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Abstract

Musical source separation is the task of retrieving the essential elements of
a given audio signal. State-of-the-art implementations often provide unsatisfying
results containing respectable amounts of audible glitches and artifacts. We propose
an algorithm which uses artificial intelligence to determine activation functions of
single instruments in a mix. The results of our approach can be helpful in various
musical source separation tasks.

The basis of our algorithm is a trained Convolutional Neural Network (CNN). It
analyzes multi-resolution spectrograms of temporally framed audio recordings. We
compare various frequency transformation methods to generate the spectrograms.

Our network predicts the activation function of each instrument in the input
spectrogram over time. The input spectrograms and the output activation functions
have the same number of frames and are temporally synced. The features and labels
needed to train our network are generated from a dataset of solo instrument audio
tracks. These single instrument tracks are mixed in various combinations to ensure
flexible training with fixed envelopes.

The trained network reaches a test loss of 0.022. We further evaluate the
performance of our network by comparing the predicted activation functions with
the reference activations using two reference audio samples. With the noise matrix
and the leakage matrix we also define and use two new methods to evaluate the
performance. Our results indicate that our approach works reasonably well for
single instrument samples, but fails for samples containing a mix of two or more
instruments.

All code written in the course of this work1 is open source and published under
the GNU GPL3 license.

1See: https://git.iem.at/s1531597/neuroment2

https://git.iem.at/s1531597/neuroment2
https://git.iem.at/s1531597/neuroment2
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1 Introduction

In recent decades neural networks have seen a considerable increase in popularity for their
flexibility and use in a wide range of applications. Some of the main tasks these networks
are being designed for are pattern recognition and data interpretation. One sub-task falling
under these categories is source separation in audio signal processing. Its goal is to extract
a number different elements, often instruments or voices, from an audio signal containing
mixes of these elements.

A big obstacle in source separation is to obtain reasonable activations. These indicate how
much energy an element, here more specifically an instrument, possesses at a certain time
instance within an audio stream. Instruments often sound similar when played in different
ranges. For example, a bass being played in an unnaturally high range may sound very
similar to a guitar, even for the experienced listener. Naturally, algorithms used for source
separation have to prevent these confusions in order to produce a clean separation.

Our goal was to provide an approach which helps to improve the source separation
process. For that we suggest an approach which determines single instrument activation
functions in a mix of multiple instruments. The output of our approach can be used to
improve existing algorithms for transcription or for the determination of self-similarity
within a piece. They can also provide the activation matrix for Non-Negative Matrix
Factorization (NNMF). Additionally, source separation in general could benefit from the
results of our approach.

Recent scientific approaches to musical instrument detection mostly limit themselves to
the task of recognition, i.e. whether an instrument is present in a whole input sample
or not. Garcia et al. [1] integrate hierarchical neural network structures and few-shot
learning into their musical instrument recognition approach. Watcharasupat et al. [2] or
Gururani et al. [3] make use of specialized attention mechanisms in order to improve their
recognition performance. We want to go one step further by suggesting an approach,
which not only outputs a single value describing the probability of an instrument being
present in a whole sample, but which outputs a function over time instead.

We feed frequency-domain features computed from an audio signal with multiple
instruments into a Convolutional Neural Network (CNN). This network predicts the
activation function of single instruments over time. The network has been implemented
with high flexibility regarding the amount of training data and methods of feature
extraction. The end user setup of the framework is streamlined by an automatic
dependency installation and the possibility of using either a CPU or (if available) a GPU
for training. The prediction accuracy is measured during training and logged to disk.

In chapter 2 the theoretical basics are explained. First neural networks are introduced,
followed by the implemented feature extraction methods.

Chapter 3 depicts the building blocks of the data processing and evaluation pipeline.
It lists the most important libraries used in the code base and shows how the code is
structured. Furthermore it explains how a user running our framework can configure it in
order to work with desired input parameters.
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The implementation of the framework is depicted in chapter 4. Data processing, data
selection and labeling, file management as well as the algorithms for feature extraction
are described here in detail. Also the structure of our CNN is visualized and explained.

The results are shown and discussed in chapter 5. First the training process is evaluated.
Then the output of the network is put to the test using plots comparing network input
and output and using more comprehensive methods. Finally, various examples of the
separation performance are presented.

