
Audio Coding Pedal Platform for Live
Performances and Prototyping

Small low-budget effects pedal platform for live coding, prototyping and music
performances.

Giuseppe Taormina

Master Thesis

in

Sound Design

Mentor: DI Marian Weger, PhD

FH JOANNEUM
Institut für Elektronische Musik und Akustik

Universität für Musik und darstellende Kunst Graz

Graz

Abstract

This master thesis documents the process of construction, design and development of a
platform in a guitar pedal format, for live coding, prototyping, live visuals and live
performances in general.
Live audio programming is an increasingly common practice, but it always requires the use
of the computer or several other elements. The possibility of being able to condense
everything into an instrument of reduced size almost like a normal guitar pedal could
increase the practicality of this practice and allow it to be carried out in any situation.
Furthermore, the possibility of always having one's own effects available, i.e. coded by
oneself, in a low-cost platform and being able to modify them from the same platform using
the favourite computer music language leads to the development of something new, not yet
on the market.
The pedal in question is based on the Raspberry PI microcomputer and cheap DIY
electronics. The components used are chosen to obtain the smallest possible dimensions of
this platform, and above all to obtain a product that is as economical as possible. In addition
to the processing of the incoming audio signal (guitar or any other instrument), this pedal is
able to generate visuals reproduced on the screen included in it, which vary according to the
audio processing and which can be projected in case of a live performance, enriching its
content.

2

Kurzfassung

Diese Masterarbeit dokumentiert den Prozess der Konstruktion, des Designs und der
Entwicklung einer Plattform im Gitarrenpedal-Format für Live Coding, Prototyping, Live
Visuals und Live-Performances im Allgemeinen.
Live Coding wird immer häufiger praktiziert, erfordert jedoch zwingend den Einsatz des
Computers oder mehrerer anderer Elemente. Die Möglichkeit, alles in einem Instrument mit
reduzierter Größe fast wie ein normales Gitarrenpedal verdichten zu können, könnte die
Praktikabilität dieser Praxis erhöhen und es ermöglichen, sie in jeder Situation
durchzuführen.
Darüber hinaus ergibt sich die Möglichkeit, eigene Effekte (selbst codiert) immer verfügbar,
in einer kostengünstigen Plattform zu haben und von derselben Plattform aus mit der
bevorzugten Computermusiksprache modifizieren zu können; zur Entwicklung von etwas
Neuem, das sich noch nicht auf der Markt befindet.
Das Pedal basiert auf dem Raspberry PI und kostengünstiger DIY-Elektronik. Die
verwendeten Komponenten werden ausgewählt, um die kleinstmöglichen Abmessungen
dieser Plattform und vor allem ein möglichst billiges Produkt zu erhalten. Zusätzlich zur
Audioverarbeitung des eingehenden Audiosignals (Gitarre oder jedes andere Instrument)
kann dieses Pedal auf dem darin enthaltenen Bildschirm wiedergegebene Visuals erzeugen,
die je nach Audioverarbeitung variieren und während einer Performance projiziert werden
können, um ihren Inhalt zu bereichern.

3

Obligatory signed declaration

I hereby confirm and declare that the present Master's thesis was composed by myself
without any help from others and that the work contained herein is my own and that I have
only used the specified sources and aids. The uploaded version is identical to any printed
version submitted. I also confirm that I have prepared this thesis in compliance with the
principles of the FH JOANNEUM Guideline for Good Scientific Practice and Prevention of
Research Misconduct. I declare in particular that I have marked all content taken verbatim
or in substance from third party works or my own works according to the rules of good
scientific practice and that I have included clear references to all sources. The present
original thesis has not been submitted to another university in Austria or abroad for the
award of an academic degree in this form1 . I understand that the provision of incorrect
information in this signed declaration may have legal consequences.

Date, Signature

4

Acknowledgements

I would like to thank my supervisor Dr. Marian Weger for his guidance throughout the
research and conception of this work, for encouraging me to always give my best and for
making this process a significant source of learning. For the help she gave me with the 3D
Model, I would like to thank my friend and 3D Artist Stefania Fiorucci.
Special thanks go to my friend and mentor Dr. Dr. Markus Mohr for making all this
possible. I would also like to thank my family and all the people close to me for their
support over these years.

5

Table of Contents

Abstract ___2

Kurzfassung __3

Obligatory signed declaration _____________________________________4

Acknowledgements __5

List of Figures ___10

1. Introduction ___13

2. Pedals __13

2.1 First Pedals ..14

2.2 More Pedals ...16

2.3 Pedals today...17

3. Live Performances__19

3.1 Live Electronics...19

3.2 Live Coding ...19

4. Raspberry Pi __20

4.2 Existing Works...20

5. Building the Pedal __23

5.1 Idea ..23

5.2 Characteristics ...23

5.3 Hardware ...24

6. Signal Chain (Building the Pedal) _______________________________25
6

6.1 Switch True Bypass ...26

6.1.1 Relay...27

6.2 Buffer...32

6.3 Audio Input Raspberry Pi ..35

6.4 Mixer ...37

7. First Test__40

7.1 Latency Test...41

8. 9V ___42

9. FX Loop__43

10. Raspberry Pi - Part II __47

10.1 Python..47

11. Rotary Encoder ___48

11.1 Pinouts ...48

11.2 How does it work? ...48

11.3 Add-On ..51

11.3.1 Counter according to the rotation speed ...52

11.3.2 Hold ..54

12. Display __57

13. Audio in Pi ___59

13.1 First Audio Patch ...59

13.2 PD + OSC..60

13.3 More Patching ...61

7

14. Video __64

14.1 Processing..64

14.2 OSC ...64

14.2.1 Pd analysis ..64

14.2.2 Pd to Processing ...65

14.3 Graphic Test/Code ...65

15. Enclosure __68

16. Preparation for User Study ___________________________________75

16.1 Patching ...75

16.1.1 Patch 000 ..75

16.1.2 Patch 001 ..75

16.1.3 Patch 002 ..76

16.1.4 Patch 003 ..76

16.2 Presets (Dynamic Patching) ..77

16.3 Start everything with the Pi (Python, Pd) ..77

16.4 More visuals ..78

16.4.1 Sketch 000 ..78

16.4.2 Sketch 001 ..78

16.4.3 Sketch 002 ..78

16.4.4 Sketch 003 ..79

16.5 Preset visuals ...79

16.6 Patch for Physical Modeling ...81

17. User Study ___82

8

17.1 Results ...82

17.2 Discussion..93

18. Conclusion ___94

References __95

Appendix: Bill __101

9

List of Figures

Figure 1: Rickenbaker’s Electro Vibrola Spanish Guitar
Figure 2: DeArmond Model 600
Figure 3: DeArmond Model 601 Tremolo Control
Figure 4: Gibson Maestro Fuzz-Tone
Figure 5: Cry Baby
Figure 6: Electro-Harmonix Memory Man
Figure 7: Roland GP-8
Figure 8: Line 6 POD
Figure 9: Line6 Helix
Figure 10: Kemper
Figure 11: Fractal Audio Axe FX3
Figure 12: Neural DSP Quad Cortex
Figure 13: Raspberry Pi 4
Figure 14: Pedal-Pi
Figure 15: NeuralPi
Figure 16: DIY Touchscreen Pedal
Figure 17: Signal Chain_1
Figure 18: True Bypass
Figure 19: 3PDT Switch
Figure 20: Relay NC
Figure 21: Relay NO
Figure 22: Relay Intertec TD-5
Figure 23: TD-5 wiring diagram
Figure 24: Final Signal Chain
Figure 25: TD-5 wiring diagram
Figure 26: Switch
Figure 27: Relays in DIYLC
Figure 28a: Perf Board
Figure 28b: Soldered Relays
Figure 29: JFET Schematic Symbol
Figure 30: Buffer circuit
Figure 31: Buffer in BreadBoard
Figure 32: Buffer Splitter
Figure 33: Splitter in DIYLC
Figure 34: StripBoard
Figure 35: Soldered Buffer/Splitter
Figure 36: Behringer U-Control UCA222
Figure 37: Behringer U-Control UCA222 without RCA and with pins
Figure 38: Mixer Circuit
Figure 39: Mixer in BreadBoard
Figure 40: Mixer in DIYLC
Figure 41: Soldered Mixer
Figure 42: Audio Input in PureData

10

Figure 43: LAOMAO Step-Up Boost power converter XL6009
Figure 44: FX Loop serial and parallel
Figure 45: Y Cable
Figure 46: Y Cable + Stereo FX
Figure 47: FX Loop in DIYLC
Figure 48: Soldered FX Loop
Figure 49: Rotary Encoder
Figure 50: Clockwise Rotation
Figure 51: Counterclockwise Rotation
Figure 52: GPIOs Numbering and Reference
Figure 53: Rotary + Pi
Figure 54: Hold Chart Flow
Figure 55: DSI Cable
Figure 56: DSI connection to Pi
Figure 57: Display Front
Figure 58: Display Back
Figure 59: Display connection to Pi
Figure 60: Delay in PureData
Figure 61: OSC in PureData
Figure 62: Hold Function in PureData
Figure 63: FM subpatch
Figure 64: GUI Pure Data
Figure 65: [fiddle~]
Figure 66: Pd patch with [fiddle~] and OSC
Figure 67: Processing Visuals
Figure 68: Pd + Visuals
Figure 69: Draw Front Case
Figure 70: 5V Fan
Figure 71: Draw Back Case
Figure 72: Enclosure Up
Figure 73: Enclosure Front
Figure 74: Enclosure Right
Figure 75: Enclosure Left
Figure 76: Full Working Enclosure
Figure 77: Idea for 3D Cover
Figure 78: Idea for 3D Side L
Figure 79: Idea for 3D Side R
Figure 80: Idea for 3D Front
Figure 81: Idea for 3D Back
Figure 82: Idea for 3D Feet
Figure 83: Print Up
Figure 84: Print Back
Figure 85: Print Left
Figure 86: Print Right
Figure 87: Print Front

11

Figure 88: Print Front 2
Figure 89: Preset 000
Figure 90: Preset 001
Figure 91: Preset 002
Figure 92: Preset 003
Figure 93: Preset change
Figure 94: Visual 1
Figure 95: Visual 2
Figure 96: Visual 3
Figure 97: Presets GUI
Figure 98: Full UI
Figure 99: Patch Boss DS-1
Figure 100: Evaluation Question 1
Figure 101: Evaluation Question 2
Figure 102: Evaluation Question 3
Figure 103: Evaluation Question 4
Figure 104: Evaluation Question 5
Figure 105: Evaluation Question 6
Figure 106: Evaluation Question 7
Figure 107: Evaluation Question 8
Figure 108: Evaluation Question 9
Figure 109: Evaluation Question 10
Figure 110: Evaluation Question 11
Figure 111: Evaluation Question 12
Figure 112: Evaluation Question 13
Figure 113: Evaluation Question 14
Figure 114: Evaluation Question 15
Figure 115: Evaluation Question 16
Figure 116: Evaluation Question 17
Figure 117: Evaluation Question 18
Figure 118: Evaluation Question 19
Figure 119: Evaluation Question 20
Figure 120: Evaluation Question 21

12

1. Introduction

The need to have a sound processing effect in the form of a pedal arises from the need to be
able to activate, deactivate or modify parameters during a performance. In addition to the
execution of the notes, taking care of the expressive side through dynamics and precision,
the search for interaction with the sound parameters, capable of altering the sound spectrum
in ways not possible with the typical interaction with a musical instrument, finds an answer
in use of musical effects capable of altering the sound.
When playing a musical instrument, both hands are normally used and their use to interact
with the desired effect could lead to poor fluidity in execution. Being able to interact with a
sound effect through, for example, using your feet to click on the pedal switches, does not
risk interrupting or hindering the performance.

2. Pedals

Since the guitar became an amplified instrument around 1930, to make it audible in the
context of big bands, it has been tried to find ways to increase its expressiveness.

The first of these experiments led to the creation of the first guitar with an effect built into it,
the Rickenbaker's Electro Vibrola Spanish Guitar, around 1938-1939 (see Fig. 1). [1]

It has a motor capable of moving the bridge by creating a further oscillation of the strings by
slightly altering the pitch of the notes. It then generates a Vibrato.

