CHROMA AND MFCC BASED PATTERN RECOGNITION IN AUDIO FILES UTILIZING HIDDEN MARKOV MODELS AND DYNAMIC PROGRAMMING

Alexander Wankhammer Peter Sciri

- What is musical structure?
- Musically „relevant" sections
- Repeating, distinct parts of a composition
- Intro - Verse - Chorus - Verse etc.
- How can we describe it?
- Musical point-of-view:
- harmonic progression
- Perceptional PoV:
- spectral properties

- Read Audio
- Perform beat tracking
- Compute spectral features
- Calculate similarities
- Roughly estimate segment borders
- Refine those borders
i:
- What are appropriate features for
- harmonic progression?
- rasterize spectrum into semitone bands
\rightarrow Constant-Q Transform
- treat all octaves equally
\rightarrow Chroma (Harmonic Pitch Class Profile)
- determine a musically meaningful sequence of chords
\rightarrow define a Hidden Markov Model (HMM)
- perceptional information?
- Mel-Frequency Cepstral Coefficients (MFCC)
cqt

- Constant-Q Transform

- linear resolution of STFT does not match human perception \rightarrow too much „effort" in HF area
- summarize energy of semitone bands into scalar values

$$
f_{\text {center }}(k)=2^{\frac{k}{12}} f_{\min }
$$

- time domain: convolution with complex kernel
- to reduce computational costs \rightarrow multiplication in frequency domain instead of time domain

- Chroma $=$ Harmonic Pitch Class Profile
- chords do not carry information about tonal distribution within octaves
- summarize energy of all octaves of a tone into a scalar

$$
\text { e.g. } \quad . . \text { B + b + b' + b" + b"' } \ldots
$$

- 12 dimensional vector

$$
\begin{array}{r}
H P C P_{b}=\sum_{m=1}^{M} C Q T[b+12 m] \\
1 \leq b \leq 12
\end{array}
$$

- M ... number of octaves involved

- Spectrogram vs. Constant-Q-gram vs. Chromagram

Spectrogram

- Spectrogram vs. Constant-Q-gram vs. Chromagram

CQT-gram

- Spectrogram vs. Constant-Q-gram vs. Chromagram

Chromagram
-What if the song is not tuned to 440 Hz ?

- observe a' at $440 \mathrm{~Hz}+/-1 / 4$ tone
- sum distributed energy over time
- pick maximum to detect tuning center
- use center as basis for Constant-Q

Transform

- Intro of „Beatles - Strawberry Fields Forever" BEFORE tuning:

- Intro of „Beatles - Strawberry Fields Forever" AFTER tuning:

- Chord Detection
- 2 commonly used methods based on chroma:
I. correlation with a chord pattern

2. Hidden Markov Model

- Requirements for the resulting sequence:
- musically meaningful
- consistent
- not necessarily perfect while consistent over time
- Method I: direct correlation with chord patterns
- generate pattern for all major and minor chords
- considdering n harmonics \rightarrow improves performance
- too many harmonics \rightarrow overdefined system

- Analysis:
- PRO:
- performace realtively good
- quick and easy implementation
- CON:
- patterns only include 3 tones \rightarrow real life harmonies often contain tensions
\rightarrow ambiguities \rightarrow false detections:
e.g. $\mathrm{F} 6=$? $=\mathrm{d} 7$
- no intelligence concerning sequence of chords

- Method II: Hidden Markov Model

- introduces additional intelligence
- formal description:

$$
\lambda=\{Q, A, O, B, \pi\}
$$

Q ... set of available sates
A ... transition probabilities
O ... observations
B ... observation/emission probabilities
$\pi \ldots$ initial probabilities

- Defining the model:
- Available states Q :
- 12 major chords
- 12 minor chords

C, C\#, D, D\#, E, F, F\#, G, G\#, A, A\#, B
c, c\#, d, d\#, e, f, f\#, g, g\#, a, a\#, b

- Transition probabilities A:
- derived from circle of fifths
- defined distances determine probability of transition
- close relatives: fifth, major/minor third
\rightarrow higher probabilities for transitions

iem
- Defining the model:
- Observation probabilities B:
- derived from chord patterns
- Gaussian Mixture Models (GMMs)
- each chord is modeled as multivariate

Gaussian mixture
$\rightarrow 24$ I2 dimensional mean vectors μ

$\rightarrow 24 \mid 2 \times 12$ covariance matrices Σ

- order of GMMs determines computational costs - yet costly only once as no learning
- Initial probabilities π
- equally distributed
- Means: μ matrix
- 24 vectors for each chord in major an minor
- basic 3 tones of a chord extended with n overtones
- major and minor
- same as used in direct correlation method

