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Abstract

The human voice apparatus is capable of producing phonation types with different timbral character-
istics. These are perceived as distinct voice-qualities such as normal, breathy or pressed. In profes-
sional singing these different phonation types are intentionally used to transport emotions. Although
the strenuous usage of unhealthy voice qualities such as involuntarily pressed should be minimized
in order to reduce the risk of voice disorders. Therefore, professional singers in training still strongly
rely on the feedback given to them by vocal coaches or experts. However, the advances in the field of
speech signal processing, with regard to classification algorithms building on supervised or unsuper-
vised machine learning (ML), provide important tools to deepen and facilitate the feedback on sung
phonation types. Typically, the foundation of this machine learning based classification task is an
abstract feature set, designed to provide a meaningful description of the voice qualities.

The aim of this thesis is the comparison of abstract feature sets that, on the one hand, are already well
established in speech signal processing and, on the other hand, the proposal and analysis of a novel
feature set based on a signal representation built on joint temporal and spectral modulations.

The most prominent features in speech signal processing are the mel frequency cepstral coefficients
(MFCCs). For them different feature set variations are created. This is done by a variation of filter-
banks, the modification of the filterbank’s center frequencies using vocal tract length normalization
and pertubation, as well as cepstral liftering of the coefficients. The classification performance of
these MFCC variants are compared and it is shown that the MFCC variant created with an inverted
mel-filterbank performs best with regards to voice quality classification.

The novel feature set proposed in this thesis is derived from the so-called modulation power spec-
trum (MPS), which is calculated with a 2D-Fourier transform of the log spectrogram of a sung vocal
sample.

A subsequent feature analysis using a Plus-L. Minus-R feature selection (L.-R selection) algorithm is
carried out. Using the L-R selection the classification performance of the MFCC feature set created
with the inverted mel-filterbank, the MPS-based feature set and a combined version are compared.
Overfitting behaviour within the different feature sets are discussed. The analysis shows that the
MPS-based feature set outperforms the MFCC feature set variant and therefore can be deemed as a
notable alternative with regards to the classification of phonation types.

All classification tasks carried out in this thesis use support vector machines (SVMs) and a novel
database created at the Institute of Electronic Music and Acoustics (IEM) in Graz. The database
comprises 1140 samples recorded with 10 professional singers for three instructed voice qualities
(normal, breathy and pressed). Furthermore, the recorded samples have been ranked in a listening
experiment with regards to the perceived voice quality. This allows the usage of two sets of labels,
one based on the instructions (instruction labels) given to the singers in the recording process and the
other one based on the ranking results apprehended from the listening experiment (experiment labels).
The comparison of the different labels allows a reduction of the full dataset to obtain more conclusive
data, regarding the phonation types. Additionally, the interchange of the two label variants allows a
comparison of the ranking results from the listening experiment with the classification achieved by
the ML-based approach. It is shown that the ML-based classification works better if the instruction
labels are used and also that the ML-based classification yields more correctly classified samples in
comparison to the results achieved with the previously conducted listening experiment.
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Kurzfassung

Der menschliche Stimmapparat ist in der Lage, klangfarblich unterschiedliche Phonationstypen zu
erzeugen. Diese werden als distinkte Stimmgqualitidten wie z.B. normal, behaucht oder gepresst wahr-
genommen. Im Bereich des professionellen Gesangs werden diese Phonationstypen verwendet, um
Emotionen zu transportieren. Eine belastende Verwendung ungesunder Stimmgqualitéiten sollte dabei
vermieden werden, um das Risiko von Stimmstdrungen zu verringern. Aus diesem Grund sind pro-
fessionelle Sidnger*innen in der Ausbildung nach wie vor auf die Riickmeldung von Expert*innen
oder Gesangslehrer*innen angewiesen. Die Fortschritte in der Sprachsignalverarbeitung mit Fokus
auf Klassifikationsalgorithmen, basierend auf maschinellem Lernen (ML), stellen Werkzeuge zur
Verfiigung, welche die Riickmeldung iiber die gesungenen Phonationstypen erleichtern und vertie-
fen konnen. Die Grundlage fiir die beschriebene Klassifikation mittels ML ist ein abstraktes Set an
Beschreibungsgroflen (engl. feature set), welche die Stimmqualitét ausreichend charakterisieren. Das
Ziel dieser Arbeit ist der Vergleich dieser abstrakten Beschreibungsgroflen, wobei zum einen bereits
in der Sprachsignalverarbeitung etablierte Groflen und zum anderen neuartige GroBen, abgeleitet aus
einer modulationsbasierten Signalrepréasentation verarbeitet werden.

Die prominentesten Merkmale in der Sprachsignalverarbeitung sind die Mel-Frequenz-Cepstrum-
Koeffizienten (MFCCs). Fiir sie werden unterschiedliche Varianten mittels Variation der Filterban-
ke, Modifikation der Filterbank-Mittenfrequenzen durch Vokaltraktlingennormalisierung und -per-
tubation sowie durch cepstrales Liftering der Koeffizienten erstellt. Die Ergebnisse der Stimmqua-
litdtsklassifikation dieser MFCC-Varianten werden verglichen, und es zeigt sich, dass die mit einer
invertierten Mel-Filterbank erstellte MFCC-Variante die besten Ergebnisse erzielt.

Die vorgeschlagenen neuartigen Beschreibungsgréfien werden aus dem sogenannten Modulations-
leistungsspektrum (MPS) abgeleitet, das mit einer 2D-Fourier-Transformation des logarithmierten
Spektrogramms der Gesangssignale berechnet wird.

Die unterschiedlichen BeschreibungsgrofSen werden unter Verwendung eines Plus-L Minus-R Algo-
rithmus (L-R Auswahl) weiter analysiert. Mit Hilfe der L-R Auswahl wird die Stimmqualitétsklas-
sifikation der MFCC-Variante, der MPS-basierten Gréfen sowie eines kombinierten Satzes beider
GroBen verglichen. Die Analyse zeigt, dass das MPS-basierte Feature-Set die MFCCs iibertrifft und
daher durchaus als Alternative in Bezug auf die Stimmqualititsklassifikation angesehen werden kann.

Alle in dieser Arbeit durchgefiihrten Klassifikationsaufgaben verwenden Support Vector Machines
(SVMs) und eine neue Datenbank, die am Institut fiir Elektronische Musik und Akustik (IEM) in Graz
erstellt wurde. Die Datenbank umfasst 1140 Aufnahmen, die mit 10 professionellen Sidnger*innen fiir
drei instruierte Stimmqualititen (normal, behaucht und gepresst) aufgenommen wurden. Die Auf-
nahmen wurden in einem Horversuch hinsichtlich der wahrgenommenen Stimmgqualitédt bewertet. Da-
durch konnen zwei Sets an Stimmgqualitétslabels, eines basierend auf den Anweisungen, die die Sén-
ger*innen wihrend der Aufnahme erhielten (Instruktionslabels), und das andere basierend auf den Er-
gebnissen des Horversuchs (Horversuchslabels) verwendet werden. Durch einen Labelvergleich kann
der gesamte Datensatz reduziert werden, um in Bezug auf die Phonationstypen aussagekriftigere Da-
ten zu erhalten und es kann die Stimmgqualititsbewertung aus dem Horversuch mit der ML-basierten
Klassifikation verglichen werden. Es zeigt sich, dass mittels ML-basierten Klassifikation bessere Er-
gebnisse mit den Instruktionslabels erzielt werden und dass diese im Vergleich zu den Ergebnissen des
zuvor durchgefiihrten Horversuchs einen hoheren Prozentsatz an korrekten Klassifizierungen liefert.
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Mathematical Notation

The mathematical notation used in this thesis is summarized in Table 1.

Table 1 Mathematical symbols and notation

a, b, c scalars

a,b,c vectors

A B, C matrices or a twodimensional set of values

x[n] a discrete-time signal

(z * h)[n] discrete (circular) convolution of z[n] and h[n]

z[k] = Fosik{x[n]}k discrete N-point Fourier transform Z[k] of the discrete-time signal x[n]
Xw] = FP {X[0]}w] discrete twodimensional [N x M]-point Fourier transform X [w] of the

discrete time-frequency signal representation X [6]

|| absolute value of a complex variable z € C
N (p,0?) a Gaussian random variable with mean p and standard deviation o
U(a,b) A uniformly distributed random variable in the interval [a, b]
E{z[n]} the expected value of x[n] over time
# () number of elements
a estimation of a quantity a
fo fundamental frequency
fs sampling frequency
v a feature set
subject to
€ element of
v for all

X1
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1 Introduction

This thesis comprises 4 parts and an appendix. The first part, chapter 1, deals with the motivation
behind the classification of phonation types in singing and also deals with the definition of various
terms that are used throughout this thesis. Chapter 2 comprises the theory behind the analyzed feature
sets as well as the used classification model. The next part is given with chapter 3, which deals with the
implementation of the carried out classification analysis, in terms of the used data, the implementation
of the classification model as well as the quantification of the different feature sets’ classification
performance. The thesis is concluded by the summary and discussion of all made observations and
the outlook on possible future research areas in chapter 4. The appendix holds additional tables, plots
and results, which are referenced throughout this thesis.

1.1 Motivation and Background

A crucial part in the vocal training of professional singers is to gain the ability of being able to
fully control the sung phonation type as well as the predominant usage of healthy phonation types.
Phonation types are also often referred to as voice-qualities which according to [58, p.172] describe
a “[...]personal voice timbre[...]“. In accordance to fundamental research gathered in [57, p.152-157],
these voice qualities are strongly associated with the singer’s emotion. Whereas sweet, seductive,
soft but also sad and depressed emotions are associated with a breathy voice, hard feelings and anger
are transported using a pressed voice quality in singing. By being able to control the voice quality,
singers are able to add an emotional layer to their performances leading to a transportation of feelings
from singer to listener. Control in this sense refers to maintaining sung phonation types by varying
pitches and loudness. Nonsingers often exhibit fluctuating voice qualities with changing pitches and
loudness [59, p.74]. Another important benefit of having full control over the sung voice quality is
the prevention of voice disorders, for which an extensive usage of unhealthy voice qualities, such
as unintentionally pressed, can be a source [60]. Within professional vocal training a vital aspect
in gaining control over the voice quality is feedback on the current sung voice quality, which is
usually given by a professional vocal coach. In order to intensify and extend this feedback, current
research such as [53], [19], [18] and [20] use the advances of digital signal processing with respect to
machine learning (ML) in order to set up supervised learning problems, which allow a computational
classification of sung vocal signals with regards to different phonation types. One drawback within
this current research are the limited datasets. The processed datasets often only comprise sung vocal
samples of one or two singers and descriptive measures that are very common within the research
fields of signal processing and automatic speech recognition, but nevertheless do not accurately reflect
the physiological processes that lead to the distinction of different voice qualities in singing. This is
where the focal point of this thesis lies. The results of this thesis provide novel descriptive measures
that allow an ML-based classification of phontation types in singing as well as a extended performance
analysis of established measures and modifications of such. A newly created dataset which was
recorded at the Institute of Electronic Music and Acoustics (IEM) at the University of Music and
Performing Arts Graz, as well as evaluated and labelled with a listening experiment, allows to draw a
differentiated conclusion on the generalization capabilities of the proposed descriptive measures and
provides a performance analysis of the established measures. The following sections, 1.2-1.4, lay out
a general introduction into the physiology of speech production and the different phonation types, a




P A.Bereuter 1.2. Voice Physiology and Phonation Types in Singing

comparison between speech and singing voice as well as the usage of machine learning (ML) within
the analysis of speech and singing voice.

1.2 Voice Physiology and Phonation Types in Singing

1.2.1 The Human Speech Production Apparatus

The physiology of singing and speech are based on the same physical procceses occuring inside the
human voice apparatus, which generally can be divided into three parts. The first part, marked in
blue in Figure 1.1, are the respiratory organs (lungs) which generate the air-flow passing through the
trachea into the second part, the so-called voice source [59] or glottal region [10]. In Figure 1.1,
the voice source is outlined in orange and a close up is depicted in Figure 1.2. The tracheal airflow
travelling from the lungs towards the glottal region is periodically interrupted by vibrating vocal folds,
resulting in the so-called glottal or transglottal flow. The vibrating vocal chords are the defining factor
of voiced speech, which can be presumed to be the general case for singing [57]. In an acoustical and
speech signal processing context the glottal flow (GF) or its derivative (dGF) are often referred to as
the excitation or source signal [15]. The glottal flow passing through the vocal folds resembles a pulse
train. An exemplary illustration of the glottal flow’s waveform is shown in part one of Figure 1.1. The
excitation signal’s frequency spectrum is visible in part 2 of Figure 1.1 (marked in orange) and shows
a frequency spectrum with whole-number multiples of the fundamental frequency, whose intensity
decend with increasing frequency. The close up depiction of the voice source region in Figure 1.2
shows that the vocal folds form a bottleneck seperating the trachea and the adjacent vocal tract. After
the excitation signal is produced through the tracheal airflow passing through the vibrating vocal
folds, the pulse train like signal enters the vocal tract which forms the third part of the human speech
production apparatus. The vocal tract acts as a resonator, which filters the excitation signal and applies
the so-called formants. The formants are the defining aspects to what the listener perceives as vowels
e.g. /a/, /e/, /i/, /o/ or /u/. As the main focus of this thesis lies on the voice quality, which is defined in
the voice source region, a more thorough discussion of the voice source region, marked in Figure 1.1,
and its influence on the creation of different phonation types is carried out in subsection 1.2.2.

1.2.2 The Physiology of Different Phonation Types

Different phonation types come about with different vibration modes of the vocal folds. In this thesis
three voice qualities are described and are subject of the executed analysis and classification. The
voice qualities of interest are modal/normal, breathy and pressed voice quality. Originating in speech
signal processing, Gobl et al. proposed the sources of different voice qualities based on the physiolog-
ical processes in the glottal region in [15], and Sundberg defines phonation types for singing based on
physiological processes in [57]. The definitions on the production of the three relevant voice qualities
in this thesis can therefore be considered as a unified definition of both Gobl and Sundberg’s take on
the production of different phonation types due to different glottal behaviour. Helpful illustrations to
deepen the understanding on how different phonation types are formed within the human body are
given by Figure 1.2 and 1.3. Whereas the glottal region illustrated in Figure 1.2 is displayed in a
frontal plane dissection, Figure 1.3 depicts the glottal region in a horizontal dissection.
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Figure 1.2 An anatomic depiction of the glottal region and the vocal folds. Source: [10, Fig. 1]
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Figure 1.3 Horizontal dissection of the glottal region. Source: [65, Fig. 2]
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Using Figure 1.2 and 1.3, the production of the three phonation types can be explained as follows:

Breathy voice quality

In [15], Gobl states that breathiness in speech occurs when the adductive tension, present to the
top end of the vocal folds, is reduced to a minimum, and the weak medial compression is applied.
The adductive tension and medial compression are visualized with black arrows in Figure 1.3. The
minimal tension and weak compression cause an incomplete closure of the vocal folds while vibrating.
Due to the minmal adductive tension, the vocal folds reside in a Y-shaped state, leaving an opening
at the top of the vocal folds, even during a closure phase of one glottal cycle [57]. The definition of
a glottal cycle is discussed in section 1.3. The remaining opening during the glottal closure phase for
breathy voice is depicted in the middle of Figure 1.4. The constant opening lets the turbulent tracheal
airflow enter the vocal tract at any time causing a breathy voice perception. The constant airflow
entering the vocal tract is often referred to as aspiration noise [24].

Normal voice quality

In a speech context, normal voice quality is also referred to as modal voice. In [15], Gobl cites
moderate adductive tension and medial compression as the reason for a full-length vibration of the
vocal folds, as it is the case for modal voice quality. This implicitly leads to a full glottal closure
of the vocal folds during vibration. When taking a look at the literature concerning the singing
domain, Sundberg further differentiates between normal and flow voice quality [57]. The explanation
of normal phonation from [57] coincides with the one from [15], whereas flow phonation can be
described as the phonation type that occurs when "[...] glottal adduction is reduced to a minimum"
resulting in a voice quality that is still not breathy [59, p.74]. So, according to [59], flow phonation
is the phonation type in the normal voice quality range that is closest to breathy phonation but isn’t
perceived as breathy. Flow phonation can also be viewed as a singing technique, which allows to
reach “ [...] higher levels of loudness with minimum effort.“ [53, p. ] “. In the context of this
thesis, the differentiation between normal and flow phonation is neglected and both voice qualities
are referred to as normal or modal voice quality.

Pressed voice quality

When looking at Figure 1.4, it becomes visible that no pressed voice quality is mentioned. However,
the voice quality whose glottal closure instant (GCI) is illustrated on the right hand side of the modal
voice, is called creaky, which is also defined in [15]. Creak, according to [15], is defined through high
adductive tension and medial compression. Therefore, it can be viewed as the opposite of breathy.
The high adductive tension is visualized in Figure 1.4, where contraction of the top of the vocal folds
is visible. This fits the definition of what is called pressed phonation in [57], where it is defined in
a singing context. An extreme, strenuous usage of pressed phonation is also often a cause of voice
disorders [60].

(spread) voiceless | breathy voiced| | modal voiced creaky voiced | (constricted) voiceless

+ »

Figure 1.4 Vocal folds at glottal closure instants for different voice qualities. Source: [65, Fig. 1]
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As aresult of the usage of mentioned phonation types, the tracheal flow is also interrupted in different
ways, leading to different waveforms concerning the glottal flow. The modelling of these waveforms
is discussed in the following section.

1.3 The Voice Source in a Signal Processing Context

An exemplary sketch of a glottal flow waveform is added of Figure 1.1. This waveform visualizes
air passing through the vocal folds. The most prominent model delivering a mathematical description
of the glottal flow and its derivative is the LF-model established by Fant & Liljencrants in [12]. For
the analysis carried out in this thesis, the mathematical formulation is not relevant. Nevertheless, the
waveforms, that can be generated by using the LF-model, contain important insights on the distinction
of the phontation types and they also reflect the physiological processes mentioned in subsection 1.2.2.
Exemplary waveforms for each of the three phonation types created with the synthesizer presented
in [4], are depicted in Figure 1.5. The synthesizer employs the LF-model of [12] in order to create
the voice source signal named derivative glottal flow (flow change), which is depictd in Figure 1.5
(a). The integrated version of the derivative glottal flow, called glottal flow is shown in Figure 1.5
(b). The glottal flow can be understood as the airflow through the glottis and its derivative holds
information on the flow change. It has to be pointed out, that in the synthesizer presented in [4] and
the created figure Figure 1.5 use the term creaky, but as the definitions of creaky voice in [15] and
pressed from [57] coincide in terms of the physiological processes, the term creaky in Figure 1.5 is
equivalent to pressed, which is used in this thesis.
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Figure 1.5 Glottal flow and flow change for different voice qualities, the depicted curves are synthe-
sized signals and their amplitudes are not to be interpreted as physical measures.
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As shown in Figure 1.5, the voice source signals differ for different phonation types. One aspect
which distinguishes the source signal of the different voice qualities is the course of the derivative
glottal flow (dGF) depicted in Figure 1.5 (a). For breathy voice quality the flow change (dGF) is the
least sparse signal in Figure 1.5 (a), because the signal part with zero amplitude is limited to a very
short time span. The aspiration noise given due to the triangular shaped opening during the closed
phase of a glottal cycle, is also visible. In comparison to breathy phonation, normal/modal voice
quality exhibit a larger time where the amplitude is zero, and the dGF for pressed phonation shows
the longest time span with an amplitude of 0. Another aspect that the dGF of pressed voice shows, is
the lower positive amplitude and a sharper negative impulse at the GCI, which is the glottal closure
instant, denoting the instant at which the glottis is closed. The glottal opening instant (GOI) is also
marked in the dGF plots of Figure 1.5. The integrated version of the dGF, the glottal flow, holds
information on the airflow passing the glottis. The highest airflow is given with breathy phonation,
followed by normal/modal and pressed voice quality. Additionally, the glottal closure phase, lasting
from the GCI to the GOI, and the opening phase, lasting from the GOI to the next GCI, also indicate
the distinction between the voice quality classes. The shortest closure phase is given for breathy voice
quality as the vocal folds do not really close during the glottal cycle. The longest closure phase is
given with pressed voice quality, due to the high tension on the vocal folds, which leads to a higher
glottal resistance and vocal fold closing [57]. This undermines the source filter theory, which also
includes the view that the phonation type is an aspect of the singing voice, predominantly formed by
the voice source at the glottis and the vocal tract is responsible for applying the formants, perceived
as vowels [57] .

1.4 Overview on Speech and Singing Analysis

As shown in the previous section, the voice quality is an aspect formed at the voice source, which
inevitably brings the idea with it that the phonation type is detectable when the source signal is es-
timated. This theoretical consideration lead to a lot of research that has been carried out and deals
with the estimation of the source signal through a procedure denoted glottal inverse filtering (GIF)
proposed by Alku in [1]. The main idea behind the inverse filtering method is the estimation of the
vocal tract filter based on adaptive filter theory such as the linear predictive coding (LPC) [22], and the
subsequent inverse usage of the estimated vocal tract filter onto the sung vocal signal [1]. There have
been certain improvements towards the LPC-based filter estimation with approaches such as cepstral
liftering of the excitation signal, before vocal tract estimation [51] or the usage of weighting functions
with the aim to deemphasize certain parts in a vocal signal, which worsen the estimation performance
of the vocal tract filter [7]. Based on Alku’s glottal inverse filtering procedure from [1], analysis envi-
ronments and repositories have been created such as [7] and [2], which hold a multitude of scripts that
allow the glottal source signal analysis using the software application Matlab. However, the vocal
tract filter esimtation using LPC comes with limits, that arise with increasing fundamental frequen-
cies as summarized in [4], leading to a faulty distinguishment of the voice qualites with regards to
higher pitches. Thus, more recent approaches including machine learning (ML) based classification
tasks deal with direct processing of the vocal signal. The work of Kathania in [20] as well as Kadiri
with [19] and [18] present phonation type classification approaches in which features descriptive of
the voice quality are calculated and used in classic ML-based classification tasks. The advantage is
that the underlying phonation type descriptive features are directly calculated from a time frequency
representation of the vocal signals. Different types of voice quality descriptive features as well as the
potential and the methods behind the ML based classification tasks carried out in this thesis are dealt
with in chapter 2.
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2 Methods and Theoretical Background

The main focus of this thesis lies on the classification of phonation types used in singing. Therefore,
a machine learning (ML) based classification task using supervised learning is set up. The structure
of such a task is mentioned in section 2.1 and subsequently, the theoretical background of each step
in the classification task is discussed.

2.1 Classification using Supervised Learning

In [5] a supervised learning problem concerning classification is defined by an underlying feature set
whose classes are known. The class affiliations are referred to as labels or targets for each data sam-
ple. This means that a class label exists for each sample contained in a feature set. The feature sets
compared in this thesis are generally denoted as 2~ and are representative of the voice quality con-
tained in sung vocal samples. The feature calculation process is called feature extraction [5, p.2]. The
features used in this thesis are different variants of the mel frequency cepstral coefficients (MFCCs)
(see section 2.2) and the second features are derived from the joint temporal and spectral modulation
signal representation called modulation power spectrum (MPS) (see section 2.3). Due to the fact that
the MFCCs are derived from a time frequency signal representation and the other calculated features
are based on the MPS, they are referred to as so-called abstract feature sets, as they are not directly
measureable within the time signal.

In a supervised classification task the feature set is split into a training and test set, where the train-
ing set is used to fit a classifier towards the data. Fitting a classification model/classifier means that
the model learns the description of the classes provided by the abstract feature set and subsequently
enables the classification of data the classifier has not seen yet, that’s where the test data comes into
play. The test data is held out and presented to the trained classifier, which allows an assessment of
the classifier’s performance. Thus, it is often also called hold-out set. The classifier’s ability of distin-
guishing new data is called generalization [S]. The score, on the test data gives information on how
well a classifier generalizes and is calculated as the percentage of correctly classified samples. But it
is advisable to also view training and fest score in relation, because they hold important information
on the selected classification model (classifier), more precisely on the complexity of the model. A
high training score and a lower test score indicate what in [5, p.32] is referred to as overfitting. Over-
fitting occurs when, the complexity of a model is too high. The model then fixates on the training data,
as shown in the academic example depicted in Figure 2.1. It visualizes the class boundaries within
the space spanned by the feature vectors. This is called a feature space. In the case of Figure 2.1
the feature space is twodimensional and spanned by the features z; and 2. The class boundaries for
each class are indicated by varying colors. The marks indicate the samples of a test and training set.
It is clearly visible that Figure 2.1 (b) performs way better on the test set. The better performance
is also displayed by the test and training scores denoted as pPiegt and pyrain, Which give the percentage
of a correctly classified sample of the respective subset (see Equation 3.3 and 3.4). The subfigure
Figure 2.1 (b), shows an academic example of good generalization. Both training and test score lie in
the same vicinity and the classification of the test set, which the model has not seen during its fitting
procedure, works reasonably well.




P A.Bereuter 2.1. Classification using Supervised Learning
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Figure 2.1 Academic example on the effects an overfitted classifier has on predicted class bound-
aries and the test and training score.

In this thesis the chosen classifiers are support vector machines (SVMs). The theoretical background
and their adjustable parameters are discussed in section 2.5. The academic example depcited in Fig-
ure 2.1 (a) illustrates what happens if classifier parameters are chosen poorly. The complexity of a
classifier is not only determined by certain classifier parameters but also with the dimensionality of
the present feature space, which is determined by the number of features. If the dimensionality in-
creases the training data within the higher dimensional feature space becomes sparser. This makes it
easier for the classifier to find a possibility of separating the classes within the feature space, leading
again to the effect that the classifier is overfitted towards the training data. This is what generally is
referred to as the curse of dimensionality [5, p.33-38]. Thus, it makes sense to montior the classifier’s
performance over an increasing number of features. This is possible with a feature selection algo-
rithm, which allows a reduction of the feature space and selects the features into a certain order. If
the number of features the algorithm has to select is increased, reduced feature sets with increasing
number of features are obtained and their performance can be evaluated and monitored. This is ex-
actly what is done in the analysis carried out in section 3.5. A short introduction to the used features
is given in section 2.2 and 2.3, the employed SVM classifier is mentioned in section 2.5 and the used
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Plus-L Minus-R feature selection algorithm in order to monitor the influence of the feature space
dimensionality is theoretically introduced in section 2.6.

2.2 Mel Frequency Cepstral Coefficients (MFCCs)

The first features used are mel frequency cepstral coefficients (MFCCs). The MFCCs are often used
features in the field of automatic speech recognition; for instance, in HTK a toolkit to create hid-
den markov models in [66]. Basically, the MFCCs are cepstral representations of a logarithmized
and in auditory frequency bands summarized frequency spectrum of a signal. The cepstral domain
is entered by applying an inverse Fourier transform or a discrete cosine transform (DCT) onto a fre-
quency spectrum of a signal. It can be viewed as a “spectrum of a spectrum®. Because two transforms
and the logarithm are involved in order to enter the cepstral domain, a filter operation, which in the
time domain is given by a convolution and a multiplication in the frequency domain, is represented
in the cepstral domain as a sum. A common model encountered within speech signal processing is
the source filter model, which is a mathematical formulation of the physiology described in subsec-
tion 1.2.2, which states that a speech signal is given through the convolution of a voice source signal
E[n] with a vocal tract filter response hyr[n] as denoted in Equation 2.1. In the cepstral domain
this convolution becomes a sum, which is a reason why cepstral analysis is often applied in speech
analysis [47, p.210-215].

s[n] = (E  hyr)[n]. 2.1

1. In order to calculate the MFCCs the first step is the Fourier transform of the signal into the
frequency domain as formulated in Equation 2.2.

