, two low frequency sinusoids placed a

perfect fourth apart from each other. In �gure 3.14(a)-(b) the spectra of the

time-scaled output signals for the two approaches are depicted, applying a

time-scaling factor of 1.3. From �gure 3.14(a) it can be appreciated, that the

DFT based phase vocoder introduces artifacts stemming from the inadequate

frequency resolution for the given input signal. In �gure 3.14(b) it can be

observed, that no artifacts are produced by the CQT phase vocoder.
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(a) DFT phase vocoder (b) CQT phase vocoder

Figure 3.14: Spectra of time-scaled output signals stretched by factor
1.3. The input signal is a composition of two constant-frequency constant-
amplitude sinusoids at 98 Hz (G2) and 130.8 Hz (C3), respectively. DFT
phase vocoder: frame size = 4096, hop size = 512, FFT size = 4096; CQT
phase vocoder: 24 bins/octave, q = 1, atom hop factor = 1/8

Sinusoidal Bursts

The second exemplary signal is a short sinusoidal burst at 10 kHz with a

duration of 10ms. In �gure 3.15 the time scaled output signals as well as the

ideal reference signal are depicted. It can be observed, that due to the lower

time resolution for high frequencies, the output signal produced by the DFT

phase vocoder is heavily degraded, whereas the CQT phase vocoder is able

to maintain the general shape of the input signal quite well.

Note, that these two test signals are tailored to demonstrate the bene�ts of

a constant Q frequency resolution. If the test signals would be a short low-

frequency burst and two closely spaced high frequency sinusoids, respectively,

the results would favor the DFT phase vocoder. However, it is assumed that

in musical signals quick temporal changes mainly occur at higher frequencies

whereas closely spaced sinusoidal components will occur at low frequencies

due to the logarithmic frequency spacing of fundamental frequencies.



74 CHAPTER 3. TIME-SCALE MODIFICATION OF AUDIO SIGNALS

Figure 3.15: Time scaled output signals of a 10kHz sinusoidal burst (10ms)
stretched by factor 1.7. DFT phase vocoder: frame size = 4096, hop size =
512, FFT size = 4096; CQT phase vocoder: 24 bins/octave, q = 1, atom hop
factor = 1/8

Music Signals

Having demonstrated the bene�ts of the CQT phase vocoder compared to

the DFT based implementation for some analytical signals, the time-scaled

output signals for several exemplary music signals are presented in the fol-

lowing. For the DFT based phase vocoder, the implementation provided

by the Audio Research Group at the Dublin Institute of Technology (http:

//www.audioresearchgroup.com/) has been used. Both the CQT and the

DFT based implementations use variable analysis hop sizes and apply phase

unwrapping for spectral peaks and identity phase locking. The following ex-

amples were produced using a DFT frame size of 4096 samples and a CQT

resolution of 48 bins per octave, respectively, and the applied stretch factor

is 2.1.

original | DFT phase vocoder | CQT phase vocoder

Sample 2: strings, ride cymbal, electric piano

original | DFT phase vocoder | CQT phase vocoder

Sample 3: brass, reeds, harp

http://www.audioresearchgroup.com/
http://www.audioresearchgroup.com/
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample02_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample02_dft.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample02_cqt.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample03_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample03_dft.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample03_cqt.wav
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original | DFT phase vocoder | CQT phase vocoder

Sample 4: strings, bass, �ugelhorn, piano

original | DFT phase vocoder | CQT phase vocoder

Sample 5: acoustic guitar

original | DFT phase vocoder | CQT phase vocoder

Sample 6: electric piano, percussion

original | DFT phase vocoder | CQT phase vocoder

Sample 7: drums, bass, guitar, vocals

original | DFT phase vocoder | CQT phase vocoder

Sample 8: ride cymbal, snare drum, upright bass,

piano, trumpet

original | DFT phase vocoder | CQT phase vocoder

Sample 9: electric guitar, bass, organ, tambourine

original | DFT phase vocoder | CQT phase vocoder

Sample 10: female singer

Subjective quality impressions: In samples 2-4 (dense signals), the

CQT phase vocoder seems to introduce less roughness6 than the DFT phase

vocoder. The ride cymbal in sample 2 sounds more natural using the CQT

phase vocoder and the harp's attack transients in sample 3 seem to be better

retained. In sample 4 the loss of sharp attacks at low frequencies using the

6According to [ZF99] roughness is the psychoacoustical sensation that occurs when
a signal (or part of a signal) is amplitude-modulated by a modulation function with a
spectrum between 15 and 300 Hz.

http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample04_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample04_dft.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample04_cqt.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample05_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample05_dft.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample05_cqt.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample06_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample06_dft.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample06_cqt.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample07_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample07_dft.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample07_cqt.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample08_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample08_dft.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample08_cqt.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample09_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample09_dft.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample09_cqt.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample10_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample10_dft.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample10_cqt.wav


76 CHAPTER 3. TIME-SCALE MODIFICATION OF AUDIO SIGNALS

CQT phase vocoder can be recognized for the upright bass. In sample 5-6

attack transients for the acoustic guitar (sample 5) as well as for the hi-hat

in sample 6 seem to be better preserved using the CQT phase vocoder. The

need for transient processing at lower frequency in the CQT phase vocoder is

obvious in sample 7 where the attacks of the kick drum and the bass are lost.

The same is true for the upright bass in sample 8, however, less artifacts are

introduced for the ride cymbal and the piano compared to the DFT phase

vocoder7.