C minor mean vector, Method 2, nbh $=4$

- Covariance matrices:
- variance between pairs of feature dimensions
- define 'form' of gaussian in 12 dimensional feature space
- each μ vector has a corresponding covariance matrix
- eg. in 2d:

- Letting the model work...
- very appropriate results
- not perfect but very consistent

beat averaged chroma of "Portishead - Wandering Star"
\rightarrow necessary for pattern recognition

directly detected chords by correlating chroma with chord patterns

- so why don't we use a trained HMM?
- Baum-Welch (EM) algorithm trains transition and observation probabilities
- need for an appropriate training corpus
- training \rightarrow smoothing
- loss of detailed information
- decreases performance of pattern recognition
(also for human)
- example:

REM - Automatic For The
People

- untrained vs. trained

iem
- MFCC:
- commonly used in speech signal processing
- measure to describe spectral properties of signal
- adapted to human perception
- compact/efficient measure
- 10 MFCC components used in algorithm

$$
M F C C=D C T\left\{\log (|F F T|) \cdot W_{M e l}\right\}
$$

- possible „,borders"
- fixed number of frames
- onsets ignored \rightarrow large influence of transient events
- onsets (\rightarrow onset detection)
- spectral flux, lpc-error signal, complex flux, ...
- very large diversity in duration
- beats (\rightarrow beat detection)
- musically stable sections
- (almost) constant \rightarrow (almost) same time instances for comparison
iem

- approach by Dan Ellis

- maximization of a decision cost function
- $C\left(\left\{t_{i}\right\}\right)=\sum_{i=1}^{N} O\left(t_{i}\right)+\alpha \sum_{i=2}^{N} F\left(t_{i}-t_{i-1}, \tau_{p}\right)$
- $\mathrm{t}_{\mathrm{i}} \rightarrow$ best scoring time sequence (position of ,,best" beat borders)
- $\mathrm{O}\left(\mathrm{t}_{\mathrm{i}}\right) \rightarrow$ perceived onset positions
- $\mathrm{F}\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}, \tau_{\mathrm{p}}\right) \rightarrow$ locally-constant inter onset intervalls $\mathrm{F}\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}, \tau_{\mathrm{p}}\right)$

onset strengths envelope $\rightarrow \mathrm{O}(\mathrm{t})$
- 40 Mel Bands \rightarrow It $^{\text {st }}$ order difference

onset strengths envelope $\rightarrow \mathrm{O}(\mathrm{t})$
40 Mel Bands $\left.\rightarrow\right|^{\text {st }}$ order difference

- target tempo
, autocorrelation \rightarrow perceptual weighting window $\left(\tau_{0^{\prime}} \sigma\right) \rightarrow$ primary tempo
- 2 beat estimates \rightarrow secondary tempo period $(0.33,0.5,2,3)$
- use largest peak of secondary tempo \rightarrow compare to primary tempo \rightarrow use faster one

- output

- indices of the optimal set of beat times
- best scoring time sequence t_{i}

$$
\begin{aligned}
& C\left(\left\{t_{i}\right\}\right)=\sum_{i=1}^{N} O\left(t_{i}\right)+\alpha \sum_{i=2}^{N} F\left(t_{i}-t_{i-1}, \tau_{p}\right) \\
& F(\Delta t, \tau)=-\left(\log \frac{\Delta t}{\tau}\right)^{2}
\end{aligned}
$$

- detect repeated patterns (within feature sequences)
beat $n=123$

- segmentation of feature (vector) sequence $\mathrm{V}[1, \mathrm{n}]$
- overlapped segments of fixed length $s_{i}=V[j, j+N-1]$
- match each segment $\left(s_{i}=V[j, j+N-1]\right)$ with feature sequence starting from this segment $V[j, n]$

- calculation of distances
- chord sequences (scalar numbers) \rightarrow one dimensional