S[k] = Frsi{s[n]} K] (2.2)

2. The absolute values frequency spectrum is then filtered with a filterbank, which sums the fre-
quency bins k into Nygr frequency bands in order to reduce the number of frequency bins,
which is also referred to as binning [66, p.95]. The filterbank is created according to the mel
frequency scale, which originates from perceptual properties of the human auditory system.
The used filterbanks ares discussed in subsection 2.2.1. The binning is carried out in the fre-
quency domain, thus the filtering process can be carried out with a vector matrix multiplication
as formulated in Equation 2.3.

m=H - -x
- Rl)  holll ... holN—1] 50
mo _ hl [0] hl [1] ce hl [N — 1] . IS[lH (23)
T Nyier hNMELfl[O] hNMELfl[]-] s hNMELfl[N - 1] |S[N - 1”

Where m is the vector that holds the binned frequency spectrum in Nygr, frequency bands. H
is the filterbank used to sum the frequency bins. The rows of H hold the N-point frequency
responses of the filters for each frequency band and x holds the N-point frequency transformed
absolute values of the signal in vector notation.
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3. The binned frequency spectrum is then logarithmized and transformed into the cepstral domain
with either an inverse Fourier transform or a discrete cosine transformation (DCT). In this thesis
the same calculation approach as denoted in [66] is used, where a Type II DCT is used. The
calculation of the i™ mel frequency cepstral coefficient for a filterbank with Ny frequency
bands is given with:

9 MLl i
G =1\~ log(m;) cos ((] - 0.5)> (2.4)
N ;} ! N

These three steps outline the calculation process of the mel frequency cepstral coefficients. In this the-
sis several modifications are applied in order to create different MFCC variants. The used filterbanks
are discussed in subsection 2.2.1 and 2.2.2 and the scaling procedure applied in the cepstral domain,
which is mentioned in subsection 2.2.3.

2.2.1 Mel Filterbank Variation

The filterbank used in the calculation of MFCC:s is classically a triangular shape filterbank in which
the center frequencies are equally spaced along the mel frequency scale. The mel scale has been
defined with the help of psychoacoustical listening experiments, where the listeners were asked to
quantify the perceived pitch [50]. It has been shown that perceived pitch in relation to the frequencies
is not linear. As a result, the mel scale was proposed. The term mel is derived from the word “melody*
and also specifies the unit of the the perceived pitch [S0]. Mathematically the scale is defined as:

Mel(f) = 2595 - log;, (1 + 7{):)) (2.9)
The filterbanks used, span a frequency range of 110 Hz to 8000 Hz, but vary in the spacing of their
center frequencies. Figure 2.2 holds a depiction of all filterbanks used in this thesis. The center
frequencies of the the classic triangular shaped mel filterbanks depicted in Figure 2.2 (a) and (b)
are spaced according to Equation 2.5. The difference between the filterbanks depicted in Figure 2.2
(a) and (b) is the amplitude. Figure 2.2 (a) depicts a filterbank with a constant amplitude of 1 and
Figure 2.2 (b) depicts a filterbank in which the area under the filter curves is normalized to 1 which,
in terms of filtering means that each filter-band contains the same amount of energy in case of a white
noise input signal. The filterbanks depicted in Figure 2.2 (c) and (d) are inverted versions of the
classic mel filterbanks. The reason for their usage is described in subsection 3.4.1. The last filterbank
variant used in this thesis is a linearily space filterbank Figure 2.2 (e), where the mel scale is not
applied for the center frequency spacing. For this variant, the term mel frequency cepstral coefficient
is misleading, as no mel frequency spacing is applied. The coefficients calculated using this filterbank
are often also referred to as linear frequency cepstral coefficients or LFCCs as for instance in [20].
Nevertheless, as in this thesis the variant is mentioned under the umbrella term mel frequency cepstral
coefficients as the only difference between MFCCs and LFCCs is the center frequency spacing. All
filterbanks were created using D. Ellis’ rastamat library [11].

10
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s, filterbanks are created with

(e) linearly spaced filterbank with constant amplitude

fftemelmz () from [11].

Figure 2.2 Used filterbank types to create MFCC variation
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2.2.2 Vocal Tract Length Normalization and Perturbation using Frequency
Warping

An approach of modifying the filterbank center frequencies is presented in [23], which is also em-
ployed in [66] and in [16]. The first augmentation of the filterbank center frequencies, used in this
thesis is proposed in [23] and is called vocal tract length normalization (VTLN) and has the aim to
diminish the influence of the vocal tract length by shifting the filterbank center frequencies according
to a warping factor . The center frequencies f. are shifted according to Equation 2.6 from [16].

- a - fca fc<fmax'mmaa1) 26
fe= % J;‘Z//QQ J}‘“"‘”ﬁ}‘lﬁ(g‘}) (fs/2 — fe), otherwise (2.6)

In order to estimate the frequency warping factor for the VILN a minimum mean square error
(MMSE) calculation, with a reference MFCCs c.s, is set up. A discretely spaced warping factor
vector is created and each warping factor is used to shift the filterbank center frequencies according
to Equation 2.6 and the MFCCs c are calculated with Equation 2.4. The estimated frequency warping
factor &yTLn is then given as the warping factor for which the minimum error occurs, as noted in
Equation 2.7.

avrin = argmin (E{ (¢ = cr)’}) + Gvrin €[0.88,1.12] 2.7)
«

The second filterbank center frequency augmentation is the method called vocal tract length pertuba-
tion (VLTP) proposed in [16], which also follows the idea that shifting the filterbank center frequen-
cies can diminish the influence of the vocal tract length on the calculation of the MFCCs. In contrast
to VTLN, where the warping factor responsible for shifting the center frequencies is estimated in
order to align the influence of varying vocal tract lengths of different singers, VILP is designed to
randomize the frequency warping factor, which can be understood as a vocal tract length whitening
process. Thus, the frequency warping factor for VILP is chosen as a uniformly distributed random
variable within the interval 0.88 < ayrrp < 1.12, as mentioned in Equation 2.8

dVTLP = L{(a, b) = U(O.SS, 1.12) (28)

The interval for d&yrp is given in [23] and covers the 25 % variation in vocal tract length, that is
observable for adults.

In order to shortly assess the estimation performance of the VTLN warping factor estimation men-
tioned in Equation 2.7, the influence of vowels and voice quality on the estimation results is inves-
tigated. With the synthesizer presented in [4], signals were synthesized where the vocal tract filter
holding the formant structure of the signal, was shifted with a fixed factor cye. A reference signal,
where no shift was applied, is used to estimate the shifting factor &. However, the voice quality and
vowel of the synthetic reference signal and shifted signal do not always coincide. Thus, the influence
of different voice qualities, or vowels in synthesized signals on the warping factor estimation process
is visualized in Figure 2.3 and Figure 2.4. A perfect estimation would result in a diagonal line in the
subplots (see Figure 2.3 and Figure 2.4). It is shown in Figure 2.3 that if samples with different voice
qualities are used, no drastic influence on the estimation results have to be anticipated. Regarding the
influence of the vowels on the estimation process, it is visible in Figure 2.4 that the estimation works
best, if the reference signal and the signal for which the warping factor is to be estimated contain the
same vowel.
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Figure 2.3 Frequency warping factor estimation, effects of different voice qualities.

estimated frequency warping factor & compared to ground truth oy,
vowel comparison:
/synthesized reference vowel/ vs. /synthesized vowel/

12 /a/ vs. Ja/ 12 /a/ vs. [e/ 12 /a/ vs. [i/ 12 /a/ vs. Jo/ L2 /a/ vs. Ju/
W% 3 XK
@ 1 @ 1 fx @ 1 e Xw* @ 1 Rl
X
0. ! 0.8k 08k 0. !
O G I N S S S S N S S RN
Qtrue Qtrue Qtrue Qitrue Qtrue
12 /e/ vs. Ja/ 12 /e/ vs. [e/ 12 /e/ vs. i/ 12 /e/ vs. Jo/ 12 /e/ vs. Ju/
*gw?“
s 1 f © 1 @ 1 f s 1 et
0. 0. 0.8% 0. g 0.
PR S N R S SN R S N S NI
Ctrue Ctrue Ctrue Ctrue Qtrye
12 /i/ vs. /a/ 19 /i/ vs; /e/ 19 /i/ vs. [i/ 12 /i/ vs. Jo/ 12 /i/ vs. Ju/
x X X
o
1 | 1 w 1 1 W 1 anl
« @ 3 < < @
S M S S S Wﬁk S xw%%
S
0. A 0. S 0. 0. 0. .
NN N N N N N N N N N R SR RN N R S
Ctrue Qtrye Qtrue Qtrye Qtrue
12 /o/ vs. Ja/ 12 /o/ vs. Je/ 19 Jo/ vs. i/ 12 /o/ vs. o/ 12 /o/ vs. /u/
x R 2 X
S 2 2 &
& 1 *zf < X & 1 @*‘Xf & 1 & 1 Xf*
0.8 3 A 0. 3 0. S 0. . 0. .
NN N N RN N SR R R R NN S
Qtrue Qtrue Qtrue Qtrue Qtyue
19 J9/ Vs [a/ 1o [0/ Vs [e/ Lo [/ vs- [i/ 1o 0/ vs o/ 1o [0/ vs. [u/
ol o <
3 1 %gg@;x 1 Ca s 1 o s 1 ng s 1
« & & < 3 « <
X 5 X
0.8 Lo 0.8% 0.84 0. .
IR IR S S NN S SO S TN St SRR ¢
Qtrue Qtrue Qtrue Qprye Qirue

Figure 2.4 Frequency warping factor estimation, effects of different vowels.
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2.2.3 Cepstral Liftering

The last augmentation method of the MFCC comprises a scaling procedure using a cepstral lifter. A
lifter, which is an innuendo to the term “filter*, is a signal manipulation in the cepstral domain by
multiplication of a cepstral lifter signal with the cepstral coefficients. As proposed in [47, p.415]
liftering emphasizes the mid-range MFCCs in order to equalize the amplitudes of the mid-range
MFCCs towards the amplitudes of the lower MFCCs, which are linked to channel conditions, such
as noise. In this thesis the cepstral lifter is chosen in accordance to [66], where a sinusiodal lifter is
proposed. The liftering of the i MFCC is formulated in Equation 2.9.

L

& =1+7 -sin (T) ¢ (2.9)
The lifter parameter is chosen with L = 22 [66]. Figure 2.5 depicts the scaling with the used cepstral
lifter. The behaviour of the depicted lifter resembles the frequency response of a pre-emphasis filter,
as it amplifies mid and high-range cepstral coefficients.

cepstral liftering applied on average MFCCs

average MFCCs before liftering
average MFCCs after liftering
cepstral lifter

140 f-

120 {

100

80 -

60 -

linear amplitude

40

220 +

MFCCs

Figure 2.5 Effects of cepstral liftering on exemplary MFCCs.
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2.3 Modulation Power Spectrum (MPS)

Similar to the underlying approach of the MFCCs, where a frequency spectrum is binned into fre-
quency bands that are spaced in the same way that humans perceive pitch, is the idea of modulation
based signal representations. Through extensive research carried out in the field of biology, it has been
proven with the help of several psychophysical studies that the human auditory system is very sensi-
tive towards temporal and spectral modulations [56]. Thus, a joint temporal and spectral modulation
based signal representation of acoustic signals is apperent. In [56] the modulation power spectrum
(MPS) is introduced and used to analyze natural sounds. The usage of the MPS in regards to sound
manipulation has been thoroughly researched in [44]. The calculation of the MPS is based on a time
frequency signal representation. In [56], the autocorrelation matrix is used as the underlying time fre-
quency signal representation, whereas in [44] the MPS is directly derived from a spectrogram. In this
thesis the calculation is kept in line with [44] and the spectrogram is used to calculate the modulation
power spectrum.

The discrete time frequency representation, spectrogram X [m, k] of a signal s[n], assuming an in-
finitely long signal, is mathematically denoted as:

Xm, k] = i s[njw[n — m)e %" = Fop {s[nJw[n — m]} [m, k] (2.10)

n=—oo

The calculation of a spectrogram denoted in Equation 2.10, can be seen as the Fourier transform of
signal blocks that are windowed with the time window function w[n — m|, whereas m is the time
variable denoting the current signal block [44, p.14]. The squared spectrogram in decibels is written
as:

X[m, k] =10 - logy, (‘X[m k]‘z) =20 log, (| X [m, #])) 2.11)

The MPS § (ftmoas T) 18 then calculated as the 2D-Fourier transform of the squared spectrogram in
decibels X [m, k] [44]. The twodimensional Fourier transform dissects the spectrogram image into
gratings that correspond to so-called ripple sounds [56]. These ripple sounds build the basis of the
analyzed image and can be viewed as building blocks that, when put together, result in the underly-
ing spectrogram image. Similar to sinusoidal components obtained from an onedimensional Fourier
transform applied onto a audio sample, the ripple sounds show sinusoidal amplitude modulations in
time and frequency [56]. Equation 2.12 shows the calculation of an MPS based on the 2D-Fourier
transform analytically formulated as well as a compact notation. For the compact notation the time
and frequency variables m and k of a spectrogram with the dimensions [M x N] are summarized

using the vector @ = [m, k|7 and the modulation variables are summarized using w = [f;,,,7]7. In
this thesis only the magnitudes of the MPS are further analyzed.
M—-1N-1 e
N 2 mod 4z k
S(FrnasT) Z 3 X[m, kle iz %)
VMN =6 =0 (2.12)

S (finer 7) = 8(w) = FP{ X[m, k] } o]

An easier interpretation of the 2D-Fourier transform is to imagine it as two classic Fourier transforms
one along the time axis of the spectrogram and the other along the frequency axis [44]. Similar to
the 1D-Fourier transform the 2D-Fourier transform results in a symmetric depiction, if a real valued
image is processed. Thus the resulting MPS is mirrored along the spectral modulation axis at 7 = 0.
Negative spectral modulations can be discarded. An exemplary MPS created from a sung vocal
sample and the modulation range, used in the analysis is illustrated in Figure 2.6 on the right.
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Figure 2.6  Full modulation power spectrum and used modulation range.

Temporal modulations

The x-axis of a MPS depicts the temporal modulations denoted with f; ., present in a signal. The
temporal modulations of a signal comprise the amplitude modulation (AM) and frequency modulation
(FM). If either of them are present in a signal, vertical lines located at the respective modulation
frequency f;, ., in the MPS become visible. The signal behind the MPS depicted in Figure 2.6 is a
real sung vocal sample, with a distinctly perceivable vibrato. As shown in the work of Sciri in [54],
the vibrato can be theoretically separated into shimmer, which in technical terms is an amplitude
modulation and the jitter which corresponds to a frequency modulation. For instance, the first vertical
line in Figure 2.6, indicating the vibrato frequency comprising AM and FM is located at ca. 6 Hz.

Spectral modulations

On the y-axis of a MPS the spectral modulations 7 are projected. The spectral modulations are
not to be mistaken with the frequency modulation. When imagining the 2D-Fourier transform as a
Fourier transform along the time and frequency axis, the temporal modulations are calculated with
the Fourier transform that is executed along the time axis. The spectral modulations, on the other
hand, are derived from the Fourier transform along the frequency axis. This means that the spectral
modulations describe the composition of the harmonics/overtones in a signal. In [44] it is stated that
the spectral modulations can be interpreted as the number of harmonics contained in a kilohertz. If the
integer multiple harmonics that are present in a sung vocal signal are viewed as a new signal which
is then subject to a Fourier transform, it is evident that the whole-number multiples also describe
a periodic structure and, thus, peaks at the spectral modulations which correspond to the period of
the respective harmonics are formed [44, p.7-8]. As the spectral modulations are given as a Fourier
transform of the frequency spectrum for each time slice of the spectrogram, the spectral modulation
domain corresponds to the cepstral domain and the unit for the spectral modulations coincides with
the quefrency unit in the cepstral domain. Reoccuring peaks along the spectral modulation axis can
therefore also be viewed as rhamonics, the cepstral equivalent to harmonics [44].
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Interpretation of a MPS

Figure 2.7, taken from [44, p.41] displays how the modulation power spectrum derived from a spec-
trogram is to be interpreted. At the top of Figure 2.7 a exemplary spectrogram of a sung vowel by a
bariton is depicted. The parts of the spectrogram where no vibrato and therefore, no temporal mod-
ulation is present in the signal, which is given for the time range of O0s < ¢ < 0.6s in Figure 2.7, is
located at at the temporal modulations of f; , = 0 Hz. Upsweeps indicated by increasing frequencies
are located in the left half (f; , < 0) of the MPS. Stronger upsweeps, where the frequency increases
more rapidly, are located further on the left. Downsweeps are located in the positive temporal mod-
ulation half (f;,, > 0). A special circumstance that is present in the MPS for vocal signals (speech
or singing) is the triangular-shaped form located at lower modulations, marked at the bottom of the
MPS visualized in Figure 2.7. This triangular shape is accredited to the vocal tract, which introduces
low modulations into a signal [44], but the explicit relation between the vocal tract and the form or
distinction of the triangular area, still remains unclarified to the knowledge of this thesis’ author [44].
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Figure 2.7 Exemplary spectrogram and corresponding modulation power spectrum with locations
of up and down sweeps within the MPS. Source: [44, p.41]
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2.3. Modulation Power Spectrum (MPS)

The analysis based on the MPS, deals with the calculation of features and the aim to investigating
potential correlations between calculated features and the voice quality. Thus, the dimensionality
of the MPS is reduced, by summing the MPS along the temporal modulation axis which results in

the summed temporal modulation power spectrum (STMPS) Sy, (fimoa)» denoted in Equation 2.13.

By summing along the spectral modulation axis, the summed spectral modulation power spectrum
(SSMPS) Ss, (1), denoted in Equation 2.14 is calculated. In Figure 2.8 the calculation and resulting
STMPS and SSMPS are visualized as examples. The feature extraction from the STMPS and the
SSMPS is elaborated in subsection 3.4.3.
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Exemplary depiction on the calculation of the summed modulation power spectrum.
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2.4 Fundamental Frequency

The estimation of the fundamental frequency is necessary for the feature extraction mentioned in
section 3.4. The estimation of the analyzed sung vocal signal’s fundamental frequency is obtained
using the SRH-pitch tracker proposed in [9], which is based on the summation of a residual signal’s
harmonics (SRH). The residual signal is calculated by glottal inverse filtering with a roughly estimated
all-pole vocal tract filter. As Kraxberger et al. already discussed the limitations and thorough analysis
of this pitch tracking algorithm in [4], a detailled description of the fundamental frequency estimation
using the SRH method is not added to this thesis.

2.5 Support Vector Machine (SVM)

As discussed in section 2.1 the classifier used to process the descriptive features and execute the
classification in this thesis are support vector machines (SVMs). Support vector machines are by
default binary classifiers, meaning they are only able to separate two classes. Thus, a theoretical
explanation of a SVMs labelled feature set 2~ consisting of data samples x1, ..., xy, that comprise
class descriptive features, e.g. the phonation type features used in this thesis, and binary feature labels,
also called rargets t,, are presupposed. Hence, the labelled dataset can be written as a set of tuples:

X ={(x1,t1), ..., (@Ns tNe )} xn €RP) € {—1,1}) (2.15)

The idea behind SVMs is a two class classification problem employing a linear model. With it the data
samples x,, located in the D-dimensional input space are projected onto a (D — 1)-dimensional linear
subspace, called the decision surface. This projection yields a signed measure of the perpendicular
distance of the data samples x,, to the decision surface, given by the value of y(x,,) [5, p.182]. There-
fore, points located on the decision surface are characterized by y(«,) = 0, which is the defining
relation for the so-called decision boundary [5, p.182]. The orientation of the decision boundary is
fixed by the vector w, which is orthogonal to every vector lying within the decision surface and a bias
term b is added, which shifts the surface [5, p.324]. It is assumed that the decision surface separates
the two classes linearily and thus, the linear model y(x,,) can be written as denoted in Equation 2.18.

y(xy) =wla, +b (2.16)

Binary target values/labels #,, are then estimated by checking the sign of y(x,,) using the signum
function as denoted in Equation 2.17. In machine learning terms the signum function, in this context,
represents a so-called activation function.

tn = sgn(y(wmy)) (2.17)

Naturally, it can’t be assumed that all data is linearly separable. Thus, a non-linear feature-space
transformation denoted with ¢(-) is applied to the data. Hence, Equation 2.18 becomes:

y(zn) = wd(xn) +b (2.18)

The idea of the non-linear feature space transformation is to transform the data into a higher dimen-
sional space where they are linearly separable. As this feature space transformation is done with
so-called kernel functions, this is also referred to as the kernel-trick [5, p.292] which is discussed in
subsection 2.5.2. For the model described in Equation 2.18 this means that linear separability can
again be assumed.
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2.5.1 Margin Maximization

If a feature set is now linearly separable there still remains the question as to which of the possible
decision boundary options is chosen to separate the data. The decision boundary is defined by

y(@n) = wld(zn) +b=0 (2.19)

as the vector w, which spans the subspace on which the data is projected on, is perpendicular to the
decision boundary. An academic example of problem is depicted in Figure 2.9 where three exemplary
options for the decision boundary are illustrated.

exemplary 2D-feature space with different decision boundaries
X

-0.1
-0.2 -

-0.3+

T2

-0.4

-0.5

-0.6

0 0.05 0.1 0.15 0.2 0.25
T

Figure 2.9 Academic example of linear separable data with various decision boundaries.

Each of the three boundaries in Figure 2.9 separate the data. In order to choose the optimal decision
boundary an optimization strategy is necessary. Thus, the term margin is introduced. The margin
is given “[...]Jas the perpendicular distance between the decision boundary and the closest of data
points[...]*“ [5, p.327] and is visualized in Figure 2.10. The idea now is to maximize the margin in
order to be able to choose the optimal decision boundary. To do so, the distance d,, of a point x,, to
the decision boundary is defined [5, p.327]:

dp () = - (2.20)

The points closest to the decision boundary are called support vectors xsy and their target value is
either t,, = —1 or t,, = 1. The distance of the support to the decision boundary is given with:

dn(@sv) = min[t,d,] @.21)
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Thus, the margin can be optimized by maximizing the support vectors’ distance towards the decision
boundary with respect to the model parameters w and b. The maximum margin solution is obtained
if Equation 2.22 is solved [5, p.327]

wl ¢(x,) + b)
argmax {d, (xsy)} = argmax {mnin[tndn]} = argmax { min |t,

w,b w,b w,b

As the term HTlll is not dependent on n it can be pulled out of the min-operator and the maximum
margin objective becomes [5, p.327]:

argmax {leHrrgn [tn (’ngZ)(:I:n) + b)} } (2.23)

w,b

It is now possible to set up the following constraints:

tn (ngb(ar:n) + b) > min [tn (wTd)(mn) + b)}
(2.24)
min {tn (quﬁ(:cn) + b)} L1

This is possible because the term t,w” ¢(x,) + b is always larger than the same term under the
influence of the min operator and additionally it is possible to scale the term mnin (tanqﬁ(acn) + b)
so that it equals 1 [5, p.328]. Therefore, the margin objective can again be reformulated into:

1
argmax{} T tn (wT(b(wn) + b) >1 V n=1,...,N (2.25)
wb  w]|

Maximizing m is equal to minimizing %||w||?. Thus the final form of the margin objective is given
with:

1
argmin{|]w\|2} : tn<wT¢(wn)+b)—120 V n=1,...,N (2.26)
w,b 2

)

An exemplary feature space containing linearily separable data, separated by the decision boundary
which is defined by margin on which the support vectors are located is summarized in Figure 2.10.
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academic example of 2D feature space with linearly seperable data
support vectors, decision boundary and margin
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Figure 2.10 Academic example margin, support vector and decision boundary definition. Source:

[5, p.327]

2.5.2 Non-Linear Feature Space Transformation using Kernel Functions

The margin objective mentioned in Equation 2.26 is a convex optimization or quadratic program-
ming problem which is solvable with the so-called Lagrangian approach [5, p.328]. The Lagrangian

approach utilizes Lagrangian multipliers o = [av, ..., an]” and is given as:
1 N
L@ujua)::iﬂuﬂﬂ——E:(Llﬁn(uﬂ#(mn)+b)—50 2.27)
n=1

The optimum solution can now be calcluated by forming the derivatives of L(w, b, o) with respect to
w and b and setting them to zero [5, p.328]:

N N
W =w - Z antnd(xn) = 0=w= Z antnd(@n)
n=1 n=l (2.28)

OL(w,b,a) L | N

The conditions formulated in Equation 2.28 can be applied into Equation 2.27, where w and b have
been eliminated due to the derivation. This yields L («), the dual representation of the maximum
margin problem, which introduces the already briefly mentioned kernel functions k(x,,, ,,) into the
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dual representation [5, p.329]. The

N
= Za
n=1

L\DM—~

N N
ggaatt d(xn)" O (Tm) (2.29)

k(@n,@m)
The dual representation L (c) is then maximized in regards to o under the constraints:
an >0, Yn=1,...,N
(2.30)

N
Z apty, =0
n=1

As already mentioned, the aim of the usage of kernel functions is to search for a higher dimensional
space. In this higher dimensional space the data is assumed to be linearly separable. Thus, using the
Lagrangian approach and the kernel function k(x,,, ,,,) = ¢(x,)” ¢(2,,) new data is now still classi-
fiable by observing the sign of y(x,,). However, the initial form of Equation 2.19 can be reformulated

into:
N

y(x,) = wlé(x,) +b= Z Atk (T, Tn) + 0 (2.31)
m=1
There are several possible kernel functions to choose from, but the kernel used in this thesis is the
radial basis function kernel or also called Gaussian kernel, which is given with Equation 2.32.

k(@ ) = ¢ 3021 En @l (232)

In this context the kernel funcion is not to be interpreted as a probability density function. Thus,
the parameter o2 in Equation 2.32 is no statistical variance, it is simply viewed as a hyperparameter
which controls the width of the kernel [5, p.297]. Equation 2.32 is often also denoted with:

k(@ @) = e VEn—aml? (2.33)

, where the term # is replaced with ~. This notation is used in the software application Matlab,
where the hyperparameter -y is referred to as the kernel scale.

