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Zusammenfassung

Die Entwicklung eines Maßes welches den Qualitätseindruck von Sprache wieder spie-
gelt ist nach wie vor ein aktives Forschungsfeld. Neu entwickelte Methoden basieren,
im Gegensatz zu signalbasierten Ansätzen wie Perceptual Evaluation of Speech Quality
(PESQ)[1], auf neuronalen Netzen, zum Beispiel DNSMOS [2]. Mit Similarity Disturban-
ce Quality (SiDiQ) werden bei der Berechnung auch subjektive Bewertungen berücksich-
tigt.

Basierend auf bestehender Arbeiten von B. Stahl and A. Sontacchi [3] konnte die Genau-
igkeit der Metrik verbessert werden. Hierfür wurden die Bausteine des Modells beleuchtet
und konnten teilweise vereinfacht werden. SiDiQ wurde mit einigen anderen populären
Methoden zur Schätzung der Sprachqualität auf drei Datensätzen verglichen.

Die resultierende Metrik wurde in Form eines Python Modules implementiert und ist
frei verfügbar1. Trotz der erzielten Verbesserungen stellt sich PESQ nach wie vor als
verlässlichere Metrik heraus.

Abstract

The task to quantify the quality of speech signals is still an active field of research. In addi-
tion to signal based methods, such as Perceptual Evaluation of Speech Quality (PESQ)[1],
models based neural network approaches, for example DNSMOS [2], are being developed.
Similarity Disturbance Quality (SiDiQ) takes also subjective human ratings into account.

Based on the previous work by B. Stahl and A. Sontacchi [3] improvements to the perfor-
mance could be made. Therefore the steps of the model were examined and some could be
simplified. SiDiQ was compared to a number of other popular speech quality estimation
algorithms on three different datasets.

The resulting metric was implemented using Python and the module is made freely avail-
able1. Even thought it was possible to improve the performance on the tested dataset,
PESQ still proves to be the more reliable metric.

1https://git.iem.at/stahl/sidiq
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Chapter 1

Introduction

Estimation of speech quality is still an active field of research. With the desire to build
better speech enhancement algorithms, in addition to traditional applications like speech
transmission, it is important to have a reliable metric, which models the properties of
enhanced speech signals. Therefore, the properties of the human hearing system needs to
be taken into account.

Over the years many such algorithms have been developed. One of the best known is
Perceptual Evaluation of Speech Quality (PESQ) (see [1]), which takes one degraded and
a reference signal to estimate the quality. With the growing popularity of neural networks,
algorithms based on this technology are being developed. For example DNSMOS (see
[2]), the name being derived from combining Deep Noise Suppression (DNS) with Mean
Opinion Score (MOS), which estimates the quality without a reference. In contrast to
computational quality assessment methods and the neural network approach, Similarity
Disturbance Quality (SiDiQ) incorporates subjective ratings of test subjects in the compu-
tation.

First shown in [4], SiDiQ tries to predict the overall speech quality in a new novel ap-
proach, by echoing the human perception of speech. Given a stimulus and a clean speech
reference signal the model aims to predict the quality of the stimulus. Using those signals
two features are engineered. The first object tries to quantify the preservation of the target
signal compared to the degraded one. The second object describes looks at the distur-
bance of background sounds present in the degraded signal. Next the computed features
are used to estimate the overall quality, by utalising linear regression. The coefficients of
the linear regressor were computed using results obtained by a istening experiment from
[4]. During this listening experiment, participants were presented with a reference and de-
graded speech signal. They were then asked to rate the degraded signal in terms of overall
quality, “preservation of the target signal”, and “disturbance by background sounds” [4].
All the parameters of the resulting model are tuned using cross-validation grid search.
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CHAPTER 1. INTRODUCTION

The model proposed in [3] was changed by removing the saliency model from the distur-
bance feature computation and replacing the k-nearest-neighbour regression by a linear
regression resulting in a better performance.

This work is based on previous publications, see [3] and [4]. The performance of the
proposed model could be improved. By examining the existing model a number of sim-
plifications are introduced.In addition to removing the saliency model from the distur-
bance feature computation, the k-nearest-neighbour regression was replaced by a linear
regression.

Finally, the metric is also compared to different existent speech quality assessment metrics.
PEMO-Q [5], using the implementation from [6], fwsegSNR [7], SI-SDR [8], Kastner’s
2f-model, in its MATLAB implementation [9], PESQ, using the implementation of [7]
modified following [10], and ViSQOl in the speech flavor ([11, 12]).