3.3 Conclusion

In this chapter the phase vocoder principle for time-scale modi�cations along

with the basic concept of horizontal and vertical phase coherence has been

outlined. Phase vocoder approaches are capable of producing a high qual-

ity output signal for both monophonic and polyphonic music input signals,

however, the DFT based phase vocoder su�ers from it's rigid time/frequency

resolution trade-o�. It has been shown that for sinusoidal components and

attack transients in higher frequencies artifacts that stem from these reso-

lution issues can be signi�cantly reduced with a CQT based phase vocoder

approach. In order to implement a CQT phase vocoder the CQT de�nition

given in chapter 2 has been modi�ed slightly and a modi�ed Hann window

was introduced. The use of this window function in the CQT implementa-

tion eliminates phase errors that stem from rounding the window sizes and

guarantee constant group delays for each atom stack. The application of

modi�ed Hann windows improves the ability to resolve partials compared to

Blackman-Harris windows while not impairing the quality of signal recon-

struction from it's CQT coe�cients.

While improving the quality of the time-scaled output signal for a wide range

7Note that this comparison between the STFT and the CQT based phase vocoder
considering the perceived quality of the time-scaled output signals is solely based on the
author's impressions. Neither objective listening tests nor psychoacoustical measurements
were conducted in order to objectify these impressions.
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of input signals, it has been demonstrated that due to very long windows for

lower frequencies, low-pitched transients and attack transients can not be re-

produced by the CQT phase vocoder without further processing. Addressing

this issue, the principles of a phase realignment approach has been proposed,

however, the incorporation of this approach into the CQT phase vocoder is

an open issue. Another way of dealing with the problem of low frequency

transients is to separate those parts prior to time-scaling, e.g. utilizing the

separation algorithm proposed in [Fit10] and apply time-domain time-scaling

for the transient part (the CQT implementation of this harmonic/percussion

separation approach will be outlined in section 4.1.3). As a strict constant-Q

resolution is not crucial for the phase vocoder, problems due to very long

windows at low frequencies could also be partly solved by limiting the win-

dow size in the �rst place. This could be seen as a hybrid DFT/CQT phase

vocoder, an approach that is yet to be implemented.

In general it can be appreciated that the CQT phase vocoder signi�cantly

improves the quality of the time-scaled output signal compared to the DFT

based implementation. However, apart from a strictly constant Q resolu-

tion also other multi-resolution approaches (e.g. a multi-resolution DFT as

proposed in [Bon00]) were shown to improve the performance of the phase

vocoder. An application where a constant-Q resolution, however, outper-

forms both the single- and the multiresolution DFT concerning the ease of

implementation is outlined in the next chapter.
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Chapter 4

Pitch Transposition in the CQT

Domain

Scaling the pitch of an audio signal is a dual operation to time-scaling. Hence,

a very common approach to pitch-scaling is to time-scale the input signal,

followed by a re-sampling stage retaining the signals original duration while

having changed its frequency content. The order of the re-sampling stage and

the time-scaling stage is interchangeable and thus can be chosen di�erently

for up- and downscaling in order to minimize computational complexity. In

[LD99b], however, a STFT-based approach was proposed to modify the the

frequency of sinusoidal components directly in the frequency domain without

applying time-scaling. The idea is to identify sinusoidal components as peaks

in the short time spectrum and shifting the region around this peak by a fre-

quency ∆ω, applying a simple copy and paste operation. To retain horizontal

phase coherence between consecutive frames, a very simple phase update step

is outlined in [LD99b]: Given the frequency shift ∆ω, it su�ces to rotate the

phases by ∆ωRa, where Ra is the STFT hop size, that is, there is no need

to determine the exact frequency of the shifted sinusoidal component (no

phase unwrapping). If the frequency shift does not correspond to an integer

multiple of the DFT bin spacing (as is usually the case), frequency-domain

interpolation is used. This simple implementation of the phase update pro-

79
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cess, however, assumes, that the frequency shift ∆ω is independent of the

true frequency of the sinusoidal component to be shifted, which is rarely the

case since usually harmonic shifts are desired (i.e. a shift by factor α rather

than a linear frequency shift by a constant frequency ∆ω. Nevertheless, the

advantage of this method is, that single components of the signal can be

shifted in the frequency domain, for example to change only certain notes

in the audio signal while leaving others untouched. However, since each si-

nusoidal component needs to be shifted by a di�erent frequency to retain

the harmonic structure and frequency-domain interpolation is needed almost

certainly, this method is limited to more exotic e�ects but can hardly be

applied to polyphonic pitch shifting in general.

If the DFT in this approach, however, is replaced with the CQT, the problem

of shifting each sinusoidal component by a di�erent (usually fractional) num-

ber of DFT bins is circumvented, since frequency shifts by factor α correspond

to a constant shift of r CQT-bins with α = 2r/B, where r is independent of

the frequency of the sinusoidal components. Furthermore, for the case of

chromatic pitch transpositions (or transpositions by a fraction of a semitone,

e.g. 1
8
-tones for a CQT with 48 bins per octave), r is an integer and no coef-

�cient interpolation is needed. In the sequel chromatic pitch transpositions

will be discussed, however, using simple interpolation arbitrary pitch-scaling

factors can be implemented.

4.1 Transposing the Entire Representation

Pitch transpositions in the CQT domain provide the possibility to shift the

frequency content of certain time- or frequency segments. That is, the entire

signal can be transposed at a certain point in time or only one particular note

within a chord can be transposed (more on this in section 4.4). However, if

it is desired to scale the pitch of the entire input signal, the CQT-domain

method exhibits computational bene�ts compared to the two-staged time-

scaling/re-sampling approach. In contrast to the phase-vocoder method, the
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analysis and synthesis hop sizes are equal in the CQT domain approach,

thus, the window overlap can be chosen to produce minimum redundancy

(e.g. 50% for a Hann window). Hence, for the phase vocoder method, apply-

ing a pitch-scaling factor of 2, for example, twice as many coe�cients need

to be calculated and subsequently processed compared to the CQT-domain

method.

