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Abstract:

The present thesis investigates methods of designing musical pieces, sound performances, and
installations utilizing temporal sequencing and the generation of structure by different algorithmic
design approaches. The creative goal described in this work is the development of a software setup
suitable for generative sequencing and the description of some practical examples using this setup.

The  introduction  asks  for  the  genesis  of  structure  and  meaning  in  human  perception  and
consciousness  through  grouping  principles,  to  derive  some  basic  factors  of  audible  structure
perception  and  experience.  It  also  gives  a  brief  thematic  and  historical  overview  of  musical
sequencing and the use of some generative methods in art and design. A short introduction to the
software Puredata is added, as it will be used in the further course of this work. 

The main part of the present work focuses on the design of a generative sequencing system, which
will be discussed in its essential components. The generative setup will therefore be outlined in its
structure and functionality. On this basis, the practical implementation of its different components in
Puredata  will  be  described.  Some  application  examples  will  be  shown,  which  illustrate  the
described  system  for  generative  sequencing.  Thereby  I  will  focus  on  the  aspects  relevant  for
understanding how different generative models and methods can be used in the practice of sound
design.

Kurzfassung:

Die vorliegende Arbeit untersucht Methoden der Gestaltung von Klangstücken, Performances und
Klanginstallationen  mittels  zeitlicher  Sequenzierung  und  der  Generierung  von  Struktur  durch
verschiedene algorithmische Gestaltungsansätze. Das in dieser Arbeit beschriebene gestalterische
Ziel ist die Entwicklung eines Systems für generatives Sequenzieren und die Beschreibung einiger
praktischer Beispiele unter Verwendung dieses Setups.

Die  Einleitung  fragt  nach  der  Genese  von  Struktur  und  Bedeutung  in  der  menschlichen
Wahrnehmung und im Bewusstsein durch Gruppierungsprinzipien, um daraus einige grundlegende
Faktoren  der  Wahrnehmung und Erfahrung hörbarer  Strukturen  abzuleiten.  Außerdem wird  ein
kurzer  thematischer  und  historischer  Überblick  über  musikalische  Sequenzierung  und  die
Anwendung einiger generativer Methoden in Kunst und Design gegeben. Hinzu kommt eine kurze
Einführung  in  die  Software  Puredata,  wie  sie  im  weiteren  Verlauf  dieser  Arbeit  zum  Einsatz
kommen wird. 

Der Hauptteil der vorliegenden Arbeit konzentriert sich auf die Beschreibung eines generativen
Sequenzierungssystems, das in seinen wesentlichen Komponenten beschrieben werden soll.  Das
generative Setup wird dafür in seiner Struktur und Funktionalität skizziert. Auf dieser Grundlage
wird  die  praktische  Umsetzung  der  verschiedenen  Komponenten  in  Puredata  beschrieben.  Es
werden einige Anwendungsbeispiele vorgestellt,  die das hier entwickelte System für generatives
Sequenzieren  illustrieren.  Dabei  werde  ich  mich  auf  jene  Aspekte  konzentrieren,  die  für  das
Verständnis  des  Einsatzes  verschiedener  generativer  Modelle  und  Methoden  in  der  Praxis  des
Sound-Designs relevant sind.



Contents

1 Introduction 1

1.1 On the concept of structure 2

1.2 Musical sequencers: A short history of loop-based sound machines 15

1.3 The generative approach 20

1.4 Sequencing in Puredata (Pd) 28

2 A generative sequencing system for algorithmic improvisation and its 
implementation in Puredata 33

2.0.1 Algorithmic improvisation 34

2.0.2 A graphical model of a generative sequencing system 36

2.1 The timing: A basic pulse as a grid for variable loops 39

2.1.1 Pulses, beats and bars 40

2.1.2 Timing implementation in Puredata 41

2.2 The communication medium: connecting user interface, structure 
generators and generative sound sources 42

2.2.1 Communicating finite-state machines: The 'local states' 43

2.2.2 The grouping of play-modes: building systems, networks and 
hierarchies 44

2.2.3 Implementation in  Puredata: The 'losta' object 45

2.3  Structure generators  47

2.3.1 Small-scale and large-scale structure 48

2.3.2 Synchronous and diachronous structure 49

2.3.3 Implementation examples in Puredata 52



2.4. The graphical user interface (GUI) 59

2.4.1 The mixing interface 61

2.4.2 A GUI for improvisation with local states and structure generators 63

2.5  The generative sound sources 65

2.5.1 The 'Pitch Group Sequencer' (PGS): A two-dimensional probabilistic 
sequencer 66

2.5.2 The 'Loop Slice Mangler' (LSM): A looper and beat-slicer for 
generative manipulation of sound loops 73

3 Conclusion and outlook 80

References 82



Chapter 1

Introduction

This  thesis  attempts  to  conceptualize  and  describe  a  setup  for  generative  sequencing  as  I
developed  it  out  of  practical  implementations  in  the  course  of  the  design  and  realization  of
generative sound installations in the past few years. I am interested in generative techniques not
only  in  the  context  of  sound design  and digital  art  but  also  in  other  areas  of  design,  art,  and
craftsmanship.  The  increasingly  easy  availability  of  computers  in  recent  decades  made  it  an
accessible tool for the implementation of generative approaches in art and design. But generative
techniques and processes to produce artifacts should not be seen exclusively as a consequence of
computerization.  Many methods of  producing objects  and shaping the  world (through farming,
building, etc.) have presumably developed from natural formation processes that can be understood
and described as generative in their nature. Iterative actions carried out repeatedly in time lead to
the formation of structured objects (for example growth of living organisms, mineralization, and
geological formation processes, settlement formation, etc). The computer makes it definitely easier
to implement such generative processes and to display the results on the screen or in an audible
form as sound. This is why I began to investigate the possibilities of building generative systems in
a computerized form that  provide a  more complex and at  the same time more organic way of
arranging and structuring materials or elements in time and space to form a work of art.

Chapter 1 intends to introduce the idea of generative sequencing by providing a thematic and
historical overview of the most important topics and concepts used in this thesis. The second and
main part describes the generative sequencing system I have developed in the past few years in the
field of sound design.
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1.1 On the concept of structure

Fig. 1  Evolving structure generated from an L-System interfering with sinusoidal waves mapped on
a stereo-oscilloscope.1

Observing the use of the word 'structure' it becomes clear, that the concept is suitable to describe a
vast  quantity  of  very  different  phenomena  in  all  domains  of  human  society  and  nature.  It  is
employed  generously  when  speaking  about  'cultural'  systems  of  human  society  but  also  when
describing 'natural' phenomena and processes. 'Material structures include man-made objects such
as  buildings  and  machines  and  natural  objects  such  as  biological  organisms,  minerals,  and
chemicals. Abstract structures include data structures in computer science and musical form'2, states
Wikipedia. 

Apparently, the concept of 'structure' is very versatile but somehow ambiguous and confusing. A
thing that one might notice from the beginning is, that structure is at the same time something
attributed to objects of the material world and to mental  or cultural systems, which have no clear
material manifestation or existence. This double nature of structure is what makes it so funny and
fertile to deal with it. When speaking of 'structure' it is not clear, if one is describing a phenomenon
of  human  imagination  and  conscience  or  material  reality.  The  double  nature  also  points  to
something else: Structure is where the inner world of a self-conscious system like a human being
(conscience  or  mind)  meets  and  interacts  with  an  external  world  (material  reality).  Perceived
material structures manifest themselves in the 'inner world' of consciousness. The structuring of
sensual  perception  allows  the  formation  of  a  mental  representation  of  the  material  world,  a
(subjective) 'reality'.  This process of formation of an 'inner world'  is the base on which a  self-
conscious system can define itself as a subject in opposition to an external world of objects. 

On the one hand, structure connects the self-conscious subject to the world of objects. Perception
and comprehension identify structures in the outside world to form a comprehensive (or useful and
kind of 'well-structured') reality within the conscience of the subject. Without the ability to perceive

1 Figures and illustrations for which no source is indicated are by the author.
2 https://en.wikipedia.org/wiki/Structure  (Jan 2021).
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structures – and at the same time to structure perceived impressions and stimuli – the formation of a
coherent conception of reality would not be possible.

And on the other hand, with every conscious action of a subject, mental structures are projected
from its inner world into the material world. Doing or making something always means creating or
unfolding a mental structure in the external world. In other words: Structures can be seen as a tool
of self-conscious systems unfolding a productive or explicative power by connecting virtuality and
material reality via a complex system of relations. In this thesis, I look more at the productive side
of structure when talking about methods for generating content for generative sequencing systems.

The  French  philosopher  Merleau-Ponty  emphasizes  the  fundamental  role  of  structure  for  the
emergence  of  reality  as  comprehensive  mental  representation  when  describing  structure  as  'the
joining of an idea and an existence which are indiscernible, the contingent arrangement by which
materials begin to have meaning in our presence, intelligibility in the nascent state.' (Merleau-Ponty
1963, 206)3

Speaking  about  sequencing  systems  and  the  generation  of  sequences  involves  a  concept  of
organization or structure, where distinct elements are arranged in time (or space) to form some kind
of perceivable order or system. As an artist and designer, I am first of all concerned by the aesthetic
implications of the underlying concept of structure. 

But can we define the meaning of structure more precisely? And what about the perception of
structure? Are there general principles that let us perceive something as 'structured', or 'structure'
itself? Why is  a certain structure perceived as interesting or beautiful?4 Does the perception of
beauty  depend  on the  cultural  reference  system of  the  spectator  or  are  there  other  structuring
mechanisms in human perception that we should consider when designing a structured work of art?

To shed light on these questions, I would like to take a closer look at the concept of 'structure' and
different aspects of its meaning. Firstly, I want to check some lexical definitions and the etymology
of the word structure. Secondly, I will focus on the perception of structure and the question of how
perceivable structures emerge in human consciousness. Thirdly, I will try to draw some conclusions
on the production of structures by sequencing sound – as the main question of this thesis is to figure
out, how to design a system for structuring sound events in time.

3 The French original of this quotation is: 'Ce qu'il y a de profond dans la « Gestalt » d'où nous sommes partis, ce
n'est pas l'idée de signification, mais celle de structure,  la jonction d'une idée et d'une existence indiscernables,
l'arrangement contingent par lequel les matériaux se mettent devant nous à avoir un sens, l'intelligibilité à l'état
naissant.' Notice that Merleau-Ponty relates his consideration on the concept of 'Gestalt' that we will see later in this
chapter.

4 A reason could be its particular outstanding strangeness, newness, or funniness. Another very different reason could
be that it seems to be a 'true' embodiment of what we feel to be our 'natural', 'harmonic' core, or truth. These two
examples show the two extreme positions of an experimental approach and a classical, universalist approach. For a
detailed discussion of this Topic see (Eco 2002, 378f). 
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Structure: Lexical definition and etymology

A definition from the Cambridge Dictionary of English is the following: 'structure (arrangement):
the way in which the parts of a system or object are arranged or organized, or a system arranged in
this way.'5

An  etymological  definition:  'structure  (n.):  mid-15c.,  "action  or  process  of  building  or
construction;" 1610s, "that which is constructed,  a building or edifice;" from Latin structura "a
fitting together, adjustment; a building, mode of building;" figuratively, "arrangement, order," from
structus, past participle of struere "to pile, place together, heap up; build, assemble, arrange, make
by joining together."'6

 Another definition from Wolfhart Henckmann in his Encyclopedia of Aesthetics is as follows:
structure  is  'a  set  of  relations  by  which  the  elements  of  a  whole  are  connected  to  each other'
(Henckmann/Lotter 2004, 350). The author gives also some helpful further specifications:

• The whole has logical precedence over its elements.
• The elements are not to be determined in isolation from each other, but by their function in

the whole.
• The relations that exist between the elements are not to be understood as monocausal, but as

reciprocal relationships.
• A structure tends to behave invariantly in its internal regularity in the case of changes in

individual elements or external influences.

5 https://dictionary.cambridge.org/dictionary/english/structure (Jan 2021).
6 https://www.etymonline.com/word/structure (Jan 2021).

4



Grouping and segmentation

It  follows from these definitions that the central  mechanisms (for material  objects)  or mental
faculties (for cultural systems) of structuring concern the arrangement and interrelation of various
objects that form a whole. Structuring thus means relating objects on different scales by arranging
them  – either  by  grouping several  elements  into  some  kind  of  unit,  or  by  segmenting  or
differentiating a  unit  into  multiple  elements.  Grouping7 or  segmentation  introduces  vertical  or
hierarchical relations into a multiplicity of elements. Based on this process we can perceive and
create structures in manifold ways from the most basic or  obvious, to the most complicated and
unexpected  grouping  and  segmentation  methods.  A 'basic'  method  would  be  grouping  several
objects together because they have the same color.  A more complicated or 'unexpected'  method
would be, for example, to  use a microscope for differentiating functional cellular systems within
living tissue.

Fig. 2  Basic structure model for introducing vertical and horizontal relations to distinguish the 
elements of a whole.

  It  follows from these considerations that we can understand a multiplicity of things having a
'surface', where the individual elements show up, and a 'depth', where the systemic relations come to
light. The interplay of these two levels gives rise to 'structures', i.e. unities or wholes, consisting of
various elements characterized by a group relation8. So we can assume, that in a structured sequence
of  events  or  objects  there is  some kind of  'higher'  or  'deeper'  level  that  expresses  itself  in  the
sequence seen on the surface. If there are various coordinated levels of organization on different
scales present in an object, it appears to be a structured system. Such systems act in manifold ways
in the perception and interpretation of phenomena as well as in the generation of structured content.

7 Grouping is described as a basic structuring mechanism in music perception by Lerdahl and Jackendoff (Lerdahl/
Jackendoff  1983).  The  authors  consider  grouping  analysis  to  be  the  most  fundamental  component  of  musical
understanding. It  articulates a  hierarchical  segmentation of a  musical  piece into phrases,  motives,  periods,  and
sections of different lengths.

8 Cambouropoulos emphasizes the importance of such structured unities, which already consist of several elements,
for musical perception. 'There is evidence that things such as melodic and harmonic pitch intervals, chords or larger
configurations such as tone clusters, tremolos, trills, glissandi are commonly perceived by listeners as wholes rather
than combinations of atomic lower-level components.' (Cambouropoulos 2010).
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Language as a structured system

In the  study of  philosophy,  the  natural  sciences,  and the  humanities  in  the  20th century,  the
concept of structure is  very present and is  used in many different  areas and fields of study. A
philosophical  and  humanistic  movement called  'structuralism'  (and  later  'poststructuralism')  has
influenced different areas of natural and social sciences. Mostly these structuralist approaches use
concepts of structuralist linguistics in the succession of Ferdinand de Saussure to describe different
social phenomena as structured systems in analogy to language9. Where language is understood as a
structured system that uses elements (signs or words) according to grammatical rules. De Saussure
brought  up  some  influential  concepts  about  language  and  signs,  the  most  important  being  the
following:

• The opposition  of  'language'  as  a  system versus  'speech'  as  a  practical  realization  of  the
language.

• The concept of a sign, being composed of a 'signifier' (i.e. the material sign) and a 'signified'
(i.e. the meaning).

• The arbitrariness of the relation 'signifier' – 'signified' (i.e. the word is not bounded to its
meaning by a natural relation but a convention).

• The  signs  gain  their  meaning  from their  relationships  and  contrast  with  other  signs,  not
because of their reference to a signified object.10

These assumptions lead to a concept of language as a system that does not simply describe or
represent the world of phenomena. Language functions according to its internal structure. It doesn't
even  require  an  external  world  to  be  a  functioning  system,  it  only  needs  a  set  of  internal
relationships11. This linguistic view of system and structure can be applied to other cultural systems.
The elements of a system then appear as signs having a material side ('signifier') and a relational
side ('signified' or meaning), even if they are not part of what is traditionally is called a language.
Structuralism tries to expand this method of analysis to different cultural systems and certainly had
a great influence on the concept of 'structure'  and 'system' in the 20th century.  The ontological
content of the 'signified' (i.e. the 'meaning' of a sign) in the structuralist model has been the object of
interesting  discussions  in  philosophy,  semiology,  and  the  social  sciences.  Anyway,  structuralist
approaches would explicate the 'signified' or meaning as a result of structure: The positions and
relations within a system define the meaning of a thing, whereby language is seen as a model for
other cultural systems. When considering musical traditions that use symbolic notation systems and

9 The most  influential  structuralist  thinkers  are  Levi-Strauss  in  Anthropology,  Jaques  Lacan  and  Jean  Piaget  in
psychology, Roland Barthes in  literary theory, Louis Althusser in sociology. The idea of using language and its
structure  as  a  model  for  the  analysis  of  different  areas  of  human  culture is  one  of  the  most  influential
epistemological concepts of the 20th century. The widespread use of this approach is also called the 'linguistic turn'.
(Münker/Roesler 2000, 19).  