- mfcc vectors $\rightarrow 10$ dimensional vectors

- calculation of distances

- „one dimensional" features (e.g. chord numbers)
${ }^{\prime} d_{c}\left(v_{m}, v_{r}\right)=\frac{1}{12} \begin{cases}\left|v_{m}-v_{r}\right| & \text { if } \\ 12-\bmod \left|v_{m}-v_{r}\right| & \\ \text { else }-v_{r} \mid \leq 12\end{cases}$
multidimensional features (e.g. mfcc vectors)
- $d_{M F C C}\left(\overrightarrow{v_{m}}, \overrightarrow{v_{r}}\right)=0.5-0.5 \frac{\overrightarrow{v_{m}} \bullet \overrightarrow{v_{r}}}{\left|\overrightarrow{v_{m}}\right|\left|\overrightarrow{v_{r}}\right|}$
- normalized dot-product \rightarrow modified cosine distance

$$
\begin{array}{ll}
A \rightarrow F: & 19-11=\underline{8} \\
A \rightarrow C \#: & 12-\bmod (19-3,12)=\underline{8}
\end{array}
$$

$$
\begin{aligned}
& a \cdot b=\sum_{i=1}^{n} a_{i} b_{i}=|b||a| \cos \theta \\
& \cos \theta=\frac{a \cdot b}{|b||a|}
\end{aligned}
$$

- find (positions) of repeated patterns
- approximate pattern matching (hop $=2$, segment length $=8$)

- dynamic programming \rightarrow sequence alignment
- find best matches inside feature sequence
- insertions and delitions allowed
- dynamic programming matrix
- define cost of substitution, deletion and insertion
- cost of substitution $=$ "distance" $d_{m, r}$
- cost of insertion and deletion $e=\left(0.1+d_{m,}\right) e_{0}$
$D_{i}[m-1, r-1]+d_{m, r} \quad D_{i}[m-1, r]+e$

$$
\mathrm{D}_{\mathrm{i}}[\mathrm{~m}, \mathrm{r}-1]+\mathrm{e} \longrightarrow \underset{\mathbf{i}}{ }[\mathbf{m}, \mathbf{r}]
$$

$$
\mathrm{D}_{i}[m, r]=\min \left\{\begin{array}{rll}
D_{i}[m-1, r]+e & \text { for } & m \geq 1 \\
D_{i}[m, r-1]+e & \text { for } & r \geq 1 \\
\mathrm{e}_{0}[m-1, r-1]+d_{m, r} & \text { for } & \text { else }
\end{array}\right.
$$

- matching functions

$D[i]: M=8$

- matching matrix $\mathrm{M}[\mathrm{i}, \mathrm{r}]$
- horizontal lines \rightarrow approach I
- vertical blocks \rightarrow approach 2

- horizontal lines

- line detection \rightarrow find (almost exact) repetitions
- detection of minima inside matching function \rightarrow binary matrix
" " \mid " at valley positions |" 0 " no valley

- detection matrix
- all detected valleys

- matrix „cleaning"
- delete „too short" segments
- apply gaussian blurring-kernel to matrix

- line detection
- connect segments and get mean row-index
- create segment vecotrs: [start, stop, shift]

- segment extraction
- extract segments
- merge segments basd on overlap/position [start, stop, shift, seg]

- extracted segments \rightarrow information stored in vectors

- [start, stop, shift, seg]
- overlapping segments \rightarrow "merge" segments automatically (if belonging to same song-segment)
- compare more "important" (more detections) segments to others
- merge, if overlapping is big
- adapt segment number to number of ,important segment"

$[11,58,1 ; 187,234,1]$
$[11,78,2 ; 308,375,2]$
$[61,148,3 ; 182,269,3]$
$[71,128,4 ; 312,369,4]$
$[121,158,5 ; 154,191,5]$
$[151,188,6 ; 240,277,6]$
$[161,248,7 ; 283,370,7]$
$[181,208,8 ; 357,384,8]$
$[191,218,9 ; 241,268,9]$
$[211,238,10 ; 349,376,10]$
$[241,268,11 ; 274,301,11]$
$[241,318,12 ; 317,394,12]$
$[261,288,13 ; 308,335,13]$
$[271,318,14 ; 312,359,14]$
$[291,318,15 ; 338,365,15]$
$[311,338,16 ; 363,390,16]$
$[311,358,17 ; 343,390,17]$
$[331,358,18 ; 354,381,18]$
$[341,368,19 ; 359,386,19]$

