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Abstract

Bell-ringing is a fundamental part of ecclesiastical rites. The aim of this interdisciplinary
project involving the long night of churches and the Akademie Graz is to provide a visu-
alization of bell ringing, aimed at hearing impaired persons. In a first step, an analysis
algorithm is created. Therefore, spectral and temporal features are analyzed. Different
calculation techniques for activations, based on frequency-domain analysis and a non-
negative matrix factorization (NMF) are derived. A model for local consonance is pre-
sented. In a next step, a real-time analyzation and visualization based upon the found
parameters is created.

Zusammenfassung

Glockenläuten ist ein grundlegender Bestandteil kirchlicher Kultur. Im Zuge dieses in-
terdisziplinären Projekts soll in Kooperation mit der Langen Nacht der Kirchen und der
Akademie Graz eine Visualisierung kreiert werden, um auch gehörlosen Menschen diese
Tradition zugänglich zu machen. Dabei soll in einem ersten Schritt eine Analysemetho-
de für Geläut gefunden werden. Besonderer Augenmerk liegt hier auf spektralen und
zeitlichen Features wie etwa Grundfrequenz, Obertonstruktur, rhythmische Muster und
dynamische Verläufe. Verschiedene Ansätze zur Berechnung der Aktivierungen, basie-
rend auf einer Zeit-Frequenzanalyse und einen non-negative matrix factorization (NMF)
werden hergeleitet. Ein Modell zur Bestimmung der wahrgenommenen Konsonanz wird
präsentiert. Mit diesen Parametern wird anschließend in Echtzeit eine Analyse und Visua-
lisierung vorgenommen.
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Chapter 1

Introduction

The soundscape in cities and villages is for normal hearing persons an ordinary sensation,
the individual sound sources are often not even perceived deliberately. What seems com-
mon to them, can be only an abstract concept for deaf or hearing impaired people. In the
course of the interdisciplinary project “Kultur Inklusiv” [Aka21], a variety of accessible
cultural projects in an urban context were carried out.
One element accompanying us in towns and villages are the sound of bells from bell
towers and churches. In the course of this specific project [Kur+21, pp. 56–57], in co-
operation with Akademie Graz, Kirchen Kultur Graz and Gehörlosenverband Steiermark
among others, bell sounds were to be analyzed and visualized, especially for hearing im-
paired people. It was desired to stay as close to physically measurable and perceived
parameters as possible in this project. The challenge lies in the abstraction and translation
of a sound event into graphical domain, for which deaf people do not have an association
for.

In chapter 2, the characteristics of bells in an acoustical context are shown. Chapter 3
deals with the principals of a constant-Q transform as basis for further analysis. A cen-
tral item used for visualization are the temporal activations of different sound sources in
chapter 4, where different calculation approaches are presented. In addition to the ex-
tracted physical parameters, the auditory/psycho acoustics related perceptual measure of
consonance is treaded in chapter 5. Chapter 6 deals with the implementation of the anal-
ysis algorithm in a real-time capable environment, chapter 7 covers a first concept for
visualization. The findings are summarized in chapter 8.
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Chapter 2

Characteristics of bell ringing

For successfully finding an analyzation model, basic knowledge of the characteristics of
the source is necessary. Even more in this case, as the related project is meant for deaf
and hearing impaired people, who do not know the sound of a bell. So the essence of the
sound characteristics has to be found using knowledge of the sound generation itself.

2.1 Construction and sound generation
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Figure 2.1 – Schematic structure of a bell [Wik20]

A schematic illustration of an ordinary bell is shown in fig. 2.1. It is either fixed in a static
position or mounted to move freely at the bell yoke 1 via the canons 2 . The typical form
is defined by the crown 3 , the closed upper boundary, and the curvature with shoulder
4 , waist 5 and sound bow 6 ending at the lip 7 , which surrounds the mouth 8 . Waist

and sound bow are separated by the bead line 10 . Fixed bells are typically excited from
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CHAPTER 2. CHARACTERISTICS OF BELL RINGING

the outside using a hammer, while moveable bells are swung so that the clapper 9 at the
inside hits the bell.

First systematic experiments regarding vibrational patterns and partial tones of bells have
ben made by Chladni [Chl87], Helmholtz [Hel63] and Rayleigh [Ray90]. The radiated
sound can be described by the oscillation of the bell. The vibrational pattern can be de-
composed in different normal modes. Those are motion patterns, where all parts move
sinusoidally with a fixed phase relation and nodes at a certain frequency. An example
for those normal modes can be seen in fig. 2.2, where dark areas denote nodes and white
areas the maxima of the movement. The strength and damping of modes, which result in
partials with different amplitudes and decay times, are defined by the geometry of the bell.
The excitation can be assumed as impulse-like, which results in an excitation of all normal
modes. For antisymmetric modes, the so called mode splitting can occur. Antisymmetric
normal modes can be further decomposed in two movement patterns. Ideally, both pat-
terns should have the same resonance frequency. However, due to production variations
and therefore a not perfectly rotational symmetric bell, modes occur at slightly different
frequencies, resulting in a noticeable beat tone [Fle97]. The acoustical properties will be
discussed more in detail in section 2.2.

Figure 2.2 – Exemplary movement patterns and frequency ratios of a bell. [Fle97, p. 102]

The strike tone (see section 2.3), the perceived pitch of the bell, is mainly influenced by
size and weight of the bell. Major impact on the timbre has the geometry of the bell as
well as precise, symmetric manufacturing [Fle97]. A more detailed explanation about
constructional details and its impact on the timbre can be found e.g. in [Fle97; Wer04].
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CHAPTER 2. CHARACTERISTICS OF BELL RINGING

2.2 Harmonic structure

The typical bell sound can be decomposed in a series of inharmonic partials. This means
that in contrary to sound from the majority of musical instruments, the frequencies of the
overtones are not distributed in whole-number ratios of the fundamental frequency. In
extensive investigations, about 30 partial tones can be detected [FFS07]. An exemplary
spectrogram and the more detailed analysis results can be seen in fig. 2.3 and table 2.1.
Due to historical reasons, some dominant partials have their own denotation (cf. fig. 2.2).
The second partial is defined as fundamental frequency, the partial an octave below is
called hum tone. The higher, dominant partial are named after the corresponding musical
intervals (e.g. Third, Fifth). Especially the Fifth and the Tenth are weak and nearly inper-
ceivable partials [Wer04, p. 11].

Figure 2.3 – Spectrogram of a bell sound from Graz Mausoläum.

Another quite unique feature of bell sounds are the drastically different decay times of the
partials. While especially the hum tone and the fundamental tone can have decay times in
the range of two- or even three-digit seconds, some partials with similar amplitudes have
decay times of well below T60 < 5 s. So these partials can only be perceived directly after
excitation, while the hum tone can be heard for minutes [FFS07].
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Index Frequency (Hz) Notation Detuning (cent) Magnitude (dB) Frequency-Ratio Name

1 519.3 C5 +13 -25.1 0.5 Hum
2 1045.8 C6 +1 -28.2 1 Fundamental
3 1235.0 E♭6 +13 -22.1 1.18 Third
4 1633.2 A♭6 +29 -43.4 1.56 Fifth
5 2095.2 C7 -2 -25.8 2 Octave
6 2686.2 E7 -32 -44.1 2.57 Tenth
7 2870.2 F7 -47 -41.1 2.74
8 3149.8 G7 -8 -28.9 3.01 Twelth
9 3531.7 A7 -6 -42.0 3.38
10 3803.7 B♭7 -34 -52.0 3.64
11 4347.2 D♭8 35 -37.8 4.16 Double Octave
12 4659.3 D8 +15 -55.3 4.46
13 5178.1 E8 +32 -64.1 4.95
14 5644.2 F8 -17 -49.5 5.4
15 7021.1 A8 +5 -57.2 6.71

Table 2.1 – Detailed analysis of a bell sound from Graz Mausoläum. Notation and detuning are calculated for the Fundamental as reference (tuning
frequency of 440Hz).
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CHAPTER 2. CHARACTERISTICS OF BELL RINGING

2.3 Human perception

When discussing bell sounds, also human perception and psychoacoustics should be taken
into account. The perceived pitch after excitation, the so called strike tone, is one of the
major characteristics of a bell. Due to the inharmonic partials, objective calculation can
be quite extensive, normally it is determined perceptually by the manufacturer. As a rule
of thumb, the strike tone of medium sized bells lies one octave below the frequency of the
Octave, while for very big bells (with fundamentals below ∼ 200Hz), the strike tone lies
two octaves below the Double Octave. Note that this procedure is needed, as the Octave
and Double Octave usually are inharmonic to the fundamental frequency [Wer04, p. 22].
In the example from table 2.1, the strike tone would therefore lie one octave at about
1047.6Hz, slightly above the Fundamental.