10 For detailed information on that subject see (Saussure 1995), (Eco 2002, 62f), (Münker/Roesler 2000, 1f). 
11 De Saussure spoke about 'syntagmatic' and 'paradigmatic' relations. 'Syntagmatic' is a relation of succession (within

a sentence) and 'paradigmatic' a relation of possible substitution.
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certain (harmonic) rules about the use of notes within a sequence, it seems promising to analyze this
system in analogy to language12.

A theory somehow based on a structuralist concept of language is the approach of generative
grammar brought up by Noam Chomsky in the 1950s. This theory allows a more accurate analysis
of syntactic rules that form the sentences of a speech13 (while the 'paradigmatic' and 'syntagmatic'
axis shown by de Saussure seem to be a very general characteristic of the relations of the signs
within  a  language and do not  give  exact  information  about  how to  build  correct  expressions).
Chomsky also differentiates a 'surface structure' and 'deep structure', where the 'surface structure' is
one  possible  and syntactically  correct  version of  a  'deep structure'  that  represents  the semantic
content of the sentence14.

Without  going  into  further  detail  on  linguistic  theories  and  structuralism,  their  ontological
implications15, and their big influence on various areas (from philosophy to automata theory and
theoretical informatics), I would like to note the value of these concepts for generative methods
working on a symbolic level. Such methods will be discussed later in this thesis. 

Perceiving structures

Being  an  artist  and  designer,  the  concepts  of  structure  and  system are  very  important  when
deciding how to design the parts or details of a work in relation to each other and to the whole. A
work of art can be assembled from the same elements or materials, but using different arrangements
will  result  in  completely  different  pieces,  and  will  produce  very  different  feelings,  ideas,  and
impressions  in  the  audience.  In  such  a  case  the  perceived  difference  clearly  results  from  the
different relations that are exposed or expressed by the whole piece of art, not from the materials or
elements which were used.  So if  'structure'  concerns  the relations of  the parts  of an organized
wholeness or system16, it is certainly one of the main aspects to consider when designing a work of
art. 

In any case, the structures that are considered valuable in a piece of art can be very different. They
can concern the perfect material realization of complex patterns or the position a work occupies
within an aesthetic or historical discourse. This example also shows that a structure, that is seen or
interpreted within a work of art, depends on both, the perception and the interpretation of the creator
or spectator. But structure is not something that is there in the phenomena of the world and can

12 See (Eco 2002, 107, 382f).
13 See (Nierhaus 2008, 83f) and chapter 1.2 of this thesis.
14 See (Chomsky, 1964). In this work, Chomsky first uses the distinction between deep structure and surface structure.
15 The ontological question is, what the 'structures' identified in different systems exactly are. It is not clear if they are

constructed in human conscience or if they are something real inherent to the material world. It is equally unclear
whether it is possible and reasonable to seek or presuppose general basic structures of the human mind such as a
'universal grammar'. In the production or analysis of structures, however, it makes quite a difference whether we
intend to express a universal code or whether we use structures, grammar, signs, and reference systems only as tools
to create structures. Following Umberto Eco, 'serial thinking' concerns the production of variable structures without
reference to a universal basis. This is opposed to 'structural thinking', which tries to uncover the underlying basic
structures of a system through structural analysis (Eco 2002, 387f).

16 See (Henckmann/Wolfhart 2004, 352).
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simply be perceived by everybody the same way. Relations and arrangements to some extend only
exist when perceived, understood, or constructed as such in an observer's mind. 

Considering the great amount of different social structures, languages, and cultural systems, it is
certainly an interesting task to search for structures that are universal to human conscience, like a
'universal grammar'17 or invariant structures in cultural systems that would in some kind manifest
invariant  human  brain  structures  like  intended  in  some  structuralist  ethnology18.  We  can  also
observe a tendency to see one's own cultural group structures as a kind of normality, with a leaning
towards universality and a devaluation of cultural systems originating from other ethnic groups –
eurocentrism in science and global capitalism (the free market as a 'natural' and universal form of
the economy) are both examples of this. In art and design, universalist approaches that emphasize
the importance of a stable and unique reference system still have their justification as a basis of art
history. Postmodern and poststructuralist theories have changed a lot in academic philosophy and
the social sciences by breaking up universalist tendencies. Also in art and design, experimental use
of  structures,  thinking  of  them as  temporary  and  changeable  is  more  accessible  and  accepted
today19. 

Disregarding the danger of universalist approaches I will try to identify some principles of human
perception of material structures, asking for these structuring principles of the perceptual apparatus
on a more psychological level20. Because if artists or designers think of their work of as a structure
or a structured system, they should ask themselves, if and how an audience or an observer is able to
perceive the intended structure. When working or designing with sequencers, the question is how to
arrange different  sound events to  create  perceivable structures in  the mind of  the listener.  And
furthermore: 

• Which structures are easily perceivable and clearly understandable because they refer to a
very broad, popular, or unquestioned perception scheme and/or interpretation system?

• Which  ones  are  freer,  more  ambiguous,  or  controversial?  These  aspects  change  a  lot,
depending on the location where a work of art is shown and the interpretation system present
in the observer's minds.

• Are there very general  mechanisms in human perception,  which serve us to  structure the
things  we  perceive  –  like  a  common  ground  of  perceiving  structures  and/or  structuring
perception? 

17 Chomsky argued that the human brain contains a limited set of constraints for the organization of language. This
implies that all languages have a common structural basis, a sort of 'universal grammar'. See (Dąbrowska 2015) for
a critical review of this concept. 

18 See (Münker/Roesler 2000, 9f).
19 For a detailed discussion of the different views of structure and the resulting ontological and aesthetic implications

see (Eco 2002,  378f). Eco contrasts 'structural thinking' with 'serial thinking'. The former tries to find universal
structures or codes, while the latter is based on the idea, that every message questions and reformulates the code and
the structure itself.

20 To describe the structuring function of human perception in sound processing: 'Our perceptual mechanisms actively
try to organize the infinite variety and nuances of an input musical signal into manageable perceptual events.[...]
The elementary events perceived as constituent units of an acoustic continuum are further grouped together into
elementary categories.' (Cambouropoulos 2010, 131).
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When we perceive the existence of something – one or multiple objects (amorphous existence in
figure 2) we can introduce structure either by differentiating or splitting elements within the existing
thing(s) or element(s) or grouping or parenting various things or elements to a superordinate entity.

Difference and union are what I called vertical relation in figure 2 – splitting up something into its
elements or joining the elements to one superordinate (conceptual or material) entity. The question
that follows is why we would perceive a unity or difference in a set of perceived objects. Intuitively
I  would  suggest  that  the  presence  or  absence  of  the  following  factors  is  decisive:  proximity,
similarity, continuity/row/evolution, repetition, simplicity/clearness/closeness. This basic grouping
and differentiating mechanisms are applied both in perception and production of structure (as the
double nature of structure supposes).

I found some similarities to this approach in Gestalt-psychology, where the Austrian psychologist
Max Wertheimer formulated six essential  factors for the formation of coherent arrangements to
form a  'Gestalt'  or  shape  in  human  perception:  'proximity,  similarity,  simple  shape,  continuity,
closeness, and common fate' (Wertheimer 1923). Wertheimer listed the factors that would influence
the perception of wholeness, which he called 'Gestalt',  mostly translated as shape. A 'Gestalt'  is
made of various elements in a group relation. Similar to what I would expect to be a grouping
mechanism in a structure model. It seems that Gestalt-psychology considers more the visual and
spatial part of human perception (at least regarding the examples mostly cited when explaining the
factors  or  rules).  But  also  in  audible  experience  and the  techniques  of  sequencing  'proximity',
'similarity', 'continuity' can be easily identified as important factors for perceiving and producing
audible structure. Also 'simple form', 'closeness', and 'common fate' can in certain ways be applied
to audible structures21. 

To illustrate this fact,  I  transferred the most basic factors of structure perception to a graphic
model (figure 3) showing time slots and events in a grid – as we are used to in musical sequencing.
The model shows basic structuring mechanisms in sound perception for grouping several sound
events or objects22 into one audible object. The horizontal axis represents time and the vertical axis
an audible  property (it  is  very common to put  the pitch on the vertical  axis like in  traditional
European notation but one could use other audio properties, like volume, timbre, waveform, reverb,
filter, etc.). The different colors represent different audio events or samples used for sequencing. An
audible object can be a single event or more likely a sound stream (i.e. a perceivable sequence in
time) constructed by arranging sound events of appropriate properties in a relationship of temporal
proximity or regularity.

21 Lerdahl  and  Jackendoff  investigated  this  question  in  their  'Generative  Theory  of  Tonal  Music'.  Lehrdahl:
'Investigation of  the grouping component brought  us to  Gestalt  psychology, for  which there was an extensive
literature on visual grouping. It was unclear how to make a grammar out of the Gestalt principles of proximity and
similarity. Working through many grouping and metrical analyses, we found that the phenomena were gradient
rather than categorical.' (Lehrdahl 2009, 189). See also (Lerdahl/Jackendoff, 1983).

22 A sound event can be understood in analogy to Pierre Schaeffers 'sound object' which according to him is the basic
unit of sound, comparable to a unit of breath, articulation, or instrumental gesture. Schaeffer also speaks of an
'acoustic action' and an 'intention of listening' reflecting the two sides of  identifying a sound event: the production
and the perception: 'L'objet sonore est a la rencoutre d'une action acoustique et d'une intention d'écoute.' (Schaeffer
1996).
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Fig. 3  Creating audible structures: Basic mechanisms of grouping or differentiating sound 
events in time.

The most decisive factors for audible structure perception considered here, are the following:

• Proximity in time and quality: If various sounds are heard within a shorter period of time and
if their perceivable qualities are closer (sounding more similar in certain aspects) it is more
likely, that they are perceived (and interpreted within a larger system) as one audible object.

• Similarity in time and quality: If different sounds in a period of time and range of quality are
replaced by similar sounds they are perceived more likely as one audible object23.

23 'Without similarity, music would not be possible, would not exist. similarity, and its counterpart dissimilarity or
difference, enables a listener to break down the acoustic continuum  into  smaller  constituent  parts (such  as
elementary   events,   segments,  groups,  streams),  and  to  make  associations  between  these  parts  (repetitions,
variations, oppositions, transitions and so on). Local similarities and discontinuities/dissimilarities give  rise  to
elementary  discrete  entities  such  as  notes,  and  allow  the  formation  of musical  streams  (e.g.  voices)  and
segments  within  streams.' (Cambouropoulos 2009, 7).  
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• Continuity in time and quality: If a sound is repeated in time with a changing audible quality,
it is more likely to perceive one audible object, if the time interval is constant or regular and
the change in quality is continuous.

• Repetition in  time  and  quality:  If  a  combination  of  various  sounds  is  repeated  in  time
constantly it  is more likely perceived as one audible object.  Repetition can take place on
different timescales and is related to the fact that perception and cognition are learning and
remembering  systems.  It  will  more  likely  interpret  arrangements  as  a  group if  perceived
several times before24.

• Common evolution or parallelism in time and quality: If various sounds are changing in
time  (evolving)  in  parallel  (concerning  a  certain  audible  quality)  they  are  more  likely
perceived as one audible object.

24 The recognition of formerly experienced entities when grouping and structuring perceived elements of music or text
is an important factor of structure perception. For that reason, Rens Bod argues for using a data-orientated parsing
model combining the 'likelihood principle' (based on the recognition of repeated structures) in combination with a
'simplicity principle' (based on the recognition of the simple structures in the tradition of Gestalt-recognition). 'Our
key idea is that the perceptual system strives for the simplest structure (the "simplicity principle"), but in doing so it
is biased by the likelihood of previous structures (the "likelihood principle").' (Bod 2002, 289).
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 Musical streams

Note that an audible object is not meant to be the complete fusion of various sound events into
only one perceivable object. As shown in figure 2 it is a matter of structuring a set of objects with
the help of vertical relations (i.e. grouping or segmenting). The grouping of several sound events in
our perception and experience allows us to perceive a multitude of objects as a unity or a whole. But
since sound is always a temporal and transient phenomenon, one must think of this unity more as a
stream than a stable object. A musical piece can be imagined as various streams of sound in relation
to each other and the whole piece. A structured unity is not created by fusion, but rather by keeping
the inner multiplicity. The mechanisms illustrated in figure 3 are reversible in the sense that it is
possible to group several objects to one and also split up a composite object into its elements. A
stream is characterized by both, continuity and discontinuity, unity and multiplicity.

From the basic musical structuring mechanisms identified in this section, one can imagine the
emergence of more complex musical structures – like streams or voices – that develop a kind of
interaction,  play,  and  meaning  in  a  musical  piece.  With  the  help  of  principles  like  similarity,
proximity, repetition, and variation it is to a certain point possible, to explain this emergence25.

A musical stream or sound stream will be formed when certain sequences or variations of sound
events are placed and perceived in temporal continuity or parallel movement26. In the practical work
of producing sound with various sequencers, the handling of musical streams is decisive. According
to  (Cambouropoulos 2008, 83) five principles are crucial for the experience of a musical stream
within the listener:

• Principle of Temporal Continuity
• Principle of Tonal Fusion
• Pitch Proximity Principle
• Pitch Co-modulation Principle
• Onset Synchrony Principle

25 Cambouropoulos describes the emergence of musical entities from these principles descriptively: 'Similarity is at
the very heart of music because it enables the emergence of the core musical entities themselves (for instance, a
musical theme is not an object/event that  exists out there in the world — it exists primarily by virtue of self-
reference via repetition and variation).' (Cambouropoulos 2009, 8). 

26 'Listeners break down the acoustic continuum into musical streams; they perceive streams of musical events such as
streams of notes (e.g., melodic lines) or streams of chords (e.g., accompaniment). A number of perceptual factors
[...] enable a listener to integrate or fuse co-modulating components (e.g., partials or notes moving in parallel) into
coherent events and sequences of events, and, at the same time, to segregate them from other independent musical
sequences.' (Cambouropoulos 2010 141). For a detailed analysis of voice and stream formation and segregation in
human perception see also (Cambouropoulos 2008). 

12



Timescales and metric relations

Another important aspect when dealing with structures in music or sound art in a wider sense is
the  question of  timescales  and metric  relations.  As argued above continuity  or  discontinuity in
metric  aspects are  important  grouping relations  in  audible  perception. The factors illustrated in
figure 3 are at a first view adapted to sequencing sound in relatively short loops – like in traditional
musical sequencers. But when working on larger pieces the question of sequencing on a larger
timescale becomes more relevant. Especially when trying to build a system that is generative in
some way not only on a short timescale of pattern production but also on the larger timescale of
creating  parts  of  a  piece  by  generating  large-scale  structures.  The  large-scale  segmentation
organizes  the  small-scale  structures  in  some  way27 –  like  in  a  time-based  tree  model.  When
describing my practical setup for generative sequencing in chapter two I will present a model that
takes this fact into account.

Musical timescales can be described as logarithmic scales, as the doubling is a more accurate way
to relate different time intervals than linear growth. This fact is taken into account in the definition
of semitones as the twelfth of a doubling or halving. The concept of a logarithmic timescale can
also be employed for the description of larger periods,  like beats, bars, or functional parts of a
musical piece.28 Combining different timescales results in a tree model where events belonging to a
shorter timescale can be grouped into an event on a larger timescale, while large timescale events
can  be  split  up  into  various  small  timescale  events.  The  presence  of  various  interconnected
timescales in a musical piece is an important structuring mechanism for creating structural depth –
both in perception and generation of structures. In this sense, it also is important to pay attention to
the timescales when working with structure principles like similarity  and repetition in  practice,
regarding attention span and short-term memory of listeners. 

27 Lerdahl and Jackendorf propose 'time-span reductions' and 'prologational reduction' for the hierarchical structuring
on different timescales based on information obtained from metric and grouping structures. They form tree-like
hierarchical structures that combine time spans at all temporal scales of a piece. See (Lerdahl/Jackendoff 1983,
119f) and (Lehrdal 2009).

28 Essl speaks about 'micro-time' and 'macro-time' relating timbre and and tonal qualities with rhythm and form. 'Die
gleichen Prinzipien, die im Bereich der Tonhöhen ("Micro-Zeit") gelten, haben auch auf dem Gebiet der Dauern
("Macro-Zeit")  ihre  Berechtigung.  So  lassen  sich  -  ebenso  wie  Tonhöhen  -  auch  Dauernwerte  in  Zeitoktaven
zusammenfassen.' (Essl 1996, 19).
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Structure generators

So how can a structure be generated or produced in the field of sound design? If we take the
above consideration and define structure as the way how parts are organized to form a whole or a
system,  this means that we have to find ways to arrange and relate the elements to form a more
complex entity. Such a structuring process can happen in a lot of different ways depending on the
approach used to interpret and/or generate an arrangement or system. In chapter 1.3. I will describe
some  generative  approaches  that  can  be  used  as  a  methodological  orientation  for  algorithmic
implementation. 

I found the term 'structure generator' in the sense of a machine creating structures for musical
sequencing in a work by Karlheinz Essl (Essl 1996). He speaks of 'structure generators' in the sense
of theoretic objects, that can be implemented in a software29. This software is able to map structure
to sound parameters and to produce the respective sound. I will use the term structure generator in
this sense in chapter 2 when describing the design of a generative sequencing system.