2.5.3 Penalization of Non-Separable Data

In the dual representation shown in Equation 2.29, the assumption that the data is completely linearily
separable is still presupposed. This is often also referred to as a hard margin constraint, meaning no
points are located inside the margin and all data points are correctly classifiable. Nonetheless, this is
often not the case, so in order to deal with data samples that lie within the margin or on the wrong
side of the decision boundary the SVM has to be modified to the extent that some misclassifications
are allowed [5]. In order to do so so-called slack variables &, > 0 for each data point are introduced.
The slack variables are defined as follows:

6 {o, Vo i y(e,) ={-1,1} (234

‘tn - y(wn)‘ ) else

This means that if the data samples are on the margin the slack variable equals &, = 0 and otherwise
the variable equals the distance towards the correct side of the margin. Thus a data point on the
decision boundary has a slack variable of &, = 1, data points with &, < 1 lie on the correct side of
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the decision boundary, but within the margin area, and data points with &, > 1 are misclassified [5].
An exemplary depiction on how the slack variables are defined is visualized in Figure 2.11.

academic example of 2D feature space non separable data
margin with non separable points and slack variable &
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Figure 2.11 Academic example on margin with non separable data and slack variable &, which
penalizes the distance of support vectors that lie within the margin, support vectors are
circled in red. Source: [5, p.332]

Introducing the slack variables &, reformulates the margin objective and constraints set in Equa-
tion 2.26 such that:

N
argmin {C Z &n + ;|w|]2} I (ngb(mn) + b) >1-& V n=1,....N (235
w,b,& n=1

The introduced parameter C' > 0 controls the trade-off between the penalizing slack variables &, and
the margin [5, p.332]. When following the objective formulated in Equation 2.35 the hard margin is
relaxed and the goal of the margin objective from Equation 2.26, is now to maximze the margin whilst
points that lie inside the margin are softly penalized. This is the reason why this is also often referred
to as a soft margin SVM [5]. The maximization of the soft margin using the objective of Equation 2.35
is again solvable with Lagrangian multipliers as done in Equation 2.27, with the only difference that
now a third partial derivative with respect to 0§, has to be added to Equation 2.28, before the dual
representation can be formulated. In the end, the dual Lagragian for soft margin classification is of
the same form as in Equation 2.29 [5, p.333]. However, the first constraint of the maximization with
regards to E(a) denoted in Equation 2.30 changes to:

0<a,<C, Vn=1,...,N (2.36)

The constraint is also known as box constraint and is controlled through the parameter C, if C' is cho-
sen as a very large value, the margin becomes harder and for C' — oo a hard margin classification with
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the inital objective from Equation 2.26 is obtained. However, if the data is non-separable an increase
of C leads to a SVM classifier that will be overfitted. Higher values of C' suppress misclassifications
within the training process and the SVM class boundaries are adapted specifically towards the training
data, which is followed by poor generalization towards new data as visualized in Figure 2.1.

2.6 Plus-L Minus-R Feature Selection

In order to avoid the curse of dimensionality (see section 2.1) it is important to analyze the present
feature space for overfitting with regards to feature space dimensionality. This is done with the Plus-L
Minus-R Feature selection algorithm (L-R selection). Its aim of is to reduce the dataset to a smaller
presupposed number of samples. However, some features are more informative than others and thus
the L-R selection incooperates a more sophisticated process, rather than just randomly selecting fewer
features. The Plus-L Minus-R feature selection algorithm consists of two steps. The first step is the
L-times execution of a sequential forward selection (SFS) and the second step the R-times execution
of the sequential backward selection (SBS) [63]. If L > R the algorithm starts with an empty feature
set, in which L features are added, using SFS and then the R worst features are discarded using SBS
until the required number of features is achieved. If L < R the algorithm starts with a full feature set
for which R features are removed with SBS and then L features are added with SFS. In comparison to
SFS and SBS the L-R selection overcomes the problem of nesting, which means that selected features
that have been chosen once cannot be removed. [63, p.316].

Sequential forward selection (SFS)

The sequential forward selection starts with an empty feature set %) = {()}. For each iteration k a
feature Z from the full feature set 2" is selected according to:

Z = argmax {J (%, + =)}
argies (2.37)

and added to the subset of selected features %
i1 =Y+ T (2.38)

, where J (%}, + x) is a selection criterion that is evaluated for each iteration and z € 27\ %
denotes that the selected features belong to the subset of features in 2, that have not been selected
yet. SES chooses the features that contribute most towards the selection criterion, if they are added
to the feature selection subset %%, until the required number of features is reached. This bears the
disadvantage that once features have been selected the selection is irreversible (nesting) [63, p.315].

Sequential backward selection (SBS)

In contrast to the SFS, the sequential backward selection (SBS) starts with a full dataset %5 = Z". In
each iteration the features are selected according to:

T = argmax{J (%. — x
e {J (% —x)} (2.39)

and discarded from the subset of selected features %;:

i1 =% — 7 (2.40)
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Again the selection criterion J (%}, — x) is evaluated for each iteration and the features which con-
tribute least to the criterion are discarded until the required number of features is achieved. If SBS
is used alone, it has the disadvantage that once a feature is discarded, it cannot be added back to the
feature selection and also the selection criterion has to be evaluated over a larger number of features,
as it starts with a full feature set which is gradually diminished [63, p.315].

2.6.1 Class Separability Measure

There are several possibilities to choose the selection criterion mentioned in section 2.6, which is
crucial to the execution of the L-R selection. The chosen class separability measure is based on the
Fisher criterion for multiple classes, originating from the linear discriminant analysis (LDA) [5]. The
Fisher criterion of multiple classes is given with:

. WTSpw

= 241
wWTSyw (2:41)

J(W)
where Sp is the between-class covariance/scatter matrix, Sy is the within-class covariance/scatter
matrix and if J(W) is viewed from the LDA perspective, W holds projection vectors in its columns.
In case of LDA these projection vectors are used to project the data to a lower dimensional space (di-
mensionality reduction), whilst maintaining the best possible separability between classes [5, p.189-
191]. However, for the usage of the Fisher criterion as a separability measure in feature selection, W
can be understood as the subset of features, for which the selection criterion is evaluated during the
L-R selection. To calculate the between-class and within-class scatter matrices, the global covariance

N
matrix ¥ defined through the global mean p = % > x, is necessary [63, p.375].
n=1

1 N
S= D (@ —p) (@n—p)" (2.42)
n=1

With N number of observations/data samples and M classes the within-class scatter matrix Sy is
defined with [63, p.375]:

1 M N -
m=1n=1

17 tn =ty
Z. =
" 0, otherwise

(2.43)

The function z,,,, distinguishes if the class of x,, (defined by its target value ¢,,) belongs to the the
N N

class t,, i = ﬁ > Znm@y is the m™ class’ mean and N,,, = >~ Zmn is the number of samples
n=1 n=1
in the m™™ class. The between class scatter matrix Sp is then calculated using Equation 2.42 and

Equation 2.43 [63, p.375].

Mo N,
Sp=%—Sw =73 7 (tm — ) (m — )" (2.44)

m=1
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The main idea behind the Fisher Criterion noted in Equation 2.41 is that good separability is given, if
the between-class covariance is large and the within-class covariance is small, which is not only rep-
resented by the matrix product in Equation 2.41 but also true for the trace' ratio of the corresponding
matrices as proven in [46]. Thus, the selection criterion from Equation 2.41 is replaceable with:

B trace(WTSBW) B trace(SB)

J(W) = = =
( trace(W7T Sy W) trace(SW>

(2.45)

The trace of Sy holds information on the average variance amongst all classes, and the trace of Sp
holds information on the average distance towards the global mean p. Because Equation 2.45 is used
as the selection criterion during feature selection with the Plus-L. Minus-R mentioned in section 2.6,
the matrices Sy and S can be viewed as the scatter matrices of all data points which are represented
by the subset of features, selected in the current L-R selection iteration.

'The trace of matrix is calculated as the sum of its main diagonal elements e.g. trace(A) = ZL Aji [49, p.6]
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3 Analysis and Classification

The methods previously discussed in chapter 2 lay the foundation for the executed classification of a
novel dataset, created at the Institute of Electronic Music and Acoustics at the University of Music
and Performing Arts Graz. Before the classification and analysis of sung vocal signals with regards to
the sung voice quality is discussed, a brief overview on the dataset, its creation and the classification
possibilities that come with it, is given.

3.1 Dataset

The dataset underlying the analysis carried out in this thesis, consists of recored vocal samples of 10
different professional singers (6 female and 4 male singers). The singers were asked to sing a vowel in
one of the voice qualities defined in subsection 1.2.2 (normal, breathy, or pressed). The sung vocals
were recorded by use of of the spherical microphone array proposed in [6], which also allowed an
approximation of the singers directivity pattern. Additionally, the mouth opening of the singers were
measured with a tracking system proposed in [21]. As the focus of this thesis lies in the analysis
and classification of phonation types, the measurements regarding the directivity and mouth opening
are not relevant. Besides the voice quality and the vowel, the third instruction that was given was
the pitch. The pitch range of the samples is depicted in Table 3.1 and the approximate frequencies
of these pitches, assuming equal temperament, can be read from Table 3.1. The reference pitch is
colored in orange. The instructions that were given to the singers were then evaluated in a listening
experiments, in which experts rated the perceived voice quality and vowel.

Table 3.1 Pitches and frequencies for equal tem-
perament. Source: [55]

&) — z pitch | frequency in Hz
| | 1 T Il |
) - ° —— N c 130.813 Hz
C1 e1 91 a1 CZ d2 eZ 92 az
g 195.998 Hz
E? . ct 261.626 Hz
. Il |
i i el 329.628 Hz
N\ c g )
Figure 3.1 Pitch range of samples in the g 391.995 Hz
database. al 440 Hz
c? 523.251 Hz
d? 587.330 Hz
e? 659.226 Hz
g? 783.991 Hz
a’ 880 Hz

The vowels the singers were instructed to sing are /a/, /e/, /i/, /o/ or /u/. The results of the listening
experiment allows a distinction of the vowel with regard to primary and secondary cardinal vowels
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as depicted in the International Phonetic Alphabet (IPA) Chart [3], but due to the fact that this thesis
deals with the classification and analysis of phonation types no further distinction between the vowels
are made and the 5 vowels are referred to as /a/, /e/, /i/, /o/ or /u/. 1f the instructions given to the
singers are viewed as the groundtruth, the full dataset consists of 1140 samples. The distribution of
the 1140 samples with respect to the voice-quality, singers, vowels and pitches are listed in Table 3.2
- 3.4. The singers’ gender is marked in Table 3.2 with (f) for female and (m) for male singers.

Table 3.2 Dataset distribution voice quality vs. singers.

voice quality singer total

S1 S22 S3 S4 S5 S6 S7 S8 S9 S10
H ¢ m O & m m m ()

normal 45 45 30 45 45 45 30 30 20 45 380
breathy 45 45 30 45 45 45 30 30 20 45 380
pressed 45 45 30 45 45 45 30 30 20 45 380

b)) 135 135 90 135 135 135 90 90 60 135 1140

Table 3.3 Dataset distribution voice quality vs. vowels.

voice quality vowel total

la/ le/ fi/ Jo/  fu/

normal 76 76 76 76 76 380
breathy 76 76 76 76 76 380
pressed 76 76 76 76 76 380

by 228 228 228 228 228 1140

Table 3.4 Dataset distribution voice quality vs. pitches.

voice quality pitches total

1 1

g 2 42 &2 g2 a2
normal 20 20 50 50 45 45 30 30 30 30 30 380
breathy 20 20 50 50 45 45 30 30 30 30 30 380
pressed 20 20 50 50 45 45 30 30 30 30 30 380
3 60 60 150 150 135 135 90 90 90 90 90 1140

a

As visible in the total columns of Table 3.2 - 3.4 the dataset is balanced with regard to the instructed
voice quality. There are exactly 380 samples of each requested voice quality. With regard to the
vowels the dataset is perfectly balanced for each voice quality. There are 76 samples per vowel.
When looking at the distribution across the singers it is noticeable that singers S3, S7, S8 and S9 are
the ones with the lowest number of samples in the database. Singers S3 and S7-9 are male singers,
who due to their lower register are also the ones responsible for the samples at the lower pitches c
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and g. The other singers were female singers. So it is worth noticing that the dataset consists of
samples predominantly sung by female singers, which is an important aspect in regards to filling the
gender gap that is present in scientific data, due to the fact that a lot of the fundamental research
carried out in the second half of the 20" century is based on data retrieved by male experimentees;
e.g., the correlates proposed in [15] are all based on calculations that were executed based on samples
recorded with a male speaker, which is, as shown in [67], not completely generalizeable, as there are
gender specific aspects that have to be adressed especially in the context of speech signal processing.
Returning to the composition of the processed dataset, it is visible in Table 3.4, that the fewest samples
are given for the lowest pitches at around 130.813 Hz (c) and 195.998 Hz (g), whereas most samples
are given for the pitches c! and e!.

After recording the sung vocal samples, a listening experiment in which voice quality and vowels were
rated by professionals, e.g. singers, professors and students of linguistic or engineers specialized in
speech signal processing, was conducted. The voice quality rating was executed with the help of a
continuous scale in which the listeners had to rate the perceived voice quality on a range from -1
(breathy) to 1 (pressed). In the listening experiment each recorded sample was rated multiple times
to achieve statistical stability. Now the median voice quality ratings are computed and a k-mediod
cluster analysis performed in Matlab using the kmediods () - command [34] is carried out. With the
k-mediod analysis results the class boundaries of N, s+ = 3 clusters were calculated, which allows a
distinction of the relevant voice quality breathy, normal and pressed. By comparing the median voice
quality rating of each sample to the class boundaries obtained from the k-mediod cluster analysis,
class labels for the three phonation types are created and each sample can be labelled. Henceforth
the labels retrieved from the listening experiment are called experiment labels, the voice quality that
the singers were initially instructed with, during the recording process, are referred to as instruction
labels. A comparison of the instruction labels with the experiment labels in form of a confusion
matrix created with [27] is shown in Figure 3.2.

confusion chart of instructed vs. experiment labels

breathy 26.3%

normal 28.9%
[
w
©
(&)
S

5 pressed 54.5% | 45.5%
>
1]
£

5.7% 47.8% 36.5%

breathy normal pressed
experiment class
Figure 3.2 Confusion matrix comparison of experiment labels and instruction labels.

31



P A.Bereuter 3.1. Dataset

When looking at Figure 3.2 it becomes clear that the samples in which the singers were instructed to
sing with breathy phonation were also the ones that were overwhelmingly ranked with the same voice
quality. Most differences can be detected between the classes normal and pressed. 96 samples, where
the singers were instructed to use normal voice quality were ranked with pressed voice quality and
170 samples where the singers were instructed to use pressed phonation are ranked as normal voice
quality. The deviation between the ratings and the instructions becomes clearer when the column
summary located at the bottom of Figure 3.2 is looked at. 73.7 % of the samples that were instructed
with breathy were also ranked as breathy, 71.1 % of the samples where the singers were instructed
to use normal phonation were also ranked to be of normal voice quality and 54.5 % of the instructed
pressed samples were also ranked as pressed in the listening experiment. The row summaries on the
right hand side of Figure 3.2 give information on how many percent of the experiment labels exhibit
the same voice quality within the instruction labels, i.e. the most notable value is observable for
breathy voice quality. Here 94.3 % of the breathy experiment labels are labelled as breathy within the
instruction labels.

This means that when looking at the dataset with experiment labels the balance with regards to the
number of samples for each voice-quality is skewed. When accumulating the number of samples per
voice quality for the experiment labels, each class has the following number of samples:

Table 3.5 Number of samples per class when using experiment labels.
- breathy voice quality: N, T = 297 samples
- normal voice quality: Ny = 517 samples
- pressed voice quality:  Np'F = 326 samples
NP = 1140 samples

For the sake of completeness the sample distribution across the classes, when using instruction labels,
is summed up in Table 3.6.

Table 3.6 Number of samples per class when using instruction labels.
- breathy voice quality: ~ N{™' = 380 samples
- normal voice quality:  N™' = 380 samples
- pressed voice quality: NI")“St = 380 samples

NSt = 1140 samples

The two sets of voice quality labels and an additional k-mediod analysis of 5 clusters are used to vary
and reduce the dataset. The versatile variation possibilities that this dataset brings about is discussed
in the next chapter.
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3.2 Possible Dataset Variations

Five different dataset variations are subject to the analysis presented in this chapter. With the instruc-
tion and experiment labels it is possible to use the full dataset with all 1140 samples with either set
of labels, yielding the first and second dataset variation. In this chapter these two variations are re-
ferred to by the name of the respective set of labels (instruction labels and experiment labels). The
interchange from instruction to experiment labels allows a performance evaluation of the executed
classification task with regards to the instructions and the results of the listening experiment. Fur-
thermore, a comparison between the behaviour of the machine learning algorithm and the ranking
behaviour of the participants of the listening experiment is possible.

In addtion to the two sets of labels and the three class categorization, the k-mediod algorithm men-
tioned in section 3.1 was also used to obtain class boundaries for N, = 5 clusters. These five
clusters can be viewed as five classes namely, breathy, slightly breathy, normal, slightly pressed and
pressed. Within the five cluster analysis the pressed and breathy class now contain samples that were
more confidently rated with the respective voice quality. The labels obtained from this cluster anal-
ysis and the comparison of instruction and experiment labels enable the reduction of the dataset for
three voice quality classes, which contain more unambigious samples. This results in 3 additional
dataset variations, which are mentioned in subsection 3.2.1. The balancing step of the dataset varia-
tions with regard to the number of samples per voice quality class using the random undersampling
(RUS) method, is mentioned in subsection 3.2.2.

3.2.1 Reduced Dataset Variations

First dataset reduction

The comparison of instruction and experiment labels allows a reduction of the data to the part where
the experiment and instruction labels coincide. This leads to a dataset which is also validated by the
listening experiment. If this is done, the number of samples of the dataset is reduced to 757 samples
from the inital 1140 samples. When looking at the sample’s distribution across the three classes the
number of samples per class are given with:

Table 3.7 Number of samples for the first dataset reduction containing only samples where the ex-
periment and instruction labels coincide.

- breathy voice quality:  NRd! = 280 samples
- normal voice quality: ~ NRed! = 270 samples
- pressed voice quality: Ng}ed] = 207 samples

NRedl — 757 samples

This first reduction stage of the dataset is further on referred to as the first dataset reduction.

Second dataset reduction

Further reduction can be executed by discarding the slightly classes that are given through the 5-
cluster-analysis, resulting in an overall amount of 472 samples, which in this thesis is adverted as the
second dataset reduction. Across the three classes the 472 samples are distributed with:
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Table 3.8 Number of samples for the second dataset reduction containing only samples where the
experiment and instruction labels coincide and no samples of the “slightly* classes.

- breathy voice quality: Nl?ed I — 161 samples
- normal voice quality: ~ NRe4Il = 211 samples
- pressed voice quality:  NX4! = 100 samples

NRedIl — 479 samples

Third dataset reduction

Even though there is little to non correlation between the discarded samples in the first and second
dataset reduction and the singer’s gender (see Table A.2 and A.6), a gender homogenous dataset
reduction is introduced. Additionally this provieds a more compact pitch range, within the dataset,
which is often a crucial aspect in signal processing based analysis of singing voice. There often exist
correlations towards the fundamental frequency, e.g. as shown for the vocal tract filter estimation
executed in [4]. Hence, the third dataset reduction is introduced.

The third dataset reduction is achieved by taking the previously discussed second dataset reduction
and limiting it to the samples of the female singers. Thus results in samples with a more compact
fundamental frequency range and neglects the lower pitches ¢ and g. This leaves 345 samples, which
are split into the three classes according to the following numbers:

Table 3.9 Number of samples for the third dataset reduction containing only samples by female
singers, where the experiment and instruction labels coincide and no samples belonging
to the slightly classes.

- breathy voice quality: Nt}}ed T — 121 samples
- normal voice quality: ~ NR4II — 156 samples

- pressed voice quality: Ng}ed ' — 68 samples
NRed 1T

= 345 samples

In order to provide some context on how the discarded samples for the first and second dataset re-
duction are distributed over voice-quality, singers, vowels and pitches, section A.1 is added in the
appendix. In it, tables containing the number of discarded samples in absolute and relative values
and their relation towards the voice-quality, the singers, the vowels or the pitches are listed. This
also indirectly provides insight into the voice quality rating behaviour summarized in Figure 3.2, be-
cause possible accumulations of discarded samples with regards to voice-quality, singers, vowels or
pitches, indicate a reason for the discarding of these samples. Concerning the instructed voice quality
Table A.1 reveals the same as Figure 3.2. The most samples are discarded for the pressed instruction
class, as this is also the class with the most samples where experiment and instruction lables do not
match. Also, it is visible that the highest numbers for the first and second datset reduction mostly oc-
cur for the same singers, vowels and pitches. When looking at the vowels it is visible that there is no
prominent vowel for which the most samples are discarded. For the first and second dataset reduction
the discarded samples are evenly discarded over all vowels. The discarded samples in context with
the sung pitches reveal that the relative values in percent are mostly evenly distributed, only the high-
est two pitches, g2 and a? stand out. Concerning the singers S1 exhibits the most discarded samples
in terms of absolute values and S8 shows the highest relative value. Because S1 is a female singer
and S8 is a male singer, the indication is given that gender did not seem to play a vital role in the
phonation type ranking, which yielded deviating instruction and experiment labels. Further analysis
targeting the sources of the deviation between instruction and experiment labels, e.g. through a thor-
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ough analysis of each listeners rating behaviour separately, is not included in this thesis, because this
thesis focuses on the analysis and classification of the resulting dataset and its variation possibilities.

Concluding, depending on the used dataset variation the number of samples Ngamples 1S given as:

NSt = 1140 samples, for instruction labels

NP = 1140 samples, for experiment labels

Namples = { NR4I = 757 samples, for the first dataset reduction 3.
NRedIl — 472 samples, for the second dataset reduction
NRed Il — 345 samples, for the third dataset reduction

3.2.2 Dataset Balancing

In the classification task described in this thesis, phonation type descriptive features are calculated
for all underlying recorded sung vocal samples, resulting in a so-called feature set, presented in sec-
tion 3.1. The feature set consist of observations or observation samples which describe a certain
aspect of the sung vocal recordings mentioned in section 3.1 and the term dataset refers to the sung
vocal recordings. However in the context of the dataset reductions presented in subsection 3.2.1 and
the balancing step proposed in this section the terms can be used synonymously. Because the pro-
posed reduction steps and balancing steps, solely depend on the voice quality labels assigned to each
feature set observation or sung vocal recording in the dataset. The voice quality labels of an observa-
tion and of the sung vocal recording are equivalent. This means that the proposed dataset reductions
are also applicable for the feature set, where the discarded samples now refer to an observation sample
contained in the feature set.

The usage of the mentioned dataset variations result in imbalanced feature- or datasets. “Imbalanced*
means a dataset has an unequal number of data samples per class [13]. This is the case for all the
dataset variations mentioned in section 3.2, except if instruction labels are used. The handling of such
imbalanced datasets is a crucial aspect of ML based classification tasks and therefore this section pro-
vides information on how the topic was handled during the course of this project.

With regards to the instruction labels the dataset is balanced, meaning the same amount of samples is
observable for each voice quality class. However, when the experiment labels come into play, either
in form of labels for the full dataset or in form of the dataset reductions mentioned in section 3.2, the
equal distribution of samples per class gets skewed, which introduces a bias towards the class contain-
ing the majority of the samples [13]. One could argue that the model focuses more on the data with a
higher number of samples per class. This is a common problem encountered in machine learning and
one of the easiest ways to counteract is a method called random undersampling (RUS), mentioned
in [13, p.83], which basically states that a dataset can be balanced by randomly discarding the major-
ity class examples, thus ensuring that the number of samples in all classes is limited to the minimal
number of samples occuring within a class. Once more this yields a reduction of samples. A summary
of the number of samples before and after random undersampling is listed in Table 3.10. The number
of samples after random undersampling (RUS) is indicated in the symbol variables’ indices.
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Table 3.10 Number of samples summary for all dataset variations before and after random under-
sampling in order to balance the dataset, the units of all numbers in this table are given

as number of samples.

dataset variation voice quality total
breathy normal pressed
instruction labels ~ N™ =380  N™ =380  N™ =380 N™ =1140

instruction labels
(RUS)

N li;,ll%tUS = 380

Ninys = 380

n

Ni'Rus = 380

Nt = 1140

experiment labels

NP = 297

Ny =517

NP = 326

NP = 1140

experi'fﬁ%’g labels  Nyxus = 297  Nirus =297 NyRus = 297 Ngys = 891
first dataset reduction  NX'' =280  NRedl=270 NRedl=207 NRedl =757
first dataset reduction  NFRs =207 N5 =207 NRRUs =207 NEgs' = 621

(RUS) ' ’ ’

second dataset reduction

second dataset reduction
(RUS)

NRe = 161

NR&US = 100

NRedll = 211

NRRUS = 100

NReAT =100

NXRUs = 100

NRed o_ 472
NReAIl = 300

third dataset reduction

third dataset reduction
(RUS)

Ntl)Qed 1) 121

Red IIT __
Nygrus = 68

NI{led m _ 156

Red IIT __
Nprus = 68

N;Qed mr _ 68

Red Il _
Nprus = 68

NRedIII _ 345
NRgs™ = 204

use all samples
& inst. labels
"""""""" > (balanced data)

random
undersampling

raw dataset A

abstract features

descriptive of

voice qualities: instruction

labels’

experiment
labels

- breathy
- normal
- pressed

balanced & labelled dataset variations
breathy, normal & pressed

full + instruction labels (1140 samples)

full + experiment labels (891 samples)
first reduction + labels (621 samples)
second reduction + labels (300 samples)

compare inst.
and exp. labels —>
per class

random
undersampling

- Y L, discard slightly third reduction + labels (204 samples)
' i ; classes
' first reduction
'L J discard male
' .
' second reduction singers
Y
third reduction

Figure 3.3 Processing of raw data in order to obtain a balanced and labelled dataset.

The creation of the different dataset variations including the balancing of the dataset resulting in a
balanced & labelled dataset is summed up in Figure 3.3. The raw dataset consisting of the calculated
features mathematically describing the voice quality and the two possible label sets, the experiment
and instruction labels are marked in red. The three reduction steps are clearly marked at the bottom
of Figure 3.3. At the top, the creation of the two full dataset variations, either with experiment or
instruction labels, is visualized. At the right end of Figure 3.3 the six possible dataset variations are
depicted as a list. The depiction of a processable, balanced and labelled dataset in Figure 3.3 is as a
list is continued throughout Figure 3.3 - 3.5.
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3.2. Possible Dataset Variations

Due to different implementation structures of one ML-classifier presented in section 3.3 an additional
processing step of the balanced and labelled dataset shown in Figure 3.3 is necessary. The certain
classifier structure requires a distinction into a breathy and rest class, whereas the rest consists of
sung vocal samples with normal and pressed voice quality. The rest class holds the majority of the
samples, as it is made up of two classes (normal and pressed). Therefore, the underlying sub-dataset
needs to be balanced in such a way that it consists of the same number of rest and breathy samples.
In order to do so, the balancing can be understood as an additional processing step applied onto the
balanced and labelled dataset resulting from Figure 3.3. This is shown in the processing chain located
at the top of Figure 3.4. The resulting number of samples are summarized in the top half of Table 3.11.