4.1.1 Implementation

Assuming that the desired transposition is an integer multiple of the CQT

resolution (e.g. an integer multiple of 25 cent for a resolution of 48 bins per

octave), the transposition process can be implemented in four stages:

• CQT: As for the CQT phase vocoder, the CQT coe�cients need to

be oversampled in time by factor two in order to enable correct phase

adjustment between adjacent octaves. With an oversampling factor of

2 pitch transpositions up to one octave can be performed. If a pitch

transposition of more than one octave is required, the oversampling

factor needs to be higher (an oversampling factor of 4 enables transpo-

sitions up to 2 octaves).

• Shift CQT coe�cients: Due to the geometrical bin spacing of the

CQT, a pitch-transposition can be performed simply by shifting the

entire representation up- or downwards. In �gure 4.1 both the original

(oversampled) CQT coe�cients and the CQT coe�cients shifted by +5

bins are depicted.

• Retain phase coherence: Shifting a CQT coe�cient X(k1, n1) from

bin k1 at the time instant n1 to bin k2 at time instant n1 means, that

when the signal is reconstructed, a time-frequency atom with frequency

fk2 will be generated at the same time instant with the magnitude and

phase value of coe�cient X(k1, n1). However, the frequency di�erence

∆f = fk2 − fk1 results in a phase jump between consecutive time

instants n1 and n2, thus horizontal phase coherence is lost. Hence,
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phase coherence must be retained exactly like it is the case for the

CQT phase vocoder and the same phase update approaches can be

used.

Alternatively, the phase update approach based on the principles out-

lined in [LD99b] can be applied. As mentioned above, in this approach

the applied phase rotation is solely based on the frequency di�erence

between the old peak bin position and the new peak bin position (after

transposition), thus circumventing the need of exact frequency estima-

tions. For the linear bin spacing of the DFT, this phase update based

on the frequency di�erence is valid as depicted in �gure 4.2 . Here a

sinusoidal component with frequency ωx and the corresponding peak

bin at frequency ωk is shifted by S bins to the new frequency ωy. Since

ωk+S − ωk = ωy − ωx, the phase update to retain horizontal phase co-

herence can be based on S. This is not true for the logarithmic bin

spacing of the CQT in general, because ωk+S − ωk < ωy − ωx. Hence,
if this phase update approach is applied to pitch transposition with

the CQT, the slightly erroneous phase update will result in small am-

plitude and frequency modulations. However, informal listening test

have shown, that these errors are hardly audible in the output signal

when compared to the proper phase unwrapping technique. A possible

explanation for this is, that according to [ZF99], the human hearing is

insensitive to certain amounts of amplitude and frequency modulation.

This fact has also been exploited in [DCL04] to reduce phasiness for a

DFT phase vocoder.

• Inverse CQT: Reconstruct the pitch-scaled output signal from the

modi�ed CQT coe�cients (all unnecessary oversampled coe�cients are

discarded).

This implementation yields a high quality of the transposed output signal,

even though systematical errors at note onsets remain: as coe�cients are

transposed to higher frequencies, the lengths of the corresponding atoms de-

crease. Because the magnitude values are unchanged, this causes a softening
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Figure 4.1: Shifting the CQT coe�cients for pitch transposition. The left
�gure depicts the original positions of the CQT coe�cients in the time-
frequency plane, the right �gure depicts the coe�cients transposed by +
5 bins. The red dots correspond to coe�cients obtained by oversampling.

Figure 4.2: DFT: A sinusoidal component with frequency ωx is shifted by S
bins to the new frequency ωy.

of attack transients similar to the CQT phase vocoder.

Note that due to the duality of time- and pitch-scaling, this e�cient approach

can also be used as a time-scale modi�cation algorithm by re-sampling the

transposed output signal. For large stretch factors, however, the input signal

should be up-sampled since the outer frequency bins are lost as a consequence

of the coe�cient shift.
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4.1.2 Audio Examples

As mentioned above, there are two ways to retain horizontal phase coherence.

The transposed versions of the original signal in sample 11 (the amount of

transposition is given in semitones) were generated applying proper phase

unwrapping, that is phase adjustments based on true frequency estimations.

original | +2 | +6 | +12 | -2 | -6 | -12

Sample 11: orchestra 1, phase unwrapping based

on true frequency estimation

The same audio excerpt is transposed in sample 12, but here the phase update

is solely based on the frequency di�erence between the new and the old peak-

bin (no frequency estimation). The frequency and amplitude modulations

due to the slightly erroneous horizontal phase di�erences are hardly audible.

original | +2 | +6 | +12 | -2 | -6 | -12

Sample 12: orchestra 1, phase update without

frequency estimation

From these samples it can be appreciated, that even for very dense audio

signals, very little artifacts are produced by pitch transpositions in the CQT

domain. Another example is given in sample 13. The CQT resolution for all

samples in this section is set to 48 bins per octave.

original | +2 | +6 | +12 | -2 | -6 | -12

Sample 13: orchestra 2

The transposition of sharp attack transients yields a softening of attacks

for positive transposition factors and over-accentuated attacks for negative

transposition factors, respectively, if transients are not processed separately.

The reason for this, as described above, is, that a transient in the CQT repre-

sentation is wider at low frequencies and narrower at higher frequencies. This

http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample11_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample11_p2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample11_p6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample11_p12.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample11_m2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample11_m6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample11_m12.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample12_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample12_p2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample12_p6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample12_p12.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample12_m2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample12_m6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample12_m12.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample13_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample13_p2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample13_p6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample13_p12.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample13_m2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample13_m6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample13_m12.wav
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can be appreciated in sample 14 where a piano piece is transposed. Despite

this e�ect for attack transients, again very little artifacts are introduced.