$\left[\begin{array}{l}{[11,58,1 ; 187,234,1]} \\ {[11,78,2 ; 308,375,2]} \\ {[61,148,3 ; 182,269,3]} \\ {[71,128,4 ; 312,369,4]} \\ {[121,191,5]} \\ {[151,188,6 ; 240,277,6]} \\ {[161,248,7 ; 283,370,7]} \\ {[181,208,8 ; 357,384,8]} \\ {[191,218,9 ; 241,268,9]} \\ {[211,238,10 ; 349,376,10]} \\ {[241,268,11 ; 274,301,11]} \\ {[241,394,12]} \\ {[261,288,13 ; 308,335,13]} \\ {[271,359,14]} \\ {[291,318,15 ; 338,365,15]} \\ {[311,338,16 ; 363,390,16]} \\ {[311,390,17]} \\ {[331,381,18]} \\ {[341,386,19]}\end{array}\right.$
$[11,58,1,1 ; 187,234,1,1]$
$[11,78,2,1 ; 308,375,2,2]$
$[61,148,3,3 ; 182,269,3,1]$
$[71,128,4,3 ; 312,369,4,2]$
$[121,191,5,5]$
$[151,188,6,5 ; 240,277,6,1]$
$[161,248,7,1 ; 283,370,7,2]$
$[181,208,8,1 ; 357,384,8,2]$
$[191,218,9,1 ; 241,268,9,1]$
$[211,238,10,1 ; 349,376,10,2]$
$[241,268,11,1 ; 274,301,11,2]$
$[241,394,12,2]$
$[261,288,13,1 ; 308,335,13,2]$
$[271,359,14,2]$
$[291,318,15,2 ; 338,365,15,2]$
$[311,338,16,2 ; 363,390,16,2]$
$[311,390,17,2]$
$[331,381,18,2]$
$[341,386,19,2]$

detected segments		
0.0001	33.6456	1.0000
33.6457	47.5776	5.0000
47.5777	64.9461	1.0000
64.9462	82.3146	3.0000
82.3147	110.8752	5.0000
110.8753	124.1106	10.0000
124.1107	151.3244	4.0000
151.3244	156.7114	10.0000
156.7115	198.8324	1.0000
198.8325	206.0770	0

real segments

0.0000000	6.1448290 Intro
6.1448290	32.4530380 Verse
32.4530380	50.5065530 Bridge
50.5065530	68.4671880 Refrain
68.4671880	93.6376190 Verse
93.6376190	111.0641950 Bridge
111.0641950	128.9319500 Refrain
128.9319500	153.9514510 Verse
153.9514510	173.7116320 Refrain
173.7116320	193.3557140 Refrain
193.3557140	208.3451574 Refrain

- Bad... :(

- block detection \rightarrow no valley detection, no binary Matrix
- global similarities
- transitions between highly and less similar patterns

- find transitions between segments
- squared difference of columns

$$
d[n]=|x[n]-x[n+1]|^{2}
$$

- only use values larger than mean of column

$$
\hat{d}[i, r]=\left\{\begin{array}{rl}
d[i, r] & \text { if } \\
0 & d[i, r]>\frac{1}{L} \sum_{r=1}^{L[i]} d[i, r] \\
\text { else }
\end{array}\right.
$$

- sum up to the „repetitive flux"

$$
\phi[i]=\sum_{r=1}^{L[i]} \hat{d}[i, r]
$$

- peak picking

- median window \rightarrow sliding threshold
- minimum distance of 8 beats

Repetition
Probability Flux

Stage I
Reference

- feature sequence \rightarrow beat averaged chroma vectors
- new info (not directly used)
- spectral and timbral information
- beat \rightarrow re-alignment possible (border correction)

- valley detection
- max. merging length
- hard/soft borders

- 32 songs
- 16 pop songs
- e.g. Alanis Morisette, Beastie Boys, Britney Spears, Eminem, ...
- 16 Beatles songs
" „With the Beatles" (full album)
- other songs
- reference segmentations by members of the MPEG-7 working group
- used by other authors (e.g. Levy and Sandler)
ground truth problem
- Levy et al.

A	日	C D	A 日	C D	AE	C D	
	lus et al.	00		: 00		3:00	4:00

- Levy et al.

AAAAB CACAA $\operatorname{CACAAAAE~CACALALAAAAAAAAAA~}$

- evaluation measures
- precision

$$
p=\frac{\text { truePos }}{\text { truePos }+ \text { falsePos }}
$$

- recall

$$
r=\frac{\text { truePos }}{\text { truePos }+ \text { falseNeg }}
$$

- f-measure

$$
+/-3 \mathrm{sec}\{\text { true positive false positive } \quad \text { false negative }
$$

$$
f=\frac{2 p r}{p+r}
$$

Corpus	precision p	recall r	f
Beatles	0.50	0.83	0.61
Recent	0.70	0.73	0.70
Overall	$\mathbf{0 . 6 2}$	$\mathbf{0 . 7 7}$	$\mathbf{0 . 6 5}$

THX!

Q?

