

CHROMA AND MFCC BASED PATTERN RECOGNITION IN AUDIO FILES UTILIZING HIDDEN MARKOV MODELS AND DYNAMIC PROGRAMMING

Alexander Wankhammer Peter Sciri

- What is musical structure?
 - Musically ,,relevant" sections
 - Repeating, distinct parts of a composition
 - Intro Verse Chorus Verse etc.
- How can we describe it?
 - Musical point-of-view:
 - harmonic progression
 - Perceptional PoV:
 - spectral properties

- Read Audio
- Perform beat tracking
- Compute spectral features
- Calculate similarities
- Roughly estimate segment borders
- Refine those borders

- What are appropriate features for
 - harmonic progression?
 - rasterize spectrum into semitone bands
 - \rightarrow Constant-Q Transform
 - treat all octaves equally
 - \rightarrow Chroma (Harmonic Pitch Class Profile)
 - determine a musically meaningful sequence of chords
 - \rightarrow define a Hidden Markov Model (HMM)
 - perceptional information?
 - Mel-Frequency Cepstral Coefficients (MFCC)

Constant-Q Transform

 linear resolution of STFT does not match human perception → too much "effort" in HF area

 $f_{center}(k) = 2^{\frac{k}{12}} f_{min}$

- summarize energy of semitone bands into scalar values
- time domain: convolution with complex kernel

• to reduce computational costs
$$\rightarrow$$
 multiplication in frequency domain instead of time domain

- Chroma = Harmonic Pitch Class Profile
 - chords do not carry information about tonal distribution within octaves
 - summarize energy of all octaves of a tone into a scalar
 - e.g. ... B + b + b' + b" + b" ...
 - I2 dimensional vector

$$HPCP_b = \sum_{m=1}^{M} CQT[b+12m]$$
$$1 \le b \le 12$$

M ... number of octaves involved

Spectrogram vs. Constant-Q-gram vs. Chromagram

Spectrogram

Spectrogram vs. Constant-Q-gram vs. Chromagram

CQT-gram

Spectrogram vs. Constant-Q-gram vs. Chromagram

Chromagram

What if the song is not tuned to 440Hz?

- observe a' at 440Hz +/- 1/4 tone
- sum distributed energy over time
- pick maximum to detect tuning center
- use center as basis for Constant-Q

Transform

Intro of ,,Beatles – Strawberry Fields Forever" BEFORE tuning:

Intro of ,,Beatles – Strawberry Fields Forever" AFTER tuning:

Chord Detection

- 2 commonly used methods based on chroma:
 - I. correlation with a chord pattern
 - 2. Hidden Markov Model
- Requirements for the resulting sequence:
 - musically meaningful
 - consistent
 - not necessarily perfect while consistent over time

- Method I: <u>direct correlation with chord patterns</u>
 - generate pattern for all major and minor chords
 - considdering *n* harmonics \rightarrow improves performance
 - too many harmonics \rightarrow overdefined system

- Analysis:
 - PRO:
 - performace realtively good
 - quick and easy implementation
 - CON:
 - patterns only include 3 tones \rightarrow real life harmonies often contain tensions
 - \rightarrow ambiguities \rightarrow false detections:
 - e.g. F6 =?= d7
 - no intelligence concerning sequence of chords

- Method II: <u>Hidden Markov Model</u>
 - introduces additional intelligence
 - formal description:
 - $\lambda = \{Q, A, O, B, \pi\}$
 - $\mathsf{Q} \ldots$ set of available sates
 - A ... transition probabilities
 - O ... observations
 - B ... observation/emission probabilities
 - $\pi \ldots$ initial probabilities

./general > cqt > chroma > tuning > chord detection > mfcc

- Defining the model:
 - Available states Q:
 - I2 major chords

12 minor chords

C, C#, D, D#, E, F, F#, G, G#, A, A#, B

c, c#, d, d#, e, f, f#, g, g#, a, a#, b

- Transition probabilities A:
 - derived from circle of fifths
 - defined distances determine probability of transition
 - close relatives: fifth, major/minor third
 - \rightarrow higher probabilities for transitions