Additionally, a new larger dataset, with higher variability in terms of available signals,
was used to determine how well the metric generalises. It can be shown that on this
dataset SiDiQ is only outperformed by PESQ and DNSMOS, performing equally well as
ViSQOL-speech.
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Chapter 2

Similarity Disturbance Quality -
SiDiQ

The model can be summarized by the following graphic:
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Figure 2.1: Proposed model, graphic adapted from [3]

In short a stimulus and reference signal are treated with a psychoacoustic model. After cal-
culation of the Short Time Fourier Representation (STFT) a foreground and background
mask is estimated. Using the resulting segregated foreground and background objects
features are engineered. Using subjective ratings and applying linear regression those fea-
tures are in return mapped to the overall quality using the same method. For the linear
regression result from a listening experiment were used.

2.1 Loudness Model

In order to take the human perception of loudness into account, two different loudness
models, the one used by PESQ and Zwicker’s model, were implemented and tested. In
the end, the loudness model as implemented in PESQ, showed better results and was
therefore made the default when computing the metric.
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CHAPTER 2. SIMILARITY DISTURBANCE QUALITY - SIDIQ

2.1.1 PESQ Loudness Model

In order to obtain the PESQ-equivalent spectra the pre-processing steps of the PESQ
model are applied to the signals. These steps perform perceptual transformations and
are implemented according to [13]. The reference and stimulus signal are aligned to a
standard listening level through filtering in order to model a telephone handset. Once the
signals are level aligned the perceived loudness can be calculated. First the spectrum Xk,t

is computed using Short Time Fourier Transform (STFT) using a Hamming window w

and 32ms frame lenght with a 50% overlap.

Xk,t =
inf∑

n=− inf

x[n]w[n− t]e−jkn (2.1)

Next the power spectrum transformed to a modified Bark one using a filterbank with
42 band channels via a multiplication in the Fourier domain. To obtain the loudness
spectrogram Sk,t, the bark spectrogram Bt,k is transformed to:

Sk,t = sl ·
(
P0(k)

0.5

)γ
·
[(

0.5 + 0.5
Bt,k

P0(k)

)γ
− 1

]
(2.2)

with sl being a loudness scaling factor and P0(k) the absolute hearing threshold for the
k-th Bark band. The factor γ is set to 0.23. Lastly, all frequency bins below a frequency
dependent threshold are set to zero.

2.1.2 Zwicker Loudness Model

The loudness spectra according to the Zwicker model [14] can be obtained as follows.
First the signals are normalized to a sound pressure level of 85 dB full scale range (FSR).
Next the spectrogram is computed using a Hann window, frame length of 32ms and 50%
overlap. The computed power spectrum is than transformed to a Bark one with 42 bins.
The loudness spectrogram Sk,t is then computed as followed given the Bark spectrogram
Bt,k:

Sk,t = 0.08 ·
(
Ek
E0

)0.23

·

[(
0.5 + 0.5 · Bt,k

Ek

)0.23

− 1

]
(2.3)

with E0 being the squared reference pressure level p0 as 2 · 10−5 and Ek the excitation
level at the absolute hearing threshold.
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CHAPTER 2. SIMILARITY DISTURBANCE QUALITY - SIDIQ

2.2 Feature Extraction

Using the time-frequency representations of the reference Xref
k,t and the stimulus Xstim

k,t

a mask is calculated, which segregates the background from the foreground. In order
to decide whether the frequency bin should be counted as foreground or background, an
equalization gain grefk,t is calculated according to:

grefk,t =

α
2∑

k̃=−α
2

γ∑
t̃=−β+γ

Xstim
k+k̃,t+t̃

Xref

k+k̃,t+t̃∑̃
k,t̃

Xref2

k+k̃,t+t̃

(2.4)

The patch used for the computation is defined by the frequency patch width α, patch
length β and look ahead parameter given as γ. Applying the computed gain to the refer-
ence representation, a ratio can be computed as:

Rk,t =
Xstim
k,t

grefk,t ·Xref
k,t

(2.5)

The foreground mask is than calculated by passing the bin values to a modified sigmoid
function. The center of the sigmoid function represents a threshold value, whether to
count the bin as foreground or background. The background mask is computed as follows:

M backg
k,t = 1 −M foreground

k,t (2.6)

2.2.1 Disturbance Feature

The time dependent disturbance feature is calculated as the ratio of the instantaneous
background loudness and the total mean overall loudness.

D̃t =
Lbackg
t

L
total

(2.7)

The background loudness over time is calculated as:

Lbackg
t =

1

τloud

K∑
k=1

0∑
t̃=−τloud

vkM
backg

k,t+t̃
Xstim
k,t+t̃ (2.8)

And the the overall loudness is computed thus:

L̄total =
∑
k̃,t̃

Xstim
k+k̃,t+t̃

(2.9)
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CHAPTER 2. SIMILARITY DISTURBANCE QUALITY - SIDIQ

2.2.2 Similarity Feature

The similarity feature time series can be calculated by first computing the weighted corre-
lation coefficient of the segregated target and the reference.