If large negative transposition factors are applied, the output signal sounds

quite dull since there is a lack of high frequency harmonics. This problem,

however, is inherent to pitch shifting in general and can only be addressed

by generating arti�cial harmonics (exciter).

original | +2 | +6 | +12 | -2 | -6 | -12

Sample 14: piano

4.1.3 Transients

As discussed in 3.2.1, attack transients at higher frequencies are retained in

the scaled output signal due to the small window sizes. Attack transients at

low frequencies and transients exhibiting most of their energy in low frequen-

cies, however, call for dedicated transient processing. In the samples given

above these problems hardly occurred, however, if the input signal contains

low bass attacks or even kick drums, the degradation of these signal com-

ponents in the transposed output signal gets obvious. This degradation is

demonstrated in sample 15.

original | +2 | +4 | +6 | +12 | -2 | -4 | -6 | -12

Sample 15: bass, drums, piano. Bass and kick

drum attacks are degraded in the transposed output

signals.

In order to prevent the degradation of transients and transient attacks, the

methods discussed in section 3.2.1 for the CQT phase vocoder can also be

applied for pitch transpositions in the CQT domain. In the context of pitch-

scaling, the transient separation method is of particular interest as the tran-

sient part can be added to the transposed output signal without further

processing. However, the requirements concerning the reliability of the sepa-

http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample14_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample14_p2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample14_p6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample14_p12.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample14_m2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample14_m6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample14_m12.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample15_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample15_p2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample15_p4.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample15_p6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample15_p12.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample15_m2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample15_m4.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample15_m6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample15_m12.wav
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ration algorithm are even more rigorous since tonal components that remain

in the transient part are not transposed and produce 'out of tune' artifacts.

However, due to the computational e�ciency of the transient separation ap-

proach proposed in [Fit10], this approach has been adapted for the CQT

representation and yields promising results.

The percussive/harmonic separation approach proposed by FitzGerald in

[Fit10] is based on the fact, that transients are represented by vertical ridges

and partials are represented by horizontal ridges in the STFT spectrogram

(the approach proposed in [OMLR+08] is based on the same notion). Hence,

in order to suppress transients vertical ridges in the spectrogram need to

be suppressed. To do so, FitzGerald regards percussive events as outliers

across time for a given frequency bin and harmonic events as outliers in the

frequency spectrum for a given time frame. From image processing we know

that such outliers (i.e. speckle noise or salt and pepper noise) can be removed

by applying a median �lter. Contrary to image processing applications, two

1-dimensional median �lters are applied to obtain a percussion-enhanced (=

harmonic suppressed) spectrogram P and a harmonic-enhanced spectrogram

H from the original magnitude spectrogram S. Denoting the ith time frame

of the original spectrogram as Si and the hth frequency slice as Sh the desired

spectrograms are obtained by

Pi =M (Si, lp) (4.1)

Hh =M (Sh, lh) (4.2)

where M denotes median �ltering and lp and lh are the respective �lter

lengths. The spectrograms P and H are then used to generate masks which

can be applied to the original spectrogram. Two families of masks were

proposed in [Fit10]:

• binary mask: each coe�cient in the original spectrogram is assumed
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to belong to a percussion or a harmonic source, hence

MHh,i
=

1, if Hh,i > Ph,i

0, otherwise
(4.3)

MPh,i
=

1, if Ph,i > Hh,i

0, otherwise
(4.4)

where MH is the mask to obtain a harmonic enhanced (percussion sup-

pressed) output signal and MP is used to obtain a percussion enhanced

output signal.

• soft mask: these masks are based on Wiener Filtering and are de�ned

as:

MHh,i
=

Hp
h,i(

Hp
h,i + Pp

h,i

) (4.5)

MPh,i
=

Pp
h,i(

Hp
h,i + Pp

h,i

) (4.6)

where p denotes the power to which each individual element of the

spectrograms are raised (typical values for p are 1 or 2).

Finally, the desired spectrograms are obtained by element-wise multiplication

of the original spectrogram with the respective mask.

This approach has been translated to operate on the sparse CQT represen-

tation depicted in �gure 4.1. Since only transients at lower frequencies need

to be processed in the CQT pitch transposition approach, a percussion en-

hanced version xp(n) of the input signal x(n) is generated using a soft mask

MP where MPh,i
> 0 only for frequencies below 3000 Hz. The harmonic

enhanced signal xh(n) is generated using the mask MH = 1−MP.

In sample 16 the results of the separation algorithm are demonstrated for

the input signal used in sample b6.
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original | percussive part | harmonic part

Sample 16: bass, drums, piano. The signal is

separated in a percussive and a harmonic part.

In order to obtain the frequency transposed output signal, only the har-

monic part of the input signal is processed and subsequently added to the

unprocessed percussive part. The resulting output signals for di�erent trans-

position factors are demonstrated in sample 17.

original | +2 | +4 | +6 | +12 | -2 | -4 | -6 | -12

Sample 17: bass, drums, piano. Improved quality

of bass and kick drum attacks in the transposed

output signals.

By comparing the transposed versions of the input signal in sample b6 and

b8 it can be appreciated, that the transient separation approach considerably

improves the quality of kick drum and bass attacks.

As an alternative to the separation approach, the coe�cient based phase

realignment method outlined in section 3.2.1 can be applied to the shifted

CQT representation. As for the CQT phase vocoder, the non-trivial integra-

tion of the phase realignment method into the CQT transposition algorithm,

however, is beyond the scope of this thesis and remains a topic for future

work.