Another  important  quality  that  structure  generators  should  have  is  the  ability  to  connect  on
different levels of control in terms of timing or other functional relations. In this way, it is possible
to create generative control networks. A structure generator can be controlled by another structure
generator from a different place and/or hierarchy in the structure. In this sense, structure generators
are like pattern generators including depth.

Fig. 4  A Koch curve30 generated with an L-system mapped to a stereo oscilloscope in Pure Data.

29 Essl already used a visual dataflow programming language, 'MAX', similar to Puredata in many functional aspects,
in the 1990s. See (Essl 1996, 27).

30 See (Lindenmayer/Prusinkiewicz 2004, 10). The curve can be drawn by applying a 'turtle interpretation of strings'
generated by a Lindemayer system.  
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1.2 Musical Sequencers: A short history of loop-based 
sound machines

The subdivision of time

A sequencer  is  a  concept,  apparatus,  or  machine  that  divides  time  into  sections  that  form a
sequence. The different sections can be assigned or related to an event, a concept, or an activity. In
this general form, a wide variety of 'sequencers' can be found in the history of mankind and their
origins go back to prehistoric times. Many archaeological findings suggest prehistoric concepts of
time-division: The 'Lebombo Bone', the 'Blanchard Bone' or the 'Ishango bone' are the most famous
examples of paleolithic tally sticks dating from around 40.000-30.000 years ago. These objects were
probably created to conceptualize and organize time and are therefore the oldest-known ancestors of
the calendars and clocks we use today.

In the history of music, the conceptualization and division of time is obviously of fundamental
importance. The drawing or writing of music31 presupposes such a conceptualization of time and
periods or segments of time.

However, music and musical traditions require the sequencing of time, also if they are not written
down. It can be assumed that musical practice is just as much a causal factor in the development of
an abstract concept of time and the division of time as the conceptualization of time enables more
complex musical structures, traditions and works.

Repeating patterns

The idea to combine a temporal grid with sound events is the basis of the musical sequencer32. It
enables the production of patterns and their repetition – which is an essential creative element of
many musical styles.

'The idea of a grid has been one of the most prevalent characteristics of music throughout the past
few centuries.  The  reliance  on  a  sonic  grid  with  repeating  rhythmic  and  melodic  motives  has
become imbued into the human ear, and the sequencer in its many forms has become a popular
interface for music creation and sound music computing.' (Arar/Kapur 2013, 384)

Musical sequencers in the narrower sense are tools that externalize the division of time and the
connection of certain points in time with sound events from human consciousness into the material
world of objects. For this purpose, it is necessary to design apparatuses that are able to perform this
task.  In the following, I  will  give a brief  historical  overview starting with the first  mechanical
sequencers.

31 The oldest record of musical notation is a cuneiform tablet from Babylon dating from around 1400 BC.
32 See (Davis 2001).
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Mechanical sequencers

The first known music sequencers are mechanical in nature and work by means of a rotating
cylinder with pins that trigger different sounds. The first music automaton to function in this way
was a hydro-powered barrel organ described by the Persian Banū Mūsā brothers in the year 850 in
their work entitled 'Book of Ingenious Devices'. The concept of a cylinder with raised pins on its
surface remained the basic device for the mechanical production and reproduction of music until the
second half of the nineteenth century.33

Fig.  5  Drawing of  the  water  organ at  the  Villa
d'este, Rome, 16th century (Fowler 1967, p. 46).

Fig. 6  The barrel organ 'Salzburger Stier'
from 1502 34.

A famous example of an early barrel organ is the 'Salzburger Stier' (figure 5), dating from 1502
(commissioned by Archbishop Leonhard von Keutschach). It is still in use today at the castle of
Salzburg (Austria). The development and refinement of barrel organs led to the implementation of
barrel pianos, which combined a rotating cylinder (the 'barrel') with pins with the triggering of the
hammers of a piano. The refinement of these instruments culminated in the late 19th century in the
production of the so-called 'Player Piano' or 'Pianola', a self-playing piano that most commonly used
punch-cards (perforated paper) to automatically trigger the hammers of the piano. The first practical
automatic piano was invented in 1896 by Edwin S. Votey and called the 'Pianola'.

Towards the end of the Middle Ages, the craft of watchmaking developed further in various parts
of Europe, making it possible to build more sophisticated automatic musical instruments leading to

33 See (Fowler 1967, 49).
34 Source: www.salzburg-rundgang.at (Jan 2021).
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the industrial production of 'musical boxes'. The first music box factory was opened in Sainte-Croix
in Switzerland in 1815 by Jérémie Recordon and Samuel Junod.

During  the  Baroque period,  a  wide  variety  of  musical  automata  were  elaborated   –including
diverse mechanisms for the sequencing of sound events. A famous example is the 'Flute Player'
from 1737 designed by the French inventor Jacques de Vaucanson.

In 1877 Thomas Edison invented the 'Phonograph', which had a big influence on the development
of music reproduction machines. It combined the physical principles of the turning cylinder with the
recording and reproduction of sound waves.

Drum machines and analog sequencers

The first electronic drum machine was the 'Rhythmicon' which was invented in 1931 by Henry
Cowell, an American composer, and musical theorist, in collaboration with the Russian inventor
Léon Theremin. In the 1950s and 60s other drum machines were designed by Harry Chamberlin and
the Wurlitzer Company. 

Another field where sequencing mechanisms were developed and used is the design of analog
synthesizers.  In  1957,  Herbert  Belar  and  Harry  Olsen  developed  the  RCA Mark  II  Sound
Synthesizer at the Electronic Music Center of Columbia-Princeton University which is considered
the first analog sequencer. On this basis, Robert Moog developed the 'Moog 960' in 1968. These
early sequencers were based on voltage-controlled processes where parameters such as frequency,
duration, modulation or filter characteristics could be set with a knob for each step.35

Fig. 7  The Moog 96036.

A further  important  figure  in  synthesizer  and  drum-machine  development  was  the  American
composer and inventor Raymond Scott, who worked on electronic devices for sequencing sound

35 See (Arar/Kapur 2013, 384).
36 Source: http://artsites.ucsc.edu/EMS/music/equipment/synthesizers/analog/moog/Moog.html (Jan 2021).
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from the 1960s onwards. Until the end of his life in 1994, he kept developing the 'Electronium' a
combined electronic synthesizer and algorithmic composition and generative music machine37. 

In the 1960 and 70s, the progress in transistor technology and other fields of electrical engineering
led to the development of programmable drum machines and the use of digital sampling instead of
analog sound synthesis in the 1980s. The probably best-known drum machines from this decade are
the 'Linn LM1' (1980) and from the Roland Cooperation the 'TR-808' (1980) and 'TR-909' (1983).
All three were programmable, The 'Linn LM1' and the 'TR 909' already use digital sampling while
the 'TR-808' still used analog synthesis for sound production.  

Until today, the design of standalone sequencers and drum machines is mostly based on the idea
of 8 or 16 steps with assigned sounds running in a loop38. A more recent example of a standalone
sequencer is the 'Octatrack' made by 'Electron Music Machines' in 2010. 'An LCD surrounded by
hand controls let the user interact with sampler, step sequencer, mixer, and effect features while
stereo audio and MIDI signals are continuously output.' (Ekelund/Mårtensson 2013)

Fig. 8  The Roland TR-808 (1980)39. Fig. 9  The Electron Octatrack (2010)40.

37 For more information on Raymond Scott's life and work see: https://www.raymondscott.net (Jan 2021).
38 See (Butler 2006, 46f).
39 Source: https://rolandcorp.com.au/blog/roland-drum-machine-chronicle-1964-2016 (Jan 2021). This webpage gives

an historic overview over the drum-machines from the Roland company. 
40 Source: https://www.elektron.se/products/octatrack-mkii/  (Jan 2021).
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Software sequencers

The first software sequencer was created as part of the 'ABLE' computer in 1975 by New England
Digital. In the 80s and 90s, rapidly growing computerization led to the development and use of
more software sequencers. Karsten Obarski wrote the first so-called 'tracker' software in 1987 for
the  Commodore  Amiga  which  was  called  'Ultimate  Soundtracker'.  It  consisted  of  four  parallel
sequencers using 8-bit samples. The position in time is displayed numerically on the screen and
shifts as a composition or track proceeds in time.41 In the following decades other tracker software
systems were released keeping essentially the vertical multi-track step sequencer design increasing
the number of editable tracks and improving other features like sound quality, effects, etc.

Fig. 10  The Ultimate Soundtracker 198742. Fig. 11  The tracker software Renoise 3.2 from
201943.

Today all  common digital  audio  workstations  (DAWs)44 on the market  include  some kind of
software sequencer often using MIDI data and virtual instruments in a timeline for creating patterns
that can be repeated, modified, and arranged in a thousand ways.

41 For an overview see (Arar/Kapur 2013, 386).
42 Source: screenshot from https://www.youtube.com/watch?v=5ywaCR5Tg4A (Jan 2021).
43 Source: screenshot from https://www.youtube.com/watch?v=1p5vAxnPGkQ (Jan 2021).
44 To give some examples: Ableton Live, Logic Pro, Reaper, Pro Tools, Steinberg Cubase, etc.
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1.3 The generative approach 

Fig. 12  Samba, a sculptural work by Guto Requena using methods of generative design45.

Generative Art

The basic idea of generative art or design is to use a set of rules or constraints to create a piece of
work (artwork, design, text, etc.) out of some initial input through a partly or wholly automated
production process. The set of rules employed determine the properties and features of the piece to
be produced and is usually linked to a production mechanism that expresses these determinations in
a perceptible form (graphics, sound, etc.). In many cases, a computer is used to execute a generative
algorithm defined for this purpose. The result is then presented in a sensually perceptible form.
Obviously,  the mapping of the results of the generative algorithm into a material  form is often
decisive for the result.  The reason, why the generative design approaches involving a computer
have been used increasingly in recent  decades,  is  the wide availability  of  sufficiently  powerful
computers. The computer nowadays is a very powerful tool to implement generative processes and
show them in a sensually perceptible form. Often it even becomes a kind of co-creator 46 in the
process of producing content with generative algorithms.

The fascination of generative methods for creating structures and patterns is partly because they
derive complexity from often simple rules  and present this  complexity in  a visually  or audibly
captivating way. The underlying mechanisms or algorithms are not obvious at first sight, therefore
the result is often surprising and unpredictable. The use of randomization of production parameters
and variables is often an important element in the generative process47.

For me, as an artist and designer, generative approaches are particularly interesting because they
shift the role of the designer as a creative momentum:  He or she no longer operates on the level of
the realization of elaborate details, but on the level of creating some kind of generative plan, that

45 Source: https://en.wikipedia.org/wiki/Generative_design#/media/File:Samba_Collection.JPG (Jan 2021).
46 See (Nierhaus 2021, 13).
47 'Finally,  randomness  is  an  essential  component  of  most  generative  computer-based  procedures,  since  the

implementation of algorithms almost always defines a “stochastic scope” that allows the generation of different
instances of a common structural idea.' (Nierhaus 2021, 12).
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determines  these  details.  In  such  a  generative  plan,  which  can  be  expressed  as  a  computable
algorithm, decisions about essential aspects of the work are partly taken over by the corresponding
algorithm48. This creates the fascinating impression that  structure,  form, and details  generate  or
'grow' by themselves – as Alan Dorin puts it:

 'The generation of complex patterns from simple rules is a constant source of fascination for
practitioners in the fields of computer generated imagery and sound. This interest takes root in a
deeper drive to comprehend the world around us. Where we may, we reduce complex outcomes to
the combination of simple principles. We look for causal connections between otherwise mysterious
and unpredictable events. We seek order in chaos and, in our own work, seek complexity for free.'
(Dorin 2000, 38).

Markov Models:

Here I will introduce some important methodological approaches within generative or algorithmic
art and design. By doing that I will concentrate on models that I use in the scope of this thesis and
its practical examples (see chapter 2), namely on Markov Models and Generative grammars49.

This  is  a  stochastic  model  to  describe  the  succession  of  elements  of  a  system  in  terms  of
probability,  invented  by  the  Russian  mathematician  Andrey  Andreyevich  Markov  (1856-1922).
Markov Models are an interesting tool to analyze, describe and generate sequences of elements or
states.  Depending on the  area  of  application  these  elements  could  be  symbols,  sounds,  words,
events, note values,  etc. The elements or states are related by their probability of following one
another. A sequence of these elements is also called a 'Markov chain', which is a stochastic one-
dimensional sequence of states, where the future state depends on the current state. Every state in
the system defines its possible next states by indicating the probability of the respective transition.

In other words, a Markov Model describes a set of states through a relation of succession of these
states simply by indicating the probability of every possible succession. Given a limited sequence of
states, the probabilities can be determined by analyzing the sequence. Take the sequence A --> B -->
A --> A --> C --> A: Here A is followed by B, A, and C with a probability of 0.33, while C and B
have the successor A with a probability of 1. The Markov Model that follows is shown in figure 13
with its transition matrix – a matrix showing all the possible successions in a set of states.  

48 'Both in music and in visual art, the use of the term [generative art] has now converged on work that has been
produced by the activation of a set of rules and where the artist lets a computer system take over at least some of the
decision-making (although, of course, the artist determines the rules).' (Boden/Edmonds 2009, 4).

49 For a general overview of generative methods and models in algorithmic composition see (Nierhaus 2008).

21



A B C

A 0.33 0.33 0.33

B 1 0 0

C 1 0 0

Fig. 13  Simple Markov Model with three states. Its transition graph on the left and its transition 
matrix to the right.

A Markov Model can be used for two things: To analyze an existing sequence to build a model
(i.e. a transition matrix) and to generate a sequence out of a model (i.e. a transition matrix). In order
to generate a sequence from a Markov model, one  begins at the starting state and determines the
next  state  according  to  the  transition  probabilities  given  in  the  transition  matrix.   This  way a
sequence of the desired length can be created step by step. 

In the same manner, a text consisting of a sequence of words or a piece of music consisting of
note values can be analyzed to create its transition matrix. On this base, a sequence of states (i.e.
words or note values) can be generated to produce a sequence that is a kind of style imitation of the
original sequence.

A Markov Model  has  a  specific  'order'  that  determines  how many past  states  are  taken into
account for determining the probabilities of the possible future states. If more than one past state is
used to determine the transition probabilities, it is called a higher-order Markov process. The order
indicates the number of past states that are included in the calculation. That means that higher-order
models will reproduce an analyzed sequence more accurately at the cost of generative freedom. So,
if  the order is  high enough the generation process will  produce an exact copy of the analyzed
sequence.

Another interesting concept is the 'Hidden Markov Model' (HMM). Here the states of the model
are not equal to the output sequence, but the states in the model cause the output sequence through
another (stochastic) process. So, the states of the model and its transitions are not visible, but they
determine the visible output sequence through a probabilistic mapping. Generating with an HMM
means creating a sequence of states within a Markov Model and then, in a second step, determining
an output (event, symbol, value, etc.) through a stochastic process.  For example, one could think of
using an HMM for generating a sequence of harmonies (or harmonic states), from which specific
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note values follow50. Figure 14 shows a possible sequence of harmonies corresponding to the states
generated by the Hidden Markov Model and a possible output in form of note values. In order to
determine the note values from the harmonies, we need another set of probabilities or rules which is
not  shown here  (a  simple  one  is  to  take  random note  values  from the  scale  specified  by  the
harmonic state)

hidden harmonic states Amaj Cmin D7 Amaj

possible note outputs a c# d d# e# f d c d e c# a

Fig. 14  Example for a sequence of hidden states and its visible output

Figure 15 shows an example of how an HMM could be used for structuring a musical piece or
sound installation in functional, dynamic, or thematic parts. In this setup, the states of the Markov
Model represent three functional parts that can be activated alternately. The states are 'hidden', while
the 'modes'  of the sequencers are 'visible',  forming the musical surface of the sound piece.  The
changes between the hidden Markov states determine the modes played by the sequencers by setting
different probabilities for the actually realized play-modes. The model in figure 15 does not show
how the timing is organized as this is not important for the basic concept of an HMM.

Fig. 15  Example of a Hidden 
Markov Model for switching 
between three functional states 
that control three sequencers.