The underlying work finishes with a conclusion in chapter 6.
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2 Theoretical basics

2.1 Artificial neural networks

In recent history artificial neural networks have proven to be useful for classification
tasks in various applications. Many of these applications, for example object detection
or character recognition, use two-dimensional images as input data for the network.

Audio data is usually represented in the temporal domain. In this domain the audio data
only has one dimension, which is time. However, an audio stream can be converted into
a (magnitude) spectrogram via a frequency transformation. The resulting spectrogram
is two-dimensional, with the dimensions being time and frequency. By using this
spectrogram as input feature tensor a network can detect patterns in the spectrogram like
it would in an image.

Figure 1: Structure of a sample artificial neural network with three fully connected layers
(the input layer, one hidden layer and the output layer).

In figure 1 an example artificial neural network is depicted. It consists of three fully
connected layers, which are the input layer, one hidden layer and the output layer. A
special form of artificial neural networks are Convolutional Neural Networks (CNNs).
Instead of flat layers of neurons, which are fully connected, they use convolutional layers
as shown in figure 2.
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Figure 2: A convolutional kernel [4].

Convolutional layers make use of 2-dimensional convolution kernels. These kernels slide
over each possible segment in their input image and convolve each segment with the
weights in the kernel. The convolution results then compose the output image. Depending
on the stride (i.e. the step width of the kernel) and the padding parameters that are being
used the output image generated by the convolutional layer may be either the same size
as the input image or smaller.

Using convolutional layers in neural networks allows for better recognition of patterns
in the two-dimensional image data than with fully connected layers. They also require
considerably less parameters than fully connected layers, thus saving training resources
and allowing for faster convergence. Earlier convolutional layers in the network usually
detect simple shapes like horizontal and vertical lines or borders, while later convolutional
layers allow for detection of more complex patterns.

In figure 3 an example CNN is shown. It consists of an image as input data, three
convolutional layers and an arbitrary number of fully connected layers, with the last fully
connected layer generating the output predictions.

Figure 3: Structure of an example CNN.
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2.2 Constant-Q Transform (CQT)

The Constant-Q Transform (CQT) transforms data from time to frequency domain. While
this is something other frequency transformations also achieve, its difference lies in the
equal spacing of frequency bands.

A quite handy way of explaining the CQT is to start with its parent, the DFT (Discrete
Fourier Transform) [5]. The DFT transforms a discrete time signal into a discrete
frequency signal. One variant of it, the STFT (Short-Time Fourier Transform) algorithm

X[k] =
1

N

N−1∑
n=0

x[n]e−j
2πkn
N k = 0, ..., N − 1 , (1)

is one of the most commonly used algorithms in signal processing. N samples x[n] are
transformed to N frequency bins X[k]. Due to its symmetry properties, the spectrum
produced by the STFT is mirrored around N

2
+ 1. To avoid redundancy the mirrored part

usually is neglected during computations.

An important property of the STFT is an equal spacing of frequency bins. The spacing
between bins is given by fS

N
, with fS being the sampling frequency. To avoid the effect

of aliasing, the audio signal may not contain frequencies above the Nyquist frequency of
fS
2

[6]. While an equal spacing is computationally easy to handle, it has drawbacks for
the analysis of audio signals, specifically ones containing music.

Fundamental frequencies in music are distributed logarithmically over the frequency
domain. To explain this one may assume the interval of an octave, which is nothing
else than two frequencies being in a ratio of 2 : 1 to each other. In a musical sense, an
octave always comprises of 12 semitones (a twelfth of on octave), no matter how high or
low the the fundamental frequency. Following, higher semitone intervals have a higher
bandwidth f∆ = fhigh−flow, where fhigh is the fundamental frequency of the higher tone
and flow the fundamental frequency of the lower tone. Depending on the use case it may
therefore be rather unhandy to describe music signals with the equal frequency spacing of
the STFT.