4.1.4 Sources of Artifacts

Constant frequency, constant amplitude sinusoidal components can be trans-

posed in the CQT representation without introducing artifacts as the abso-

lute values of the CQT coe�cients do not change if the transposition corre-

sponds to an integer number of bins (as is the case for all transpositions that

are multiples of the CQT resolution). If time-varying sinusoidal components

http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample16_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample16_perc.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample16_harm.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample17_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample17_p2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample17_p4.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample17_p6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample17_p12.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample17_m2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample17_m4.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample17_m6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample17_m12.wav


4.1. TRANSPOSING THE ENTIRE REPRESENTATION 89

(a) fc = 200Hz (b) fc = 400Hz

(c) fc = 1600Hz (d) fc = 6400Hz

Figure 4.3: CQT representations of four frequency modulated sinusoid. The
center frequency fc is varied, fm = 4Hz and f∆ = 0.02fc for all signals.

are considered, however, the absolute values of the CQT coe�cients also de-

pend on the frequency region as the time resolution decreases towards lower

frequencies. Consider the input signal x(n) being

x(n) = sin

(
2π
fc
fs
n− f∆

fm
cos

[
2π
fm
fs
n

])
(4.7)

that is, x(n) is a frequency modulated, constant amplitude sinusoid with cen-

ter frequency fc, the modulation frequency fm and the maximum frequency

deviation f∆. In �gure 4.3(a)-(d) the CQT representations (B=48) of four dif-

ferent frequency modulated sinusoids are depicted, whereas fc is varied. The

modulation frequency fm = 4Hz and the frequency deviation f∆ = 0.02fc
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(approx. 1
3
semitone) for all cases. It can be observed that although the

absolute frequency deviation increases for increasing center frequencies, the

deviation in CQT bins is constant - an obvious fact that again demonstrates

the advantage of a constant-Q resolution compared to the linear frequency

resolution provided by the DFT. However, it can also be observed that due

to di�erent time-resolutions, the magnitude values of the CQT coe�cients

change with varying fc. The most dramatic change can be identi�ed from

fc = 200Hz to fc = 400Hz since the temporal evolution of the frequency

modulated sinusoid can not be captured properly for low frequencies1. By

comparing �gures 4.3(c) and 4.3(d) it can be observed, that as soon as the

temporal resolution reaches a value where the temporal evolution can be

captured properly, the magnitude changes are less severe. This demonstrates

that for large transposition factors artifacts are introduced when the input

signal exhibits quick temporal changes at low frequencies. Limiting the win-

dow size towards low frequencies (hybrid DFT-CQT solution as proposed in

section 3.3 for the CQT phase vocoder) is not an option for pitch transposi-

tions in the CQT domain as the strictly constant-Q resolution is crucial for

this approach.

4.2 A Sinusoidal Modeling Approach

In section 4.1.3 it was shown that the quality of the transposed output signal

can be improved when the input signal is divided into a (low frequency)

percussive and a harmonic part and only the latter is transposed. The same

notion could also be formulated in a sinusoidal modeling sense [MQ86] [SS87].

That is, sinusoidal components in the input signal are identi�ed explicitly

and subsequently transposed. The main di�erence between the approach

proposed in section 4.1.3 and the sinusoidal modeling approach is, that the

goal is to extract and transpose only partials rather than trying to suppress

1Note that if a CQT resolution of 24 bins per octave would have been chosen instead of
48, time resolution would have been twice as good. Since in the previous sound examples
usually B=48 was used, however, this value is kept also for these �gures.
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low frequency transients. This is reasonable since transient and noisy signal

components should not be a�ected by pitch transpositions at all.

Usually a sinusoidal modeling scheme comprises three stages on the analysis

side:

• peak identi�cation: spectral peaks are marked as potential elements

of sinusoidal trajectories

• parameter extraction: the parameters amplitude, frequency and

phase associated with each peak are determined

• peak continuation (tracking): spectral peaks are grouped to form

sinusoidal trajectories representing the temporal evolution of partials

The most challenging stage in this process is the linking of spectral peaks to

obtain meaningful sinusoidal tracks representing real partials whereas spec-

tral peaks stemming from transients or noise need to be discarded. The �rst

tracking algorithm was proposed by McAulay and Quatieri in [MQ86] for

the sinusoidal modeling of monophonic speech. In this approach two spec-

tral peaks in consecutive frames are linked together if their frequency di�er-

ence is lower than a given threshold (an extensive review of this approach is

given in [CDL06]). For complex music signals, however, this simple approach

often yields unsatisfying results since some peaks may be missing along a si-

nusoidal track and partials may cross if polyphonic, multi-instrument input

signals are considered. Therefore, a range of more sophisticated approaches

has been proposed to address these problems. In [DGR93] [KD08] a statisti-

cal approach based on Hidden Markov Models has been proposed to improve

sinusoidal tracking. In [LMRR03] and [LMR04] partial tracking is improved

by employing linear prediction.

In the context of pitch transposition, the estimated parameters amplitude

and frequency of found partials could be altered to synthesize a transposed

harmonic signal. Although the logarithmic frequency resolution of the CQT

may improve parameter extraction for sinusoidal modeling, this approach is

outside the scope of this thesis and thus is not investigated into. However,
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the identi�ed partials obtained by the analysis stage of a sinusoidal modeling

system can also be used to extract harmonic sources from the CQT rep-

resentation (a related application of the sinusoidal modeling approach has

been proposed in [VK00]) to obtain a CQT representation that only contains

sinusoidal components. Pitch transposition is then applied to this reduced

representation as discussed in section 4.1.1 and subsequently added to the

residual CQT representation containing transient and noise parts.

In the course of this thesis this approach has been implemented using a very

simple tracking algorithm similar to the implementation proposed in [MQ86].

The results obtained for complex music signals, however, were outperformed

by the implemented approach discussed in section 4.1. It is assumed that the

main reason for that is the poor tracking algorithm and a more sophisticated

approach probably would lead to better results. However, the incorporation

of a more advanced tracking algorithm remains a topic for future work.