50 For a  more elaborate example for the application of HMMs in the generation of harmonic sequences by Moray
Allen see (Nierhaus 2008, 78).
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Generative grammars

The concept of generative grammars is based on structuralist linguistics conceived in the early
20th century by theorists like Ferdinand de Saussure in Europe and Leonard Bloomfield in the US.
Based on these approaches Noam Chomsky developed a linguistic model in the 1950s, which he
called 'standard theory'. Chomsky's theory was based on a generative grammar model which had a
big  influence  on  linguistics,  informatics,  automata  theory,  and  the  theory  of  computation.  He
identifies four types of generative grammars and classifies them within the 'Chomsky Hierarchy'
according to their complexity and generative capacity.51 The productive process that is described by
the formalism of generative grammars is based on a rewriting operation that is capable of generating
a sentence (a sequence of symbols) out of grammatical rules. So, the idea of 'rewriting' in generative
grammars  describes  the stepwise formulation of  a  phrase or  sequence out  of the rules  that  are
defined in the particular grammar. Considering natural languages, we would therefore start from
general  elements  like  sentences,  noun  phrases,  verbs,  adjectives,  and  so  on.  These  syntactical
placeholders are called 'non-terminal symbols' and will be replaced by 'terminal symbols' or words
in the last rewriting step.  Forming or analyzing a sentence in this way unfolds a tree-like syntactic
structure that is capable of determining if a certain phrase is part of the respective language (i.e. if it
is correct according to the grammatical rules, which is called 'parsing' in informatics). A grammar
tree also illustrates how a phrase can be produced out of simple rules by a rewriting technique. Such
a stepwise replacement of symbols is appropriate to be formulated algorithmically. That is why it is
an interesting model when identifying mechanisms for generative sequencing.

In order to clarify the generation formalism, I will give an example of the formation of a sentence.
For the English language we assume the following rewriting or production rules (where S stands for
sentence,  NP for  nominal  phrase,  VP for  verbal  phrase,  PP for  prepositional  phrase,  AP for
Adjective Phrase, P for preposition, N for noun, V for verb, DET for determiner or article, Adv for
Adverb, A for Adjective):

S --> NP VP
VP --> V (NP) (PP)
AP --> (Adv) A (PP)
PP --> P NP
NP --> (DET) (AP) N (PP)

51 For  a  detailed  description of  the Chomsky Hierarchy and generative grammar  in  algorithmic composition see
(Nierhaus 2008, 83f).
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Figure 16 shows an example of how this process could be done for a sentence in English in form
of a tree diagram: Starting with S the first rewriting step divides it into NP and VP. In the second
rewriting step NP is replaced by N, VP is replaced by V and another N – and so on as defined by the
production rules. In the last step, the non-terminal symbols are replaced by  terminal symbols i.e.
words, expressing a possible correct sentence in its final form, in this example: 'Lola eats a big fish'.

Fig. 16  Example for a generative grammar in a natural language.

Generating a rhythmic phrase:
In my research and experimentation in sound design, I used the approach of generative grammars

in some cases as a model for generating melodic and rhythmic structures or phrases.  The generated
phrases would preferably fit into a time grid with the length of a phrase  restricted by the available
slots in a certain time span. Figure 17 shows an example of a rhythmic phrase created with a non-
deterministic generative grammar considering a loop with 16 points in time where it is possible to
assign sound events. The grammar is non-deterministic because the rewriting rules contain various
possibilities for replacing the non-terminal symbols. The terminal symbols of this grammar refer to
sound events. In this example, I will use K for kick drum, S for snare drum, and H for a hat cymbal,
E for an empty time slot.

The following rewriting rules contain the non-terminal symbols B for beat, and b1, b2, b3, b4 for
the quavers within a beat:

Phrase --> B B B B
B --> b1 b2 b3 b4
b1 --> K or S or E
b2  --> H or E
b3  --> H or S or E
b4 --> H or K or E
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Fig. 17  Example for a rhythmic sequence generated by a generative grammar.

The use of generative grammar as in this example allows implementing hierarchical structures in
the sense of grouping and relating elements of a sequence. While Markov Models decide about
transitions from one state to another (or several states in the case of a higher-order MM) only in a
'horizontal'  way,  a  'lower  order'  generative  grammar52 allows  defining  hierarchical  rules  (like
limiting a generation to a multiple of elements, defining groups of output elements depending on
their position in the phrase, repeating sequences in variable length, etc.). 

In chapter 2.5 I will give an application and implementation example for the use of generative
grammar  similar  to  the  example  above.  Additionally,  I  will  use  probabilities  in  defining  the
rewriting rules to create a probabilistic grammar53. 

Employing generative grammars to analyze musical material is a widely used method in musical
analysis.54 In generative sequencing the use of grammars is a way to formalize rules for pattern
generation.  In practice,  however,  I  prefer  thinking in more descriptive terms to formulate  rules
which define phrases through a production mechanism in a sequencer – for example:

- A phrase consists of 16 elements corresponding to 16 time slots.

52 The Chomsky Hierarchy of grammars divides grammars into four different orders according to their complexity.
The simplest grammars (which are of the same complexity as Markov chains) are called 'regular grammars' or type
3 grammars. Lower order grammars (type 2, type 1, type 0) describe languages of higher complexity with fewer
limitations regarding the formulation of production rules. For an overview of the Chomsky Hierarchy see (Nierhaus
2008, 87).

53 A probabilistic grammar is interesting for generating sequences because it allows to weight the various possibilities
present in a rewriting rule to control the probability of generating different forms of strings. Probabilistic context-
free grammars extend context-free grammars similar as hidden Markov Models extend regular grammars. For an
example see (Bod 2001, 4).

54 See (Nierhaus 2008, 91f).
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- The probability of an event on time slots 1,5,9,13 is 1, on 3,7,11,15 it is 0.5.
- All other time slots stay empty.
- Choose between events A , B and C, with probabilities of 0.5, 0.25 and 0.25.
Formulating these descriptive rules as generative grammar by defining them as rewriting rules is a

possible way to conceptualize and represent the production formalism, but it has not necessarily to
do with the practical design of a mechanism that generates the desired phrases algorithmically.

When  considering  the  generative  methods  discussed  here,  Markov  models  and  generative
grammar, it is important to note that both methods originate in linguistics, and were designed to
analyze or generate symbol chains. Such one-dimensional strings can be mapped to a sequencer in
terms of timing and sound qualities like note values or the selection of specific samples, etc. When
trying  to  describe  or  generate  interaction  between  various  sequencers  present  in  a  generative
system, these linguistic methods are more limited.55   

55 'Markov models, originating from linguistics, as well as generative grammars are in principle very well fitted for the
processing of one-dimensional context-based sequences of symbols. On the downside, they are not very well fitted
to  account  for  dependencies  between  horizontal  and  vertical  musical  features  (or,  in  general,  across  multiple
dimensions).' (Nierhaus 2021, 15).
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1.4 Sequencing in Puredata (Pd)

This chapter is intended to give a brief overview and insight for those who are not familiar with
Pd or any graphical programming language56.

Introduction to Puredata

Puredata  or Pd  is  a  visual  programming  language  that  was  originally  developed  by  Miller
Puckette at the IRCAM in the 1990s. It was designed to enable the creation of interactive computer
music and multimedia works. Miller Puckette is the main author of the program, but Pd is an open-
source project with a large base of developers who work on new extensions. There are free versions
for GNU/Linux, Mac OS X, iOS, Android, and Windows available. Pd can be used to process and
generate sound, video, 2D/3D graphics, and interface sensors, input devices, and MIDI.57 The main
characteristics of Pd are the following:

Pd is visual: 'Pd is a visual programming environment, which means while using it you don’t
write code as such, but instead manipulate visual objects on the screen, connecting them into a
system that produces some desired effect.' (Hillerson 2014, 5) 

'Pd enables musicians, visual artists, performers, researchers, and developers to create software
graphically without writing lines of code. Pd can be used to process and generate sound, video, 2D/
3D graphics, and interface sensors, input devices, and MIDI. Pd can easily work over local and
remote  networks  to  integrate  wearable  technology,  motor  systems,  lighting  rigs,  and  other
equipment. It is suitable for learning basic multimedia processing and visual programming methods
as well as for realizing complex systems for large-scale projects.' (https://puredata.info – Jan 2021)

Pd is  a data flow programming language: Control data  and audio signals flow through Pd
objects connected to each other and represented visually on the screen. As with most digital signal
processing (DSP) programs, there are two primary speeds at which data is transferred: 

- the audio rate, which typically runs at 44,100 samples per second
- the control rate, which operates at 1 block per 64 samples by default (so it would run at 1,5 ms

by default).

A Pd file  or program is  called a patch: 'A Pd patch [...]  consists  of  a  collection  of  boxes
connected in a network called patch.' (Puckette 2007, 15) So when opening a Pd patch one can see a
data flow network consisting of wired boxes. Writing a Pd program or patch mainly consists of
creating these boxes and linking them. 

56 For extensive information see (Hillerson 2006), (Farnell, 2010), (Puckette 2007).
57 For a more detailed introduction to Pd by its creator Miller Puckette see (Puckette 2007, 15f). See also the webpage

https://puredata.info  (Jan 2021).  
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Pd uses four types of functional boxes: 

• Message boxes have a flag-shaped border, and they hold a message, which is sent through the
patch  cord  whenever  the  message  box  is  triggered.  Messages supply  commands  and
instructions  to  objects.  The  'bang'  message  is  a  special  type  of  message  which  plays  an
important role in Pd. It has no content but is necessary to trigger or initiate events. Often it is
used as a start button to push the data into the flow.

• Object  boxes  have  a  rectangular  border  and  contain  Pd  objects.  The  Pd  objects  are  the
algorithmic functions used to generate audio signals, operate on data streams, etc. Usually,
they have an input and output slot and you can give them arguments to specify variables or
functions in use. Pd comes with a variety of objects, ranging from mathematical and logical
operators to general and special DSP functions.58 If an object is designed to work on an audio
signal, this is indicated by a tilde symbol (~) and the data stream it uses has to be in audio
rate.

• GUI boxes are designed for user intervention and visual representation of data. This can be
number boxes, buttons, toggles, sliders, etc. They are used for visually interacting with the
patch by mouse clicking, dragging, and entering numbers or symbols.  

• Comment boxes are used to write comments in the patch, they appear as the text you put in
them and have no other functionality. 

Fig. 18  Pd example, different types of boxes in a patch. 

58 'Each object performs a specific task, which can vary in complexity from very low-level mathematical operations to
complicated  audio  or  video  functions  such  as  reverberation,  FFT transformations,  or  video  decoding.  Objects
include core Pd vanilla objects, external objects or externals (Pd objects compiled from C or C++), and abstractions
(Pd patches loaded as objects)' (https://puredata.info – Jan 2021).
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Sequencing events in Puredata

In this  section,  the basics of sequencer design in Pd will  be discussed59.  Of course,  there are
countless possibilities to create patches for sequencing sound events. But mostly the function of a
sequencer can be divided into two main areas: The timing and the generation of the utilized sounds. 

The Timing:
In standard sequencers, the timing functions in such a way that a timespan or loop is divided into

smaller units. So, within the basic loop, several points in time are defined, which can be associated
with sound events. Often, the sub-units of the loop are called beats. 

Fig. 19  In Pd a timing mechanism could be designed as shown in this example60.

In the simplest case, such a setup in Pd works via a metronome that marks the basic beat. At every
beat, the metronome gives an execution command – which is called 'bang' in Pd. The length of a
beat can be set in milliseconds or bpm (beats per minute). In order to define a loop, it is necessary to
determine how many beats it should contain. Mostly this measure is based on a 4/4 beat and 4, 8, or
16 (2n) time units are combined to a loop (which is therefore comparable to a bar in traditional
notation). Each point in time in the loop must be clearly addressable and the loop keeps repeating
itself.  In Pd, this  can be realized with a counter,  which adds up the executed basic beats.  The
resulting increasing number is combined with a modulo function in the loop length. This way we
get a repeating sequence of increasing numbers that indicates the position of the current beat in the
loop. 

59 Andy Farnell's Book 'Designing Sound' gives a comprehensive introduction to sequencing in Pd, see (Farnell 2010,
227f).

60 This example is a simplified version of an example from Andy Farnell, see (Farnell 2010, 228f).
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Figure 20  shows  a
mechanism for summing up the
desired  number  of  beats  to  a
loop.  The  resulting  cycle  of
repeating  numbers  gives  the
current  position  in  the  loop
(beat  number),  while  the  loop
number  indicates  how  many
loops have already passed.  

Fig. 20  A Pd patch for organizing beats in a loop.

The next step is an extension for marking every position by ON or OFF. In Pd, this can be done in
the GUI, for example, by adding a toggle for each basic beat as shown in Figure 21.

Fig. 21  Pd patch for marking eight beats as active or inactive. 
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Fig. 22  The timing mechanism linked to a sound generator.

The sound generation:
Apart from timing,  the reproduction or generation of specific sounds is an essential  aspect of

designing a functioning sequencer. The generation of audio signals in Pd can work in many different
ways. The two main methods are synthetic sound generation and the reproduction of existing audio
samples with the help of a lookup mechanism. The synthetic generation of sounds can again be
done in a number of ways, e.g. by applying an ADSR envelope to a continuous audio signal61.

Reproducing audio files works in Pd by importing sound files (in WAF or AIFF format) into an
array62.  These arrays are  read according to the sample rate  and reproduced as audio signals.  A
change in the reading speed causes a corresponding change in the pitch and length of the sample
played and can be used in the sense of note values to create variations of a sound sample.

If a mechanism for generating the desired audio signal is now implemented, it can be linked to the
timing mechanism. Thereby the audio signal or sound event can be triggered at any point in time
defined by the timing mechanism as a beat. 

61 See (Puckette  2007,  101f)  and  (Hillerson  2006,  41f)  for  more  information  on  the  creation and  use  of  ADSR
envelopes in Pd.

62 In Pd an array is a table with two values, x and y, where x is an increasing value from 1 to the array length. y is a
value defined for all x. If an audio-file is displayed as an array, x is interpreted as a time axis according to the
sample rate in samples and y as amplitude at the corresponding point in time.
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Chapter 2         

A generative sequencing system for algorithmic 
improvisation and its implementation in Puredata

Overview

Chapter 2 of this thesis is dedicated to the presentation of a generative sequencing system that I
developed when designing some generative sound installations in the past few years63. Writing this
thesis  gives  me  the  opportunity  to  sketch  a  more  general  model  that  summarizes  my various
practical implementations from the past years and presents them more coherently. The generative
setup  I  use  allows  both  –  live  improvisation  with  generative  sound  sources  (suitable  for  live
performances) and the creation and editing of generative systems that work in a standalone mode
(suitable for sound installations). The practice of producing sound with a generative system opens
uncountable possibilities and can be adapted to specific situations and needs in a thousand ways.
Here I will sketch a simplified model from my practical experience in order to get a better overview
and more clarity on how such a system works and what its main components are. I will therefore
explain  the  different  elements  of  this  model  in  their  functionality  and  finally  show  possible
implementations in Puredata.

After a short explanation of the concept of 'algorithmic improvisation' I will present a graphical
model of the generative sequencing system, I am working with. In the following chapters I will
explain this system in its essential components, which are:

• A  timing strategy and the implementation of  different  timescales to  enable the use of  more
complex sequencing strategies (chapter 2.1). 

• A  communication  medium  connecting  the  interface  and  the  different  components  of  the
generative sequencing system (chapter 2.2).

• Structure generators using the time grid and/or user interventions for building and arranging
structured sequences in the sense of musical streams (chapter 2.3).

• A user interface for two workflows and their combination: improvisation by the user, as well as
the creation, display, and running of generative production systems (chapter 2.4).

• Generative  sound sources including both,  a  mechanism for  structuring  symbolic  sequences
within the time grid, and a method to produce sound from these sequences (chapter 2.5).

63 More information on the sound installations I designed applying the techniques of generating sequencing described
in this thesis can be found on: werkstatt.hotglue.me/sound (Jan 2021).
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2.0.1   Algorithmic improvisation

Algorithmic improvisation can mean two things:

• A machine improvisation: in this case, an algorithmic production or generation mechanism
behaves like an improvisation by using non-deterministic generative mechanisms, random
variables, probabilistic or stochastic methods.

• A  human  improvisation  with  machine-generated  processes  or  content:  Algorithmic
production or generation mechanisms are coordinated and arranged by a human improviser. 

Regarding my practical work in sound design, I would agree that both of these approaches apply.
On the one hand, I am interested in creating machine improvisation by operating non-deterministic
generative  mechanisms  that  are  capable  of  producing  variations  of  an  underlying  structuring
concept or idea. On the other hand, I enjoy the possibility of acting as a human improviser by
triggering, combining, and influencing the generative algorithms in play. This means to keep some
amount of control over generative production processes or an arrangement of such processes. These
processes can be coordinated to form a more complex unity reflecting the creative imagination of
the improvising artist. Depending on the intentions of a work of art (from a completely automatized
sound installation to a human-controlled live performance) the side of machine improvisation or the
side of human improvisation with generative contents will be more in the focus of creative capacity
and aesthetic perception.

Improvisation  – in music or other forms of artistic expression  – can be characterized by two
essential  properties:

• It is non-deterministic: An Improvisation is characterized by open constraints64, that work with
possibilities, probabilities, and conditions rather than fix rules. In practice, that means, that at
some point uncertainty and spontaneity have to be involved in the creative process. Variability is
considered more important than exact determination or reproduction.

• It  is  process-oriented:  Essential  decisions  about  the  content  are  made during  the  process  of
production itself. In contrast to a composition, where one tries to define as many aspects of a
piece as possible in advance, improvisation lives from consciously keeping the creative process
always open65. This means that the creative process and the resulting piece itself are one and the
same, and are not divided into two different phases. Creation and performance are identified in
improvisation66.

