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Abstract

In everyday life, it is often possible to distinguish physical objects based on the
sound that is created by tapping, knocking or scratching them. The perceptibility
of object properties such as material, shape and size through acoustic feedback
has already been studied in detail.

The aim of this work was to develop a method to conclude on the physical
properties of a rectangular plate based on its sound, similar to the capabilities
of the human ear. Therefore, the first part of the Master’s thesis comprises the
implementation of a physical model that simulates the vibration and radiation
behaviour of bending waves in rectangular plates using modal synthesis. Inherent
thermoelastic and viscoelastic damping as well as the coupling of the plate with
the surrounding air were taken into account to simulate the decay of the individual
plate modes. In the second part of this work, an analysis of sounds of impacted
plates was carried out. The analysis procedure includes the extraction of the plate
eigenfrequencies via pitch tracking with a subsequent determination of the model
parameters. Based on this information, the material properties and the geometry
of the plates were estimated.

Zusammenfassung

Im Alltag ist es oft möglich, physikalische Objekte anhand des Klangs, der
durch Tasten, Klopfen oder Kratzen hervorgerufen wird, zu unterscheiden. Die
Wahrnehmbarkeit von Objekteigenschaften wie Material, Form, Größe durch dieses
akustische Feedback wurde bereits eingehend untersucht.

Ziel dieser Arbeit war es, ein Verfahren zu entwickeln, um - ähnlich dem
menschlichen Gehör - aus dem Klang einer rechteckigen Platte auf dessen physi-
kalische Eigenschaften rückzuschließen. Dazu wurde im ersten Teil der Arbeit ein
physikalisches Modell implementiert, welches das Schwingungs- und Abstrahlver-
halten von Biegewellen in rechteckigen Platten mittels Modalsynthese simuliert.
Die Beschreibung des Abklingverhaltens einzelner Moden erfolgt dabei unter der
Berücksichtigung der inhärenten thermo- und viskoelastischen Dämpfung, sowie
der Wechselwirkung zwischen der Platte und der umgebenden Luft. Im zweiten
Teil wurden Klänge von angeschlagenen Platten analysiert. Die Eigenfrequenzen
der angeregten Platten wurden mittels Pitch-Tracking extrahiert, um in weiterer
Folge die Modellparameter zu ermitteln. Auf Basis dieser Informationen erfolgte
eine Schätzung der Materialeigenschaften sowie der geometrischen Abmessungen
der Platten.
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1 Introduction

Interaction with physical objects in an environment provides acoustic information about
their composition via their radiated sounds. By tapping, knocking or scratching objects
in everyday life, it is often possible to distinguish between them, based on the perceived
acoustic feedback. The radiated sound is determined by its shape and size, its inherent
material properties and as well as by the excitation mechanism.

Within the fields of sonic interaction design and sound design, knowledge about the con-
nection between physical properties of an object and the perception of its emitted sound
is of vital importance. Furthermore, in robotics not only the location of surrounding
objects is crucial but also their composition. One way to detect the material-inherent
properties and dimensions would comprise listening to sounds of these objects while
striking them. Therefore, one aim of this work was the development of an acoustic
characterization method to estimate the material properties and dimensions of objects
with focus on rectangular plates. As visualized in figure 1, the method should be able
to extract basic information from sounds of impacted plates analogously to the human
auditory system.

In order to develop a deeper understanding about the acoustics of rectangular plates, this
work also comprises the implementation of a physical model to synthesize the sounds of
impacted plates. The implemented synthesis model provides valuable information about
the important aspects for the acoustic characterization of rectangular plates and served
as basis for the creation of synthesized sounds to validate the acoustic characterization
method.

Both parts of this work furthermore aimed to answer the following research questions:

◦ What object information can be extracted from the sound of an impacted rectan-
gular plate?
◦ Does the extracted information from a plate sound lead to a more accurate detec-

tion of the construction material and the plate dimensions as the human auditory
system is capable to detect?

metal!?
metal!

Figure 1 – Schematic principle of acoustic characterization (left) and the developed
acoustic characterization method within this work (right).
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In order to answer these research questions, a series of investigations was carried out,
with the main results and findings being presented in this thesis. Section 2 to 5 of this
document cover a detailed description of the following aspects:

◦ Section 2 comprises the necessary theory to implement a synthesis model for plates
and bars using modal synthesis. Furthermore, the main results from already con-
ducted studies, which address the acoustic characterization of simple objects, are
summarized.

◦ The first part of section 3 contains a detailed description of the implemented model
to synthesize the sound of an impacted rectangular plate. This also highlights
the adaptations from and extensions to already existing plate synthesis models.
Within the second part of this section, the validation of the implemented model
with acoustic and laser vibrometer measurements from real plates is described.

◦ Section 4 contains the presentation of the developed method to estimate the
physical properties of a rectangular plate from its impact sound. In addition, this
part of the thesis includes a validation of the acoustic characterization method
with the sounds of real and synthesized impacted plates.

◦ In section 5 the main findings from the implemented synthesis model and the
acoustic characterization method are summarized. The outlook at the end of this
chapter points out potential improvements to both the synthesis model as well as
the characterization method.
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2 Acoustics of Thin Bars and Plates

The present chapter deals with the mathematical description of vibrations in bars and
plates with focus on waveforms responsible for sound radiation. Besides a compact
summary of well-established knowledge that is available in numerous textbooks about
acoustics, it also includes models and findings from publications that are of vital im-
portance for the development of a physical modal synthesis model and the acoustic
characterization of plates. In addition, it covers a literature overview of the auditory
perception of impacted bars and plates.

2.1 Free Vibrations in Thin Bars

Vibrations in bars are mainly characterized by longitudinal, transversal, torsional and
bending waves. The last wave type plays the most significant role for the sound radiation
of bars.

Within the Euler-Bernoulli beam theory only bending waves are taken into account.
Furthermore, several assumptions are made for the bar. The first states that a bar’s
length is significantly larger that its other dimensions. According to [1], this assumption
holds if the wavelength of the bending wave propagating along the x-axis (see figure 2)
is at least 20 times larger than the bar’s dimensions in the y- and z-axis. In addition,
cross-sectional areas of the bar that were normal to the bar axis before any deformation
will remain normal to the bar axis after deformation, as shown in figure 2. The third
assumption requires the bending deformation to be small in relation to the length of the
bar.

Although the Euler-Bernoulli beam theory is commonly applied to describe the vibrational
behaviour of thin bars, it is important to point out its range of validity. For large mode
numbers where the transverse dimension of the bar is not negligible compared to the
wavelength of the eigenfrequency, the bar cannot be considered as thin. In this case, the
Timoshenko beam theory is preferred, since it also considers shear forces. Shear forces
decrease the transverse vibration and lower the frequencies of modes for which the bar
is not thin. Furthermore, if a bar is excited near an edge, the torsional waves that are
not considered in the theory may contribute to the overall sound radiation.

In contrast to a string where the restoring force is caused by an external tension, the
restoring force in a bar arises from its stiffness.

Bending waves propagate in a bar according to [2] p. 59 with

∂2W

∂t2
+ EK2

ρ

∂4W

∂x4 = 0. (1)

W represents the transverse vibration, E Young’s modulus, K the radius of gyration
and ρ the density of the bar. A bending wave is a superposition of a longitudinal wave
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x

y

z

h

L

h

Figure 2 – Geometry (left) and Euler-Bernoulli kinematics (right) of a rectangular bar.

and a transversal wave. The wave propagates with the frequency-dependent speed

c =
√
ωKcL, where cL =

√
E/ρ (2)

represents the speed of pure longitudinal waves that occur in a bar. Hence, bending
waves with a higher frequency propagate faster than at lower frequencies. The result-
ing dispersion relation between the angular frequency ω and the wavenumber k of the
bending wave is

ω = KcLk
2. (3)

The corresponding wavelength λ of the bending wave is proportional to 1/
√
ω in

λ = 1√
ω

√
4π2KcL. (4)

For a bar with a circular cross section with the radius a and a rectangular cross section
with the thickness h, the radii of gyration K are listed in [2] p. 59 with

K = h√
12

, K = a

2 . (5)

A well-known solution to equation 1, which contains a single frequency, is

W (x, t) = sin(ωt+ ϕ) [A cosh(kx) +B sinh(kx) + C cos(kx) +D sin(kx)] , (6)

where A,B,C andD are assumed to be real-valued constants, that can be determined by
defining boundary conditions and initial conditions. In total, four boundary conditions are
necessary to establish a relationship between these constants. Three different boundary
conditions will be considered, which are summarized in figure 3.

For a bar free on both ends, the bending moment and the shear force are zero at the
boundaries. This corresponds to

∂2W (x, t)
∂x2

∣∣∣∣
x=0,L

= ∂3W (x, t)
∂x3

∣∣∣∣
x=0,L

= 0. (7)

Inserting equation 6 in 7 and considering both conditions at x = 0 leads to the relations

C = A and D = B (8)
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free end

simply supported
end

clamped end

2W / x2 = 3W / x3 = 0

W = 2W / x2 = 0

W = W / x = 0

Figure 3 – Typical boundary conditions for a bar and the corresponding derivatives that
become zero at the boundary.

for the constants. If these relations are applied on the equations for the remaining
boundary conditions at x = L, one obtains

B = −Acos(kL)− cosh(kL)
sin(kL)− sinh(kL) = −Aγ. (9)

The resulting eigenfunction consists of the temporal part and the mode shape Θn(x)
and equals to

Wn(x, t) = An sin(ωnt+ ϕn) [cos(knx) + cosh(knx)− γn (sin(knx) + sinh(knx))]
= An sin(ωnt+ ϕn)Θn(x), (10)

whereas kn and ωn are specific wavenumbers and their associated angular frequencies
that solve the bending wave equation with respect to the boundary conditions. Eigen-
functions are also referred to as modes and consist of the spatial mode shape Θn(x) and
a time-oscillating part:

Wn(x, t) = AnΘn(x) sin(ωnt+ ϕn). (11)

Due to the orthogonality property of the modes, the scalar product of two mode shapes
is

L∫
0

Θn(x)Θn′(x)dx = 0 for n 6= n′. (12)

As stated in [3], the alternative representation of the mode shape of a bar with free ends

Θn(x) = cos(knx)− γn sin(knx) + cosh(knx) [1− γn tanh(knx)] , (13)

is numerically favourable for large kn. For determining the allowed kn and ωn for the
vibrational modes, the equation system[

cosh(knL)− cos(knL) sinh(knL)− sin(knL)
sinh(knL) + sin(knL) cosh(knL)− cos(knL)

] [
A
B

]
=
[
0
0

]
(14)

can be derived by considering the boundary conditions in equation 7. In order to obtain
a non-trivial solution, the determinant of the matrix has to be zero. This occurs, if the
equation

cos(knL) = 1
cosh(knL) (15)
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or its alternate form

tan
(
knL

2

)
= ± tanh

(
knL

2

)
(16)

are fulfilled. The equations have an infinite number of solutions which can be determined
numerically. Approximate values for these knL are listed in table 1. By using the kn
in the dispersion relation in equation 3, one can calculate the eigenfrequencies of a bar
with free ends. In [2] p. 62, the determination of these eigenfrequencies is approximated
and simplified to

fn = β
K

L2

√
E

ρ
, β = π

8

3.0112, n = 1
(2n+ 1)2, n = 2, 3, 4, . . . .

(17)

Note that there is no harmonic relation between the eigenfrequencies for this boundary
condition, as the relations fn/f1 in table 1 show. Figure 4 illustrates exemplary bending
modes of a bar with free ends. Beside the above eigenfunctions and eigenfrequencies for
n ≥ 1, two rigid body modes W0,0 and W0,1 exist for a free bar. For these special cases,
k0 = 0 and the resulting eigenfrequency is zero. In [3], the corresponding eigenfunctions
that solve the bending wave equation in this case are given as

W0,0(x, t) = A, W0,1(x, t) = A
x

L
. (18)

A bar with one clamped and one free end, also called cantilever beam, represents
a frequently encountered setup. At the clamped end, the transverse displacement and
its slope vanish:

W (x, t)
∣∣∣∣
x=0

= ∂W (x, t)
∂x

∣∣∣∣
x=0

= 0. (19)

The free end at x = L is described by equation 7. Applying these four conditions to
equation 6 leads to the mode shape

Θn(x) = − cos(knx) + cosh(knx)− γn [− sin(knx) + sinh(knx)] (20)

0.0 0.2 0.4 0.6 0.8 1.0
relative length

−2

−1

0

1

2
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tiv
e 
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sp

la
ce

m
en

t

n=1
n=2
n=3
n=4

Figure 4 – First four bending mode shapes on a bar with free ends, not including rigid
body modes.
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Table 1 – Normalized eigenfrequencies, normalized wavelengths, nodal positions and
allowed knL for the first four bending modes of a bar with free ends, not including rigid
body modes.

n fn/f1 λn/L nodal positions / L knL

1 1.000 1.328 {0.224, 0.776} 4.730
2 2.758 0.8 {0.132, 0.5, 0.868} 7.853
3 5.405 0.571 {0.094, 0.356, 0.644, 0.906} 10.996
4 8.934 0.444 {0.073, 0.277, 0.5, 0.723, 0.927} 14.137

with
γ = cos(knL) + cosh(knL)

sin(knL) + sinh(knL) . (21)

For large kn, the representation

Θn(x) = cos(knx)− γn sin(knx) + cosh(knx) [1− γn tanh(knx)] (22)

is preferred for numerical reasons. The eigenfrequencies can be determined with the
same procedure as described for the bar with free ends. Analogous to equation 15, the
transcendental equation that leads to eigenfrequencies is now

cot
(
knL

2

)
= ± tanh knL2 . (23)

Solving this equation approximately leads to the relation

fn = β
K

L2

√
E

ρ
, β = π

8


1.1942, n = 1
2.9882, n = 2
(2n− 1)2, n = 3, 4, 5, . . .

(24)

for the eigenfrequencies. Compared to a bar with free ends, the fundamental frequency
f1 is about a 1/6 of f1 of a free bar. Furthermore, the eigenfrequencies of a bar with
one clamped and one free end increase approximately with the quadratic term (2n− 1)2

while the frequencies of a free bar increase by (2n + 1)2. Table 2 shows that as for a
bar with free ends, eigenfrequencies with n ≥ 2 are not harmonics of the fundamental
frequency. Exemplary bending modes of a bar with a clamped and a free end are depicted
in figure 5.

For a bar that is simply supported or hinged at both ends the boundary conditions
are

W (x, t)
∣∣∣∣
x=0,L

= ∂2W (x, t)
∂x2

∣∣∣∣
x=0,L

= 0. (25)

Inserted into equation 6, the resulting mode shape reduces to

Θn(x) = sin(knx). (26)
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Figure 5 – First four bending mode shapes on a bar with one clamped end and one
free end.

As figure 6 indicates, the mode shapes are equivalent to those of a vibrating string fixed
at both ends. The eigenfrequencies fn are harmonically related too, but differ from those
of the string and equal to

fn = β
K

L2

√
E

ρ
, β = π

2n
2, n = 1, 2, 3, . . . . (27)

Compared to the eigenfrequencies from the previously described boundary conditions, the
fundamental frequency of a hinged bar is significantly lower than the one of a free bar,
but higher as for the cantilever condition. As shown in figure 7, the modal density of a
bar decreases with increasing frequency. In contrast to the vibrating string where a larger
thickness results in a decrease of the eigenfrequencies, the bending wave frequencies of
a bar increase with a larger thickness h. Furthermore, doubling the length of the bar
leads to a quartering of the eigenfrequencies.

Table 2 – Normalized eigenfrequencies, normalized wavelengths, nodal positions and
allowed knL for the first four bending modes of a bar with one clamped and one free
end.

n fn/f1 λn/L nodal positions / L knL

1 1.000 3.350 {0} 1.875
2 6.263 1.339 {0, 0.783} 4.694
3 17.536 0.800 {0, 0.504, 0.868} 7.855
4 34.371 0.571 {0, 0.358, 0.644, 0.906} 10.996
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Figure 6 – First four bending mode shapes on a bar with hinged ends.