4.3 Formant Preservation

The ultimate goal of pitch transposition is to obtain an output signal that

sounds as natural as possible. Transposing harmonic components while in-

troducing no or very little artifacts is the �rst step towards this goal. The

next step is to look at the physical properties of the transposed signal sources

in order to achieve an output signal that sounds simply as if the audio signal

was played or sung at a di�erent pitch. Many instruments, especially the

human voice, however, exhibit a spectral envelope that is more or less inde-

pendent of the fundamental frequency. This is true for instruments where a

source signal is �ltered by a resonant body or, in case of the human voice,

the vocal tract. Frequency regions that are ampli�ed by this �lter are called

formants and are characteristic to many instruments and vowels in speech

signals. In order to obtain a natural sounding transposed output signal these

formants have to be preserved. For example, consider sample 18, where a

recording of a female singer is scaled simply by transposing the frequency
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content without minding the spectral envelope.

original | +2 | +4 | +6 | +12 | -2 | -4 | -6 | -12

Sample 18: female singer

Obviously, the character of the voice in this sample changes dramatically as

the frequency content is transposed. In order to retain characteristic for-

mants, the spectral envelope (a smooth function passing through the promi-

nent peaks of the spectrum) needs to be estimated. Using this estimation the

spectral envelope of the input signal can be �attened prior to pitch-scaling

and �nally the original envelope is applied to the transposed output signal.

Several techniques to gain an estimate of the spectral envelope have been

proposed, most prominently approaches based on linear prediction [MG82]

or the real cepstrum [OS75] such as [IA79], [GR90], [CM96] and [RR05].

Even though these techniques work well for speech signals or singing voice,

the main problem with formant preservation in the context of pitch-scaling

is, that the concept of spectral envelope preservation does not entirely hold

for all instruments. For several instruments, e.g. the �ute, the spectral en-

velope of the harmonic structure changes signi�cantly as the pitch changes

and also the �rst formant of the human voice changes its position in fre-

quency. Hence, preserving the formant structure in complex audio signals

(i.e. polyphonic, multi-source signals) is an extensive problem incorporating

topics like blind source separation [CJ10] and musical instrument identi�ca-

tion [LR04]. Since the CQT approach to pitch transposition predominantly

aims at complex audio signals and formant preservation for this signal class

is beyond the scope of this thesis, no spectral envelope preservation scheme

has been implemented in the course of this work.

http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample18_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample18_p2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample18_p4.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample18_p6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample18_p12.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample18_m2.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample18_m4.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample18_m6.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample18_m12.wav
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4.4 Note Selective Transposition

In section 4.1 it has been shown that pitch transpositions of the entire input

signal can be performed with ease in the CQT domain. This frequency-

domain approach to pitch-scaling provides an alternative to the two-staged

time-scaling/resampling implementation. Manipulating an audio signal in

the frequency domain, however, opens up the possibility to transpose only

certain regions in the time-frequency plane, e.g. transposing only one or

several notes in a chord. The implementation of this e�ect based on the

STFT representation of the input signal, as proposed in [LD99b], exhibits

several disadvantages:

• the detection of harmonic patterns in the STFT representation is not

trivial

• each harmonic corresponding to the same note needs to be shifted by

a di�erent number of bins

• in order to determine the desired frequency shift for each partial, their

exact frequencies need to be estimated

• in most cases these shifts correspond to fractional bin numbers, hence

the shifted coe�cients need to be interpolated

If note selective pitch transposition is performed in the CQT domain, how-

ever, none of these issues occur. Due to the logarithmic frequency resolution

provided by the CQT, harmonics of a stable tone exhibit spectral peaks that

can be described with a �xed pattern that is independent of the fundamental

frequency. Using a CQT resolution of 48 bins per octave, the peaks of the

�rst �ve overtones of a fundamental frequency F0 exiting a peak bin p can be

found exactly at bins p+48, p+76, p+96, p+112, p+124. Hence, harmonics

in the CQT representation can be selected by applying a prede�ned spectral

mask. To transpose one tone in the representation, the selected harmon-

ics subsequently can be shifted up- or downwards by a simple copy&paste

(or cut&paste) operation. As for the case where the entire representation is
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transposed, the phases of the shifted frequency regions have to be updated to

retain phase coherence. In section 4.1 it was shown, that this phase update

can be solely based on the di�erence between the old and the new peak-bin

frequency rather than the actual frequency shift without introducing severe

artifacts. That is, harmonic patterns can be transposed in the CQT domain

without performing any frequency estimations. Finally, as mentioned in sec-

tion 4.1, if transpositions corresponding to integer multiples of CQT bins are

considered, that is integer multiples of 25 cent using a CQT resolution of 48

bins per octave, no coe�cient interpolation is needed.

Exemplary Demonstration

In order to achieve a high quality output signal when performing selective

note transposition, there are a few more things to consider. To prevent tran-

sient smearing, the attack part of a note should not be transposed. This is

especially important for notes with low fundamental frequencies. As demon-

strated in section 4.1.3 this can be avoided by separating low frequency tran-

sients prior to pitch transposition applying a separation approach based on

median �ltering. Another source of error when single notes in complex audio

signals are transposed is the fact, that harmonics of di�erent tones frequently

heterodyne at a single CQT bin. For example consider the chord C1-E1-G1:

the second overtone of C1 has the same frequency as the �rst overtone of

G1, the fourth overtone of C1 has the same frequency as the third overtone

of E1, and so on. In order to achieve a high quality output signal, the entire

harmonic pattern of one note has to be extracted without corrupting the

harmonic pattern of another note. The known problem of separating over-

lapping partials is closely related to sound source separation [Vir06] and has

been explicitly addressed in [VK02] [VE06] [ES06]. Although a constant-Q

resolution could trigger improvements in this research area, this issue has

not been addressed in the course of this thesis and remains a topic for future

work. However, in the sequel it is demonstrated (by means of a piano chord)

that even without proper separation of overlapping partials selective note
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Figure 4.4: Rasterized CQT representation of the input signal (piano chord)

transposition can be performed with satisfying quality.