64 Gerhard Nierhaus: 'To simplify, one could say that in contrast to a rule, which rather formulates a strict if-then
relationship, constraints establish a network of conditions in which musical structure can evolve in manifold ways'
(Nierhaus 2021/2).

65 The relation of composition and  improvisation is complex and the space between these two poles is the creative
place, where many works of art evolve. In reality, it is often a combination of composition and improvisation, that
leads to interesting results. This kind of mixture is called 'comprovisation' by some theorists, see (Dale 2008).

66 For the aesthetic and ontological implications of such a process-orientated approach  appreciating variation more
than reproduction see chapter 1.1 of this thesis and (Eco 2002, 378f).  
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But the enhancement and emphasis of variation and the procedural character of improvisation are
not to be equated with the absence of structure or constraints. It means to employ constraints that
are  designed to  keep things  in  movement  rather  than  to  achieve  a  standstill  (like for  example
introducing the contradictory rule, that every rule can be broken). The question if a computer can
adequately  simulate  this  kind  of  human  creativity  by  using  non-deterministic  or  stochastic
production systems (or other algorithmic methods) for the generation of content is at the core of
discussions on machine creativity and artificial intelligence67. 

In my practical work as an artist, however, I found that it is an interesting method to combine
one's  own creativity  with the (eventually  simulated)  creativity  of a  machine that  employs non-
deterministic generative mechanisms. It follows that a central aspect of 'algorithmic improvisation'
– at least regarding my creative work – is precisely the combination and interaction of human and
machine  improvisation  and creativity  in  the  production  process68.  Applying this  premise  to  the
design of a generative sequencing system consequently means to keep in mind the two sides of
algorithmic improvisation: 

• Designing  and  realizing  machine  improvisation  through  the  creation  and  usage  of  non-
deterministic generative production systems.

• Developing possibilities for process-oriented intervention and control by the user as a form of
human improvisation.  

Combining  these  two  aspects  is  the  conceptual  focus  of  the  generative  sequencing  system
described in chapter 2 of this thesis. This will be reflected in the system architecture emphasizing
the importance of a graphical user interface (GUI) and a communication strategy that allows both,
the human and the machine improviser to efficiently structure,  arrange and combine generative
sound production processes. 

67 For a discussion on computational creativity see (Nierhaus 2021, 23f).
68 Nierhaus speaks about co-creation in this context. 'The generative approach is also often linked to an act of co-

creation, wherein authorship of a composition can no longer be—or is intended to no longer be—attributed to the
composer alone.' (Nierhaus 2021, 13).
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2.0.2   A graphical model of a generative sequencing system 
for algorithmic improvisation 

Fig. 23  Simple model of a generative sequencer.

Figure 23 shows a simple model of a generative sequencer. In the control structure, the timing is
somehow transformed into structured sequences. The control structure operates on a sound source
that can produce an audio signal that is amplified and output by speakers. It's easy to see in this
model that the relevant things for generative production are happening in the control structure. The
timing is just a modified clock or metro, and the sound source could be a synthesizer, sample play
mechanism, etc. It seems obvious that for clarification and understanding of the system the control
structure needs to be somehow differentiated and analyzed in its internal structure. Regarding my
practical  work  with  generative  sound  installations,  I  found  that  this  is  not  an  easy  task.  The
processes  I  used  for  generating  content  are  often  specific  implementations  depending  on  the
aesthetic goals of a work of art. Also, the possibilities and resources given by certain software and
the choice of the sound material are decisive factors. 
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Fig. 24  A generative sequencer built from a generative sound source connected to a
user interface and a sound output.

Figure 24 shows a refined model of a generative sequencer. The control structure from the first
model was differentiated into a structure generator and a communication medium. In the structure
generator, the generation of sequences and patterns happens on a symbolic level. As we are always
speaking about sequences in time, this structure generator has to be closely linked to the timing.
Ideally, we would have a global timing controlled by the user interface that is also received by the
structure generator. The communication medium is kind of a communication strategy connecting
the different parts of the system. 

Musical sequencers mostly are described as machines in which timing and structuring are already
combined with the sound production mechanism (see chapter 1.2). So I  found it  appropriate to
describe the union of a structure generator and a sound production mechanism as a 'generative
sound source'.  Also because the  term 'sequencer'  would  be  confusing  when combining various
sequencers to a sequencer system, which still would be a more complex sequencer. In the following,
I will use the term 'generative sound source' in the sense of pattern generating sequencer connected
to  a  sound production  mechanism.  The 'generative  sound sources'  can  be  imagined like  single
sequencers,  virtual musical instruments,  or other time-dependent sound production mechanisms.
They have to be placed at the end of the generative system for mapping the symbolic information to
an audible experience. As continuity in time is a decisive factor in the formation of musical streams
(see chapter 1.1) it is suitable to treat these generative sound sources as essential components of the
system.  Only  they  can  ensure  continuity  in  audible  experience  by  providing  continuity  in  the
mapping strategy. In other words, the generative sound sources are the base of the formation of
musical streams.

37

mixing



Based on the model of a generative sequencer (figure 24) I developed a model for a generative
sequencing system that contains  various generative sound sources,  as shown in figure 25.  This
model contains different control levels and timescales. A large-scale control operates on various
generative sound sources present in a setup. According to my practical experiences, it is useful to
differentiate the system control into at least two timescales: A large-scale control that concerns the
longer parts of a sound piece or installation and the arrangement of various active sound sources.
And a small-scale control where the generation of melodic or rhythmic patterns takes place. It is
necessary to distinguish between these two timescales in order to obtain satisfactory results in terms
of time stratification and complexity.

As illustrated in figure 25 in a generative system there would be at least one 'large-scale structure
generator' that operates on several 'small-scale structure generators'. The communication medium
serves  as  a  kind  of  a  nervous  system  connecting  the  large-scale  structure  generator  with  its
subordinate  generative  sound  sources.  It  also  connects  the  user  interface  to  all  the  structure
generators present in the system. The timing for the whole system is controlled via the user interface
and received by the structure generators on all levels of control.

Fig. 25  Model for a generative sequencing system. 
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2.1 The timing: A basic pulse as a grid for variable 
loops

In sound and music design, timing is of course a very decisive variable –  since sound is made out
of waves with certain frequencies – which are defined by repetitions in time. When working with
sequencers the timing is more about the triggering of sound events than the assembling of sound
waves  like  in  a  wavetable  synthesizer.  But  musical  sequencers  are  usually  also  based  on  the
repetition of a time period, often called a loop, divided into steps. These steps are used as triggers
for sound events (see Chapter 1.3). The time periods in use are comparable in duration to notes or
bars  in  traditional  musical  notation.  However,  timing in  sequencers  can  also  be  referred  to  as
frequency, as they use loops in time and positions within those loops to create rhythmic or melodic
patterns. The widely used term 'beats per minute' is a common unit for frequency on a larger scale
suitable for sequencing beats.

39



2.1.1   Pulses, beats, and bars

As pointed  out  in  chapter  1.1  musical  structure  is  essentially  time-dependent  and  has  to  be
organized on different scales for achieving structural depth in a piece.

The timing mechanism I propose for generative sequencing creates a time grid in which sound
events can be placed and assembled to loops and variations from a minimal unit of time that I call
the 'basic pulse'. All the sequencers involved in a setup would refer to this time-grid as a reference
for their actions. To provide the system with different scales a number of pulses are summed to a
beat and a number of beats are summed to a bar.  Figure 26 illustrates the timing mechanism for
creating beats and bars out of basic pulses. The shown example would correspond to a 4/4 time
signature.

Fig. 26  Time schedule in pulses, beats, and bars.

The main advantages of the described timing strategy are the following:

• The basic pulse can be set arbitrarily – also to very small values when very short time intervals
are desired. This is interesting for designing sounds that are not bounded to a traditional musical
rhythmic structure – for example, tight groups or clusters of sounds within a short time interval.

• The number of basic pulses used to make one beat or one bar can be set as time grid for an entire
piece or installation but every structure generating mechanism can be adjusted separately by
setting the internal number of pulses to form a loop.

•  The overall speed of a piece can be changed at any time for the whole system  by changing the
duration of the basic pulse.

• The flexible definition of 'beats' and 'bars' allows working with unusual time signatures. It allows
the defining of longer temporal structures that always keep relying on the basic 'pulse' and its
current length.
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2.1.2   Timing implementation in Puredata

The Pd object that produces the pulses, beats, and bars that the generative system uses as a time
grid is called the 'pulser'. The duration of the basic pulse and the duration of beats and bars can be
changed at any time to change the speed of the sequences and processes that depend on. The use of
such a central pulse generator has proven to be advantageous because it allows several temporally
synchronous processes to be flexibly designed and manipulated without losing the coordination
within a global temporal structure. 

Fig. 27  the 'pulser' object in Puredata. 

In the 'pulser' object a 'pulsrate' is specified in milliseconds in the pink 'pulsrate-ms' number-box
or  given  as  the  first  argument  of  the  'pulser'  object.  When  switched  on,  the  'pulser'  starts  to
increment an integer number at every 'pulse'. This pulse number is perceived by all the structure
generators involved in a setup and is used as the basis for temporal structuring. Additionally, a 'beat'
and a 'bar' is defined. The 'beat' is composed by various 'pulses', the number of 'pulses' that form a
'beat' can be specified in the 'pulses/beat' number box or given as its second argument. The 'bar' is
composed of various 'beats'. The number of 'beats' that form a 'bar' can be specified in the 'beats/bar'
number box or given as its second argument. In the 'bpm' number box to the right, the resulting
beats per minute are shown. The 'bpm' number can be changed and set in the GUI. This will adjust
the 'pulsrate' to achieve the desired beats per minute. To the lower right of the 'pulser' the resulting
length of one 'bar' is shown in milliseconds. The 'beat' and the 'bar' were implemented to simplify
setups that use multiples of a basic pulse for temporal structuring. In the GUI of the 'pulser' there is
also a 'dsp-load' number-box that shows the mean CPU load. 

In the example shown in figure 27, the pulse is 120 milliseconds long and four pulses will form a
beat, which results in 125 beats per minute. A bar lasts 4 beats and is therefore 1920 milliseconds
long.
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2.2 The communication medium: Connecting user interface, 
structure generators, and generative sound sources 

Based  on  the  timing  structure  made  from  pulses,  beats,  and  bars  I  began  developing  a
communication  strategy  suited  for  the  organization  and  connection  of  different  timescales  and
control layers. Like this it should become possible to organize the sequencing system in a hierarchic
tree-like structure: Short periods of time should be organized according to large-scale sequences and
small structures should be grouped and arranges to form larger structures. 

To achieve this goal I experimented with interconnected switches or finite-state machines that can
be accessed both via the user interface as well as by an automated control structure (i.e. the structure
generators on different scales in the system). These switches would finally control the play-modes
of the involved generative sound sources either by being activated manually or automatically. A
system should be able to include several generative sound sources, like the model in figure 22, and
it should be possible to perform the following operations: 

• Switching a generative sound source to a specific generative play-mode: So the switch had to
include two variables: The identity of the sound source and the play-mode to switch to.

• Switching several sources at the same time via the GUI: That means that the switches have to
have some marker to prepare various of them for switching at a desired point of time. 

• Going back to the former state of all involved sound sources: So the switches need to have a
memory or stack that allows stepping back to a former state.

• Connecting  the  different  sound sources  to  form a  network  that  could  serve  as  a  large-scale
structure generator: To achieve this, the switches have to be connectable to other switches and to
logical operators.

• Switching one  or  several  structure generators:  So the  same switches  have  to  be suitable  for
switching generative sound sources as well as for switching the large-scale structure generators.

• It  should be possible  to execute all  the switching operations  by hand via  the GUI or by an
automatic structure generator.
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2.2.1   Communicating finite-state machines: The 'local states'

To meet these criteria I conceived special switches which I will call 'local states' in the following. 
The  local  states  are the  communication  medium  between  the  generative  sound  sources  and  a
structure generator operating on them. They are also the communication medium that connects the
user interface to a large-scale structure generator and the generative sound sources. Like this, the
user becomes also a kind of structure generator,  that  uses the local  states  to control  the sound
sources.  This  allows  the  design  of  finite-state  transition  networks  or  tree-like  structures  that
resemble generative grammars. 

The idea of using 'local states'  as I describe them here came up when I tried to organize the
interaction of various generative sound sources for a sound installation. I used recordings of speech
in superposition with field recordings that should be followed or replaced by different rhythmic
patterns by certain probabilities and so on.  So I  had a lot  of different pre-edited (more or less
generative) 'play-modes'  i.e.  instructions for the generative sound sources of the system. In that
situation, I experimented with a setup that should allow defining which play-modes could sound
together  and which are logically  excluded because they belong to the same sound source (like
playing two melodies at the same time on one 'instrument'). Working on this problem I ended up
using 'local states' that are always associated with two variables: the sound source and the play-
mode. When switching to a specific play-mode, any other active play-mode (if there is) of the same
source must be switched off first so that there is no confusion. This is also useful when improvising
with several sound sources and play-modes in a live situation. Naturally, a sound source can only
realize one play-mode at a time, excluding all other possible play-modes. And all present sound
sources can simultaneously realize one of their play-modes without any logical exclusion. This fact
is reflected in the local states as shown in figure 28. 

The local  states  are  also reacting to  a  'global  state  number'  in  terms of keeping or changing
(refreshing or rewriting) their actual state when the global state number is increased. This function
makes them much easier to organize in human live improvisation (see chapter 2.4). 

Fig. 28  The local state specifies a target (sound source or structure generator) and an
exclusive play-mode.
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2.2.2   The grouping of play-modes: building systems, 
networks, and hierarchies 

 
The grouping of local states means combining different local states into a superordinate or parent

local state. When the parent state is switched, all connected child states are also involved. Such
hierarchic  grouping  relations  are  an  essential  component  of  structuring  – both,  in  terms  of
perception and production of structured content (see chapter 1.1). 

The grouping to a parent state can be designed in different ways. It may contain probabilities,
exclusive possibilities, or a certain chronological order within the child states. In this way, it is
possible to build structure generators, that are based on local states in combination with logical
operators and timing information (see chapter 2.3). 

  Fig. 29  Parenting local states to form a simple control network.

Obviously, the switching of such a state transition network could be formulated as a generative
grammar, where the parent states would be non-terminal symbols and the child states would be
terminal symbols which are then mapped to a perceptible form by the generative sound sources. The
result of the network would be a kind of sentence, a sequence of the active play-modes at a certain
point in time. In this view, however, the sequence produced by the grammar or network would not
be a temporal sequence,  but a  simultaneous arrangement.  In a  more complex system, there are
mostly constraints concerning the temporal sequence and concerning the synchronous arrangement
of simultaneous elements. On the question of the distinction between diachronic and synchronic
structure, see chapter 2.3.
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2.2.4   Implementation in Puredata: The 'losta' object

The local state object 'losta' is in principle a finite-state machine with an ON and an OFF state and
a memory (or stack) of all its past states that allows it to switch back to the former state. The state of
a 'losta' is shown and can be switched via its main toggle (green in figure 30). The special of the
'losta' object is, that it is identified by it's arguments69 and the way it is able to interact with other
'lostas' in a generative setup. So the arguments (in figure 30 'snare'  is the first argument, and a
shortcut referring to playing instructions is the second) are comparable to 'instrument' and 'play-
mode'  in  a  musical  setup.  For  practical  reasons the  'losta'  is  designed as  one  switch for  every
possible 'play-mode'. As the first argument refers to a generative sound source, various 'lostas' in a
system will interact respecting a logical 'OR': only one can be in an ON position at a time. 

Fig. 30  A local state group of four 'losta' (as an abbreviation for 'local state') objects in Pd.

Furthermore, the 'losta' object can be used in various sub-patches in any number of copies. Any
'losta' having the two arguments identical is switched to the same state, respecting a logical 'AND'.
This makes it possible to control multiple instances of 'losta' in and from different sub-patches70.
Anyway, the main idea of using these interacting 'losta' objects is to be able to build various parallel
or  exclusive  control  structures  (i.e.  structure  generators)  that  can  be  addressed  manually  or
automatically.

In live improvisations with sequencers, it is certainly practical to switch between different pre-
edited generative play-modes for keeping an adequate amount of control. Doing that, it is necessary
to switch OFF other play-modes of the same sound source first.  This function allows to easily
define mutually exclusive play-modes that can not be executed at the same time. 

69 Pd objects have often one or several arguments specifying the function of the object. These arguments stand simply
after the name of the object separated by a space, they can be numbers or symbol strings, see chapter 1.3.