The CQT offers help. In its domain there is a minimum frequency fmin in the
transformation. A usual value for fmin is 27.5Hz. Furthermore, the CQT defines a fixed
number of CQT bins k per octave. The number of bins per octave is defined by the value
B. The formula for the frequency fk of a bin with index k is

fk = fmin2
k
B . (2)

By using the bandwidth f∆ between two tones we can define the Q-factor. We can
determine Q with

Q =
fk
f∆

. (3)

Now, in the traditional STFT domain the bandwidth f∆ between two tones is fixed, which
means that the Q-factor increases with higher frequencies. As already mentioned this
is not intuitive for musical intervals, where a semitone interval always sounds like a
semitone interval, regardless of the actual Q-factor.
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The CQT offers a solution to this problem. In the simplest sense it keeps the Q-factor
constant. It does so by essentially using a bank ofK band-pass filters that share a common
Q-factor, resulting in a logarithmically spaced frequency scale [7]. The CQT formula

X[k] =
1

N [k]

N [k]−1∑
n=0

W [k, n]x[n]e−j
2πkQn
N [k] (4)

shows two main differences to the STFT formula. First, the Q-factor is in the exponential
term, which makes sense considering the aforementioned logarithmic spacing. Second,
the window length N [k] now depends on the frequency bin k. With fs being the sampling
frequency the window length per frequency bin fk can be computed with

N [k] = Q
fs
fk

. (5)

The term W [k, n] represents a window function, often a Hann window. In contrast to the
window used in the STFT this window function now also depends on two dimensions
(time and frequency) instead of only one dimension.

The frequency fk of each bin depends on the musical interval that is chosen to be between
two frequency bins. A usual interval would be a semitone. Considering that there are 12
semitones in each octave we could, as an example, set B = 12. This leads to a frequency
fk of each bin k being expressed as

fk = fmin2
k
12 . (6)

Figure 4 further points out the differences between the STFT and the CQT domain.

(a) STFT. (b) CQT.

Figure 4: Comparison of STFT and CQT using 3 complex sounds with fundamentals
G1 (196 Hz), G4 (392 Hz) and G5 (784 Hz). Each sound has 20 harmonics with equal
amplitude. [8]



Neuroment 11

In figure 4 we see 20 harmonics on a frequency scale. Each of the harmonics is equally
spaced. A linear frequency scale in this plot results in equal bin spacing for the STFT and
in a decreasing bin spacing for the CQT. Thus a logarithmic scale leads to a decreasing
spacing for STFT bins and a continuous spacing for CQT bins. Considering that the
human ear works logarithmically this feels natural in a musical sense.

The advantage of the CQT for the underlying task of instrument detection lies in the
continuous spacing on a logarithmic scale. The spectral patterns, here musical tones, are
invariant from the actual pitch of the signal. This means that it does not matter whether a
signal is played in the low, mid or high frequency region of the spectrogram. The resulting
pattern will be the same across the frequency dimension and thus is shift-invariant, which
makes it better suitable for a CNN.

2.3 Logarithmic Mel-Spectrogram

Another frequency transformation approach similar to the CQT is the so called mel-
spectrogram. Here a filter bank is used to achieve a logarithmic spacing in the frequency
axis. The basis for the spectral transformation again is a STFT which is then multiplied
with the mel filter bank in order to produce the mel-spectrogram. The mel filter bank
with which the STFT spectrum is multiplied consists of triangular windows with varying
window lengths that depend on the frequency. It is also possible to normalize these
triangular windows in order to keep the energy density in the resulting bins constant over
the frequency range.

In figure 5 an exemplary filterbank is shown.

Figure 5: Example of a mel filterbank.

The most important characteristic of a mel-spectrogram is its size. The frequency
resolution of a mel-spectrogram covers the observed spectrum with significantly less
coefficients than the STFT spectrum without losing much of the information.
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3 Code base

3.1 Programming language and libraries

The code base in this work has been implemented in Python 3.9. Python is a programming
language which offers a lot of well-developed libraries for data science, music information
retrieval and visualization as well as a relatively good readability. It is also one of the most
commonly used languages for data science which benefits code accessibility for many
users [9].

3.1.1 Libraries and dependencies

Here is a list of the most important Python libraries and dependencies that were used:

NumPy: A library for numeric calculations and linear algebra. Computationally
expensive numerical algorithms in this library are implemented via a C backend
to allow for much faster computations than with pure Python [10].

LibROSA: A library offering a collection of music information retrieval methods and
utilities [11].

PyTorch: A deep-learning API written in Python. It enables easy implementation of
neural networks using multiple fast methods of defining and setting up the structure.
With it neural networks can be run on a GPU as well, which makes training and
prediction with a network much faster than with a CPU [12].

Hydra: A framework which allows for easy and elegant configuration of complex
applications [13].

3.2 Configuration

Our application can be configured via a configuration file written in YAML format. This
file format is well known for its simplicity and readability and therefore enhances easy
access to the project [14].