Table 3.11 Number of samples summary for both sub-datasets with and without RUS, enabling the
separate analysis of breathy vs. rest and normal vs. pressed classification.

dataset variation voice quality total
breathy rest
(normal & pressed)
instruction labels ~ N™' = 380 N/t = 760 N{mst = 1140
instruction labels NSt =380 NyP =380  Ni®Gus = 760
experiment labels ~ N,* =297 NP =843 NP =1140
experiment labels ~ N/™' = 297 NP =297 Ny Prus = 594
(RUS) '
first dataset reduction  NR°4' =280  NRedl =477  NRedl =757
first data(slfé Sgeduction NREs =280 NRgh§ =280 NReGhs = 560

second dataset reduction

second dataset reduction
(RUS)

NRedIl — 161

NR&US = 161

NRedll — 311

NRshs = 161

NRedIl — 472

NEedllo — 322

third dataset reduction

third datals{et reduction

Ntl;{ed 11 121

NRRUS =121

NrRed 11 G 294

N =121

NRedl — 345

Red [l __
NyiRrus = 242

dataset variation voice quality total
normal pressed
instruction labels ~ Ni™' = 380 fo’s‘ = 380 Nril{‘;‘ =760

instruction labels
(RUS)

Nis = 380

NI = 380

Nril‘_‘;fRUs = 760

experiment labels

experiment labels
(RUS)

Ny =517
NoBys = 326

N = 326
NoEss = 326

NP = 843
lefg)’RUS = 652

first dataset reduction

first dataset reduction
(RUS)

NRedl =270
NRRUs = 207

NRedl — 207

NYRUs = 207

Nyedl = 477

Nishlos = 414

second dataset reduction

second dataset reduction
(RUS)

NRedl = 211

NRRUS = 100

Nyt =100

NYRUs = 100

NRedlh — 311

Nishls = 20

third dataset reduction

third dataset reduction
(RUS)

Nr}fed m _ 156

Red III _
Nn,RUS = 68

NIl}ed m _ 68

Red Il _
Nyrus = 68

Nyt — 156

Red Il _
Npprus = 136
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The second sub-dataset which the special ML-classifier structure mentioned in section 3.3 requires,
has to consist of only normal and pressed voice quality. The number of samples before and after
balancing using random untersampling are listed in the lower half of Table 3.11. The additional pro-
cessing steps applied onto the balanced and labelled dataset from Figure 3.3, to derive the subdataset
with normal and pressed voice quality is shown in the lower processing chain of Figure 3.4.

This is pointed out in Figure 3.4, where the origin of the balanced and labelled full dataset with ex-
periment labels for the differentiation of normal and pressed phonation consisting of 652 samples,
is again found within the raw dataset. For the other dataset variations of the second classification
stage the resulting datasets from Figure 3.3 are used and the samples belonging to the breathy class
are discarded. This is possible because for the dataset reductions the distinction of experiment and
instruction labels is not relevant anymore, as a reduced dataset only contains samples where the ex-
periment and instruction labels are identical and the random undersampling which has been executed
beforehand and is visualized in Figure 3.3, leads to an already balanced origin dataset for all three
classes.

balanced & labelled dataset variations
breathy & rest

full + instruction labels (760 samples)

e —— full + experiment labels (594 samples)

andom " .
pressTd to rest » und;rsamp“ng first reduction + labels (560 samples)
class

L second reduction + labels (322 samples)
balanced & labelled dataset variations

breathy, normal & pressed third reduction + labels (242 samples)

full + experiment labels (891 samples)
full + instruction labels (1140 samples)
first reduction + labels (621 samples)

second reduction + labels (300 samples) balanced & labelled dataset variations

third reduction + labels (204 samples) normal & pressed
full + instruction labels (760 samples)

full + experiment labels (652 samples)
discard breath " .
raw dataset camples first reduction + labels (414 samples)

second reduction + labels (200 samples)

abstract features

third reduction + labels (136 samples)

descriptive of
voice qualities:
- breathy
- normal T >
- pressed |

discard breathy random
samples undersampling

experiment
labels

— /

Figure 3.4 Separation of the balanced and labelled dataset into two balanced and labelled sub-
datasets containing samples for distinction of breathy vs. rest and normal vs. pressed.

In summary, it can be stated that the task of the dataset balancing, including, random undersampling,
is to ensure that the underlying dataset and its variations always contain the same number of samples
across each class, by looking for the smallest number of samples available for each class, independent
from the number of classes.
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3.3 Implementation of the SVM Classifier

As already mentioned in section 3.2, different ML-classifier structures are used in this thesis. Based
on theoretical considerations the support vector machine (SVM) was chosen as the underlying clas-
sifier with regard to the phonation type. The theory behind SVMs is formulated in section 2.5. The
binary classification structure of SVMs is utilized in different configurations in order to classifiy the
previously described dataset variations as well as the two sub-datasets illustrated in Figure 3.4.

SVM structure

Concerning the structure of the classifier, two different approaches are analyzed in this thesis. On the
one hand, a multiclass SVM-model is created with three binary classifiers. This leads to a classifica-
tion of all three voice quality classes within a single classification stage. On the other hand, a two
stage classification is also executed, this means that the classification into three classes happens in two
stages. More precisely the first classification stage deals with the distinction of breathy samples. In
the second stage the classes normal and pressed are distinguished. This is done to enable the usage of
different feature sets for the different classification stages. So for breathy samples different features
can then be used for the classification of normal and pressed samples. Concerning the implementa-
tion using the software application Matlab each classification stage requires a classifier-model, which
for both structures, the single stage SVM and the two stage SVM, is done with fitcecoc() [31]. In
order to discuss the features and their potential, different performance measures quantifying their clas-
sification capabilities are necessary. These performance measures are discussed in subsection 3.3.1.

Matlab implementation

In this paragraph the practical realisation of the SVM, its structure and its parameters are explained.
Regarding the executed analysis, the classifier model itself is created using the Matlab command
fitcecoc() [31]. As mentioned in section 2.5, a single support vector machine is a binary classifier
allowing a classification of only two classes. Therefore, multiple support vector machines are needed,
if more than two classes are distinguished. The task executed in this thesis requires a separation into
three classes, this is why fitcecoc () was used, as it also enables multiclass SVM classifier models.
In order to create a multiclass SVM-model, a SVM-template has to be created using the command
templateSVM(), thus creating a binary “Learner®, which serves as the classifier template [42]. The
classifier template is handed to fitcecoc() with the function argument ’Learners’. For a three
class classification with one mutliclass SVM-model, three binary classifiers, one for each class, are
needed. These three binary classifiers are then subject to a certain comparison strategy in order to
make a three class separation possible. In this project the strategy pursued is the “one-versus-all*
strategy. This means that in the case of three classes, each binary learner is used to set up a binary
classification problem and one class is assigned to be the positive class, the other two classes are
negative classes meaning that this method tries every possible combination of positive classes [31].
For the three voice quality classes the three binary classification problems would be:

* normal vs. [breathy & pressed]
* breathy vs. [normal & pressed]
e pressed vs. [normal & breathy)

In order to avoid ambiguities where a sample is assigned to multiple classes the raw output of the k"
SVM vy, (x) is required. The raw output of a SVM is the model output y(x) before it is handed to
the activation function as discussed in section 2.5. y (z) is then processed using the argmax(-) or
max(-) operator [5, p.338] in order to find the highest raw output y(x) which also determines the
most likely class label for the processed sample. Each binary classifier outputs a positive yj () if
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the processed sample belongs to the positive class. Thus, according to [5, p.338], the class labels

kmax € {’normal’, breathy’, 'pressed’} of the multiclass SVM and its raw output y(x) for the one-
versus-all approach of multiples classes is predicted with:

Emax = argi:nax (y;c(w))
(3.2)
V(@) = th,., (@) = max (4())
Within fitcecoc() this method is chosen by using ’onevsall’ in combination with the function

argument ’Coding’.

Box constraint

As discussed in subsection 2.5.3, the box constraint C' from Equation 2.36 controls the penalization
of misclassifications in a SVM. For all SVM models used in the analysis mentioned in this chapter, C'
is set to the default value 1. Initially, a hyperparameter optimization including a grid search, provided
with Matlab’s fitcecoc() [31], which iteratively adapts the box constraint and the kernel scale
(mentioned in the next paragraph), was carried out. However, the results achieved with the parame-
ters resulting from this optimization procedure, produced comparable results to the results achieved
with the default valued box constraint and the kernel scale estimation method mentioned in the next
paragraph. Additionally, the runtime, especially the training time, is reduced abundantly when using a
fixed box constraint value. This is of importance as the evaluation process according to the measures
discussed in subsection 3.3.1 includes multiple executions of the classification process in order to be
able to assess the statistical deviations of the calculated measures.

Kernel function and kernel scale

A vital parameter of an SVM is the kernel function which is extensively discussed in subsection 2.5.2.
For the voice quality classification a radial basis function (rbf) kernel is used, using the function
parameter ’KernelFunction’ when the binary learner template is created with templateSVM()
of [42]. The parameter that comes with a rbf kernel is the kernel-scale v (see Equation 2.33). In
Matlab it is possible to set the kernel scale value to ’auto’ using the ’KernelScale’ function
argument of templateSVM() [42]. Using ’auto’ automatically fixes the kernel scale by executing a
heuristic procedure, where the used training set is subsampled. Unfortunately, a detailed description
of this heuristic method is not mentioned in [42]. However, the Matlab code which is executed when
using the kernel scale value *auto’, can be viewed by entering the command “edit classreg.
learning.svmutils.optimalKernelScale® into Matlab’s command window. Within the code
it becomes visible that the heuristic method for two class learning involves the calculation of the
median Eucedian distance towards the other class’ nearest neighbours. More precisely, this means that
the Eucledian distance of a sample towards the nearest neighbour of the opposite class is calculated
for 100 observations per class. These 100 observations are subsampled from the underlying feature
set. The kernel-scale is then ultimately chosen as the median value of the the subsampled data points’
Eucledian distances.

When fitting a SVM-model with >auto’ it is important to know that the results can deviate from one
function call to another. Therefore, a function was written which allows the iterative execution of the
SVM fitting process with fitcecoc () and the return of the kernel scale to obtain several estimations
for choosing the kernel scale. The mean of the kernel scale can then be handed to the actual SVM-
template that is fitted to perform the phonation type classification. This is done to surpress the statistic
variance that would originate from the kernel-scale variation, if the same classification process with
the same features would be carried out a multiple times. For the feature selection procedure described
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in section 3.5, 50 iterations were used to determine the kernel scale. 500 iterations were used in the
performance overview depicted in Figure 3.8 and Figure 3.9 of subsection 3.4.1.

3.3.1 Performance Measures

The dataset or one of the variations mentioned in section 3.2 are the starting point of a ML-based
classification task whose processing steps are outlined in section 2.1. Depending on the number of
classification stages the measures are calculated once or twice. Thus, the distinction achieved by the
two stage classification model results in separate performance measures for each stage. Allowing an
evaluation of each classification stage and also a comparison on which classes are more distinctly
identifiable. The calculation of the performance measures using the single stage classifier model is
visualized in Figure 3.5. For the two stage SVM-model the illustrated schematic and the depicted
processes are simply duplicated but only differ in the underlying dataset and its variations, as the
stages of the two stage SVM only classify two classes. This means that the depicted balanced and
labelled dataset variations of Figure 3.5 would have to be replaced by the ones shown on the right end
of Figure 3.4 indicating that the depicted calculation process of Figure 3.5 is built modularily as only
the underlying data varies but the performance measure calculation remains unchanged.

imbalanced & labelled dataset variations
breathy, normal & pressed

full + instruction labels (1140 samples)
full + experiment labels (1140 samples)

balanced & labelled dataset variations | |first reduction + labels (757 samples)
breathy, normal & pressed second reduction + labels (472 samples)
full + instruction labels (1140 samples) third reduction + labels (345 samples)
full + experiment labels (891 samples) classify full
first reduction + labels (621 samples) dat, data —> overall score
second reduction + labels (300 samples) moder|_| Predict ()
third reduction + labels (204 samples)
L
[ e | | claSSIfy test
training data H test data = data —»’ test score ‘
' .
J moder| | Predict ()
o] classify (
= data P A
3 training data | ——>| training score
E modd| | predict () ‘ J
=
o
5 fit cross validate calculate mis-
<= model model| g .
5 SVM model | f--i--->| model | |- » | classification
© % |£itcecoc ()| [ aam| |crossval () [aat| kfoldLoss ()
data
-
run 1 sub-test sub-training sub-training sub-training sub-training i S B o
data data data data data SR TGLEFy EELNEES
training data into average
folds misclassification rate|
data
sub-training sub-test sub-training sub-training sub-training ‘ ) §
run 2 data data data data data e
rate
run 3 sub-training sub-training sub-test sub-training sub-training
data data data data data
run 4 sub-training sub-training sub-training sub-test sub-training
data data data data data
uns sub-training sub-training sub-training sub-training sub-test
data data data data data
1t Fold: 219 Fold: 31 Fold: 4t Fold: 5t Fold:

Figure 3.5 Data split and calculation of performance measures.

Training and test score

The underlying dataset (or a variation of it) is randomly split into 80 % training data and into 20 %
test data, also referred to as the hold-out set. The training data is used to fit the SVM-model using
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Matlab’s fitcecoc(). The trained model is then further processed using the Matlab-command
predict () [38], this command takes data and a trained SVM-model and assigns each sample to a
class. The training and test score is then calculated as the percentage of correctly classified samples
of the respective set, which is formulated in Equation 3.3 and 3.4.

# (correctly classified training samples) TP+ TN
- 2100 % = - 100
Puain # (training samples) @ TP+TN+ FP+FN %
(3.3)
# (correctly classified test samples) TP+TN
= -100% = -100 34
Prest # (test samples) A= TprTNy FPLEN (0% G

The training and test scores always have to be viewed in relation e.g. a model with a relatively large
deviation between both scores exhibits overfitted behaviour [5, p.25-26]. Ultimately the test score also
holds information on the generalizability of the classification, it shows how well a model performs
on data that the model hasn’t seen before. The operator #(-) denotes the “number of operator and
in order to identify the number of correctly classified training or test samples, the predicted labels
(class predictions) are simply compared with the previously assigned true labels defined by the used
dataset variation mentioned in section 3.2. The correcly classified training or test samples are given
as the sum of the true positives (1'P) and true negatives (1T'N), denoting the correct classifications of
the positive and negative class for either training or test data. The overall amount of training or test
samples is calculated as the sum of all true positives (1" P), true negatives (1'IV), false positives (' P)
and false negatives (F'IN'), where F'P and F'N respectively denote the false classifications within the
positive and negative class.

Misclassification rate

Another measure that strongly correlates with the fest score is the misclassification rate. This measure
allows the assessment on the percentage of wrongly classified samples, which are to be expected of
a trained model. In the context of this thesis the misclassification rate is calculated through a 5-
fold crossvalidation, using the commands crossval() [28] and kfoldLoss () [33] as indicated in
Figure 3.5. The function crossval() only obtains the SVM model that has been fitted with the
training data. In Matlab the SVM-structures are cached with the underlying data, so if crossval ()
obtains the trained SVM model, the underlying training data is also handed to it inherently. With
crossval() a cross validation object is created. Within the crossvalidation object the underlying
training data is separated into five equally sized data blocks, also called folds as indicated in Figure 3.5.
The crossvalidation object, which again inherently includes the training data split into 5 folds, is
then handed to the function kfoldLoss (). It executes 5 runs, in which 4 folds are used as “sub-
training data* and 1 fold is used as the “sub-test data“. The sub-training data is used to train a
SVM-model with the same specifications as the initally fitted SVM-model, which was handed to
crossval (). The misclassification rate is evaluated for each sub-test data fold in each run [5, p.33].
The misclassification rates calculated in each are then averaged across the 5 runs, leading to what
in [31] is referred to as the generalized classification error. As the terms classification error and
misclassification rate are often used to describe equal measures, it is important to note that in this
thesis the measure referred to as the misclassification rate is an averaged measure and for one fold it
is defined as the percentage of incorrectly classified samples, in accorrdance with [48, p.10]. The term
“classification error* is slightly more general and it is also often used synonymously with the term
“classification loss*, especially in the Matlab documentation [31], [33] and [28]. Mathematically, the
misclassification rate is calculated according to Equation 3.5 and 3.6, where ppisclass, ; describes the
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misclassification rate of the j™ fold and S is the number of folds.

# (incorrectly classified test fold samples) FP+ FN
-100% = -100 %
# (test fold samples) TP+TN+ FP+ FN

Pmisclass, j =

3.5)

Equation 3.6 denotes the averaginge of pmisclass, j across the folds, resulting in the third performance
measure Pmisclass, referred to as the misclassification rate.

S

_ 1
Pmisclass = g Z Pmisclass, j 3.6)
j=1

For the evaluations carried out in this thesis the number of folds was chosen with S = 5 folds. The
test score pregt,; and misclassification rate of one fold show the following relation:

Pmisclass,j = 100 % — Drest,j (3.7

As visualized in Figure 3.5 it has to be kept in mind that pie,; is calculated for each test fold of the
training set, whereas pg as noted in Equation 3.4 is a seperate measure and is calculated for the
hold-out set which takes no part in the calculation of the misclassification rate. Nevertheless, as both
measures describe the generalizabilty, but are subject to different data, Equation 3.8 does not hold for
Drest and Pmisclass, DUt it can be seen as an approximation:

pmisclass ~ 100 % — Dtest (38)

Overall score

The third measure calculated to evaluate the performance of the classification task is the overall score
which indicates the overall percentage of correctly classified samples:

# (correctly classified samples) TP+TN
-100 7% = - 100 39
# (samples) % TP+TN+ FP+ FN % (39)

Pall =

The underlying samples are all contained in the processed dataset variation, meaning the underlying
trained classification model (either single stage or two stage SVM) has processed all available data
within the used imbalanced dataset variation and predicted their classes.

To conclude the performance measures it is important to note, that apart from the misclassification
rate, all measures introduced in this chapter are presented as values, which are calculated once. How-
ever, from this point on each calculated performance measure mentioned in this thesis, is subject to an
averaging process. The random split into training and test data as well as the random undersampling
mentioned in subsection 3.2.2 introduce a random component into the SVM-classification procedure.
In order to present statistically stabilized performance measures each classification, carried out to
calculate the measures, is executed multiple times. For the misclassification rate this means, that
each misclassification rate evaluation presented in the following chapters is subject to a further av-
eraging processes, in addition to the inherent averaging procedure, which is already included in the
misclassification rate’s crossvalidation calculation process, depicted in Figure 3.5.
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3.4 Abstract Features and their Parameters

Possible variations enabled through the comparison of experiment and instruction labels are exten-
sively discussed in section 3.2. So far the descriptive feature dataset has not been discussed, it was
only mentioned that they consist of an abstract set of descriptive voice quality measures. What fea-
tures these are and what augmentations as well as configurations were considered are subject of this
section.

3.4.1 Mel Frequency Cepstral Coefficients

The underlying theory on the Mel frequency cepstral coefficients (MFCCs) is mentioned in section 2.2
and its modifications in section 2.2. This section deals with actual feature extraction from the recorded
vocal samples, which settings are used and in what way they are modified. Resulting in a list of aug-
mented MFCC Features, whose capabilities with respect to voice quality classification are then com-
pared in an overview. This allows to narrow down multiple possible feature sets to one MFCC feature
set whose performance is in detail analyzed in terms of a feature selection algorithm in section 3.5. In
general the MFCCs are derived with the calculation steps listed in section 2.2. Yielding the potential
of modification for the following aspects:

* filterbank modification
« filterbank center frequencies modification
* cepstral liftering

The main outline for the calculation of the MFCCs and the variants in this thesis is provided by the
well established HTK "[...]a toolkit for building Hidden Markov Models (HMMs). " [66, p.2], with
the aim of automatic speech recognition. One of the main features used in HTK are MFCCs but as
HTK provides its own software architecture and is run through a commando line interface, a Matlab
implementation of the way MFCCs are computed within HTK was created. The functions provided
in [64] served as a template for the calculation of the MFCC variants that are discussed in this section.
Before a MFCC variant is calculated the following pre-processing steps are executed:

1. signal scaling

» the signal is scaled with 2% in order to use samples in the range of 16-bit shorts as this is

the underlying datatype in of HTK proposed in [66].
2. signal blocking

* the input signal is blocked into 80 ms blocks with an overlap of 90 %. The first 0.5s of
each signal are discarded. This is due to the fact that the singers started singing with a
closed mouth, which was necessary for the directivity pattern estimation, that has also
been carried out in the recording process. The opening phase of the mouth is included in
the recorded sample, resulting in a perceptible humming sound which is transforming into
the sung vowels. This humming sound, which resembles a voiced /m/, lasts approximately
0.5s and, thus is cut off. This blocking is later also required for the fyp-estimation men-
tioned in subsection 3.4.2, in order to provide a statistical foundation, by creating multiple
estimates for one signal. The blocking parameters chosen in accordance with [4], as the
same fp-estimation procedure was used in it. Concerning the MFCC calculation the coef-
ficients are calculated for each signal block, but for the following classification process no
time dependency is investigated. Therefore, the mean MFCCs are determined reducing
the time domain.
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3. mean subtraction

* Before the MFCC calculation process is carried out on the signal blocks they are centered
by subtracting their means.

4. pre-emphasis filtering

* In order to counteract the natural decline of energy in voiced speech or sung vocal signals
towards higher frequencies, a pre-emphasis filter is applied [52]. The filter is given by a
simple first order highpass with a transfer function of

H(z)=1-az! (3.10)

whereby the slope of the filter is controlled with a and is chosen as the default value
a = 0.97 mentioned in [66]. The filter’s frequency response is illustrated in Figure 3.6

frequency response of the pre-emphasis filter
H(z)=1-az! with a =0.97

logarithmic amplitude in dB

! ! ! ! ! ! ! |
0 1000 2000 3000 4000 5000 6000 7000 8000
frequency in Hz

Figure 3.6 Frequency response of pre-emphasis filter.

Filterbank modification

The spectral averaging of a frequency spectrum into melbands is carried out using triangular shaped
filterbanks as described in subsection 2.2.1. In this project five different filterbanks were used to
calculate variants of MFCCs. The frequency response of these filterbanks are depicted in Figure 2.2.
The five different filterbanks and the corresponding abbreviations used in this thesis are:

1. classic mel filterbank with constant amplitude: ConstAmp

2. classic mel filterbank with decaying amplitude: DecayAmp

3. linearily spaced filterbank with constant amplitude: linear

4. inverse mel filterbank with constant amplitude (inverse first filterbank): InvConst

5. inverse mel filterbank with decaying amplitude (inverse second filterbank): InvDecay

The basis of the filterbank design was enabled by modification of the function fft2melmx .m, which
is contained in D. Ellis’ rastamat library [11]. For the mentioned cepstral coefficient variants Nygr, =
40 filters are used. This leads to the condensing of a sung vocal signal’s frequency spectrum of a sung

vocal signal into 40 frequency bands which are then further processed using the DCT as indicated in
Equation 2.4
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Filterbank center frequencies modification

Two possibilities of modifing the filterbank’s center frequencies are dealt with in this thesis. The two
procedures called Vocal Tract Length Normalization (VTLN) [23] and Vocal Tract Length Pertubation
(VTLP) [16] are used to modifiy the center frequencies of a used filterbank in order to attenuate
the influence of the vocal length of different singers. VTLN uses the frequency warping approach,
from [23] follows the idea of normalizing the vocal tract of each singer, by mapping the vocal length
difference between a singer’s vocal tract and a reference vocal tract by means of a frequency shift
of the filterbank’s center frequencies using the frequency warping factor aytrn. VILP on the other
hand follows the principle of choosing the frequency warping factor randomly, introducing a random
component into the center frequency shift, which can be understood as a vocal tract length whitening
which according to [16] can improve the classification performance. A mathematical description and
analysis of the frequency warping approach proposed in [23] underlying VTLN, which is also used in
the HTK implementation [66] and the VTLP approach from [16], can be found in subsection 2.2.2.
For the realization of VTLN a frequency warping factor is estimated for each sample in the range
of ayrLn € [0.88,1.12] as proposed in [23]. The estimation process including a MMSE estimation
using MFCCs, described in subsection 2.2.2, is executed using reference MFCCs cr that has been
calculated as the average MFCCs of all samples where:

* voice quality : normal
» vowel: /a/
* pitch: a' ~ 440 Hz

is requested. This is the case for exactly nine files contained in the full dataset presented in section 3.1.
An assessment of the frequency warping factor estimation results is possible with Figure 3.7. The es-
timated frequency warping factors &yrtpy for all samples are sorted and set in relation with all pitches
and singers. The course of &ytrn across the singers and pitches allow interpretation on how stable
the estimation is and if there are dependencies between &ytrn and the singer or pitch of a sample.
The results are separated for all vowels by using subplots in order to show deviations in the estimation
results across vowels and visualize correlations between &yt N and the sung pitch or the singer.

If the frequency warping factor estimation would work as pointed out in subsection 2.2.2 little fluctu-
ations for the estimation within the samples sung by the same singer should be anticipated, as &ytLn
should show similar results for the same vocal tract length. However, this is not the case. When com-
paring Figure 3.7(a) and 3.7(b) it is visible that the frequency warping factor estimation is way more
stable when looking at the estimation results from a pitch point of view (Figure 3.7(a)) rather than
from a singer point of view (Figure 3.7(b)). This indicates that the presumed correlation of the fre-
quency warping factor with the vocal tract length (and hence the singer) does not hold for the present
sung vocal signals and the average MFCC reference that is used. A correlation between ayrLn and
the present pitch seems more likely as 3.7(b) presents more stable results. But it is also important
to point out that when comparing the subplots of Figure 3.7(a) and 3.7(b), &ytLn exhibits similar
courses over all pitches and singers across the different vowels, indicating that the influence of the
sung vowel as pointed out in subsection 2.2.2 and more precisely in Figure 2.4 does not seem to be
as drastic.

Concerning the VTLP, the frequency warping factor is chosen randomly as a uniformly distributed
random variable within the interval ayrrp € [0.88,1.12] using Matlab’s rand () function [39].
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Figure 3.7 Estimated frequency warping factor ayrry for all samples set into relation with all
pitches & singers, separated for all different vowels.

Cepstral liftering

The last modification possibilty mentioned for the cepstral coefficient variants dealt within this thesis
is given in form of a possible cepstral lifter. Again HTK [66] acts as a template and a cepstral lifter is
implemented. The effects of the cepstral lifter were already indicated in Figure 2.5. The lifter curve
depicted in Figure 2.5 is created by the proposed default lifter of [66, p.94], where a lifter according
to Equation 2.9 with a lifter parameter L = 22 for N oers = 13 coefficients is proposed. In order to
adapt equal lifter behaviour for Nesrs = 36 coefficients, which are used in the feature comparison
carried out in this thesis, the lifter response is interpolated from 13 to 36 coefficients using the Matlab
function interp() [32]. This lifter response is the one depicted in Figure 2.5. The liftering itself
is then carried out by multiplication of cepstral coeffiecients and the lifter response, resulting in the
scaling properties mentioned in subsection 2.2.3.

Performance overview

5 possible filterbank modifications as shown in Figure 2.2. 3 filterbank center frequency modifications
(no modification, VTLN and VTLP) and a cepstral lifter that can be switched on and off, result in
30 available MFCC feature set variations. For every MFCC variant Ngerrs = 36 coefficients are
calculated, but the zeroth coefficient is neglected, as it only provides information on the average
log-energy of the signal, which does not hold much relevant information on the voice quality or the
singer [52, p.87]. This leaves an overall number of Nypccs = Neoetts — 1 = 35 coefficients which are
further processed.