It has been investigated experimentally, that only a smaller number of about 9 to 15 par-
tials are necessary for perception of a typical bell sound. Especially the partials between
hum tone and Double Octave are necessary for a convincing impression [FFS07].

Bell ringing is normally not reduced to a single bell. Instead, several bells begin to ring
sequentially. As this is presumably done to avoid a resonance disaster of the bell tower, it
has to be taken into account for human perception. While the excitations at the beginning
with one ore two bells can be detected quite good, more sound components affect and
impair this ability. So a transition from a well defined excitation pattern to a slightly
pulsating sound mixture can be perceived.

6



Chapter 3

Constant-Q Transform (CQT)

As basis for a robust calculation of activations, a time-frequency representation of the
input signal is needed, in this case the constant-Q transform (CQT). The CQT was origi-
nally introduced in 1978 by James Youngberg [YB78]. In 1991, it was used the first time
in the context of musical analysis by Judith Brown [Bro91] and emerged since then as
a valuable tool for music information retrieval. In contrary to the discrete Fourier trans-
form (DFT), the calculated frequency components of the CQT are not spaced equally but
logarithmically, based on a geometric series. Hence the frequency spacing corresponds
well with the western music system and human perception to a certain degree and can
be set e.g. to a quater-tone resolution. This results in a high frequency resolution for
low frequencies and low frequency resolution for high frequency components. The time
resolution behaves inversely. This property is implied at the CQT representation of an
Kronecker delta in fig. 3.1.

Figure 3.1 – CQT representation of an Kronecker delta.

In this chapter, the conventional, originally proposed calculations are presented as well as
an effective real-time capable approach. Parts were also already published in [Hol+20a;

7



CHAPTER 3. CQT

Hol+20b]. Additionally, it should be noted, that some approaches for an invertible CQT
based on the theory of non-stationary Gabor frames were made, e.g. in [Vel+11; Hol+13;
Sch+14]. These are not discussed in the following, as they have no relevance to this
specific application.

3.1 Conventional CQT

At first, all necessary parameters for the transform will be defined. The CQT can be seen
as filter bank of a signal with logarithmically spaced center frequencies fk and a constant
quality factor Q for all filters, where k denotes the index of the frequency bin. The center
frequencies can be expressed as a geometric series

fk = f0 2
k
b (3.1)

with a minimal analysis frequency f0 and the desired number of frequency bins per octave
b.

For convenient usage it is quite practical to set the Q factor directly as a function of b. It
can be expressed as

Q =
f

δf
=

f(
2

1
b − 1

)
f
=
(
2

1
b − 1

)−1
(3.2)

using an alternative definition via the bandwidth δf , so as a function only depending
on of b. δ can be seen as frequency difference in percent between two bins, which is
in a constant-Q case constant for all bins. Quite similar to the Q-factor, the absolute

bandwidth Bk for each bin

Bk = fk

(
2

1
b − 2

1
−b

)
≈ 2

fk
Q

(3.3)

can be defined. This absolute bandwidth shall not be confused with the−3 dB bandwidth.

In order to obtain a constant Q factor, the window size Nk for each bin and therefore the
number of analyzed samples decreases inproportionaly to fk. It can be obtained as

Nk =

⌈
fs
fk

Q

⌉
(3.4)

with the sample rate fs of the signal.

Now that all parameters for the CQT are prepared, the transform itself can be addressed.

8



CHAPTER 3. CQT

The CQT is simply defined as normalized DFT with the different window lengths Nk for
each frequency bin. Hence the transform X[k] of a signal x[n] can be calculated as

X[k] =
1

Nk

Nk−1∑
n=0

gk[n] x[n] e
−j2πQn/Nk (3.5)

with a window gk[n]. The window function has the same shape for each component.
Traditionally a Hamming or Hann window

gk,Hamming[n] = a+ (1− a) cos (2πn/Nk), with a = 25/46

gk,Hann[n] = cos2 (πn/Nk)
(3.6)

is used to avoid leakage into adjacent frequency components.

3.1.1 Comparison to the discrete Fourier transform (DFT)

Although the CQT is obviously related to the DFT, some major differences can be ob-
served. The most mentionable differences according to [Bro91] can be seen in table 3.1.

DFT CQT

Bin frequencies fk k · b f0 2
k
b

Window length N constant variable: Nk =
fsQ
fk

Frequency resolution ∆f constant: fs
N

variable: fk
Q

Quality factor Q variable: ∝ k constant
Kernel e−j2πkn/N e−j2πQn/Nk

Table 3.1 – Comparison of DFT and CQT [Bro91].

3.2 Efficient implementation

The direct calculation of CQT coefficients as proposed [Bro91] is computationally quite
extensive. Due to the varying window lengths and therefore lack of symmetries, efficient
algorithms such as the FFT cannot be used directly. Nonetheless, the FFT can be the
basis for a more advanced algorithm as proposed in [BP92], [Vel+11] and [Sch+14]. For
the sake of consistency and in view of the implementation, the algorithm and notation of
[Hol+20a] is used in the following.
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CHAPTER 3. CQT

Figure 3.2 – Exemplary visualization of the atoms ak with f0 = 50Hz,
b = 4 and fs = 44.1 kHz in
(a) time-domain
(b) frequency-domain.
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CHAPTER 3. CQT

At first, eq. (3.5) can be rewritten as

X[k, n] =

Nk−1∑
m=0

x[m] a∗k[m− n], n, k ∈ N, with (3.7)

ak[m] = gk[m] ej2πm
fk
fs , m ∈ Z. (3.8)

In this form, the window function gk and the kernel are combined to the complex conju-
gated localization functions (window functions) a∗k[m], the so called atoms. An exemplary
visualization of ak in time- and frequency-domain is shown in fig. 3.2.

3.2.1 Calculating the CQT using fast convolution

When looking at eq. (3.7), one can see the resemblance to a convolution, although the
time indexing of a∗k[m] is reversed. When assuming gk to be a zero-centered, symmetric
function, the atoms can be rewritten to a∗k[m] = ak[−m]. So the CQT computation can be
rearranged to

X[k, n] =

Nk−1∑
m=0

x[m] a∗k[m− n]

=

Nk−1∑
m=0

x[m] ak[n−m]

= (x ∗ ak)[n]. (3.9)

The convolution can be efficiently computed by a fast convolution. That is, using the FFT
to compute the convolution by means of a multiplication in the frequency domain and
going back to time domain via an inverse-FFT (IDFT), defined as

X[k, n] = (x ∗ ak)[n]

= F−1i 7→n{[Fn7→i{x} · Fn7→i{ak}](i)}[n] , (3.10)

where i shall denote a STFT-bin and k a CQT-bin. The use of the STFT requires block
processing of the signal. The block lengths correspond to the DFT length NDFT. The
length of the STFT NSTFT depends on the maximum window length Nmax = max (Nk),
occurring at the lowest analysis frequency f0. The signal shall be blocked with 50%
overlap and windowed with a Hann-window before its transformation into the frequency
domain. For a computationally more efficient implementation meaning less overlap, the
usage of Tukey-windows as proposed in [Hol+13] would be also possible. When using

11



CHAPTER 3. CQT

oversampling with a factor os ∈ N+ its length is defined as

NSTFT = os · nextPower2 (Nmax)

= os · nextPower2
(
Q

fs
f0

)
= os · 2

⌈
log2

(
Q fs

f0

)⌉
. (3.11)

As the algorithm only deals with real valued input signals, we can optimize by only cal-
culating and storing the STFT for positive frequencies.

There are two immediate optimizations for this procedure. Firstly, the input signal needs
to be transformed to the frequency domain only once for the calculation of all frequency
bins. Secondly, there is no need to repeatedly transform the localization functions, they
can be designed and stored in the frequency domain prior to the transformation itself,
where they constitute window functions Ak. This gives the advantage of a window
with compact support, so that applying the window is computationally easy. Therefore,
eq. (3.10) can be further simplified to

Y (i) = Fn7→i{x[n]}(i) (3.12)

X[k, n] = F−1i 7→n{Y (i)Ak(i)}[n]. (3.13)

As a drawback, slight ripple can be observed due to the window’s infinite support in time
domain after transforming back into the CQT domain. A Hann-window is proposed for
its good sidelobe suppression and narrow mainlobe as well as perfect overlapping.