There are four main scripts in our application (see next section). Their parameters can be
set via the aforementioned configuration file or via command line overrides. There are
numerous parameters grouped by category which can be modified to the need of the user.

3.3 Structure

The four main scripts performing the main tasks of our framework are as follows:

parse_dataset.py Parses and balances the raw dataset from which features and labels are
computed.
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data_generation.py Loads audio signals containing single instruments, mixes the raw
audio signals in order to generate samples with multiple instruments as well as
generates features and labels using these mixes.

train.py Initializes, loads and trains the CNN model. It also writes checkpoints of the
model during training and logs the training process to disk.

inference.py Executes all tasks related to predicting single instrument activation functions
using the network, which includes reading the raw audio data, converting it to a
feature tensor and storing the predicted network output in a given directory.

Usually the scripts are executed in the order in which they are listed here.
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4 Implementation

4.1 Data generation

Our untrained network needs a dataset of labeled audio mixtures for training. This means
we require either a ready-to-use labeled dataset, or we need to create and label the mixes
for the dataset ourselves. Since labeled datasets of mixtures are seemingly unavailable,
we chose to pursue the latter.

4.1.1 Data selection

First and foremost, labeled audio files of single instrument recordings are needed. There
are a lot of datasets to choose from but we settled on Medley-Solos-DB [15]. It provides
mono samples at 44.1 kHz from a number of solo instruments, while being presented in a
file structure that can be parsed easily by our framework.

4.1.2 Dataset balancing

Due to some shortcomings present in the dataset we needed to balance the Medley-
Solos-DB dataset. Neural networks learn from training samples. If said samples are
predominantly from one class, the network will get biased towards this class in the
prediction stage. As figure 6 shows the underlying dataset was greatly unbalanced.

Figure 6: Original, unbalanced class distribution in the Medley-Solos DB dataset.

We see that the distribution of instruments is not nearly evened out. If we train our
network using this distribution of instruments it will bias towards the instruments with
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more samples. We can minimize the prediction bias if we oversample instrument
segments from classes containing little samples while undersampling segments from
classes like the piano, which has plenty of recordings. This implies that not every piano
sample will be used, but samples from the clarinet class will most likely be part of a mix
many times over. Overfitting should not occur since the solo samples in a mix are very
unlikely to ever be grouped together again.

We chose a maximum oversampling factor of 2. This led to 420 samples per instrument
in the training set, and 3360 samples in the training set in total. The balanced dataset is
depicted in figure 7.

Figure 7: Balanced class distribution after oversampling under-represented classes and
undersampling over-represented classes.

4.1.3 Mixing

Real world audio recordings often consist of multiple instruments playing together. The
decision to train the model not only with single instrument signals but also with mixed
instrument signals therefore was pretty natural. However, directly using samples with
multiple instruments for training bears the problem of not having a proper target vector
or label (i.e. the "real" activation of each instrument). In order to solve this problem
our framework generates mixed instrument samples itself by mixing recordings of solo
instruments.

The mixing process is characterized by three main parameters:

• The number of mixes to create (in total)

• The number of instruments to take per mix
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• The level of each instrument in a mix

The implementation of the mixing process is straightforward. Creating one mix requires
choosing a set of recordings (either from one instrument or from multiple, different
instruments), multiplying them with randomly drawn levels and summing them up.

Number of mixes The total number of mixes to create. Together with the batch size
that is being used this parameter specifies the number of training steps in each training
epoch.

Number of instruments to take per mix To generate more diverse mixes, the
number of instruments per mix was modeled via a uniform distribution. This means, that
between a minimum and a maximum number of instruments, each number of instruments
is equally probable.

p[ninstr] =

{ 1
ninstr,max−ninstr,min+1

ninstr,min ≤ ninstr ≤ ninstr,max
0 else

(7)

We used ninstr,min = 1 and ninstr,max = 4. The lower limit represents a single instrument
recording. For the upper limit we refer to Stoeter et al. [16] which state that humans can
only correctly distinguish up to three voices in a polyphonic piece of music. In our mixing
process it is not unlikely that at least one of four single instrument samples contains an
audio recording that is either shortly before an onset or fading out. If that happens the
corresponding instrument has little to no contribution to the mix. This is why we decided
to set the maximum number of instruments to four (instead of three).