A more general method to determine the eigenfrequency of a bending wave in a bar
is based on Rayleigh’s principle. It considers the vibrating bar as a system with the
constant total mechanical energy consisting of the potential energy Epot and the kinetic
energy Ekin. For a transverse displacement W (x, t), those energies are

Epot = 1
2

L∫
0

ESK2
(

d2W

dx2

)2

dx (28)

and

Ekin = 1
2

L∫
0

ρS

(
dW
dt

)2

dx, (29)

where S is the cross-sectional area of the bar. Assuming that the mechanical energy
stays constant in the bar, the amplitudes of Epot and Ekin for a time-oscillating bending
mode Wn(x, t) = Θn(x) cos(ωnt + ϕn) are equal. Thereby, the corresponding angular
eigenfrequency ωn for a bar is

ωn =

√√√√√∫ L0 ESK2
(

d2Θn

dx2

)2
dx∫ L

0 ρSΘ2
ndx

, (30)

Table 3 – Normalized eigenfrequencies, normalized wavelengths and nodal positions for
the first four bending modes of a bar with simply supported ends.

n fn/f1 λn/L nodal positions / L

1 1 2 {0, 1}
2 4 1 {0, 0.5, 1}
3 9 0.6 {0, 0.3, 0.6, 1}
4 16 0.5 {0, 0.25, 0.5, 0.75, 1}
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Figure 7 – Bending mode eigenfrequencies for different boundary conditions of the
same bar (left) for the conditions free (blue), simply supported (orange), clamped-free
(green) and for a free bar (right) when doubling the following bar properties: thickness
(red), Young’s modulus (brown), density (lime) and length (violet). The dashed curves
have no physical meaning but indicate modes of the same boundary condition / object
dimensions / material properties.

as stated in [3]. Equation 30 expressed with ω2
n is also called Rayleigh quotient. It allows

the determination of ωn for any eigenfunction Wn that satisfies the defined boundary
conditions of the bar.

Besides the eigenfrequencies and the mode shapes the modal density is a useful quantity
to characterize vibrational properties of a bar. Being a statistical measure, the modal
density D(f) describes the number of modes per Hz. As mentioned in [4] and derived
in detail in Appendix B, the modal density is

D(f) = 2L
c

(31)

for all combinations of free, simply supported and clamped boundary conditions. The
influence of the frequency-dependent bending wave speed c leads to a decrease of the
modal density with the factor 1/

√
f .

Figure 8 shows a comparison of the discussed combinations of boundary conditions for
a selected mode shape Θn. The node observed at approximately 0.13 L for a bar with
free ends moves outwards to the end if the left end of the bar gets clamped or simply-
supported. In contrast to a simply supported end, the area around the clamped and free
end is dominated by the exponential behaviour of the hyperbolic functions of the mode
shapes.
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Figure 8 – Comparison between the normalized mode shapes of a bar with free ends
(blue), one clamped and one free end (green) and simply supported ends (orange).

2.1.1 Torsional Waves in Thin Bars

Although not taken into account by the Euler-Bernoulli beam theory, torsional waves
may contribute to the radiated sound, especially if the bar is excited near an edge. In
contrast to bending waves, torsional waves are non-dispersive and propagate with the
speed

cT =
√
GKT

ρIp
, (32)

where the shear modulus G is

G = E

2(1 + ν) , (33)

and Ip represents the polar moment of inertia. For a rectangular cross section with the
width Ly and a circular cross section with the radius a, the polar moments of inertia are

Ip = Lyh

12 (L2
y + h2), Ip = 1

2πa
4, (34)

and the factors KT are given by

KT = Lyh
3

16

[
16
3 − 3.36 h

Ly

(
1− h4

12L4
y

)]
, KT = 1

2πa
4. (35)

The torsional eigenfrequencies fT,n of a bar can be determined with

fT,n = βT,n
cT
2L . (36)

Depending on the boundary condition listed in table 4, the factor βT,n may lead to
torsional eigenfrequencies that are harmonically related to fT,1.



22

Table 4 – Boundary condition (bc) dependent expressions for the factor βT,n for a bar
with free ends (ff), clamped ends (cc), one clamped and one free end (cf).

bc βT,n allowed n

ff / cc n 1, 2, 3, . . .
cf n+ 1

2 0, 1, 2, . . .

2.2 Free Vibrations in Thin Plates

Like in a bars, longitudinal, transversal, torsional and bending waves can propagate in
plates. With bending waves being the most significant type for the radiation of sound,
the widely employed Kirchoff-Love plate theory is presented in this section. It involves
the same assumptions as the Euler-Bernoulli beam theory except that both the plates
length and width are much larger than its thickness, as illustrated in figure 9 for a
rectangular plate. Hence, this plate theory can be interpreted as an extension of the
bending wave equation to a second spatial dimension. In case of an orthotropic plate,
the elastic material properties do now depend also on the spatial direction. Within the
scope of this thesis, orthotropy in a plate is associated with different elastic constants
along the x-axis and y-axis as in figure 9.

In a thin orthotropic homogeneous plate with the thickness h, bending waves propagate
according to [5] p. 24 with

ρ

h2
∂2W

∂t2
+D1

∂4W

∂x4 +D3
∂4W

∂y4 + (D2 +D4) ∂4W

∂x2∂y2 = 0, (37)

where W is the transverse displacement. The four rigidity constants D1 to D4 are
required to describe the potential energy in the plate and are given by

D1 = Ex
12(1− νxyνyx)

,

D2 = Exνyx
6(1− νxyνyx)

= Eyνxy
6(1− νxyνyx)

,

D3 = Ey
12(1− νxyνyx)

, D4 = Gxy

3 . (38)

The indices x and y indicate the direction dependency of Young’s modulus E, the
in-plane shear modulus Gxy and Poisson’s ratio ν in Cartesian coordinates. With the
bending moments Mx, My and the twisting moment Mxy the relation between the
rigidity constants and the corresponding displacement curvature can be described asMx

My

Mxy

 = −h3

 D1 D2/2 0
D2/2 D3 0

0 0 D4/2


 ∂2W/∂x2

∂2W/∂y2

∂2W/(∂x∂y)

 . (39)
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Figure 9 – Geometry of a rectangular plate.

If the plate’s material shows an isotropic behaviour, then Ex = Ey = E, νxy = νyx = ν
and the in-plane shear modulus becomes Gxy = E/(2(1+ν)). Subsequently, the rigidity
constants can be rewritten to

D1 = D3 = E

12(1− ν2) = D, D4 = E

6(1 + ν) , (40)

and
D2 = 2D1 −D4 = Eν

6(1− ν2) . (41)

This leads to the homogeneous bending wave equation for a thin isotropic homogeneous
plate independent of the coordinate system

ρ

h2
∂2W

∂t2
+D∇4W = 0 (42)

that includes the biharmonic operator ∇4. As for bars, the speed of bending waves
depends on the frequency and is for an isotropic plate

c =
√
ωKcL with K = h√

12
, (43)

with cL being the propagation speed of longitudinal waves in an infinite plate:

cL =
√

E

ρ(1− ν2) . (44)

For a rectangular plate the biharmonic operator ∇4 in Cartesian coordinates equals to

∇4 = ∂4

∂x4 + 2 ∂4

∂x2∂y2 + ∂4

∂y4 . (45)

A time-oscillating solution that solves the homogeneous differential equation for a rect-
angular plate has a form of

W (x, y, t) = AX(x)Y (y) sin(ωt+ ϕ), (46)

whereas X(x) and Y (y) represent functions which depend on a single spatial direction,
and a weighting factor A. For describing the boundary conditions, a rectangular plate
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as depicted in figure 9 with the dimensions Lx and Ly is assumed. Analogous to the
bending modes of a bar, the corresponding modes of a plate can be written as

Wmn(x, y, t) = AmnΘmn(x, y) sin(ωmnt+ ϕmn) with Θmn = Xm(x)Yn(y).
(47)

Because of their orthogonality property, the plate bending mode shapes Θmn fulfill

Ly∫
0

Lx∫
0

Θmn(x, y)Θm′n′(x, y)dxdy = 0 for m 6= m′ ∨ n 6= n′. (48)

In contrast to a bar, the dispersion relation

ω = KcLk
2 (49)

can only be used for specific boundary conditions to determine the eigenfrequencies for
a certain wavenumber k. For a plate that is simply supported on all edges, k is a 2-
dimensional wavenumber vector k =

√
k2
x + k2

y of the bending wave. Hence, for every
eigenfrequency of the plate there are a wavelength λx in x-direction and a wavelength
λy in y-direction that depend on the boundary conditions of the plate.

Finding mode shapes and corresponding eigenfrequencies that solve the Kirchhoff-Love
plate equation is a problem that has been studied by countless authors in the past.
A comprehensive summary of these attempts was published by Leissa in [6] that also
includes an approach by Warburton from [7]. Warburton used characteristic beam func-
tions for X(x) and Y (y) to obtain the plate bending modes to solve equation 42 for
combinations of free, clamped and simply supported edges. Furthermore, he presented a
simple equation to determine the associated eigenfrequencies based on the mode shapes
and the Rayleigh quotient. In this document, only combinations of boundary conditions
relevant for this work, which are depicted in figure 10, are described from his approach.
It is known that the characteristic beam functions lead to modes that solve the bend-
ing wave equation only approximately if free edges are involved. The accuracy of the
approach is also discussed on the next pages. Note that although in the first place
considered for rectangular isotropic plates, the derived mode shapes Θmn can also be
used to solve equation 37 and are therefore also valid for orthotopic plates.

In case of a rectangular plate that is simply supported on all edges, the displace-
ment and the bending moments perpendicular to the edges must vanish:

W (x, y, t)
∣∣∣∣
x=0,Lx

= W (x, y, t)
∣∣∣∣
y=0,Ly

= 0,

Mx(x, y, t)
∣∣∣∣
x=0,Lx

= My(x, y, t)
∣∣∣∣
y=0,Ly

= 0. (50)

The functions X(x) and Y (y) then become

X(x) = sin
(

(m− 1)πx
Lx

)
m = 2, 3, 4, . . . ,
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Figure 10 – Top view of selected boundary conditions of a rectangular plate.

Y (y) = sin
(

(n− 1)πy
Ly

)
n = 2, 3, 4, . . . . (51)

Hence, the mode shape

Θmn(x, y) = sin
(

(m− 1)πx
Lx

)
sin

(
(n− 1)πy

Ly

)
(52)

obtained from equation 47 does solve the plate bending wave equation exactly with
the corresponding eigenfrequency. Furthermore, the shapes are equivalent to the one
of a rectangular membrane with fixed edges. The exemplary mode shapes depicted in
figure 11 show that the nodal lines are always parallel to the edges of the plate. This
behaviour does not change, even for square plates. Note that compared to the allowed
mode numbers of the eigenfunctions of a bar, the simply supported plate starts with
mode numbers m ≥ 2 and n ≥ 2. This convention considers the number of nodal lines
parallel to a pair of edges, if present.

A plate that is free at all four edges must fulfill the conditions

Mx(x, y, t)
∣∣∣∣
x=0,Lx

= My(x, y, t)
∣∣∣∣
y=0,Ly

= 0, (53)

Tx(x, y, t)
∣∣∣∣
x=0,Lx

= Ty(x, y, t)
∣∣∣∣
y=0,Ly

= 0, (54)

where the shear force in x-direction Tx of an orthotropic plate is

Tx = ∂Mx

∂x
+ ∂

∂y

(
h3D4

∂2W

∂x∂y

)
. (55)

The shear force in y-direction Ty can be obtained by swapping the variables x and y in
the equation above. At the corner of two free edges of a plate, the twisting moment
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Figure 11 – Exemplary normalized vibrational mode shapes of a rectangular plate with
simply supported edges.

must fulfill
Mxy

∣∣∣∣
x=0,y=0

= Mxy

∣∣∣∣
x=Lx,y=Ly

= 0. (56)

If the plate material is isotropic and homogeneous, the conditions at the edges simplify
to

∂2W

∂x2 + ν
∂2W

∂y2

∣∣∣∣
x=0,Lx

= ∂2W

∂y2 + ν
∂2W

∂x2

∣∣∣∣
y=0,Ly

= 0, (57)

and
∂3W

∂x3 + (2− ν) ∂
3W

∂x∂y2

∣∣∣∣
x=0,Lx

= ∂3W

∂y3 + (2− ν) ∂
3W

∂y∂x2

∣∣∣∣
y=0,Ly

= 0. (58)

Warburton found the following characteristic beam functions that approximately satisfy
those boundary conditions:

X(x) =



1 m = 0,
1− 2x

Lx
m = 1,

cos
(
β( x

Lx
− 1

2)
)

+ γ cosh
(
β( x

Lx
− 1

2)
)

m = 2, 4, 6, . . . ,
sin

(
β′( x

Lx
− 1

2)
)

+ γ′ sinh
(
β′( x

Lx
− 1

2)
)

m = 3, 5, 7, . . . ,

(59)

with

γ = −
sin

(
1
2β
)

sinh
(

1
2β
) , γ′ =

sin
(

1
2β
′
)

sinh
(

1
2β
′
) , (60)
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where β and β′ are the bm/2c-th non-zero positive roots of the equations

tan
(1

2β
)

+ tanh
(1

2β
)

= 0, tan
(1

2β
′
)
− tanh

(1
2β
′
)

= 0 (61)

for the spatial solution in x-dimension. If X, x, Lx, m in equation 59 and 60 are
substituted by Y , y, Ly, n, one obtains the beam function Y (y) in y-dimension. For
plates with the aspect ratio ra = Lx/Ly much larger or much smaller than one, the
resulting mode shapes for this boundary condition can be determined by inserting X(x)
and Y (y) into equation 47. As visible in figure 12, the nodal lines of the shapes are
always parallel to one pair of edges. However, if ra approaches the value one, elastic
interaction occurs between modes with the mode numbers {m,n} and {n,m} that leads
to mode shapes different than depicted in figure 12. Furthermore, the nodal lines are not
parallel to one pair of edges and the resulting mode shapes are not of the type {m,n}
and {n,m}, but {m,n} ± {n,m} as ra approaches the value one. This mixing of the
shapes, e.g. of the modes {2, 0} and {0, 2} leads to a nodal cross for {2, 0} + {0, 2}
or a nodal ring for {2, 0} − {0, 2}, as visualized in figure 13. Consequently, the mixed
mode shapes Θ′mn± for a free plate can be expressed with

Θ′mn± = AΘmn ±BΘnm, (62)

where Θmn and Θnm are the mode shapes without the effect of elastic interaction. In [7],
Warburton determined the factors A and B for certain modes by using the Rayleigh-Ritz
method. It must be noted that the elastic interaction depending on the aspect ratio also

0

m / n
0 1 2 3

1

2

3

Figure 12 – Exemplary normalized vibrational mode shapes of a rectangular plate with
free edges according to Warburton that lead to an eigenfrequency 6= 0.
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Figure 13 – Nodal patterns for the mode shapes {2, 0}+{0, 2} (top) and {2, 0}−{0, 2}
(bottom) for different aspect ratios of a free plate after Warburton [7]. Not to scale.

affects the eigenfrequencies of a rectangular free plate, ifm−n is an even number except
zero. This influence is discussed later in this section.

The so-called cantilever plate has one fixed edge beside three free edges. Assuming
that the plate is fixed at x = 0 and free at x = Ly, y = 0, y = Ly, the beam function
in x-direction is

X(x) = cos
(
βx

Lx

)
− cosh

(
βx

Lx

)
− γ

[
sin

(
βx

Lx

)
− sinh

(
βx

Lx

)]

with

γ = sin(β)− sinh(β)
cos(β)− cosh(β) , cos(β) cosh(β) = −1, (63)

for
m = 1, 2, 3, . . . .

As for two opposing free edges, this beam function solves the free edge boundary con-
dition at x = Ly only approximately. The beam function Y (y) for the cantilever plate
is the same Y (y) as for the plate with all free edges.

Exemplary mode shapes for the described boundary conditions are visualized in the figures
11, 12 and 14. Note that for a rectangular plate with free edges the mode {0, 0}, the
mode {1, 0} and the mode {0, 1} are not depicted since they represent rigid body modes
with an eigenfrequency of zero. Furthermore, for a free plate eigenmodes with one mode
number being zero lead to shapes of a two-dimensional free bar as depicted in figure 12,
if the plates aspect ratio ra is much larger or much smaller than 1. The same is true for
the cantilever plate - if the mode number associated to the two opposing free edges is
zero, one obtains the mode shapes of a two-dimensional bar with one clamped and one
free edge.

As already indicated, the mode shapes resulting from a plate that includes one or more
free edges only solve the Kirchhoff-Love plate equation approximately. For a plate with
free edges only, e.g. the twisting moments Mxy and Mxy of the mode {1, 1} do not va-
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Figure 14 – Exemplary normalized vibrational mode shapes of a rectangular plate with
one clamped and three free edges according to Warburton.

-nish at the corners of the plate. Hence, such errors propagates to all calculations that
rely on mode shapes, such as Warburton’s simple approach to determine the eigen-
frequencies of a rectangular plate. Despite being only an approximation for certain
boundary conditions, Warburton’s mode shapes can be applied regardless whether the
plate is isotropic or orthotropic. However, the same mode shapes of an isotropic and
orthotropic plate with the same dimensions have different associated eigenfrequencies,
as the next pages will show.