3.2.2 Subsampling in the frequency domain

In this state the algorithm’s output, namely one coefficient for each bin in each time
step, contains a large amount of redundancy. The Shannon-Nyquist sampling theorem
(in its extension to non-baseband signals) states that this redundancy can be removed by
subsampling the output of each bin: as long as the sampling rate after subsampling fk

s is
at least the size of the absolute bandwidth Bk, no information will be lost.

fk
s ≥ Bk (3.14)

To further reduce the computational effort it is also possible to perform the subsampling in
the frequency domain. This is done by applying an inverse STFT (ISTFT) with NISTFT <

NSTFT only along the range where the respective frequency domain window is non-zero,
or in other words, by shifting the windowed spectrum to the baseband before transforming
back to the time domain with a lower resolution IDFT.

12



CHAPTER 3. CQT

The lower and upper bounds in terms of STFT-bins iu,k and il,k mark the position of upper
and lower bounds of Ak as

iu,k =

⌊(
fk · 2

1
bk

)NSTFT

fs

⌋
, (3.15)

il,k =

⌈(
fk · 2

−1
bk

)NSTFT

fs

⌉
. (3.16)

The values of the windows itself are obtained from a large, precalculated Hann window
Alookup of length M . For every sampling point of Alookup a frequency fAlookup [k,m] is as-
signed for each bin k, based on the CQT’s logarithmical frequency spacing. These are
calculated as

fAlookup [k,m] =fk · 2
−⌊M/2⌋+m
⌊M/2⌋·bnew,k for m = 0, 1, . . . ,M − 1.

A length of M = 8 · NISTFT (see eq. 3.19) is more than sufficient for usage without
further interpolation. The values of Alookup whose corresponding frequencies fAlookup [k,m]

are closest to the frequencies of the DFT-bins fi = i · NSTFT
fs

for il,k ≤ i ≤ iu,k are chosen
and stored as the window function Ak for the k-th CQT-bin. This procedure is visualized
in figure 3.3.

Figure 3.3 – Exemplary calculation of Ak.
(a) Obtaining coefficients from Alookup.
(b) Exemplary visualization of Ak.
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CHAPTER 3. CQT

The shift to the baseband is computed with:

Y ′(i, k) =

Y (il,k + i) · Ak(il,k + i), for 0 ≤ i ≤ iu,k − il,k

0, else
(3.17)

The spectrum is then transformed inversely to obtain X ′ as

X ′[k, nk] = F−1i 7→nk
{Y ′(i, k)}. (3.18)

X ′ is the subsampled CQT of x, with the time variables nk of the individual channels
progressing with fk

s . If the ISTFT is set to the maximal needed size, a common time axis
can be found, namely with

NISTFT = nextPower2

(
NSTFT

Bk,max

fs

)
. (3.19)

In this implementation the maximum required ISTFT length is used for all bins, applying
zero-padding when necessary. Although slightly less efficient, this has the advantage of
all channels running at the same rate. Finally, the time-CQT representation is obtained
using an overlap-and-add algorithm on the absolute values |X ′[k, nk]| using

hs = 2
NISTFT

os
. (3.20)

as the hopsize for reconstruction of the blocks.

3.3 Enhancement of time resolution at low frequen-

cies

Due to the relatively high Q factors, the bandwidth at low frequencies can be quite narrow,
and therefore the time-resolution gets very low.

Example 1:
Common settings for music analysis are chosen with a minimal analysis frequency

of f0 = 55Hz, a sample rate of fs = 44.1 kHz and a quarter-tone resolution with
b = 24 bins/oct. Following eq. (3.3), the absolute bandwidth at the lowest bin is given
with

Bk,new

∣∣∣
k=0

= fk

(
2

1
b − 2−

1
b

) ∣∣∣
k=0

= 55Hz ·
(
2

1
24 − 2−

1
24

)
≈ 3.18Hz.

A convenient measure for the time-resolution is the needed number of samples Nk.

14



CHAPTER 3. CQT

According to eq. (3.4) and eq. (3.2), these can be calculated for the lowest bin as

Nk

∣∣∣
k=0

=

⌈
fs
fk

Q

⌉
k=0

=

⌈
44 100Hz

55Hz

(
2

1
24 − 1

)−1⌉
= 27 364 samples

which equals approximately 0.620 s.

This behavior can be problematic in applications, where the time structure is of impor-
tance. To overcome this drawback, the constant-Q case can be softened to a variable-Q
case, where the absolute bandwidths are increased by

Bk,new = Bk + γ = fk

(
2

1
b − 2−

1
b

)
+ γ (3.21)

with a fixed amount γ [Hz] ∈ R≥0 [Sch+14].

With the definition in eq. (3.3) and eq. (3.21), Qk,new and Nk,new are frequency dependent
and can be obtained as

Qk,new ≈ 2
fk

Bk,new
, (3.22)

Nk,new =

⌈
fs
fk

Qk,new

⌉
=

⌈
2

fs
Bk,new

⌉
. (3.23)

Note that the center frequencies of the CQT-bins fk are not affected by γ. The effect of γ
on Q and Bk is shown in fig. 3.4.

Example 2:
Let’s assume the same parameters as in example 1, but this time with γ = 20Hz. The

new bandwidth can be calculated with eq. (3.21) as

Bk,new

∣∣∣
k=0

= Bk + γ
∣∣∣
k=0
≈ 3.18Hz + 20Hz = 23.18Hz.

With eq. (3.22), the needed number of samples are

Nk,new

∣∣∣
k=0

=

⌈
2

fs
Bk,new

⌉
=

⌈
2
44 100Hz

23.18Hz

⌉
= 3806 samples

which corresponds to a time of approximately only 0.086 s.

As one can see, γ > 0 has only a noticeable effect towards low frequencies, where the
parameter is in the range or even bigger than Bk. The time-resolution can be drastically en-
hanced on the cost of frequency-resolution and the constant-Q property (therefore slightly
more complex window computation). The effect on higher frequencies with Bk ≫ γ can
be neglected. With increasing frequency, the constant-Q case is reached asymptotically.
This properties also resembles the human perception and the theory of equivalent rectan-
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Figure 3.4 – Comparison of Q and Bk with the parameters of example 1 with γ = 0Hz
(constant-Q), γ = Γ = 6.7Hz and γ = 20Hz (variable-Q).

gular bandwidths (ERB) [GM90], since the hearing resembles a constant-Q system only
above approximately 500Hz. With a choice of

γ = Γ =
24.7

0.108
· 1
Q

, (3.24)

the bandwidths Bk are a constant fraction of the ERB critical bandwidth [Sch+14].
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Chapter 4

Calculation of activations

The basic objective of the analyzation block is to gain as much musical information about
the bell sound as possible. Two of the most important and striking parameters are the
temporal and harmonic structure of the sound, to be more specific the activations/onsets
over the course of time and the overtone structure for each bell. Ideally, the activations
for each individual bell is obtained. As the harmonic information is a byproduct in many
activation-detection algorithms, it is not descried in a separate chapter.

In the following, different approaches for the calculation of activations and onsets are ex-
plained. To anticipate the outcome, each algorithm has its advantages and disadvantages,
so the choice depends on the specific situation.

4.1 Modified Kullback-Leibler divergence

As stated in [ANP11; Bro06], the modified Kullback-Leibler divergence presents a simple
yet powerful measure to highlight musical (percussive) onsets and therefore the activation
of bells. It is used to evaluate the distance between two consecutive spectral vectors. It
emphasizes large positive energy changes while inhibiting small changes as well as de-
cays. As a result, quite sharp peaks at percussive onsets can be observed.

As the name suggests, the measure is based on the Kullback-Leibler distance

DKL[n] =
K−1∑
k=0

|X[k, n]| ln
(
|X[k, n]|
|X[k, n− 1]|

)
(4.1)

where X[k, n] is a spectral vector of length K, e.g. the CQT coefficients at time n with
the frequency bins k ∈ [0;K − 1].
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With the definition in eq. (4.1), two obvious problems arise. For one, the expression can
get undefined for a series of small elements, hence a regularization can be introduced.
Secondly, negative values can be reached which can be problematic for peak-picking
algorithms and would increase their complexity. Also the |X[k, n]| weighting can be
removed to be independent of amplitude changes [HM03]. When addressing all these
issues, the modified Kullback-Leibler divergence is redefined to

DmKL[n] =
K−1∑
k=0

ln

(
1 +

|X[k, n]|
|X[k, n− 1]|+ ϵ

)
(4.2)

with the small additional regularization parameter ϵ to avoid large variations at very low
amplitude levels. A higher value for ϵ results typically in a smoothing of the activation
curve. An example and comparison of the normal and modified Kullback-Leibler diver-
gence can be seen in fig. 4.1.