70 In my setups normally I use a main-patch – which is the user interface in the model of figure 25 where I have an
overview of all  play-modes  and where  I  can  control  important  parameters  of  timing and mixing.  In  this  user
interface,  I  would put an instance of  every 'losta'  in use to be able to activate all  the play-modes used in  an
installation or sound piece by hand. Then I would use a sub-patch where the sound sources are connected with the
corresponding 'lostas' (i.e. play-modes) setting the actual play-modes via messages. Finally, I would at least use one
more sub-patch for building a  structure generator for the large-scale timing and interaction of the involved 'lostas'.
See chapter 2.5 for more details on the user interface. 
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Another important feature of 'losta' is its recognition of the 'global state number' and its changes.
The global state number is the reference number of the additional toggles in the GUI of the 'losta'.
The leftmost (orange in figure 30) toggle specifies the state of the respective 'losta' at the past global
state, while the rightmost toggle (light blue in figure 30) specifies the state at the next global state.
As this function is more decisive for the creation of a user interface for human improvisation it will
be discussed in chapter 2.4. 
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2.3  Structure generators  

For the automated generation of structured sequences, it is necessary to design mechanisms that
produce  these  structures  on  a  symbolic  level.  These  mechanisms  – holding  and  applying  the
instructions required to produce the desired structures – I call 'structure generators' in this thesis71.
Depending on the position in the generative system the structure generators work with the systems
timing information and/or other trigger or step mechanisms accessible within the GUI. The structure
generators  can  be  designed  in  many  different  ways,  using  diverse  generative  approaches  and
methods.

 It is possible to describe a structuring process by the use of generative rules or constraints. When
starting from a set of possible events (like the words of a language) the most unstructured and
unrestricted way to sequence these events would be a random function that does not establish any
relations between the succession of the events. As specified in chapter 1.1 structuring a musical
sequence means establishing horizontal and vertical relations to interpret (perceive and understand)
and/or generate the respective sequence.

Horizontal relations are conditions or links between elements of the form: 'When A happens B
happens at  the same time or at  the next step'  (like in Markov chains or regular grammars,  see
chapter 1.2). These relations or rules can contain probabilistic selection out of various possibilities.
A vertical relation is the formation of groups of events or elements which can be repeated, varied, or
grouped again. A more complex generative system would also use conditioning constraints to make
decisions depending on other changing parameters or activities in the system. As mentioned in the
last chapter, a setup with interconnected local states is a very adaptable scenario that allows using
different  mechanisms,  algorithms,  and  methods  to  organize  and  interconnect  generative  sound
sources and their play-modes.

Fig. 31  Model of a structure generator linked to the system timing.

71 Following Karlheinz Essl, who used this term in his 1996 work of the same name in German: ' Strukturgeneratoren'
(Essl 1996). See chapter 1.1.
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Figure 31 shows a graphic model of how a structure generator interacts with the system timing to
generate  a  sequence  from  available  elements.  Depending  on  the  architecture  of  the  structure
generator  (which is  not  specified in this  model),  the rules could contain information about  the
placement within the timeline, the succession of elements, repetition and variation. 

2.3.1   Small-scale and large-scale structure

For  being  a  structure  generator  (and  not  only  a  pattern  generator)  the  possible  definition  of
vertical relations like the grouping of elements is essential. In figure 32 the output elements of a
structure generator (R, S, T, U, V, W) are used as input of a further structure generator on a smaller
scale. The result is a tree structure, where 'larger-scale' structures contain or manipulate 'smaller-
scale' structures. I use 'smaller' and 'larger' here to emphasize the capacity of relating different scales
of timing or grouping. As shown in figure 29 the local states provide a communication medium for
this purpose by enabling grouping and parenting.

 In  the generative system described here,  the 'smallest-scale'  structure generators  are  situated
within the generative sound sources. They produce rhythmic and melodic patterns specified by their
play-mode.  The  'larger-scale'  structure  generators  are  organizing  sequences,  overlays,  and
interactions of play-modes of generative sound sources via the local states.

Fig.  32  Model  of  structure  generators
interacting on different timescales.
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2.3.2   Synchronous and diachronous structure 

An  important  aspect  when  speaking  about  musical  structure  is  the  differentiation  of  the
synchronous and the diachronous structure and its interaction72. As pointed out in chapter 1.1 the
perception and production of structure within a highly time-dependent medium such as sound is to
be imagined more as an organized flow of interconnected streams than a static system. The creation
of time-dependent structures or streams must always take two factors into account: 

• The  factor  of  succession/evolution  or  diachronicity:  How  to  create  a  stream  and  its
movements.

• The factor of simultaneity or  synchronicity: How to coordinate several parallel events and
streams in terms of interaction and overlay. How to create a group (or stream) of streams. 

 The formation of musical streams relies on various factors or principles73. These principles are
either synchronous, diachronous, or both (figure 33):

Synchronous principles Diachronous principles Combined principles 

The principle of tonal fusion The principle of temporal 
continuity

The (pitch) co-modulation 
principle

The onset synchrony principle The (pitch) proximity principle

Fig. 33 Table of synchronous and diachronous stream formation principles.

Fig. 34  Schematic model of stream formation factors along a horizontal time axis.

72 Cambouropoulos analyzes the interplay of diachronic and synchronic grouping in stream formation and states: 'In a
sense, there is a competition between the vertical [i.e. synchronous] and horizontal [i.e. diachronous] principles of
auditory grouping. It is exactly this competition that makes it difficult to describe processes of auditory streaming
systematically.' (Cambouropoulos 2008, 78).

73 In  this  thesis  I  describe  the  most  important  factors  for  perceiving,  separating,  and  creating  musical  streams
according to (Cambouropoulos 2008), see chapter 1.1.
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For the sequencing system described here,  one can assume that the generative sound sources
correspond roughly to musical streams, as they are designed for producing a sequence of closely
related sounds. In this sense, the structure generators situated within the generative sound sources
are based on diachronous stream formation factors74. When it comes to organizing the interaction
and the large-scale behavior of several generative sound sources synchronous structuring becomes
more important.  Figure 35 shows a  model where the synchronous and diachronous structuring is
illustrated  using  the  local  states  introduced  in  chapter  2.3.  Here  the  large-scale  diachronous
structuring  is  an  alternation  of  the  local  states  'Tt'  and  'Uu'.  'Tt'  is  linked  to  a  synchronous
structuring mechanism, that activates one of three possible local states (Xx, Zz, Ww). Each of these
local states is linked to a group of play-modes.

 

Fig. 35  Diachronous and Synchronous structuring using local states.

74 As pointed out before, the generative sound sources are similar to musical sequencers with generative extensions.
Such musical sequencers are mostly designed to create one-dimensional musical streams by arranging sound-events
within a time loop.
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 In this example, there are three generative sound sources that can play at the same time. The
synchronous structuring concerns the decision about which play-modes can be executed together
and which  ones  cannot.  A symbolic  representation  of  this  process  is  shown in  figure  36.  Two
alternating states produce a synchronous group (Ab/Be/Ch) of active states. The symbols or states
of the synchronous sequence are finally transformed to various diachronous sound sequences or
streams by the generative sound sources. The most obvious stream formation factor here is the onset
synchrony principle, as the three parallel play-modes start  at  the same time. Further factors for
stream formation or separation should be considered in the definition of the commonly realized
play-modes, here represented by the distribution of colored dots. 

Fig. 36  Diachronous and synchronous stream formation according to local states and generative
sound sources.
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2.3.3   Implementation examples in Puredata

The 'Timed Structure Generator' (TSG): Structuring diachronous 
sequences

For the purpose of structuring sequences that can be used on different timescales (also for the
large-scale  control  of  a  generative  system),  I  implemented  a  Pd object  called 'Timed Structure
Generator' or TSG. This sequencer generates timed strings of numbers which is a further step that
can be used for creating sequences and arrangements of sound sources and their play-modes. The
output  is  numbers  that  can  be  redirected  via  the  communication  medium (the  local  states,  see
chapter 2.2) to form structure generating networks (see figure 35, 42, 44). The timing can refer to
the bars, beats, or pulses given by the system timing (see chapter 2.1) and the output sequence will
be timed within a loop. The length of the loop is set by the number of time slots it contains.

Fig. 37  The 'Timed Structure Generator' (TSG) in Puredata.

The 'timing' section:
In the timing section (fig 38) the events or outputs are set as probabilities. In the example shown,

there are eight time slots and a black bar which enables to set the probability of an event at the
corresponding time. 

Fig. 38  The 'timing' section allows setting the output or event timing as probabilities.
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The 'selection' section:
Here the set of possible output numbers can be limited within a 'RANGE' or entered as a 'LIST'

via the corresponding inlets or by message. The mode of selecting the output numbers can also be
specified. The possible modes are:

• 'ROW': The output numbers will form a row. In the number box, the step size can be defined.
• 'markov': Finds the output numbers with the help of a transition matrix, which specifies the

probabilities of a direct succession of the output numbers (as this is done in a Markov Model).
The transition matrix can be entered via the rightmost inlet or by a message.

• 'urn': This refers to a random with memory (outputs all possible numbers randomly before
repeating a number).

• 'probs': Here, the numbers will be selected as specified in the probability array to the right,
where the probability for every possible number can be set.

Fig.  39  The 'selection' section defines how the output numbers will be chosen from the pool of
possible numbers.

The 'repeat' section:
Another important structuring tool implemented in the TSG is the repeat function  (in the upper

center of the GUI). Here one can force the TSG to repeat one or several output elements regarding
timing and/or selection. The repetition of one or several entire loops is also possible.
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Tools for arranging synchronous groups

For this task, it is possible to use the local states and connect them via grouping mechanisms to
various child states (see figure 35). In the following, I describe two grouping mechanisms that I
implemented in Pd for the arrangement of synchronous groups of active states.

The 'urn_on_distributer' object sets a number of active states within a set of possible states. The
selection algorithm is random with memory ('urn'). The arguments of the object define the number
of possible states and the number of states to be set to ON. The output is a sequence of pairs of
numbers, which specify a state number and its state (1 or 0). This output can be connected to a
'route' object to form a group of possible local states (like in figure 42) whose states (On or OFF)
will be set according to the 'urn_on_distributer' object. In the example shown in figure 40 five states
are  given,  two will  be  set  to  ON and three  to  OFF when 'urn_on_distribute'  is  activated.  The
distribution is recalculated whenever the object receives a 'bang'. Like this, it is possible to map a
timed sequence to a changing distribution of active states.  

Fig. 40  The 'urn_on_distributer' object in Pd.

The 'on_grower' object also performs a grouping operation that defines a number of active states
within a set of possible states. It increments or decrements the number of active states whenever
receiving a bang in the fourth inlet. The arguments of this object are the number of possible states,
the number of active states when starting, and the number of states to set active or inactive in the
next step.  

Fig. 41  The 'on_grower' object in Puredata.

These  synchronous  grouping  objects  can  be  connected  to  local  states  to  build  networks  for
organizing the play-modes of various generative sound sources and their overlays. In figure 42 a
central 'on_grower' object is used to switch six groups of local states. 'urn_on_distribute' objects are
used to choose the active states within these groups. In this practical case, the groups correspond to
six instruments of a drum-set or percussion group. 
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Fig. 42  A network of grouping objects connected to local states
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Example of a large-scale structure generator based on a Hidden Markov 
Model

To give an example for the setup of a Hidden Markov Model (HMM) I will describe a patch,
where I use a Markov-chain of four states that gives a harmonic background to the bass-line and the
melody-line by setting different  harmonic scales  from which  pitch values  can be chosen via  a
stochastic process (see chapter 1.2 for a description of the HMM approach). So there will be a MM
that generates the changes between different scales, in this case, C, B, As, and G. The succession
scheme or basic movement model should be a modified circle (see figure 44), with a possible step
in both directions. The 'clockwise' direction in our circular model will get a chance of 50 %, the
'counter-clockwise' direction 25 %, and the chance of staying in the same state will be 25 %. An
exception to this should be that As should have only a chance 25 % chance to go to G and 50% of
going back to B. G should always go to C directly, and C cannot go back to G (like marking an
endpoint  of  the  circular  movement  not  happening  so  often  as  the  other  changes)  Given  this
information the transition matrix of the MM looks like this:

C B As G

C 0.5 0.25 1

B 0.5 0.25 0.5

As 0.5 0.25

G 0.25

Fig. 43  Transition matrix for harmonic state generation.

This transition matrix can also be written as: C C B, B B As As C, As As  B B G, G C (or 1 1 2, 2 2
3 3 1, 3 3 2 2 4, 4 1, in figure 45, by giving the states a number). In this formulation of groups of
states separated by a comma, the first state of every group denotes the actual state followed by its
possible successors, where the number of times a state shows up determines its probability. When
programming in Puredata this formulation makes it easier to implement a Markov process.
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Fig. 44  Markov Model as state transition graph.

Given this basic harmonic skeleton, the next step is to generate the note values/ pitch sequences to
complete the HMM. The simplest way to do that would be to chose randomized or weighted values
out of a list given by the harmonic state. Another possibility, which I will realize in this case, is to
use another Markov process for that task. This should bring some structure in the surface layer by
reducing  the  arbitrariness  of  notes  in  direct  successions75.  So  the  basic  harmonic  skeleton  is
produced by a first MM (figure 44) and another MM will determine the pitch values.  

The  first  MM  (harmonic  skeleton,  the  hidden  one)  will  be  a  stable  model  for  generating  a
movement over a longer period of time. The second MM (for the note values) should be more
volatile and change over time to produce more change and surprise in the resulting sequence of note
values. For this purpose, I will define the corresponding transition matrix by generating the training
sequence by a stochastic process. The resulting MM can be employed for a period of time (which
will appear more stable to the listener) and then be changed by generating a new transition matrix
(which will appear as a major change). In this example, the beginning of a new 'round' of harmonic
states marks the point in time when a new MM for the pitch values will be generated76. 

Cross-relations: When  using  a  large-scale  structure  generator  like  shown here  it  can  be  an
interesting  approach to  use  its  output  also  in  other  fields  of  the  generated  musical  piece,  like
rhythm, effects, etc. The same Markov process can be used to form another HMM which is linked
to  the  rhythmic  dynamic  in  some way. The  goal  of  such a  cross-relation  is  to  emphasize  the
wholeness of the resulting structure by using a technique of parallel evolution (see chapter 2.3.2)
between the melodic and the rhythmic dynamic77.

75 Rens Bod (Bod 2001) shows the importance of direct succession within the layer of perceived pitches by testing
different parsing strategies on a large folk-song collection. Apparently,  the perceived structure can be captured
much better when introducing a Markov Model reflecting the probability of the succession of note values – which
in this case is taken out of a large set of folk songs ('training set').

76 This approach is documented as an audio example on: werkstatt.hotglue.me/sound (Jan 2021).
77 This is exactly how the rhythmic background, the bass line, and the melody line are related in the audio example

'Hidden Markov Chain' on: werkstatt.hotglue.me/sound (Jan 2021).

57



Fig. 45  The HMM implemented in Puredata. 

Figure 45 shows the corresponding large-scale structure generator implemented in Puredata: A
TSG object generates the states of the harmonic MM. The four possible states are represented as
'losta'  objects  named  'bendmel',  which  will  be  switched  according  to  the  MM.  The  transition
possibilities are introduced by the message sequence to the upper right. The 'send refresh-mel-states'
marks the points in time when the harmonic state is changed. The 'send new-markov-fund-cycle'
marks  the points in  time when the Markov process comes back to  its  starting state.  The 'losta'
objects  communicate the active state within the generative system and can so be used to build
HMMs for different purposes.

58



2.4 The graphical user interface (GUI) 

As I mentioned at the beginning of chapter 2, one of the challenges was to develop a setup that
could be used both for human improvisation as well as for machine improvisation by the creation
and  running  of  generative  production  mechanisms  or  systems.  I  used  the  term  'algorithmic
improvisation' to describe this open interaction between algorithmic structure generation and live
intervention within one sound-producing system (see chapter 2.1). The key to creating a system that
meets these criteria on a PC or laptop is, of course, the graphical user interface (GUI). In chapter 2.5
we will see the generative sound sources having their own GUI allowing the user to set different
parameters, and to start or stop the sound production. In this chapter, I will describe the GUI for the
whole generative sequencing system its implementation in Puredata. When considering the GUI, the
programming  environment  is  quite  decisive  as  it  offers  specific  methods  of  interacting  with  a
production system. Being a graphical programming language, Puredata makes it relatively easy to
set up graphical representations and control mechanisms for the running processes. 

When I speak about the GUI here I am referring to a visible control structure built for operating a
generative sequencing system by user intervention. This control center is set up in a Pd-patch where
the  most  important  parameters  can  be  controlled.  It  should  therefore  provide  control  over  the
following areas:

• Audio mix control: Control over audio parameters (volume, panning, etc.). Mixing and routing
audio signals from groups of generative sound sources to the sound output.

• Sound source control: Control over the involved generative sound sources and their previously
defined play-modes.

• Automation  control:  Control  over  generative  mechanisms (large-scale  structure  generators  in
figure 22) like the grouping and arranging of generative sound sources and their play-modes and
parameters.

Figure 46 shows a schematic diagram of the GUI and its different areas of control. Figure 47
shows a possible implementation in Puredata. Here we see mixing consoles for the different audio
groups which are bundled to form the master track (yellow). The control over the sound sources and
the automated structuring mechanisms or (large-scale structure generators) is organized with the
help of 'losta' objects which can be switched in the GUI. 