./general > cqt > chroma > tuning > chord detection > mfcc

- 6г Defining the model: 4 Observation probabilities B: 2 derived from chord patterns 0 Gaussian Mixture Models (GMMs) -2 each chord is modeled as multivariate -4 Gaussian mixture -6 \rightarrow 24 12 dimensional mean vectors μ -8 -6 -2 2 -8 0 -4 4 6 \rightarrow 24 |2x|2 covariance matrices Σ
 - order of GMMs determines computational costs yet costly only once as no learning
 - Initial probabilities π
 - equally distributed

- Means: µ matrix
 - > 24 vectors for each chord in major an minor
 - basic 3 tones of a chord extended with n overtones
 - major and minor
 - same as used in direct correlation method

- Covariance matrices:
 - variance between pairs of feature dimensions
 - define 'form' of gaussian in 12 dimensional feature space
 - each µ vector has a corresponding covariance matrix
 - eg. in 2d:

Letting the model work...

- very appropriate results
- not perfect but very consistent
 - \rightarrow necessary for pattern recognition

beat averaged chroma of "Portishead - Wandering Star"

directly detected chords by correlating chroma with chord patterns

chords estimated by HMM from chroma

- so why don't we use a trained HMM?
 - Baum-Welch (EM) algorithm trains transition and observation probabilities
 - need for an appropriate training corpus
 - training \rightarrow smoothing
 - loss of detailed information
 - decreases performance
 - of pattern recognition
 - (also for human)
 - example:
 - REM Automatic For The
 - People
 - untrained vs. trained

MFCC:

- commonly used in speech signal processing
- measure to describe spectral properties of signal
- adapted to human perception
- compact/efficient measure
- I0 MFCC components used in algorithm

 $MFCC = DCT \{ \log(|FFT|) \cdot W_{Mel} \}$

- possible "borders"
 - fixed number of frames
 - onsets ignored \rightarrow large influence of transient events
 - onsets (\rightarrow onset detection)
 - spectral flux, lpc-error signal, complex flux, ...
 - very large diversity in duration
 - beats (\rightarrow beat detection)
 - musically stable sections
 - (almost) constant \rightarrow (almost) same time instances for comparison

approach by Dan Ellis

0

1

maximization of a decision cost function

•
$$C(\{t_i\}) = \sum_{i=1}^{N} O(t_i) + \alpha \sum_{i=2}^{N} F(t_i - t_{i-1}, \tau_p)$$

 $t_i \rightarrow best scoring time sequence (position of "best" beat borders)$ •

3

4

• $O(t_i) \rightarrow perceived onset positions$

8

- onset strengths envelope $\rightarrow O(t)$
 - 40 Mel Bands \rightarrow Ist order difference

- onset strengths envelope $\rightarrow O(t)$
 - 40 Mel Bands \rightarrow Ist order difference

- target tempo
 - autocorrelation \rightarrow perceptual weighting window (τ_{o}, σ) \rightarrow primary tempo
 - ▶ 2 beat estimates \rightarrow secondary tempo period (0.33, 0.5, 2, 3)
 - use largest peak of secondary tempo \rightarrow compare to primary tempo \rightarrow use faster one

output

- indices of the optimal set of beat times
- best scoring time sequence t_i

./possible borders > beat detection > re-alignment

detect repeated patterns (within feature sequences)

- segmentation of feature (vector) sequence V[1, n]
 - overlapped segments of fixed length $s_i = V[j, j+N-1]$
 - match each segment (s_i = V[j, j+N-1]) with feature sequence starting from this segment V[j, n]

- calculation of distances
 - ► chord sequences (scalar numbers) → one dimensional