Figure 4.1 – Example and comparison with hand-labeled onset-reference of the
(a) regular
(b) modified Kullback-Leibler divergence (with ϵ = 10−3).

To summarize, the modified Kullback-Leibler divergence is a simple yet suitable measure
for onsets. The peaks are sharp and distinctive and no prior knowledge about the signal
is necessary. On the downside, different sources can not be distinguished, the harmonic
structure of the sound stays unknown and a parameter ϵ has to be chosen by hand.
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4.2 Template-based approach

With this rather simple, one-dimensional template-based approach, some drawbacks of
the Kullback-Leibler divergence will be addressed, especially to distinguish different
components (e.g. different bells) and to gain its harmonic structure. For a successful
and robust calculation of the activations, a learning process has to be initiated prior to the
online algorithm.

Learning The aim of this learning step is to calculate harmonic templates (e.g. the mean
harmonic distribution) of the templates. Ideally, separate recordings of each component
exist. At first, the signal is transformed into the time-frequency domain, e.g. by using
a CQT (cf. chapter 3) or a STFT. The length/parameters of the transform should also
be used in the online calculation afterwards. Therefore, a compromise between accuracy
(long transform, so more components can be distinguished eventually) and delay 1 in the
online calculation has to be found. Now the transformed signal of the i-th component
|Wi[k, n]| can be averaged over time n to obtain a mean magnitude frequency response
W i[k], which will be used as the template in the next step. In some cases, a normalization
as

W i[k]←
W i[k]∑K−1

k=0 W i[k]
(4.3)

can be useful, especially when the strength of the activations should be compared. An
example for such a one-dimensional template is shown in fig. 4.2.

Figure 4.2 – Exemplary one-dimensional template.

Online calculation With the previously obtained templates W i[k], the real-time cal-
culation of the activations Hi[n] is rather simple. The input signal is transformed to

1. The delay is typically determined by the hop size of the frequency transform and not by the trans-
form length itself. However, a small hop size compared to the transform length results again in higher
computational complexity.
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frequency domain as |Xi[k, n]| using the previously defined parameters. Template and
spectrogram are now multiplied element-wise and summed over all K frequency bins as

Hi[n] =
K−1∑
k=0

W i[k] · |Xi[k, n]| (4.4)

to obtain the the activations at time n. In matrix-notation, this can be expressed as

H[n] =


H0[n]

H1[n]
...

HI−1[n]

 = diag
(
W

T |XI [n]|
)

(4.5)

with

W =


W 0[0] W 1[0] . . . W I−1[0]

W 0[1] W 1[1] . . . W I−1[1]
...

... . . . ...
W 0[K − 1] W 1[K − 1] . . . W I−1[K − 1]


T

(4.6)

|XI [n]| =


|X0[0, n]| |X1[0, n]| . . . |XI−1[0, n]|
|X0[1, n]| |X1[1, n]| . . . |XI−1[1, n]|

...
... . . . ...

|X0[K − 1, n]| |X1[K − 1, n]| . . . |XI−1[K − 1, n]|

 , (4.7)

with a total of I components. The activations can also be estimated using a single trans-
formed input signal |X[k, n]| containing signal from all components with

H[n] =


H0[n]

H1[n]
...

HI−1[n]

 = W
T |X[n]| = (4.8)

=


W 0[0] W 1[0] . . . W I−1[0]

W 0[1] W 1[1] . . . W I−1[1]
...

... . . . ...
W 0[K − 1] W 1[K − 1] . . . W I−1[K − 1]


T 

|X[0, n]|
|X[1, n]|

...
|X[K − 1, n]|

 .

An example of calculated activations for 4 components can be seen in fig. 4.3.
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Figure 4.3 – Exemplary calculation of activations using a (sequential) template-based ap-
proach with 4 components (with an offset of 0.5 added to every curve for better visibility).

This method can be interpreted as an evaluation of the spectrogram for each component’s
spectral distribution. E.g. if the template consists of only one non-zero entry at bin k, only
the spectrogram’s k-th bin weighted with the value of the template contributes to the acti-
vations. More non-zero entries result simply in a weighted addition of the spectrogram’s
spectral components. This approach can be seen as one-dimensional, as the spectrogram
is evaluated at only one sample of a frame at a time with a template of only one sample
length.

This approach could also be combined with the modified Kullback-Leibler divergence,
meaning that the transformed input signal X[k, n] is element-wise weighted with the tem-
plates before applying the divergence. However, simulations showed that this leads to
even noisier results as well as noticeable influence of crosstalk from other components.
An example for this behavior with the same data as in fig. 4.3 is shown in fig. 4.4.

4.2.1 Sequential template-based approach

The above described approach only works, if the isolated sound of each component is
available, which is not always the case. However, a specific property of bell-ringing can
be used for this implementation. In the case examined, the bells start sequentially 2. Again,
the transformed learning signal (now including all components) is stored in a buffer and
shall be denoted as |Xbuffer[k, n]|.

2. E.g. when using automated ringing systems, the second bell starts ringing 10 s after the first, the third
bell starts 10 s after the second and so on.
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Figure 4.4 – Example of the modified Kullback-Leibler divergence applied to an element-
wise weighted spectrum using a sequential template-based approach.

A requirement for this sequential approach is, that the approximate start-time of each
component is known. So when observing the period between the start of the first and
second component, only the first component is active and the harmonic template W 0[k]

can be estimated as proposed above. In a next step, only the main components of the
template are kept and all spectral components below a certain threshold th are set to zero
as

W̃i[k] =

{
W i[k], if W i[k] > th ∗max

{
W i

}
,

0, else,
(4.9)

and afterwards normalized. In different test scenarios, a threshold in the range of th ∈
[0.1, 0.2] was sufficient.
After this “gated” template of the first component is estimated, we can delete its dominant
frequency components for all analyzed time instances n in the spectrogram |Xbuffer[k, n]|.
This can be done as

|Xbuffer[k, n]| ←

{
|Xbuffer[k, n]| , if W̃i[k] = 0,

0, else.
∀k, n (4.10)

An exemplary template is shown in fig. 4.5.

Now we can continue with the second time step (between the start of the second and the
third component). In this time region, (approximately) only the second component should
be active. The above written steps can now be repeated to find all required templates

22



CHAPTER 4. ACTIVATIONS

Figure 4.5 – Comparison of ungated and gated templates for the sequential template-based
approach (not normalized).

sequentially. The whole process is shown in fig. 4.6.

The rather simple template-based approach for distinguishing components and calculating
its activation works pretty well for a limited number of components and an appropriately
set threshold. It has its limits, as no cost function or sparsity constraint is invoked. This
results in noticeable influence of crosstalk between components, especially with an in-
creasing number of components to be identified. The sequential algorithm works only
under the presupposition of sequential starts and moderate overlapping in the frequency
domain of components. However, in test-cases with bell ringing in a real-life scenario 3,
up to 5 components could be reliably distinguished.

3. Recording of Graz Dom and Mausoläum with wind noises, provided by ORF Landesstudio Steier-
mark

23



CHAPTER 4. ACTIVATIONS

Start

Input signal

Time-frequency transform
→ |Xbuffer[k, n]|

Averaging
→ W i[k]

Gating and normalizing
→ W̃i[k]

Delete entries in
|Xbuffer[k, n]|

i = I − 1

Stop

Input timeregion

Output template
W̃i[k]

i = 0

yes

no

i++

Figure 4.6 – Flowchart for the learning process of the sequential template-based approach.

4.3 Non-negative Matrix Factorization (NMF)

4.3.1 Standard NMF

Non-negative matrix factorization (NMF) or non-negative matrix approximation is a mul-
tivariate analysis technique for blind source separation and widely used in the fields of
computer vision and audio signal processing. The method found wide dissemination in
1999 after Lee and Seung investigated its properties and found more convenient algo-
rithms [LS99]. As more and more variants and optimizations for this algorithm turned
up in the last several years, only basic assumptions and approaches used in this applica-
tion are presented. The interested reader may be referred to the comprehensive book by

24



CHAPTER 4. ACTIVATIONS

Cichocki et.al. [Cic+09].