Levels of instruments in a mix To simulate different levels of instruments in a mix
the levels l were also modeled by the help of a probability distribution. We used a normal
distribution N (µl, σ

2
l ), 0) for that. Via

l = max(N (µl, σ
2
l ), 0) + ε (8)

it was also ensured that the level l is bigger than 0 (i.e. silence). We chose to use µl = 0.5
(i.e. −6 dB), σ2

l = 0.01 and ε = 1e− 8.

The total level of the instruments is ltotal =
∑Ninstr

i=1 l[i]. A total level ltotal < 1 is perfectly
fine. However, a total level ltotal > 1 is problematic as it may introduce clipping. To
prevent that we chose to normalize each respective instrument level l[i] by the total level
ltotal in case it becomes bigger than 1, like in

l[i] =

{
N (µl,σ

2
l )

ltotal
ltotal > 1

N (µl, σ
2
l ) else

. (9)
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Mixing random segments multiplied with randomly drawn levels does not take into
account temporal offsets or musical context of the signals that are to be mixed. We regard
improving this aspect as an extension to the underlying work.

4.2 Feature extraction

4.2.1 Feature extraction algorithm

The mixing stage generates the audio data as a temporal waveform. To train the network,
this audio data now needs to be converted to features from which the network can draw
predictions.

When handling audio data a conversion to the frequency domain comes to mind.
We decided to compare multiple different frequency representation to see with which
transformation our network works best. Therefore we agreed to compare the following
representations: a STFT spectrum, a CQT spectrum and a mel-frequency spectrum. The
parameters for the computation of the spectra are listed in 4.2.3.

4.2.2 Output matrix for training (Y-matrix)

Often neural networks are fed an input vector at a single time instance and from that
predict a one-dimensional output consisting of classes and their likelihood. In our first
approaches we used the frequency bins of a single audio frame as input vector for the
network to let the network predict one activation value per instrument in this frame.
However, we realized that this leads to problems with audio data.

Instrument activations tend to have an envelope in form of a so called ADSR curve
(Attack, Decay, Sustain and Release) and have sharp increases of value especially in the
first moments of excitation. This can not be predicted very well via a one dimensional
output frame. Our mixing process does not take ADSR curves into account, as it simply
mixes randomly drawn single instrument samples without considering the temporal offset
between the samples in the mix. However, we empirically determined that the model
performance still increases if the input features and output predictions of the model
comprise enough frames to capture most of an ADSR curve.

We therefore decided to work with a two-dimensional output matrix for each time instance
like shown in figure 8. It consists of the instruments and their activation functions over
time. The activations extend over a fixed number of frames, which in return is defined by
the chosen length of the observation window. We decided to use an observation window
of 348ms. We targeted to use approximately 350ms, the exact length of 348ms is given
by the frame size of 2048 samples, the hop size of 1024 samples and the centering of
frames applied during the forward frequency transformation.

Supervised training requires labels. These labels in our case are the reference output
matrices containing envelopes which are computed from the single instrument recordings
in a given mix. The model is trained with the provided envelope matrices instead of
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Figure 8: Neural Network structure (left-to-right).

one-hot class vectors and, as already mentioned, also outputs a prediction in matrix form.

The activations are computed for each observation window in an audio sample. During
training time only one observation window at a time is of interest. However, during
inference we want to have the output matrix of the whole audio file returned by the
network. This means that we need to concatenate the output matrices of each observation
window in a way that the output frames are temporally synced with the input frames.

We decided to stitch together all predicted output matrices of an audio file via overlap-
add, using a Hann window and 50% overlap. Applying a Hann window to each
observation window also minimizes the contribution of the first frames and the last frames
in each observation window to the concatenated matrix. This may be beneficial, as the
convolutional layers in the network are set to zero-pad outside of these frames in order to
keep the number of output frames equal to the number of input frames. This zero-padding
could potentially lead to edge effects, which in return are nullified by the Hann window.

4.2.3 Dataset

We created our dataset by mixing samples of single instrument recordings. The mixing
process ensures that each available sample contributes to one mix during one mixing
epoch. We decided to use five mixing epochs. This means, that in a training epoch each
single instrument file appears five times, each time in a different mix.