In order to limit the following analysis, which includes a feature selection algorithm, to one coefficient
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feature set, a performance overview is created where the performance measures from subsection 3.3.1
are evaluated for all possible MFCC variations with 35 coefficients, using the dataset resulting from
the first dataset reduction (see section 3.2). Due to random undersampling applied to balance the
dataset as described in subsection 3.2.2 the underlying dataset is randomly composed. This introduces
a random component into the classification process and hence the previously mentioned performance
measures also exhibit a statistical variation. This is why the performance measures are evaluated
by repeatedly executing the classification process presented in section 2.1 with a single stage SVM,
whose kernel scale is determined with 500 iterations, as mentioned in section 3.3, the box constraint
is fixed with 1. The classification itself using the SVM-classifier model (single stage) is executed
with 100 iterations in order to create Figures 3.8 and 3.9, meaning the performance measures are calu-
clated 100 times. The mean p and standard deviation o are calculated using the Matlab commands
mean() [35] and std() [41]. The first subplot of Figure 3.8 and Figure 3.9 depicts the resulting
performance measures for the cepstral coefficients without center frequency modification (VTLN &
VTLP). The second subplot depicts the performance measures for the cepstral coefficients, where
the filterbank center frequencies are shifted using VTLP and in the third subplot, the results for the
modified filterbank center frequencies using VTLN are depicted. The results dependent on the cep-
stral lifter are visualized in different colors. This enables a comparison of all 30 possible feature set
variations within one plot. For each performance measure a separate plot is added. Figure 3.8 shows
the training and test score in form of 1 = o achieved with each of the MFCC variants. The mean and
standard deviation of the performance measures, indicated by markers and bars are placed over the
filterbank variation abbreviation. Figure 3.9 shows the misclassification rate and the overall score.
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Figure 3.8 Performance overview on MFCC variations: =+ o of training (a) and test score (b) are
evaluated with 100 classification iterations for the first dataset reduction, considering
35 augmented and unaugmented MFCCs respectively for various filterbanks.
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It is obvious that the center-frequency warping with VTLP worsens the performance. The train, test
and overall scores in the second subplots of both Figure 3.8 and 3.9 are visibly lower in comparison
to the unaugmented MFCCs, depicted in the first subplots. The misclassification rate is also higher
for the VTLP augmented MFCCs, spanning a range from a maximum mean value of around 41 %
(DecayAmp without cepstral liftering) to a minimum mean value of approximately 30 % (inverse fil-
terbanks) for the VTLP augmented MFCCs, whereas the misclassification rate unaugmented MFCCs
depicted in the first subplot of Figure 3.9(a), spans a range of 32 % - 24 %. A lower misclassifica-
tion rate and higher test score indicate better generalizability, which is given for the unaugmented
MEFCC variants, depicted in the first subplots of Figure 3.8 and 3.9, in comparison to the augmented
MFCCs. The VTLP and VTLN augmented MFCCs, whose results are visualized in the second and
third subplot of Figure 3.8 and 3.9, show lower fest scores and higher misclassification rates than the
unaugmented MFCCs. The coefficients augmented with VTLN perform better than the coefficients
augmented with VTLP. But compared to the unaugmented MFCC variants the VTLN does not exhibit
improved performance. The VTLN augmentation yields a misclassification rate range from 34 % +
1.5% to 27 % + 1.5 %, whereas the unaugmented MFCCs result in a misclassification rate range of
33% £ 1.5 % to 24 % =+ 1.5 %. The value ranges intersect, demonstrating no significant difference.
But considering the extra computational effort behind the VTLN, the unaugmented coefficients are
preferred.

Furthermore, when comparing the feature set variations in terms of the filterbank type for the unaug-
mented case (first subplot of Figure 3.8 and 3.9), the inverse filterbanks (InvConst & InvDecay)
clearly outperform the other filterbanks. The train, test and overall scores exhibit higher percentages
whereas the misclassification rate is way lower, compared to the other filterbank types. The inverse
filterbanks reach a minimal misclassification rate mean of approx. 24 %, which is 5 % less than the
mean misclassification rate of the LFCCs (1inear) and 8 % less than the mean misclassification
rate of the MFCCs with the classic filterbank using a constant or decaying amplitude (ConstAmp &
DecayAmp). Naturally, the maximal test score is also found for the inverse filterbanks with a score
of 77 % + 3 %, whereby o is slightly deviating, which can be traced back to the statistical variation
brought into the peformance measure by randomly picking and separating the data as mentioned in
subsection 3.2.2. Generally, when looking at the random component within the values, it is visible
that the highest standard deviations are found for the fest score, which is due to the fact that the test
score is only evaluated once for the hold-out set after the dataset is split with the ratio 80/20, as il-
lustrated in subsection 3.2.2. The misclassification rate, on the other hand, is calculated through the
crossvalidation process and is subject to averaging across the different runs, which gives the measure
itself more statistical stability, resulting in a smaller standard deviation margin.

As the best performance is achieved with the inverse filterbanks and only one feature set variation
is further processed and compared to the feature set derived from the modulation power spectrum
presented in the next chapter, one feature set is chosen. Looking at the misclassification rate, the train
score and the overall score, the results of the inverse filterbanks for the unaugmented coefficents are
almost identical, also the influence of the cepstral lifter is very limited. But when looking at the test
score of the unaugmented coefficients calculated with the inverse filterbank with a constant amplitude
shows a slight improvement, if cepstral liftering is applied. Even if the reason of this increase lies in
the previously mentioned emphasized statistical variation within the fest score calculation, the inverse
filterbank with constant amplitude in unaugmented form is used for further analysis, using the feature
selection algorithm, whose results are presented in section 3.5. The cepstral lifter is also kept as this
is also a default property of MFCCs calculated within the HTK implementation [66].

Another aspect that is analyzed and discussed is the rather large mismatch between the test and train
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score observable in Figure 3.8, indicating overfitting of the used classification model.
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Figure 3.9 Performance overview on MFCC variations: 1 + o of misclassification rate (a) and
overall score (b) are evaluated with 100 classification iterations for the first dataset
reduction, considering 35 augmented and unaugmented MF CCs respectively for various
filterbanks.

The feature set containing the Nyrccs = 35 cepstral coefficients, created using the inverse filterbank
with constant amplitude and a cepstral lifter, are calculated for all Ngampies according to Equation 3.1.
In order to allow consistent usage of mathematical variables, the chosen MFCC variant from this point
out are referred to as ¢;_35 in accordance with Equation 2.9, and the dataset holding the 35 MFCCs
calculated for each sample of a chosen dataset variation are noted as:

~(1) ~(1) ~(1)
cl [} C2 ] ce ey 635
2 mrcc = {€1,82,...,835} = : : : : (3.11)
~(Nsamples) ~(Nsamples) ~(Nsamples)
Cl ) C2 [} ce ey C35

The bold notation, indicating the compendium of all 35 coefficients for all Ngamples, depending on the
used dataset variation as presented in Equation 3.1, is also upheld in section 3.5, where the results of
the feature selection algorithm are presented.

3.4.2 Fundamental Frequency

The fundamental frequency is vital for the calculation of the MPS based features mentioned in the next
chapter. Although the information on the requested pitch during the recording process of the dataset
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mentioned in section 3.1 is present, a pitch tracking algorithm is implemented in order to intercept
slight pitch deviations that might have occured during recording. Another point, why a fundamental
frequency estimation was chosen, rather than using the reference pitches, is that for a possible future
real-time implementation a pitch estimation algorithm might be crucial and the implemented pitch
tracker can be viewed as a template implementation. As mentioned in section 2.4 the underlying
pitch tracker was implemented as proposed in [9]. The limitations of the used SRH pitch estimation
technique is extensively discussed in [4]. In order to assess the performance of the FO-tracker on
the audio samples contained in the dataset discussed in section 3.1, an estimation error measure is
introduced in Equation 3.12.

A

fo = foune

-100 % 3.12)
fO,true

€fy =

fo denotes the estimated mean fundamental frequency of a sung vocal sample and fq e is one of the
reference pitches listed in Table 3.1. The error measure ey, is compared to a tolerated error threshold,
which was fixed as an approximate halftone deviation', resulting in a threshold of:

-100 % ~ 5.95 % (3.13)

1
eol = [1- 27

Figure 3.10 shows the calculated estimation error of each file. The various pitches of the files are
coloured differently and the file indices, entered on the x-axis, indicate the last sample, before the
error measures of samples containing different pitches are plotted.

SRH-f0-tracker-performance
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file index
Figure 3.10 Pitch-tracking performance before correction.

There are exactly 32 files for which the tolerated error threshold is exceeded. Considering the halftone
error threshold this yields py, = (1 - %) -100% =~ 97.2 % of the samples where the esti-
mated pitch lies below the error threshold. The estimated pitches of the 32 samples that exceed the

halftone threshold mostly exhibit error measures of 50 % or even 200 % and interestingly enough the

'The threshold in percent does not exactly correspond to & one semitone, as 5.95 % amount to a little bit more than a
semitone downwards, because: |1 — 212 | ~5.95% # |1-27 1z | & 5.61 %. However, the slight deviation is neglected.
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samples which exhibit the highest errors are of pitch a?, the highest pitch contained in the dataset.
It can be anticipated that such high deviations in pitch are the result of misestimations of the pitch
tracker and were not caused during the recording process by the professional singers. If one takes the
pitches listed in Table 3.1 as the groundtruth, a 50 % error corresponds to a pitch that is estimated
an octave too low and an error of 200 % indicates that the fundamental frequency has been estimated
as 3 times the reference pitch, indicating that the third harmonic probably has been mistaken for the
fundamental frequency.

Due to the fact that the information on the reference pitch of each sample is provided with the dataset,
each of the 32 estimated pitches, exhibiting exceeding errors are corrected with the reference pitch.
If the error measure from Equation 3.12 is now computed again and the results are illustrated in
Figure 3.11. It is evident that there are now no more outliers and all of the estimated fundamental
frequencies are now below the halftone error threshold. When looking at the calculated error mea-

SRH-f0-tracker-performance with corrected fO

15 -
ala440 Hz
a2~880 Hz
ISR c1~262 Hz
= c2~523 Hz
i c~131 Hz
5 d2~587 Hz
) e1~330 Hz
LIS 10f €2~659 Hz
= — g1~392 Hz
I g2~784 Hz
§ —— g~196 Hz
& — — error threshold
—
o
o
f 5% pb————_— - —_——_—_
2
= 5
<
R=
- |
3
e L | I I
=1 I
- | | ‘ M ' ““M»
i M
0 I ‘ I | | { Ll ! H | I |
N N Nl o ORI & o o Q S O
NG O N QP § FP
file index

Figure 3.11 Pitch-tracking performance after correction.

sures in Figure 3.11, it becomes visible that the pitches a', ¢, e! and g!, which span a frequency

range of approx. 330 Hz, . . ., 520 Hz, exhibit the lowest errors. This is explainable with the fact that
the dataset consists of samples predominantly sung by female singers, and the mentioned pitch range
corresponds to the moderate lower-mid pitch range of a mezzosoprano, with neither extremely high,
nor extremely low pitches, yielding better pitch controllability [14, p. 132]. However, the SRH pitch
tracker also comes with limitations in regards to higher fundamental frequencies as shown in [4] and
thus, the higher errors for higher pitches, might also be partially caused by the chosen pitch tracker.
A more thorough analysis of correlations between pitch deviations and singers or voice qualities is
not carried out, so the origins of the present pitch deviations are not fully uncovered.

Regarding the notation, the estimated fundamental frequencies for Ngamples Of a analysed dataset va-

ration are noted with fy = { f0,1, fo,g, cey f(), Nsamples}- In addition to the usage of the estimated

fundamental frequencies within the MPS feature calculation, mentioned in subsection 3.4.3 fo is also
incooperated in the classification procedure of section 3.5 as a voice quality feature.
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3.4.3 Summed Modulation Power Spectrum Features

In section 2.3 the modulation power spectrum is theoretically and mathematically described and it
ends with the definition of the summed modulation power spectra which build the basis of the fea-
tures that are derived in this section. The MPS, summed along the temporal modulation and spectral
modulation axis results in:

* the summed temporal modulation power spectrum (STMPS): S, (ftood)
* the summed spectral modulation power spectrum (SSMPS): Sy, (1)

An exemplary depiction of the Sy, (f; ) and Sx, () can be found in Figure 2.8. As shown in Fig-
ure 2.8, the summed modulation power spectra both in the temporal and spectral domain exhibit
decreasing trend for higher modulations. The underlying idea on the feature extraction is to focus on
the discussion of the summed MPS’ peaks, e.g. differences in height or a voice quality dependent
decrease etc. This is done more easily if the peaks are placed on an equal level and the decreasing
trend towards higher modulations is compensated.

Polynomial fitting

The decreasing trend is approximated by application of polynomial fitting using Matlab’s polyfit ()
command [37]. With a polynomial order N1y = 3, the function polyfit () solves for the polyno-
mial:

y(x) = p(x) = pra® + poa® + p3z + pa (3.14)
by solving the linear equation system
y=Xp
y(z1) xf 2l ap 1] (p
y(zo) | 5 23 xb 1| | p, (3.15)
: : p3
y(@nr) o, @3 w1 \pa

with regards to the polynomial coefficients contained in p [37]. X is a so-called Vandermode matrix
[49]. Equation 3.15 is solved for the polynomial coefficients p, within Matlab’s polyfit () using
the backslash operator [36]:

p=X\y (3.16)
Matlab’s backslash operator from [36] employs a QR matrix decomposition in order to obtain the
solution of this equation system. The solution delivers a least-squares polynomial fit of points defined
by € = [x1,..., 2], which are the x-axis values and y = [y(z1), ..., y(zar)]”, the corresponding
y-axis values that are to be approximated with a polynomial. M defines the number of the available
points [37], that are used in the polynomial fitting process.

The polynomial fitting is carried out for both the STMPS and the SSMPS. This is done by solving
. N T
Equation 3.16 with @ = [fiy1,- -, fippm]” and § = [S5 (1) s> S5 (fipear)| for the
polynomial fit of the summed temporal modulation power spectrum p(fi, ). If € = [11,. .., )T
. N T
and y = {SZ (11)4...,5% (TM)] are used, the polynomial fit of the summed spectral modulation
power spectrum p(7) is retrieved. The resulting estimated polynomials are then given with:

p(ftmod) = plft?nod +p2f3nod +p3ftmod +p4
3.17)

p(T) = p17° + pat® + P37+ ps
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It is important to note that for the fitting of both polynomials p(f; ) and p(7) the zero modulation
components were discarded, as they would add an unnecessary offset to the fitted polynomial, dis-
torting the summed modulation power spectra’s trend estimation. Concerning the summed temporal
modulations, all points for which f;_, < 0.5 Hz are neglected. For the summed spectral modulation
power spectrum’s polynomial fitting the points for 7 < 1.1 c}zgzs were neglected. To remove the trend
and to place the peaks on a relatively equal level, enabling a better assessment of several peak pa-
rameters, the approximated trend using polynomial fitting and the summed modulation power spectra
(STMPS & SSMPS) are subtracted, resulting in the STMPS- and SSMPS-residual S’EJCS (fimea) and

SE,res (7). The summed modulation power spectrum residuals are formulated as:

S'E,res (ftmod) = SE (ftmod) - p(ftmod)
S’E,res (7—) = SE (7—) - p(T)

An exemplary visualization is given in Figure 3.12. In the first subplot of Figure 3.12 (a) the STMPS
is shown, whereas the first subplot of Figure 3.12 (b) shows the SSMPS. The fitted polynomials are
plotted as dashed dotted lines. The residuals 5’2&5 () and gg,res (fiea) are visualized in the lower
subplots of Figure 3.12. It is clearly visible that all peaks are now located on the same reference
level and emerge from ca. 0dB. The STMPS-residual is also calculated for negative modulation

(3.18)
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Figure 3.12 Exemplary depiction of STMPS and SSMPS with polynomial fitting and resulting resid-

uals.

frequencies (f,, < 0Hz) but it is not displayed in Figure 3.12 (a), because only the peaks of the
positive half are further processed.

It is important to note that the correlation between the MPS-based features and the voice qualities
described in this paragraph are not explicitly analyzed for the combination of all vowels, pitches
and singers, as this would result in a lot of combinations. Nevertheless, an exemplary analysis of
several samples is carried out, highlighting observations that indicate a correlation towards the voice
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quality. This is the reason why the MPS based features, dealt with in this section, can be viewed
as educated guesses, describing the exemplarily observed relations between the sung voice quality
and observations made within the summed modulation power spectrum residuals. The discussed
observations are mostly based on the description and dicussion of the summed modulation power
spectrum residuals’ peaks, which serve as the foundation for the MPS-based feature extraction. To
retrieve the peak height and position of the STMPS- and SSMPS-residual, depicted in Figure 3.12,
different peak picking strategies are executed for each of the residuals.

STMPS-residual peak based features

The underlying assumption, which the features derived from the STMPS-residuals are based on, is
the assumption that the voice qualities have an effect on the perceived vibrato, e.g. when using
breathy phonation there is less tension on the vocal folds and the surrounding muscular structure,
which makes it more difficult to produce a distinct vibrato. As the temporal modulations describe the
vibrato present in a sung vocal recording, it is assumed that features derived from STMPS-residuals
exhibit a discriminatory power, towards the sung phonation type. Hence, the STMPS-residuals and
their peaks are analyzed to derive 3 features. With the Matlab command findpeaks () [30] the
6 most prominent peaks of the STMPS-residual are determined, over the whole range of temporal
modulations (positive and negative). However, the six peaks are reduced to the peaks located on the
positive half within the interval 0Hz < f; , < 20 Hz of the STMPS-residual. The peaks are then
sorted in descending order, which allows further processing into the phonation descriptive abstract
features. The number of the picked STMPS-residual peaks can vary from sample to sample, as there
are not always as many peaks in —20Hz < f,, < 0Hz as there are in the interval 0Hz < f; , <
20 Hz. Mathematically, the mentioned set of peaks containing Ntemp peaks are denoted as:

apk | apk,1 apk,2 apk, Neemp |
SE, temp {SE, temp’ ~' X, temp? " * ") SE, temp -

_ Q pk,1 G pk,2 G pkatemp
- {SZ,res (ftmod ) aSE,res (ftmod PR SE,res ftmod

and the temporal modulation frequencies at which the STMPS-residual peaks occur are written as

~

fpk,i Vi=1,2,..., Nemp.

tmod

(3.19)

The picked peaks of the STMPS-residual for a sung vocal sample containing the vowel /a/ and a pitch
of al ~ 440 Hz, for two singers (S1 & S6) are visualized in the first subplots of Figure 3.13. The tem-
poral modulations which comprise the modulations, defining a vibrato, namely amplitude (shimmer)
and frequency modulation (jitter), exhibit one aspect that suggests a correlation with the phonation
type. When comparing the STMPS-residual depicted in Figure 3.13 with regards to the voice quality,
it is clearly visible that for both singers no distinct peaks arise for breathy phonation. This suggests
that a vibrato is only present in a non-distinct or weakened state if breathy voice quality is used while
singing. On the other hand normal voice quality seems to exhibit the most distinct peaks, there are
even distinct peaks visible, at the double and three time multiple of the vibrato frequency, alongside
with the first peak. This indicates that the vibrato does not occur as a single sinusoidal component
within the sung vocal signal, but rather as a combination of multiple sinusoidal components. The
STMPS-residuals and the picked peaks for the sung vocal samples, with the same vowel and pitch,
but for different singers can be found in the Appendix in section B.2. With the exception of singer
S7 the STMPS-residuals shown in section B.2, mostly exhibit the same properties. These exemplar-
ily discussed observations, seem to correlate more with breathy phonation, the distinction of normal
and pressed phonation using STMPS-residuals is not as clear as the one for breathy voice quality.
However, the feature selection results presented in section 3.5 allow an evaluation of the calculated
features. Concerning the STMPS-residual peaks the following features were calculated:
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1. The height of the first (highest) STMPS-residual peak:

ngémp = SZ res (ftﬁ)nlzdl) (320)
2. Difference between the first (highest) and second STMPS-residual peak:
apk Apk A k,
Atemp = ngiimp - S§]7£§mp SE ,res (ftmod ) SE res (ftimf) (321)

3. The sum of all amplitude values of the STMPS-residual within the previously defined positive
interval of interest:

Etemp = Z gE,res (ftmod)

f tmod

0Hz < f; ., < 20Hz (3.22)

In order to provide transparent notation in this thesis, it is important to note that the usage of bold
notation on feature variables e.g. S’%k;elmp, Aemp O Xiemp, indicates the comprisal of the respective
features for all samples contained in a dataset variation. This leads to a number of Ngamples features,

which depends on the chosen dataset variation, according to Equation 3.1.
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Figure 3.13  Picked peaks of STMPS and SSMPS-residual for exemplarily chosen vocal samples.
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SSMPS-residual peak based features
Because the STMPS-based features seem to correlate more with the breathy voice quality the second
axis of the modulation power spectrum is also considered.

Analogous to the STMPS-residual features, the first step of the SSMPS-residual feature extraction
is peak picking. The peak picking strategy applied on the SSMPS-residuals differs from the peak
picking carried out for the STMPS-residuals, because in case of spectral modulation residuals, the
fundamental frequency information is usable. The peaks in the summed spectral modulation power
spectrum residuals form around multiples of the fundamental period, which makes it possible to local-
ize peaks more specifically, if a fundamental frequency estimate exists. Note that the SSMPS-residual
is no frequency spectrum and the values depcited on the x-axis are no frequencies, but the cepstral
equivalent called quefrencies (see section 2.3). The spectral modulations building the y-axis of a
MPS hold information on the composition and relations of the overtone spectrum. More details on
the interpretation of the temporal and spectral modulations are found in section 2.3.

In order to determine the peaks of the SSMPS-residual, peak intervals centered around the values
7 = 1 .nVn € N are scanned for the maximum value. The peak intervals for SSMPS-residual

0
calculated for one sample are defined as:

n 1 v
Tstartn — 7~ — A vn:l,?,...,NSpeC
 foo 3fo
1 (3.23)
n N~
Tstopn = = T == Vnzl,Q,...,NSpec

fo  3fo

To derive the SSMPS-residual based features Nspec = §, peaks are picked within the interval defined
by Tstare and 7yop using the max-operator:

Tstart
ADK N
Sg), spec max (SE,res (T)> Vn = 1, 2, RN 8
Tstop
&pk _ Japkl &pk,2 &pk,8 _Ja k1) & k,2 & k,8
SE, spec — {SZ, spec’? SE, spec? * Tt SE, spec [ SZJCS P 7527“35 P yr 75271'63 P

(3.24)
The spectral modulations, within the peak intervals, at which the peaks are located are written as:
TP € [ytarns Tstopon) ¥ 70 = 1,2, ., Nypec (3.25)

In order to carry through the exemplary analysis of the SSMPS-residuals, the second subplots of
Figure 3.13 and Figure B.2-B.5 contain the SSMPS-residuals of samples, where the requested vowel
/al was sung with normal voice quality at a pitch of a! ~ 440 Hz. If one takes a look at the peak
formed at 7P%2 = 2 it is visible that the highest peak amongst all three voice qualities is given for
pressed phonation, f(é)llowed by the peak height of normal and breathy phonation. This is visible for
the SSMPS-residuals of both singers depicted in Figure 3.13, as well as for most of the plots added
in section B.2. Another aspect that is observable for the peaks of the SSMPS-residual is that the
peak heights display different levels of decrease depending on the spectral modulation. The SSMPS-
residual’s peak amplitudes of normal voice quality decrease faster for lower modulations (% to %)

in contrast to the peak height decrease for higher modulations (fi to fé). The peak amplitudes for
0 0

breathy voice quality, decrease less pronounced over all spectral modulations, they evidently show
lower peak heights than the peaks visible for other phonation types. Pressed voice quality starts
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with higher amplitude peaks at lower modulations (% to ]%) than for higher modulations (J% to
0 0 0

%), as shown in Figure 3.13 but also in Figures B.2, B.5 and B.3, thus indicating that the peak-height
decrease for pressed voice quality viewed over all picked peaks is different from the overall difference
for other phonation types. Based on these observations concerning the SSMPS-residual’s peak height,
peak decreases as well as the relation of the peak differences towards lower and higher modulations,
the following six abstract features are calculated in addition to the three STMPS-residual peak based
features, mentioned in the previous paragraph.

1. The second peak of the SSMPS-residual located at 7P%2 = fl
0

e = Spes (772 (3.26)
2. The average peak difference of the peak located at 7P%2 = fl to 7PK5 — fi
0 0

&ipk,2 &pk,3
‘SZ,spec - SZ,spec

apk,3 opk,4
+ ‘SE,spec - SZ,spec

apk,4 apk,5
+ ’SE,spec - SE,spec

Aspe(:,l = 3 (3-27)
3. The average peak difference of the peak located at 7P%5 = fi to 7PK8 = fé
0 0
apk,b apk,6 apk,6 opk,7 apk,7 apk,8
~ ‘SE,spec - SE,spec + ‘SE,spec - SZ,spec + ‘SE,SPCC - SE,spec
Aspec,2 = 3 (3.28)

4. The logarithmized ratio of the previously defined peak difference measures Aspec,l and Aspqu

~ A
Aratio = 10g10 (Aspec,2> (3.29)
spec,1

5. The overall peak difference calculated as the difference between the second and eighth peak of
the SSMPS-residual

A _ &rk,2 &rk,8
onerall - SE,spec - SZ,spec (330)

6. The sum of all eight SSMPS-residual peaks that were picked.

8

She = D 88 e = D Snes (1) (3:31)
=1 =1

This completes the MPS based feature set consisting of 9 descriptive measures that are calculated
on voice quality dependent observations, which are made from the summed temporal and spectral
modulation power spectrum. It is worth noting again: that if the feature variables are written in bold
notation, they are to be seen as variables which contain all Ngmples of the dataset variation according
to Equation 3.1. For the feature selection analysis stated in the next chapter, the MPS-based feature
set, calculated for all Ngymples according to Equation 3.1 of a dataset variation, is written as:

_ Jaépk1 ark.2 X ~ — — L
%MPS = {SE,temp’ Atempa 2tempa SZ,spem Aspec,la Aspec,Za Aratim oneralla Eé’pec (332)

In order to shortly explain the usage of the bold notation in Equation 3.32, Equation 3.33 is added.
Equation 3.33 uses Aaio as an example and it shows that Ao is calculated for each sample of a
dataset variation. This also holds for all the other features contained in the feature set 2 \ps from
Equation 3.32, but also for the MFCC feature set 2 mpcc from Equation 3.11.

Braio = { A0 AL, - AL (3.33)

ratio’ “—ratio’ * * * » “ratio }
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3.5 Performance Overview with Feature Selection

The feature sets 2 mrcc from Equation 3.11 and 2 yps from Equation 3.32, as well as a combined
version comprising both the 9 MPS-based features as well as the 35 MFCC features. The combined
feature set is denoted as:

X combo = {Z mps, Z mrcc}

A

J— Apkzl Pk,2 A A k ~ ~
%combo - {SZ,tem[w Atempa Etempy SZ,spec’ Aspec,la Aspec,2a Aratio» oneralla Efpec, Ciy...,C35
(3.34)

Before 2 mrce, 2 mps and 2 combo are analysed using the Plus-L. Minus-R feature selection algo-
rithm mentioned in section 2.6. The feature sets are normalized to standard z-scores, using Matlab’s
zscore () [43]. The standardization using zscore () effectuates that the feature sets’ mean equals O
and the standard deviation amounts to 1.