The basic idea is to decompose a given input matrix X ∈ RF×N
≥0 , e.g. a magnitude

spectrogram of an audio signal obtained by a CQT, into a product of two positive matrices
W ∈ RF×C

≥0 (dictionary or spectral templates) and H ∈ RC×N
≥0 (temporal activations) such

that
X ≈WH = U , (4.11)

where F ∈ N is the feature dimensionality, N ∈ N the number of observations and C ∈ N
the number of components. Typically the rank C needs to be determined beforehand and
is with C < FN/(F + N) substantially smaller than F and N , therefore we speak of
a low-rank approximation [LS99]. In a musical context using a magnitude spectrogram
as input matrix, the dictionary W can be seen as the harmonic structure, whereas H

represents the activations over time of each C reoccurring components. The components
can e.g. be different notes/chords and/or parts played by different instruments. Due to the
non-negativity constraint, only additive combinations are possible, whereas subtractive
combinations cannot occur. This behavior matches also with our intuitive understanding
of music as sum of several sound events.

Figure 4.7 – NMF using an STFT of length 1024, 50% overlap, Itakura-Saito distance and
100 iterations of the intro of “Birdland” by Weather Report, downsampled to fs = 6kHz.

As this yields in an optimization problem, a cost function

min {D(X,U)} = min
W,H≥0

{D(X,WH)} (4.12)
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can be defined and minimized iteratively to find an optimal solution for W and H under
the constraint that both matrices consist of non-negative elements. In the following, sev-
eral cost functions are presented as well as a multiplicative, iterative solution without the
need of a step-size parameter.

Cost functions

The choice of a suitable cost function is crucial for a successful approximation. The most
utilized function for NMF is the Kullback-Leibler divergence, a majority of the original
algorithms are based on it. Also Euclidean distance and Itakura-Saito divergence are
extensively used recently. All those mentioned functions belong to the group of Bregman
divergences and can be combined to the beta-divergence, which enables us to blend these
continuously [Cic+09]. The following divergences are described in a universal manner
using observations p, its estimates q (which correspond to U in the NMF) and an index i.
Note that only a short selection is presented, a comprehensive compilation can be found
in [Cic+09, Chapter 2].

Squared Euclidean distance The squared Euclidean distance, also known as ℓ2-norm,
is merely the sum of the quadratic estimation errors and defined as

D2(p,q) = ∥p− q∥22 =
∑
i

(pi − qi)
2. (4.13)

Due to its simple, intuitive calculation and its optimality for Gaussian error signals it
is extensively used for low-dimensional data. However, as outliers influence the result
drastically and it is not suitable for high-dimensional data, the usage must be handled
with care [Cic+09, p. 83].

Generalized Kullback-Leibler divergence Initially, the Kullback-Leibler divergence
was a measure for the (dis-)similarity of two probability distributions. It turned out as a
suitable measure in many machine learning applications like the NMF. One form of the
Kullback-Leibler divergence for spectral changes over time has already be addressed in
section 4.1. The main difference of the extended (generalized) KL-divergence

DgKL(p,q) =
∑
i

(
pi · ln

(
pi
qi

)
− pi + qi

)
(4.14)

to the previously discussed version is the supplementary subtraction of the estimation
error.
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Itakura-Saito distance The Itakura-Saito distance

DIS(p,q) =
∑
i

(
ln

(
qi
pi

)
+

pi
qi
− 1

)
(4.15)

was originally used as a measure for similarity of a maximum likelihood estimation for
short-time speech spectra. Due to its good resemblance of perceptual properties it has
become a standard measure in speech signal processing [Cic+09, p. 113].

Beta-divergence The beta-divergence can be seen as an attempt to connect the squared
Euclidean distance with the Itakure-Saito distance smoothly via a parameter β. On the
transition, the Kullback-Leibler divergence is reached. After it was introduced by Eguchi
et.al. [EK01], it could be utilized successfully for the NMF [Kom07].

The measure is defined as

D
(β)
B (p,q) =


∑

i

(
ln
(

qi
pi

)
+ pi

qi
− 1
)
, if β = −1,∑

i

(
pi · ln

(
pi
qi

)
− pi + qi

)
, if β = 0,∑

i

(
pi

pβi −q
β
i

β
− pβ+1

i −qβ+1
i

β+1

)
, else

(4.16)

with β ∈ R, whereas the subscript B indicates the underlying beta-divergence. Special
cases are listed in table 4.1 as well as a graphical representation in fig. 4.8. The interested
reader shall find its derivation in [Cic+09, Section 2.6][EK01].

β Divergence

1 Squared Euclidean distance
0 Kullback-Leibler divergence

-1 Itakura-Saito distance

Table 4.1 – Special cases of the beta-divergence.

Update equations

As a cost function is defined, typically an iterative gradient descent search for the optimal
solution in a form

W←W − µ∇WD(X,WH)

H← H− µ∇HD(X,WH) (4.17)

with a step-size µ and the gradient of the cost function ∇D is used. As the ability to
converge and the convergence time depends on an appropriate choice of µ with respect
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Figure 4.8 – Examples for the beta-divergence with p = 0.5 and variable β.

to the input data, it is not very practical. Therefore, Lee and Seung [LS01] introduced
multiplicative update rules based on the KL-divergence without the need of a step-size µ

as

W←W ⊗
(
(X⊘WH)HT

)
⊘
(
1F×NH

T
)

(4.18)

H← H⊗
(
WT (X⊘WH)

)
⊘
(
WT1F×N

)
(4.19)

with the Hadamard product ⊗, the Hadamard division ⊘ and 1 as a matrix of ones with
dim(1) = dim(X). Usually W and H are normalized after updating. Note, that this
multiplicative update must not necessarily have the same convergence properties as an
additive approach and it is not a strictly convex problem anymore, as e.g. values set to 0
cannot be modified any further.

The update algorithm in eqs. (4.18) and (4.19) is only valid for KL-divergence. However,
the update equations can be extended to a universal form for the beta-divergence [FBD09;
DCL10] as

W←W ⊗
((

X⊗ (WH)◦(β−1)
)
HT
)
⊘
(
(WH)◦(β) HT

)
(4.20)

H← H⊗
(
WT

(
X⊗ (WH)◦(β−1)

))
⊘
(
WT (WH)◦(β)

)
(4.21)

with the Hadamard power (·)◦(·) and β ∈ R. With the choice of β, an emphasis can be put
on spectral components with high resp. low energy. Only the Itakura-Saito divergence is
scale-invariant in the class of beta-divergences, resulting in the same penalization of too
small or too large coefficients. With β < −1 more emphasis is put on spectral components
with low energy, whereas with β > −1 the opposite effect can be observed [DCL10].
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Initialization

As W and H are updated in a multiplicative sense in each iteration (cf. eqs. (4.20)
and (4.21)), the initial values have to be chosen with care as only non-zero elements can
be changed. It can not even be anticipated that the objective function is strictly convex
in a multivariate environment, local minima can occur. Of course also convergence time
depends strongly on the initial values [Cic+09, Section 1.3.3].

Two rather simple approaches are to initialize W and H with positive (pseudo-)random
numbers or unitarily. A way to ensure “robust” initial values is to initialize in fact several
matrices and run a NMF with only few iterations (and maybe even with a smaller dataset
to accelerate this process). The combination of W and H with the smallest cost is chosen
as starting point for the actual NMF [Cic+09, Section 1.3.3].

A different, promising approach is to utilize prior knowledge of the signal and the compo-
nents [Dri+13]. So an emphasis with higher initial coefficients can be put on approximate
locations in H where a special component is active. This can be done vice versa with the
templates W in the spectral domain, e.g. by setting coefficients out of the components
range to 0 and using an estimated spectral distribution as initial value.

4.3.2 Non-negative Matrix Factor Deconvolution (NMFD)

The algorithm discussed in section 4.3.1 is only valid for “one-dimensional” templates,
therefore, each component represents one column in W and is only one sample long.
This approach can work for a majority of melody instruments where only minor temporal
variation occur. Especially for percussion instruments and sounds with strongly differ-
ent decay times of its partial tones, no sufficient results can be anticipated. Therefore,
Smaragdis [Sma04] proposed to extend the NMF model in eq. (4.11) to

X ≈
T−1∑
t=0

Wt

t→
H = U (4.22)

where X and H have the same dimensions as before, but with W ∈ RF×C×T
≥0 as a tensor

of order 3. The additional dimension takes a temporal course of each component with a
length of T samples into account. An example can be seen in fig. 4.9. The notation in

eq. (4.22) indicates Wt = W[:, :, t], therefore we use the t-th “slice” of the tensor.
t→
(·)

denotes a frame-shift operator, where the columns of a matrix are shifted by t spots to the
right. All vacant positions are filled with zeros to maintain its dimensions. In the same

manner can a shift to the left
←t

(·) be described. An example is given in eq. (4.23).
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A =
0→
A =

[
1 2 3

4 5 6

]
,

1→
A =

[
0 1 2

0 4 5

]
,

2→
A =

[
0 0 1

0 0 4

]
,
←1

A =

[
2 3 0

5 6 0

]
(4.23)

Figure 4.9 – Convolutive NMF using an STFT of length 2048, 75% overlap, β = 0 and
100 iterations of the drum-intro of “Rosanna” by Toto. The components can be interpreted
as 1 Ride, 2 Bass drum, 3 Snare drum and 4 closed Hi-Hat.