13

Figure 1: [2]

2.1 First Pedals

The first actual effect pedal was a volume pedal, the Rowe industries DeArmond Model 600
(see Fig. 2).

It was designed to expand the functions of another company product, namely a Pickup
(magnet capable of transducing the vibration of the strings into an electrical signal), capable
of being attached to any acoustic guitar. [1] [4]

Furthermore, the same company devised a tremolo, or a pedal capable of creating a volume
oscillation, the DeArmond Model 601 Tremolo Control (or Trem-Trol, Model 60 or 60A). It
is the first stand-alone pedal in history (see Fig. 3). [1]

14

Figure 2: [3]

Figure 3: [5]

This pedal works by passing the signal through an electrolytic fluid with an electric motor
that creates fluctuations in the signal by moving a spindle. [1]

These first pedals, however, were still too bulky and fragile to be brought to the stage. The
next step took place in the 1960s, when transistors became easily available, making it
possible to build lighter and cheaper pedals. [1]

In 1961, while recording Marty Robbins' "Don’t Worry" at the Nashville Studios, an output
transistor caused the bass signal to distort, effectively becoming the first distortion recording
in a song. Studio engineers Glenn Snoddy and Revis Hobbs tried to design a circuit to
replicate that sound. This led them to build the Gibson Maestro Fuzz-Tone, the first true
distortion pedal in history (see Fig. 4).
It became famous thanks to its use in the song "(I Can't Get No) Satisfaction" by the Rolling
Stones by guitarist Keith Richards, who was trying to emulate the sound of brass
instruments. [1]

Several companies have therefore begun to develop similar models.

Another major breakthrough came when engineer Brad Plunkett was working to find a way
to make VOX amplifier manufacturing less expensive. While trying to replace a switch
with a less expensive pot, he noticed a strange fluctuation in pitch.
He then took a volume pedal from a Vox Continental organ and replaced the circuit with the
one he was working on and got what we know today as Wah-sound. [1]

By pressing the pedal, we will have an accentuation of low frequencies or high frequencies,
depending on how we move the potentiometer. It was called Cry Baby (see Fig. 5).

15

Figure 4: [1]

2.2 More Pedals

Therefore, more and more companies were born and in 1976 the Electro-Harmonix
company released the Memory Man pedal, which creates signal delay lines that can be
mixed with the signal itself (see Fig. 6). This was a very important moment, as guitarists
finally had access during a performance to what was previously only possible in the studio.
[1]

Pedals capable of creating various types of effects were then built in the 80s, where digital
multi-effects began to spread.
For example, units comprising several programmable effects, such as the Roland GP-8,
which includes 8 effects: Wah, Compressor, Overdrive, Distortion, Phaser, Equalizer, Delay
and Chorus (see Fig. 7).

16

Figure 5: [1]

Figure 6: [1]

Subsequently, the first emulations of amplifiers and speakers were created, such as the Line
6 POD (see Fig. 8). [7]

In addition to a variety of effects, it also allows to choose the type of amplifier and to save
its presets. All compact und handy.
This can be used both in the studio and for live performances, reducing the size of the
instrumentation and giving the possibility of obtaining sounds that are not easily obtainable
with limited instrumentation.

2.3 Pedals today

The quality of these emulators (modelers) has grown enormously in recent years, creating
products that can easily compete with the sounds obtainable from real amplifiers and/or
normal pedals.

Currently, the most used modelers are Line 6 Helix (Fig. 9), Kemper (Fig. 10), Fractal
Audio Axe FX (Fig. 11) and Neural DSP Quad Cortex (Fig. 12).

17

Figure 7: [6]

Figure 8: [7]

These are now widespread in recording studios, but also in the live sector. They are in fact
replacing the traditional instrumentation, moving more and more towards the all digital
signal chain.

18

Figure 9: Line6 Helix [8]
Figure 10: Kemper [9]

Figure 11: Fractal Audio Axe FX3 [10]

Figure 12: Neural DSP Quad Cortex
[11]

3. Live Performances

With the development of the first effects for musical instruments and their increasing
popularity, musicians and researchers began to think about using them, or similar devices
previously used only in studios for sound research purposes, in live contexts.

3.1 Live Electronics

This has already started in the 1960s, simultaneously with the development in all artistic
fields of the concepts of improvisation, extemporaneousness and happening (a show that
includes several arts at the same time, such as a concert accompanied by visuals). [12]

What will take the name of live electronics, begins to develop. The sound of the instruments
or the voice is transformed through electronic devices in real time. This practice begins in a
more pioneering and experimental setting. Among the various composers, Karlheinz
Stockhausen stands out with the pieces “Mikrophonie I”, “Mikrophonie II”, “Mixture” and
“Mantra”. [12]

Live electronics begins to spread more and more and to welcome new electronic
instruments, such as the synthesizer. It advances together with technological development,
expanding its expressive possibilities. [12]

3.2 Live Coding

The spread of computers and their use in the music field has also led to the use of
programming languages for musical creation, as well as the development of programming
languages totally designed for sound synthesizing and processing.

Among these programming languages developed for music, we find SuperCollider, CSound
and PureData. They allow sound synthesis (the generation of sound artificially), starting
from a simple oscillator to then be able to create more complex sound waves, and the
processing, analysis and use of samples, or musical events already recorded.

This practice has also been brought to the live field, finding its space close to live
electronics.
A typical live coding music performance takes place with the projection of the
programmer's screen, making one's code the visual event of the performance. [13]

This documentation deals with the creation of an instrument that can also adapt to
traditional performances, happenings, live electronics and live coding.

19

4. Raspberry Pi

The Raspberry Pi (see Fig. 13) is a computer that was developed by Eben Upton, Pete
Lomas and David Braben with the intention of having an inexpensive computer for
programming and with easily accessible functions for various electronics projects .
In order to reduce costs as much as possible, it features only the essentials, namely
programming environment and hardware connections for electronics projects. It runs
Raspian, a modified version of Debian Linux. [14]

The photo above represents the Raspberry Pi 4. The model used is the version with four GB
of RAM.
It has a USB-C input for power supply (it is preferable to use the original power supply),
two HDMI ports from which the audio connection is also made (if a TV or screen with
speakers is connected in general), a 3.5 mm output audio, four USB ports (USB 3 and USB
2) and one input for the ethernet cable.
It also has 40 pins (type of electrical contacts) to which various hardware components can
be connected for the most varied electronics projects.

All these built-in functions, the ease of use and its low cost (between €60 and €100) have
determined its use in this project.

4.2 Existing Works

Raspberry Pi based guitar effects have already been developed, and some of them, which
were taken as inspiration for this work, are the Pedal-Pi [16], NeuralPi [17] and Hyllis' do-
it-yourself touchscreen MultiFX [18] [19].

20

Figure 13: [15]

Pedal-Pi is a programmable guitar pedal from ElectroSmash (Fig 14). [20] It uses the
Raspberry Pi ZERO Boards and the effects are coded using the programming language C.
It is quite basic as it only has a push button for on/off, two potentiometers and a switch to
adjust the parameters. It is therefore necessary to program the desired effect first, and then it
will be possible to interact with it. Like a typical guitar pedal, it features only one input and
one output.

NeuralPi is the name of the open source software written by Keith Bloemer [21], designed
to be used with Raspberry Pi (see Fig.15). It is written in the JUCE framework [22] and uses
neural networks to model existing effects.
The computer used to run the software is the Raspberry Pi 4b with the low latency audio
operating system Elk Audio OS [23] and the HiFi Berry ADC + DAC as audio interface.

The latest is the DIY Touchscreen Pedal developed by Hyllis (see Fig. 16). [19]
It uses Raspberry Pi and rotary encoder, as well as a Behringer U-Control UCA222 audio
interface, and is also made with cheap DIY electronics.

21

Figure 14: [16]

Figure 15: [17]

The software used is written by the author in the C programming language.

This is closest to to the pedal object of this thesis, due to screen and hardware control, but
its use is limited to written software and doesn't have enough features.

22

Figure 16: [18]

5. Building the Pedal

5.1 Idea

The idea behind the design of this pedal is to have, on an aesthetic level, a similar product to
the more modern modelers mentioned above (NeuralDSP QuadCortex, Line6 Helix,
Kemper, etc.), but at the same time reduced dimensions, making it easily transportable and
not bulky, and above all at the lowest possible cost.

The most important and distinctive feature of this pedal is the possibility of having access to
various programming languages, being able to connect our instrument directly to this
computer in guitar pedal format and to manipulate the programmed sound as if our code
were the circuit of this pedal, controlled by the potentiometers installed on it.
Any effect can be programmed in any programming language (if compatible with the
Raspberry Pi Linux operating system) and easily integrate it into an effects chain, or go
directly to the Mixer to listen to the final result.

It must be accessible from any type of signal, instrument (hi-impedance) or line (low
impedance), as well as provide the possibility of separating the input signal, in order to have
a dry signal that can in case be mixed with the signal processed by the Pi (wet signal).
An effects loop must be inserted in the dry path, consisted of an i
Input (send) and an output (return) loop, through which an external pedal can be connected
to process the dry signal. This can be very useful in case of physical modeling, to constantly
have direct control with the hardware to be modeled.

Trying to keep the budget as low as possible, most hardware parts are homemade, being
able to reduce the cost to only the necessary materials. Obviously, the choice almost always
fell on DIY, being able to reduce the cost to only the necessary materials.

How does the most basic pedal work? It has a 6.3 mm jack input and output, a push button
to activate it and, in the best of cases, also a potentiometer capable of adjusting a parameter.
The pedal of this thesis must have some more features, which make it unique and innovative
in this environment.

5.2 Characteristics

The first considerations regarding this work led to the collection of the following
characteristics:

- It must be as economical as possible. (This led to the choice of using the Raspberry Pi
and DIY electronics).

23

- It must be small, but solid at the same time, ready to be used on stage during live
performances,

- A built-in screen is required for live programming and visual FX.
- It must be possible to program directly on the pedal in any programming language. (This

can be obtained, for example, by connecting a mouse and an external keyboard using the
USB inputs already present in the Raspberry Pi.)

- It can be controlled remotely from any USB-MIDI or OSC controller (using LAN or
WLAN).

- Send/return sockets to connect other pedals in the dry path. This is useful for example for
physical modeling purposes. (To compare the original pedal with the emulation being
programmed).

- Switch bypass. If the pedal is not powered, the signal passes the pedal unaffected.

- The dry and wet signals must be mixed in analog domain, with the possibility of
controlling their volume via 2 separate potentiometers.

- Everything is powered by a single power supply, namely the official Raspberry Pi one.

5.3 Hardware

Once the aforementioned points were taken into consideration, it was possible to reduce the
hardware part necessary for the first draft to the following:

- 2 mono jack socket 6.3 mm per inputs (left and right), to connect both mono and stereo
sources.

- 2 mono jack socket 6.3 mm outputs (left and right).

- 2 stereo jack socket 6.3 mm for Send / Return.

- 3 rotary encoder, for managing parameters or activating other functions.

- 2 potentiometers for dry and wet.

- 1 button/switch (for on / off).

- 1 touch screen.

24

- 1 Raspberry Pi 4, which USB, WLAN, POWER and HDMI must remain accessible from
the custom-built case.

The size of the enclosure will then be adjusted accordingly, in order to have all these
features in the smallest possible space.

6. Signal Chain (Building the Pedal)

The signal chain adopted allows to divide the input signal to separate the wet signal from
the dry in analog domain.

Below is a draft of the first signal chain, which involved the splitting of the two inputs (left
and right) and their combination in the final mixer, to then be levelled and continue to the
stereo output.

In this first step, the loop FX was considered mono for convenience, making it possible to
use it only in the dry path of the right input.

25

Figure 17

6.1 Switch True Bypass

One of the key points of this project is having a 100% true bypass pedal.
A pedal is true bypass when, if the pedal is off, the input signal goes directly to the output,
ensuring the integrity of the signal, without any alteration. Furthermore, if the pedal does
not receive power, the input signal will be directly sent to the output.

Not all pedals are true bypass, as this causes a typical switching noise every time the pedal
is activated and, the presence of a true bypass, excludes the presence of a buffer, which
reduces any noise and slightly alters the signal in input, but avoids signal loss if very long
audio cables or multiple effects in chain are used. [24]

In this case, however, the buffers are necessary to be able to split the signal. The solution
was therefore to insert this true bypass system even before the Buffers.