ρtargett =

K∑
k=1

0∑
t̃=−β

vkMk,t+t̃X
stim
k,t+t̃

Xref
k,t+t̃√∑

k,t̃

vk(Mk,t+t̃X
stim
k,t+t̃

)2
∑
k,t̃

vkXref2

k,t+t̃

(2.10)

This coefficient corresponds to the similarity feature as follows:

S̃t =

ρ
target
t , if X̄ref

t > ζ

undefined, else
, (2.11)

where X̄ref
t is the mean reference loudness calculated as:

X̄ref
t =

1

β

K∑
k=1

0∑
t̃=−β

vkX
ref
k,t+t̃ (2.12)

and ζ is a parameter chosen to be the minimum reference loudness for which a reliable
similarity can be considered (see table 2.1).

2.2.3 Overall Quality

Once both the time-dependent similarity and disturbance is computed, weighted quantile
values of those time series are extracted (see figure 2.2).

0 1 2 3 4 5
Time in [s]

1.0

0.5

0.0

0.5

1.0 stimulus
reference
disturbance
similarity

Figure 2.2: Exemplary calculated features time series

First the signal is windowed, using a window centered at the quantile value. The weighted
quantile is than calculated according to 2.13, where w is the chosen window of length N ,
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CHAPTER 2. SIMILARITY DISTURBANCE QUALITY - SIDIQ

t is the ordered time series and q is the quantile.

qweighted =

q+N/2∑
n=q−N/2

t[n] · w[n]

N∑
n=0

w[n]

(2.13)

The window is of type Hann with a length of 10 samples. Using linear regression those
quantiles of the features S̃ and D̃ values are mapped onto Ŝ and D̂ of the subjective quality
aspects. The results are once again mapped onto the overall rated subjective quality using
linear regression.

2.3 Model Parameter Tuning

The model parameters are tuned using grid search using cross validation to find the best
combination. First, for each possible parameter combination, the feature time series S̃ and
D̃ are computed. Then every possible quantile value for each time series are calculated.
For the cross-validation, one participant and mixture is excluded. Next the prediction
of the mean ratings on the stimuli of the excluded mixture are computed using linear
regression fitting on the mean ratings of all the other stimuli in the remaining mixtures
of all remaining participants. In order to obtain the optimal parameters the mean squared
errors (MSEs) for all the the cross validation folds is calculated. Next the mean MSEs of
each excluded mixture is averaged, therefore computing the global MSE. The parameter
set with the lowest global MSE is then the optimum (see Table 2.1).

7



CHAPTER 2. SIMILARITY DISTURBANCE QUALITY - SIDIQ

Table 2.1: Model parameters

Disturbance model parameters

parameter values

masking threshold {1.1, 1.3 }
masking threshold width {0.001, 0.2 }

max reference gain {1.1, 1.3, 1.5 }
patch frequency width α { 5 , 7, 9} bands

patch length β { 0.192 } s
lookahead γ { 0.032 } s

surprise time constant { 0.6 }
surprise hopsize { 0.016 }

surprise exponent { 0.4 }
minimum information threshold { 1.1 }

feature quantile {0.0, 0.1, 0.2, 0.4 , 0.5}
second feature quantile {0.6, 0.7 , 0.8, 0.9, 1.0}

Similarity model parameters

parameter values

minimum information threshold ζ {10, 20, 30, 40, 50, 60 }
feature quantile { 0.0 , 0.1, 0.2, 0.4, 0.5}

second feature quantile { 0.6 , 0.7, 0.8, 0.9, 1.0}
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Chapter 3

Results

The algorithm as described in chapter 2 was implemented in Python using the Tensorflow
framework [15]. Since it performed superior the PESQ equivalent loudness model (as
described in section 2.1.1) was used. The model parameters were set to the one found
in the grid search (see table 2.1). For each reference and stimulus pair the SiDiQ met-
ric was computed. Additionally, if available the two individual features, similarity and
disturbance, were calculated as well.

SiDiQ was evaluated on a number of different dataset to measure its performance against
other popular speech quality assessment metrics. In addition to the training dataset the
same dataset as in [3], a modified version of the SEBASS dataset [16] was used, and the
dataset from [17] was used. In order to measure the performance, correlation coefficients
between the subjective ratings and the model predictions were computed. The correlation
coefficient matrix Ri,j can be computed, given the covariance matrix C as:

Ri,j =
Ci,j√
Ci,i · Cj,j

(3.1)

3.1 Training Dataset

The training dataset consists of twenty stimuli drawn from the PAESS dataset, as found in
[18]. Contained in the dataset are five target/interferer(s) scenarios and their clean speech
target signals. The stimuli are treated with four different speech enhancement algorithms.
Derived from eleven more mixtures, additionally forty-four more stimuli were created,
containing signals degraded by office noise and stimuli from the ChiME-4 challenge [19].
Both traditional and deep learning based source seperation algorithms were used to pro-
cess the data. Ratings were obtained trough a webMUSHRA [20] listening experiment.
Twenty-six participants rated the stimuli in terms of “preservation of the target signal”,
“disturbance by background sounds”, and "overall quality". The dataset is comprised of

9



CHAPTER 3. RESULTS

60 rated stimuli. During model fitting artificial references were introduced, yet for the
following tables, those ratings are ignored.