Update equations

The NMFD can again be updated using a multiplicative approach. The initially introduced
algorithm by Smaragdis [Sma04] is based on the generalized Kullback-Leibler divergence
and defined as

Wt ←Wt ⊗

(
(X⊘U)

t→
H

T
)
⊘

(
1F×N

t→
H

T
)
, ∀t ∈ [0, . . . , T − 1], (4.24)

H← H⊗

(
T−1∑
t=0

WT
t

←−−−t

(X⊘U)

)
⊘

(
T−1∑
t=0

WT
t 1F×N

)
, ∀t ∈ [0, . . . , T − 1], (4.25)

with the definition of U from eq. (4.22). One can see its resemblance to the standard
NMF in eqs. (4.18) and (4.19). When using the NMFD, not only two matrices will be
optimized, but a set of T + 1 matrices 4, resulting in higher computational complexity.

4. H and T slices of W
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In the same manner as with standard NMF, Cichocki adapted the algorithm in eqs. (4.18)
and (4.19) for a generalized beta-divergence [Cic+09, Section 3.2], calling it “Convolutive
NMF”. The update rules are given as

Wt ←Wt ⊗

((
X⊗U◦(β−1)

) t→
H

T
)
⊘

(
U◦(β)

t→
H

T
)
, ∀t ∈ [0, . . . , T − 1], (4.26)

H← H⊗

(
T−1∑
t=0

WT
t

←−−−−−−−−t(
X⊗U◦(β−1)

))
⊘

(
T−1∑
t=0

WT
t

←−t
U◦(β)

)
. (4.27)

Additional constraints

It can be quite practical in various cases to define additional constraints for the cost func-
tion. Two major objectives are usually sparseness of H as well as orthogonality of W.
Generally speaking, the cost function in eq. (4.16) can be extended to

Dβ
Bc(X,WH) = Dβ

B(X,WH) + λHJ
sp
H + λWJo

W (4.28)

with additional penalty terms for special properties of H and W, each scaled with a user-
defined scalar parameter λ.

The sparsity constraint attempts to “enforce” sparsity for the rows of H. This can be quite
easily done by calculating the ℓ1-norm of H, which is in this non-negative case merely
the sum of all its entries

Jsp
H =

K−1∑
c=0

N−1∑
n=0

H[k, n]. (4.29)

Note that valid results can only be expected if W is normalized, otherwise this constraint
would lead to H→ 0 and W→∞ as it aims to minimize H.

The orthogonality constraint can be used to reduce correlation between the columns (and
therefore components) of W. The penalty term can now be expressed as

Jo
W =

F−1∑
f=0

K−1∑
c=0

1

2

∑
p ̸=q

WT
p Wq. (4.30)

Cichocki et.al. [Cic+09, Section 3.7.2] included the two objectives defined in eqs. (4.29)
and (4.30) into the update algorithm eqs. (4.26) and (4.27), such that a general from can
be expressed as
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Wt ←Wt ⊗

((
X⊗U◦(β−1)

) t→
H

T
)
⊘

(
U◦(β)

t→
H

T

+ λW

∑
q ̸=t

Wq

)
, (4.31)

H← H⊗

(
T−1∑
t=0

WT
t

←−−−−−−−−t(
X⊗U◦(β−1)

))
⊘

(
T−1∑
t=0

WT
t

←−t
U◦(β) + λH1K×N

)
. (4.32)

4.3.3 Efficient real-time calculation

It is obvious, that the NMFD is a computationally quite complex process, which works in
the presented form only offline. Although approaches for online calculation exist, e.g. in
[WR17], this computational expensive process may not be necessary in this specific case.
As we are only interested in the activations in a real-time context, we can utilize a prior
calculated and static dictionary W.

Let us look at this problem in a component-wise and block-based view. The NMFD-
template of the c-th component with length T and F features shall be defined as W(c) =

W[:, c, :] and W(c) ∈ RF×T
≥0 .

The activations H̃c of the c-th element can now be estimated quite easily for each sample
n as

H̃c[n] =
T−1∑
t=0

F−1∑
f=0

W
(c)
t ⊗X[n+ t] , (4.33)

whereas an additional delay of T − 1 samples must be introduced for a real-time calcula-
tion to ensure causality.
Usually the activations as obtained in eq. (4.33) will vary from those of eq. (4.22), as
the latter is based on an approximation, not a “direct” calculation. This can be easily
understood when rewriting eq. (4.22) as

T−1∑
t=0

Wt

t→
H = U ≈ X =

T−1∑
t=0

Wt

t→
H + E (4.34)

with an error E and dim(E) = dim(X). It is clear, that the method in eq. (4.33) is
influenced by E resulting in noisier or smeared activations. An example and comparison
for this behavior can be seen in fig. 4.10. The peaks obtained by the online calculations
are in this example not as sharp and defined than those of the offline calculation.

4.4 Onset-detection

When examining activations, e.g. obtained by algorithms in sections 4.1 to 4.3, the auto-
mated detection of onsets can be of interest. All now discussed methods are based on the
idea to define a threshold. If a sample lies over this threshold, an onset is detected. As
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CHAPTER 4. ACTIVATIONS

Figure 4.10 – Comparison for (a) offline and (b) online calculation of activations for one
bell of Graz Mausoläum.

simple approaches with a static detection threshold have many drawbacks, such as strong
influence of the signal levels, dynamic peak-picking algorithms are preferred.

Dynamic algorithms aim to set an individual threshold for each sample, depending on
neighboring values. In a rather simple yet effective moving-median approach, the thresh-
old th at position n is defined as the median of a arbitrary cost function D in a rectangular
window wn, symmetrically distributed around the sample to be examined [BS03; Dux+03;
Kau02]. This can be expressed as

th[n] = Cth ·median(D(wn)), wn ∈
[
n− L− 1

2
;n+

L− 1

2

]
(4.35)

with a window-length L and a predefined, constant weighting-factor Cth. A low value of
Cth increases the number of (false) detections, while a higher value leads to a more strict
selection [BS03]. Note that the window wn must contain an odd number of samples in
order to be symmetric around sample n.

The constant weighting-factor Cth in eq. (4.35) still leads to a not neglectable influence of
the signal level for detected onsets. Especially at low amplitudes, this results in a number
of false detections. The optimal value of the weighing factor can be modeled using a
sigmoid-function [Kli04, Section 4.2.3] and calculated sample-wise as

Cth[n] =
1

1 + emedian(D(wn))
+ u (4.36)

with a predefined offset u. The threshold can now be calculated as

ths[n] = Cth[n]·median(D(wn)) =

(
1

1 + emedian(D(wn))
+ u

)
·median(D(wn)). (4.37)
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An example for this approach is shown in fig. 4.11.

It should be additionally mentioned, that instead of a moving-median also a moving-
average approach is suitable. So in eqs. (4.35) to (4.37) the mean value is used instead of
the median.

Figure 4.11 – Onset-detection as defined in eq. (4.37) with the cost function in fig. 4.1(b)
with u = 1.01 and L = 501.
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Chapter 5

Consonance

To add another layer of information to the signal analysis, the harmonic structure of the
signal can be taken into account. A convenient and for normal hearing people often
subconsciously perceived feature is the consonance (respectively dissonance) of a signal.

As psychoacoustical parameter, even an exact definition of consonance can be difficult. It
is often referred to as “pleasantness” or “acceptability”. The categorization and degree
of consonance is also highly influenced by cultural background and musical education
[LE20].

Despite all difficulties, some approaches for an objective calculation of this parameter ex-
ist. In the following, the method of local consonance by Sethares [Set93] will be explained
and expanded to a STFT-based, frequency selective algorithm.