Typically, true bypass is obtained with the 3PDT (3 Poles Double Throw) switch.

However, soldering directly on the pins is not very convenient (in case of future changes)
and the price is around €4/5.
A more convenient and cheap solution is to use relays.

26

Figure 18: [24]

 Figure 19: [25]

6.1.1 Relay

A relay is a switch that uses the electrical signal to control an electromagnet capable of
connecting or disconnecting two circuits. [26]
It consists of various parts, an electromagnet built by winding a copper coil on a metal core,
switching points (contacts), a mechanically moving contact and a spring. The contacts are
three and are called normally open (NO), normally closed (NC) and common (COM). [26]

The image above represents the state of the relay when it is not powered. Common contact
(COM) is connected to NC contact.
On the other hand, when the relay receives current, the electromagnet receives voltage and
the current flowing in the coil produces magnetic energy in the core which lowers the
armature connecting the COM contact with normally open (NO). [27]

For this work, the Intertec Relay TD-5 was the best choice. The choice fell on it as it needs
5V current, which is directly obtainable from the Raspberry Pi and is also stereo. Being
stereo, it can be used to simultaneously switch the direction of both input signals (left and
right) and send them to output, keeping them separate.

27

Figure 20: [27]

Figure 21: [27]

Here the wiring diagram corresponding to the position of the image above:

There are four contacts in the upper row and four in the lower one therefore, being stereo,
the first line corresponds to L and the other to R channel.

The first contact (the one on the far right in Fig. 23) receive the electric current to alternate
NO and NC. One row will be connected to the switch which will send voltage, the other will
go to ground instead.

The input signal is then connected to COM, and the next two pins will be the two distinct
outputs. When the relay does not receive current, this pin is connected to NC, this is
precisely our output true bypass. When the switch is off and the Pi is not receiving current,
the signal will flow in this direction. If, on the other hand, the switch is on (and obviously
the Pi is powered), COM will be connected to NO, making the signal flow in this direction.

From here the signal will then go to the buffer where it will be split creating the two paths,
dry and wet, which will then be combined in the final mixer.

The same thing applies to the second row, which represents the other channel.

The addition of the relay has partially modified the signal chain as showed in Fig. 24.

28

Figure 22: [28]

Figure 23: [29]

There are two relays, one at the beginning and one at the end, after the mixer. They are
controlled by the same switch, which sends current to both relays, switching their contacts
at the same time.
In this way, it is possible to exclude the final mixers and have the pedal true bypass. The
signal is not affected by the pedal components in case the switch is in the off position, or the
Pi does not receive power.

The final relay, also the TD-5 stereo relay, is connected to the stereo output, connecting one
channel to the right output and the other to the left. The relay pins are used a little
differently this time than before.

29

Figure 25: [29]

Jack 3.5 mm
mono (L)

Buffer 1/Split Buffer 2/Split

Pi
(mit Audio Int.)

Mixer

L (Wet)		 L (Dry)	 	 R (Wet)	 R (Dry)

FX In
(Stereo)

FX Out
(Stereo)

Out Stereo

Jack 3.5 mm
mono (R)

Relay (Stereo)

Mixer

Relay (Stereo)

ON OFF

ON (Buffer) OFF (True Bypass)

Figure 24

The first pin from the right is always connected to the switch, the other goes to ground.
COM is connected with the stereo output, becoming the actual output.

In absence of current, it is connected directly to NC, which will be connected to NC pin of
the initial relay, guaranteeing the passage of the signal, bypassing the pedal. NO is
connected to the mixer output, and therefore receives the wet/dry signal.

As for the switch, the simplest and safest choice was to use a simple two-pole switch. If
pressed and, therefore, in on mode, the circuit is completed, generating continuity between
the two poles and thus making the current flow. If it is in off mode, the circuit is broken.

Below is the configuration adopted (made twice, for both buffers), that was developed on
the open-source circuit design software DIYLC: [31]

If the switch is off, the signal will follow in the direction that connects the two relays to
each other, giving us the true bypass. If it is on, then the input signal (L and R, the green
cables) will go to the buffers and, subsequently, the output of the mixer (mixer L and mixer
R, green cables) will be connected directly to the general output.

30

Figure 26: [30]

Figure 27

The FX loop is still missing, which will be placed in the true bypass path, between the two
relays. This part will be discussed later in the documentation.

This is soldered on a perfboard (see Fig. 28a), a board for permanently soldering the
circuits, consisting of single holes that allow the organization of the circuit in the every
desired direction.

Figure 28b shows the soldered circuit.

31

Figure 28a

Figure 28b: The pins in the lower part are used
to distribute the 5v current (and the ground)
received by the Raspberry Pi. The lower ones,
on the other hand, to distribute the 3.3v current
or, later, 9v.

6.2 Buffer

There are 2 inputs, L and R. Both are split through a JFET Buffer.

A buffer is an amplifier that does not alter the signal gain which transforms the impedance
of the incoming signal. [32]

Considering the possibility of wanting to connect, for example, a guitar to the pedal, you
will have a high impedance signal at the input and, if the pedal input were at low impedance
(low impedance input), there will be a loss of high frequencies. This is where the buffer
comes into play, which is featured in many guitar pedal effects. It has a high impedance
input and a low impedance output, transforming the input signal. This avoids loss of
definition (loss of high frequencies). A typical basic buffer is the JFET (Junction Field
Effect Transistor).
The schematic symbol of the JFET is shown in Fig. 29. [34]

An example of a buffer circuit is the one proposed by AMZFX (see Fig. 30). [35]

The circuit has a high impedance input, identifiable by the first resistance (R1) of 10
MOhm, and has a low impedance output (about 100 kOhm). As a first test, a test circuit was
implemented on the breadboard, a board typically used to make prototypes by connecting
electronic components together, before moving on to the actual soldering.

32

Figure 29

Figure 30

The JFET (Q1) used is the J201, AMZFX also suggests the use of the 2N5457 or the
MPF102.

The prototype above was tested by connecting a guitar and comparing the output signal with
the input signal (see Fig. 31). The signal is significantly improved, so the buffer fulfils its
function. Once this first test was done, based on the AMZFX article [34], the circuit was
expanded to be able to use the buffer not only to transform the input signal, but also to split
it.
In the article, the circuit has been expanded to have the sound split in 3 but, for this work, it
is only necessary to split it in 2, to separate the dry path from the wet one. The last part of
the circuit was omitted (see Fig. 32) [34]

33

Figure 31

Figure 32

All this concerns only one signal, that is L or R. Therefore, two splitters are needed. Always
keeping in mind the desire to obtain a pedal with the dimensions reduced to the minimum
necessary, the two splitters were made as small as possible, to minimize the space occupied
on the stripboard.
This is the configuration adopted (made twice, for both buffers), developed on Circuit
Design DIYLC:

The green cables represent the input signals, the yellow ones the output. The red cable is the
supply voltage, the black ones are the ground. The jumpers, or the blue cables, represent the
bridges created to connect several lines together. The yellow circles, on the other hand,
represent the cuts made in the lines to interrupt the connection.

Except for the relays, everything is soldered on stripboards, a board for permanent soldering
of circuits, characterized by holes organized in horizontal lines already connected to each
other.

34

Figure 33

Figure 34

Figure 34 shows the stripboard used. From it, all the circuits were made by cutting it to the
desired size.

Figure 35 shows the buffer soldered in the stripboards.

Then, the 6.3 mm jack inputs are connected to the buffer input pins to obtain 2 outputs.
One output will go to the Raspberry Pi (wet path), the other will be the dry path, then it will
go to the mixer.

6.3 Audio Input Raspberry Pi

The Raspberry Pi has several digital GPIOs (General Purpose Input Output), through which
it is possible to connect sensors, potentiometers, relays and similar. But how to get audio
input?
Our audio signal is analog, so if you want to use GPIOs, it would be necessary to use an
ADC. The same (but inverse) would also apply to the output signal, as the dry and wet
signal are mixed into analogue in the final mixer. In this case, a DAC would be needed.

At the same time, however, the Raspberry also has 4 USB inputs, which makes it possible to
use an external sound card.
After various considerations and the examination of various similar works, the Behringer U-
Control UCA222 audio interface was chosen.

35

Figure 35

Figure 36: [35]

It features 2 RCA Inputs and 2 RCA Outputs, A/D converters with 48 kHz sampling rate, 16
bit resolution, Optical S/PDIF Output with direct conversion and 3.5 mm headphone output
with dedicated volume. Plus, it is USB powered and plug and play.
The audio quality is good enough for the goal of this work, as its use is more intended for
live performances.

Given its small size (about 60 mm x 88 mm x 22 mm), the possibility of being powered via
USB and its very low cost (around €20), it lends itself perfectly to its integration in this
Raspberry Pi-based pedal.

To save space and avoid various clutter inside the enclosure, the RCA inputs and outputs
have been unsoldered and male pins have been soldered in their place, to allow connection
with the other circuits. The choice of adopting pins to connect multiple circuits together,
instead of soldering the connections directly, derives from the desire to have a sort of
modular system, which facilitates the implementation of the various modifications.

Being Plug and Play, the sound card is connected via USB to the Raspberry Pi, where it is
immediately recognized, allowing its use. It is used both for the input and for the output of
the signal processed by the Pi, which again through the use of pins is subsequently
connected to the final mixer, where dry and wet are mixed.

36

Figure 37: Audio Interface with the old RCA connectors next
to it, now unsoldered. The new pins have two poles, one for

ground, one for signal

6.4 Mixer

The input signal is initially split to obtain two copies, in order to separate the path. This
happens for both inputs, L and R, for a total of four signals, two dry (L and R) and two wet
(L and R).

A circuit that fits the need of this work is the Mini Mixer by General Guitar Gadgets. [36]
It is a 4-channel mixer with mono output, which allows to control the volume of each
individual input and to have a single output for the summed signal.

The circuit was adapted to mix only two channels (see Fig. 38). [37] The first test on
breadboard was successful. A split stereo audio signal was sent from the computer to the
two inputs, from which two oscillators with different frequencies were reproduced, one in
the right channel, the other on the left. Using two potentiometers, the signals were mixed as
desired.

37

Figure 38

However, having a total of four signals and still wanting to have a stereo output, two mixers
are needed. L dry and L wet will be mixed in one mixer, R dry and R wet in the other. There
are only two logarithmic stereo knobs to control both mixers. In the audio field, it is
preferable to use a logarithmic scale to measure the volume of a sound, instead of a linear
one, as it reflects the way in which human hearing perceives sounds.

A potentiometer is dedicated to the dry signal, o it simultaneously manages L dry from the
first mixer and R dry from the second. The other potentiometer will deal with the wet signal
instead. In this way, both signals can be controlled in stereo.

Figure 40 shows the arrangement of a mixer on stripboard, minimizing the dimensions as
much as possible:

38

Figure 39: The first half of the BreadBoard, i.e. the lower part of the photo, represents the
Mixer, the upper one is the Buffer shown previously.

Both In 2 (L Wet and R Wet) are connected to the input pins of the second mixer, which has
the same arrangement on the stripboard. However, the potentiometers are actually stereo
one, that is, they can manage two signals and send them separately.
Figure 41 shows the mixer with all the components soldered.

39

Figure 40

Figure 41

7. First Test

Each of these elements was tested individually when completed and, after various tests,
everything worked as described previously.

The voltage for the relay comes directly from the Raspberry Pi, the other soldered parts,
namely the two splitters and the two mixers, need 9V of supply voltage. From the Raspberry
it is possible to have 3.3V or 5V directly so, for these first tests, the other parts were
powered with an external power supply.

The first test was aimed at testing its function as true bypass, checking that, even if the
pedal power supply is not connected and, therefore, the Pi is off, the signal flows from the
input to the output without interruption.

Having tested this first part, the power supply was connected to the Pi. With the switch in
the off position, the signal continues to flow directly to the output being still in bypass mode
but, once in the on position, the signal follows another direction.

Through the use of the dedicated potentiometer, it was possible to obtain a 100% dry signal.
The WET signal, on the other hand, is recognized by the Pi by selecting the Behringer sound
card as the system's audio interface. On PureData the input is recognized using the object
[adc ~] (analog to digital converter) and through the object [dac ~] (digital to analog
converter) it is sent to the output of the sound card (see Fig. 42).