In order to obtain the eigenfrequencies that solve the bending wave equation for various
boundary conditions, an approach has been presented in [7]. It is based on Rayleigh’s
quotient which has already been introduced in section 2.1. A vibrating plate with the
transverse displacement W has the potential energy

Epot = h3

2

Ly∫
y=0

Lx∫
x=0

D1

(
∂2W

∂x2

)2

+D2
∂2W

∂x2
∂2W

∂y2

+ D3

(
∂2W

∂y2

)2

+D4

(
∂2W

∂x∂y

)2
 dxdy (64)
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and the kinetic energy

Ekin = ρh

2

Ly∫
y=0

Lx∫
x=0

(
∂2W

∂t2

)2

dxdy. (65)

If the total mechanical energy consisting of Ekin and Epot stays constant, the circular
eigenfrequency ωmn of a time-oscillating bending mode of the form

Wmn(x, y, t) = Θmn(x, y) sin(ωmnt+ ϕmn) is ωmn =
√
Epot,max
Ekin,max

, (66)

where Epot,max = Epot(Wmn = Θmn) and Ekin,max = Ekin(∂2Wmn/∂t
2 = Θmn). With

equation 66, one can determine the eigenfrequencies accurately for boundary conditions
that contain only simply supported and clamped edges. However, in case of free edges
the spatial solution solves the isotropic plate equation only approximately. The hereby
introduced constraints lead to slightly higher eigenfrequencies than the eigenfrequencies
of the exact solution to equation 42.

A simplified approach to determine the eigenfrequencies is also based on equation 66,
but does not require to solve the integrals in equation 64 and 65. Instead, approximate
predetermined expressions that depend on the mode number have been computed by
Warburton for all combinations of boundary conditions, that include not more than two
different conditions out of free, clamped and simply supported edges. These predeter-
mined expressions and the corresponding formulas were introduced in [7] for isotropic
plates. The present document includes an extension of this approach to orthotropic
plates derived by Marian Weger. Subsequently, the eigenfrequencies fmn are linked to
the four orthotropic rigidity constants D1 to D4 via

fmn = hπ

2√ρLxLy

√√√√D1G4
x

L2
y

L2
x

+D3G4
y

L2
x

L2
y

+D2HxHy +D4JxJy. (67)

A detailed derivation of this extension is part of appendix A.2. The coefficients Gx, Hx,
Jx in x-dimension for the here discussed boundary conditions can be found in table 5.
By substituting m with n in the table, one obtains the coefficients for Gy, Hy, Jy to
the corresponding boundary conditions in y-dimension. In case of an isotropic plate
equation 67 can be rewritten to

fmn = hπ

2√ρLxLy

√√√√D(
G4
x

L2
y

L2
x

+G4
y

L2
x

L2
y

+ 2νHxHy + 2(1− ν)JxJy
)

, (68)

in which D is the rigidity constant defined in equation 40. From the above equation, the
second term in the square root can also be rewritten to the non-dimensional frequency
factor κ with

κ2 = G4
x +G4

y

L4
x

L4
y

+ 2L
2
x

L2
y

[νHxHy + 2(1− ν)JxJy] , (69)
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Table 5 – Coefficients to determine the eigenfrequencies of a rectangular plate in single
dimension for the boundary conditions (bc) free-free edges (ff), simply supported edges
(ss) and clamped-free edges (cf) from [7].

bc m Gx Hx Jx

ss 2, 3, 4, . . . m− 1 (m− 1)2 (m− 1)2

ff 0 0 0 0
1 0 0 12/π2

2 1.506 1.248 5.017

3, 4, 5, . . . m− 1
2 (m− 1

2)2
[
1− 2

(m− 1
2 )π

]
(m− 1

2)2
[
1 + 6

(m− 1
2 )π

]
cf 1 0.597 −0.087 0.471

2 1.494 1.347 3.284

3, 4, 5, . . . m− 1
2 (m− 1

2)2
[
1− 2

(m− 1
2 )π

]
(m− 1

2)2
[
1 + 2

(m− 1
2 )π

]

if L2
y

L2
x
is lifted out of the parentheses. The eigenfrequencies fmn depend on the material

parameters of the plate, its dimensions and the boundary conditions. Exemplary eigen-
frequencies of a metal plate under various boundary conditions are depicted in figure 15.
As for bending waves in a bar, the eigenfrequencies increase non-linearly with increasing
m if the mode number n is held constant and vice versa.

Note that this calculation method approximates the eigenfrequencies for rectangular
plates and is only exact if the plate is simply supported on all edges. If free edges
are involved, the mode shapes to the corresponding eigenfrequencies fulfill the boundary
conditions only approximately. Furthermore, for a free plate with an aspect ratio close to
one, the elastic interaction between modes with the mode numbers {m,n} and {n,m}
leads to an additional deviation from the exact eigenfrequency. As exemplary depicted for
the mixed modes {2, 0}±{0, 2} in figure 16, the resulting difference between Warburtons
simple approach and the more accurate Rayleigh-Ritz method is not negligible, if the
plates aspect ratio is close to one. Therefore, Warburton introduced a correction factor
∆κsq for free square plates that changes the frequency factor κ to

κ2
sq± = κ2 ±∆κ2

sq. (70)

Equations to determine the correction factor are listed in appendix A.3. A comparison
of the relative difference between κ and κsq± for ν = 1/3 in figure 16 shows a maximum
relative difference of 13.5 % for {2, 0}− {0, 2}. However, for higher mode numbers the
relative difference decreases and becomes < 1 % for m > 10, or n > 10.

According to Warburton [7], the eigenfrequencies of a cantilever plate with the simple
approach were up to 27 % and 12 % higher for the modes {1, 1} and {2, 1} than the
results obtained with the Rayleigh-Ritz method. However, for both sets of boundary
conditions the frequency deviations decrease with increasing mode numbers.
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Figure 15 – Eigenfrequencies of a rectangular plate with simply supported (left) and
free (right) edges. The solid curves have no physical meaning but connect modes with
the same n.

Although the two introduced methods allow the determination of the eigenfrequencies
of a rectangular thin plate with any combination of free, simply supported and clamped
edges, the influence of the material parameters and plate dimensions on the eigenfre-
quencies can be presented much clearer for specific boundary conditions. This provides
valuable information which may be used for the acoustic characterization of rectangular
plates. For an orthotropic plate with all edges simply supported, equation 67 simplifies
by inserting the coefficients from table 5 to

2 4 6 8 10
mode n mber m
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Figure 16 – Variation of the frequency factor κ (left) for the transition from rectangular
to a square plate between the modes {2, 0}, {0, 2} and the corresponding mixed modes
{2, 0} ± {0, 2} if equation 69 (dashed light blue lines), the Rayleigh-Ritz method (solid
black lines) in [7] is applied, and with Warburtons added square correction factor ∆κsq
(black crosses); difference between frequency factor κsq± and κ for different mode pairs
for a square plate (right). The solid curves (right) have no physical meaning but connect
modes with the same n.
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Figure 17 – Left: eigenfrequencies sorted in ascending order for a rectangular steel
plate - for the boundary conditions all edges simply supported (ssss), all edges free (ffff)
and one edge clamped and the rest free (cfff) with a constant aspect ratio of 0.64.
Right: comparison, if the steel plate has the same boundary conditions (ssss) and the
same surface area but a varying aspect ratio.

fmn = πh

2
1
√
ρ

√√√√D1
(m− 1)4

L4
x

+D3
(n− 1)4

L4
y

+ (D2 +D4)(m− 1)2(n− 1)2

L2
xL

2
y

. (71)

If the plate’s material is isotropic, the formula can be further reduced to

fmn = πh

2

√
D

ρ

(
(m− 1)2

L2
x

+ (n− 1)2

L2
y

)
. (72)

Typically, the modal density is frequency-independent for a rectangular plate. In case of
a pure simply supported boundary condition, the modal density D(f) can be estimated
via

D(f) ≈ LxLy
h

√
3ρ(1− ν2)

E
, (73)

as described in [5] p. 757. As visualized in figure 17, the resulting linear increase of the
number of modes with increasing observed frequency interval is valid for all here presented
boundary conditions, if the plate has an aspect ratio ra close to one. For significantly
smaller or larger ra, the object is more bar- than plate-shaped and subsequently the modal
density is no longer constant and tends to decrease with increasing mode number.

2.3 Damped Vibrations in Bars and Plates

The previous sections described free vibrations in bars and plates of various shapes and
different boundary conditions. However, if these objects get excited by an impact force,
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the resulting vibrations usually decay over time. The mechanical energy introduced
into the system dissipates trough conversion into thermal energy internally and via the
radiation of sound externally. More specific, physical models of vibrations in bars [8] and
plates [9] consider viscoelastic, thermoelastic, and radiation losses. While the first two
damping mechanisms originate from the inherent characteristics of the object, radiation
damping is caused by the coupling between the solid object and the surrounding fluid. A
comprehensive overview about energy dissipation and damping in solid materials is given
in [5]. This section summarizes the causes of these damping mechanisms and describes
models that quantify damping.

In order to quantify the effect of damping, a so-called decay factor α is defined. Consid-
ering the transverse displacement W of a bar of plate, α describes the temporal decay
according to

W (t)e−αt. (74)

Since the decay factor is usually frequency-dependent, α becomes α(ω). The time
dependency in W is usually caused by an oscillating function like sin(ωt + ϕ) that
decays over time. Throughout literature, the inherent loss factor η of the material, the
modal decay time T60, the quality factor Q, the damping ratio ζ and the internal friction
tan(φ) are common quantities that are connected to the decay factor via

η = 2α
ω

, T60 = ln (103)
α

, Q = 1
η
, ζ = α

ω
and tan(φ) = η. (75)

2.3.1 Damping Mechanisms in Solid Materials

Thermoelastic losses are caused by the coupling between the thermoelastic stress–strain
relations and the temperature field in the solid. Thermoelastic losses are most dominant
in materials with significant thermal conductivity, e.g. in metals. A practical exam-
ple of this behaviour can be observed when bending a metallic bar and measuring the
temperature at points at areas of high strain.

In case of orthotropic plates, small variations of the inherent temperature T are governed
by the equations

σx = −12z
(
D1

∂2W

∂x2 + D2

2
∂2W

∂y2

)
− φxT ,

σy = −12z
(
D3

∂2W

∂y2 + D2

2
∂2W

∂x2

)
− φyT ,

σxy = −6zD4
∂2W

∂x∂y
, (76)

where σ indicates the stress, the second derivative of the transverse vibration W the
strain, and φ the thermal material coefficient. The indices x and y represent the direction
of the quantities in the corresponding plane z = 0. Assuming that T spatially depends
only on z as depicted in figure 18, the corresponding heat diffusion equation is described
by



M. Czuka: Sound Synthesis and Acoustic Characterization of Rectangular Plates 35

–h/2

h/2
z

T

Figure 18 – Temperature distribution in a bent plate.

κt
∂2T

∂z2 − ρCt
∂T

∂t
= −zT0

∂

∂t

(
φx
∂2W

∂x2 + φy
∂2W

∂y2

)
. (77)

Here, T0 stands for the absolute temperature and Ct for the heat capacity at constant
strain. Both equation can be used to derive a damping model for thermoelastic losses
in plates. This model is described in detail in section 2.3.3.

Viscoelastic losses are caused by the viscoelasticity of a material and represent the main
cause of thermal energy dissipation in materials with low thermal conductivity, such as
wood, glass and carbon fibres. A viscoelastic material shows both elastic and viscous
behaviour. If a material is deformed by a mechanical stress σ and the deformation is
completely reversed when removing the stress, then the deformation is purely elastic. In
case of a viscous deformation the strain ε caused by a stress is completely irreversible.
Figure 19 depicts exemplary stress-strain curves for elastic and viscoelastic deformation.

The principles behind the damping of vibrations due to the radiation of sound will de-
scribed in chapter 2.5. A damping model for plates that explicitly considers radiation
damping is presented in section 2.3.3.

ε

σ

ε

σ

00

Figure 19 – Stress-strain relation for a pure elastic deformation (left) and a linear
viscoelastic deformation (right).
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2.3.2 Generic Damping Models and Damping Models for Bars

Throughout the literature, several models have been developed to describe the effect of
damping. In [10], a damping law according to

α(f) = γ

2 + 2π2ηvf
2, (78)

where γ represents the fluid damping and ηv the viscoelastic damping coefficient, has
been used for modelling wooden bars. In [11], the generic damping law

α(f) = eαG+αR2πf (79)

was assumed to model losses of various materials. The parameters αG and αR represent
the losses of the intrinsic properties of the material.

2.3.3 Damping Model for Thin Plates

For plates, a comprehensive model that considers viscoelastic, thermoelastic as well as
radiation losses has been presented in [9], [5] and [12]. All of those three damping
mechanisms are assumed to be uncorrelated. For an orthotropic plate, the decay factor
α can be determined with

α(ωmn) =
4∑
i=1

ωmn
2 ηi(ωmn)Ji,mn + Rf

2 , (80)

where η represents the loss factor, J a mode shape dependent weighting, Rf a pure
viscous damping, and i = {1, 2, 3, 4} the index associated to one of the four rigidity
constants D̃i. In contrast to undamped plate vibrations that have been described in
section 2.2, the rigidity constants are now complex-valued. For "small damping" the
loss factors become

ηi(ω) ≈ Im
{
D̃i(jω)
Di

}
= Im{d̃i(jω)} (81)

with the pertubation term d̃i being

d̃i(jω) = d̃i,t(jω) + d̃i,v(jω) + d̃r(jω). (82)

The index t in the above equation indicates the intrinsic thermoelastic losses, which can
be derived from the equations that govern the vibrations of an orthotropic plate and the
heat diffusion equation (equation 76 and 77). Assuming no heat transfer between the
plate and the surrounding air and a spatial temperature distribution of

T (z) = T0 sin
(
πz

h

)
, (83)

the resulting pertubation term d̃i,t can be determined with

di,t(jω) =


jωRi,t

jω+c1/h2 , i = 1, 2, 3
0, i = 4,

(84)
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where Ri,t is

R1,t = 8T0φ
2
x

π4D1ρCt
, R2,t = 16T0φxφy

π4D3ρCt
, R3,t =

8T0φ
2
y

π4D3ρCt
. (85)

The dependency of d̃i,t on h2 indicate that the thermoelastic losses decrease with in-
creasing thickness of the plate. Furthermore, the damping caused by thermoelastic losses
depends on the mode shape - the corresponding weighting factor Ji.,mn will be described
later in this section. For an isotropic plate, the thermal material coefficients are inde-
pendent of the direction and φx = φy = φ. In addition, the thermal material coefficient
is related to the thermal expansion coefficient αt of a material by

φ = αt
E

1− 2ν . (86)

The factor c1 is connected to the thermoelastic relaxation factor τt via

c1

h2 = 1
τt

, τt = ρCth
2

κtπ2 , (87)

in which κt is the thermal conductivity of the material. Typical thermal constants from
various materials can be found in [5] and are listed in table 6. In [9], the coefficients c1
and R1 were obtained by fitting the model to measured decay factors.

The viscoelastic losses are considered in the pertubation term d̃i,v and represent the
main cause of thermal energy dissipation in materials with low thermal conductivity.
Viscoelastic properties combine both aspects of elastic and viscous deformation of ma-
terials. For the present damping model, the viscoelastic phenomenon is modelled using
a generalized dissipative Maxwell model of the order N = 2 of the form

d̃i,v(jω) = jωRi1,v

jω + si1,v
+ jωRi2,v

jω + si2,v
. (88)

In [9], values for the damping coefficientsRi1,v, Ri2,v, si1,v and si2,v have been determined
for various materials from measurements. The results are listed in table 7.

For both the thermoelastic and the viscoelastic losses, it can be necessary to introduce
a pure viscous damping term Rf to prevent decay factors close to zero for low frequen-
cies. Reasonable values determined for various materials by fitting them to achieve the
measured decay times are listed in table 8.

Table 6 – Thermal constants heat capacity Ct, thermal expansion coefficient αt and
thermal conductivity κt for typical materials from [5] p. 223.

wood steel glass aluminium

Ct (J / kg °C) 2000 460 - 625 700 900
αt (10-6 / K) 4 14 6 - 10 22
κt (W / m K) 0.04 - 0.4 11 - 46 1.1 105 - 250
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Table 7 – Viscoelastic parameters measured in [9]. The row number in each value
matrix indicates the index n of the dissipative Maxwell model, the row number the index
i (if available).

wood glass carbon fibres

Rin,v (× 10-3)
[
8.18 0 16.7 15.2
10 0 70 35

] [
1.63
1.962

] [
1.32 0 8.8 10.4

5 0 44 14.4

]

sin,v (× 103 rad s-1)
[

3.2 0 1.1 1.75
50.2 0 0.0502 50.2

] [
5.18
55.1

] [
10.1 0 2.5 2.27
94 0 0.07 40

]

Besides the internal damping mechanisms, the plate model also considers the interaction
between the vibrating plate and the surrounding air. The so-called radiation damping
was derived in [9] for an isotropic infinite plate. By applying a Padé development of the
order three, the radiation pertubation term d̃r can be determined with

d̃r(jω) = 2ρairc
ωcρh

∑3
M=1 bm(jω/ωc)M∑3
N=0 an(jω/ωc)N

, (89)

in which ωc is the critical angular frequency of the plate, and a0 = 1.1669, a1 = 1.6574,
a2 = 1.5528, a3 = 1 and b1 = 0.062, b2 = 0.595, b3 = 1.0272. Note that the above
equation approximates only the radiation pertubation of an isotropic plate.