The balanced training set has 3360 single instrument samples in total. The average
number of instruments in a mix can be computed with

ninstr,avg = ninstr,min +
ninstr,max − ninstr,min

2
= 1 +

4− 1

2
= 2.5 . (10)

Therefore the total number of mixes in the training set is 3360
2.5
· 5 = 6720. Furthermore,

we use an observation window length of 0.348 s. All single instrument files in the
dataset are 3 s long. The observation window fits 8 times into that, which means that
each single instrument file may contribute 8 different samples to the mix generation.
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This leads to a final number of 6720 · 8 = 53760 samples in the training set, or
53760 · 0.348s = 18708.48s = 5.20 h of mix signals in the training set. Using the
same computation method we derive that the validation set has 12160 samples, which
corresponds to 1.18 h of audio data. The test set has 96630 samples, which corresponds
to 9.34 h of audio data. The split into training, validation and test data was given by the
dataset (see 4.1.2).

For the computation of the instrument activations we decided to use the root-mean square
(RMS) value. It describes the energy of an instrument at a given time instance and it can
be computed very efficiently in the time domain.

The number of frames in a feature matrix (STFT, mel-spectrogram or CQT) is 16. The
number of bins in a feature matrix is defined by the number of bins generated by the
frequency transformation algorithm that is being used. Here is a list of the parameters
used for each feature computation algorithm:

• Sample rate: 44 100Hz

• STFT parameters

– Frame size: 2048 samples

– Hop size: 1024 samples

– Window function: Hann

– Centering frames such that they are centered around multiples of the hop size

• Mel-spectrogram parameters

– Length: 128 bins

– Min. frequency: 27.5Hz

– Max. frequency: 20 kHz

• CQT parameters

– Number of bins per octave: 24

– Number of octaves: 8

– Min. frequency: 27.5Hz

Note that the mel-spectrogram uses the same frame size, hop size, window function and
centering parameters as the STFT.

Using the parameters above we receive the following feature matrix dimensions:

• STFT: 1025× 16

• Mel-spectrogram: 128× 16

• CQT: 192× 16
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4.3 Model Structure

The structure of our model is visualized in figure 9. The main building blocks of the
network are its convolutional layers. The first pair of these uses a kernel size of 3× 3,
the second pair a kernel size of 5× 5 and the third pair a kernel size of 7× 7. All
convolutional layers use a stride of 1× 1 and symmetric zero-padding in order to keep the
tensor dimensions constant. We apply the Rectified Linear Unit (ReLU) activation after
each convolutional layer.

Figure 9: Neural Network structure (left-to-right).

After each pair of convolutional layers there is a maximum pooling (MaxPooling) layer
to reduce the tensor size and thus the network complexity. All MaxPooling layers only
pool in the frequency dimension, thus keeping the temporal dimension (i.e. the number of
frames) constant. The first two MaxPooling layers use pooling kernel of size 2× 1, while
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the third layer uses a pooling kernel of size 4× 1.

After the first and second MaxPooling layer we also used a spatial dropout layer during
training, which drops entire channels in the feature map with a probability of 0.1. It is
inserted in order to avoid overfitting.

The total number of model weights depends on the feature computation algorithm that is
being used:

• STFT: 8.73M weights

• Mel-spectrogram: 1.39M weights

• CQT: 1.92M weights

4.4 Training

During training we used a batch size of 32. One batch consists of one observation window
of features (and labels). We used the Adam optimizer with a base learning rate of 0.001
and a weight decay of 0.001 in order to avoid network weights becoming too large. The
dataset containing the mixes was shuffled in between epochs.

For the dropout layers we used a dropout rate of 0.1. To avoid overfitting after a certain
number of epochs we implemented a learning rate reduction scheduler, which divided the
learning rate by 5 each time the validation loss did not decrease for at least 8 epochs.
The minimum learning rate was set to 0.00001. Because of the learning rate reduction
we decided that an early stopping mechanism would not be necessary, so we trained our
network for a fixed number of 150 epochs.

For the loss function we used the binary crossentropy (BC) loss. This is pretty unusual
for a regression task, as BC loss is usually applied to classification tasks. However, with
the more prominently used mean-square error (MSE) loss, the predictions of our network
collapsed during training. After some epochs suddenly all values in the output matrix of
the network started being constantly zero for the remaining training process.

Still looking forward to giving an explanation to that, we did research and realized that
this often happens if label tensors are sparse. Our label matrix always consists of eight
instruments with a maximum of four instruments active in a mix. This means that each
label matrix is at least 50% sparse. We therefore assume that our label matrices are sparse
enough to make the prediction collapse.