In �gure 4.4 the CQT representation of a simple C chord played on a piano

is depicted using a CQT resolution of 48 bins per octave. The notion is to

transpose the major third (E) in this C chord down by one semitone (E[) to

obtain a Cm chord. To do so, the �rst 6 harmonics of the major third are

selected applying a prede�ned mask (�gure 4.5) to each CQT frame2. Note

that due to the varying time resolution across the frequency range the di�er-

ent harmonics do not start and end simultaneously. Hence, the coe�cients in

the onset and o�set regions are only captured if the CQT representation ex-

hibits a prominent peak at the corresponding bins. In �gure 4.6 the selected

harmonics are marked in the CQT representation. Subsequently the selected

harmonics are shifted downwards by 4 bins applying a simple cut&copy op-

eration. The CQT representation thus obtained is depicted in �gure 4.7.

2In the actual implementation the sparse representation of the CQT is used, hence, not
every frame contains coe�cients di�erent from zero for the respective bins.
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Figure 4.5: Prede�nded harmonic mask to capture the �rst six harmonics of
a given note with a fundamental frequency exiting the peak bin p.

In sample 19 the original input signal and the altered output signal can be

compared. It can be appreciated that the achieved quality is rather high

although only the �rst 6 harmonics have been considered and the error due

to the superposition of harmonics has been ignored.

original: C chord on piano | shifted to Cm

Sample 19: piano chord (C → Cm)

To demonstrate that also greater shifts of single notes do not severely impair

the quality of the output signal, the the same harmonic pattern has been

transposed by +6 semitones (this time applying a copy&paste operation) to

obtain a C7 chord. The result is demonstrated in sample 20.

original: C chord on piano | added minor 7 to get C7

Sample 20: piano chord (C → C7)

Note that this is just a simple example to demonstrate the potential of note

selective transposition in the CQT domain. If notes exhibiting frequency

modulation (vibrato) are considered for example, the method needs to be

expanded by sinusoidal trajectory tracking in order to adapt the harmonic

http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample19_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample19_shifted.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample20_orig.wav
http://iem.kug.ac.at/fileadmin/media/iem/projects/2011/schoerkhuber/sample20_shifted.wav
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Figure 4.6: Rasterized CQT representation of the input signal. The selected
harmonics that are about to be transposed are marked with red lines.

mask to capture the desired harmonics. However, the ease of simple shift

operations remains also for tones with varying fundamental frequencies.

4.5 Conclusion

As the frequency resolution provided by the CQT matches the fundamental

frequencies in western music, pitch transpositions in the frequency domain

can be performed by simply shifting the CQT coe�cients followed by a phase

update stage to preserve phase coherence. In this chapter two methods to

perform the phase update have been outlined:

• horizontal phase unwrapping (instantaneous frequency estimation) +

vertical phase locking

• horizontal phase update based on the old and new peak-bin frequencies

(no frequency estimation) + vertical phase locking
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Figure 4.7: Altered CQT representation. The major third in the C chord is
transposed by -1 semitone to obtain a Cm chord.

While being computational less expensive, the latter method introduces slight

amplitude and frequency modulations. Informal listening test, however, sug-

gest that these errors do not impair the perceived quality of the transposed

output signal. That is, pitch transpositions in the CQT domain can be imple-

mented very e�ciently without performing frequency estimations. Extensive

listening tests to prove this suggestion are yet to be conducted.

Another property that improves computational e�ciency of pitch transposi-

tions in the CQT domain compared to the phase vocoder time-scaling and

resampling approach is, that the analysis and the synthesis hop sizes are

equal. Hence, the hop size can be chosen to produce minimal redundancy

yielding less CQT coe�cients that need to be processed. This fact might also

be appealing for time-scaling purposes by �rst transposing the entire input

signal in the CQT domain and subsequently applying a re-sampling stage.

Note that in order to avoid the loss of outer frequency bins in this scenario,

the minimum and maximum frequency of the CQT have to be chosen accord-

ingly. For large stretch factors this might include oversampling of the input
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signal so that the maximum frequency can be chosen to be higher than the

initial Nyquist frequency.

As for the CQT phase vocoder, low-pitched transients pose a problem in the

context of pitch transpositions due to very long windows for low frequencies.

It has been shown, that the adaption of the STFT based harmonic/percussive

separation approach proposed in [Fit10] for the CQT signal representation is

able to signi�cantly mitigate transient artifacts occurring at low frequencies.

In this chapter also the basic principles of note selective transpositions have

been outlined and its potential to produce high quality output signals using a

simple implementation has been demonstrated. Further improvements con-

cerning the achieved quality and the applicability to arbitrary music signals

are expected by incorporating an energy based harmonic pattern separation

approach and sinusoidal trajectory tracking ([LMR05] [LMR07] [KD08]).



Chapter 5

Summary and Future Work

In this thesis the CQT toolbox we proposed in [SK10] providing an e�cient

implementation of the CQT for broadband audio signals and a reasonable

quality reconstruction of the original input signal from its CQT coe�cients

has been utilized to manipulate the time- and the pitch-scale of polyphonic

music signals. The e�cient implementation is based on the algorithm pro-

posed in [BP92] for which two extensions are proposed:

• The CQT kernel matrix is de�ned only for the highest octave of in-

terest. Thus a relatively small DFT frame length can be used causing

the spectral kernel matrix to be sparse and CQT coe�cients can be

calculated from the DFT coe�cients requiring only few complex mul-

tiplications. The CQT coe�cients of lower octaves are calculated by

applying the same kernel to the successively downsampled input signal.