The weighting factors Ji,mn in the damping model depend primarily on the spatial mode
shape Θmn(x, y), abbreviated by Θ in this section. In

Ji,mn = 〈Θ,Θ〉i
ω2
mn||Θ||2

, (90)

the scalar products 〈Θ,Θ〉i are defined as

〈Θ,Θ〉1 =
∫
S
h3D1

(
∂2Θ
∂x2

)2

dS,

〈Θ,Θ〉2 =
∫
S
h3D2

∂2Θ
∂x2

∂2Θ
∂y2 dS,

〈Θ,Θ〉3 =
∫
S
h3D3

(
∂2Θ
∂y2

)2

dS,

〈Θ,Θ〉4 =
∫
S
h3D4

(
∂2Θ
∂x∂y

)2

dS,

(91)

and the squared norm is given by

Table 8 – Viscous constants for typical materials from [9].

wood glass aluminium carbon

Rf (s-1) 2.4 0.88 0.032 0.8
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||Θ||2 =
∫
S
ρhΘ2dS. (92)

The above equations indicate that the scalar products depend on the curvature of the
mode shapes. This means the resulting decay factor can vary from mode to mode
substantially, as shown later. Furthermore, the weighting factors Ji,mn lead to a decay
factor that depends on the boundary condition of the plate. Since the Ji,mn for a specific
mode indicate the partitioning of the potential energy,

J1,mn + J2,mn + J3,mn + J4,mn = 1 (93)

must be true.

Besides the damping due to sound radiation, all aspects of the described damping model
are intended for orthotropic plates. In case of an isotropic plate, the damping model can
be simplified to

α(ωmn) = ωmn
2 [η1(ωmn)I1,mn + η4(ωmn)I4,mn] + Rf

2 , (94)

with I1,mn and I4,mn given by

I1,mn = J1,mn + J3,mn + 2D1

D2
J2,mn, I4,mn = J4,mn −

D4

D1
J2,mn. (95)

In order to illustrate the influence of the different damping mechanisms of the plate
damping model, a free isotropic aluminium plate is assumed as a first example. For
metallic plates the measurements carried out in [9] indicate that the damping primarily
depends on the thermoelastic losses and radiation damping. Considering these two
damping mechanisms and the isotropic behaviour of the plate, the perturbation terms
d̃1 and d̃4 only depend on

d̃1(jω) = d̃1,t(jω) + d̃r(jω), d̃4(jω) = d̃r(jω). (96)

Inserting the terms in equation 94, one obtains

α(ωmn) = ωmn
2 Im{d̃1,t(jω)I1,mn + d̃r(jω)}+ Rf

2 , (97)

for the damping law of an isotropic metallic plate. The resulting decay factor of an
exemplary aluminium plate in figure 20 shows, that the damping is characterized by the
radiation damping for frequencies within the range around and above the critical radiation
frequency fcrit of the plate. For lower frequencies the radiation damping decreases
and the thermoelastic losses become the dominant factor. Note that the apparent
randomness of the decay factors is introduced by I1,mn, which includes the mode shape
dependent weighting factors Ji,mn.
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Figure 20 – Predicted decay factors of a free isotropic aluminium plate from [9].

As a second example, a free isotropic glass plate is assumed. In this case measurements
in [9] confirmed that there is an almost linear relationship between ωmn and α below the
critical frequency of the plate where inherent damping mechanisms dominate. Hence,
the decay factor can be assumed to be independent of the mode shape. Analogous to
the aluminium plate example, the pertubation terms simplify to

d̃1(jω) = d̃1,v(jω) + d̃r(jω), d̃4(jω) = d̃r(jω), (98)

and the inherent viscoelastic losses are now considered. For the total decay factor,

α(ωmn) = ωmn
2 Im{d̃1,v(jω) + d̃r(jω)}+ Rf

2 , (99)

is obtained. As shown in figure 21, the damping law of an exemplary glass plate shows an
almost linear relationship between decay factors and the eigenfrequencies below 3 kHz.
the same behaviour as the aluminium plate. However, the inherent viscoelastic losses for
glass lead to significantly higher decay factors as the thermoelastic losses in aluminium
for plates with a comparable size.
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Figure 21 – Damping law of a free isotropic glass plate from [9].
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2.4 Mechanical Excitation of Objects

So far, forced vibrations of various objects have been described without specifically
considering the excitation that causes the vibrations. The process of identifying an
object acoustically starts with a mechanic excitation, such as tapping. Therefore, this
section is devoted to the description of the mechanical excitation of simple objects.

2.4.1 Hertz’s Theory of Contact

It is known that the interaction force from an object that impacts on a structure results
from the elastic deformation of both solids in contact. In studies such as [8] and [9],
Hertz’s law of contact is used to model this transient excitation on bars and plates.

For the following considerations, it is assumed that the impactor is a sphere with a radius
much smaller than the struck object. The interaction force F (t) between the impactor
and a struck object is governed by the nonlinear relation

F (t) = K|U(t)−W (t)|3/2, (100)

withW being the displacement of the object at the impact point and U the displacement
of the impactor. In figure 22, the contact between the objects is visualized under the
assumption that |U(t)−W (t)| deforms only the sphere. The motion of the impactor is
given by Newton’s second law

Me
d2U

dt2 = −F (t) with
dU(0)

dt = V0, (101)

where V0 represents the initial velocity of the sphere at the time of impact. If the
impactor is a head of a mallet that is held by a person, the effective Me is slightly larger
than the actual mass of the mallets head. This is due to the stick that is held by the
persons hand. Note that the above equations neglect any vibrations in the impactor and
assume that the surface of the struck object remains constant during the impact. With

U - W

Fmax

�

fo
rc

e
 (

N
)

time (s)0

Figure 22 – Contact of a sphere with an infinite rigid plane (left) and resulting inter-
action force modelled with a Hanning window (right).
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the material properties of both the impactor and the struck object known, the stiffness
coefficient K can be calculated with

K =
√
RI

DH

, (102)

where DH is

DH = 3
4

(
1− ν2

E
+ 1− ν2

I

EI

)
. (103)

The quantitiesRI , νI and EI stand for the radius, Poisson’s ratio and Young’s modulus of
the impactor. Analogous, ν and E represent the material parameters of the struck object.
As derived in [8], the interaction time τH between the two solids can be determined with

τH = 3.218
(

µ2

K2V0

)1/5

(104)

based on the conservation of mechanical energy. The maximum interaction force Fmax
and the radius of the maximum contact area rH,max are

Fmax = µ3(
Kτ3

H

35.4

)2 , rH,max =
√( 5µ

4K

)2/5
V

4/5
0 RI , (105)

with µ being the reduced mass

µ = MIM

MI +M
(106)

between the mass MI of the impactor and the mass M of the struck object. Figure 22
shows the shape of the resulting interaction force F (t), if τH and Fmax are used with
a Hanning window. In order to determine F (t), the material properties of the impactor
as well as of the struck object and the impact speed V0 must be known. Furthermore,
it is interesting that the interaction time depends hardly on the impact speed. Note
that during the interaction process, the contact area rH varies with time. However,
the study in [8] indicates that a constant contact area does not lead to significant
differences in the vibrational behaviour, except when the contact area is situated near an
antinode. Therefore, a commonly applied method comprises a spatial weighting window
that accounts for the distribution of the force over a constant contact area, weighted
with a temporal window.

2.5 Sound Radiation

If the vibrational behaviour of an object is known, the sound radiation into a surrounding
fluid can be calculated. In this section selected aspects of sound radiation from vibrating
objects will be described.

Note that the presented methods do not aim to describe the radiated sound in the most
comprehensive way, but with a degree of complexity so that they can be incorporated in
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an efficient modal synthesis model. The application of equations such as the Kirchhoff-
Helmholtz integral would require numerical simulation methods like the boundary element
method (BEM). However, a comprehensive discussion on sound radiation that considers
these aspects can be found in many books, such as [5], [13] and [14].

2.5.1 Elementary Radiators

The simplest radiator archetype is an omnidirectional source represented by a pulsating
sphere. As a basic solution of the wave equation in spherical coordinates, the complex
sound pressure p̃ of the wave radiated by the source is

p̃ = A

r
e−jkrejωt. (107)

The sound particle velocity is given by

ṽ = A

ρaircair

(1
r
− j

kr2

)
e−jkrejωt. (108)

The second term in the parentheses of the above equation becomes relevant for kr < 1
and is responsible for the reactive sound power in the vicinity of the radiator. Under the
condition kr � 1, the phase difference between p̃ and ṽ tends to zero and the pulsating
sphere can be replaced by a point source. Both quantities decrease with 1/r in this case.

If the radiated sound field of two omnidirectional sources with the same strength but
opposite phase is superimposed, the sound field of a dipole source is obtained. A vibrating
plane can be described as a dipole for sufficiently low frequencies. As shown in figure 23,
the distance between the two monopole sources is given by L. By superimposing the
sound fields of both sources that radiate with the same frequency, one gets

p̃ =
(
A

r1
e−jkr1 − A

r2
e−jkr2

)
ejωt, (109)

where r1 and r2 represent the distances from the monopoles to the observation point.
Depending on the location of the observation point and the relation L/λ, a constructive
or destructive interference occurs for the resulting pressure p̃. In the far field around the
dipole where r1 � L and r2 � L, the distances r1 and r2 can be approximated to be
equal with regards to amplitude in equation 109. The phase terms on the other hand
must be handled separately since they determine if the interference is constructive or de-

zz p

r1
r2

L

+

-

+-

Figure 23 – Conphase vibrating plane described with two monopole sources (left) and
corresponding geometric setup (right).
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-structive. As derived in [14] p. 88, this leads to

p̃ ≈
(
A

r1
− A

r2
e−jkLcos(ϑ)

)
ejωt (110)

as approximation for the sound pressure in the far field. By determining the radiated
sound power P in the far field the dipole can be characterized independent of the
observation point. After the spatial integration of the sound pressure one gets

P = P1

(
1 +

(
A2

A1

)2
+ 2A2

A1

sin(kL)
kL

)
. (111)

As third elementary radiator, the sound radiation of an infinite plate is discussed. For
this purpose, a plate depicted in figure 24 and extended to an infinite size along the x-
and the y-axis is assumed.

The critical frequency or coincidence frequency fcrit of a plate represents the frequency,
at which the wavelength of the bending wave λB equals the wavelength of the radiated
sound wave λair. According to [15], it is given by

fcrit = c2
air

2π

√
12ρ(1− ν2)

Eh2 . (112)

In case of an infinite plate, free bending waves lead to sound radiation only above fcrit.
Below the coincidence frequency, λair > λB and an exponentially decaying near field
is formed. The larger λair becomes in comparison to λB the faster the sound pressure
decays with increasing distance from the plate. The decaying near field is caused by
the compensation of pressure areas of the opposite phase in the vicinity of the plate,
as shown schematically in figure 25. In terms of the radiation damping used in the
plate damping model in section 2.3.3, the radiation damping is low below fcrit. Above
the critical frequency, bending waves lead to a sound radiation into the far field which
corresponds to a high radiation damping.
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Figure 24 – Vibrating plate with the area S in an infinite baffle in the plane z = 0 and
sound pressure p evaluated at a large distance r (not to scale).
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2.5.2 Plane, Baffled Radiators

Considering the baffled radiator with the surface S as shown in figure 24, the sound
pressure p at a point {xM , yM , zM} in the infinite half space can be determined with

p(r, θ, ϕ, t) = ρair
2π

∫
S

∂2

∂t2
W (x, y, t− d/cair)

d
dS. (113)

with d =
√

(x− xM)2 + (y − yM)2 + z2
M . Known as Rayleigh’s integral, the above

equation can be solved analytically only for special cases. Therefore, a frequently used
approach discretizes the radiator into small surface elements with point sources at their
centres. The sound pressure p is then determined by summing the contribution of all
point sources, whereas the term t − d/cair accounts for the appropriate time delay to
the point {xM , yM , zM}.

λB

λair

++

Figure 25 – Acoustic shortcut for λair > λB for a 1-dimensional bending wave.

2.6 Psychoacoustics of Bars and Plates

The acoustic identification and perception of solid objects - in various literature sources
also referred to as psychomechanics, auditive kinetics or ecological acoustics [16] - pro-
vides vital information about a surrounding environment in everyday life. The radiated
sound created by tapping, knocking or scratching an object often enables a distinction
between different objects. A vivid example for this would be the distinction between the
sounds of a knocked wooden furniture plate and a desk glass plate, whereas the sound
of the latter usually contains a larger number of longer decaying partials.

Systematic research on the acoustic classification and basic object identification was
already conducted in various studies. In [16] and [15] the effect of size and material
properties on the identification of plates was investigated. Furthermore, the authors of
the first study introduced a description of a physical object on three different levels: in
terms of physical or mechanical properties of the object as a sound source, on the acoustic
level considering characteristics of the emitted sound, and on a perceptual basis of the
recognized sound event. Listening tests in [17] and [10] with synthesized sounds of struck
bars as well as with synthesized plate sounds in [15] identified the material-inherent loss
factor η as a main correlating parameter with the listeners ability to distinguish between
certain material groups. Being directly connected to the decay time T60 and the decay
factor α, η characterizes the decay behaviour of the emitted sound of an impacted
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object. While in [16] listening experiment participants could clearly identify the material
classes steel-glass and wood-plexiglass of impacted plates, separating materials within
each group was ambiguous. Besides the decay behaviour as an important cue for the
acoustic identification of materials, participant material dissimilarity ratings in [15] and
material identification decisions in [17] showed a correlation with the perceived pitch of
the sound, which can be attributed to the wave velocity within the material. However,
direct acoustic material identification results in [16] showed that participants mostly
ignored the pitch information.

With respect to the development of an acoustic characterization method for rectan-
gular plates within this work, it can be summarized that the average auditory system
of humans is able to identify and distinguish coarse material groups like metal-glass or
wood-plexiglass from the sound of an impacted plate or bar. Furthermore, the stud-
ies mentioned in this section consistently highlight the correlation between the inherent
damping properties of a material and the results from the conducted listening experi-
ments in these studies.
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3 Modal Synthesis of Rectangular Plates

Within this project, a modal synthesis model to simulate the emitted sound of rectangular
plates has been implemented. Like all physical modelling techniques, modal synthesis
aims to create a sound based on the physics responsible for the sound production. For
the excitation of vibrations in thin bars and rectangular plates, corresponding models
have been described in chapter 2. If sound radiation is also taken into account, the basic
steps involved in the physical model can be summarized as in figure 26. An excitation
signal such as caused by Hertz’s law of contact serves as input signal to the model.
Furthermore, the behaviour of the model can be controlled with the material properties
and the dimensions of the physical object.

physical m
odel

transverse
object vibrations

sound
radiation

excitation signal

synthesized sound
         signal

object
geometry

material
properties

Figure 26 – Steps involved in the implemented physical sound synthesis model.

In modal synthesis, the vibration of an object consists of weighted contributions of
modes with their associated eigenfrequencies. Under the assumption that the modes are
independent to each other, each mode can be represented by a single damped mass-spring
system. Therefore, in the next section this basic mechanical system and its important
characteristics for the synthesis model will be recapitulated. Subsequently, the selected
physical synthesis model from the literature for this work is explained. In the third part of
this chapter the implementation of the selected modal synthesis model and its extensions
are described. The last section deals with the model validation using results from various
literature sources and real sounds of impacted plates.
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3.1 Modal Synthesis Model

3.1.1 Damped Mass-Spring System

A simple damped mass-spring system is governed by the equation

M
∂2W

∂t2
+R

∂W

∂t
+KW = F (t) (114)

and characterized by the mass M , the mechanical resistance R and the spring constant
K. If the external force F (t) is a Dirac impulse δ(t− t0), then the impulse response of
the system is

h(t− t0) = 1
Mωd

sin [ωd(t− t0)] e−ζω0(t−t0), (115)

where ζ is the damping ratio defined by

ζ = R

2Mω0
. (116)

The resonance frequency ωd is slightly lower than the resonance frequency ω0 of the
undamped system:

ωd = ω0

√
1− ζ2, ω0 =

√
K

M
(117)

The impulse response h(t) can be used to determine the displacement W (t) to an
arbitrary external force by convolving F (t) with h(t). The transfer function H(s) of the
system is given by

H(s) = 1
M

1
s2 + s(2ζω0) + ζ2ω2

0 + ω2
d

. (118)

In figure 27 the corresponding magnitude response shows that for ζ close to 1 the high
damping prevents the resonance peak at ωd and leads to characteristics of a second-
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Figure 27 – Magnitude response (top) and phase response (bottom) of a damped
mass-spring system for the damping ratios 1 (red), 0.5 (green), 0.1 (orange) and 0.01
(blue).
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order Butterworth filter. With damping ratios � 1, a pronounced resonance peak ap-
pears that becomes larger and narrower with lower damping ratios. From the modal
synthesis perspective, a mode with high damping possesses a broad spectrum due to
the fast decay of the sine wave. The energy of the resulting broadband spectrum is
distributed over a large interval around the resonance frequency. In extreme cases the
fast decay leads to a pulse-shaped impulse response, which sounds like a click. In case
of low damping, the impulse response becomes long and the spectrum has a narrow
band around the resonance frequency. Hence, the modal impulse response sounds like a
sinusoid that decreases in volume over time. Both scenarios of fast and slow decaying
modes occur in the synthesis model from Troccaz [18], which is summarized in the next
section.