This collapsing issue did not occur with the BC loss, so we agreed to use it. We also tried
to add additional additive loss terms, like the Kullbeck-Leibler divergence, or a Frobenius
norm based loss. However, the best results were produced when solely the BC loss was
used.
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5 Results

5.1 Comparison of feature types

In the first step we wanted to compare the feature types: STFT, CQT and mel-
spectrogram. We generated three separate datasets using each of the feature types. For
each of these datasets we trained the model from scratch in order to compare the feature
types.

The STFT features did not work at all. The predictions were mostly zero when using
these features, not grasping any instrument. This is probably due to the relatively long
STFT feature vector (1025 bins) in comparison to the CQT vector (192 bins) and the mel-
spectrogram vector (128 bins). Our network is simply not complex enough for 1025 bin
feature vectors. Additionally, the spectrum generated by the STFT is not shift-invariant
regarding the pitch in the audio signal and thus not well suited for convolutional layers
with fixed kernel sizes.

Both CQT and mel-spectrogram features worked well during training of the network.
They showed some slight advantages in certain instruments where the other feature type
was not that good. Overall their performance was equally well. As the mel-spectrogram
produces smaller feature tensors than the CQT we decided to use that in the end. All the
results shown in the subsequent sections are therefore generated using the model trained
with mel-spectrogram features.

5.2 Training process

Now we look at the results of the training process. It is best described by the loss curve
over the training steps, shown in figure 10.
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Figure 10: Binary cross entropy loss over training steps, using 150 epochs. The training
loss is shown in orange, the validation loss in blue. The test loss is the red dot in the
top-right corner. The blurry lines in the background show the real values, while the thick
lines show a moving average over the number of epochs.

At the beginning of training the loss decreases faster. With a growing number of epochs
however, the slope of the decrease becomes lower. The lower the slope becomes the more
likely overfitting may happen, which is why we implemented the learning rate reduction.
The averaged curves show that after approximately 40 epochs (40k steps) there is no real
increase in performance anymore.

This also makes sense if we look at the learning rate in figure 11. The learning rate is at
its minimum possible value of 0.00001 from the 36th epoch on.



Neuroment 24

Figure 11: Adaptive learning rate over training steps. We see a learning rate reduction at
approximately 18 epochs, 26 epochs and 36 epochs.

We observe that the network converges pretty fast overall. This may be explained by our
training dataset containing each original single instrument recording five times (in five
different mixes). However, we also see that the validation loss is considerably higher than
the training loss, indicating that the network does not generalize well. The same goes for
the final test loss.

5.3 Predictions

To evaluate the predictions three audio samples were created. The first two samples are
named "Sequence1" and "Sequence2". They contain a sequence of all 8 instruments
the network was trained with. Each instrument is played sequentially for 5 seconds.
By playing them sequentially it can be determined how well the network differentiates
between instruments when they’re not playing concurrently and how much "leakage"
or confusion exists between said instruments. Sequence1 uses audio samples from the
test set of the MedleySolos-DB dataset, while Sequence2 uses publicly available audio
samples from freesound.org.

The third sample was a self-generated example from a piece from the video game Zelda -
Ocarina Of Time including the piano, clarinet and flute. This example is especially fitting
since only two instruments are playing simultaneously at any given instance. This sample
is a simulation of a real world example where multiple instruments are playing at a time,
while providing more information, due to the accessibility of the solo tracks.

We limited the dynamic range of our network output (and the labels) to 60dB. Figure 12
shows the results for Sequence1, figure 13 shows the results for Sequence2 and figure 14

https://freesound.org
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shows the results for the Zelda sample.

Figure 12: Predictions for Sequence1 (audio samples from test set).

Figure 13: Predictions for Sequence2 (audio samples from freesound.org).

https://freesound.org
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Figure 14: Predictions for the real world sample.

Some of the instruments like the piano, the electric guitar and the female singer are being
detected quite well and distinctly. Others like the flute and the tenor saxophone are nearly
not being detected at all. In addition to the visualization above we provide a more detailed
analysis in the following sections.

5.4 Prediction Error

In order to evaluate the performance of a common neural network the prediction results
can be analyzed in many different ways. In most cases the error from the expected results
is evaluated and the confusion with other classes is being investigated. Evaluating the
confusion of classes is tricky for our given task.

Instead of computing a confusion matrix we decided to evaluate the more fitting measures
noise and leakage. We evaluate these measures in a similar way a confusion matrix is
normally determined.