• To further reduce computational complexity, the CQT kernel is popu-

lated with several atoms per frequency allowing for a large DFT hop

size reducing the overall number of DFT frames.

The proposed approach to reconstruct the signal from its CQT coe�cients is

straightforward. If the used window functions and overlap factors are chosen

such that time-frequency atoms approximately sum up to unity both in time

101
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and frequency domain, the complex conjugate of the kernel matrix can be

used for the inverse CQT yielding reasonable quality reconstruction (around

55 dB SNR) at a redundancy factor of around 4 to 5. In [SK10] we suggested

to use Blackman-Harris windows in order to minimize the reconstruction

error. In the course of this thesis, however, it was found that very low

reconstruction errors can also be achieved by using squared Hann windows

with the bene�t of lower main lobe widths.

5.1 Contributions

Implementations for time- and pitch-scale modi�cations of polyphonic audio

signals based on the CQT representation has been proposed. It has been

shown that the quality of the time-scaled output signal can be signi�cantly

improved when the STFT in the standard phase vocoder approach is replaced

with the CQT. This improvement stems from the frequency bin spacing fea-

tured by the CQT that matches the fundamental frequencies in western music

enhancing the ability to resolve sinusoidal components in the input signal.

In order to facilitate phase modi�cations in the CQT representation, the

implementation of the CQT proposed in chapter 2 has been adapted:

• A modi�ed Hann window was introduced that allows for fractional win-

dow lengths and guarantees sampling of the window center. Each atom

stack can thus be centered at the exact same point in the temporal ker-

nel (stack center) and rounding of the window lengths can be omitted.

• To obtain zero phase di�erence between adjacent bins excited by the

same sinusoidal component, the phases of all atoms are adjusted such

that their phases are zero at the common stack center.

It has been shown that, when the synthesis hop size is altered in order to ob-

tain the desired stretching factor, phase coherence can be restored applying

phase unwrapping and phase locking schemes known from the standard STFT

phase vocoder. As the objective was to demonstrate the quality improvement



5.1. CONTRIBUTIONS 103

obtained by replacing the STFT with the CQT in the phase vocoder approach

rather than developing a highly sophisticated time-scaling algorithm, exten-

sions such as the incorporation of sinusoidal trajectory heuristics [KLB06] or

shape-invariant approaches [Roe10] have not been implemented. In terms of

transient signal components it has been shown that high pitched transients

and attack transients can be preserved in the time-scaled output signal due

the improved time-resolution of the CQT at higher frequencies. On the other

hand, due to large window lengths in low frequency areas, transient smearing

for low-pitched transient components is an issue in the CQT phase vocoder.

To address this problem a simple phase realignment approach has been out-

lined but is yet to be implemented as part of the CQT phase vocoder.

In a second contribution, a novel approach to pitch-scaling in the time-

frequency domain has been proposed. Exploiting the geometrical bin spacing

of the CQT representation it has been demonstrated that pitch transpositions

can be performed by simply shifting the CQT coe�cients and subsequently

updating the phases. This marks a signi�cant facilitation compared to pitch

transpositions in the frequency domain based on the STFT representation.

Two variations of the phase update process have been proposed:

• Phase unwrapping and phase locking as discussed for the phase vocoder.

• Phase update solely based on the frequency di�erence between the old

and new peak bin position.

In the latter implementation estimating the true frequency of sinusoidal com-

ponents is omitted, thus reducing the computational complexity of the algo-

rithm. This simpli�cation introduces slight amplitude and frequency modu-

lations due to errors of the horizontal phase progression. However, informal

listening tests suggest that these modulations are hardly audible in the trans-

posed output signal. This is yet to be con�rmed in formal listening tests.

As pitch transpositions usually degrade the quality of transient signal compo-

nents, the percussive/harmonic separation algorithm proposed in [Fit10] has

been adapted for the CQT representation since there is no need to transpose
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percussive signal parts. After transposing the harmonic part the percussive

part is added back to the output signal without further processing. It was

demonstrated that the application of this e�cient algorithm signi�cantly im-

proves the quality of transients in the transposed output signal.

By means of a piano chord it has been demonstrated that pitch transpositions

are not con�ned to be applied to the entire input signal but can also be

applied to single notes with ease. Harmonic patterns are easily spotted in

the CQT representation and note selective transpositions can be obtained by

simple copy&paste and cut&paste operations, respectively.

5.2 Future Work

Throughout this thesis several suggestions for possible future work have been

given in each chapter. These suggestions will be summarized for the discussed

applications in the next paragraphs.

CQT phase vocoder: To overcome the problems that arise for sharp tran-

sients in lower frequency areas several approaches have been outlined. The

incorporation of one of the following techniques (or a combination of them)

in the CQT phase vocoder implementation is an open issue:

• Phase realignment for transients: see section 3.2.1.

• Transient separation: the input signal is split into a percussive and a

harmonic part (see section 4.1.3). Percussive events are then translated

in time and added to the time-scaled harmonic part.

• Limiting the window lengths: to avoid very long windows in the �rst

place, the window lengths could be limited towards low frequencies

(think hybrid DFT/CQT phase vocoder).

Further improvements to the simple CQT phase vocoder implementation

could be made by incorporating sinusoidal trajectory heuristics [KLB06] and

shape invariant approaches [Roe10].
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Pitch transposition: In order to obtain a fully functional pitch-shifting

algorithm based on the CQT, a formant preservation technique needs to be

implemented. As for the CQT phase vocoder, phase coherence could be

further improved by incorporating sinusoidal trajectory heuristics and shape

invariant approaches.

Note selective transpositions: The ease of transposing single notes in

the CQT representation of polyphonic music signals has been demonstrated.

However, the implementation of a piece of software that facilitates note se-

lective transpositions in the CQT representation is a topic for future work.
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