3.1.2 Simulation of Damped Impacted Plates

In [18], Troccaz presented a model to determine the sound radiation of a thin rectangular
plate based on a geometric setup depicted in figure 28. Hereby, the impact of a sphere
causes a force F that acts at a point of the plate with the size Lx, Ly and the thickness
h. The vibrations on the plate are governed by the inhomogeneous plate equation

hρ
∂2W

∂t2
+ h3D∇4W + C

∂W

∂t
= F . (119)

The rigidity constant D is

D = E

12(1− ν2) (120)

and C represents the damping coefficient. By applying the method of separation of
variables on the plate equation, the solution is split up into a spatial part and a temporal
part. For a rectangular plate, the solution for a single mode {m,n} becomes

Wmn(x, y, t) = 1
ρh
Zmn(x, y)Wmn(t). (121)

The spatial part of the solution

Zmn(x, y) = AmnΘmn(x, y)Θmn(x0, y0) (122)

is characterized by the mode shapes Θmn of the plate for a specific boundary condition
and the evaluation of the modes at the impact point {x0, y0} of the force F . Suitable
mode shapes and their corresponding eigenfrequencies have been described in section 2.2
and [7]. The factor Amn ensures that

∫ ∫
Θ2
mndxdy = 1. For a plate simply supported

on all edges, Amn = 4
LxLy

. The temporal part

Wmn(t) = 1
ωd,mn

∫ t

0
F (τ)e−ζωmn(t−τ) sin[ωd,mn(t− τ)]dτ (123)

convolves the point force with an exponentially decaying sinusoid. Considering the factor
1/(ρhLxLy) in equation 121, the temporal part can be interpreted as the convolution
of the excitation force with the impulse response of a damped mass-spring system, as
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Figure 28 – Geometric setup of the Troccaz synthesis model and the implemented
modal synthesis model.

denoted in section 3.1.1. Each eigenfunction of the plate adds a damped mass-spring
system with the diminished angular eigenfrequency ωd,mn to the overall vibration, which
becomes

W (x, y, t) = 1
ρh

∞∑
n=0

∞∑
m=0

Zmn(x, y)Wmn(t). (124)

The point force F (t) caused by the impact of a sphere on the plate is determined
by an extended version of Hertz’s law that accounts also for plastic deformations. In
the first part of the contact period between the sphere and the plate, purely elastic
deformation occurs as described in section 2.4.1. The second phase is governed by a
purely plastic deformation, followed a mixed deformation that models the deformation
during the rebound. In order to model the sound radiation of the baffled plate, Rayleigh’s
integral is applied as described in equation 113.

3.2 Implemented Model

In this work, an adapted version of the synthesis model presented in [18] that utilizes the
comprehensive plate damping law in [9] has been implemented. Hence, the geometric
setup and the plate properties are the same as described in section 3.1.2. Furthermore,
the model has been extended to synthesize the transverse vibrations in orthotropic plates
with any combination of free, simply supported or clamped edges. An overview about
the steps involved in the synthesis model is depicted in figure 29. By default, the
modes shapes and their corresponding eigenfrequencies are determined internally based
on material properties, object dimensions and boundary conditions. However, it is also
possible to provide the mode shapes and eigenfrequencies externally. This possibility was
exploited throughout the validation of the synthesis model, where the results from finite
element method (FEM) simulations were partly used as a reference. The model outputs
synthesized sound pressure signals over time.

In order to conveniently incorporate the plate damping law into the model, equation 119
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Figure 29 – Steps involved in the implemented physical sound synthesis model.

is written in the temporal Laplace domain and extended for orthotropic plates to

ρ

h2 s
2W̃ + D̃1

∂4W̃

∂x4 + D̃3
∂4W̃

∂y4 + (D̃2 + D̃4) ∂4W̃

∂x2∂y2 +RfsW̃ = F̃ . (125)

The complex displacement W̃ = W̃ (x, y, s) and the impact force F̃ = F̃ (s) depend now
on the complex frequency variable s = σ + jω. Furthermore, the rigidity constants D̃1
to D̃4 are complex and related to the pertubation terms as described in section 2.3.3.
Note that the above bending wave equation is written in the temporal Laplace domain
for a more compact notation - the actual model synthesizes a sound in the time domain.
In analogy to the solution in equation 121, the transverse displacement of a plate mode
can be written as

W̃mn(x, y, s) = 1
ρh
Zmn(x, y)W̃mn(s), (126)

with
Z(x, y) = Θmn(x, y)Θmn(x0, y0) (127)

and
W̃mn(s) = F̃ (s)L

{ 1
ωmn

e−αmnt sin(ωmnt)
}

= F̃ (s)H̃mn(s), (128)

where L represents the Laplace transform. The influence of the complex rigidity con-
stants in the plate equation is taken into account by the decay factor αmn, which is
determined according to

α(ωmn) =
4∑
i=1

ωmn
2 ηi(ωmn)Ji,mn + Rf

2 . (129)

A description of the loss factors ηi, their corresponding weighting factors Ji,mn, and the
theory behind the damping law can be found in section 2.3.3. H̃mn(s) is given by

H̃mn(s) = 1
s2 + s(2αmn) + α2

mn + ω2
mn

. (130)
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Note that contrary to the damping applied by Troccaz the eigenfrequencies are not di-
minished due to the modal damping characteristics, since in Chaigne’s comprehensive
model the decay factors depend on the eigenfrequencies of free transverse vibrations of
bending waves. The eigenfrequencies ωmn can be determined with Rayleigh’s quotient
using Warburton’s mode shapes or with the pre-computed solutions by Warburton [7].
Both approaches are described in section 2.2. The force F acting at the point {x0, y0} is
modelled with Hertz’s law of contact as described in section 2.4.1. Hence, F (t) is based
on a Hanning window specified by the maximum force Fmax and the interaction time
τH . The mode shapes for the spatial solution Zmn(x, y) are obtained using Warburton’s
characteristic beam functions that were described in section 2.2. Note that the mode
shapes Θmn were normalized to a scalar product of one to ensure a uniform weighting
of all modes for a point force F = δ(t)δ(x − x0, y − y0). In order to model the sound
radiation of the plate with Rayleigh’s integral, the plate is discretized into small rectan-
gular surface elements with the area dS = dxdy, as schematically shown in figure 30.
The center of each element contains a point source at the position {xi, yi} that radiates
with the acceleration component normal to the plate at this specific point. Hence, the
sound pressure is determined with Rayleigh’s integral

p(r, θ, ϕ, t) = ρair
2π

∑
i

∂2

∂t2
W (xi, yi, t− di/cair)

di
dxdy, (131)

where the integration over the plate surface is carried out as a summation of the contri-
bution of all point sources. The sound pressure is synthesized at two observation points
pl(t) and pr(t) that are later used for playback over headphones for the left and right ear.
Since the model is intended to synthesize the sound of unbaffled objects, the acoustic
shortcut between front and back surface of the object must be taken into account. To
this end, a comprehensive numerical approach as described in [19] has been considered.
However, since an implementation of this method was out of scope of this work, a more
simple but effective approach was chosen for the final implementation. In [20], an empir-
ical formula for the average radiation efficiency of an unbaffled plate was derived. With
respect to the implemented synthesis model, the most important part of this formula
represents the decrease of the radiation efficiency below the critical radiation frequency
fcrit down to the lowest eigenfrequency with approximately 20 dB / decade. Hence, all
modes below fcrit are simply weighted with the attenuation of a first-order highpass with
a cutoff frequency at fcrit.

dS

dx
dy

Figure 30 – Schematic displacement on a vibrating plate (left) and slicing of plate into
rectangular surface elements with a point source at their centres (right).
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3.3 Validation

Since the implemented synthesis model includes adapted and extended models from
multiple literature sources, this section comprises a validation of the most important
employed models. With reference to the block diagram in figure 29, the following
aspects of the synthesis model have been validated:

◦ the excitation force F (t) that serves as excitation signal,

◦ the determination of mode shapes with their associated eigenfrequencies,

◦ the plate damping law to determine the decay factors αmn. For this reason, laser
vibrometer measurements were carried out on selected plates.

In addition, the entire model was validated by comparing the synthesized sound pressure
signal with results from literature as well as with recorded sounds of real impacted plates.

The excitation force was modelled with Hertz’s law of contact as described in sec-
tion 2.4.1 and in [8]. As validation, the implemented model is used to recreate the
two examples from this literature source. The examples comprise a wooden bar that
is excited with a mallet. While in the first scenario the head of the mallet consists of
rubber, a mallet with a boxwood head is used in the second example. The employed
model parameters are listed in table 9 and include all necessary material properties and
the geometry of both the bar and the mallet. Only the bar’s mass that influences the
reduced mass was not available and has therefore been determined with the help of the
impact duration τH . Note that for both mallets the measured and simulated data from
the literature source was extracted directly from figures using the software WebPlotDig-
itizer 1. Thereby, the visualized literature data in figure 31 and figure 32 as well as the
determination of the impact durations are approximations. Nevertheless, the comparison
of the impact forces from the implemented model shows a very good agreement between
the implementation and the simulated results by Chaigne. The difference in figure 31 for
the maximum force between the simulations and Chaigne’s measured results originates
from the measurement standard deviation (34 %) for the determination of the stiffness
constant K in [8]. With rubber being a material that would require a far more complex
model to describe the impact, the simulated impact durations are about 20 % shorter
than the measured one. Subsequently, the corresponding magnitude spectra contain less
energy and their low-pass behaviour starts at higher frequencies.

Table 9 – Model parameters for Hertz’s law of contact for a mallet with a rubber
and a boxwood head for a weak (piano) and strong (mezzo-forte) impact. *Data from
from [8].

rubber boxwood

stiffness constant K (N m-3/2) 3.7 x 107* 1.31 x 109*
reduced mass µ (g) 14.1 14.2
impact speed V0 (m / s) 0.26*; 1.0* 0.07*; 0.474*

1. freely available at www.automeris.io/WebPlotDigitizer
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Figure 31 – Temporal progression (top) and magnitude spectrum (bottom) of the
impact force for a rubber mallet with a weak impact (piano, left) and a strong impact
(mezzo-forte, right). Comparison between results from implemented model (solid or-
ange), simulated (dotted black) and measured (dashed-dotted / solid blue) result from
Chaigne [8].

The results for the boxwood mallet in figure 32 show that the higher stiffness constant
caused by the mallet material leads to a shorter impact duration and furthermore to
a broader magnitude spectrum compared to the rubber mallet results. In general it
can be said that the duration τH is the most important parameter for the excitation
in the synthesis model since it defines the spectral characteristics of the impact force
and therefore the weighting of a mode depending on its eigenfrequency. The employed
window shape does influence the spectral characteristic of the impact force - however,
simulations in [8] showed that small variations in the window shape have no significant
consequences on the solution.

The next validation step includes the determination of the mode shapes and their asso-
ciated eigenfrequencies ωmn for various boundary conditions. By default, the synthesis
model uses the plate mode shapes introduced by Warburton in [7]. For the trivial case of
a plate simply supported on all edges no validation was carried out, since exact solutions
of the plate bending wave equation are available. However, this configuration was used
to test an employed finite element method (FEM) framework, which was used through-
out this work for numeric simulations. Information on the used FEM framework and its
validation with a simply supported plate can be found in appendix D. The validated FE
model was then used to simulate plates with boundary conditions with no exact analytic
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Figure 32 – Temporal progression (top) and magnitude spectrum (bottom) of the im-
pact force for a boxwood mallet with a weak impact (piano, left) and a strong impact
(mezzo-forte, right). Comparison between results from implemented model (solid), sim-
ulated (dotted) and measured (dashed-dotted) result from Chaigne.

solutions available. For these cases, the resulting mode shapes and eigenfrequencies
served as ground truth. This approach was chosen analogously to [7], where a numerical
method was used to get a ground truth for the model validations. However, Warburton
applied the less sophisticated Rayleigh-Ritz method.

As mentioned in section 2.2, the mode shapes obtained with Warburton’s method solve
the bending wave equation only approximately, if free edges are involved. Furthermore,
the more the aspect ratio is closer to one, the more the effect of elastic interaction
influences the mode shapes for these cases. For the model validation, the boundary
conditions all edges free (ffff) and cantilever (cfff) from figure 10 were taken into account.
Figure 33 shows a comparison between mode shapes of a square plate from Warburton’s
approach and from FE simulations. The largest differences can be observed for the
{2, 0}- and {0, 2}-mode and the corresponding mixed modes {2, 0} ± {0, 2}, because
Warburton’s mode shapes do not take into account elastic interaction. This influences
the numeric calculation of Rayleigh’s integral, which may result in a deviation of the
synthesized sound pressure for certain radiated modes, depending on the location of the
observation points. From an acoustic perception point of view, these deviations have
only a minor impact compared to the plate eigenfrequencies ωmn and the corresponding
decay factors αmn, which also depend on the mode shapes.
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Figure 33 – Comparison between synthesis model mode shapes and shapes obtained
from FE simulations for a square plate. *FE-simulated modes are actually mixed pair of
the form {2, 0} ± {0, 2}.

For the validation of the eigenfrequency determination method of the model, the results
from own FE simulations as well as from Chaigne in [9] were taken into account. There-
fore, a set of three plates was investigated, which has the same dimensions and material
properties as the aluminium plates a1, a3 and the glass plate v1 in [9]. Basic and detailed
information about these three plates are part of figure 34 and appendix C.

The synthesis model offers the possibility to determine ωmn with Rayleigh’s quotient or
with the simplified Warburton formula. As described in section 2.2, both approaches rely
on the product of the characteristic beam functions introduced by Warburton in [7], which
are known to solve the plate bending wave equation only approximately if free edges are
involved. However, the first validation step includes a comparison of these approaches
for the considered plate set and the boundary conditions ffff and cfff. Taking the lowest
200 modes for each case into account, the relative frequency difference between the
Rayleigh’s quotient calculations and the simplified Warburton approach did not exceed
0.07 %, except for shapes with the mode number 1 associated with the clamped and
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Figure 34 – Basic information of investigated plates. Not to scale. Accurate dimensions
and material properties can be found in appendix C.

the opposing free edge of the cantilever plate. The maximum relative deviation of 4.6 %
for this special case can be traced back to the corresponding expression given in table 5,
which is in fact an approximate calculation of the integrals in equation 64 and 65. Hence,
apart from modes including m = 1 for the cantilever plate, Warburton’s simple approach
delivers very similar results with the additional benefit of less computational effort.

The second validation step comprises a comparison between eigenfrequencies obtained
with Warburton’s approach, FE simulations and the literature results from Chaigne for
plates with all edges free. As exemplary results for the plates a3 and v1 in figure 35
show, there is generally a good agreement between analytic model, FE simulations and
literature results in terms of absolute values. However, since both plates have an as-
pect ratio close to one, the determined eigenfrequencies for low mode numbers from
Warburton’s approach are different from the FE and the literature results in terms of
relative deviations. These deviations can be attributed mainly to two aspects. The
first aspect concerns the characteristic beam functions introduced in equation 59, which
solve the bending wave equation only approximately. The second represents the elas-
tic interaction between modes with the numbers {m,n} and {n,m}, where m − n is
a non-zero even number, if the aspect ratio is close to one. Poisson coupling for the
mode {m,n}+ {n,m} increases and the added stiffness for the mode {m,n}−{n,m}
decreases the resulting eigenfrequency compared to the eigenfrequencies of the modes
{m,n} and {n,m}. As mentioned in section 2.2, Warburton introduced a correction
factor to address these deviations for square plates. Within this work, ideas were devel-
oped to empirically derive a correction factor also applicable for non-square free plates.
However, since the implementation of such a factor was out of scope, by default the im-
plemented synthesis model uses Rayleigh’s quotient or the simplified Warburton formula
without a frequency correction factor.

Another aspect of vital importance to the synthesis model is the plate damping law
from section 2.3.3. For validating the damping law the same set of plates in figure 34
was investigated to recreate the literature examples from [9]. In addition, the model
was assessed with own laser vibrometer measurements on replica plates. Apart from
manufacturing tolerances, these plates had the same dimensions and were made of the
same materials as in [9]. A detailed description of the laser vibrometer measurements
and the procedure to estimate the decay factors αmn can be found in appendix E. Note
that the theory behind the damping law is summarized in section 2.3.3 of this work.
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Figure 35 – Comparison between eigenfrequencies obtained with the implemented
Warburton method (orange dots), FE simulations (green "x"), and measured eigenfre-
quencies from Chaigne for the aluminium plate a3 (top) and the glass plate v1 (bottom)
with all edges free.