• mfcc vectors \rightarrow 10 dimensional vectors

- calculation of distances
 - ,,one dimensional" features (e.g. chord numbers)

$$d_c(v_m, v_r) = \frac{1}{12} \begin{cases} |v_m - v_r| & \text{if } |v_m - v_r| \le 12\\ 12 - \mod |v_m - v_r| & else \end{cases}$$

multidimensional features (e.g. mfcc vectors)

•
$$d_{MFCC}(\vec{v_m}, \vec{v_r}) = 0.5 - 0.5 \frac{\vec{v_m} \bullet \vec{v_r}}{|\vec{v_m}||\vec{v_r}|}$$

 $\bullet \quad \text{normalized dot-product} \rightarrow \text{modified cosine distance}$

$$a \cdot b = \sum_{i=1}^{n} a_i b_i = |b||a| \cos\theta$$
$$\cos\theta = \frac{a \cdot b}{|b||a|}$$

- find (positions) of repeated patterns
 - approximate pattern matching (hop = 2, segment length = 8)

- dynamic programming \rightarrow sequence alignment
 - find best matches inside feature sequence
 - insertions and delitions allowed

dynamic programming matrix $D_{i}[m-1, r-1]+d_{m,r}$ $D_{i}[m-1,r]+e$ define cost of substitution, deletion and insertion $D_{i}[m, r-1]+e \longrightarrow D_{i}[m,r]$ $\text{cost of substitution} = \text{``distance''} d_{m,r}$ $D_i[m,r] = \min \left\{ \begin{array}{c} D_i[m-1,r] + e & \text{for } m \ge 1 \\ D_i[m,r-1] + e & \text{for } r \ge 1 \\ D_i[m-1,r-1] + d_{m,r} & \text{for } else \end{array} \right.$ • cost of insertion and deletion $e = (0.1 + d_{m,r}) e_0$

1	1	6	0	7	3	4	1	5	0	2	3	7	3	8	2
3	2.1	5	2.1	5	4.1	5	2.1	4	2.1	0	1.1	6.2	4.1	9	2.1
8	8.2	3.1	9.2	2.1	6.2	7.1	8.2	4.1	9.2	5.1	4	1.1	5.2	5.1	7.2
4	7.1	6.2	6.1	6.2	2.1	3.2	5.3	6.2	7.1	6.2	4.1	5.2	1.1	6.2	6.1

matching functions

D[i]: M=8

- matching matrix M[i,r]
 - horizontal lines \rightarrow approach 1
 - vertical blocks \rightarrow approach 2

horizontal lines

1	2	3	4	5	6	7	8	9	x	х	х	х	х	х	х	х	х	х	х	1	2	3	4	5	6	7	8	9	x	х	х

0	0	0	0	0	0	00	0	0	Ø	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
4	_0_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0		
4	0	0	_0_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1			

- line detection \rightarrow find (almost exact) repetitions
 - detection of minima inside matching function \rightarrow binary matrix
 - "I" at valley positions | "0" no valley

- detection matrix
 - all detected valleys

- matrix ,,cleaning"
 - delete "too short" segments
 - apply gaussian blurring-kernel to matrix

- line detection
 - connect segments and get mean row-index
 - create segment vecotrs: [start, stop, shift]

- segment extraction
 - extract segments
 - merge segments basd on overlap/position [start, stop, shift, seg]

- extracted segments \rightarrow information stored in vectors
 - [start, stop, shift, seg]
 - overlapping segments \rightarrow "merge" segments automatically (if belonging to same song-segment)
 - compare more "important" (more detections) segments to others
 - merge, if overlapping is big
 - adapt segment number to number of "important segment" ►

