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Abstract

The focus of this project thesis lies on the task to categorize sung vocal signals with regards to their
voice and vowel quality. As an analysis approach, the source-filter model is used. The source and its
source signal is the airflow’s time derivative through the glottis (derivative glottal flow), and the filter
represents the human vocal tract. The source or excitation signal holds valuable information on the
voice quality, whereas the human vocal tract defines the sung vowel.

Four different linear prediction methods are compared, concerning their ability to separate source
and filter signals by glottal inverse filtering. Two skewness based low level features are calculated
from the estimated source signal. These features are used to graphically indicate the voice quality.
The estimated vocal tract is used to calculate the first two formant frequencies (F1 and F2), which are
subsequently utilized to specify the sung vowel, by visualization within the 2D vowel space.

To evaluate the four linear prediction algorithms’ performance, a formant error measure is defined
and the classification accuracy is assessed with the help of a support vector machine (SVM). Synthetic
signals with pre-defined parameter sets for different voice qualities (modal, breathy and creaky) and
vowels (/a/, /e/, /i/, /o/ and /u/ ) are used for the evaluation of the algorithms with regards to the
formant error measure. The evaluation reveals, that the autocorrelation method with cepstral refine-
ment and the covariance method are favoured. Using the support vector machine, the two methods
are further compared with regard to their clustering performance within the 2D voice quality fea-
ture space. This analysis shows, that a tradeoff between the linear prediction methods’ fundamental
frequency dependence, and the test performance exists. The autocorrelation method with cepstral
refinement provides a test score of 90.3 % correctly classified test samples, while maintaining the
largest possible fundamental frequency range of 70 Hz to 320 Hz, and is therefore deemed to be the
best performing method.

The voice quality class boundaries resulting from the trained support vector machine are visualized in
a 2D voice quality map. The vowels are graphically represented in a 2D vowel map, which visualizes
the formant frequency space spanned by F1 and F2.

Furthermore, the autocorrelation method with cepstral refinement is implemented in a VST plug-in
using C++ and the JUCE framework, which provides a graphical indication of the present vowel and
voice quality by means of two 2D voice maps. The main idea of the VST plug-in implementation is
to provide a possible design of a voice quality and vowel indication tool for professional singers.

Finally, the project’s limitations referring to the synthetic modelling of sung vocal signals, the vowel
and fundamental frequency dependence of the proposed linear prediction methods, as well as the
optimization potential of the VST plug-in implementation are discussed.
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Kurzfassung

Der Fokus dieser Projektarbeit liegt darauf, gesungene Stimmsignale im Hinblick auf Stimmquali-
tät und Vokals zu kategorisieren. Als Analyseansatz wird das Quelle-Filter-Modell verwendet. Dabei
wird die zeitliche Ableitung des Luftstroms durch die Glottis (derivative glottal flow) als Quellsignal
angenommen, und der Filter stellt den menschlichen Vokaltrakt dar. Das Quell- oder Anregungssi-
gnal enthält Informationen über die Stimmqualität, wohingegen der Vokaltrakt den gesungenen Vokal
definiert.

Vier verschiedene lineare Prädiktions-Algorithmen werden hinsichtlich ihrer Performance im Hin-
blick auf die Trennung von Quellsignal und Filter durch inverse Filterung verglichen. Aus dem ge-
schätzten Quellsignal werden zwei auf dem statistischen Parameter der Schiefe (engl. skewness) ba-
sierende Low-Level-Features berechnet. Diese Features werden verwendet, um die Stimmqualität
grafisch darzustellen. Der geschätzte Vokaltraktfilter wird verwendet, um die ersten beiden Formant-
frequenzen (F1 und F2) zu berechnen, die anschließend zur Indikation des gesungenen Vokals durch
Visualisierung in einem 2D-Vokalraum verwendet werden.

Um die Leistung der vier linearen Prädiktionsalgorithmen zu bewerten, wird ein Formantfehler-
maß definiert und die Qualität der Stimmqualitätsindikation mit Hilfe einer Support-Vector-Machine
(SVM) beurteilt. Für die Bewertung der Algorithmen hinsichtlich des Formantfehlermaßes werden
synthetische Signale mit vordefinierten Parametern für verschiedene Stimmqualitäten (modal, be-
haucht und krächzend) und Vokale (/a/, /e/, /i/, /o/ und /u/ ) verwendet. Die Auswertung zeigt, dass die
Autokorrelationsmethode mit cepstralem Liftering und die Kovarianzmethode am besten abschneiden.
Unter Verwendung der SVM werden die beiden Methoden weiter hinsichtlich ihres Clusterings im
2D-Merkmalraum der Stimmqualität verglichen. Diese Analyse zeigt, dass ein Kompromiss zwischen
der Grundfrequenzabhängigkeit der linearen Prädiktionsalgorithmen und der Klassifikationsperfor-
mance gefunden werden muss. Die Autokorrelationsmethode mit cepstralem Liftering erreicht eine
Performance von 90.3 % korrekt klassifizierter Testsamples, während der größtmögliche Grundfre-
quenzbereich von 70 Hz bis 320 Hz beibehalten wird. Daher wird die Autokorrelationsmethode mit
cepstralem Liftering als bestgeeignete Methode angesehen.