59



Fig. 46  Schematic model of the GUI for controlling a generative sequencing system.

Fig. 47   Example of a GUI implemented in Puredata.
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2.4.1   The mixing interface

In order to run several sequencers or sound sources, a mixer setup is required that allows to form
different groups, to place effects on individual or multiple sound sources, to influence the resulting
mix as a whole, etc. The mixer setup itself is not at the core of the generative sequencing processes
but it allows to expand these processes over a wider range of sound characteristics and to place
structuring interventions at different layers of the system. Sound sources can be grouped to form
perceptible musical streams by bundling them into one channel and applying effects or filters on it.
Effects and filters themselves can be connected with other timed processes or receive their own
temporal structuring. In any case, the mixer setup is a central aspect of the practical work in sound
production.

The system I use for mixing and controlling the different audio signals present in a sequencing
setup corresponds roughly to a mixer or mixing console: Several tracks are combined into a master
track which is connected to an amplifier and speakers via a suitable audio interface. There is the
possibility to send the individual tracks to an auxiliary channel to create groups on which effects
can be placed and the like. In figure 44 a possible mixing arrangement is shown. In this case, the
vertical areas represent a group of sound sources that are bundled to form an audio group (channel
or  track).  Audio parameters  like volume,  panning,  and routing can be set  in  the stereo mixing
consoles at the top of every group. All the audio groups together are summed up to the master
channel which allows controlling the important audio parameters of the entire mix before going to
the amplifier.  

 The stereo setup

Depending on the application of the generative sequencing system it is preferable to work with
different  numbers  of  audio  channels  and  spatial  distributions  of  speakers.  Figure  47  shows  a
standard stereo setup for two audio channels.  

 The 'stereo-bus-aux' object is designed like a
stereo  mixing  console  for  controlling  one  or
several sound sources bundled to a channel. The
interface  consists  of  volume  control,  panning
control, a low-pass and a high-pass filter, and a
toggle to enable effects. The output audio signal
can be routed to the master track, two auxiliary
tracks, and the signal outlets of the object in Pd
('thru'). 

Fig. 48  The 'stereo_bus_aux'.
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The Ambisonic setup

When creating immersive sound installations it  is  suitable to use more than two speakers for
distributing  sound events  around  the  listener  with  a  higher  spatial  resolution.  The  'Ambisonic'
format78 is an audio format that makes it possible to design pieces with detailed spatial information
of the included sound events and to flexibly organize sound installations with multiple speakers.
The individual sounds or sound sources can be located and moved in the room with the indication of
azimuth and elevation. It is also possible to change the position of the sounds automatically and to
use causal chains that connect certain events with certain positions or movement patterns. In the
generative system described here,  the sound sources  can be distributed and moved in space by
defining their coordinates via 'azimuth' and 'elevation' (figure 49). Controlling the position of the
sound sources opens a further  dimension, where structuring and generative mechanisms can be
applied. 

 The 'encodeAmbi5'  object  allows situating a
sound  source  in  space.  The  'AmbiDecoder'
maps  the  result  to  the  present  output  system
(i.e. the distribution of speakers).

Fig. 49 The 'encodeAmbi5' and the 'AmbiDecoder'.

78 See (Zotter/Frank 2019) for more information on the Ambisonic format and the spatial distribution of audio sources.
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2.4.2   A GUI for improvisation with local states and structure 
generators

As shown in  chapter  2.2  the  use  of  local  states  (or  'losta'  objects  in  Pd)  provides  a  simple
communication  medium between  the  different  layers  of  the  generative  sequencing  system  – it
connects the user interface and large-scale structure generators with the generative sound sources
(see figure 25). One of the reasons for introducing the local states was the necessity of dealing with
multiple generative sound sources in one system without losing the overview in the GUI. The local
states can represent the play-modes of the generative sound sources present in the system. They can
be displayed and switched on one screen without displaying all the corresponding sound sources,
like in figure 47, where the 'losta' objects are placed below the stereo mixing boxes of the audio
groups. This way it is possible to improvise with the play-modes by switching them on and off
manually or automatically with the help of a superordinate structure generator. As we have seen in
chapter 2.2 the local states can be used to group various play-modes and form tree-like structures
while still be placed and operated within the same GUI. This makes it possible to run automatic
structure generators operating on the sound-sources as the user, who still can intervene or improvise
in parallel.

Global states and local states

When using a generative sequencing system for live improvisation with I found it necessary to be
able to switch several local states at the same time and being able to go back to the last distribution
of  active  states  (so  to  switch  from  one  distribution  to  another  one  and  back  again).  After
experimenting with different setups and mechanisms for grouping and organizing the local states I
ended up using 'global state numbers' that describe the system in terms of active local states at a
given point in time. The mechanism consists in marking the local states to be active or inactive in
the next global state and then increment the global state number. That's what the additional toggles
of the 'losta' object are designed for (see figure 30). The main toggle (in the middle) shows the
current state of the 'losta'  – ON or OFF. The smaller toggle to the right sets the state of the 'losta'
after increasing the global state number. The smaller toggle to the left sets the state of the 'losta'
after increasing the global state number. So if the 'next' toggle is ON, the 'losta' will be ON after
switching the system to the next 'global state', when it is OFF it will be OFF. 

The 'losta' remembers its state at all past global state numbers and recalls it when going back to a
global state number that has already occurred in an improvisation. Like this it is possible to reverse
one or several steps, recalling the distribution of active local states at a given global state number.
That's also where the 'all-next-off' and 'all-last-off' buttons of the 'global state changer' come into
play –  they switch off the 'next' or 'last' toggles off all involved 'losta' objects79.

79 To give a simple example of what I use this mechanism for: If several sequencers are playing and I want only the
base drum to continue, and then, after a certain time, go back to the former state, I simply would switch off all 'next'
toggles with the 'all-next-off' button in the 'global state changer'. Then I would switch the 'next' toggle of the bass
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global state number: to sound source A: to sound source  B: to sound source C:

1 local state A a

2 local state A b local state  B d

3 local state A a local state  B e local state  C g

4 local state A a local state  B d

Fig. 50  A table showing increasing global state numbers and corresponding active local states.

Figure 50 shows a possible sequence of global state numbers in relation to the active local states
in a system with three sound sources (A, B, C). The local states specify the active play-mode of the
corresponding sound source. A table like this describes the evolution of the generative system in
terms of active local states (and associated play-modes) at a given global state number.

Fig. 51  The 'global state changer' object in Puredata.

The Pd object 'global state changer' (figure 51, in figure 47 in the upper left corner) sets a global
state number and communicates this number to the 'local states'. The current 'global state number'
shows up in the light blue 'GS-NR' number box. The GUI allows to switch between 'pulses', 'bars' or
'beats' (emitted by the 'pulser' object) as timing reference. The 'NEXT' and 'BACK' buttons allow to
switch between 'global states' manually, with the quantization specified in the 'quant' number box.
This quantization is important, because in many cases it is preferable to change the 'global-state' and
the depending 'local states' at a certain point in time, for example at the beginning of the next bar.
The smaller number box to the right shows the current position in the quantization grid. 

The green 'auto' toggle switches the change of the 'global states' to automatic. In this case the
'global  state  number'  will  increase or decrease automatically  with the specified rate.  The 'prob'
number box sets the probability for changes to happen (10 is a probability of 1) and the 'dir' switch
allows to set the direction to right (forward, increases the 'global state number') or left (backward,
decreases the 'global state number').  The buttons 'all-next-off' and 'all-now-off' refer to the 'local
states'. The 'local-states' can be switched all together by these buttons which is particularly useful in
live improvisation.  

drum on again, before switching to the next 'global state' by pressing the 'NEXT' button of the 'global state changer'.
Finally, after the desired time with only the bass drum playing I would press the 'BACK' button of the 'global state
changer' to switch everything back to the former state.
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2.5 The generative sound sources

In this  chapter,  I will  present some generative sound sources as I  use them in the generative
sequencing  system  described  here.  The  generative  sound  sources  are  in  principle  structure
generators combined with sound production mechanisms and a graphical user interface. They can
be connected  to  other  (larger  scale)  structure  generators  via  the  communication  medium (local
states, see chapter 2.2). They can also be seen as a form of virtual instruments and they can be
characterized by the following common features: 

• The use of a GUI (Graphical User Interface): The sequencers presented have a graphical user
interface and can thus be operated in real-time on the screen of a laptop or PC using the mouse.
This workflow is particularly suitable for live improvisation.

• The possibility of automated control: The sequencers presented can be controlled via "messages"
in Puredata.  Thus,  automation can be designed,  such as the recalling and relating of  certain
settings or events. This approach is particularly suitable for sound installations or programming
generative systems.

• They are generative in some kind and dispose of methods for randomization and the limiting of
randomness. The aim is to create and structure relationships between the sound elements used
and their possible variations.

• They include probabilistic modes of operation: They are probabilistic in the sense that essential
variables are entered as probabilities.

• They  are  open  for  mutual  combinations:  Any  number  of  sequencers  can  be  operated
simultaneously and interconnected in different ways. 

In the following I will describe two generative sound sources I implemented in Pd and which I use
frequently: The 'pitch_group_sequencer' (PGS) and the 'loop_slice_mangler' (LSM). However, in
my practical realizations, I also used other, mostly simpler, generative sound sources. Depending on
the  application  area  different  stochastic  and  generative  methods  can  be  applied  to  produce
structured  sequences.  Thereupon  different  mapping  strategies  can  be  used  to  map  symbolic  or
numeric content to the production of sound80.

80 More information on the use of stochastic methods for the production of sound and the mapping of symbolic values
to sound production mechanisms can be found in (Farnell 2010). 
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2.5.1   The 'Pitch Group Sequencer' (PGS): A two-dimensional 
probabilistic sequencer 

The PGS (Pitch Group Sequencer) is a sample playback sequencer. It works by selecting samples
within a group of samples (i.e. sound files), selecting the playback speed (or 'pitch'), and selecting
the points in time for starting the playback.

Fig. 52  The PGS (Pitch Group Sequencer).

The PGS consists of two sequencers running in parallel, which correspond to the TSG ('Timed
Structure Generator') described in chapter 2.3. One TSG determines the selection of the sample
within the defined group, the other TSG determines the reading speed of the sample (and thus the
pitch). So the PGS produces two numbers at certain points in time representing the sample number
and a pitch value (or playback speed) which triggers a sample playback mechanism. The selection
of these numbers is based on various types of weighted randomness and the setting of probabilities
(the 'selection modes'). In practice, I have mainly used this sequencer to play and vary samples for
creating rhythmic and melodic patterns.  

The volume control:
To adjust  the  volume,  a  slider  is  used  which  can  be  adjusted  manually  or  set  by  'message'.

Furthermore, it is possible to automate the volume in a loop, i.e. to set values that are repeated in a
certain period of time. The automation can be discontinuous or continuous  ('auto'  or 'line'). The
random button varies the volume randomly for every triggered sample in the entered range.

 Fig. 53  The volume control.
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Sample overlay and timing preset:
The PGS can reproduce a maximum of 10 samples simultaneously. It is often useful to cut off a

sample that is still running when a new one is triggered. This is achieved by setting the 'overlap'
number to a lower value, specifying the maximum number of parallel playbacks. It is also possible
to limit the samples played back to a fixed duration.

On the right-hand side one can also define a preset regarding timing:
• 'endfix' sets not the beginning but the end of each sample to the selected point in time. 
• 'delay' delays the trigger time by a fixed or random value. 

 
   

Fig. 54  The overlay and timing adjustment. 

The 'File' and 'Speed' sequencers:
The timing and selection mechanism of the file and speed sequencer sections are working in the

same way as the TSG described in chapter 2.3. In the PGS two TSG are combined in such a way
that variations in the timing and the selection within a group of sound files and their playback speed
can be created by probabilistic constraints.

Fig. 55  The file sequencing part of the PGS.

The 'BEND' section:
This section at the right side of the GUI allows to 'stretch' and 'squeeze' the played samples in

real-time by adapting the playback speed. It has an integrated low-frequency oscillator that can be
timed in pulses to match the system timing.
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Describing the PGS with a probabilistic grammar model:

Restricting randomness:
The  approach  of  probabilistic  sequencing  like  it  is  done  by  the  PGS  is  characterized  by

randomness and its limitation (by excluding possibilities) and weighting (by setting probabilities).
The constraints generated by these restrictions determine the form and structure of the resulting
sound sequence. The restrictions of randomness employed here can be described and systematized
in  different  ways.  They  can  be  simple  limitations  that  reduce  the  range  of  possibilities,  the
weighting of the existing possibilities, or more complex strategies based on the setting of internal
dependencies and rules concerning timing, loop length, etc.

The use of probability is a way of restricting randomness by weighing different possibilities.  In
the PGS, both the timing and the characteristics of an event can be expressed by probabilities,
which are shown and set in a visual array or via a message or the GUI. In figure 55, the left array
named 'fTIMEprobs' shows the probability of an event at all time slots in the loop. The right array,
named 'fELprobs' shows the probability of each event to be selected.

A generative grammar can be notated as quadruple (V, Vt, S, P) in the following form:

V a finite set of non-terminal symbols
Vt a finite set of terminal symbols
S starting symbol of V without Vt

P a set of rewriting or production rules: a -> b, where a  V∈ + and b V*81

The rules by which a 'sentence' or loop is formed in a sequencer can be formulated as generative
grammar and can be deterministic or probabilistic.  

Since such a consideration of sentence formation through generative grammars is revealing when
designing and using the PGS, I will describe the grammar of the PGS in a little more detail and give
a  few examples.  First  of  all,  a  general  grammar  can  be  formulated  that  includes  all  possible
sentences that can be formed by the PGS. This corresponds to all the possibilities that can occur in a
completely open, i.e. randomized, playing mode. 

In a second step, further grammatical rules can be formulated that correspond to specific playing
instructions. In doing so, the general grammar of the PGS (all possibilities) is further restricted to a
grammar with more specific rewriting rules producing a less randomized result.

81 V* is the so called 'Kleene closure' over V (all possible expressions within a grammar).
V+ is the positive Closure over V: V* without empty word string.
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Definition of a non-deterministic generative grammar of the PGS:
A Loop (L) consists of sound events. In the PGS, three variables must be determined for each

sound event (K) (see above) 

• t = the point in time within the loop
• s = the number of the sample within the group of samples (sample number)
• p = the pitch (or reading speed)

Any sound event (K) consists of these three data: t, s and p – time, sample number and pitch:
K = (t,s,p)
 
The variables t, s, and p will be replaced by concrete numerical values in the last rewriting step of

the grammar. The choice of numerical values can be restricted and structured in various ways – but
first I will define the grammar for all possible expressions that the PGS can produce.

When writing a loop in the PGS we start with the loop (L), replace it with a number of sound
events (K) at some points in time (t) in the first rewriting step. In the second step, we replace the
sound event with the sample-number s and the pitch p. L (Loop) is, therefore, the start symbol.
Furthermore, K, t, p, s are used as non-terminal symbols. The terminal symbols used are integers
which are finally interpreted as the instructions for reproducing a sample.

Considering the construction details of the PGS we can make the following assumptions: 

• For t: 1 ≤ t ≤ T (i.e. the selectable points in time located within the total length of the loop
(T)). 

• For s: 1 ≤ s ≤ S (i.e. the sample number is located within the total number of selectable
samples(S))

• For p: -127 ≤ p ≤ 127 (i.e. the playback speed (or pitch) (p) is located within the note values
-127 to 127, which are midi not values interpreted as a positive and negative sample reading
speed)  

The resulting definition of a general generative grammar for the PGS is:

V L, K, t, s, p, e (e = empty)
Vt  integer numbers, e
S L
P1 L --> 1 K ... t K ... T K (1 ≤ t ≤ T, T is the length of the loop to define)
P2 K --> s p | e (K is replaced by sample number and pitch, or empty)
P3 s --> integer from 1 to S (sample number)
P4 p --> integer from -127 to 127 (pitch value)
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Fig. 56  Visualization of a grammar tree for the PGS. In this example a simple phrase.

Figure 56 shows an example phrase for a loop of length four (T=4). On the first time slot the
sample no. 7 is reproduced with a reading speed of 69 (original pitch). Time slots two and four are
empty, while on time slot three sample no. 5 is played with speed 71. The selection of the terminal
numbers and the decision of which time slots stay empty were taken randomly in this case. How the
structuring of a phrase through the definition of rules or constraints can be done, will be shown in
the following.    

Grammar-specifications: Some examples for probabilistic or stochastic82 generation:
For the creation of structured patterns by determining the sound events in the respective loop,

different  rules  or  algorithms can be  applied.  These rules  correspond to  grammar-specifications,
which represent the playing instructions for the PGS by allowing only certain elements at certain
points in time to be selected. The PGS allows to  If only one possible sentence remains, it would be
a deterministic grammar. The examples discussed here usually deal with the assigning of numerical
values t, s, and p while the main structure of the PGS-grammar remains as described above.