The validation procedure of the damping law was divided into two parts. In the first,
attempts were made to recreate the literature results from Chaigne, including an esti-
mation of the thermoelastic and viscoelastic constants. The second step comprised a
fit of the damping law parameters to own measurement results from the replica plates.
A detailed discussion of the results for the aluminium plate a1 will reveal the reasons
behind the chosen validation approach for the plate damping law.

The first investigated plate was the aluminium plate a1 with the corresponding results
visualized in figure 36. As mentioned in section 2.3.3, the damping law considers ther-
moelastic and radiation damping for metals. Using the mode shapes from Warburton or
from FE simulations to determine the decay factors both lead to comparable results and
show a good agreement with the literature results. The erratic behaviour of Chaigne’s
measurement results within the region of the critical radiation frequency and above are
very likely due to measurement uncertainties, since a decay factor of 100 would already
correspond to a hardly accurately measurable decay time T60 of 69 ms.

Although the measurement setup and the plate itself were recreated as close as possible
as described in [9], the own measured decay factors are consistently larger than the
decay factors measured by Chaigne. A possible explanation to this could be a different
influence of the suspension of the plate. However, as shown later in this section, the
measured decay factors for the own glass plate v1 with the same suspension method
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Figure 36 – Left: comparison between decay factors from Chaigne’s [9] measurements
(blue circles) and prediction (blue "x"), own predicted values using Warburton’s (orange
"x") and FE-simulated (green stars) mode shapes. Right: comparison between decay
factors from own measurements (orange circles), predicted values from FE-simulated
mode shapes using a least-squares fit for R1 and c1 (green stars) and prediction with
Warburton’s mode shapes using literature values for thermal constants (black "x").
The solid lines represent the radiation damping obtained by Chaigne (blue) and own
implementation (orange and green).

showed a significantly better agreement with the literature results. Furthermore, not
all thermoelastic constants determined by Chaigne are within a plausible value range
for the material aluminium. For example the constant c1, listed with a value of 8·10-4
in [9], is significantly smaller than determined according to equation 87 with typical
values for the material aluminium. This can be attributed to the fact that Chaigne’s
thermoelastic constants were determined from a best fit to his measurement results
using the damping model. Thus, own values for the thermoelastic constants R1, c1 as
well as elastic constants were determined to best fit the decay factors from the own
measurements with respect to plausible values ranges for aluminium. The obtained
final results with these constants using FE mode shapes are visualized in the right part
of figure 36 and show a fairly good agreement with the measured decay factors. In
addition, the decay factors were also predicted using only literature values for the elastic
and thermoelastic constants. This last naive approach utilized the simplified Warburton
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equations to determine the eigenfrequencies and the associated mode shapes. As a
consequence, the resulting eigenfrequencies in figure 36 show a larger deviation from the
measured and the FE-simulated eigenfrequencies. However, the predicted decay factors
are still within a similar range, if a correction factor for the modes {1, 1}, {2, 0} and
{0, 2} is considered.
In summary, the validation of the damping law with focus on thermoelastic damping
showed predicted decay factors, which are within a similar range as the measured decay
factors. Differences between decay factors also occurred between the literature mea-
surement results from [9] and the own results from own laser vibrometer measurements.
Although the exact origin of these deviations is not known, it can be concluded that the
accuracy of the implemented damping law is sufficient for the synthesis model, if the
deviations are within a similar value range as the measurements and the predictions with
the FE mode shapes and eigenfrequencies.

In order to validate the damping model with focus on viscoelastic damping, the second
plate under investigation was the glass plate v1. Analogous to the comparison for the
plate a1, predicted and measured decay factors are visualized in figure 37. As already
mentioned - apart from measurement uncertainties due to the larger damping - the decay
factors obtained from the own laser vibrometer measurements show a good agreement
with the measured and predicted literature results, as well as with the own predictions.
The difference between the predicted decay factors above the critical frequency for the
literature plate and the replica plate could be traced back to the thickness difference
of 0.2 mm, which is in fact a manufacturing tolerance. However, from a perceptive
point of view, a higher critical frequency might have an actual influence, but e.g. decay
factors of 150 and 200 would correspond to T60 decay times of 46 ms and 35 ms. Due
to obvious reasons, this difference is negligible. The underlying viscoelastic constants
R1, R2 and s1, s2 for the plate damping are not directly connected to any material
properties. However, the slope of the approximately linear increase of the decay factor
below the critical frequency is connected to the inherent loss factor η of the material.
For the plate v1, the estimated loss factor for both the literature and the replica plate are
within a plausible value range for the material glass. Hence, using a loss factor from [13]
or the provided viscoelastic constants R1, R2 and s1, s2 in [9] led to a good agreement
with the measured decay factors.

The final validation of the overall sound synthesis model was also carried out in two
steps. Since the main part of the model is based on [18], the first step comprises a
comparison with the available literature results, which consist of simulations and acoustic
measurements. In the second step, the model is used with the dimensions and average
literature material parameters of the replica plate a1. The synthesized sound is then
compared to a real sound recording from the replica plate struck with a felt mallet.
Detailed information about the replica plate a1 can be found in appendix C.

For the comparison of the overall synthesis model with the literature data from [18],
different settings and parameters had to be selected than for the already described
validations. In order to ensure comparability, the first 104 modes were taken into account
as in this specific literature. Together with the requirement to separate the initial defor-
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Figure 37 – Left: comparison between decay factors from Chaigne’s [9] measurements
(blue circles), own predicted values using Warburton’s (orange "x") and FE-simulated
(green stars) mode shapes. Right: comparison between decay factors from own mea-
surements (orange circles), predicted values from FE-simulated mode shapes using a
least-squares fit for R1, R2 and s1, s2 (green stars). The solid lines represent the vis-
coelastic damping (top) and total damping (bottom) obtained by Chaigne (blue) and
own implementation (orange and green).

mation at the impact point from the radiated modes, a sample rate of 2.4 MHz was
chosen. This also allowed a faithful reproduction of the impact force in figure 38 that was
used in [18]. Note that this impact force originates from a more sophisticated model that
simulates an elasto-plastic impact between a steel sphere and the employed aluminium
plate. Detailed information about this investigated plate is provided in appendix C.
On the other hand, the employed damping behaviour for this case is simply a constant
damping ratio of ζ = 0.025, which equals to a damping law of α = ζω. The geometric
synthesis setup is equivalent to the one in figure 28.

The results for this first overall model validation are visualized in figure 39. For both
observation points, the own simulation results show a very good agreement with the
measured and simulated literature results from [18]. In case of the observation point close
above the center of the plate, the contribution of the initial deformation at the impact
point and the radiation of the evolving modes can be separated clearly. Furthermore, this
comparison shows that the implemented synthesis model is able to adequately synthesize
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Figure 38 – Interaction force of an elasto-plastic impact (left) of a steel sphere with
the investigated aluminium plate (right) from [18].

the actual sound pressure in terms of absolute physical values.

In order to validate the overall synthesis model with the sound of a real impacted plate,
own acoustic measurements were carried out with the aluminium replica plate a1. As
visualized in figure 40, the plate was struck with a felt mallet near a corner of the plate
to excite as many plate modes as possible with a single impact. The radiated sound was
captured with two microphones positioned along an imaginary axis perpendicular to the
plate. While the microphone mic 1 in the vicinity of the plate was intended to record
the plate sound with minor influence of any destructive acoustic interferences, the sound
captured by mic 2 should mimic a more common listening position. The parameters
used as input for the synthesis model are listed in table 10, with the dimensions and the
density of the replica plate being part of table 14.

A comparison between the magnitude spectra of the synthesized and the real impact
sound of the aluminium plate a1 in figure 41 shows a good agreement in terms of lo-
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Figure 39 – Comparison between sound pressure of own implemented model (solid),
simulated (dotted) and measured (dashed-dotted) results from [18] for observation points
located at xM = Lx / 2, yM = Ly / 2, zM = 10 cm (left) and at xM = 0.304 m,
yM = 0.163 m, zM = 0.031 m (right).
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Figure 40 – Acoustic measurement setup. Not to scale.

-cation of the eigenfrequencies. The individual differences between specific modes of
the real and the synthesized sound could be traced back to multiple aspects. On the
one hand, the differences between decay factors as exemplary highlighted in figure 36
led to a slower or faster decay of the modes, as observable in the spectrograms in
figure 41. Furthermore, constructive and destructive acoustic interferences differ between
the sounds obtained from the real and simulated setup. However, from a perception point
of view, the synthesis of all investigated replica plates a1, a3 and v1 led to sounds similar
to their real-life counterparts.

Table 10 – Parameters and material properties used to synthesize the sound of the
aluminium replica plate a1. *Material parameters based on average of typical values
ranges from text books.

sample rate (kHz) 44.1
spatial sample rate (m-1) 100 / Lx; 100 / Ly
number of modes (-) 256
heat capacity Ct (J / kg °C) 900
thermal expansion coefficient αt (10-6 / K) 24
thermal conductivity κt (W / m K) 117
Young’s modulus E (GPa) 69*
Poisson’s ratio ν (-) 0.3*
mallet impact position (m) Lx / 10; Ly / 10
mallet radius RI (mm) 10
mallet mass MI (g) 23.6
mallet stiffness constant K (m N-2/3) 9 · 106

impact speed V0 (m / s) 0.6
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Figure 41 – Spectrograms (left) and magnitude spectra (right) of the synthesized (top)
and real (bottom) sound of the impacted replica plate a1 at the observation position of
mic 1.
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4 Acoustic Characterization of Rectangular Plates

In the following section, a method developed to estimate the geometry and material
properties of rectangular plates will be presented. It utilizes both the knowledge from
literature on the acoustics and psychoacoustics of plates described in section 2, as well as
the findings from the implemented synthesis model and the corresponding measurements
from section 3.

For the descriptions and investigations in this section, a simple model of the form

x(t) =
M∑
m=1

Am sin(ωmt+ ϕm)e−αmt (132)

is assumed for the sound of an impacted plate. Depending on the position of the impact
on the plate and the subsequent sound radiation to the observation point, the mode
m with the angular eigenfrequency ωm = 2πfm is weighted with the factor Am and
subsides with a decay factor αm over time.

A realistic situation in which a human would try to detect the properties of a physical
object by ear would consist of tapping, knocking and scratching the object at multiple
positions while listening to the emitted sounds in the vicinity of the object. In order
to mimic this situation in a simplified and reproducible way, the plate sound x(t) is
assumed to be caused by a single mallet impact at the corner of the plate captured at a
listening position in the vicinity of the plate. This ensures a sound rich in excited modes
while minimizing destructive acoustic interferences at the observation point. Figure 42
illustrates the acoustic identification setup and its simplification for the implemented
characterization method.

The first part of the characterization method comprises the extraction of the parameters
fm and αm, as depicted in figure 43. The extracted eigenfrequencies and the associated
decay factors then serve as basis for multiple procedures - a frequency band analysis of the
decay factors to determine the critical radiation frequency fcrit, a decay factor regression
to estimate the material-inherent loss factor η, and a steepest descent algorithm to fit
the eigenfrequencies to a model plate with specific dimensions and material properties.

mallet
observation

point

0.25 m

plate platekocking
listening

positions

Figure 42 – Sketch of assumed acoustic identification situation (left) and simplified
setup for the developed acoustic characterization method (right). Not to scale.
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Figure 43 – Overview of the acoustic characterization method.

For all discussed aspects and investigated plates within this section, a plate as in figure 9
in section 2.2 is assumed. Furthermore, if not mentioned otherwise, the plates edges are
free as well as all defined quantities and their associated symbols in section 2 are used
throughout this section.

4.1 Estimation of Eigenfrequencies and Decay Factors

In order to get a profound basis for the estimation of the geometry and the physical
properties of a plate, the first step of the characterization method comprises the extrac-
tion of the eigenfrequencies fm and the decay factors αm. As illustrated in figure 44, this
determination process can be further subdivided into three different tasks. The most
prominent eigenfrequencies of the plate sound are extracted using a partial tracking al-
gorithm. Subsequently, the eigenfrequencies control a Gaussian band-pass filter bank
that attempts to isolate the decaying modes within the plate sound. In the third part,
the decay factor αm of each mode is estimated with a linear regression applied on the
logarithmic envelope of the filtered signal.

The detection and tracking of multiple prominent frequencies in a signal is a frequently
encountered task in a wide range of applications, such as in speech processing and
synthesis [21], digital audio signal processing in musical applications [22], or engine
order tracking in the field of automotive sound engineering [23]. First published in [21],
one of the basic partial tracking algorithms connects frequency peaks between frames of
the short-time Fourier transform (STFT) of a signal to contiguous peak tracks. While in
its original form this algorithm connects peaks with a minimum frequency difference and
assumes a stationary short-time signal model, improvements presented in [24] and [25]
assign a bandwidth to the tracked partials and allow for an intermediate "sleep" state
of peak tracks.
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Figure 44 – Overview of the steps involved in the estimation of the eigenfrequencies
and decay factors.

For the estimation of the eigenfrequencies fm in the plate sound, the partial tracking
algorithm from [26] was used. Note that this algorithm was selected for the acoustic
characterization method due to its availability 2, but also because of its presented per-
formance in the literature mentioned above. In contrast to the signal model employed
in [21], this algorithm uses a model of the form

s(t) =
P∑
p=1

eap(t)+jφp(t) with φp(t) = φp(0) + 2π
∫ t

0
fp(u)du, (133)

where ap, φp and fp are the instantaneous log-amplitude, phase and frequency of the
partial p. For each frequency peak i in the analysis frame k of the STFT centred around
n = 0, the short-term signal model consists of

s(n) =
I∑
i=1

e
∑Q

q=0 βiqn
q

, (134)

from which the partial properties can be determined with

ap,k(n) = Re
{ Q∑
q=0

βiqn
q
}
, φp,k(n) = Im

{ Q∑
q=0

βiqn
q
}
, fp,k(n) = fs

2π Im
{ Q∑
q=0

βiqqn
q−1
}
.

(135)
Possibilities for estimating the complex-valued parameter βiq are described in [26], and
the default settings for this algorithm uses the distributive derivative method (DDM)
with a polynomial order of Q = 2. The connection between frequency peaks in two
consecutive analysis frames is carried out by solving a linear assignment problem. Being
a fundamental combinatorial optimization problem, the basic task can be described with
a set of R agents that must be assigned exclusively to a mission within a set of R
missions. As visualized in figure 45, the assignment of each agent i to the mission j is
associated with the cost Cij in the cost matrix C. Solving the linear assignment problem
corresponds to the minimization of

2. Matlab code freely available at www.github.com/jundsp/Fast-Partial-Tracking
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Figure 45 – Illustration of a basic linear assignment problem (left) and the associated
cost matrix C (right).

min
{ R∑
i=1

R∑
j=1

CijXij

}
with

R∑
i=1

Xij = 1,
R∑
j=1

Xij = 1. (136)

The matrix X represents a binary matrix only containing values of 1 for assignments
between agents and missions. The actual assignment problem for the employed partial
tracking algorithm represents a multi-criteria assignment problem, since the objective
function consists of two decision criteria and therefore two separate costs - one for
connecting two frequency peaks between consecutive analysis frames and one for not
connecting them. Calculating these costs and subsequently the cost matrix C is described
in detail in [26].

The application of the partial tracking algorithm from [26] on a synthesized and a real
sound of the impacted replica plate a3 is shown in figure 46. Since both plate sounds
are rich in radiated modes, the algorithm is able to detect and track the majority of the
eigenfrequencies below 3 kHz. Above approximately 3 kHz, radiation damping causes
the modes to decay fast after the impact. Furthermore, the low-pass characteristics of
the interaction force between the impactor and the plate leads to a weaker excitation
of modes in the upper frequency regions. However, an accurate detection and tracking
of these modes and their associated eigenfrequencies is not required for the acoustic
characterization method. Below 50 Hz, the sound of the real plate visualized in figure 46
contains mostly uncorrelated low-frequency noise, which was deliberately preserved to
test the algorithm. For the investigated plate sounds, the partial tracking detected the
spectral peaks caused by the noise but did not construct any longer spurious peak tracks
that could be mistaken as decaying modes.

For the next analysis step, the average frequencies of the most prominent detected par-
tials serve as center frequencies for a Gaussian band-pass filter bank. An ideal Gaussian
filter with the center frequency fc and the standard deviation σ can be described by

hG(t) = 1√
2πσ

e−t
2/2σ2 cos(2πfct), (137)

and has the benefit of preserving the exponential decay of a mode, if the signal x(t)
is convolved with the filter impulse response hG(t). One way to implement the above
equation as a discrete-time filter involves truncating the impulse response hG(t) after
shifting it in time by T0. For a filter bandwidth ∆f with the cut-off gain G, the
corresponding standard deviation computes to
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Figure 46 – Spectrogram (left) and extracted partials (right) of the synthesized (top)
and real (bottom) sound of the impacted replica plate a3.