[11,58,1;187,234,1] [11,78,2;308,375,2] [61,148,3;182,269,3] [71,128,4;312,369,4]	[11,58,1;187,234,1] [11,78,2;308,375,2] [61,148,3;182,269,3] [71,128,4;312,369,4]	[11,58,1,1;187,234,1,1] [11,78,2,1;308,375,2,2] [61,148,3,3;182,269,3,1] [71,128,4,3;312,369,4,2]	detected segments	real segments
[121,158,5;154,191,5] [151,188,6;240,277,6] [161,248,7;283,370,7] [181,208,8;357,384,8] [191,218,9;241,268,9] [211,238,10;349,376,10] [241,268,11;274,301,11] [241,318,12;317,394,12] [261,288,13;308,335,13] [271, <u>318</u> ,14; <u>312,359,14]</u> [291,318,15;338,365,15] [311,338,16;363,390,16] [311,358,17;343,390,17] [331,358,18;354,381,18] [341,368,19;359,386,19]	[121,191,5] [151,188,6;240,277,6] [161,248,7;283,370,7] [181,208,8;357,384,8] [191,218,9;241,268,9] [211,238,10;349,376,10] [241,268,11;274,301,11] [241,394,12] [261,288,13;308,335,13] [271,359,14] [291,318,15;338,365,15] [311,338,16;363,390,16] [311,390,17] [331,381,18] [341,386,19]	[121,191,5,5] [151,188,6,5;240,277,6,1] [161,248,7,1;283,370,7,2] [181,208,8,1;357,384,8,2] [191,218,9,1;241,268,9,1] [211,238,10,1;349,376,10,2] [241,268,11,1;274,301,11,2] [241,394,12,2] [261,288,13,1;308,335,13,2] [271,359,14,2] [291,318,15,2;338,365,15,2] [311,338,16,2;363,390,16,2] [311,390,17,2] [331,381,18,2] [341,386,19,2]	0.0001 33.6456 1.0000 33.6457 47.5776 5.0000 47.5777 64.9461 1.0000 64.9462 82.3146 3.0000 82.3147 110.8752 5.0000 110.8753 124.1106 10.0000 124.1107 151.3244 4.0000 151.3244 156.7114 10.0000 156.7115 198.8324 1.0000 198.8325 206.0770 0	0.00000006.1448290 Intro6.144829032.4530380 Verse32.453038050.5065530 Bridge50.506553068.4671880 Refrain68.467188093.6376190 Verse93.6376190111.0641950 Bridge111.0641950128.9319500 Refrain128.9319500153.9514510 Verse153.9514510173.7116320 Refrain173.7116320193.3557140 Refrain193.3557140208.3451574 Refrain

▶ Bad... :(

- block detection \rightarrow no valley detection, no binary Matrix
 - global similarities
 - transitions between highly and less similar patterns

- find transitions between segments
 - squared difference of columns
 - $d[n] = |x[n] x[n+1]|^2$
 - only use values larger than mean of column

$$\hat{d}[i,r] = \begin{cases} d[i,r] & \text{if } d[i,r] > \frac{1}{L} \sum_{r=1}^{L[i]} d[i,r] \\ 0 & else \end{cases}$$

• sum up to the "repetitive flux" L[i]

$$\phi[i] = \sum_{r=1} \hat{d}[i, r]$$

- peak picking
 - median window \rightarrow sliding threshold
 - minimum distance of 8 beats

- feature sequence \rightarrow beat averaged chroma vectors
 - new info (not directly used)
 - spectral and timbral information
 - beat \rightarrow re-alignment possible (border correction)

./idea > segment merging

lem

- ► 32 songs
 - I6 pop songs
 - e.g. Alanis Morisette, Beastie Boys, Britney Spears, Eminem, ...
 - I 6 Beatles songs
 - "With the Beatles" (full album)
 - other songs

reference segmentations by members of the MPEG-7 working group

used by other authors (e.g. Levy and Sandler)

- sround truth problem
 - Levy et al.

• Levy et al.

evaluation measures

▶ f-measure

 $f = \frac{2pr}{p+r}$

- precision $p = \frac{truePos}{truePos + falsePos}$
- recall $r = \frac{truePos}{truePos + falseNeg}$
- $g = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0.9 & 0.8 & 0.7 & 0.6 &$

true positive false positive

false negative

Corpusprecision precall rfBeatles0.500.830.61Recent0.700.730.70**Overall0.620.770.65**

+/- 3 sec <

THX!

Q?