5.1 Historical models and explanations of conso-

nance and dissonance

The definition and cause of consonance and dissonance in music has been a topic of inter-
est for scientist for centuries. First systematic studies were conducted in, the 16th century
by renowned scientists like Galilei, Leibniz or Euler, finding that some fixed frequency
ratios between two tones are perceived more consonant than others [PL65]. A quite early
yet surprisingly accurate theory regarding dissonance and consonance has been defined
by Helmholtz [Hel63]. He stated, that beating between two pure sine tones can be heard
for a small frequency offset. If that difference increases, rapid beating or roughness is
perceived with its maximum at about 30Hz to 40Hz difference 1, and with even more
frequency difference two separate tones are heared. It is stated, among other things, that

1. It was found later, that the frequency difference for maximal roughness is frequency dependent [PL65;
Sot94].
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dissonance between two or more tones is related to the beats and roughness of adjacent
partials. He was also able to derive fixed frequency ratios for consonant and dissonant in-
tervals using this theory, which correspond well with our common perception of musical
intervals [Hel63, chapter 10]. As rule of thumb, smaller numbers in the frequency ratio
result in a more consonant sound that higher numbers, e.g. a ratio of 1:2 (octave) sounds
more pleasant than 2:3 (pure fifth), or even 5:9 (major seventh) [PL65]. It was found in
later studies, that not only the partials have to be taken into account, but also the resulting
difference tones [Kru03].

Plomp and Levelt [PL65] studied and tested this hypothesis regarding local consonance 2

thoroughly and found, that the perception of roughness (and according to Helmholtz there-
fore dissonance) is actually related to the critical bandwidth of the human ear. The per-
ception can generally be described with the highest consonance being perceived at unison,
a relatively small frequency offset results in highest dissonance, which resolves again in
consonant sound with increasing frequency difference. The maximal dissonance between
two tones can be found at a difference of 25% of the critical bandwidth, whereas maxi-
mal consonance can be modeled at above 100% of the critical bandwidth [PL65]. The
resulting model for consonance and dissonance of pure tones can be seen in fig. 5.1.

Sethares [Set93] used the latter theory by Plomp and Levelt [PL65] to derive a simple and
parametrized mathematical model for consonance.

5.2 Local consonance model by Sethares

Initially, the intention of Sethares [Set93] was to find optimal, possibly non-harmonic tim-
bres for arbitrary scales. To do this, the model of local consonance by Plomp and Levelt
[PL65] was parametrized and a relatively simple calculation was derived to calculate a
measure for dissonance.

Parametrization The dissonance model of [PL65] can be parametrized in the form

d(x) = e−ax − e−bx (5.1)

where d(x) describes an unscaled dissonance function and x the frequency difference
between two sine tones. Both exponential factors can be found when averaging the model
in fig. 5.1 for different frequencies, resulting in

2. When speaking of local consonance, only isolated tone pairs are examined without musical context.
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(a) Dissonance dependent on the critical bandwidth according to [PL65].

(b) Dissonance dependent on the fundamental frequency F0 [Set93].

Figure 5.1 – Modeled dissonance between two pure tones.

a = 3.5 and b = 5.75 . (5.2)

The parametrization can be further extended to work conveniently with the two frequen-
cies f1 and f2 as well as their amplitudes v1 and v2. To do so, it must be ensured that
f1 < f2, and the point of maximal dissonance d∗ = 0.24 according to [PL65; Set93] is
introduced. Hence, an extended parametrization

d(f1, f2, v1, v2) = v12
(
e−as(f2−f1) − e−bs(f2−f1)

)
, with s =

d∗

s1f1 + s2
(5.3)

can be formulated. The combined amplitude coefficient

v12 = v1v2 (5.4)

ensures, that tones with lower amplitude contribute quantitatively less to the dissonance.
The additional parameters s1 and s2 can be used to enforce a frequency dependent calcu-
lation based on an approximated model of the critical bandwidth as intended by Plomp
[PL65]. Hence, for lower frequencies the dissonance curve depending on the absolute
frequency difference is compressed, whereas for higher frequencies it is stretched. This
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is done to ensure, that maximal dissonance occurs at 25% of the critical bandwidth. In a
least-squares search, the values [Set93]

s1 = 0.021 and s2 = 19 (5.5)

were found.

Now when assuming, that dissonance between complex tones has a cumulative property
[Set93], an overall dissonance DF can be calculated. Let us assume a timbre F with N

partials with frequencies f0 < f1 < · · · < fN−1. The total dissonance is now the sum of
the local dissonance between each individual partial, namely

DF =
1

2

N−1∑
i=0

N−1∑
j=0

d(fi, fj, vi, vj) (5.6)

=
1

2

N−1∑
i=0

N−1∑
j=0

vij
(
e−as|fj−fi| − e−bs|fj−fi|

)
, with s =

d∗

s1min (fi, fj) + s2
.

Extension for dissonance between arbitrary tones This approach can be further
modified to get the dissonance values for intervals of arbitrary tones or between different
timbres. Two complex tones F and G are assumed, consisting of N , respectively M par-
tial tones with frequencies fF,0 < fF,1 < · · · < fF,N−1 and fG,0 < fG,1 < · · · < fG,M−1

with their amplitudes vF,0, vF,1, . . . , vF,N−1 and vG,0, vG,1, . . . , vG,M−1. The dissonance is
now defined as

D = DF +DG +
N−1∑
i=0

M−1∑
j=0

vij
(
e−as|fG,j−fF,i| − e−bs|fG,j−fF,i|

)
, (5.7)

hence the dissonance is the sum of the dissonance of the timbres itself as well as between
the partials of the timbres.

To illustrate this, the dissonance curve of two complex tones with 7 harmonic partials and
unit amplitude is calculated and presented in fig. 5.2 to show consonant intervals.

Simplification for timbres and DFT spectrum analysis The calculation for the
dissonance of a timbre itself as well as a whole N -point DFT transformed spectrum is
of interest in this thesis. An approach was chosen, where each of the magnitude spec-
trogram bins was interpreted as a partial of a timbre like presented in eq. (5.6). There-
fore, the dissonance between each bin is calculated and summed. Due to the structure
of the data, some simplifications can be done to reduce computational complexity. As
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Figure 5.2 – Dissonance as function of an interval in semitones for a base frequency of
500Hz for timbres with 7 partial tones with union amplitude.

each bins are compared to another, most of the values are computed twice, for example
d(f0, f1, v0, v1) = d(f1, f0, v1, v0) . Also the dissonance between one bin compared to
itself must be zero because

d(fi, fi, vi, vi) = v2i
(
e−as(fi−fi) − e−bs(fi−fi)

)
= v2i

(
e0 − e0

)
= 0 . (5.8)

When using both properties, computational effort can be reduced by more than half,
namely to

DF =
N−1∑
i=0

N−1∑
j=i+1

vij
(
e−as(fj−fi) − e−bs(fj−fi)

)
, with s =

d∗

s1fi + s2
. (5.9)

Computational complexity could be further reduced, when using the property that disso-
nance between two partials with a frequency difference of more than the critical band-
width approaches 0. Hence the dissonance between two tones far enough apart 3 must not
be calculated.

Gain normalization As the calculation of the dissonance includes a factor of the prod-
uct of the amplitudes in eq. (5.4), the results are obviously dependent on the level of the
signal. For example, if the level of timbres to be analyzed is increased by factor two, the
resulting dissonance is increased by factor four. This property does have no impact on the
use of Sethares’ method for the analytical assessment of timbres, but on a real-time anal-
ysis based on a DFT. Therefore, a normalization of the amplitude coefficient by means of

3. As approximation, for frequencies above 250Hz a frequency difference of an octave is sufficient
[Set93].
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a squared ℓ2-norm is proposed with

ṽij =
vivj

ϵ+
∑N−1

k=0 |vk|2
, (5.10)

which compensates the influence of the input signal level. An additional regularization
parameter ϵ can be used to avoid large values for small magnitudes.

The proposed analysis, based on a CQT transform, is displayed in fig. 5.3. One can see,
that the sudden jumps of dissonance correspond well with the start of bells, especially
at later moments. The increased dissonance at 9 s and 20 s to 25 s can be explained by
noticeable wind noise at this moments in the recording.
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Figure 5.3 – Dissonance of the bells of Graz Cathedral and Mausoläum. Vertical lines
indicate the start of another bell.
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Implementation

The algorithms proposed throughout chapter 3, section 4.3.3 and chapter 5 were also im-
plemented in form of a real-time capable application. At first, recordings of the exact
location are analyzed offline to find optimal parameter settings. The hereby generated
templates and parameter-sets can be exported and imported into a real-time capable appli-
cation, based on an already existing CQT Analyzer [Hol+20a].