σ =

√
2 ln(G−1)
π∆f . (138)

Methods to efficiently implement Gaussian filters as IIR filters are described in [27]. For
the developed characterization method, the band-pass filter bank contains a Gaussian
filter for each selected partial with the average frequency fp = fm = fc,m, with fc,m
being the center frequency of the filter. In order to minimize the influence of partially
overlapping modes, the bandwidth ∆fm of each filter is individually set to

∆fm = 2 min{|fm − fm−1|, |fm − fm+1|}. (139)

For the investigated plate sounds, a cut-off gain of GdB = -40 dB lead to a satisfying
isolation of slowly decaying modes, if neighbouring modes were overlapping partially. In
case of fast decaying modes, the convolution with the filter impulse response hG may
significantly influence and extend the signal envelope. Exemplary frequency responses of
designed Gaussian band-pass filters to extract the modes of a plate sound are visualized
in figure 47.

In the next step, the envelope E(t) of each band-pass filtered signal xm(t) is estimated.
Using the Hilbert transform, the envelope Em(t) is determined according to
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Figure 47 – Frequency responses of designed Gaussian band-pass filters with
GdB = -40 dB (black) and magnitude spectrum of the synthesized sound of the im-
pacted replica plate a3 (blue).

Em(t) = |xm(t) + jH{xm(t)}|, (140)

where H{} denotes the Hilbert transform. Assuming an extracted exponential decay of
the form Em(t) = E0,me

−αmt, the conversion to

ln(Em(t)) = −αmt+ ln(E0,m). (141)

leads to a linear decrease with the slope −αm. In practice, this slope is determined with
a linear regression and serves as an estimation of the decay factor αm of the mode m. In
order to minimize a potential influence of the Gaussian filter impulse response, its length
was considered for the starting point of the linear regression. The intercept ln(E0,m)
represents an estimation of the scaling factor Am in the model from equation 132.
However, the scaling factors are not used for the actual characterization procedure, as
described in detail in section 4.2. Figure 48 visualizes the estimation of the decay factor
with an exemplary band-pass filtered signal of a real sound of the impacted replica plate
a3.

The application of the entire procedure depicted in figure 44 on the sound of an im-
pacted plate leads to an estimation of the eigenfrequncies fm and the associated decay
factors αm. For investigated plate sounds rich in weakly damped modes below the crit-
ical radiation frequency of the plate, the estimation procedure led to satisfying results.
However, since sounds of real impacted plates only approximately correspond to the as-
sumed signal model from equation 132, the estimation procedure usually performs better
for synthesized plate sounds, as exemplary shown in figure 49.
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Figure 48 – Top: band-pass filtered signal (blue), determined analytic envelope (or-
ange) and estimated envelope from regression analysis (black) of a real sound of the
impacted replica plate a3. Bottom: corresponding linear regression (black) of logarith-
mic envelope (orange).
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Figure 49 – Actual (blue circles) and extracted (orange "x") decay factors from syn-
thesized (left) and real (right) sound of the impacted replica plate a3. The actual decay
factors of the real plate were determined from laser vibrometer measurements.

4.2 Estimation of Geometry and Material Properties

The eigenfrequencies fm and decay factors αm extracted with the procedure described
in the previous section serve as basis for the actual estimation of the geometry and
the material of the impacted plate. As visualized in figure 43, the developed acoustic
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characterization method employs three different types of analyses to obtain information
about the characteristics of the plate. The first comprises an estimation of the critical
radiation frequency fcrit from the plate sound’s third-octave band decay factor spectrum.
Below this critical frequency, a simple regression analysis of the frequency-dependent
decay factor is carried out to extract information about the plate material, such as the
material-inherent loss factor η. The third analysis fits the estimated eigenfrequencies
to a large number of model plates with specific dimensions and material properties by
solving a linear assignment problem. In conjunction with a steepest descent algorithm,
this analysis attempts to find the most likely aspect ratio ra of the plate. Furthermore,
by combining the results from all three analyses, it is possible to estimate the plate area
A and the factor h

√
E
ρ
.

As mentioned in section 2.5, at the critical radiation frequency fcrit of a plate the bending
wavelength and the wavelength of the radiated sound have the same value. Below this
frequency, the radiation efficiency is weak and consequently the decay factors αm of
the modes in this region are small. On the other hand, modes with eigenfrequencies
above fcrit decay fast. This behaviour can be exploited to estimate the critical radiation
frequency by computing average "decay factors" in different frequency regions.

For the developed characterization method, an average decay factor αi will be determined
for each frequency band i in a third-octave band spectrum, also called third-octave band
decay factor spectrum. The αi for this spectrum are estimated according to the same
procedure applied for the modal decay factors αm. However, instead of the Gaussian
band-pass filter bank depicted in figure 44, a third-octave band filter bank according to
the IEC 61260-1:2014 [28] standard is now used. Furthermore, the filter center frequen-
cies do not depend on the extracted eigenfrequencies from the partial tracking algorithm.
Exemplary results of third-octave band decay factor spectra from the synthesized and the
real replica plate a3 in figure 50 show, that the approximated critical frequencies of the
plates are in the vicinity below the decay factor maximum. In fact, for all investigated
synthesized plate sounds, the third-octave band below the maximum serves as a good
approximation for fcrit. Assuming an isotropic plate,

fcrit = c2
air

πh

√
ρ

E

√
3(1− ν2) (142)

depends on the material properties Young’s modulus E, Poisson’s ratio ν, the density ρ
as well as the plate’s thickness h.

The second analysis is carried out in the frequency region of the lowest detected eigen-
frequencies from the partial tracking algorithm. As shown for the plate damping law
from [9] in the sections 2.3.3 and 3.2, damping dominated by thermoelastic losses de-
pends on the actual mode shapes and therefore shows an erratic behaviour. In contrast,
laser vibrometer measurements with glass plates in [9] and in this work showed an al-
most constant linear increase of the decay factor, if the viscoelastic losses have a major
influence for this material. Thus, quantifying the deviation of the decay factor from a
hypothetical linear increase over frequency would provide an indicator for the material
type of the plate. Considering equation 75, the associated slope would furthermore be
an estimation of the material-inherent loss factor η via



M. Czuka: Sound Synthesis and Acoustic Characterization of Rectangular Plates 73

102 103 104
0

20

40

60
de

ca
y 

fa
ct

or
 (s

−1
)

102 103 104
0

20

40

60

80

100

de
ca

y 
fa

ct
or

 (s
−1

)

102 103 104

frequency (Hz)

0

25

50

75

100

125

de
ca

y 
fa

ct
or

 (s
−1

)

102 103 104

frequency (Hz)

0

10

20

30

de
ca

y 
fa

ct
or

 (s
−1

)

Figure 50 – Third-octave band decay factor spectrum (blue dots) and actual criti-
cal radiation frequency (black dashed line) determined from synthesized (left) and real
(right) sound of the impacted replica aluminium plate a3 (top) and the replica plate v1
(bottom). For the real plate sounds, the actual critical frequencies are unknown and the
duplicated frequencies from the synthesized plate solely serve as visual guidance.

η = 2α
ω

. (143)

While the slope is simply determined from a linear regression, the deviation of the decay
factors from the regression line is quantified by the coefficient of determination r2.

The regression analysis described above was carried out on synthesized and real sounds
of all three replica plates listed in appendix C. Exemplary results of the aluminium plate
a3 and the glass plate v1 are visualized in figure 51. As already shown with the laser
vibrometer measurements in section 3.3, the decay factors for the aluminium plate show
a more erratic behaviour, which results in a lower r2 as for the investigated glass plate.
Since the synthesized glass plate sound is based on the damping law in equation 99, the
accurately extracted αm are literally on the regression line. Even for the real glass plate
sound, the r2 of 0.945 is considerably higher than the coefficients of determination of
the aluminium plates. Furthermore, the determined loss factors for glass are significantly
larger than for the investigated aluminium plates and agree well with typical literature
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Table 11 – Loss factors for bending waves for typical materials used for plates from [13]
p. 191 and p. 196. *Data from [29].

material loss factor η (-)

aluminium 0.3 - 10 · 10-5 / 2.2 - 7.7· 10-4*
steel 0.2 - 3 · 10-4

glass 0.6 - 2 · 10-3

plexiglass 2 - 4 · 10-2

pressed wood panel 1 - 3 · 10-2

values listed in table 11. The estimated loss factors for the investigated aluminium plates
are outside the value range for typical η mentioned in [13]. However, experiments carried
out in [29] on aluminium with results also listed in table 11 show a better agreement
with loss factors estimated from sounds of the synthesized and real aluminium replica
plates.
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Figure 51 – Fitted regression line (black dashed line) for extracted (orange "x") decay
factors from synthesized (left) and real (right) sound of the impacted replica plates a3
(top) and v1 (bottom). The actual decay factors (blue circles) of the real replica plates
were determined from laser vibrometer measurements.
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In summary, it can be stated that a regression analysis applied on accurately extracted
decay factors from low modes can provide reasonable information about the construction
material of the plate. For the investigated plate sounds, coefficients of determination
close to one were obtained for glass plates. In combination with a determined internal
loss factor η around 10-3, this analysis provides a good hint that the material of the plate
may be glass. A coefficient of determination below 0.9 in conjunction with a loss factor
between 10-6 and 10-3 may indicate the material aluminium. Larger loss factors may be
caused by materials with a strong viscoelastic damping, such as woods or plexiglass.

The third analysis for the acoustic characterization method does not utilize decay factors,
but the extracted eigenfrequencies from the plate sound. Assuming an isotropic plate,
the simplified frequency formula introduced in [7] and recapitulated in equation 68 can
be rearranged to

fmn = hπ

A

√
E

ρ

√
1

48(1− ν2)︸ ︷︷ ︸
Φ(h,A,ρ,E,ν)

√√√√(G4
x

1
r2
a

+G4
yr

2
a + 2νHxHy + 2(1− ν)JxJy

)
︸ ︷︷ ︸

depends on ν,ra,m,n,BC

. (144)

As annotated above, this equation consists of two parts. The first is characterized
through the parameter Φ acting as a proportionality factor that depends on all material
properties and the dimensions of the isotropic plate. The second part depends on ν, ra
and the boundary expressions G, H, J listed in table 5 and [7].

The aim is now to determine the most likely parameters for Φ and the plate aspect ratio
ra based on a limited number of extracted frequencies from the plate sound, which are
labelled as f ∗i for this analysis. The Poisson’s ratio is initially assumed as fixed with
ν = 0.3, since its value ranges from approximately 0.2 to 0.4 for most relevant materials
used to construct plates. For a specific combination of boundary conditions and the
associated integer mode numbers m and n, a set of values, dependent on the aspect
ratio ra and scaled by the parameter Φ, can be obtained with equation 144. These
values are continuously referred to as the model frequencies f ′j of a hypothetical model
plate with the parameter Φ′ and the aspect ratio r′a.

In order to find the closest values Φg and ra,g to the true values Φ and ra of the plate, a
steepest descent algorithm is applied for multiple meaningful initial value combinations
for Φ′[0] and r′a[0]. Within each run, the iterative algorithm moves along an error surface
function. An exemplary error function is depicted in figure 52. For each iteration step
k within a single run, a model plate with a new set of Φ′[k] and r′a[k] is chosen, and
the resulting model frequencies f ′j[k] are compared to the frequencies f ∗i . Since the
number of extracted f ∗i is obviously smaller as the theoretically infinite number of model
eigenfrequencies, every f ∗i is exclusively assigned to an f ′j by solving a linear assignment
problem as described in section 4.1. The determination of the elements Cij of the
corresponding cost matrix C has been defined with

Cij =
|f ∗i − f ′j[k]|

f ∗i
. (145)

Thus, minimizing the cost function as in equation 136 corresponds to an assignment of
the extracted frequencies f ∗i to frequencies of the model plate that lead to the overall
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Figure 52 – Top view (left) and isometric view (right) of error function in dependence of
Φ′, r′a and location of true values Φ, ra (red circle) for the synthesized aluminium replica
plate a1. The linear assignment problem was solved with the 10 first eigenfrequencies,
accurately extracted.

smallest relative frequency deviation for a value pair Φ′[k] and r′a[k]. For the next
iteration step k + 1 of the steepest descent algorithm, a new value pair Φ′ and r′a is
selected according to

Φ′[k + 1] = Φ′[k]− µΦ

∂min
{∑

I

∑
J CijXij

}
∂Φ (146)

and

r′a[k + 1] = r′a[k]− µra

∂min
{∑

I

∑
J CijXij

}
∂ra

, (147)

where µΦ and µra are the associated learning rates. For appropriate learning rates and a
sufficient number of iterations, each run of the steepest descent algorithm will converge
to a local minimum on the error surface. The error surface in fact corresponds to
the cost function minimum of the linear assignment problem in dependence of Φ′ and
r′a. If multiple runs of the steepest descent algorithm are carried out with initial value
combinations Φ′[0], r′a[0] positioned on a regular grid, runs with starting points near a
local error function minimum will consistently converge to this same minimum. In areas
densely covered with local minima, runs in this area will usually converge to different
minima. Both cases are exemplary visualized in figure 53 for the aluminium replica plate
a3.

After performing multiple runs of the steepest descent algorithm with initial value com-
binations Φ′[0], r′a[0] positioned on a regular grid, a histogram is computed over the
found minima for all runs in terms of minimum linear assignment costs. As shown for
ideally extracted eigenfrequencies from the synthesized plate in figure 53, the minimum
found more than 50 times with the smallest linear assignment costs represents a good
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Figure 53 – Error functions (left) and true values (red dots) with steepest descent al-
gorithm initial values (black dots) and connected end values (white "x"), and associated
minimum linear assignment cost histograms (right) with best fit to true values (black
dashed lines) for a synthesized (top) and a real (bottom) sound of the impacted replica
plate a3. The linear assignment problems were solved with the 10 first eigenfrequencies,
ideally extracted for the synthesized sound, and extracted with the procedure from sec-
tion 4.1 for the real sound.

estimate Φ′g, r′a,g for the true value pair Φ, ra of the plate. For the sound of the real
impacted plate with extracted frequencies using the method from section 4.1, the results
draw a similar picture, but not as unambiguously as for the synthesized plate sound. This
can be mainly traced back to the eigenfrequencies of the real aluminium plate, which
obviously differ from the ones predicted with equation 144. As shown in section 2.2
in figure 16, the resulting frequency error for square plates can be up to 13.5 % for
the lowest modes and hence the linear assignment costs are generally larger as for the
synthesized plate. However, the algorithm is still able to detect a local minimum close
to the true value pair Φ, ra. For all here discussed examples with the steepest descent
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algorithm analysis, a restricted value range was assumed for the initial value Φ′[0]. If
the value range would be extended to large values, the linear assignment costs and
subsequently the error function would simply increase further. However, an extension
to smaller initial values of Φ′[0] corresponds to an increase of the modal density of the
model plate. Hence, the limit case of a plate with an infinitely large modal density would
always lead to a linear assignment with a cost of zero for the finite number of extracted
frequencies f ∗i . Therefore, for the case studies described in the next section, a plausible
lower limit for Φ′[0] was set based on an estimate of the modal density D(f), which was
simply computed as the inverse of the average frequency distance between two detected
neighbouring eigenfrequencies.

4.3 Case Studies

Within this section, the developed acoustic characterization method for rectangular
plates will be validated. To this end, multiple real and synthesized sounds of impacted
plates and physical objects were recorded and created. These sounds include all plates
described in appendix C and section 3.3 as well as virtual objects.

Real plates were recorded as described in section 3.3 and depicted in figure 40. All
investigated real and synthesized objects for this validation and the associated char-
acterization results are listed in table 12. Since measuring Young’s modulus E and
Poisson’s ratio ν of real plates was out of scope of this work, average values computed
from multiple text books values were employed for the elastic parameters. Besides the
often mentioned materials glass and aluminium in previous sections of this work, the
selection of objects also includes two plates from [9] made of spruce and carbon fibres.
Sounds from plates consisting of the latter materials usually decay rapidly due to their
inherent viscoelastic damping of bending waves. Consequently, the accurate extraction
of eigenfrequencies and decay factors is significantly more challenging as for materials
with weak material-inherent damping such as metals or glasses.

The performance of the acoustic characterization method was assessed with respect to
multiple aspects. The first includes a comparison of the estimated loss factor η and the
coefficient of determination r2 obtained with the procedure described in section 4.2 with
typical values ranges for the material from [13]. A best guess for the plate area A was
made using the estimated critical radiation frequency fcrit and the aspect ratio with the
procedures from the previous section.