For the single stage SVM model, all three feature sets are processed in order to evaluate each feature
set’s capabilities on the classification of all three voice qualities, seperately. This enables a ranking
of features which contribute most towards the distinction of the three voice qualities: breathy, nor-
mal and pressed. The analysis with regards to the two stage classification model is carried out soley
with the combined feature set 2 combo, With the idea that through the feature selection algorithm, ap-
plied on both SVM stages the Plus-L. Minus-R algorithm chooses the most suitable features for each
classification problem separately.

Finally, it is important to note that the curves depicted in the plots of subsections 3.5.2 and 3.5.3
are all subject to a certain statistical variance. This is due to the situation that the balancing of the
data presented in subsection 3.2.2 is subject to random undersampling processes, which introduce
a statistical variation into classification process. Due to this the classification process necessary to
calculate the performance measures as explained in subsection 3.3.1 was carried out 10 times and the
mean value is depicted in the figures of subsection 3.5.2 and subsection 3.5.3. This is done to present
statistically stabilized measures. Nevertheless, the highest statistical variation is present for the rest
score but at no point in the analysis, a standard deviation of +5 % is exceeded. Due to the fact that
this is the grid spacing of the following figures the standard deviation of each measure is neglected
and also the deviation decreases with an increasing number of selected features or data samples.
The other measure which holds information on the generalizabilty of the classification model is the
misclassification rate which due to the intrinsic averaging process necessary for its calculation as
depicted in Figure 3.5, already proves a certain degree of statistical stability amounting to deviations
of less than +2 %.

After a short introduction on how the Plus-L. Minus-R algorithm is implemented using Matlab and
which parameters are chosen for the algorithm, the feature selection results are summarized in the
figures inserted in subsection 3.5.2 and subsection 3.5.3. The results are evaluated for the first, second
and rhird dataset reduction.

3.5.1 Implementation of the Plus-L Minus-R feature selection algorithm

As mentioned in section 2.6 the Plus-L. Minus-R feature selection (L-R selection) algorithm can be
viewed as the L-times execution of a sequential forward selection (SFS) and afterwards the R-times
execution of a sequential backward selection (SBS). The aim of the feature selection, carried out in
this thesis, is to exploit every possible dimensionality reduced feature set and calculate the resulting
performance measures introduced in subsection 3.3.1. This means that the L-R selection is executed
iteratively for Ngs = 1,2, ..., (Ngear — 1), Where N is the reduced feature set’s number of features
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and N, is the number of features in the complete feature set, which for the three possible feature
sets is given with:

35, forZ" MFCC
Niea =19,  forZ mps (3.35)

44, for combo
Note that N, does not describe the number of samples for which the features are calculated, as this
number is denoted with Ngamples in Equation 3.1. The main drawback of the L-R selection method, is

that there is no empirical way of estimating optimal values for L and R [61, p.6]. In case of this thesis,
L and R are chosen to fullfill the condition:

R=IL—1 (3.36)

Besides the fulfillment of the condition mentioned in Equation 3.36, L was also chosen to be higher
than the half of Ng.4 of the respective feature sets. Depending on Nge, L was chosen with:

19, for Npg < 18
Iniree = 18, for Ngs = 18
17, for Ngs = 19
Nps — (24 2-6) with 6 = [19 — Ngs|, else
6, for Ngs <5
5, for NFS =5
Lvps = { 4, for Ngs = 6 (3.37)
3, for Ngs =17
2, else
24, for Nps < 22
23, for Ngg = 22
Leombo =4 59 for Ngs = 23
Nps — (2 +2 - 8) with § = ‘19—NFS — 1, else

Given the fact that L is chosen to be larger than R the algorithm explained in section 2.6 starts with
an empty feature selection set, which is then filled feature by feature, depending on Fisher Criterion
from Equation 2.45. The composition of the reduced feature set, selected by the Plus-L Minus-R
algorithm, is listed in the tables inserted in Appendix C.

The figures inserted in subsection 3.5.2 and subsection 3.5.3 contain the performance measures for
the single and two stage SVM models, from subsection 3.3.1, for each of the reduced feature sets
holding Nps = 1, ..., (Nfear — 1) features picked by the L-R selection. Due to the circumstance that
the L-R selection is executed iteratively, reduced feature sets with an increasing number of selected
features for each iteration are obtained and the performance measures for each of the reduced feature
sets are evaluated. This results in a performance measure progression over an increasing number of
selected features Ngg, as depicted in all figures of subsection 3.5.2 and subsection 3.5.3. In addition to
the L-R selections, an extended selection including the L-R selection and the fundamental frequency
estimate fo are also evaluated. Just like the feature sets 2 mrcc, Z mps and Z combo the estimated
fundamental frequencies are also normalized using zscore () [43]. The fundamental frequency esti-
mate is not included in the feature selection process. fg is added afterwards and has to be seen as an

60



P A.Bereuter 3.5. Performance Overview with Feature Selection

extension of the reduced feature sets provided by the L-R selection. This is also the reason why the
curves depicting the performance measures for the L-R selection extended with fo, colored in red in
Figure 3.14-3.19, start at Ngs = 2 selected features and end at Ngg = Ny features. The unextended
L-R selection reaches a maximum number of Nps = (Ngeor — 1) selected features. This is important
when analyzing the selected features picked with the L-R selection. For instance, the features selected
for Ngs = 8 of the unextended feature selection are the same features contained in the fo extended
selection of Ngg = 9.

As each figure of subsection 3.5.2 and subsection 3.5.3 contains the results of different reduced fea-
ture sets whose content is listed in the tables inserted in Appendix C, the subsequent Table 3.12
provides insight into which figure corresponds to which appended table. This gives an overview of
the performance analysis carried out in the figures and which features and their corresponding tables
are contained in the underlying reduced feature sets.

Table 3.12 Performance analysis figures and corresponding L-R selection tables.

single stage SVM
figure corresponding table
Figure 3.14 (a) Table C.4
Figure 3.14 (b) Table C.1 first dataset reduction
Figure 3.14 (¢) Table C.7
3
Figure 3.15 (a) Table C.5
Figure 3.15 (b) Table C.2 second dataset reduction
Figure 3.15 (¢) Table C.8
<
Figure 3.16 (a) Table C.6
Figure 3.16 (b) Table C.3 third dataset reduction
Figure 3.16 (¢) Table C.9
two stage SVM
figure corresponding table

Figure 3.17 (a) Table C.10 )

first dataset reduction
Figure 3.17 (b) Table C.11
Figure 3.18 (a) Table C.12

second dataset reduction
Figure 3.18 (b) Table C.13
Figure 3.19 (a) Table C.14

third dataset reduction
Figure 3.19 (b) Table C.15
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3.5.2 L-R Selection: Single Stage SVM

In the next paragraphs the evaluated measures derived using a single stage SVM, for the reduced L-R
selection with increasing Ngs, with and without fg—extension, are illustrated. Figure 3.14 holds the
measures for the first dataset reduction, followed by the measures obtained for the second dataset
reduction in Figure 3.15 and the results of the third dataset reduction, depicted in Figure 3.16.

First dataset reduction

Looking at each performance figure separately, the feature set 2 mpcc whose results are shown in
Figure 3.14 (a), shows a misclassification rate progression from 55 % to around 25 % with increasing
Nrpg. The training score starts at already relatively high values and ranges from 85 % to 95 % for
higher numbers of selected features. On the other hand, the fest score starts relatively low with 45 %
for Ngs = 1 feature and ends between 75 % to 80 % at Ngs = 35. In general, a saturating behaviour is
visible, which indicates that, for a number of selected features Ngs > 13, no visible improvement in
all scores can be detected, e.g. at Ngs = 13 the overall score of Figure 3.14 (a) amounts to 85 % and
for Ngs = 35, the value only grows with approximately 2.5 % to a final value of around 87.5 %. The
mismatch between the training and test scores in the saturated state for Npg > 13 settles in at around
15 %- 20 %.The f'o extended feature set only shows advantages for very low dimensional feature sets
of around Ngs < 5, for larger Ngg the progressions for the selected features with and without fo
exhibit equal courses.
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Figure 3.14 Single stage SVM: L-R feature selection performance for first dataset reduction.
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Figure 3.14 (b) depicting the measure progressions of the 2 \ps over an increasing number of se-
lected features contains progressions which already show improved results. The misclassification rate
for the feature set without extension starts at 45 %, which is 10 % lower compared to Figure 3.14(a)
and settle at 25 % for Ngs > 6 features. The curve of the feature set with the fundamental frequency
extension even scratches the 20 % mark for Ngs > 6 features, which, compared to 2 vrcc, is an
improvement in the misclassification rate of about 5 %. In contrast to 2 mEcc, the fo extension, in
combination with the feature set 2 wps, seems to improve the misclassification rate as well as the
test score, which for the selected features with fo, ranges from 67.5 % to a maximum value of 80 %
(orange curve). However, there is still a mismatch of around 10 % between the training and test score,
as the maximum value of the fraining score amounts to around 90 %. The overall score reaches the
same maximum value of 85 % as in Figure 3.14(a).

When looking at the results obtained for the combined feature set 2 combo in Figure 3.14 (c), a
combination of the positive aspects of both feature sets (2 mrcc and 2 mps) is detectable. The
misclassification rate even reaches values below 20 % for Ngg > 25 features. Also, the mismatch
between training and test score is smaller than the one achieved with the MFCC feature set 2 mrcc
and is given with around 10 % for Ngg > 25, with a test score of 85 %. The benefits of the fg exten-
sion disappear for Ngs > 10 which could indicate that the first features, chosen at the lower Ngg are
the MPS-based features. This is confirmed, when the corresponding feature selection table Table C.7
is analyzed. The first MFCC-feature that is picked by the L-R selection is &; in the 6™ iteration (for
Nrs = 6) and the second MFCC that is picked is €5 in the 9™ jteration. Even the picked features for
Nrs = 11 still consist of 8 MPS-based features and only 3 MFCCs. The overall score achievable
with the combined feature set, saturates at around 90 %.

Second Dataset Reduction

The second dataset variation only contains samples that were confidently rated as breathy, normal or
pressed and where the instruction and experiment labels coincide, as presented in section 3.2. Thus, it
is anticipated that improved results are noticeable. However, when looking at the results obtained for
Z mrcc in Figure 3.15 (a) in comparison to Figure 3.14 (a), only marginal improvements are present.
The misclassification rate improves by 5 %, to minimum values of around 20 % in the first subplot of
Figure 3.15 (a). The same improvement is shown for the fest score, where now a top value of 80 %
is achieved for Ngs > 13 features. Also when looking at the mismatch between the training and test
scores, no change is observable. Caused by a higher training score (ca. 95 % for Ngs > 13) the mis-
match is still given with 15 %. Interestingly, the overall score progression of 2 vrcc for the second
dataset reduction even settles at marginally smaller values than previously. Where in Figure 3.14 (a)
an overall score of 87.5 % is displayed, Figure 3.15 (a) only shows an overall score of approximately
85 %.

Concerning the MPS based features 2 yps, the anticipated improvements accredited to the second
dataset reduction are more thoroughly present. Again the feature selection with fo extension outper-
forms the basic L-R selection, especially when looking at the generalizability measures (misclassi-
fication rate and test score) in Figure 3.15 (b). The misclassification rate for the extended feature
selection now almost reaches 15 %, but still resides slightly above it, which yields and improvement
of 7 %. Concerning the zest score, the extended feature selection now produces a progression which is
located well above 80 percent with top values of 85 % for Ngs > 3. It is also worth noticing that the
distance between the fest score and the training score is diminished. In Figure 3.14 (b) a mismatch of
10 % is present, whereas Figure 3.15 (b) only exhibits a deviation of zest and training score ranging
from 5 % to 7 %.
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Figure 3.15 Single stage SVM: L-R feature selection performance for second dataset reduction.
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When looking at 2 combo’s misclassification rate results with regard to the second dataset reduction,
the achieved results coincide with the ones obtained from 2 yps shown in Figure 3.15 (b). A 5%
improvement of the misclassifcation rate to 15 % for Ngs > 6 features, for the extended feature selec-
tion is given. However, the test and training scores only shows minimal improvement. In Figure 3.15
(c) the test score lies marginally closer to 85 % than in Figure 3.14 (c), but the mismatch towards
the training score with 10 % remains. The same circumstance can be observed for the overall score,
where no change towards the previously analyzed dataset reduction is detectable, meaning a saturated
value of 90 % for Ngs > 15 is present.

Third Dataset Reduction

The third dataset reduction, instills further improvements in the performance of the MPS-based fea-
ture set 2 vps and the combined feature set 2 compo. While the performance of 2 ypcc stagnates
and does not change in Figure 3.16 (a), compared to Figure 3.15 (a), the MPS-based feature set, used
on the third dataset reduction brings about the largest advances. A misclassification rate of ca. 12 %
for the extended feature selection with Ngg > 3 features, as well as a test score of ca. 90 % result-
ing in, the so far smallest discrepancy towards the fraining score with 5% are visible in Figure 3.16
(b). One interesting aspect for 2 vps comes with the overall score. For the extended L-R selection,
which starts at a rather low value in comparison to the unextended feature selection. It is only after
more than six features are included in the feature selection that the overall score curve catches up and
resides at 85 %-87 %. This behaviour is also detectable for the overall score, calculated for 2 vps
on the second dataset reduction, as illustrated in Figure 3.15 (b). There the curve of the overall score
over the number of selected features nearly shows an identical progression.

Figure 3.15 (c), which depicts the performance measures of 2 compo used for the third dataset re-
duction, yields to a misclassification rate of ca. 10 % for 5 < Ngs < 12. For a number of selected
features higher than 12, the misclassification rate gradually increases and again saturates at 15 % for
Nrs > 18. This is also observable for the fest score in Figure 3.16 (c), where the fo extended feature
selection already starts with a very prominent value of 90 % for only Nps = 3 features, which is
upheld until Ngs = 10. Here the deviation between training and test score is given with approx. 5 %.
However, for Ngs > 10 features, the fest score first starts to fluctuate and then drops to values of
around 85 %. When looking at Table C.9 which lists the picked features from 2" combo for Ngs > 10,
it is shown that the algorithm again prefers the MPS-based features contained in 2" compbo. The overall
score of Figure 3.16 (c) also exhibits little changes, the 90 % mark is slightly surpassed for Ngs > 13
but keeping in mind that there are slight statistical deviations behind every measure, it can be argued
that in comparison to Figure 3.15 (c) the overall score does not show significant improvement.
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Figure 3.16 Single stage SVM: L-R feature selection performance for third dataset reduction.
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3.5.3 L-R Selection: Two Stage SVM

The two stage SVM model enables the assessment of each classification task separately. In the
first stage breathy voice quality is distinguished. The classification task of the first stage is denoted
“breathy vs. rest” and the second one differentiates “normal vs. pressed * voice qualities. Again all
three dataset reductions presented in section 3.2 are analyzed. Different to the one stage SVM, whose
results for the three dataset reductions are presented in subsection 3.5.2, for the two stage SVM only
the combined feature set -2 combo is analyzed, supposing, that the feature selection algorithm picks
the most suitable features for each classification stage separately. Again the picked features for each
L-R selection iteration are listed in the tables of Appendix C, which table belongs to which feature
selection figure is listed in Table 3.12.

First dataset reduction

It is now clearly shown, when comparing subfigures (a) and (b) of Figure 3.17 that the more prob-
lematic classifcation is given at the second SVM stage where normal and pressed phonation are
distinguished. The misclassification at the first SVM stage settles at 7% for Ngs > 13 features,
whereas the second SVM stage performs worse with a 20 % misclassification for the same number
of selected features. Also the deviation between training and test score for the breathy classification
is minimized to a little bit less than 5 %, with a test score that reaches ca. 93 % for Ngs > 13 and
a fraining score that surpasses 95 % at Ngs = 10 and even reaches top values of 98 % - 99 % for
Ngs > 26. In contrast to that, the second SVM stage exhibits a mismatch of around 15 %, with a
test score that saturates at around 80 %. The better performing breathy vs. rest classification is also
reflected, when the overall score of both stages are compared. On the one hand, the overall score of
the first stage, shown in Figure 3.17, offers values of 95 % and on the other hand, the overall score
presented in Figure 3.17 (b) of the second barely reaches 90 %.
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Figure 3.17 % ompo: L-R selection performance results; first dataset reduction.
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Second Dataset Reduction

As previously remarked during the performance discussion of the single stage SVM, the second
dataset reduction is also used in the two stage SVM and is also accompanied by performance im-
provements. It can be argued that the 5% improvement, which was present in the misclassification
rate for the single stage SVM model discussed in the previous paragraph and visualized in Figure 3.15,
is split equally onto both SVM stages during the two stage classification process, because the misclas-
sification rate’s improvement visible for both SVM stages in Figure 3.18 amounts to around 2.5 %.
Also higher test and training scores can be observed. The training score of the “breathy vs. rest*
classification executed in the first SVM stage nearly reaches 100 % for Ngs > 30 features and a test
score of above 95 % also keeps the fest/training score mismatch in the vicinity of a marginally less
than 5 %. This coincides with performance present on the first dataset reduction reduction displayed
in Figure 3.17. Finally, also the overall score reaches new heights for the first SVM stage depicted
in Figure 3.15 (a), where the overall score surpasses 95 % already at Ngs = 5 features. The overall
score of the second stage saturates at 87 % to 89 % .
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(a) first SVM stage: breathy vs. rest (b) second SVM stage: normal vs. pressed

Figure 3.18 2 compo: L-R selection performance results, second dataset reduction.

Third Dataset Reduction

The third dataset reduction takes the improvement even further, especially for the first SVM stage,
for which the misclassification rate progression already falls below a value of 5 % for Ngs > 3. The
lowest values are then reached for Ngg > 20 features and reside at ca. 1%. In accordance with
the misclassification rate progression the fest score also exhibits very promising results throughout
all the analyzed number of selected features. The deviation towards the training score practically
vanishes and the training and test scores reach values of 99 % - 100 % for Ngs > 25. The same
progression is detectable for the overall score shown in Figure 3.19 (a). When analyzing the perfor-
mance measures evaluated for the 2" SVM stage presented in Figure 3.19 (b), it is perceivable that
the progressions are way more fluctuating than the ones of Figure 3.18 (b) and Figure 3.17 (b). This
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can be led back to the reduced number of samples contained in the underlying third dataset reduction
in combination with the random undersampling. The statistical variation brought in by the random
undersampling procedure is amplified if fewer samples are contained in the dataset. As visible in
Figure 3.4 the underlying data processed in the second stage of the two stage SVM model, after the
third dataset reduction only contains an overall number of 136 samples, which results in 68 samples
per class. Nevertheless, the fluctuations still allow a determination of the performance measure val-
ues. A misclassification rate of 12 % to approx. 17 % is visible for the fo extended feature selection
in Figure 3.19 (b). Interestingly enough the lower values of 12 %- 15 % are achieved for a lower
number of selected features e.g. Nps < 10, for larger Ngs the misclassification rate rises. The same
behaviour is observable for the test score of the extended feature selection. Higher values of ca. 85 %,
are obtained for lower number of selected features (Ngs < 8 ). However, it has to be noted that the
observed improvements towards lower Ngg lie in the vicinity of the statistical variation brought in by
RUS, therefore, it cannot be stated that the classification of the third dataset reduction exhibits better
performance for a lower number of selected features. For higher numbers of selected features the
score then fluctuates between 80 % to 85 %, the test score for the unextended feature selection catches
up to the results produced by the feature selection with fg extension for Ngs > 10. The overall score
also reaches values varying between 85 % and 90 %, the extended and unextended feature selections
exhibit an identical course for Ngg > 10. For lower numbers of selected features (Ngs < 10) the
previously described circumstance that the extended feature selection causes a lower overall score
than the unextended feature selection, is also noticeable.
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Figure 3.19 2 compo: L-R selection performance results; third dataset reduction.

In conclusion, the two stage SVM performance analysis contains repeating aspects throughout Fig-
ure 3.17 to 3.19, the most prominent being the deviating performance of the fo—extended feature selec-
tion in the second SVM stage. Especially within lower numbers of selected features, e.g. Ngs < 10
features, the extended feature selection shows significantly better misclassification rates and test
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scores than the L-R selection without fo. As already discussed for Figure 3.14 (c), this can be
explained by looking at the selected features listed in the tables of section C.2 for each respective
performance measure evaluation. There are differences with respect to the order, but for all cases
the MPS-based features Zwps are preferred by the Plus-L. Minus-R selection, for both classification
stages. For the first stage the ng’fpec is picked first, whereas for the second stage the LR-selcetion
is started with Aspec,l. The behaviour observable for Ngs < 10 of all two stage SVM performance
measure evaluations for each dataset reduction (Figure 3.17 to 3.19) coincides with the observations
made for MPS-based features used in the single stage SVM to calculate the performance measure
progressions shown in Figure 3.14 (b) to 3.16 (b). Although, the first MFCC features are picked for
Nrs > 5 or Ngs > 8, depending on the dataset reduction, it is shown in section C.2 that a feature
selection consisting of 10 features is still predominantly composed of MPS-based features. As the
MPS-based features contained in Z¢ompo are picked first, and they show an improved performance if
fo is added as an additional feature, a fundamental frequency dependency of the MPS-based features
Zwps is indicated. This fundamental frequency dependence vanishes, if more MFCC features come
into play. For Ngs > 20 features the fo dependence vanishes, as the misclassification rates, as well
as the test, training and overall scores exhibit identical performance measure progressions as for the
unextended L-R selection.

3.6 Classification Performance on Full Dataset

In subsection 3.5.3 three dataset variations have been analyzed, but so far the full dataset has been
left out. The insights on the performance of the different feature sets Zyrcc, Zmps and Zcombo are
now important, in order to determine one feature set that is used in the single and two stage SVMs
on the full unbalanced dataset with the instruction and experiment labels. The analysis with regard
to switching labels yields an assessment on which labels yield the better ML-based classification re-
sults. Additionally, it enables a comparison of the ranking behaviour of the listeners who took part
in the listening experiment that was conducted to evaluate the dataset, as mentioned in section 3.1.
As the combined dataset Z¢ombo proved itself to be the best performing dataset for the first dataset
reduction, which is the dataset variation closest to the full dataset, it is used in this section to classify
the full dataset. Regarding the number of samples it helps to look at the highest test score and lowest
misclassification rate which are found for the largest number of selected features (Ngg = 44 features
for the extended feature selection). Also the deviation between training and test score, which is the
indicator for overfitting behaviour, does not grow for an increasing dimensionality within the selected
feature set.

Additionally, Figure 3.20 provides an overview on the separability of different feature set configura-
tions with regards to the first dataset reduction. The full MPS-based feature set Zmps, the combined
feature set Zcombo comprising 22 features, which were picked by the L-R selection listed in Table C.7,
and the full combined feature set Z¢ombo With all Ngs = 44 features were transformed into a 2D-space
using a linear discriminant analysis (LDA) and the eucledian distances between the 2D cluster means
are calculated and summarized in Table 3.13. The linear discriminant analysis builds on the within
and between scatter matrices, mentioned in relation with the Plus-L Minus-R algorithm in section 2.6.
Using the Matlab command eig() [29]. The eig() command outputs the eigenvectors ¢ of the ma-
trix product between the inverse within class scatter matrix Sy and the between class scatter matrix
Sp. As a precautionary measure, a regularization term of e = 1079 is added onto the main diagonal
of the within scatter matrix, in order to ensure stability for the matrix inversion of Sy . The executed
Matlab command used to retrieve the projection vectors ¢ is given with Equation 3.38.

¢ = eig ((Sw +1I- 6)_1SB> (3.38)
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The eigenvectors ¢; and ¢ contained in ¢, corresponding to the largest eigenvalues?, are used to
project the feature-sets into a 2D-feature space, by calculating the inner product between the eigen-
vectors and a feature set denoted as 2, as suggested in Equation 3.39.

N, 1
[ sampﬂles x } [Nsamples X Nfeal] [Nfeat X 1]

1
Yon = 2 - (3.39)

yg))A =2 ¢

The different feature configurations, projected into the two dimensional feature space are all extended
with fo. Mathematically the extension is indicated by using the symbols: 2} pq, i and 2 oo o
The cluster means of the projected feature sets are depicted in Figure 3.20 and are denoted with
usg A for breathy phonation and u(L%)A and Mg)) A for normal and pressed voice quality respectively.

Additionally, the o-confidence ellipsoids enclosing 68 % of the data samples are also plotted.

2D LDA-projection
Nrg =10 features; feature set: "MPS based & fg”

®  breathy voice quality
9L| e normal voice quality
pressed voice quality

¢ cluster means
— — o-confidence ellipsoid (= 68%) -~
—

*I(LZL))A
X

()
Yipa

Nps =23 features; feature set: ”combined & fg”

(2)
Yipa

(=]
T

Figure 3.20 2D LDA projection of the full and reduced combined feature set as well as the full MPS
based feature set applied onto the first dataset reduction.

“Note that the Matlab command eig() does not output the eigenvectors in descending order, with regard to the eigenvalue
size. An additional sorting step using Matlab’s sort () [40] is necessary.
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The LDA projection also shows the problematic separability between the classes normal and pressed,
which has already been disclosed by the two stage SVM analyzed in subsection 3.5.3. In Figure 3.20
it is shown that the projected clusters of normal and pressed phonation are way more intersected than
the breathy cluster. The Euclidean distances of all cluster means of Table 3.13 are sorted in the same
way as the subplots of Figure 3.20, e.g. the first feature configuration corresponds to the feature set
whose LDA projection is depicted in the first subplot of Figure 3.20.

Table 3.13 Euclidean distance of 2D LDA projected cluster means.

Nr. feature configuration: euclidean distance

b n b n
o — i || i — o2 k) — i)

1) Zypsej,: Nes = 10 features 0.6470 0.7153 0.7782
2)  Zimbowf,; Nes = 23 features  0.8089 0.8829 0.9540
3)  Ziombowf,; Nes = 45 features  0.8268 0.9173 1.0570

In order to maintain the best separability aim of the LDA is to keep a maximum distance between the
clusters, i.e. maximizing the between class covariance, whilst keeping the within class covariance to
a minimum [5, p.187-189]. This separability can be compared for the three feature set configurations,
using the distances listed in Table 3.13 and the confidence ellipsoids in Figure 3.20. It is visible that
the worst separability is given for the first feature set configuration 2 pq¢. fo and the second and third
configuration show comparable separability, in terms of the position and intersection of the confidence
ellipsoids depicted in Figure 3.20. However, the largest distances, between the clusters, are found for
the third feature configuration containing the combined feature set Zcompo With all Ngg = 44 fea-
tures, including fo. This reinforces the assessment completed in subsection 3.5.2, that the combined
feature set Zcombo With fo—extension yields the best performance for the first dataset reduction and
overfitting due to dimensionality (curse of dimensionality) does not occur in a problematic extent.

Therefore, the following subsections provide the performance measures from subsection 3.3.1 as well
as confusion matrices, created using Matlab’s confusionchart () [27], on the classification task
fulfilled for the full dataset with both experiment and instruction lables using the combined feature
set Zeombo With f'o using the single and two stage SVM model.