This signal is then sent to the potentiometer for the wet path. This part also worked as
expected, introducing no noise or quality loss into the sound.

40

Figure 42

7.1 Latency Test

Having tested the functioning of the various parts, it is also helpful to measure the latency of
the signal processed in the Pi.

Measuring the latency of a signal means measuring the delay in a signal caused, for
example, by its passage in a device.
If the latency value is too high, it can become very difficult to play an instrument, as the
sound will not be synchronized with the played notes. A latency of up to 10ms is not longer
perceptible. [63]

The test took place through the use of a computer with an external audio interface, from
which a signal (a sine wave) was sent to the L and R outputs. An output was connected
directly to the first input of the audio interface, to make the same signal come in again, the
other output, on the other hand, has been connected to the input of the Raspberry Pi. The
input signal is received in Pd through the object [adc ~] and sent to the output. The output of
the Raspberry Pi is connected to the other input of the audio interface. At this point, the
direct signal and the same processed by the Pi return to the computer, in this way it is
possible to record both and measure the distance between the two sound waves.

The measured latency corresponds to 12ms, remaining imperceptible and without affecting
the functionality of the pedal.

41

8. 9V

As already mentioned, from the Raspberry Pi it is possible to have only two types of current
through the dedicated pins, 3.3V and 5V.
The first option to obtain the 9V needed to power the two mixers and the two buffers could
be to use an external power supply. This solution was adopted for the first tests, but the use
of two separate power supplies was not too convenient.

The best solution would be to use only one power supply and, therefore, derive the 9V
directly from the Raspberry PI. It is therefore necessary to transform the power taken from
the Raspberry into 9V. This is possible through the use of a booster converter.

A boost converter stores incoming energy in an inductor and releases it at higher (step-up)
or lower (step-down) voltage. [38]

So having 5V in input, it is possible to have 9V as output.
After various researches and tests, the LAOMAO step-up boost power converter XL6009 is
the most suitable for this project (see Fig. 43).

It is a step-up booster capable of converting an input current (in the range between 3V and
32V) into an output from 5V up to 35V. Being specifically a step-up booster, the output will
always be greater than the Input.
The output is adjusted to the desired voltage using the screw on the module.

Once the pins in the two inputs and two outputs were soldered, it was possible to integrate it
into the pedal while maintaining its modular characteristic, this means always having the
possibility of replacing the part by simply connecting or disconnecting the cable jumpers
used to connect the various parts together.
Its small size (4.4 x 2.1 x 1.2 cm) and the low price (about €4) make it perfectly integrated
in this work.

42

Figure 43: [39]

9. FX Loop

The last not yet examined part of the signal chains is the one concerning the FX loop
(effects loop).
It is placed in the signal path between the two relays corresponding to the active bypass, that
works when there is no power supply or when the general switch is in the off position (i.e.
the system including buffer, Raspberry PI, and mixer is bypassed).

Its purpose is to be able to connect one or more external effects where the original sound of
the input instrument is processed, without it being affected by buffers or mixers.
This could be used in the case of physical modeling, a way to model and simulate systems
made up of real physical components. It is a simplified material representation, usually on a
small scale, of an object or phenomenon, for analyzing it. [40]
In this way, it is possible to directly compare the software model with the original hardware
with just a switch.

The order in which the effects are positioned in a signal chain dramatically alters the sound.
An FX loop is usually positioned between the preamp and the power amp and consists of a
send and a return. Through the send, the signal from the preamp is sent to the input of the
connected effect. Its output is connected to the return, to literally return to the chain and
continue towards the power amp.

There are two types of FX loops, serial and parallel (see Fig. 44).

In most guitar amps, the FX loop is serial, meaning the entire signal from the preamp passes
through the FX loop before re-entering the power amp. In the parallel one there are two
signal paths which can then be combined using a control knob.
To have a direct comparison in case of physical modeling, it is sufficient to have a serial FX
loop.

Having two inputs, L and R, two FX loop would be required, a send + return for L, and a
send + return for R.

43

Figure 44: [41]

This implies the presence of four mono 6.3 mm jack sockets, probably increasing the size of
a future case. To reduce its size while sticking to the fact of wanting to have the smallest
possible product, it is possible to replace the four mono sockets with two stereo sockets.
One for send (for L and R) and one for return (for L and R).

In the mono jack plug there is a tip corresponding to the contact through which the audio
signal is transmitted, the rest of the plug, the sleeve, is connected to ground. The stereo plug
has an additional ring for the second channel.
To connect a stereo effect, Y cables are necessary (see Fig. 45 - 46).

However, it is possible to use this FX loop with simple mono cables, to also connect effects
that are not necessarily stereo.
In the case of connection with a mono cable, the signal is transmitted only through the tip of
the stereo plug. The central contact is automatically connected to ground, not creating any
problems.

44

Figure 45

Figure 46

The stereo sockets used have six connectors, three on each side. The two sides are
connected together, making them three pairs of connectors. However, once the jack plug is
inserted, they are no longer connected, resulting in six distinct connectors.

Figure 47 demonstrates the way in which the connection of the send and return connectors
was made:

When no cable is connected, the signal passes from send to return and then to output,
remaining unchanged.
If something is connected to the send, the signal goes into that cable and therefore to an
external unit (pedals, mixer) but at the same time it continues its path towards the return and
the output, guaranteeing the same input signal at the output, without any alterations.
By connecting a jack cable also to the return, the signal path of the original unaltered signal
to the output is interrupted. In this way, the return will only receive the signal which,
through the send, is processed by an external unit.
If only the return path is connected, the signal is interrupted and the output receives only the
signal coming from the return socket.
Once the connections have been soldered, the first test took place by connecting an effect
pedal in the FX loop. There was no additional noise and, as this is also true bypass, when
the pedal is off the original signal is not altered at all. Figure 48 shows the soldered FX
loop.

45

Figure 47

46

Figure 48

10. Raspberry Pi - Part II

Once the functioning of the signal chain has been tested, it is time to focus on the core of the
actual sound processing, namely the Raspberry Pi.

As already mentioned at the beginning of this documentation, this pedal must have the
possibility to control the patch/code (therefore the various parameters of the wet signal)
through potentiometers. A patch is a code inserted into an executable program, it is the way
of coding for example in PureData.
There are already two potentiometers, which control the analog mixer that mixes between
the dry and wet signals. These are therefore also used main output volume.
Digital rotary encoders are used to control the code written on the Pi.

The Raspberry Pi has only digital GPIOs. Analog potentiometers would require ADC
converters or even a microcontroller such as Arduino.
The rotary encoders, can be connected directly to the Pi's GPIOs, without requiring external
converters. They can also rotate infinitely without limit, while most potentiometers can only
rotate about 3/4 of the circle.

While potentiometers are best in situations where the exact position of the knob needs to be
measured, rotary encoders are best in situations where the relative change rather than the
exact position is required.
They also have an integrated push button. This function enriches the functionality of the
pedal, expanding its possibilities of use.

But how to have access to the data provided by rotary encoders to be able to use them
indiscriminately with any programming language for sound coding?

10.1 Python

My solution was to use the Python programming language and send the data via OSC.
Open Sound Control (OSC) is a message-based network protocol that enables
communication and data exchange between software and/or hardware.
In this way the data from Python can be sent to any other program (PureData, SuperCollider
and more) and be used.

47

11. Rotary Encoder

The rotary encoder detects the rotation and direction of the knob connected to it. This device
has two internal contacts which, when the knob is turned, create and break a circuit. At each
change of position, it is possible to hear a click, which indicates the passage to the next
position. [48]

11.1 Pinouts

It has five Pins (the metal ends through which it is possible to connect it to other devices and
let the signal flow):

CLK, DT, SW, +, GND. [49]

CLK = This is the primary output that determines the amount of rotation. When the knob is
turned one click, this output cycles through two states, it becomes high (completes the
circuit) and then low (breaks it).

DT = This is the same as CLK output but with 90° phase-shift. It is used to determine the
direction of rotation (clockwise or counterclockwise).

SW = Push button switch output. The voltage becomes low when the button is pressed.

+ (VCC) = The required voltage must be connected here, usually 3.3V or 5V.

GND = Ground.

11.2 How does it work?

The signal coming from CLK tells us that the knob has been turned, and through the signal
coming from DT we can determine its direction.

48

Figure 49: Rotary Encoder

In case of clockwise rotation, the first signal to change is CLK, followed by DT. The reverse
situation occurs in the case of counterclockwise rotation.

Clockwise rotation —> Output B different from Output A (see Fig. 50).

Counterclockwise rotation —> Output B equal to Output A (see Fig. 51).

For the connection with Raspberry Pi, it is important to first have clear numbering,
nomenclature and function of its various pins. Figure 52 shows the reference used.

49

Figure 50 [49]

Figure 51 [49]

Figure 52: [50]

For designing the connections of the various parts with the Pi, the free app circuit.io was
used, available on the website https://www.circuito.io/app?components=9443,200000. [51]

In the case of only one rotary encoder, the connection is as Fig. 53 shows. [51]

CLK = 4 (GPIO)
DT = 17 (GPIO)
SW = 18 (GPIO)
+ = 3v3 (the first pin of the top row)
GND = the third pin of the top row

The following is the code wrote to access the encoder data and send them via OSC:

————————————————————————————————————

from RPi import GPIO
from time import sleep

from pythonosc.udp_client import SimpleUDPClient

ip = "127.0.0.1"
port = 5720

client = SimpleUDPClient(ip, port) # Create client

clk = 9
dt = 25
sw = 11

GPIO.setmode(GPIO.BCM)

50

Figure 53

https://www.circuito.io/app?components=9443,200000

GPIO.setup(clk, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
GPIO.setup(dt, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
GPIO.setup(sw, GPIO.IN, pull_up_down=GPIO.PUD_UP)

counter = 0
swState = 0
swLastState = 0
clkLastState = GPIO.input(clk)

while True:
 swState = 1 - GPIO.input(sw)
 clkState = GPIO.input(clk)
 dtState = GPIO.input(dt)

 if clkState != clkLastState:
 if dtState != clkState:
 counter += 1
 else:
 counter -= 1
 counter = max(min(counter, 127), 0) # Like MIDI, from 0 to 127
 print (counter) # Check
 client.send_message("/rotary", counter) # Send float message
 clkLastState = clkState

 if swState != swLastState:

 print (f"Button {swState}")
 client.send_message("/button", swState) # Send float message
 swLastState = swState
 sleep(0.01)

————————————————————————————————————

11.3 Add-On

The simple logic from above is extended for additional functionality.

A first idea was to receive the data provided by the previous Python code and use them
directly in the audio programming languages to obtain new functions or improve the current
ones.
The main idea, however, is to have a pedal that is suitable for everyone and for every
programming language available on the Pi, so some of these extended features were coded
directly in Python, to be able to send the data via OSC and have them immediately ready for
use.

51

11.3.1 Counter according to the rotation speed

The first function considered very useful and which enriches and, above all, facilitates its
use is the increase (or decrease) in the counter proportional to the rotation speed of the
knob.

The faster the knob is turned, the greater the absolute difference between a value and its
next one will be. The slower it is turned, the smaller this difference will be.

The code from above is expanded as follows. While the counter increment was set constant
to 1 before, it is now controlled by rotation speed.:

————————————————————————————————————

while True:
 swState = 1 - GPIO.input(sw)
 clkState = GPIO.input(clk)
 dtState = GPIO.input(dt)
 now = time.monotonic()

 if clkState != clkLastState:
 clkPeriod = now-clkLastTime # measure time since last change
 increment = explin(clkPeriod, 0.005, 0.25, 4, 1) # set increment per tick
#depending on time period between ticks

clkLastTime = now

 if dtState != clkState:
 counter += increment
 else:
 counter -= increment

 counter = min(max(round(counter),0), 127) # round and clip value

 print (counter)

 client.send_message("/rotary", counter) # Send float message
 clkLastState = clkState

————————————————————————————————————

52

New functions must be defined to be able to use them later in the while loop. Defining a
function means declaring exactly what the function does and specifying if and where there
are variables.
Two functions are here defined: clip() and explin(). [62]

————————————————————————————————————

clip():

def clip(inVal, outMin, outMax):
return min(max(inVal, outMin), outMax)

————————————————————————————————————

It delimits a value at the two extremes, thus having a minimum and maximum limit.
min() takes the minimum value of both arguments.
max() takes the maximum value of both arguments.