'set time probabilities':
This rule can be formulated as follows:

set-tPr [t1(Pr1), t2(Pr2), ... tn(Prn)]: Set the probability for an event at a certain point in time tn to
Prn. Set the probabilities for all t which are not mentioned to 0.

This allows sets the probability of an event at certain points in the loop to a certain value. At the
same time, the probability of all other points in the loop is set to zero. In the PGS the probabilities

82 see (Lindenmayer / Prusinkiewicz 2004, 28 f) for an explication of stochastic production systems
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can be set  by a  message  and are  then displayed graphically  in  arrays  (see  chapter  2.3).  When
defining a loop the points in time get assigned different probabilities for either en event or not. For
this purpose the following grammatical rules will be defined:

V L, K, Pr, s, p, e (e = empty)
Vt  integer numbers
S L
P1 L --> 1 Pr1 K  2 Prt K ... T PrT K (T is the length of the loop to define, Prt is specified in 

the definition of the probability array
P2 Prt K --> s p – to a probability of Prt 

or Prt K --> e – to a probability of (1-Prt) (K is replaced by s p, or e, depending on time 
specific probability)

P3 s --> integer from 1 to S (sample number)
P4 p --> integer from -127 to 127 (pitch value)

In  figure  57,  an  example  of  a  grammar  tree  using  the  'set-tPr'  rule  specification  is  shown,
assuming that the number of time slots in a loop is eight (T=8): 

'set-tPr [1/10, 3/5, 5/5, 7/5]': Set the probability for an event at the first time slot in the loop to
100%, for the third, fifth and seventh time slot to 50 %. No events happen at any other point in time
of the loop. 

Fig. 57  Visualization of a grammar tree example with a probabilistic rule. 

'set pitch-range':
A rule for restricting the set of possible pitch values: 

sPR [a/b]:  Set the possible playback speeds from a to b: a < p < b

Example: sPR [57/81]: Limit the range of playback speeds to 2 octaves.  In the PGS-grammar
model, this means that in the last rewriting step for p only values between 57 and 81 are possible.  
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'set sub-loop probability':
A rule for setting periodic probability values:

sSP [ta/tz/Tl/P]: Start at time ta with a sub-loop of length Tl and set the probability of an event at
the first point of time of the sub-loop to P; repeat this procedure until time tz is reached.

An example is shown in figure 54: 
sSP [33/64/2/8]: Set the probability of an event at the time points 33,35,37,...,63 to 80%.

Fig. 58 The probability array of the PGS after setting a 'sub-loop probability'. 
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2.5.2   The 'Loop Slice Mangler' (LSM): A looper and beat-slicer 
for generative manipulation of sound loops

The  'Loop  Slice  Mangler'  or  LSM  is  a  looper  and  beat  slicer  that  allows  various  forms  of
fragmentation, rearrangement, and variation of loops and samples.

Fig. 59  The GUI of the LSM.

The LSM works with a sound loop (i.e. a sound file played in a loop). The sound file used can be
loaded from a storage medium or recorded live. It forms the basic loop, which can be reproduced,
changed in speed and duration, or sliced into smaller pieces and re-arranged in various ways by the
LSM. This process of slicing, varying, and rearranging is referred to by the term 'mangle'. As the
loop is  segmented  into smaller  pieces  it  is  preferable to  use  sound samples  containing various
distinct elements or attacks.

The underlying idea of generative beat slicing is to develop a table look-up software tool that fits
sound files (i.e. the tables to lookup) into a temporal grid and is also able to break them down into
smaller units, slicing the sound file at desired points in time (beats or attacks). The smaller units
could be organized into patterns and reproduced within the rhythmic grid. To enable the generation
of  variable  patterns  random variables  can  be  placed  at  various  places  in  the  process83.  In  the
following, I will briefly outline the most important technical aspects in general and then describe
the implementation of the LSM in Puredata.

83 See  https://www.soundonsound.com/techniques/beat-slicing-masterclass  (Jan  2021)  for  an  introduction  to  beat
slicing and an overview of beat slicing software.
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Fitting of a sound file into a given rhythmic grid:
To use a sound file as a loop within a piece of music, it is necessary to be able to adjust the length

of the loop flexibly.  This is done by changing the length of the sound file used,  which can be
stretched or compressed to the appropriate length in time-related to the system timing. It should be
noted that a change in length is associated with a change in pitch.

Slicing a sound loop into smaller segments:
The slicing is done by setting and resetting starting points for the lookup mechanism within the

loop. The selection of the starting points is synonymous with the selection of beats or segments
within the original sound loop.

To set potential starting points, there are different possibilities: First, dividing a loop into pieces of
equal length: To set the starting points according to the quarter or eighth notes, the original loop
must be divided into four or eight parts of equal length. The starting points of the quarter notes are
located exactly after a quarter of the total length (see figure 60). Therefore the original loop should
be structured in such a way that the timing matches the slicing. For example, a loop in three-quarter
time would have to be divided into three and not four pieces.

Second, the starting points can be set according to the beats, transients, or attacks actually present
in a sound loop. For this, a sort of beat-finding algorithm must be implemented. Such a mechanism
analyses the loaded sound file to set possible starting points (see Fig. 61). Detecting transients or
attacks  is  also  an  interesting  feature  for  the  use  of  more  versatile  sound  material  that  is  not
necessarily based on beats (like field recordings, human speech, etc.)

Fig. 60  Partition of a bar in traditional notation.

Fig. 61  Possible starting points correspond to the actual attacks in a loop.
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The selection of slices – timing and sequence:
An important feature that a generative beat slicer should have is the ability to reproduce the beats

or segments of the original loop with independent timing. Furthermore, it  should be possible to
select the segments within the loop in a different order.

This requires a tool for timing and triggering the segments extracted from a loop. To increase the
generative capabilities this  tool should have the ability  to set  probability values  for timing and
incidence.  It  would  also  be  advantageous  to  be  able  to  influence  the  repetition  and  selection
behavior, for example, repeat the last selected beat or set the selection behavior to random or row.
An interesting stylistic element is the fast repetition of single beats in a fraction of the bar length. 

Figure 62 shows an example of a sound-file loaded into a generative beat slicer: First, the sound
file has to be fit in a time grid, in the example shown it is fit to one bar of four notes. Second, the
segments which have been detected in the sound file can be changed in timing and order. Third, the
segments can be repeated within a shorter  period of time.  The name of  the LSM (Loop-Slice-
Mangler) refers to these three sequencing or play-modes: 'Loop' a sound file in chosen length, 'slice'
it into segments, 'mangle' it by repeating its segments in short fractions of time.

Fig. 62  Schematic representation of the rearrangement of a sound-file as carried out in the LSM.
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Implementation in Puredata 

Record, open, and analyze a sound file:
Figure  63  shows  the  part  of  the  LSM GUI  for  loading  and  recording

sound-files. This part of the LSM allows to load or record sound-files of any
length.  With  the  'open'  button  a  saved  sound-file  can  be  recalled.
Alternatively, this can be done automatically by a message when opening a
patch. 

The red 'rec' toggle is for recording a sound file. With the 'set' toggle and
the 'leng' number box, it is possible to determine the length of the file to be
recorded in advance.  In this case, the recording will  be stopped after the
specified time. The length is specified in 'pulses' (see chapter 2.3). In this
case,  the  recording  is  stopped  after  the  specified  time  has  elapsed.  The
length is specified in 'pulses'. If 'loop/add' is checked, a loop is recorded in
the specified length and overdubbed until 'rec' is deactivated. This allows
sound files to be recorded in several layers. If a quantization of the start and
end times of the recording is desired, the desired value can be entered in the
'quant' number box. In the lower section, the incoming audio signal can be
displayed and amplified. The incoming signal can be recorded as a single-
channel (mono) or two-channel (stereo) track.

Fig. 63  The 'rec/load' section.

The timeline and the selection of starting points:
The LSM can run three play-modes simultaneously, so there are three timelines in the GUI (figure

64): The loop timeline (top, green), the segment timeline (light blue, center), and the sub-segment
timeline (bottom, yellow). The colored positions in the timelines indicate the respective position of
the loop player, segment player, and sub-segment player. In practice, a sound file can firstly be
played in a loop, secondly played as individual segments, and thirdly fragmented into even shorter
sub-segments. All these sound elements can be reproduced according to the probabilistic timing
structure offered by the LSM. The three play-modes can be activated simultaneously and at different
playback speeds and volumes.

Fig. 64  The LSM timeline and the 'selectable-segments'. 
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The 'selectable segments' shown at the bottom of the timeline are mainly for orientation purposes
and show into which segments the sound file is sliced. The slicing into segments can be done by
dividing the sound file into pieces of equal length (with the 'equal' button and setting the number of
segments desired) or by detecting transients ('pow' analyzes the sound pressure finding points in
time  just  before  the  signal  gets  louder,  and  'bonk'  uses  a  Pd  object  called  'bonk'  for  finding
transients84).   

Playing a loop:
The  controls  for  play  (>),  loop  (o),  and  pause  (II)  are  on  top.  If  play  is

activated  the  LSM  starts  playing  the  loaded  sound  file  according  to  the
quantization entered in the 'quant' number box. The pink number box indicates
the current playback speed. If the playback speed is changed, the length of the
loop  changes  accordingly.  In  the  number  box  'l-leng-69'  the  loop  length  is
displayed at  the original  playback speed (=69).  If  this  value is  changed,  the
sound-file  will  be  stretched  or  compressed.  This  function  is  mainly  used  to
integrate a loop into the rhythmic grid of a sound piece or an improvisation. The
number box 'v-mani' allows manipulating the volume of the loop-player without
influencing the other play-modes. 

Fig. 65  The 'loop-play' section of the LSM.

Playing segments within a loop:
The segment play section mainly has the function to reproduce segments within the sound loop

loaded in the LSM. The upper part of the GUI controls the selection of the segments. The timing for
the reproduction can be set to automatic triggering with the 'auto' toggle with a specified rate and
offset regarding global timing (see chapter 2.1). The current segment is shown in the light blue
number box.

Fig. 66  The 'segment-change' section.

84 See the Puredata help file bonk~help.pd, included in Pd 0.50.0: 'The Bonk object takes an audio signal input and
looks for "attacks" defined as sharp changes in the spectral envelope of the incoming sound.' 
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The bang button to  the left  changes  the segment  immediately.  The probability  of  changing the
segment is specified in the 'prob-ex' (probability of existing i.e. triggering a change) and 'prob-ch'
(probability of changing the segment number). For more sophisticated selection modes the LSM can
be combined with the PGS and use its generative number selection features (see chapter 2.5.1)

The  lower  part  (below  the  blue  's-play'  lettering) controls  the  reproduction  of  the  different
segments: The 'once' bang starts the reproduction of the chosen segment immediately. The 'auto-on-
ch' toggle starts the reproduction of a segment automatically if the segment changes. In this case,
the segment change controls the timing. To the right, the reproduction speed can be set in the 's-
speed' box. This reproduction speed is set at every segment start and stays constant for the segments
already in reproduction. The 'bend' box allows altering the reproduction speed while one or more
segments are playing. Some other parameters present in the GUI are not specified here. 

Sub-segmenting a loop within the systems time grid:
The sub-segmentation is, without doubt, the most complicated part of the LSM. It consists of

three parts, the 'sub-segmentation' section, the 'mangle' player, and the 'trap-loop' player:
The 'sub-segmentation' section to the upper left sets the general parameters for this section. The

'take-seg-nr' and 'rand-seg-nr' toggles to the right are for deciding whether to take the same segment
for sub-segmentation than for segmentation or to take a random segment. To the upper left, the
reproduction speed and volume are set via the 'ss-speed' and the 'v-mani' number boxes. 

Fig. 67  The 'sub-segmentation' and 'mangle' section.

The 'mangle' section is about resetting the reproduction of the segments to their starting points in
shorter periods of time as shown in figure 58.  This mechanism is especially interesting for the
production of staccato-like rhythmic elements that fit into the time grid of an improvisation. For this
purpose, at the lower right in the 'base-l' number box a basic length is defined in pulses. This basic
length is then divided by the 'break-factor' into smaller parts. The 'break-factor' specifies the fraction
of the reproduced segments and can take the values 1 (no fraction) to 8 (high fraction i.e. short
repetitions)85.  It  can  be  set  via  the  yellow 'break-factor'  number-box  or  changed  automatically

85 The break-factors divide the base-length ('base-l') by two successively. So 'break-factor' 1 means to play the whole
base-length before resetting to the starting point, 'break-factor' 2 means play half of it and reset, 3 means play a
quarter of it, 4 means an eighth, and so on. This dividing by two is exactly what happens when the 'struct/2' toggle
is checked. The 'struct/3' toggle divides the base-length by doubles of three successively and produces triplet like
rhythmic structures.
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depending on the rate and probabilities specified in the blue 'bf-probs' array to the lower right. The
break-factor change ('bf-change' in the GUI) is an important factor in the production of rhythmic
patterns because it marks the points in time when changes in the mangle behavior (and therefore in
the rhythmic appearance) are happening. The 'bf-probs' array at the lower right consists of eight
horizontal  positions,  which  represent  the  'break-factor'  from  1  to  8,  and  the  corresponding
probabilities  of  choosing  the  respective  break-factor.  Some  further  parameters  present  in  the
'mangle' GUI are not specified here. 

The 'trap-loop' section is experimental and included in the GUI of the LSM at the actual stage of
development. The idea is to be able to play long sounds based on the identified segments. The 'trap-
loop' mode plays the attack (i.e. the first bit) of the current sub-segment (i.e. the segment assigned
to the sub-segment section) and gets then 'trapped' repeating a small section of the segment which
can be specified in milliseconds in the yellow number boxes 'sta' for start and 'end'. 

The volume control and loop section is situated at the upper right of the GUI. It is located after
the different play-modes and controls the sum of the audio signals produced by the LSM. The loop
function records the current audio production of the LSM according to the specified loop length and
plays it in a loop (quantized within the time-grid).
 

The LSM can produce interesting results with distinct sound material as a base for the generative
restructuring  carried  out  by  the  software.  Practical  examples86 include  drum loops,  samples  of
recorded music, Foley sounds, speech, field-recordings, etc. 

86 Practical examples using the LSM can be found on: werkstsatt.hotglue.me/sound (Jan 2021).
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3 Conclusion and Outlook

In this thesis, I have described a system for generative sequencing in the field of sound design and
documented  its  implementation in  the software  Puredata.  The main goal  was to  document and
conceptualize a creative process that I  have been working on in the past years when designing
generative sound installations.  Therefore, I have first taken a short excursion into the theoretical
background  that  the  concept  of  generating  structures  through  automated  or  semi-automated
processes  presupposes  (introduction).  Based  on that,  I  have  drawn a  model  of  the  sequencing
system that I use and develop (main part). I sketched its important functional components and their
interaction  to  form  a  sound-emitting  production  system.  In  conjunction  with  the  practical
applications shown87, I have hopefully been able to provide some insight into the following topics:

• The use of generative structuring methods operating on a symbolic level.

• The  combination  of  symbolic  productions  with  a  timing  mechanism to  create  temporal
sequences using some computer software.

• The mapping of timed sequences to sound parameters with the help of a mapping strategy
that transfers them into audible content. 

• How to  design  a  functional  generative  sequencing  system that  allows  both  human  and
machine improvisation and is open to further implementations. 

Extending a practical work with a theoretical description and conceptualization has proven to be a
way that  also  benefits  the  practical  work.  Designing a  conceptual  representation  of  a  complex
process  enables  a  wider  perspective  on its  possibilities  and  limitations.  Various  aspects  and
implications have been brought to light that often remain in the dark in a purely practical approach.
The most important ones are:

• Creating a framework that allows the creative project to be perceived in its entire structure
and dimension in order to gain more overview.

• Differentiating  a  complex  practical  process  into  its  essential  components  allows  these
components  to  be  considered  separately  in  terms  of  expanding  their  capabilities  and
increasing their efficiency.

• Relating one's own practical work to a theoretical discourse provides the opportunity of
reflecting and critically questioning one's own approach within a larger historical process.

87 See my webpage werkstatt.hotglue.me/sound (Jan 2021) for documentation of the practical applications in the form
of audio examples. 
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For my further work in the field of sound design, the exploration of creative algorithmic processes
will  remain  an  important  aspect.  The  use  of  generative  processes  in  the  creation  of  sound
installations and performances is a broad field that I have only started to began to investigate with
this work. With the creation and discussion of an adaptable and expandable generative sequencing
system, I formed the base for further works in this field. The new areas of creation and research that
have emerged from my work so far are the following: 

• The production of more musical content using the methods developed in the course of this
work – especially in combination with live sound input.

• The further implementation of generative methods and algorithms into the generative system
in use.

• The further implementation of mapping strategies in the production of sound from symbolic
sequences. 

• The transfer of generative methods and processes to other areas of art and design (sculpture,
visual design, landscape architecture, etc.). 

• The finding of a more general concept of generative process design that uses generative
mechanisms in a broader sense and does not only consider computer algorithms.
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