3.6.1 Single Stage SVM Performance on Full Dataset

According to the implementation presented in section 3.3 the single stage SVM is used with 500 iter-
ations to determine the kernel-scale and 100 classification iterations to provide statistical context for
the classification results on the full dataset with varying labels. The evaluated mean (1) and standard
deviation (o) of the performance measures calculated using the 100 classification iterations are listed
as tables in the following paragraphs. Additionally, the trained SVM model achieving the highest
test score amongst the 100 classification iterations is used to process the full dataset again, deliver-
ing estimated labels for the whole dataset and enabling the creation of confusion matrices and thus,
presenting a compact overview on the class assignment of each sample. Moreover this allows a com-
parison of the ML-classification with the rating behaviour observable from the listening experiment,
which is summarized in Figure 3.2. Firstly, the results using the full dataset in combination with the
instruction labels are mentioned and then the performance of the single stage SVM on the full dataset
with the experiment labels is discussed.
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Performance with instruction labels

When the full dataset with instruction labels is used, the performance of the single stage SVM, with
regards to the generalization measures (misclassification rate and test score), decreases with approx-
imately 5 % in comparison to the single stage SVM performance on the first dataset reduction sum-
marized in Figure 3.14 (c¢). The mismatch between test and training score with ca. 15 % remains
equal in comparison to Figure 3.14 (c) indicating the same overfitting behaviour as in the first dataset
reduction. All determined performance measures for the full dataset with instruction labels, using the
complete combined feature 2 compo Set with f'o—extension are summarized in Table 3.14.

Table 3.14 Estimated performance measures using 100 classification iterations for the single stage
SVM on a full dataset with instruction labels.

performance measure: uwEto

training score:  92.9% £ 0.51 %

test score:  76.95 % + 2.61 %
misclassification rate:  23.82% £ 1.12%
overall score:  89.71 % + 0.56 %

The performance measures of Table 3.14 and the confusion matrix depicted in Figure 3.21 always
have to be viewed in relation. Although, the confusion matrix shown in Figure 3.21 seems to show
very promising results, especially when looking at the row summary of the confusion matrix, which
holds the percentage of correctly classified samples per class, it has to be kept in mind that behind
the displayed classification results there is a SVM model which has already seen 80 % of all available
data during the fitting process. The result is a train score of around 92.9 % (see Table 3.14). In terms
of generalization, one has to expect 23.82 % misclassified samples.

confusion chart - voice quality classification: " breathy vs. normal vs. pressed"
dataset variation: "full dataset"; feature set: "combined"; NFS = 45 features

4.5%

12.1%

11.1%

True Class

90.0%

5.2% 10.0% 12.4%

breathy normal pressed
Predicted Class

Figure 3.21 Confusion matrix: absolute sample numbers distributed over 3 voice quality classes,
SVM model configuration: single stage SVM,
Feature set: 2 Npgs = 45,

combo& fo’
Dataset: full dataset with instruction labels.

Most mix-ups within the class assignments occur for normal and pressed voice quality. 30 pressed
samples are classified as normal and 38 samples with normal phonation are classified as pressed. A
normalized version of the confusion matrix is shown in Figure B.6, where the absolute sample num-
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bers are normalized with the underlying total number of samples (1140 samples), resulting in relative
values in percent. The row and column summaries depicted within the confusion charts contain infor-
mation on how many correctly classified samples are within the predicted classes (column summary)
and how many samples of the true classes are correctly classified (row summary), thus, a normaliza-
tion towards the amount of samples contained in a row or column holds limited new information. The
normalization with the underlying total number of samples on the other hand, provides additional
information, e.g. the total percentage of correctly classified samples, calculatable by summing the
main elements of a confusion chart with percentage values.

Performance with experiment labels

If the experiment labels are used, the classification performance decreases. The mean misclassifica-
tion rate, calculated from 100 classification iterations, drops to 25.59 % and the mean fest score to
75.41 %. The most prominent decrease, however, can be found with the overall score. When compar-
ing the mean overall score of Table 3.14 and Table 3.15 a drop of approximately 9 % is visible.

Table 3.15 Estimated performance measures using 100 classification iterations for the single stage
SVM using Zcompo 00 a full dataset with experiment labels.

performance measure: wEo

training score:  93.39 % %+ 0.56 %

test score:  75.41 % + 3.09 %
misclassification rate:  25.59 % + 1.28 %
overall score:  80.32% +0.73%

The declining overall score is also noticeable in Figure 3.22, where even more misclassification be-
tween normal and pressed phonation occurs. Also the row summary of Figure 3.22 displays that only
70.6 % of normal samples are correctly identified, which corresponds to 111 normal samples that are
wrongly classified as pressed. The best results are achieved for breathy voice quality, which underpins
the observation made in the feature selection analysis of the two stage SVM in subsection 3.5.3.

confusion chart - voice quality classification: " breathy vs. normal vs. pressed"
dataset variation: "full dataset"; feature set: "combined"; NFS =45 features

breathy 97.3% AL

normal 29.4%

pressed 14.7%

True Class

84.8% 89.2%
15.2% 10.8% 28.7%
breathy normal pressed

Predicted Class
Figure 3.22 Confusion matrix: absolute sample numbers distributed over 3 voice quality classes,
SVM model configuration: single stage SVM,
Feature set: %”c ombol fo Npg = 45,
Dataset: full dataset with experiment labels.
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3.6.2 Two Stage SVM Performance on Full Dataset

For the two stage SVM analysis mentioned in section 3.3 used for the full dataset with instruction and
experiment labels, the same strategy as for the single stage SVM is followed. For each classification
stage 500 iterations are executed to determine the kernel-scale of the corresponding SVM classifier.
Then in each stage 100 classification iterations are used to determine the mean (i) and standard
deviation (o) of the performance measures for both SVM stages. The first stage is responsible for the
distinction of breathy and the second SVM stage for the distinction of normal vs. breathy. For both
stages, tables containing the performance measures and confusion matrices are created>. In order
to provide a figure which can be compared to the previous confusion matrices in Figure 3.21 and
Figure 3.22, the full dataset is processed through both stages, classifying every sample, whereby the
second stage is only reached by those samples that were assigned to the rest class within the first
SVM stage.

Performance with instruction labels

Table 3.16 depicts the performance measures achieved in both voice quality stages for the full dataset
with instruction labels. A very clear trend is detectable. With a misclassification rate of 9.1 % and
a test score of 91.72 % the breathy vs. rest classification performs very well. The problem for the
normal vs. pressed classification remains and with a misclassification rate of 24.86 %, one has to
anticpiate that a quarter of samples are misclassified, if the model is presented with new data, hence
a test score of 76.83 %.

Table 3.16 Estimated performance measures using 100 classification iterations for the two stage
SVM on a full dataset with instruction labels.

15t SVM stage: “breathy vs. rest" 2" SVM stage: “normal vs. pressed*
performance measure: pwto performance measure: pto
training score:  97.8 % £+ 0.39 % training score:  90.86 % + 0.74 %
test score:  91.72% +2.07% test score:  76.83% + 3.3 %
misclassification rate: 9.1 % + 0.85% misclassification rate:  24.86 % + 1.4 %
overall score:  90.39 % + 0.57 % overall score:  88.06 % + 0.87 %

The confusion matrix of the two stage SVM depicted in Figure 3.23 is fairly similar to the one of
the single stage SVM depicted in Figure 3.21, especially with regards to the classification of breathy
voice quality. Concerning the distinguishability of normal and pressed phonation the confusion chart
in Figure 3.23 exhibits slight drawbacks in comparison to Figure 3.21. Another aspect that stands out
in comparison to the performance of the single stage SVM on the full dataset with instruction labels
is that in Figure 3.23, more mix-ups of normal and pressed voice quality with breathy occur than for
the single stage SVM results. For instance, in Figure 3.21 only 10 breathy samples are mistaken as
pressed and in Figure 3.23, 51 pressed samples are mistaken as breathy.

3The confusion matrices of this section were also calculated using relative values, where the numbers within the charts
are normalized to the underlying total number of samples, they are added in the appendix in Figure B.6 and Figure B.7
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confusion chart - voice quality classification: " breathy vs. normal vs. pressed"
dataset variation: "full dataset"; feature set: "combined"; NFS = 45 features

breathy 66 7 7 96.3%
normal 42 0 28
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[%]

<

(@]

g pressed 51 37 9 76.8%

=

79.7% 87.6% 89.3%
20.3% 12.4% 10.7%
breathy normal pressed

Predicted Class
Figure 3.23 Confusion matrix: absolute sample numbers distributed over 3 voice quality classes,
SVM model configuration: two stage SVM,
Feature set: 2~ ombote fo’ Npg = 45,

Ci
Dataset: full dataset with instruction labels.

Performance with experiment labels

When experiment labels, in combination with the two stage SVM are used the same behaviour as
for the single stage SVM is given. The performance measures also exhibit a drop, especially when
looking at the overall score. The overall score in the first stage drops to 86.7 %, which is approx. 4 %
worse than for the usage of the instruction labels (see Table 3.16) and the second stage’s overall score
declines by 8 % to 80.6 %.

Table 3.17 Estimated performance measures using 100 classification iterations for the two stage
SVM on a full dataset with experiment labels.

15t SVM stage: “breathy vs. rest* 2" SVM stage: “normal vs. pressed*
training score:  97.22 % + 0.42 % training score:  92.12% +0.72%
test score:  90.96 % + 2.63 % test score:  74.46 % £ 3.64 %
misclassification rate:  9.04 % + 1.07% misclassification rate:  26.21 % + 1.47%
overall score:  86.7% £+ 0.54 % overall score:  80.06 % + 0.85 %

What stands out when looking at the confusion matrix depicted in Figure 3.24 is that even more
normal samples are misclassified as breathy samples. The full dataset with experiment labels becomes
imbalanced and its biggest class is the normal class, which consists of 517 samples as shown in
Table 3.5. The biggest class of the dataset also exhibits the most misclassifications when looking
at the performance in Figure 3.24. 110 normal samples are mistakenly classified as breathy and 87
samples are classified as pressed, yielding only a 61.9 % accuracy for normal voice quality samples.
The best results are again achieved for breathy voice quality. There 96.3 % of all breathy samples are
correctly classified.
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confusion chart - voice quality classification: " breathy vs. normal vs. pressed"
dataset variation: "full dataset"; feature set: "combined"; NFS =45 features

breathy

normal 38.1%

pressed

True Class

88.6%

33.0% 11.4% 26.1%

breathy normal pressed
Predicted Class

Figure 3.24 Confusion matrix: absolute sample numbers distributed over 3 voice quality classes,
SVM model configuration: two stage SVM,
Feature set: 2~ ombote fo’ Npg = 45,

Ci
Dataset: full dataset with experiment labels.

Additionally, confusion matrices with relative values, created by using a hold-out set, with the in-
tention of showing the classification behaviour towards data that have not yet been presented to the
model, are also appended in section B.3. Regarding the single stage SVM, the hold-out set is given by
the test set, which holds 20 % of the data as illustrated in Figure 3.5. Concerning the two stage SVM,
the hold-out set is stored before the datasets for the two stages are prepared. This means that 20 % of
the data (randomly chosen) are used as the hold-out set and the other 80 % are then further processed
and split into the two sub-datasets according to the procedure mentioned in subsection 3.2.2. It is
important to note that this procedure was soley executed for the creation of the hold-out set confusion
matrices appended in Figure B.7, all other analysis carried out in this thesis is done with the method
presented in subsection 3.2.2.

The hold-out set’s confusion matrices and the confusion charts of this section as well as the com-
parison with regards to the ranking behaviour of the listening experiment are carried out in the next
section. In addition, the observations made in course of the present analysis are summarized.
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3.6.3 Performance Summary of Single Stage SVM

Because the single stage SVM performs slightly better than the two stage SVM, in terms of an over-
all classification, this chapter is concluded with a compact overview on the performance measures
achieved for all feature sets and dataset reduction stages in Table 3.18. As the fo—extension has
proven itself to be beneficial for certain feature sets, each complete feature set with fo—extension is
processed using the single stage SVM implementation presented in section 3.3 and the performance
measures from subsection 3.3.1 are evaluated. The results in Table 3.18 are presented as the means
of 100 classification iterations. The performance improvement, that comes with the dataset reduc-
tion is clearly visible and also the best measures are achieved using the combined feature set with

A

fo—CXtenSion (‘%—combo&fo)'

Table 3.18 Summary of the performance measures, calculated for each complete feature set with
fo-extension. Measures are displayed as means of 100 classification iterations.

feature set Ngg performance measure

train. score test score misclass. rate overall score

X yieewj, 36 9348%  TLST%  2955% 89.1%

X pses, 10 8T63%  70.91%  29.34% 84.29 % f:‘slf
 ombotct, 45 929%  76.95%  23.82% 89.71 %
X yieewj, 36 9415%  TLST%  29.98% 79.67 %

X ywsej, 10 89.08%  69.37%  32.04% 76.01 % g}z){
Z omborct, 45 9339%  75A1%  25.59% 80.32 %
Xywreces, 36 9452%  T6.93%  24.88Y% 87.37 %

X pses, 10 9L25%  TT6% 22.48 % 86.92 % Red. 1
Z omporcs, 45 95.22%  8221%  1851% 90.15 %
Xypece, 36 9654%  80.23Y% 21.4% 85.62 %

X ywsej, 10 94.82%  8223%  18.24% 87.98 % Red. I
Z ompor, 45 9612%  86.02%  15.92% 89.63 %
Zyweces, 36 96.66%  81.6% 19.11% 85.61 %

Xypses, 10 95.99%  87.95%  13.12% 88.98 % Red. 11
 comborfs 45 96.53%  88.03%  12.24% 90.01 %
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4 Conclusion

This thesis provides proficient insight into the analysis and classification capabilities of different ab-
stract feature sets with regards to different voice qualities in singing. The presented classification
tasks are executed using a novel database created at the Institute of Electronic Music and Acoustics at
the University of Music and Performing Arts Graz. The database comprises audio samples sung by 10
different professional singers. 5 vowels for 11 different pitches in 3 voice qualities (breathy, normal
and pressed) were sung and recorded, whereby not all singers sang the same pitches. The pitch range
differs for female and male singers. The resulting dataset, consists of altogether 1140 samples. The
instruction labels reflect the voice qualities the singers were instructed to sing. A conducted listening
experiment executed to rank the recorded samples with regard to the perceived voice quality and a sub-
sequent k-mediod cluster analysis, yielded the experiment labels. Five dataset variations mentioned
in section 3.2, are created, in order to obtain datasets containing samples that are more unambiguous.
This is done by comparing instruction and experiment labels and discarding of samples that were
not confidently rated as breathy or pressed. Another step necessary to create a dataset variation is
the neglection of samples sung by male singers. For each of the dataset variations different feature
sets are calculated. Two types of feature sets are dealt within this thesis. The proposed classification
models, the implemented feature selection algorithm, as well as the classification performance and
observations made during classification are summarized and discussed in section 4.1 and 4.2. The
carried out analysis with regard to the different abstract features sets’ classification capabilities, hold
insight into their limitations and deficiencies, as well as their advantages.

4.1 Classification Model and Used Feature Sets

Inverse mel-filterbanks outperform the traditional mel-filterbanks

The first feature type comprises different variants of mel-frequency cepstral coefficients (MFCCs).
The MFCC variants comprise the usage of 5 different filterbank types, 2 types of center frequency
modification (vocal tract length normalization and vocal tract length pertubation) as well as an op-
tional cepstral lifter. The resulting 30 different MFCC variants are narrowed down to one MFCC
variant in a pre-analysis, in which 35 MFCC coefficients of each MFCC variants are used to clas-
sify the dataset variation in which instruction and experiment labels coincide. Four performance
measures, namely the training and test score, the misclassification rate, and the overall score are
calculated for the executed classification. The visualization of the performance measures depicted
in Figure 3.8 and Figure 3.9 show that the MFCC variant where an inverse mel-filterbank, without
center frequency augmentation and an activated cepstral lifter delivers the best results amongst the
MFCC variants. The idea of inverting the mel-filterbank stems from [20], where it is shown that the
performance of automatic speech recognition for high pitched speakers such as children can be en-
hanced. The filterbank inversion leads to a higher resolution towards higher frequencies, in contrast
to the classic mel-filterbank approach which exhibits a denser frequency spacing at lower frequencies.
The improved classification results for the inverse filterbanks confirm that a higher resolution towards
higher frequencies is also beneficial with regard to the distinction of the voice quality in singing. This
also coincides with the conclusions made in [45], where it is shown that the high frequency energy
in speech and singing holds information on the perceived quality of voice. Hence, a better resolution
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towards higher frequencies when averaging a signal’s frequency spectrum using filterbanks makes
sense.

Apart from the filterbank variation, the other MFCC augmentation methods do not show any improv-
ments with regard to voice quality classification performance using MFCCs. The VTLP method,
proposed in [16], visualized in the second subplot of Figure 3.8 and Figure 3.9, performed worse.
Also the MFCC augmentation using the frequency warping approach VTLN from [23], stayed behind
the unaugmented cepstral coefficients in terms of classification performance. Based on theoretical
considerations made in subsection 2.2.2, a correlation between vowels and the estimated frequency
warping factors ayrN is anticipated. However, as shown in Figure 3.7, the correlation towards the
vowels is not given. aytLN seems to show a dependence towards the pitch rather than the vowel which
is one reason for the missing improvement. Another source for the worse performance with VTLP
and VTLN can be found in their origin. Both augmentation methods originate in automatic speech
recognition, the augmentations are designed with the intention of improving the MFCC’s descriptive
content regarding vowels. This is done by compromising the influence of different vocal tract lengths,
because vowels are shaped by the vocal tract. In contrast to vowels the phonation type is a voice
characteristic, for which the voice source located with the glottis is mainly responsible [57]. Thus, an
anticipated improvement with regard to voice quality classification, by diminishing the influence of
the vocal tract with VTLN and VTLP, could not be detected.

MPS based features are introduced

Building on the studies mentioned in [56] which state that the human auditory system is perceptually
sensitive towards joint temporal and spectral modulation, a signal representation containing either
one or both types of modulation (temporal and spectral) has proven useful in the distinction of nat-
ural sounds [56], in speech detection [26] and also in the classification of voice disorders [25]. The
second feature set approach is based on the modulation power spectrum (MPS). The MPS is defined
as the 2D-Fourier Transform of a time-frequency signal representation (spectrogram). Based on the
Matlab code provided in [44], the MPS of each audio sample contained in the dataset is estimated.
The MPS are summed along their temporal and spectral modulation axis, resulting in the summed
temporal modulation power spectrum (STMPS) and the summed spectral modulation power spec-
trum (SSMPS). The STMPS and SSMPS are freed of their functional trend by subtraction of a fitted
polynomial, yielding the STMPS- and SSMPS-residual, whose peaks serve as a basis for the derived
MPS-based features mentioned in subsection 3.4.3. In an exemplary analysis, the weakned occurence
of peaks in the temporal modulations for breathy phonation has been shown. This is mainly caused
by a diminished vibrato. Therefore, it can be argued, that the lack of vibrato for breathy phonation is
also due to the missing tension on the vocal folds, mentioned in subsection 1.2.2. On the other hand,
the summed spectal modulation residuals exhibit detectable differences in peak height and the peak
height decline over the spectral modulations, which seemed to correlate with the voice quality. As
shown in Figure 3.13 and in section B.2, the peaks located at 2 show the highest peak amplitude for

pressed phonation followed by normal and breathy phonation.OThe spectral modulations result from
a Fourier transform of the logarithmized overtone spectrum as mentioned in section 2.3, which is
equal to a cepstrum [44]. The cepstrum of a spectrum with whole-number multiple harmonics, as it is
present for speech signals, also exhibits peaks at whole-number multiples of the fundamental period.
This means that if a peak in the spectral modulations is more prominent, it also points to more distinct
overtone peaks. A possible explanation for this is the high tension on the vocal folds connected to
pressed voice quality, which results in a very tense glottal closure process, which introduces more
distinct overtones.
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Two SVM structures are implemented

The Matlab command fitcecoc() [31] builds the core of two SVM implementations presented in
section 3.3. The first structure is a single stage SVM, which is able to execute multi-class classifica-
tion using three binary SVM learners and the “one-versus-all * strategy. The second SVM structure
is designed in two stages. The idea behind the two stage structure is the reduction of the three-class
classification problem to two binary classification problems. The first stage deals with the classifica-
tion of the samples into the breathy or rest class, which contains the samples of both the normal and
pressed class. The goal of the second stage is the separation of normal and pressed samples. The
single stage SVM allows an evaluation of each processed feature set on its own and the two stage
SVM allows the categorization of the breathy class separately. Depending on which SVM structure
and which dataset variation is used the underlying dataset is balanced using random undersampling,
in order to ensure an equal number of samples per class. The resulting number of samples for the
single stage SVM, after random undersampling is summarized in Table 3.10. The number of samples
resulting for the usage of the two stage SVM after dataset balancing is listed in Table 3.11.

The MFCC based feature set 2 mrcc, the MPS-based feature set 2 vps and a combined version
Z combo 18 analyzed with a Plus-L. Minus-R feature selection algorithm (L-R selection) in combina-
tion with the implemented SVM structures. This allows an assessment on which features are more
descriptive towards the phonation types. The best performing feature set is utilized for the full dataset
and processed through the single and two stage SVM once with instruction and once with experiment
labels, allowing an assessment on whether the ML classification procedure prefers the instruction or
experiment labels. Additionally, comparisons towards the ranking behaviour observed in the listening
experiment can be drawn. The performance comparison based on the feature sets L-R selection as
well as results of the full dataset analysis are summarized and discussed in section 4.2.

4.2 Feature Selection Analysis and Performance Evaluation

The feature selection algorithm is carried out to exploit every possible number of reduced feature sets.
Meaning the L-R selection yields a feature set for every reduced number of features, from a single
feature to all but one feature of the analyzed feature set. For the single stage SVM, the MFCC feature
set 2 mrcc, the MPS-based feature set 2 vps and the combined feature set 2 combo are all subject
to the L-R selection, which chooses the most descriptive features for the three-class classification,
which is possible with the single stage SVM. The L-R selection chooses the features in an L-times
execution of the sequential forward selection and a R-times execution of the sequential backward
selection, based on the discriminant potential of each feature discussed in section 2.6. With regard to
the two stage SVM the feature selection is only carried out for 2" combo-

Feature selection: MPS features are preferred for classification with single stage SVM

The feature selection procedure for three classes and the single stage SVM allow a calculation of
the performance measures for each reduced feature set, yielding performance measure progressions
across an increasing number of selected features. These progressions depicted in Figure 3.14, 3.15
and 3.16 show that the MPS-based features outperform the augmented MFCCs. The test, training,
and overall score progressions created with the MFCC feature set all exhibit lower values than the
ones for the MPS based and combined feature sets. Additionally, the MFCC feature set exhibits the
largest mismatch between the test and training score, which indicates that the MFCC feature set also
bears the most overfitting, due to the deficient or redundant information content of the MFCCs with
regard to the phonation type. Nevertheless, one aspect of the MFCCs has to be emphasized, which is
that the MFCCs do not show any dependence towards the fundamental frequency. This can be derived
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from the performance measure progressions in Figure 3.14 (a), 3.15 (a) and 3.16 (a), because apart
from minor deviations towards lower Ngg, the performance progressions for the feature set with and
without fo display identical courses. The MPS based feature set shows clear improvements when fo
is included. Another conclusion for the MPS-based feature set can be drawn from the overall score
of 2 mps. There, the overall score for the feature set with fo—extension lies below the overall score
for unextended feature sets. This seems to contradict the higher fest score and lower misclassification
rate, which are simultaneously present for 2" nq¢, for This circumstance is even more prominent
when looking at the results of the third dataset reduction in Figure 3.16. An explanation can be found
when looking at the data used to fit the SVM models and the data underlying the overall score’s cal-
culation. Due to random undersampling the third dataset reduction is balanced in regards to the voice
quality, however, imbalanced with regard to the fundamental frequency, yielding SVM models which
are fitted towards certain fundamental frequencies. The imbalanced dataset behind the overall score’s
calculation (see Figure 3.5), contains samples with fundamental frequencies which, were not included
in the SVM fitting procedure. This means that the SVM models process samples with certain funda-
mental frequencies which they have not seen before. Thus, it can be stated that the fundamental fre-
quency influences the classification performance especially for low dimensional MPS-based feature
sets. As this dependency is also observed for low dimensional combined feature sets, it is obvious that
the features selected first in the L-R selection of 2 compo are MPS-based features. This presumption
is confirmed when looking at the feature selection tables in Appendix C, which clearly show that, if
the combined feature set is used, the MPS based features are selected first, for every dataset reduction.

Analyzing the effects of an increasing number of features, it can be observed that for all analyzed
feature sets the increase in dimensionality did not result in an increase of overfitting, indicated by
the mismatch between the training and test score. With increasing number of features the deviation
between training and test score either remains the same or even shrinks in all cases. The smallest de-
viation between test and training score is given for the combined feature set. As shown in Table 3.18,
the performance measures improve with every dataset reduction stage, reaching the best performance
measures for the combined feature set 2 compo-

Feature selection: two stage SVM shows better classifiabiltiy for breathy phonation

The two stage SVM was created to assess which classes can be identified more easily. Figure 3.17 to
3.19, as well as the 2D-LDA projection in Figure 3.20 prominently show that the distinction of breathy
voice quality, exhibits higher accuracy than the distinction between normal and pressed phonation.
For all reduction stages misclassification rates of between 5 % to 10 % are achieved for the first stage
responsible for the distinction of breathy voice quality. For the classification of normal and pressed
voice quality misclassification rates are 3 to 4 times as high. The Plus-L Minus-R selection algorithm,
for the two stage SVM, is now applied in both classification stages on the combined feature set. In
section 3.6 the performance on the full dataset is analyzed when comparing the results of the single
and two stage SVM in terms of the depicted confusion matrices. The single stage SVM shows fewer
misclassifications for both the instruction and experiment labels than the results for the two stage
SVM. A reason for this can be found in the structure of the two stage SVM, due to the fact that only
the samples that are deemed to belong to the rest class in the first stage are further processed and then
separated into normal and pressed class, which inevitably leads to an error propagation from the first
to the second stage of the SVM.
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SVM classification using the full dataset with instruction labels achieves better results

Generally, it is shown that the performance for both SVM structures increases with each dataset
reduction. This holds the insight that the misclassifications within the listening experiment might
not be of perceptual nature, but rather due to difficulties in the instruction execution of the singers.
Additionally, the versatile evaluation possibilities that come with the novel database are undermined
by the creation of the different dataset reductions. Also the feature selection reveals that the best
results are achieved for all features available and the fo extension shows benefits with regard to
the MPS based feature set and the combined feature sets, for lower numbers of selected features.
Subsequently, the analysis of the full dataset, which allows a comparison of the two SVM structures
in terms of the overall classification, shows that the single stage SVM performs slightly better on the
full dataset. Thus, the results of the single stage SVM classification on the full dataset’s hold-out set
(test set) with varying labels are now compared with the rating behaviour of the listening experiment.
The SVM model which exhibits the highest fest score of 100 carried out classification iterations is
chosen and the respective hold-out sets are classified. Confusion matrices are created and normalized
to the overall number of samples in the set, which due to RUS is given with 178 samples for the hold-
out set with experiment labels and 228 samples for the usage of instruction labels. The classification
on the hold-out set simulates a classification process in which the SVM-model is presented new data,
this creates a situation is compareable to the results of the listening experiment. But as the results of
the listening experiment comprise all samples of the dataset, confusion matrices with relative values
are compared.

confusion chart of instructed vs. experiment labels in %

breathy 24.6% ! 26.3%
normal 23.7% X 28.9%

pressed 0.3% 45.5%

instruction class

94.3% 52.2%
5.7% 47.8% 36.5%
breathy normal pressed

experiment class

Figure 4.1 Confusion matrix of instruction vs. experiment labels, values in %, absolute values are
normalized to 1140 samples.

confusion chart - voice quality classification in %: " breathy vs. normal vs. pressed" confusion chart - voice quality classification in %: " breathy vs. normal vs. pressed"
dataset variation: "full dataset (hold-out)"; feature set: "combined"; NFS = 45 features dataset variation: "full dataset (hold-out)"; feature set: "combined"; NFS = 45 features

32.0% CRIGI  6.4% breathy 32.6%
0.9% 26.8% 82.4% M normal 24.7%

breathy 93.5%

normal 4.8%

AN 22.4%

REON 17.0%

pressed

True Class
True Class

93.6% 79.2% 80.8% 95.1% 81.5%
6.4% 20.8% 19.2% 4.9% 18.5% 30.2%
breathy normal pressed breathy normal pressed
Predicted Class Predicted Class
(a) instruction labels (b) experiment labels

Figure 4.2 Confusion matrices in percent, full dataset’s hold-out set classification with instruction
labels (a) and experiment labels(b), for the single stage SVM model.
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Figure 4.1 shows the same results as Figure 3.2, with the difference that all absolute values are nor-
malized with the total number of 1140 samples. Thus, Figure 4.1 and Figure 4.2 are comparable. In
doing so, it has to be pointed out, that even though both confusions matrices show fest scores that
are in the same vicinity percentagewise (checkable by summing the values on the main diagonal of
Figure 3.21), the ML-classification model works slightly better for the full dataset with instruction
labels as shown in Table 3.18, because the statistical variation behind the test score brought in by
random undersampling for the usage of experiment labels and the random data cannot be neglected.
This becomes clearer when comparing the misclassification rate achievable with the full dataset in Ta-
ble 3.18. The SVM models behind Figure 3.21 are the ones exhibiting the highest test score amongst
100 classification iterations which represent best case scenario out of these 100 iterations. However,
the statistically more stabilized classification properties are recogniseable in the performance measure
means of Table 3.18. The improved classification results when using the instruction labels, are also
visible in the confusion matrices for a classification of the full dataset appended in Figure B.6.