————————————————————————————————————

explin():

def explin(inVal, inMin, inMax, outMin, outMax, clipType='minmax'):
 outVal = ((math.log(clip(inVal, inMin, inMax)/inMin)) / (math.log(inMax/inMin))
) * (outMax-outMin) + outMin
 return float(outVal)

————————————————————————————————————

This function is used to have a mapping between exponential input and linear output data. It
is adopted from SuperCollider.

In the while loop, a new variable now is defined, which corresponds to the function
time.monotonic(), which measures the current time.

clkPeriod measures the time elapsed since the last change. Turning very slowly or after a
long time, this variable will be very large, while turning fast it will be very small.

This is where our mapping takes place, where our limits are 0.005s (the peak speed, i.e.,
smallest time difference between two triggers) and 0.25s (the maximum distance between
clkPeriod and clkLastTime). The output values will be mapped between 1 and 4.
If the time distance between two consecutive counter values is equal to 0.005s or less, the
increment will be 4. If it is equal to 0.25s or greater, the increment will be 1. The values
located between these two extremes are mapped logarithmically.

53

11.3.2 Hold

A second function particularly useful is the use of the button, or swState, to recognize if it is
pressed for a certain period of time, by sending a message that gives access to a new
function, namely the hold function.

The hold function can be useful if you want to trigger a new function of the programmed
patch. For example, in programming a delay, it might be useful to have a hold function that
allows you to switch to a tap tempo mode, through which by pressing the rotary encoder at
regular intervals according to the desired time, it is possible to obtain the new delay time.
The same hold function can be used to exit this mode.
In this way, it is possible to have access to more functions with the same switch.

The logic used for programming this part of code is as follows:

As soon as the button is pressed, the data is sent via OSC so that it can be used directly
(raw) if necessary, avoiding sticking to the next part of the code.

At the same time, the hold counter starts measuring how long the encoder is pressed. If it is
pressed for more than 2 seconds, a trigger will be sent to indicate hold mode.

54

Figure 54

Otherwise, the status of the pedal will be checked. If the pedal is currently turned off (off
mode), it will be turned on (on mode). If turned on, it will be turned off.
This is useful for activating and deactivating effects with the same switch.

Here the code:

————————————————————————————————————

while True:
 swState = 1 - GPIO.input(sw)
 now = time.monotonic()
 holdDur = 2
 pedalMode = 1

 if swState != swLastState:

 holdStart = now #remember time
 holdStarted = True

 if swState:

 #if pedal is off
 if not pedalState and pedalMode == 1:
 #turn it on
 pedalState = True

 #if pedal is on
 else:
 pedalState = False

 else:

 #abort measuring hold time
 holdStarted = False

 if swState == swLastState:
 #if value is 1 (pressed)
 if swState:
 #if pedal is currently held, but didn't switch mode yet
 if not holdState:
 if holdStarted:
 #check if pedal is already held long enough
 if now >= (holdStart + holdDur):
 pedalState = not pedalState

55

 holdState = True
 holdStarted = False

 else:
 if holdStarted:
 #check if pedal is already held long enough
 if now >= (holdStart + holdDur):
 pedalState = not pedalState
 holdState = False
 holdStarted = False

 swLastState = swState

————————————————————————————————————

The full code can be found in a Git repository. [42]

In the final code, the three rotary encoders have been defined as functions [r_1 (), r_2 (), r_3
()] and through the library threading it is possible to manage the three simultaneous threads
and making them run at the same time.

56

12. Display

Another important part of this project is the video aspect.

During the programming process of the Pi it is possible to connect it to another computer
via LAN cable and, with a VNC viewer program, display the graphic part of the Pi on the
screen of the other connected computer.

For programming in a context different from a live performance or for quick use, this is, but
in other contexts it becomes a cumbersome process.
It is possible to connect a screen directly to the Raspberry Pi, via the HDMI inputs or the
DSI input (see Fig. 55 - 56).

It is more convenient to adopt a screen that can be connected via the DSI port, as in addition
to having an excellent performance, making everything flawless, it does not require an
external power supply.

The screen adopted is the Waveshare DSI LCD touch display.
Its 4.3” size in my opinion perfect for this job, not too big, not too small, with a resolution
of 800x480 Pixels (see Fig. 57-58).

57

Figure 55: DSI cable Figure 56: DSI connection to Pi

The four innermost holes are designed to fix the Raspberry Pi (see Fig. 59).

This solution is very convenient, as the GPIOs are easily accessible and only the unused
surface of the Raspberry is covered.

Furthermore, it is a capacitive touch screen, which makes it suitable for performances in
which previously programmed effects are used, as it will be sufficient to simply open the
desired programs and start own codes.
Connecting a mouse via USB is possible if preferred over the touchscreen.

In a programming or live coding context, however, it is necessary to connect an external
USB keyboard. It is possible to connect another screen via HDMI, which can also be used in
live context to project the code or any kinds of visuals.

58

Figure 57: Front [53]
Figure 58: Back [53]

Figure 59: [53]

13. Audio in Pi

Once all the hardware has been completed and its operation tested, we can finally focus on
audio processing.

For audio processing, PureData was chosen, but the pedal can be used with any
programming language or DAW that can be installed on the Raspberry Pi.
PureData (Pd) is an open-source visual programming language, developed by Miller
Puckette. [54]

13.1 First Audio Patch

As the first patch, also to better test the functionality of the pedal, a delay was recreated, a
typical effect for obtaining a delay of the input signal.

The input signal must be written in a delay line, it will then be read at an indicated time
distance and then sent to the output. This is possible using the [delwrite ~] and [delread4 ~]
objects. The original signal and the delayed signal can then be mixed as desired by also
having a dry/wet control (see Fig. 60).

Here a control for the feedback was added, that is the re-entry of the delayed signal, which
generates a signal tail until it fades, decreasing in its intensity with each repetition.

59

Figure 60

13.2 PD + OSC

Once this patch was programmed, some parameters were linked to the rotary encoders.

To access rotary encoder data, the OSC messages sent by Python are read. This is possible
in PureData by using the [netreceive], [oscparse], [list] and [route] objects.
Through [netreceive] we receive the OSC data, with the other objects we decode them and
make them usable in Pd (see Fig. 61).

In [netreceive] the same port written for OSC messages in Python is declared and through
[route] we have access to the various messages.

Another added function is to be able to have a sort of panic button (red toggle in the picture)
that can be activated by pressing all three rotary encoders simultaneously, turning DSP
audio off. The audio processing will then be stopped.

Figure 62 shows the patch where the rotary encoders are also used.

60

Figure 61

The first rotary controls the dry/wet mix and, through the push function, turns the delay on
and off.
The second rotary instead controls the time, that is, the delay time in ms.
The third rotary controls the feedback level and also uses the hold function.
Through the hold function it is possible to switch to tap-tempo mode, that is, once the hold
function is active, it is possible to press the third rotary encoder with regular frequency to
translate this repetition into ms and set the delay. To exit this mode, simply hold the rotary
encoder for more than 2 seconds, sending the trigger hold again. When not in hold mode,
the push function of the third rotary encoder has no function.

13.3 More Patching

After having tested the correct functioning of the patch with the three rotary, more effects
were coded to also to use the various functions of each rotary.

In addition to the delay, an FM synthesis was added. FM (Frequency Modulation) synthesis
is a type of synthesis where the frequency of the carrier oscillator is basically modulated by
another oscillator. [55]

In the FM synthesis, there are at least three parameters that can be set, and they correspond
to:

Modulator Frequency (fm)

61

Figure 62

FM Index (or Amount, Δf)
Carrier Frequency (fc)

The idea is to obtain the frequency played with the instrument connected to the pedal (in
this case electric guitar) and use it as carrier frequency and set the other two parameters
using the rotary encoders.
This is possible in PureData through the [sigmund ~] object, which analyzes the input signal
and makes an estimation of the general pitch.

Figure 63 shows the subpatch (patch in the patch).

This time all the features of each rotary were used, having access to many patch parameters
with the potentiometers.

The first rotary encoder will adjust the dry/wet values and will be used to turn on the delay.
However, once the hold mode is activated, the rotary encoder values will be used to adjust
the delay time. To return to the dry/wet setting, just exit the hold mode by pressing and
holding the encoder again.

The second rotary will turn on the FM (as if it were an FM pedal), and will manage the
parameters of fc and, in hold mode, of Δf.

The third rotary keeps the previous tap tempo functionality in hold mode, but its values will
be used to adjust the dry/wet of the FM and, in hold mode, the delay feedback.

62

Figure 63

Being a patch already finished and in any case complex to display on the Raspberry Pi
screen, a GUI was programmed.
A GUI is a Graphical User Interface, where only the components necessary to interact with
a system are displayed, making it easily accessible (see Fig. 64).

This is, for example, what could be seen during a possible live use of this patch. The various
colours serve to differentiate the various sections and give an immediate link on where to
act to change the parameters. It has been programmed in a small size also to be positioned at
the edge of the screen and leave space for any visuals.

63

Figure 64: (GUI)

14. Video

14.1 Processing

Processing is an open source programming language developed by Ben Fry and Casey Reas
in 2001. [61]

The possibilities are obviously limitless, but at the moment the focus is on creating visuals
that react to the sound source processed in the Raspberry Pi, creating something that reflects
the waveform generated.

14.2 OSC

Trying to analyze the waveform directly in Processing through external libraries (minim
library), it was not possible to process the sound output from the Raspberry Pi, but only the
input one.

Since the sound is, in this case, processed in PureData, it can communicate with Processing
via OSC. Through OSC, however, it is not possible to send audio stream, but only messages.
The audio analysis must therefore be done in PureData.

14.2.1 Pd analysis

It is possible to analyze the audio processed in PureData with the object [fiddle ~] (see Fig.
65).

It analyzes the incoming signal and gives a general estimate of pitch and amplitude. It works
through FFT (Fast Fourier Transform). The FFT is an algorithm that allows the
decomposition of a complex sound into its sinusoidal components. This allows a more
accurate analysis of the sound by obtaining different parameters.

Ten sinusoidal components are more than sufficient for the type of visuals to be developed
in Processing.

64

Figure 65: [fiddle~]

14.2.2 Pd to Processing

Here is the entire patch in which the sound analysis takes place and data is sent to
Processing via OSC.

The amplitude data of the various components are sent to Processing.

14.3 Graphic Test/Code

In order to receive (and send) data via OSC in Processing it is necessary to install the
external library oscP5.

The idea is to create figures that vary in size depending on the sound processed on
PureData, creating something that resembles a waveform. Therefore, some ellipses were
programmed that correspond to the various sinusoidal components and that change
dimensions according to their amplitudes.

Additionally, their colour changes randomly to increase their singularity, creating more
engaging images.

The code is very simple, but it is only a basis for developing more complex sound-
controlled interfaces. It can be found in a Git repository. [43]

65

Figure 66: Pd patch with [fiddle~] e OSC

Unfortunately, Processing does not manage a list of messages, so it was necessary to send
them individually from PureData and receive them individually to be used separately.

These ten components create a list which is continuously updated, creating an engaging
representation of the waveform (see Fig. 67).

Figure 68 shows what can be seen on the Pi screen during a performance.

At the top is the GUI developed on PureData, where you can keep the parameters under
control, at the bottom instead, their visual representation. It is obviously possible to view

66

Figure 67: Processing Visuals

Figure 68: Pd + Visuals

only the Processing window in full screen, but it could be convenient to have the sound
patch under control.
Again, this is just a basis, both in terms of graphic and sound processing, just to give an
example of what is possible to do with the realization of this pedal.

67

15. Enclosure

Last piece of this work is the enclosure. It determines its ease of use and its robustness over
time.

The idea is to have a case that minimizes the size of the pedal and at the same time makes
all its functions accessible. It must allow it to be used both from the floor and from the
desktop, in order to adapt to all situations. Considering also the dimensions of the internal
circuits and the cables that connect them, a first draft of the enclosure was drawn.