Die aus der trainierten SVM resultierenden Stimmqualitäts-Klassengrenzen werden in einer 2D-Stimm-
qualitätskarte visualisiert. Die Vokale werden grafisch in einer 2D-Vokalkarte dargestellt, die den von
F1 und F2 aufgespannten Formantfrequenzraum visualisiert.

Darüber hinaus wird die Autokorrelationsmethode mit cepstralem Liftering als VST-Plug-In unter
Verwendung von C++ und dem JUCE-Framework implementiert. Dies ermöglicht es den aktuell ge-
sungenen Vokal und die Stimmqualität in zwei farbigen 2D-Diagrammen darzustellen. Die zugrunde-
liegende Idee der VST-Plugin-Implementierung ist es, ein mögliches Design eines Analysetools für
Stimmqualität und Vokal für professionelle Sänger zu präsentieren.

Abschließend werden die Grenzen des Projekts in Bezug auf die synthetische Modellierung von ge-
sungenen Vokalsignalen, die Vokal- und Grundfrequenzabhängigkeit der vorgeschlagenen linearen
Prädiktionsalgorithmen sowie das Optimierungspotenzial der VST-Plugin-Implementierung disku-
tiert.
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Mathematical Notation

Table 0.1 aims to provide an overview of the mathematical notation used in this project thesis.

Table 0.1 overview of mathematical symbols and notation

a, b, c scalars

a, b, c vectors

A,B, C matrices

x(t) a continuous-time signal

x[n] a discrete-time signal

δ(t) the Dirac-delta distribution

(x ∗ h)[n] discrete (circular) convolution of x[n] and h[n]

d·e ceiling operator, round to the next larger integer

b·c floor operator, round to the next smaller integer

b·e round to the nearest integer (round half towards infinity)

X(z) = Z{x[n]} z-transform X(z) of the discrete-time signal x[n]
x[n] = Z−1{X(z)} inverse z-transform x[n] of the filter X(z)
x̃[k] = Fn 7→k{x[n]}[k] discrete N -point Fourier transform x̃[k] of the discrete-time signal x[n]
x[n] = F−1

k 7→n{x̃[k]}[n] inverse discrete N -point Fourier transform x[n] of the frequency domain
signal x̃[k]

Re{z}, Im{z} real and imaginary part of a complex variable z ∈ C
|z| absolute value of a complex variable z ∈ C

N
(
µ, σ2) a Gaussian random variable with mean µ and standard deviation σ

E{x[n]} the expected value of x[n] over time

# (·) number of elements

â estimation of a quantity a

f0, fs fundamental frequency and sampling frequency

F0 set of possible fundamental frequencies for algorithm performance analysis

F1, F2, F3, F4 formant frequencies of a vocal tract filter
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Bereuter & Kraxberger

1 Introduction

Speech and singing voice are the main medium used to transport information and emotions between
humans. In this wide research area, this project focuses on the synthesis and analysis of sung vowels,
especially on the classification of sung vowels and their voice quality. The initial questions for this
project can be formulated as follows: Which vowel is sung? and What is the voice quality of this
vowel? While the concept of a vowel is familiar, the term voice quality might need some clarification.
An excellent introduction to the topic of voice qualities is given in [22], it covers the vocal fold’s
different modes of operation.

One fundamental assumption of this project and related work is the so-called source-filter model. In
this context, the volume velocity airflow through the glottis during phonation is defined as the voice
source. This signal is called glottal flow (GF) and its derivative, the derivative of the glottal flow
(dGF). The dGF is of great importance since it transports information about the physical movement
of the vocal folds and therefore the voice quality. In a signal processing context the dGF acts as the
voice source signal, the vocal tract’s input, whereas the vocal tract is modelled as an all-pole filter.
The pole’s frequencies are called formant frequencies.

In this project a combined synthesis and analysis approach was used for this project, such that perfect
knowledge of the ground truth is available at the analysis algorithm’s end, enabling performance
evaluations of the different algorithms. This synthesizer is able to produce the vowels /a/, /e/, /i/, /o/
and /u/ with the voice qualities modal (m), breathy (b) or creaky (c). The parameters used for the
synthesis of different vowels and voice qualities are described in chapter 2.

The analysis algorithms also assume the source-filter model. They aim to deconvolute the glottis
signal and the vocal tract filter. In all four evaluated analysis algorithms the vocal tract filter is
estimated using linear prediction (LP), and the vowel is classified based on the first two formants
determined by the estimated vowel tract filter. The residual signal of the linear prediction corresponds
to the dGF. The dGF is further used for the voice quality classification.