ML-based classification of full dataset with experiment labels is comparable to listening
experiment rating

Confusion charts created on the basis of the rating behaviour of the listening experiment (see Fig-
ure 4.1) resemble the misclassifications occuring within the ML-based classification, when experi-
ment labels are used. This can already be seen in Figure 3.21, although still in small scale. However,
for Figure B.6 (b) and Figure B.7 (d) depicting the confusion matrices created for the full dataset
classification with single and two stage SVM respectively, the resemblances between the misclassi-
fication behaviour of the listening experiment and the ML classification when using the experiment
labels are not deniable. This indicates that a SVM model trained with the full dataset and the labels
retrieved from the listening experiment, exhibit similar misclassifcation behaviour as observed for the
listening experiment. For both classification procedures (the listening experiment and the ML-based
classification), the class with the most correctly classified samples is the breathy class. Most mis-
classifications occur for the distinction between pressed and normal classes, whereas in the listening
experiment more samples, where a normal phonation was instructed, were ranked with pressed voice
quality. This is also true for the classification of the hold-out set with experiment labels visualized in
Figure 4.2.

Under the assumption that the instruction labels are the ground truth and the experiment labels are
the results of a classification task carried out by the listeners, the rating results are comparable to the
classification task carried out on the hold-out set. If one compares Figure 4.1 and Figure 4.2, the
ML-based classification carried out on the hold-out set shows better results than the confusion chart
created from the listening experiment in Figure 4.1. The samples where experiment and instruction la-
bels coincide amount to 66.5 %. The best case hold-out classifications depicted in Figure 4.2, exhibit
of 84.7 % for the usage of instruction labels and 82 %, if experiment labels are employed. The state-
ment that the ML-based classification task outperforms the human classification apprehended from
the listening experiment, is only true for the underlying data, if the instruction labels are considered
to be the ground truth. This raises the fundamental question, if the ground truth lies with the instruc-
tion labels or the experiment labels. A possible answer to this can be found in a more sophisticated
analysis of the experiment’s results in order to assess, where the misclassifications within the listen-
ing experiment stem from. One the one hand, the instructions given to the professional singers might
have been hard to execute, because in some cases certain types of phonations are difficult to produce
e.g. breathy for high pitches, as it is natural that singers tend to use pressed phonation for higher
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pitches [57]. On the other hand, the misclassifications observable in the ratings might be explained by
a more thorough analysis of the experiment results with a closer look at each listener, also consider-
ing the listeners’ professional backgrounds or experiences with singing voices. This would result in a
more sophisticated evaluation of the experiment results including e.g. possible correlations between
rating behaviour, deviating instruction and experiment labels occur. Nevertheless, the analysis carried
out in this thesis was not designed to answer these questions.

Remarks on the present overfitting

During the first overview classification analysis of the MFCCs in Figure 3.8, the analysis of the full
dataset carried out in section 3.6 and also the feature selection analysis of the first dataset reduction
in subsection 3.5.2, a mismatch between the training and fest score due to overfitting is mentioned.
There are two possible sources of this mismatch. Either it originates from poorly chosen SVM pa-
rameters (kernel scale v or box constraint C) or from the feature set itself, e.g. due to the curse of
dimensionality. However, the feature selection analysis carried out in section 3.5 showed that the
dimensionality increase in the feature set does not contribute to the overfitting in a drastic manner,
as the training and test score increase equally strong for higher dimensional feature spaces. In the
two stage analysis of subsection 3.5.3, the large mismatch does not occur for the classification of
breathy phonation but for the distinction of normal and pressed voice quality. This indicates that the
underlying feature sets exhibit a higher variance concerning the classes normal and pressed leading
to a worse separability. This is also undermined when looking at the LDA transformed features in
Figure 3.20. Thus, a major contributor towards the present overfitting is found with the high variance
in the feature set regarding the classes normal and pressed. However, it still begs the question on how
large the influence of the SVM parameters v and C' are. As the estimation of the kernel-scale v using
the iterative procedure presented in section 3.3 already provides a strategy which adaptively selects
a reasonable  with respect to the used feature set, the influence of v is neglectable. However this
still leaves the influence of the box constraint C' which was fixed with C' = 1 for all SVM classifica-
tion procedures carried out in this thesis. In order to assess this influence the initial MFCC overview
analysis Figure 3.8 was carried out again, as it showed the largest mismatch between training and test
score. For the additional analysis, whose results are to be found in section B.1, the box constraint
was diminished by a factor of 100 to C' = 0.01. When comparing the results of the MFCC variants
with inverse filterbanks from Figure 3.8 with Figure B.1, it is detectable that the inital mistmatch in
Figure 3.8 (ca. 18 %) is reduced to approximately 11 % in Figure B.1, which is a 7% drop of the
mistmatch between training and test score. However, the test score achieved with C' = 0.01 is 10 %
lower than for C' = 1. Thus, the decrease of the test score when using C' = 0.01 is higher than
the achievable drop in the deviation of training and test score. This shows that although C' = 1 is a
contributor to overfitting for certain feature sets, the benefits in regards to the fest score still outweigh
the increased mismatch. Finally, it can be argued that the mentioned variance within the data of the
classes normal and pressed, is the main contributor and the box constraint C' = 1 only plays a minor
role in the observed deviation between training and test score.

In conclusion, the proposed novel abstract feature set proves itself to be very informative and outper-
formed the classic MFCC based approach with regard to voice quality classification. If the assumption
is made that the instruction labels provide the ground truth behind the recorded sung vocal samples
with different phonation types, the ML-based classification approach delivers better results than the
equivalent classification procedure which is carried out during the listening experiment. However, it
has to be kept in mind that the physiological processes of generating different phonation types are also
subject to physical limitations, which become noticable especially for rising pitches. This, for exam-
ple, can result in phonation types that are involuntarily changed. For instance, the usage of pressed
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phonation is in combination with high pitches [57]. It is also possible that these involuntary changes
are perceivable by humans and the experiment labels are closer to the ground truth, although the ML-
based classification suggests that the data better corresponds to the instruction labels of the abstract
features within the spanned feature space. However, the human auditory system and its capabilities
should never be underestimated.

4.3 Outlook and Suggestions for Future Research

In order to provide a compact overview of possible improvements and future areas of research in the
field of phonation type classification in singing, the following paragraphs hint at the areas exhibiting
potential of improvement.

Further evaluation of the results of the listening experiment

The analysis of the results of the listening experiment, still leaves a lot of questions unanswered. The
most prominent is, where the reason for the misclassifications originates and if there exist correlations
between observable misclassifications and certain singers, vowels or pitches. This could provide
important insight in answering the question of which labels are closer to the ground truth. Thus, a
further analysis of the listeners’ side of the conducted listening experiment, is recommended.

Analysis of sung vocal signals with modulation power spectrum

Using the modulation power spectrum signal representation, one assumption is made, when the tem-
poral features are calculated. The STMPS-residual peaks for negative temporal modulations are dis-
carded. By doing so, the MPS is assumed to be symmetrical, which in terms of sung vocal signals
would mean that the signal contains equally strong up and down sweeps, as it would occur for a vi-
brato, where the upwards pitch movement is equally distinct as the downwards pitch movement. A
way of analyzing the symmetry with a measure is proposed in [56]. If the assumption that the MPS are
not symmetrical does not hold, the half containing the negative temporal modulations which include
the up sweeps might also hold vibrato-related information on the voice quality. Another aspect con-
cerning the modulation power spectrum is the possibiliy it holds with regard to sound manipulation.
Certain manipulations have already been discussed in [44]. A procedure that is often used in speech
signal processing in order to estimate the source signal present at the glottis is the glottal inverse filter-
ing [7], which makes sense when considering the source filter model that is mostly presupposed in a
speech context and that the origin of voice quality is found at the voice source. Nonetheless, as shown
in [4], the inverse filtering algorithms based on LPC estimation of the vocal tract are strongly limited
with higher fundamental frequencies. Due to the fact that within the MPS domain the source and
filter are also separated, an inverse filtering procedure applied in the MPS domain could also result
in a source signal estimation which could be further processed in a classification task. Another fea-
ture extraction strategy, which could yield important voice quality descriptive features is the strategy
proposed in [25], which applies a dimensionality reduction scheme directly onto a modulation-based
signal representation. This strategy could be applied onto the modulation power spectra, meaning that
the 2D-MPS could be reduced in its dimensionality with a principle component analysis (PCA) or a
linear discriminant analysis (LDA) in order to retrieve a condensed form of the MPS, whose coeffi-
cients are then usable as abstract features. Additionally, there might also still be useful information
left within the STMPS- and SSMPS-residuals, which allow the derivation of additional peak based
feature which might yield classification improvements.
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Improvements for other feature sets and classification model

Concerning the MFCC feature set, the vocal tract length normalization based on the frequency warp-
ing approach might be improved if other reference MFCCs were chosen, because the averaged ref-
erence MFCCs did not prove to be sufficient. As shown in subsection 2.2.2, the frequency warping
factor estimation works best, if samples containing similar vowels are used. If one reference singer
is chosen, a sample for each vowel, ideally with the same pitch, could be used to estimate the fre-
quency warping factor. There are also other normalization approaches, e.g. the A F'-method proposed
in [17] or the algorithm proposed in [62], which even allows the estimation of the vocal tract shape.
Apart from the voice quality classification, a vowel classification/detection is also possible with the
presented dataset, because not only has the voice quality been rated during the listening experiment
but also were perceived vowels rated. For a vowel classification/detection a diminished influence of
the vocal tract length might prove itself to be very beneficial.

Regarding the ML classification model, the analysis focusing on the model parameters has been
kept to a minimum. A closer look at a potential hyperparameter optimization strategy, including
different kernel functions and especially one which allows the estimation of an optimal box constraint
dependent on the feature set, could still influence the classification positively. Additionally, it has
been shown that if the MPS-based features exhibit a fundamental frequency dependence, especially
for lower dimensional feature sets. A dataset balancing with regards to the fundamental frequency, or
generally a more sophisticated dataset balancing scheme, might also present potential improvement.

Potential towards real time application analysis environment

The implemented MPS calculation in this thesis, relies on the whole signal sample. Further in-
vestigation carried out solely on the MPS in combination with sung vocal signals could provide
insight into the influence of blocking parameters, such as the window length and hopsize, which
are fundamental for the calculation of the modulation power spectra. However, it is important that
for the MPS the period of the temporal modulations has to be taken into account and the block-
ing parameters have to be chosen accordingly. In contrast to the time-frequency representation
of vocal signals in form of spectrograms, where the fundamental frequencies revolve around fre-
quency ranges of fo € [70Hz, 1480 Hz] ~ [D, fis®], average vibrato frequencies are given with of
fiemp € [4Hz, 7Hz| [14]. For instance if a vibrato frequency of fiemp = 5 Hz is assumed the resulting
period is given with Ttepp = fl £ = 200 ms, which are way larger periods, on whose basis the
blocking parameters have to be cflosen Additionally to the vibrato periods, the used fundamental fre-
quency tracker presented in section 2.4 requires a minimum block-length of 80 ms, so if smaller block
lengths are used, the fy-tracker needs to be adapted, e.g. with a real-time capable tracker as presented
in [8]. Another aspect which could improve the feature calculation of the MPS-based features pro-
posed in this thesis, is the direct calculation of the summed spectral and temporal modulations from
the spectrogram. Because the features are derived from the summed MPS, the 2D-representation is
not implicitly necessary. A reduction to two 1D-Fourier transforms operations could decrease the
complexity of the feature extraction procedure.

As shown, the analysis and classification of voice quality in singing still exhibits various areas that
yield the potential of future research. It is also obvious that the modulation based signal representation
given with the MPS holds vivid information concerning the phonation type in singing, which might
also be transferable to research areas such as the classification of voice disorders or other biomedical
applications. Nonetheless, it has been shown that for phonation type classification in singing, the
modulation power spectrum and its derived features have proven themselves a worthy competitor to
already well-established feature sets, such as the mel frequency cepstral coefficients.
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Appendix A Additional Tables

A.1 Dataset Reduction Distribution of Discarded Samples
A.1.1 First Dataset Reduction

Table A.1 Statistics on the discarded samples of the first dataset reduction: voice quality.

#(samples) voice quality
(instruction)

breathy normal pressed

total number of samples 380 380 380
number of discared samples 100 110 173
percentage of discared samples 26.32% 28.95% 45.53%

Table A.2  Statistics on the discarded samples of the first dataset reduction: singers.

#(samples) singers
S1 S2 S3 S4 S5
() () (m) () ()
total number of samples 135 135 90 135 135
number of discared samples 55 38 19 44 43
percentage of discared samples 40.74% 28.15% 21.11% 32.59% 31.85%
#(samples) singers
S6 S7 S8 S9 S10
() (m) (m) (m) ()
total number of samples 135 90 90 60 135
number of discared samples 41 36 50 24 33

percentage of discared samples 30.37% 40%  55.56% 40%  24.44%

Table A.3  Statistics on the discarded samples of the first dataset reduction: vowels.

#(samples) vowels
la/ le/ fi/ lo/ /u/
total number of samples 228 228 228 228 228
number of discared samples 73 76 73 82 79

percentage of discared samples 32.02% 33.33% 32.02% 35.96% 34.65%
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Table A.4 Statistics on the discarded samples of the first dataset reduction: pitches.

#(samples) pitches
¢ g el el gl al
total number of samples 60 60 150 150 135 135
number of discared samples 23 23 40 44 42 44
percentage of discared samples 38.33% 38.33% 26.67% 29.33% 31.11% 32.59%
#(samples) pitches
2 dz2 02 g2 92
total number of samples 90 90 90 90 90
number of discared samples 28 23 34 36 46

percentage of discared samples 31.11% 25.56% 37.78%  40%  51.11%

A.1.2 Second Dataset Reduction

Table A.5 Statistics on the discarded samples of the first dataset reduction: voice quality.

#(samples) voice quality
(instruction)

breathy normal pressed

total number of samples 380 380 380
number of discared samples 219 169 280
percentage of discared samples 57.63% 44.47% 73.68%

Table A.6 Statistics on the discarded samples of the first dataset reduction: singers.

#(samples) singers
S1 S2 S3 S4 S5
() () (m) () (f)
total number of samples 135 135 90 135 135
number of discared samples 99 63 31 76 75
percentage of discared samples 73.33% 46.67% 34.44% 56.30% 55.56 %
#(samples) singers
S6 S7 S8 S9 S10
() (m) (m) (m) ()
total number of samples 135 90 90 60 135
number of discared samples 79 60 70 42 73

percentage of discared samples 58.52% 66.67% 77.78% 70%  54.07%
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Table A.7 Statistics on the discarded samples of the first dataset reduction: vowels.

#(samples) vowels
/a/ le/ fi/ /o/ /u/
total number of samples 228 228 228 228 228
number of discared samples 127 137 127 144 133

percentage of discared samples 55.7% 60.09% 55.70% 63.16% 58.33%

Table A.8 Statistics on the discarded samples of the first dataset reduction: pitches.

#(samples) pitches
c g cl el gl al
total number of samples 60 60 150 150 135 135
number of discared samples 36 37 78 81 78 81
percentage of discared samples 60.00% 61.67% 52.00% 54.00% 57.78% 60.00%
#(samples) pitches
c2 dz 2 g2 a2
total number of samples 90 90 90 90 90
number of discared samples 47 49 57 62 62

percentage of discared samples 52.22% 54.44% 63.33% 68.89% 68.89%
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Appendix B Additional Plots

B.1 Performance of MFCC variations with box constraint C = 0.01
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Figure B.1 Performance overview on MFCC variations for smaller box constraint C = 0.01
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B.2. Summed Modulation Power Spectrum-residual peaks

B.2 Summed Modulation Power Spectrum-residual peaks
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Figure B.2 Picked peaks of STMPS and SSMPS-residual for exemplary samples.

(b) S5 res (1) and S s (fio): singer: S3, vowel: /a/

STMPS-residual peaks
singer: S10; vowel: /a/; pitch: al

normal voice qualit;

St
2 breathy voice quali
= 6l pressed voice quali
= v normal voice quality: $¢° .
—E| 4 v breathy voice quality:
B . B pk
%’_ pressed voice quality: S{,,,,,
g 2r
20 -
= s —
g
H-2r
<
4L
I I I I I I
0 5 10 15 20 25 30
S, in Hz

logarithmic amplitude in dB

SSMPS-residual peaks
singer: S10; vowel: /a/; pitch: al

normal voice quali
breathy voice qualit;
pressed voice quality
v normal voice quality:

v breathy voice qual
pressed voice quality:
— — peak interval

NN A& r\ ‘4 | /V N I\ o)
\, // \ /W'W VW ]J(W/-G VTR
v W W & v
s
i Il Il Il Il Il Il Il Il Il Il Il Il
L 2 3 i+ 5 & 1 s 9 1w u 122 13
o o o o i i %o 7o o o T fo oo
"

Figure B.3 S’Zym (1) and S'g,m (ftroa); Singer: S10, vowel: /a/
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B.2. Summed Modulation Power Spectrum-residual peaks
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(a) S5 res (7) and S res (fi,,); singer: S4, vowel: /a/

(b) S5 res (1) and S s (fi,oy); singer: S5, vowel: /a/

Figure B.4 Picked peaks of STMPS and SSMPS-residual for exemplary samples.
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Figure B.5 Picked peaks of STMPS and SSMPS-residual for exemplary samples.
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B.3 Relative Confusion Matrices for Single and Two Stage SVM
Classification

confusion chart - voice quality classification in %: " breathy vs. normal vs. pressed" confusion chart - voice quality classification in %: " breathy vs. normal vs. pressed"
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Figure B.6 Classification results in percent of single stage SVM for (a) full dataset with instruction
labels and (b) full dataset with experiment labels.

confusion chart - voice quality classification in %: " breathy vs. normal vs. pressed" confusion chart - voice quality classification in %: " breathy vs. normal vs. pressed"
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(a) full dataset with instruction lables; two stage SVM (b) full dataset with experiment lables; two stage SVM
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Figure B.7 Classification results in percent of two stage SVM for (a) full dataset with inst. labels
and (b) full dataset with exp. labels, (c) hold-out set classification with inst. labels in

and (d) exp. labels.
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Appendix C Feature Selection Order

C.1 L-R Selection Order Tables for the Single Stage SVM

C.1.1 L-R Selection of MPS-based Feature Set

Table C.1 L-R selection; Table C.2 L-R selection;
Feature set: MPS-based Feature set: MPS-based
Dataset reduction: 1% Dataset reduction: 2™
2 Mps Nrs 2 Mps Nrs
1 2 3 4 5 6 1 8 1 2 3 4 5 6 7 8
&rk, 1 apk, 1
X, temp 3 3 3 - v v v v 3, temp 3 B . - v v v v
A1emp - - - - - - v v Alemp - - - - - - v v
k k
femp - 3 - " - ' - v {’emp B - - - 3 - B v
R R R R 2 R RV N " R
»Spec ,Spec
Apecn1 - - & & & & &V Agpec1 - - ¥ & & & &V
ASP“‘Q - - - v v v v v Asspc:c,2 - - = v v v v v
Aralio - - - - - - - - Aratio - - - - - - - -
Ageral - ¢ & & & v < ¥ Ajerai - ¢ & & & v & ¥
=Pk N =PE. N Y,
Table C.3 L-R selection;
Feature set: MPS-based
Dataset reduction: 3@
%V‘Mps NFS
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I AR
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k
2“‘{Jemp B B B B B B B v
SR RV N R
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C.1.2 L-R Selection of MFCC Feature Set

Table C.4 L-R selection; Feature set: MFCCs; Dataset reduction: 1%
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C.1. L-R Selection Order Tables for the Single Stage SVM

Table C.7 L-R selection; Feature set: combined; Dataset reduction
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Table C.8 L-R selection; Feature set: combined; Dataset reduction: 2"
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Table C.9 L-R selection; Feature set: combined; Dataset reduction
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C.2. L-R Selection Order Tables for the Two Stage SVM

Table C.10 L-R selection; Feature set: combined; Dataset reduction: 1%'; SVM stage: 1*
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2nd

Table C.11 L-R selection; Feature set: combined; Dataset reduction: 1°'; SVM stage
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Table C.12 L-R selection; Feature set: combined; Dataset reduction: 2"¢; SVM stage: 1*

0
3]

<+
2]

ERIRARS
BRIk
ERIRARS
BRIRIRS
BRI IRY
BRIRIRS
ERIRARS
BRR2RS
BRIRIRS
BRI 2RS
ERIRARS
BRIRIRS
BRI IRd
BRIRIRS
BRI IRd
BRiRdRd
BRIRIRS
B 2RS
ERIRARS
BRIk
BRI IRY
BRIRIRS

R IR
BRIk
BRIRS
R IRd

)
o0

af o

Y
Yy

of ~
HRERS

[
]

]
[l

~
o

BRI
ks

0
a

<
a

)
a

I
a

BRI IR IR R IR AR AR IR AR

ERIRIRARIR IR AR 20 20 2h
AR IR IRIR RN R AR
BRI AR IR AR AR

IS

ERIRIRARS

ERIRdRRS
BRIRS
RN

BRIRS
IS

IS
R
RN

a

=3
N

BRIk
IS
BR2Rs

)
—

0
par

ERIRARS
BRIR2RS
BRI ARS
BRIR2RS
BRIRARS
BRIRIRS
ERIRARS

©
W QW0 Q[0 Q[0 Q0 Q0 [0 [0 W [0 W [0 |

~
—

=
)

¥

0
—
Q

ht
—

NS

YYD
BRI AR
NS
BRI
RS

)
—

—
—

o
—~
0 |0 [0 [ W |

=)
—

RN
BRIRS

=

0

I~

©

10

BRIk

<+

BRI IR AR IR AR AR
BRI IR IR AR IR AR AR
BRI R R RN
BRI IR IR AR IR R AR
BRI RSN RARS
BRI R IR AR IR AR
BRI IR AR IR AR
BRIRIR2RA AR
BRI IR AR ISR

BRI IRIRS
BRIRIRARS
BRI IRIRS
BRI ARS
BRI IRIRS
BRI RN
BR2RIRIRS
BRI 2Rd
BRIR2RS
BRIRARS

2

o
WO Q[0 [0 Q|

>

>
>
>

>

BRIR AR IR
BRI AR ARS
BEIAR AR IR

Y

>

S

S
>
S

>

>

>

AR AR AR IR AR IR IR AR IR IR AR AR AR AR RS R R AR AR AR IR AR IR IR AR AR RARAR AR AR AR A0 20 20

AR R NI AR IR AR AR AR AR AR R AR AR AR IR R AR AR R AR AR AR SRR 20

AR AR AR IR IR IR IR IR IR IR IR AR SRR RS R R AR AR AR 20 20 20
RERAR AR R IR IR IR AR IR IR AR AR RS RS RS R AR AR AR AR 20 20
RERIR R NI IR IR AR IR AR AR AR IR AR IR R AR AR AR AR 2R
RERAR AR R IR IR IR IR AR IR IR IR AR RS RS RS R AR AR AR 2R b 20
IR R NI IR AR IRAR AR IRAR AR IR AR IR R AR AR AR AR 20
AR R BRI AR IR AR AR RN AR IR AR IR IR AR IR R AR AR AR AR 2R
AR IR R IR IR IR IR IR IR IR IR AR RAR AR AR 20 20 202
AR IR BRI IR IR AR AR AR R AR I RN IR IR AR IR R AR AR R AR 2R
AR AR AR IR IR IR IR IR IR IR IR AR RIS RS RAR AR AR 20 20 20

AR IR RN IR IR AR AR IR AR AR IR AR AR IR R AR 20 Y
R AR R IR IR IR IR AR IR AR IR IR DRSPS P b S
AR AR R AR AR AR IR IR AR IR IR IR 2R RS RS RS DA RS RS

SIS IIDDSED
RERZR AR N AR AR IR R AR 2R
AR AR AR IR IR IR IR 20 202
RERZR AR NI IR AR 2R
RERIR AR AR IR IR IR IR 20 202
AR NI IR b 20
RERIR AR N AR AR IR AR 20
AR IR AR IR IR IR IR 20 20
R AR RN AR IR AR 20
RERZR AR ERAR AR IR AR 2R
AR AR AR IR IR IR IR 20 202
RERZR AR N AR AR IRAR AR 2R
AR AR SR IR IR IR IR 2b 202
AR R NI IR AR 20
RERIR AR N AR AR IR AR 2

SIS
SIS

>

=
-

fae]
h

«Q
-

-
-

=
-

=
o

®
o

[
)

o
]

7]
]

<
L]

2]
o

[
L]

-
()

=
a

=
N

®
]

I
3]

N
Q

7]
S

e
a

o]
o

N
«

—
]

=3
Q

)
—

®
-

~
—

o
—

wn
—

-
—

o0
—

(4%

1T

()8

0quiod -

4

104



C.2. L-R Selection Order Tables for the Two Stage SVM

P A.Bereuter

Table C.13 L-R selection; Feature set: combined; Dataset reduction: 2";: SVM stage: ond
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Table C.14 L-R selection; Feature set: combined; Dataset reduction: 3"; SVM stage: 1°'
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2nd

Table C.15 L-R selection; Feature set: combined; Dataset reduction: 3: SVM stage
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