The rotary encoders are positioned directly under the screen to increase usability and to
facilitate the interaction with the code/patch. Having a direct correspondence, their use
becomes natural and easily associated.

In the opposite corner is located the bypass switch to create contrast and detachment with
the other controls, so as to avoid inadvertently pressing it during a performance.

Dry and wet are positioned along the line that connects the bypass switch to the third rotary
encoder to create symmetry and to give a sort of continuity to the design. Wet is closer to
the rotary and the screen, creating an indirect link with the Pi, to associate it with sound
processing. Dry is located closer to the switch to symbolize its affinity for the raw signal.

On the right will be positioned the two inputs, on the left the two outputs, and in the front
(but on the left, not close to the screen) the FX loop. The screen is positioned in the corner
to make the Raspberry Pi inputs accessible.

All of this has been designed to maximize its usability, visually appealing and functional
design.

It is also important to insert a fan in the enclosure to cool the Raspberry Pi. Figure 70 shows
the used fan, chosen because it is possible to power it via 5V, obtainable from the Pi.

68

Figure 69

The two cables are just soldiered in the same circuit of the relays, which also uses 5V. It is
integrated into the case just below the Pi, creating the space needed for air to flow.

Considering the presence of the fan in the back of the enclosure, two feet could be added to
slightly tilt the pedal to facilitate air passage (see Fig. 71).
Here is a first realization, carried out by modifying a robust cardboard box (see Fig. 72 -
76).

69

Figure 70: [56]

Figure 71

70

Figure 72: Up

Figure 74: Right (Input L and R)
From PI (USB, LAN)

Figure 73: Front (Send and Return)
From PI (Power, HDMI)

Figure 75: Left (Output L and R)

Figure 76: External pedal in FX Loop,
PureData

Later a 3D model was developed using the cloud-based 3D modeling platform Fusion 360
(see Fig. 77 - 82). [64]

71

Figure 77: Cover (with holes also for screws)

Figure 78: Side L

72

Figure 80: Front (with extra hole for USB)

Figure 79: Side R

It is similar to the first draft but has an inclined shape, making it even more suitable for a
desktop function, improving accessibility to the various controls and facilitating interaction
with the screen. It also has an extra hole for the USB cable, so that it can reach the Pi exting
the enclosure. This can be attached to the front after use using velcro.
The upper part is the only one that can be unscrewed to access the enclosure where all the
components will be positioned.

The material chosen for the printing was ABS (Acrylonitrile Butadiene Syrene), for its
lightness and consistency. Figures 83-88 show some photos of the final pedal.

73

Figure 81: Back (with holes for 4 feet) Figure 82: Feet (with holes for
screws)

Figure 83: Print Up Figure 84: Print Back

74

Figure 85: Print Left Figure 86: Print Right

Figure 87: Print Front Figure 88: Print Front 2

16. Preparation for User Study

Since the pedal is ready to be used, a user study was carried out, in order to obtain feedback
on its various aspects, necessary to make any future changes or improvements.

Some PureData patches were programmed to give an idea of what can be achieved through
this device.

16.1 Patching

Four Patches have been prepared, from the most basic to the most complex that take
advantage of more and more features of the pedal.

16.1.1 Patch 000

The first patch only provides for the amplification of the input signal, with the possibility to
adjust the output volume (see Fig. 89).

16.1.2 Patch 001

The second patch begins to be more complex. A vibrato has been programmed, for which it
is possible to control the speed and depth parameters by means of the two rotary encoders
(see Fig. 90).

The first rotary encoder will activate and deactivate the effect by pressing it.
By pressing the third rotary encoder, on the other hand, it is possible to activate a fuzz of
which, again through the same encoder, it is possible to adjust the amount of gain.

75

Figure 89: Preset 000

Figure 90: Preset 001

16.1.3 Patch 002

With the third Patch, the hold function begins to be used (see Fig. 91).
The first rotary encoder activates and deactivates a step-vibrato based on the patch
developed by Pierre Massat in his blog Guitar Extended. [65]
It is a trapezoid modulator which, playing only one note, reproduces three different ones,
creating a sort of arpeggio.
Through the first two rotary, it is possible to control the speed and depth parameters.
Instead, using the hold function activates the mode here called "Swirl!", That is an
automation of the two parameters that starts from a minimum value and grows to a
maximum value and then goes back, continuing in a loop until the mode is active.
The third rotary encoder activates and deactivates a reverb, of which it is possible to adjust
the dry/wet and, through the hold function, it is possible to adjust the decay.

16.1.4 Patch 003

The latest patch is the same used as a test of the various functions in the chapter 13.3.
It is the most complex, as it uses all the functions of the rotary encoders plus the touch
screen to adjust some parameters (see Fig. 92).

76

Figure 91: Preset 002

Figure 92: Preset 003

16.2 Presets (Dynamic Patching)

Almost every digital or multi-effect pedal allows the user to select presets. This
functionality has therefore been recreated in PureData, to allow simple switching between
presets without having to manually open and close the various program windows each time.

This was achieved through so-called dynamic patching, that is, to use Pd messages for
automatically editing the patch itself.

Presets, stored as self-contained Pd patches are thereby dynamically loaded into the main
patch by selecting the respective preset number (see Fig. 93).

When changing presets, the DSP is turned off and on to avoid additional noise.

16.3 Start everything with the Pi (Python, Pd)

It is convenient to start the python code and the main GUI for selecting the presets in Pd
with the booting of the Pi, in order to have everything easily and quickly accessible for each
use.

The python code (for rotary encoders) runs on boot via CronTab. At each boot of the Pi will
be started the service Cron, which allows executing scheduled commands. [66]

To autostart PureData, the procedure is slightly different. Here, the autostart functionality of
the LXDE-pi window manager is used. [67]

77

Figure 93: Preset change

16.4 More visuals

Since there are four audio patches, four video patches for the graphics were coded as well.
All of them react to sound.

16.4.1 Sketch 000

The first one used is the one described in the chapter 14.3.

16.4.2 Sketch 001

This code generates white bubbles on a black screen, which float upwards (see Fig. 94).
They get bigger and start shaking according to the dynamics of the sound.

16.4.3 Sketch 002

On a grey background, coloured stars are generated in different points and of different sizes
depending on the sound frequencies (see Fig. 95).

78

Figure 94: Visual 1

16.4.4 Sketch 003

The last code generates a smoke effect that follows the sounds (see Fig. 96). It randomly
moves according to the frequency and to the dynamic of the sound.

16.5 Preset visuals

Since the PureData patch through which the various presets are started at boot, it would be
quite practical to use it to change the coded visuals as well.

In pure data, through the object [shell], part the external library ggee, it is possible to send
executable commands directly to the terminal on Linux.
In processing it is possible to export the codes as applications, in this way it is possible to
start the sketches directly from the terminal, without having to open the code and run.

79

Figure 95: Visual 2

Figure 96: Visual 3

Using a bit of the same logic to change audio presets, visuals are also alternated (see Fig.
97). Through the object [shell] the command killall -java is first sent to close all open java
applications (the processing applications) before starting a new one. This way, there will
only be one visual open at a time.

The dimensions of this window are already set in Processing (810 x 320), but unfortunately
it is not possible to set the position of the sketch once started.
Wanting to have the PureData GUI at the top and the visuals window at the bottom, it would
be very practical to make sure that they are always started in the same position. In PureData
this is easy, as the window is launched in the last saved position.

In Processing, on the other hand, this is done via the terminal with the command wmctrol,
also window manager control, which allows to move a window that is already open, as well
as adjust its size and decide whether to bring it to the foreground or to the background.

This command is saved in a shell script, so that it can be executed from the terminal using
[shell]. It runs 2.5s after the sketch is started, which is the time the window takes to open.
Another bang is sent to execute this command 2s after the first, so that the position of the
window can be adjusted in case the sketch takes longer to start.
Figure 98 shows an example of full GUI.

80

Figure 97: Presets GUI

Figure 98: Full GUI

16.6 Patch for Physical Modeling

The last part of the user test concerns physical modeling.
Using the patch developed during the physical modeling course in winter semester 2021,
where the famous overdrive Boss DS-1 was modeled, another preset was prepared that also
allows the use of rotary encoders.

Its purpose is to make the user compare, via the bypass switch, the patch with the real pedal
connected in the FX loop. With this comparison is it possible to directly make changes to
the patch, being able to readily compare it with the real model.

81

Figure 99: Patch Boss DS-1

17. User Study

The patches described in the previous sections are designed to demonstrate a little bit of all
the various pedal functions and give the participants of a user study an overview of what can
be achieved with this device.
A questionnaire was prepared to be filled out after the test. The questions focus a little on
the user's background (playing skills, number of effects owned) and then on the various
features of the pedal, both from the audio aspect and from the design aspect.
At the end, it is asked what price is reasonable for this pedal, if there are any missing
features, and if something needs to be changed or improved.
The evaluation was carried out with 10 people, with different playing and programming
skills recruited from colleagues and personal acquaintances.

17.1 Results

As shown in Fig. 100, half of the participants judged themselves at least as advanced guitar
players. Only one had no guitar playing skills at all.

Concerning programming skills it was the other way around (see Fig. 101), with only one
expert and 3 participants with no knowledge at all

Figure 100: Evaluation Question 1

82

As shown in Fig. 102, 7 participants own at least one effect pedal.

The participants were also asked how it felt when playing with the pedal. 70% gave 6 of 7
possible points (see Fig. 103), two gave 5, one even 7 points.

Figure 101: Evaluation Question 2

Figure 102: Evaluation Question 3

83

The visual impression of the device was rated with 7 by 50% of the participants, 6 by 50%
and 5 by 10% (see Fig. 104).

Figure 105 shows how the haptic experience was rated. 40 % gave 7, 30% 6, 20% 5 and
10% 4.

Figure 103: Evaluation Question 4

Figure 104: Evaluation Question 5

84

As shown in Fig. 106, 1 participant perceived some latency. Half of them did not perceive it
at all, and 4 of them gave at 2.

Figure 107 shows if the participants would use the pedal for a live performance. 4 of them
gave 7, 1 gave 6, 3 gave 5 and 2 gave 4.

Figure 105: Evaluation Question 6

Figure 106: Evaluation Question 7

85

The participants were also asked if they would use it as their only live gear. 50% gave 5,
20% 4, 10% 6, 10% 3, 10% 2.

Figure109 shows that 50% of the participants would indeed integrate it in their live gear.
30% of them gave 6, 10% 5 and 10% 1.

Figure 107: Evaluation Question 8

Figure 108: Evaluation Question 9

86

They were also asked if they would use it to program their own effects and if this device
would make them want to learn how to code them. 50% gave 7 of 7 possible points, 40% 6
and 10% 5 (see Fig. 110).

Figure 111 shows that 40% of the participants find it a good solution to avoid computers or
other devices on stage giving 7 out of 7. 30% gave 6, 30% gave 3.

Figure 109: Evaluation Question 10

Figure 110: Evaluation Question 11

87

Figure 111 shows that 40% of the participants find it a good solution to avoid computers or
other devices on stage, giving 7 out of 7. 30% gave 6, 30% gave 3.

The arrangement of the potentiometers was rated 7 by 60% of the participants, 6 by 30%, 5
by 10% (see Fig.112).

As shown in Fig. 113, inputs and outputs arrangement was rated 7 by 70% of the
participants, 6 by 20%, 5 by 10%.

Figure 111: Evaluation Question 12

Figure 112: Evaluation Question 13

88

They were also asked if there are enough hardware controls. Figure 114 shows that 30%
gave 7 out of 7, 40% 4, 20% 5 and 10% 1.

Figure 115 shows that 40% of the participants find the visuals to really make the pedal more
interesting, giving 7 out of 7. 30% gave 5, 20% gave 6, 10% gave1.

Figure 113: Evaluation Question 14

Figure 114: Evaluation Question 15

89

The screen size fits for 90% of the candidates, but for the 10% it should be larger (see Fig.
116 - 117).

Figure 115: Evaluation Question 16

Figure 116: Evaluation Question 17

90

The participants were asked if they find it useful for phisical modeling. As shown in Fig.
118, 70 gave 6 out of 7 and 30% gave 7.