Table 3.1: Correlation coefficients of SiDiQ applied for the training dataset.

aspect correlation coefficient

background rating 0.91
similarity rating 0.50

overall rating 0.82
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Figure 3.1: Features and overall ratings
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Table 3.2: Correlation coefficients of different metrics.

metric correlation coefficient

SiDiQ 0.82
SI-SDR 0.81

fwsegSNR 0.72
PESQ 0.87

PEMO-Q 0.79
Kastner 0.87

Visqol Speech 0.77
DNSMOS 0.51

3.2 SEBASS Dataset

As was done in the previous work SiDiQ was evaluated on a modified SEBASS dataset.
Since the task requires speech signals all music was removed from the dataset. Moreover,
the PEASS sub-dataset, as well as ratings on anchor and hidden reference signals were
not considered either. The PEASS sub-dataset was removed as it was used for model fit-
ting. Therefore, the dataset consists of 224 speech stimuli. Those stimuli are drawn from
eight mixture scenarios processed by 28 different source seperation algorithms. All audio
examples were downsampled to 16 kHz from the original rate of 48 kHz. The dataset
does not contain similarity and disturbance ratings, therefore only the overall rating can
be compared for different metrics.

Table 3.3: Correlation coefficients of different metrics.

metric correlation coefficient

SiDiQ 0.80
SI-SDR 0.34

fwsegSNR 0.48
PESQ 0.73

PEMO-Q 0.66
Kastner 0.67

Visqol Speech 0.65
DNSMOS 0.59

11



CHAPTER 3. RESULTS

3.3 NOIZEUS Dataset

The dataset contains 30 IEEE sentences, spoken by three male and female speakers re-
spectively, resulting in 5 sentences per speaker. The speech signals were then corrupted
using eight different real-world noises with different signal to noise ratios. The resulting
signals were all downsampled to a sampling frequency of 8kHz. Additionally, references
and stimuli were filtered to simulate a telephony handset. This is done by applying a
modified Intermediate Reference System (IRS) same as ITU-T P.862 [21]. The resulting
signals were treated with 13 different speech enhancement algorithms.

Below, the correlation coefficients for the similarity, disturbance, and overall rating are
listed (see table 3.4.) Moreover, table 3.5 compares the ratings of different metrics.

Table 3.4: Correlation coefficients of SiDiQ applied to the NOIZEUS dataset.

aspect correlation coefficient

disturbance rating 0.65
similarity rating 0.45

overall 0.67

12
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Figure 3.2: Features and overall ratings

Table 3.5: Correlation coefficients of different metrics.

metric correlation coefficient

SiDiQ 0.67
SI-SDR 0.38

fwsegSNR 0.57
PESQ 0.81

PEMO-Q 0.53
Kastner 0.59

Visqol Speech 0.67
DNSMOS 0.71

13



Chapter 4

Conclusion and Outlook

Even though the computation was simplified the model performance on the more varied
NOIZEUS dataset was improved. The previous model, described in [4], achieved a corre-
lation coefficient of 0.4, when comparing the subjective and objective rating of the overall
speech quality. It can be shown that the simplified model achieves a higher score of 0.67
(see table 3.4.)

Nonetheless, the performance of SiDiQ can still be improved. One of the simplifications
was to remove the saliency computation, when calculating the disturbance feature. Intro-
ducing an alternative to the saliency could prove fruitful, since the aim of the saliency,
to model the capability of the background model to draw a listener’s attention, should
still be a useful objective in order to draw conclusion on speech quality. Looking at ta-
ble 3.1 shows that the fitting of the disturbance feature to the training dataset performes
well, as the correlation coefficient is high. The coefficient for the similarity on the other
hand is lower. Therefore, conducting a new listening experiment could potentially result
in a training dataset which captures this aspect better, hence force resulting in a potential
performance gain of the similarity feature.

With the growing popularity of neural networks for speech enhancement tasks, the usage
of SiDiQ as a cost function could be considered, as adapting speech quality metrics to be
used in that context can work [13].

The implementation of SiDiQ, as well as the optimal parameters found in the grid search
are freely available1.

1https://git.iem.at/stahl/sidiq
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