The detected areas A and aspect ratios ra for the isotropic synthesized aluminium and
glass plates listed in table 12 show a good agreement with the corresponding true pa-
rameters. Furthermore, all estimated loss factors η of these plates are within plausible
literature value ranges for the materials. For the real counterparts of the aluminium and
glass plates, the determined loss factors are similar and are within the literature value
ranges. However, the model plate fitting procedure with the steepest descent algorithm
did not lead to a clear result for all investigated real plates. This could be traced back
to the measured eigenfrequencies, which obviously differ from predicted eigenfrequencies
with the underlying formula, given in equation 144. Nevertheless, if the model plate
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fitting could find a clear best fit, the estimated aspect ratio ra and subsequently the
plate area A were close to the true values. For the investigated synthesized wooden
plate, the estimated loss factor η is close to the given literature value. However, the
model plate fitting did not succeed since the assumed orthotropy for the wooden plate
leads to significantly different eigenfrequencies with equation 67 than with equation 144.
The same issue occurred for the investigated synthesized plate sound of the plate made
of carbon fibres.
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5 Summary and Outlook

In this work, the acoustic characterization of rectangular plates was investigated. To
this end, a comprehensive physical model to synthesize the sounds of impacted plates
was implemented. By employing sounds synthesized from this model as well as sounds
from real impacted plates, the acoustic characterization method developed within this
work was validated.

The implemented modal synthesis model allows for control of the actual material-inherent
properties and geometries of isotropic and orthotropic rectangular plates with different
simple boundary conditions. With a developed Python interface to a FE framework, the
model also offers the possibility to use more accurate mode shapes and eigenfrequencies
obtained from FE simulations. Each part of the implemented model was validated
with results from literature or own results obtained from conducted acoustic or laser
vibrometer measurements. The comparison between synthesized sounds of exemplary
impacted plates showed a good perceptive agreement with their real-life counterparts.

The second part of this work comprised the development of a method to detect the
material properties and the plate geometry from sounds of impacted rectangular plates.
Using both the estimated eigenfrequencies and decay factors as part of a simple signal
model consisting of exponentially decaying sinusoids, three different analysis methods
were developed to extract information from plate sounds. If the sound was rich in
moderately decaying partials, the information was sufficient to provide a close estimate
of the actual size and aspect ratio of the impacted plate. By computing the average
material-inherent loss factor from the estimated decay factors, the determination of the
most likely material was possible for the investigated plates.

Considering the results from listening experiments about the identification of physical
properties from plates and bars from [17], [10] and [15], the results from the present
work prove that an algorithmic acoustic detection of the properties of rectangular plates
can be superior to the estimation of these properties carried out by an average human
auditory system. However, the validation of the developed acoustic characterization
method revealed several aspects that could be improved in future work:

◦ In its current state, the characterization method assumes a rectangular plate with
free edges. Since the underlying frequency formula from [7] for the model plate
fitting procedure also considers different boundary conditions, a next investigation
step could be the distinction between different boundary conditions.

◦ In order to distinguish between more different construction materials for plates,
a comprehensive database of material-inherent loss factors would significantly im-
prove the acoustic characterization method. The data in [13] provides a basis, but
own laser vibrometer measurements from this work and results from [29] reveal
the potential to refine value ranges for different materials.

◦ The extraction of eigenfrequencies and decay factors forms the basis for all further
analysis steps in the acoustic characterization method. The detection and tracking
of prominent frequencies in a signal as well as the decay determination of a mode
are each a research topic in their own right [26] [36]. Thus, improving the accuracy
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of the extraction methods for these parameters would subsequently increase the
potential for a more accurate acoustic characterization of rectangular plates.

◦ In its current state, the performance of the acoustic characterization method de-
creases for objects that are more bar- than plate-shaped. This could be attributed
to the more erratic behaviour of the decay factors caused by the material-inherent
thermoelastic or viscoelastic losses. Furthermore, the smaller modal density of
bar-shaped objects leads to more ambiguous results for the aspect ratio and area
estimation with the developed model plate fitting procedure. However, taking the
modal density of bar-shaped objects more precisely into account could overcome
these problems.
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A Derivations of Equations Regarded to Thin Rect-
angular Plates

A.1 Potential Energy in a Vibrating Plate

According to [7], the potential energy Epot and the mechanical energy Ekin in a thin
plate are

Epot =
Ly∫
0

Lx∫
0

1
2

Eh3

12(1− ν2)

(∂2W

∂x2

)2

+ 2ν ∂
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(
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where W is the transverse vibration of the plate. In order to have a consistent notation
with [9], the four rigidity constants D1 to D4 are introduced into the above equation,
as in [31]. While for D1, D2 and D3 this is a straight-forward procedure, in case of D4
the identity

1− x
1− x2 = 1

1 + x
for x 6= 1 (149)

must be applied. The resulting expression

Epot = h3

2

Ly∫
0

Lx∫
0

D1

(
∂2W

∂x2

)2

+D2
∂2W

∂x2
∂2W

∂y2

+ D3

(
∂2W

∂y2

)2

+D4

(
∂2W

∂x∂y

)2
 dxdy (150)

is valid for orthotropic thin plates and is equivalent to equation 1 in [31].

A.2 Eigenfrequencies of an Orthotropic Plate

Various literature sources like [7], [5] and [12] contain simple formulas to determine
the eigenfrequencies of a thin isotropic or orthotropic plate. However, none of them
present a simple formula to calculate the eigenfrequencies of an orthotropic plate for
any combination of free, clamped or simply supported edges. The following derivation
is based on considerations from Marian Weger.

According to [7] equation 15 and 16, the approximate angular eigenfrequency ωmn can
be determined with

ωmn = 2π2h

L2
x

√
E

48ρ(1− ν2)

√√√√G4
x +G4

y

L4
x

L4
y

+ 2L2
x

L2
y

[νHxHy + (1− ν)JxJy]. (151)
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By incorporating the expression
√

E
12(1−ν2) into the dimensionless frequency factor, one

can include the well-known rigidity constants D1 to D4 but for an isotropic plate to
obtain
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If now the length Lx is rearranged in the equation, the result

ωmn = π2h
√
ρ

√√√√D1
G4
x

L4
x

+D3
G4
y

L4
y

+D2
HxHy

L2
xL

2
y

+D4
JxJy
L2
xL

2
y

(153)

has the same form as the eigenfrequencies of a simply supported orthotropic plate given
in [5], equation 3.157. Note that the rigidity constants in [5] already include the factor
h3. Since an orthotropic plate has the same mode shapes as an isotropic plate, the
coefficients for G, H and J derived by Warburton can also be used in the above equation.
By using the rigidity constantsD1 toD4 but for an orthotropic plate, equation 153 makes
it possible to determine the eigenfrequencies of an orthotropic plate for any boundary
for combination of free, clamped and simply supported edges.

A.3 Frequency Correction for Square Modes of a Free Plate

If the aspect ratio of a rectangular plate with all edges free approaches one, the elastic
interaction between mode pairs of the type {m,n} and {n,m}, where m− n is a non-
zero even number, influences the eigenfrequencies of these modes. As described in [12],
Poisson coupling for the mixed mode {m,n} + {m,n} increases and the added stiffness
for the mixed mode {m,n} − {n,m} decreases the eigenfrequency compared to the
eigenfrequency obtained from equation 67 without elastic interaction. Therefore, War-
burton introduced in [7] a correction factor ∆κsq that is added to the non-dimensional
frequency factor κ according to

κ2
sq± = κ2 ±∆κ2

sq, (154)

whereas κ is defined in equation 69. For bar-mode-shaped mode pairs of the type
{m, 0} ± {0,m} with m = 2, 4, 6, . . ., this correction factor is

∆κ2
sq = ±2νG2

x

8
π2 . (155)

Twisting mode pairs of the form {m, 1}±{1,m} with m = 3, 5, 7, . . . include the factor

∆κ2
sq = ±4νJy
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x

G2
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± 2(1− ν)J2
y

4
3. (156)

For all remaining mode pairs where Poisson coupling and an added stiffness influences
the eigenfrequency, the pairs of the type {m,n} ± {n,m} with m > 1 and n > 1, the
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correction factor is

∆κ2
sq =± 16ν

π2

[
G4
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For this case, the factors A, B and C are given by
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y
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G2
x +G2

y
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Note that the frequency coefficients G, H and J for free edges are listed in table 5 and
furthermore available in [7].
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B Modal Densities of Selected Objects

In order to use the modal density as information to detect the shape and material
properties of simple objects, this section includes the derivation of the modal density
of selected objects. For this purpose, we define the number of modes N(k) below the
wavenumber k, as in [32]. The statistical modal density D(f) as the number of modes
per hertz can be determined with

D(f) = dN(f)
df , (158)

where N(f) is the number of modes with eigenfrequencies lower than the frequency
f . Another mathematically equivalent definition of the statistical modal density that
includes the wave speed c is

D(f) = 2π
c

dN(k)
dk . (159)

This equation will be used to derive the modal density of bars in the next subsection.

B.1 Thin Bars

As stated in [33], the wavelength of a 1-dimensional mode with the number n is given
as

λn = 2L
n+ δBC

, (160)

with δBC being a factor between 0 ≤ |δBC | ≤ 1 that depends on the boundary conditions
of the system. Approximate values for these factors are listed in table 13 for various
boundary conditions of a bar. Based on the wavelengths, the corresponding wavenumbers
kn are given by

kn = (n+ δBC)π
L

. (161)

Rearranging this equation to n = N(k) and inserting it into equation 159, the modal
density of a thin bar can be derived to

D(f) = 2L
c

. (162)

Note that this density is independent of the boundary conditions and is furthermore
proportional to 1/

√
f for bending waves, considering their speed of

c =
√

2πfKcL. (163)

In contrast to the modal density, the number of modes N(f) below a certain frequency
does depend on the boundary condition and can be derived to

N(f) =
√

2πf
KcL

L

π
− δBC . (164)
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Table 13 – Approximate factors for δBC for a bar with both ends free (ff), one end
clamped and one end free (cf), and both ends simply supported (ss).

bc δBC

ff 1/2
cf −1/2
ss 0
cc 1/2
cs 1/4
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C Investigated Plates

This appendix contains detailed information about the main investigated plates in this
work. In order ensure comparability with literature results, these plates were the two
aluminium plates a1 and a3 as well as the glass plate v1 from [9]. For the execution of
own acoustic and laser vibrometer measurements, these three plates were replicated and
are shown in figure 54 and figure 57. Table 14 contains the corresponding dimensions
and materials parameters of the replica plates as well as of the literature plates. Note
that due to manufacturing tolerances, the properties of the replica plates are slightly
different than the parameters of the plates from [9].

For the particular validation step of the overall synthesis model with the literature results
from [18], a different aluminium plate was investigated. The corresponding characteris-
tics of this plate are listed in table 15.

Table 14 – Dimensions and material properties of the investigated plates. In every cell,
the first value corresponds to the value of the literature plate, the second to the replica
plate. *No data available from literature source, but can be derived from measured
rigidity constants. **In [9], rounded value of 2.0 mm is listed.

plate a1 plate a3 plate v1

material type aluminium glass
length Lx (m) 0.304 / 0.305 0.4195 / 0.442 0.2295 / 0.231
length Ly (m) 0.192 / 0.193 0.400 / 0.402 0.2205 / 0.223
thickness h (mm) 2.0 / 2.0 4.0 / 3.9 2.1** / 1.9
density ρ (kg / m3) 2660 / 2633 2660 / 2599 2550 / 2434
Young’s modulus E (GPa) * / - * / -
Poisson’s ratio ν (-) * / - * / -
rigidity constant D1 (MPa) 6160 / - 6700 / -
rigidity constant D4 (MPa) 8600 / - 10270 / -

Figure 54 – Aluminium replica plate a3 (left) and glass replica plate v1 (right).
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Table 15 – Dimensions and material properties of the investigated plate from [18]. *No
data available from literature source. Instead, average values from text books are listed
that were used for the validation of the synthesis model.

plate a2

material type aluminium
length Lx (m) 0.405
length Ly (m) 0.325
thickness h (mm) 3.0
density ρ (kg / m3) 2660*
Young’s modulus E (GPa) 69*
Poisson’s ratio ν (-) 0.3*
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D FE Simulation Framework and its Validation

Finite element (FE) simulations were employed in multiple parts of this work. All inves-
tigated plates and bars were simulated with the open source software Elmer 3. With the
SmitcSolver [34], Elmer provides a practical routine to determine the eigenfrequencies
and mode shapes of rectangular-shaped objects. The underlying Mindlin–Reissner plate
theory is an extension of the Kirchhoff-Love plate theory that takes also the potential
effect of out-of-plane shear forces Tz into account. Subsequently, cross sectional areas
that were normal to the out-of-plane axis before deformation are not necessarily normal
to the axis after deformation. However, if the plate’s thickness h is significantly smaller
than the bending wavelengths the Mindlin–Reissner plate model represents a penalty
approximation of the Kirchhoff-Love plate theory.

Within this work, a simple application programming interface (API) has been written
in the programming language Python for the Elmer SmitcSolver. This API enables the
determination of mode shapes and the associated eigenfrequencies of isotropic rectan-
gular plates with FE simulations using Python. Internally, the API carries out the same
procedures as described in [35]. Note that a detailed study of the underlying theory of
FE models and simulations was out of scope of this work.

In order to validate the SmitcSolver of Elmer, multiple tests with plates and bars under
different conditions were carried out within this work. Here, the results of the most
obvious test case, a plate simply supported on all edges, is presented. Figure 55 shows
the relative difference between the simulated dimensionless frequency factor κ and the
exact results from the analytic solution for different numbers of finite elements Nx and
Ny in the corresponding x- and y-direction of the plate. The larger increase for small
numbers of Nx and Ny can be attributed to the insufficient number of elements used for
the simulations. As stated in numerous text books on FEM, at least 6 to 10 elements
should be considered per wavelength of the mode shape. However, if this rule of thumb
is fulfilled, simulated and analytically determined eigenfrequencies show a very good
agreement.
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Figure 55 – FE simulation validation for various numbers of elements in each plate
dimension for a simply supported plate.

3. freely available at www.elmerfem.org
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E Laser Vibrometer Measurements

In order to determine the modal decay factors αmn for the investigated plates listed in
appendix C, laser vibrometer measurements were carried out in this work. The employed
measurement procedure was heavily inspired by the approach described in [9]. As visu-
alized in figure 56, the measurement setup consisted of a laser vibrometer of the type
Polytec RSV-150 in front of a suspended free plate. The plate suspension device was
built similarly to the device described in [16] and is shown in figure 57. For potentially
reproducing the decay factor measurement results in [9], the investigated plates were
also suspended with a nylon tread of 0.4 mm diameter. The necessary holes for the
suspension and the twisting prevention were drilled near the plate edges at Lx/2 and
Ly/2.
The plate under investigation was acoustically excited by a loudspeaker fed with a sine
wave from a signal generator. For each mode, the signal frequency was adjusted to the
corresponding value of the presimulated eigenfrequency from FE simulations of the plate.
The measurement position of the laser vibrometer was adjusted to a maximum of the
presimulated mode shape while also considering nodes of modes that may significantly
overlap with the current mode in terms of their frequency responses. Then a fine tuning
of the signal frequency was carried out until the magnitude of the monitored velocity
signal from the laser vibrometer indicated a local maximum. The found frequency was
recorded as the measured actual eigenfrequency for the presimulated mode.

For estimating the decay factor α of a mode, the excitation signal tuned to the eigenfre-
quency was suddenly turned off and the decay of the velocity signal v(t) from the laser
vibrometer was recorded. The signal envelope E(t) was then estimated using

E(t) = |v(t) + jH{v(t)}|, (165)

where H{} denotes the Hilbert transform. Assuming an extracted exponential decay of
the form E(t) = E0e

−αt, the conversion to

ln(E(t)) = −αt+ ln(E0). (166)

leads to a linear decrease with the slope −α. In practice, this slope served as estima-
tion for the decay factor, determined from the measurement data with a simple linear
regression, as exemplary depicted in figure 58.

sound

source

suspended

plate

laser

vibrometer

Figure 56 – Laser vibrometer measurement setup.
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Figure 57 – Laser vibrometer measurements (left) and built plate suspension device
with aluminium replica plate a1(right).

Table 16 – Device list for laser vibrometer measurements. *Served as signal generator,
real-time oscilloscope and data recorder.

device manufacturer type remark

loudspeaker JBL (chassis) - custom-made
laser vibrometer Polytec RSV-150 -
vibrometer controller Polytec RSV-150 -
lens Polytec RSV-A-261 f2610 -
audio sound card Focusrite Clarett 4Pro USB -
MacBook Pro* Apple 13 inch, late 2011 -
audio power amplifier Bruel and Kjaer 2716C -
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Figure 58 – Top: exemplary recorded velocity signal (blue), determined analytic enve-
lope (orange) and estimated envelope from regression analysis (black). Bottom: linear
regression (black) of logarithmic envelope (orange).
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