Figure 119 shows if the participants would consider making or buying this pedal. 30% gave
7 out of 7, 30% gave 6, 30% gave 5 and 10% gave 4.

Figure 117: Evaluation Question 18

Figure 118: Evaluation Question 19

91

The participants were asked what price they considered reasonable for this device. 20%
answered €300 and 30% could not judge it. The other answers are between €150 and
€500. (see Fig. 120)

The last two questions asked are whether some essential features are missing (none are
missing) or whether something could be improved. According to the results, no essential
features are missing. Regarding the improvement, one participant answered that the user
interface could be simplified and another participant that more presets or default effects
could be added.

Figure 119: Evaluation Question 20

Figure 120: Evaluation Question 21

92

17.2 Discussion

The results indicate a positive response to the pedal and, the candidates having different
guitar and programming skills or familiarity with similar devices, it can be concluded that it
is suitable for various types of users.
The survey has asked how many pedals the participant owns to understand if the user is
already comfortable using pedals. In case of not having much previous experience using
pedals, it was interesting to observe how difficult it was using the device and what the
general feeling of those participants was like. The result shows that the first approach does
not seem so hostile at all.
Most users would integrate it in their live gear. Yet, for the users that might be playing in a
more traditional way, it would be hard to just use this one device on stage. Surprisingly
however, greater part of the participants have seen the possibilities and could use it live as
the only device.
Some variety was observed in the haptic experience of users. This result could be taken into
consideration to improve this aspect, by changing the enclosure material for example, or
proceeding with lacquering and adding covers for rotary encoders.
At first the visuals were considered as just an add-on, but they turned out to be interesting
and distinctive for this device. This result could lead to a further improvement on this side,
improving the code and perhaps finding new solutions for more interactive sketches.
Greater part of the users did not perceive (almost) any latency. Just one of them perceived it.
This means it could be considered making changes to the Raspberry Pi's operating system or
trying other audio interfaces to improve its performance.
It was interesting to see the price range of the device estimated by the participants, it mostly
ranged between €200 and €300. Considering the invested financial sources (see Appendix:
Bill), not including the time and energetic sources used, it may be concluded, that the device
would not be really profitable. This could be improved further in the future - some costs
could be reduced by arranging the soldered circuits more efficiently and with not including
some components, the reduction in the size of the pedal could be considered as well. At this
time, it is still a low-cost solution for what it offers and the goal of making a cheap device
has been achieved.
Overall, the results show that the pedal suits users’ needs, but nevertheless some minor
improvements have been suggested that could make the pedal into a completely professional
and solid product.

93

18. Conclusion

During the development of this work, all possible solutions were adopted to be able to
reduce the components to a minimum, both for reasons of space and money. The pedal lends
itself to all the features sought at the beginning of the project, and has already been tested in
various contexts.
As for the size of the pedal, the size of the enclosure is necessary to contain all the circuits
and cables. The size of the circuits, as well as the cables, could be significantly reduced.
For example, it would be possible to make a single circuit, in which the entire signal
processing takes place, but this involves much more familiarity with circuit design and
soldering. It would also be possible to unsolder the USB cable of the sound card, using a
shorter one or a flat USB, to take up even less space. But it is not necessary, as the total cost
would increase. Being modular, it is open to the most varied modifications simply by
connecting cables and adding new circuits/components. This makes it adaptable to future
needs.

The final bill was made as one of the key points of this project is to obtain the result at the
lowest possible cost. The price is quite accessible and, considering all its possibilities of use,
it is not possible to find something on the market that comes in the least to such a low price.
For those who already own a Raspberry Pi, the cost becomes equal to that of any normal
pedal currently on the market. It is obviously possible to further reduce the cost by saving
on the screen and on the jack sockets, but I thought it is important not to save on the quality
of these components. This ensures a longer duration over time.
The test carried out has brought quite positive results, which pave the way for future
improvements that can be made before the product can confidently be placed on the market.
A short video demonstration of the usage of the pedal and its function is represented in the
video linked in the resources. [68]

94

References

[1] Mixdown. From tremolo to wah-wah: A history of the guitar effect pedal. 2021.
https://mixdownmag.com.au/features/from-tremolo-to-wah-wah-a-history-of-the-guitar-
effect-pedal/

[2] Met Museum. Electro Vibrola Spanish Electric Guitar.
https://www.metmuseum.org/art/collection/search/718415

[3] Keith Holland. “DeArmond Volume Pedal”. Accessed July 20, 2022.
http://www.keithhollandguitars.com/dearmond-volume-pedal.html

[4] Dregni, Michael. Article on Vintage Guitar Magazine. “DeArmond Tremolo Control”.
 https://www.vintageguitar.com/18545/dearmond-tremolo-control/

[5] TR Crandal Guitars. 1950s DeArmond Tremolo Control.
https://trcrandall.com/products/1950s-dearmond-tremolo-control

[6] Krayer, Johannes. Aritcle on Amazonia.de. “ZEITMASCHINE: ROLAND GP-8,
EFFEKTPROZESSOR”. May 30, 2017.
https://www.amazona.de/zeitmaschine-roland-gp-8/

[7] White, Paul. Article on Sound on Sound. “Line 6 POD”. February, 1999.
https://www.soundonsound.com/reviews/line-6-pod

[8] Line 6. “Helix”. Accessed July 20, 2022.
https://de.line6.com/helix/helix-floor-rack.html

[9] Dimitri. Article on Amazona.de. “NEWS: KEMPER PROFILER OS8.0”. October 29,
2020.
https://www.amazona.de/news-kemper-profiler-os-8-0/

[10] Gitarre&Bass. "Fractal Audio kündigt Axe-FX III an” January 29, 2018.
https://www.gitarrebass.de/equipment/fractal-audio-kuendigt-axe-fx-iii-an/

[11] Neural DSP. “Quad Cortex”. Accessed July 20, 2022.
https://neuraldsp.com/quad-cortex

[12] Cremaschi, Andrea and Giomi, Francesco. “Rumore bianco. Introduzione
alla musica digitale”. 2008.

[13] Romero, Juan & Borgeat, Patrick. Performance at TEDx Talks. “Live-Coding -
programming masterly music”. Published on February 13, 2018.
https://www.youtube.com/watch?v=Ix2b_qFYfAA&ab_channel=TEDxTalks

95

https://mixdownmag.com.au/features/from-tremolo-to-wah-wah-a-history-of-the-guitar-effect-pedal/
https://mixdownmag.com.au/features/from-tremolo-to-wah-wah-a-history-of-the-guitar-effect-pedal/
https://www.metmuseum.org/art/collection/search/718415
http://www.keithhollandguitars.com/dearmond-volume-pedal.html
https://www.vintageguitar.com/18545/dearmond-tremolo-control/
https://trcrandall.com/products/1950s-dearmond-tremolo-control
https://www.amazona.de/zeitmaschine-roland-gp-8/
https://www.soundonsound.com/reviews/line-6-pod
https://de.line6.com/helix/helix-floor-rack.html
https://www.amazona.de/news-kemper-profiler-os-8-0/
https://www.gitarrebass.de/equipment/fractal-audio-kuendigt-axe-fx-iii-an/
https://neuraldsp.com/quad-cortex
https://www.youtube.com/watch?v=Ix2b_qFYfAA&ab_channel=TEDxTalks

[14] Imagine Publish Ltd. Raspberry Pi for Beginners, 2nd Edition. 2014.

[15] Raspberry Pi. “Raspberry Pi 4”. Accessed July 20, 2022.
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/

[16] Electrosmash. “Pedal PI - Raspberry Pi ZERO Guitar Pedal". Accessed July 20, 2022.
www.electrosmash.com/pedal-pi

[17] Bloemer, Keith. Article published on Towards Data Science. "Neural Networks for
Real-Time Audio: Raspberry-Pi Guitar Pedal”. May 25, 2021.
https://towardsdatascience.com/neural-networks-for-real-time-audio-raspberry-pi-guitar-
pedal-bded4b6b7f31

[18] Hyllis. Article published on Reddit. “My first DIY pedal: touchscreen & parallel signal
chain”. September 27, 2020.
https://www.reddit.com/r/diypedals/comments/j0xqk2/
my_first_diy_pedal_touchscreen_parallel_signal/

[19] Hillys. “Multi-effects guitar pedal w/ touchscreen – Parallel signal chains, modular,
sound design”. Published on September 27, 2020.
 https://www.youtube.com/watch?v=JoJEhhwpi9Q&ab_channel=Hyllis

[20] https://www.instructables.com/member/ElectroSmash/

[21] GuitarML. “Neutal Pi”. Accessed July 20, 2022.
https://github.com/GuitarML/NeuralPi

[22] Juce. “Juce". Accessed July 20, 2022.
https://juce.com/

[23] Elk-audio. “elk-pi". Accessed July 20, 2022,
https://github.com/elk-audio/elk-pi/releases/tag/0.9.0

[24] Delamar. “True Bypass. Was ist das?”. Accessed July 20, 2022.
https://www.delamar.de/gitarre/gitarren-effektgeraete/true-bypass-46981/

[25] Otosection. "Diy Pedal Building How To Wire A 3pdt Effects Pedal Footswitch For
True Bypass”. Accessed July 20, 2022.
https://www.otosection.com/diy-pedal-building-how-to-wire-a-3pdt-effects-pedal-
footswitch-for-true-bypass/

[26] Prasad, Leela. Tutorial published on Electronics Hub. “What is Relay? How it Works?
Types, Applications, Testing". February 28, 2022.
https://www.electronicshub.org/what-is-relay-and-how-it-works/

96

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
http://www.electrosmash.com/pedal-pi
https://towardsdatascience.com/neural-networks-for-real-time-audio-raspberry-pi-guitar-pedal-bded4b6b7f31
https://towardsdatascience.com/neural-networks-for-real-time-audio-raspberry-pi-guitar-pedal-bded4b6b7f31
https://www.reddit.com/r/diypedals/comments/j0xqk2/my_first_diy_pedal_touchscreen_parallel_signal/
https://www.reddit.com/r/diypedals/comments/j0xqk2/my_first_diy_pedal_touchscreen_parallel_signal/
https://www.youtube.com/watch?v=JoJEhhwpi9Q&ab_channel=Hyllis
https://www.instructables.com/member/ElectroSmash/
https://github.com/GuitarML/NeuralPi
https://juce.com/
https://github.com/elk-audio/elk-pi/releases/tag/0.9.0
https://www.delamar.de/gitarre/gitarren-effektgeraete/true-bypass-46981/
https://www.otosection.com/diy-pedal-building-how-to-wire-a-3pdt-effects-pedal-footswitch-for-true-bypass/
https://www.otosection.com/diy-pedal-building-how-to-wire-a-3pdt-effects-pedal-footswitch-for-true-bypass/
https://www.electronicshub.org/what-is-relay-and-how-it-works/

[27] Glolab Corporation. “Relays, The Electromechanical amplifier”. Accessed July 19,
2022.
http://www.glolab.com/relays/relays.html

[28] Neuhold-elektronic. “Printrelais TD-5”. Accessed July 19, 2022.
https://www.neuhold-elektronik.at/catshop/popup_image.php?pID=3343

[29] Intertec Components. “Signal Relays. TD Relay”.
https://www.neuhold-elektronik.at/datenblatt/N3840.pdf

[30] Lüde Elektronic. “Wipptaster Taster Schwarz MRS-111C3”. Accessed July 20, 2022.
https://www.luedeke-elektronic.de/Wipptaster-Taster-Schwarz-MRS-111C3.html

[31] DIY Fever. “DIY Layout Creator”. Accessed July 20, 2022.
http://diy-fever.com/software/diylc/

[32] Patton, Don. Article on azcentral. “What Is a Buffer in Electronics?”. Accessed July 20,
2022.
https://yourbusiness.azcentral.com/buffer-electronics-20738.html

[33] Sasmita. Article on Electronics Post. “Explain the construction and working of a JFET .
What is the difference between a JFET and a BJT ?". January 9, 2020.
https://electronicspost.com/explain-the-construction-and-working-of-a-jfet-what-is-the-
difference-between-a-jfet-and-a-bjt/

[34] amzfx. “AMZ Jfet Splitter”. Accessed July 20, 2022.
https://www.muzique.com/lab/splitter.htm

[35] Thomann. “Behringer U-Control UCA222”. Accessed May 19, 2022.
https://www.thomann.de/at/behringer_ucontrol_uca_222.htm

[36] General Guitar Gadgets. “Mini Mixer”. Accessed 2 Juni, 2022.
http://www.generalguitargadgets.com/effects-projects/boosters/mini-mixer/

[37] General Guitar Gadgets. Circuit “Mini Mixer”. Accessed 2 Juni, 2022.
http://www.generalguitargadgets.com/pdf/ggg_mixer_sc.pdf

[38] Texas Instruments. “Working with Boost Converters”. Application Report SNVA731.
June 2015.
 https://www.ti.com/lit/an/snva731/snva731.pdf?
ts=1657383928088&ref_url=https%253A%252F%252Fwww.google.com%252F

[39] Amazon. “LAOMAO Step-up boost power converter XL6009 for Arduino Raspberry
DIY projects crafting". Accessed 25 Juni 2022.