5.4.1 Noise Matrix

Here the resilience to falsely detected activation functions is being investigated. In
other words, how much is an instrument being detected when it should not be. This is
evaluated by averaging the absolute deviations of the predicted activation functions from
the reference activation functions of each instrument over the 5 second window, even if
they are not active (the envelope is zero in this case).
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This matrix does not describe the confusion, like the visualization suggests, but only gives
insight about how much the network learned to follow the intended envelope (even if it
is zero). Furthermore, the values were cut below −60 dB for visualization purposes since
this would be considered not perceptually relevant if another sound source is present.

The noise matrix for Sequence1 is shown in figure 15, the matrix for Sequence2 in figure
16.

Figure 15: Noise matrix for Sequence1 (samples from test set).
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Figure 16: Noise matrix for Sequence2 (samples from freesound.org).

The results of the noise matrices are best interpreted by inspecting the female singer and
the guitar: the female singer and the electric guitar were falsely detected within nearly
every other instrument, since the values of their respective columns are comparably high.
On the other hand when looking at their rows, no other instrument was falsely detected
while they were active.

This means that the presence of these instruments in the network output is generally very
dominant, and that the network is probably biased towards these instruments. This is why
they also tend to generate noise (i.e. predictions where should be silence).

5.4.2 Leakage Matrix

Now we try to construct our variant of a confusion matrix from the labels and the
predictions. In the leakage matrix, we want to analyze how much of the activation values
of the currently playing instrument is being detected in another instrument. This means
that we compare the predicted activation value of each instrument with the one currently
active. Then, the difference derived from this comparison is subtracted from our defined
dynamic range of 60 dB.

Note that for the leakage it does not make sense to compare the labeled and predicted
values of the same instrument, which is why there are no main diagonal values.

The leakage matrix for Sequence1 is shown in figure 17, the leakage matrix for Sequence2
in figure 18.

https://freesound.org
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Figure 17: Leakage matrix for Sequence1.

Figure 18: Leakage matrix for Sequence2.
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Again we inspect the electric guitar and we find that it nearly does not leak into other
instruments, as in the second column of the matrix (where electric guitar is playing) nearly
all values are at −60 dB. The flute on the other hand is greatly leaking into clarinet, the
female signer and the piano, which we can see in its column within the matrix.

5.5 Envelope

For the evaluation of the envelope the "real world" example was put under investigation.
Figure 19 depicts the predictions for the mix sample (containing piano, clarinet and flute).
Figures 20, 21 and 22 show the predictions for the single instrument tracks from which
the mix was generated.

Figure 19: Prediction result of the mix signal.
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Figure 20: Prediction result of the piano track.

Figure 21: Prediction result of the clarinet track.
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Figure 22: Prediction result of the flute track.

The first thing to be stated is the difference of detection quality between the mixed and
the solo signals. The network has obvious problems telling the instruments apart, even
when being trained on mixed signals. The detection of solo instruments on the other
hand performs well on certain instruments (as can be seen for the piano and clarinet) but
performs bad for others like the flute.

One thing the network seems to be well capable of (in respect to instruments it can detect
sufficiently) is enforcing silence if an instrument is not active. On the other hand, the
envelopes show similarities to the input, while still varying in amplitude and trend. They
are also better detected for solo signals when compared to the mixes.
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6 Conclusion

In conclusion it can be stated that our CNN is capable of learning and identifying various
instruments. However, it only functions properly if it is fed single instrument samples. It
can not properly distinguish all the sources of a complex mixture of multiple instruments.

The network is able to learn and reproduce complex envelopes. To achieve this we
developed a data generation approach which included mixing and leveling the raw audio
signals and converting them to features which could be reasonably interpreted by the
network. The data set imbalance of the original data set used for training the CNN could
be improved significantly as well.

There is room for improvement like applying audio effects to the raw audio recordings
in order to create more diverse training data. Another way of improving the performance
would be to take advantage of the two channels present in stereo recordings in order
extract more information from the mixtures. Furthermore, an onset detection could be
used to show the networks only relevant slices of the signal. This was implemented in a
prototype of this project, but was not investigated further due to the difficulties it brings
in relation to synchronicity and varying tempos. Lastly, a more sophisticated network
structure, like an Encoder-Decoder approach, could be applied.

Usage for the underlying musical instrument detection approach could be guidance for
source separation using algorithms such as Non Negative Matrix Factorization (NNMF)
or automated transcription of music.
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