6.1 Offline calculations

In order to find a capable set of parameters, a reference recording is analyzed offline
using using the software MATLAB in combination with the NMF-toolbox [Lóp+19] and
a reference implementation of the CQT [Hol+20b]. Various settings can be changed, e.g.
the CQT parameters, the used cost function or the NMFD dictionary length. The number
of components is typically known a priori. Once a suitable variable- and template-set is
found, they can be exported out of MATLAB in form of a JSON-file [17].

6.2 Real-time implementation

The online estimation of consonance and activations is implemented in the form of a VST
plugin or standalone-application based on the JUCE framework [Sto20]. The JSON-file
containing templates and parameters, calculated in section 6.1, can be imported. As its
structure is stated in detail in [Hol+20b], only a brief summary is provided in this report.
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6.2.1 CQT Analyzer

The CQT Analyzer application consists of several classes:

PluginProcessor The PluginProcessor can be seen as the central point of the program.
Inputs and outputs are defined here, this includes both audio signals as well as OSC data.
All parameters are stored here, and different necessary objects are created, including the
PluginEditor and the CQTThread.

PluginEditor This method is relevant for the graphical interface and provides controls
for the user. The PluginProcessor listens for changes at the user controls.

CQTThread In this method, the actual CQT algorithm is implemented. The CQT-
Thread receives the input audio data, forwarded by the PluginProcessor, which are asyn-
chronically processed to the CQT coefficients. The results are stored in a first-in-first-out
(FIFO) queue for further processing or visualization.

OverlappingSampleCollector The input data of the CQTThread is buffered using
this method, ensuring that data blocks with 50% overlap are available.

BufferQueue The results of the CQT analysis are stored in this objects, resembling
FIFO queues. This is necessary due to the asynchronous processing. This objects can be
used to transfer data between several objects conveniently.

CQTVisualizer In order to show the resulting CQT coefficients, the CQTVisualizer ob-
ject is created by the PluginEditor. It paints the coefficients on the appropriate positions.

The general structure of the application is visualized in fig. 6.1.

6.2.2 Calculation of activations

The calculation of the activations for each component happens by means of an NMFD
approach, described in section 4.3.3. The method to do so itself is integrated into the
CQTThread. An additional queue was introduced, which collects and stores the most
recent CQT coefficients. As this approach can be computationally quite extensive, it can
be exploited that the data is used for visualization only. Hence, only roughly 25 values per
second are needed for a smooth visualization. Therefore, the calculation of the activation
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Figure 6.1 – Overview over the program structure. [Hol+20b]

is triggered in an interval so that a frame rate of 25 frames per second can be reached.
The calculated values are now stored in a FIFO queue in order to be sent later on as OSC
message. An additional normalization, based on a maximum value in the preliminary
offline analysis, can be applied to get a result in the range of 0 and 1.

6.2.3 Calculation of local consonance

Also the calculation of the gain-normalized local consonance is part of the CQTThread.
Not only the overall consonance is calculated, but also the individual consonance for each
bell. As mentioned in section 2.2, the partials of bell sounds have different decay times,
therefore the consonance of a single component itself changes over time. In order to do
so, the most relevant CQT-bin indices are determined in the offline analysis and passed to
the real-time application. The local consonance is now calculated only over those bins.
Similar to section 6.2.2, the results are pushed into a FIFO queue in order to send them.
Also in this step, an additional normalization using preliminary results can be applied for
mapping into the range of 0 and 1.
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6.2.4 Output via open sound control (OSC)

To process the data in a visualization application, they have to be transmitted in the first
place. A versatile protocol, which allows sending bundled data in real-time as packages
via standard network infrastructure is the open sound protocol (OSC) [Mat]. The IEM
Plug-In template [Rud] already has a built-in OSC routine. The send-interval is set when
loading the JSON file, so that a continuous flow of data is guaranteed.

6.2.5 Graphical interface

The graphical user interface of the application is shown in fig. 6.2. On the left hand side,
the calculated CQT coefficients are displayed. This visualization can also be turned off
for computational savings. On the right hand side, the JSON file can be loaded. A console
returns messages if errors occur during loading and displays relevant information if the
templates are loaded successfully. The OSC address can be set in the eponymous field.

Figure 6.2 – Graphical interface of the application.

6.2.6 Latency

The latency of the application is of course an important factor for its usability. The com-
bined delay of the audio signal analysis and the visualization should not exceed the transit
time of sound between bells and spectators for a conclusive visualization. The lower
bound for the audio analysis latency can be approximated by the required FFT-size of
the CQT analysis, assuming that the NMFD template length is short in comparison to
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the returned block of CQT coefficients. Deliberations about the maximal tolerable la-
tency should of course be incorporated into the preliminary offline analysis and parameter
choice.
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Visualization

In the course of this project, also a visualization as proof-of-concept and for internal
demonstration was created.

7.1 Graphical concept

One of the main goals was to find a visual concept, which blends with (neo-)Gothic archi-
tectural aesthetics as well as qualifies for projection. Also a connection between the cal-
culated parameters, western musical elements and ecclesiastical motives should be made.
It still has to be comprehensible, plausible and visually appealing to hearing impaired
persons.

An element which comes to mind is the Gothic rose window. Each bell is represented by
twelve geometric sub-elements, arranged in a circle. The radius and for that reason also
the order of the circles correspond to the strike tone. This means, that the bell with highest
pitch is located near the center, whereas elements with lower pitch are arranged outwards.
This can be seen as reference between the musical domain (twelve half-tones per octave
in western music) and elements of Abrahamic religions (e.g. twelve tribes of Israel). The
bells can therefore be represented as concentric circles.
The brightness of the circles is altered, depending on the activation. Also a short fade out
of the elements is implemented using pd’s “line”-object with a duration of 1 s. This results
in a vibrant, pulsating graphical representation corresponding to the bell sounds itself.

In future concepts, the decay time of each partial itself, broken down to the chroma 1, can
be set individually for each of the twelve sub-elements.

1. Chroma refers in the context of music information retrieval to the pitch using twelve half-tones in
western music.
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To explore another dimension, the consonance of the sound can be processed in terms of
the color of the elements.

7.2 Implementation

The visualization itself was implemented in pure data [Puc] using the “Graphical Environ-
ment for Multimedia” (Gem) external [Dan+19].
The incoming OSC messages are parsed and sent to the corresponding elements and sub-
elements. The concentric circles are abstractions, consisting of the twelve sub-elements,
accordingly arranged and rotated. Therefore, with additional parameters as the radius and
an angular offset, the concentric circle objects can be reused with several instances. The
sub-elements itself are based on Gem’s square element.

Excerpts at different times of this conceptual visualization are shown in figs. 7.1 and 7.2.

Figure 7.1 – Screenshots of the conceptual visualization.
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Figure 7.2 – Screenshots of the conceptual visualization.
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Conclusion and outlook

The goal of this project was to find different approaches for analysis of bell sounds. Partic-
ular attention was paid to the calculation of activations, harmonic analysis and perceived
consonance. The parameters, calculated in real-time, are used as input for a visualization,
aimed at hearing impaired persons for the purpose of an inclusive cultural project.
In the course of this work, the acoustic characteristics of bell sounds were presented. The
partials are typically not entirely harmonic sounds. Another uncommon attribute are the
vastly different decay times of different partial tones.
As for a thorough analysis in time-frequency domain both high frequency resolution as
well as high temporal resolution is desired, a discrete Fourier transform was ruled out. An
alternative approach is the constant-Q transform, which can meet both demands. With
an algorithm based on a fast Fourier transform and a subband technique, the CQT can be
calculated efficiently.
A central aspect of this analysis framework is the computation of activations. These can
be seen as the excitation pattern, triggering the bells. For different data situation, varying
calculation approaches are presented. If recordings for each separate bell are available, the
Kullback-Leibler divergence proved as effectve method. This technique does not work for
multiple components present on one audio channel. For a limited number of elements, a
simple template based approach can work. Further improvements can be observed using
templates including their temporal progress, obtained using a non-negative matrix factor
deconvolution. This improvement comes at the cost of computational expanses and addi-
tional delay. Another parameter discussed is the local consonance. Based on the critical
bandwidth theory of human hearing, a parametric model is derived. With simple modifi-
cations, it is capable for efficient real-time calculation.
A NMFD based calculation of activation as well as the local consonance model was imple-
mented as real-time capable application as extension to an already existing CQT Analyzer.
The calculated data serves as input for a visualization, picking up musical, architectural
and religious concepts.
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Further improvements could include a more robust estimation of activations in template-
based and NMFD methods. In particular stochastic disturbances such as wind noise can
influence the results. Also further modification of Sethares’ consonance model to an
absolute value, independent from the chosen parameters and signal, would be desirable.
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