97

http://www.glolab.com/relays/relays.html
https://www.neuhold-elektronik.at/catshop/popup_image.php?pID=3343
https://www.neuhold-elektronik.at/datenblatt/N3840.pdf
https://www.luedeke-elektronic.de/Wipptaster-Taster-Schwarz-MRS-111C3.html
http://diy-fever.com/software/diylc/
https://yourbusiness.azcentral.com/buffer-electronics-20738.html
https://electronicspost.com/explain-the-construction-and-working-of-a-jfet-what-is-the-difference-between-a-jfet-and-a-bjt/
https://electronicspost.com/explain-the-construction-and-working-of-a-jfet-what-is-the-difference-between-a-jfet-and-a-bjt/
https://www.muzique.com/lab/splitter.htm
https://www.thomann.de/at/behringer_ucontrol_uca_222.htm
http://www.generalguitargadgets.com/effects-projects/boosters/mini-mixer/
http://www.generalguitargadgets.com/pdf/ggg_mixer_sc.pdf
https://www.ti.com/lit/an/snva731/snva731.pdf?ts=1657383928088&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/snva731/snva731.pdf?ts=1657383928088&ref_url=https%253A%252F%252Fwww.google.com%252F

https://www.amazon.de/gp/product/B00HV59922/ref=ppx_yo_dt_b_asin_image_o01_s00?
ie=UTF8&psc=1

[40] Futura - Sciences. “Physical model”. Accessed 20 July, 2022.
http://www.futura-sciences.us/dico/d/physics-physical-model-50003678/

[41] Graham, Josh. Article on Pedalboard Planet. “Effects Loop”. February 12, 2018.
https://pedalboardplanet.com/effects-loop/

[42] https://github.com/giuseppetiyr/raspberry-pi-based-fx-pedal-rotary-encoder-code

[43] https://github.com/giuseppetiyr/raspberry-pi-based-fx-pedal-visual-1

[44] Turchet, Luca & Fischione, Carlo. Elk Audio OS: An Open Source Operating System
for the Internet of Musical Things. 2011.
https://www.researchgate.net/publication/
350444728_Elk_Audio_OS_An_Open_Source_Operating_System_for_the_Internet_of_Mu
sical_Things

[45] Watkiss, Stewart. Learn Electronics with Raspberry Pi: Physical Computing with
Circuits, Sensors, Outputs, and Projects. Apress. Second Edition. 2020.

[46] Shaha, Samart. Learning Raspberry Pi. Packt Publishing. 2015.

[47] Python.org. "What is Python? Executive Summary”. Accessed July 20, 2022.
https://www.python.org/doc/essays/blurb/

[48] The PiHut. “How to use a Rotary Encoder with the Raspberry Pi”. October 15, 2014.
https://thepihut.com/blogs/raspberry-pi-tutorials/how-to-use-a-rotary-encoder-with-the-
raspberry-pi

[49] Last Minute Engineers. “How Rotary Encoder Works and Interface It with Arduino”.
Accessed July 20, 2022.
https://lastminuteengineers.com/rotary-encoder-arduino-tutorial/

[50] Raspberry Pi Pinout. “Pinout!". Accessed July 20, 2022.
https://pinout.xyz/pinout/pin2_5v_power#

[51] https://www.circuito.io/app?components=9443,200000

[52] https://www.circuito.io/app?components=9443,200000,217614

[53] Amazon. “4.3 Inch DSI LCD Touch Display for Raspberry Pi 4B/3B+/3A+/3B/2B/B+/
A+ 800×480 IPS Screen Capacitive Touchscreen Monitor MIPI-DSI Interface”. Accessed
July 20, 2022.

98

https://www.amazon.de/gp/product/B00HV59922/ref=ppx_yo_dt_b_asin_image_o01_s00?ie=UTF8&psc=1
https://www.amazon.de/gp/product/B00HV59922/ref=ppx_yo_dt_b_asin_image_o01_s00?ie=UTF8&psc=1
http://www.futura-sciences.us/dico/d/physics-physical-model-50003678/
https://pedalboardplanet.com/effects-loop/
https://github.com/giuseppetiyr/raspberry-pi-based-fx-pedal-rotary-encoder-code
https://github.com/giuseppetiyr/raspberry-pi-based-fx-pedal-visual-1
https://www.researchgate.net/publication/350444728_Elk_Audio_OS_An_Open_Source_Operating_System_for_the_Internet_of_Musical_Things
https://www.researchgate.net/publication/350444728_Elk_Audio_OS_An_Open_Source_Operating_System_for_the_Internet_of_Musical_Things
https://www.researchgate.net/publication/350444728_Elk_Audio_OS_An_Open_Source_Operating_System_for_the_Internet_of_Musical_Things
https://www.python.org/doc/essays/blurb/
https://thepihut.com/blogs/raspberry-pi-tutorials/how-to-use-a-rotary-encoder-with-the-raspberry-pi
https://thepihut.com/blogs/raspberry-pi-tutorials/how-to-use-a-rotary-encoder-with-the-raspberry-pi
https://lastminuteengineers.com/rotary-encoder-arduino-tutorial/
https://pinout.xyz/pinout/pin2_5v_power#
https://www.circuito.io/app?components=9443,200000
https://www.circuito.io/app?components=9443,200000,217614

https://www.amazon.de/gp/product/B0972Z6VPN/ref=ppx_yo_dt_b_asin_title_o09_s00?
ie=UTF8&psc=1

[54] Pure Data. “Pure Data”. Accessed May 10, 2022.
https://puredata.info/

[55] Farnell, Andy. Designing Sound. The MIT Press. 2010.

[56] Technick-Passage24.de. “Xinda Miniatur Lüfter 5 V/DC 25 x 25 x 10 mm”. Accessed
July 20, 2022.
https://www.technik-passage24.de/xinda-luefter-25-x-25-x-10

[57] Bloemer, Keith. Article on Nerd For Tech. “Neural Networks for Real-Time Audio:
Introduction". April 26, 2021.
https://medium.com/nerd-for-tech/neural-networks-for-real-time-audio-introduction-
ed5d575dc341

[58] Bilbao, Stefan. Numerical Sound Synthesis. 2007.

[59] MacConnel, Duncan & Trail, Shawn & Tzanetakis, George & Diriessen Peter & Page,
Wyatt. “Reconfigurable Autonomous Novel Guitar Effects (RANGE)”. Paper presented at
the Sound and Music Computing Conference 2013, SMC 2013, Stockholm, Sweden. 2013

[60] Ragland, John. “Digital Simulation and Recreation of a Vacuum Tube Guitar Amp.”
Master Thesis. Auburn University, 2020.

[61] Processing. “Processing”. Accessed July 25, 2022.
https://processing.org/

[62] https://github.com/supercollider/supercollider/blob/
61ad680238c965d780def2346994f6377cac6204/SCClassLibrary/Common/Audio/
Demand.sc

[63] Jack, Robert & Mehrabi, Adib & Stockman, Tony & McPherson, Andrew. “Action-
sound Latency and the Perceived Quality of Digital Musical Instruments: Comparing
Professional Percussionists and Amateur Musicians". Music Perception: An
Interdisciplinary Journal. 36. 10.1525/MP.2018.36.1.109. 2018.

[64] Autodesk. “Fusion 360”. Accessed June 22, 2022.
https://www.autodesk.com/products/fusion-360/overview?term=1-YEAR&tab=subscription

[65] Massat, Pierre. Article on Guitar Extended. “Step-vibrato effect for guitar with
Pure Data”. January 18, 2012.
https://guitarextended.wordpress.com/2012/01/18/step-vibrato-effect-for-guitar-with-pure-
data/

99

https://www.amazon.de/gp/product/B0972Z6VPN/ref=ppx_yo_dt_b_asin_title_o09_s00?ie=UTF8&psc=1
https://www.amazon.de/gp/product/B0972Z6VPN/ref=ppx_yo_dt_b_asin_title_o09_s00?ie=UTF8&psc=1
https://puredata.info/
https://www.technik-passage24.de/xinda-luefter-25-x-25-x-10
https://medium.com/nerd-for-tech/neural-networks-for-real-time-audio-introduction-ed5d575dc341
https://medium.com/nerd-for-tech/neural-networks-for-real-time-audio-introduction-ed5d575dc341
https://processing.org/
https://github.com/supercollider/supercollider/blob/61ad680238c965d780def2346994f6377cac6204/SCClassLibrary/Common/Audio/Demand.sc
https://github.com/supercollider/supercollider/blob/61ad680238c965d780def2346994f6377cac6204/SCClassLibrary/Common/Audio/Demand.sc
https://github.com/supercollider/supercollider/blob/61ad680238c965d780def2346994f6377cac6204/SCClassLibrary/Common/Audio/Demand.sc
https://www.autodesk.com/products/fusion-360/overview?term=1-YEAR&tab=subscription
https://guitarextended.wordpress.com/2012/01/18/step-vibrato-effect-for-guitar-with-pure-data/
https://guitarextended.wordpress.com/2012/01/18/step-vibrato-effect-for-guitar-with-pure-data/

[66] Fromaget, Patrick. “How to Auto Start a Program on Raspberry Pi? (4 ways)”. Visited
on August 02, 2022.
https://raspberrytips.com/autostart-a-program-on-boot/

[67] Reddit. “How to autostart a PD Patch on raspberry pi?”. Visited on August 02, 2022.
https://www.reddit.com/r/puredata/comments/kprgsn/
how_to_autostart_a_pd_patch_on_raspberry_pi/

[68] https://www.youtube.com/watch?v=3QIhOViTr3w&ab_channel=GiuseppeTaormina

100

https://raspberrytips.com/autostart-a-program-on-boot/
https://www.reddit.com/r/puredata/comments/kprgsn/how_to_autostart_a_pd_patch_on_raspberry_pi/
https://www.reddit.com/r/puredata/comments/kprgsn/how_to_autostart_a_pd_patch_on_raspberry_pi/
https://www.youtube.com/watch?v=3QIhOViTr3w&ab_channel=GiuseppeTaormina

Appendix: Bill

1x Raspberry Pi 4GB €75,00

1x Pi Power Supply €7,00

1x SD Card 4GB €2,90

1x Screen €43,90

1x Audio Interface €21,00

4x Mono Sockets €4,40

2x Stereo Sockets €2,10

3x Rotary Encoder €6,00

2x Stereo Potentiometers €5,00

1x Switch per Bypass €0.20

1x Fan €2,60

2x Relays €1,80

1x StepUp Booster Converter €4,00

1x PerfBoard €0,40

1x StripBoard €3,00

4x Transistor €1,60

2x OpAmp €0,70

Resistors about €2,50

Capacitors about €2,50

Jumper Cables about €2,00
———————————————————————————————————

Tot €188,60
101

I want to consider the cost of the 3D model as an extra, as it is not essential for the correct
functioning of the pedal. Its price can vary from €50 to €80.

102

	6.1.1 Relay
	11.3.1 Counter according to the rotation speed
	11.3.2 Hold
	13.1 First Audio Patch
	14.2.1 Pd analysis
	14.2.2 Pd to Processing
	16.1.1 Patch 000
	16.1.2 Patch 001
	16.1.3 Patch 002
	16.1.4 Patch 003
	16.4.1 Sketch 000
	16.4.2 Sketch 001
	16.4.3 Sketch 002
	16.4.4 Sketch 003