In order to provide an anatomical context of human voice production, Figure 1.1 gives an overview
of the anatomical parts involved in voice production. Using the source-filter model, the tracheal
airflow, which gets interrupted perodically by the closing vocal folds, corresponds to the glottal flow
(GF). Everything from the vocal folds to the mouth opening, in the so-called supraglottal region, is
modelled by the vocal tract filter.

Figure 1.1 Anatomical structures involved in human voice generation [17, Fig. 1]
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1.1 Structure of this Document

The structure of this project thesis is held in line with the signal flow of the proposed synthesis,
analysis and classification algorithm. Therefore, this document consists of 4 major chapters, on which
an overview is provided in the following.

Chapter 2 deals with the synthesis of sung vocal signals as well as the discussion of the relevant glottal
and vocal tract parameters. Based on the source-filter model, an analytic approach to the generation
of source signals is presented, which allows to synthesize an excitation signal with a defined voice
quality. Additionally, a method of filtering the source signal is used to form the vocal tract filter.

The synthesis chapter is followed by chapter 3, which approaches the different linear prediction
algorithms. To operate correctly, some pre-processing steps are necessary in order to provide the
algorithms with all information they need. The result of the analysis algorithms needs post-processing,
which includes the low-level feature calculation and the classification algorithms for voice quality and
vowels. To quantify the algorithms’ performance, a Monte-Carlo analysis is performed.

In chapter 4, the implementation of the best performing algorithm as a VST plug-in using C++ and the
JUCE-framework is documented. With the VST plug-in, a tool is presented which enables a visual
feedback to singers and enables a detailed feedback regarding the vowel and voice quality, for which
a prospective use case is given by teaching student singers.

Finally, a conclusion and potential aspects for future research are given in chapter 5.

1.2 Overview of Signal Flow

Figure 1.2 provides an overview of the signal flow starting with the synthesis of the sung vocal signal,
followed by the pre-processing and analysis stage, finally the classification is executed. The signal
flow shown in Figure 1.2 refers strongly to the Matlab implementation, for the implementation with
C++/JUCE a few adaptations werde made which are described in chapter 4. In the following section,
each of the big signal processing blocks is described briefly.

Synthesis. In the synthesis block, the algorithm’s input file is created based on models describing
the glottis signal as well as the vocal tract filter. Further information on the process can be found
in chapter 2. Alternatively, a recorded audio signal can be loaded. Finally, the input signal gets
downsampled and split into blocks. The successive signal processing stages operate on one block at
a time.

Pre-Processing. The pre-processing stage uses the residual signal of some linear prediction algo-
rithm to provide an estimate on the fundamental frequency and the time instances where the glottis
closes (the glottal closure instants or GCIs) and opens (the glottal opening instants or GOIs) . Fur-
thermore, it is decided if the synthesized input signal is voiced or unvoiced. A detailed description of
the pre-processing can be found in section 3.1.

Linear Prediction Analysis. Based on the additional knowledge derived from the pre-processing
stage, four variants of linear prediction are compared. The differences between the chosen algorithms
lie either in the way the input signal is whitened, by suppressing the input signal’s fundamental fre-
quency, or in the linear prediction’s methodology/algorithmics. While the covariance and autocor-
relation methods do not suppress the fundamental frequency they differ in the linear prediction’s

2



Bereuter & Kraxberger 1.2. Overview of Signal Flow

estimation approach. The windowed covariance method and the autocorrelation method with cep-
stral refinement differ in the form of fundamental frequency suppression. The windowed covariance
method performs the suppression in time-domain, whereas the autocorrelation method with cepstral
refinement applies the suppression in the cepstral domain. A detailed description of the four methods
is given in section 3.2.

Post-Processing and Classification. With the help of linear prediction the filter coefficients of
the vocal tract filter are estimated. These coefficients are used to assign the signal block to a vowel.
Additionally, inverse filtering is used to calculate an estimation of the glottis signal, i.e. the dGF
(derivative Glottal Flow). Based on the estimated dGF an estimation of the glottal flow can be calcu-
lated and both are used to calculate features that enable the assignment of the signal to a voice quality.
The post-processing and classification stages are described in section 3.3.
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Bereuter & Kraxberger

2 Synthesis of Sung Vocal Signals

Existing research on synthesis of human voice mainly originates in the synthesis of spoken voice
[1,10]. Some researchers extended those synthesis models to provide a better applicability to singing
voice, e.g. [39]. In essence, the most promising signal theoretic models of speech and sung voice
production are based on the source-filter model, where the source is a signal based on the air flow
through the vocal folds over time through and the filter is the vocal tract, which is the air filled cavity
between the glottis and the mouth opening.

To model the source signal, the Liljencrants-Fant-Model (LF-model) [18] is well-established in corre-
sponding literature. In section 2.1, special emphasis is placed on the synthesis of a sung vocal signal.
The vocal tract’s All-Pole-Filter-Model is described in section 2.2.

The code framework, forming the proposed synthesis algorithm’s basis, was laid out by Alku et al. in
repository 1 of their OPENGLOT-framework [1]. An overview of the implementation in Matlab,
which combines the OPENGLOT-framework with our modifications for singing voice signals can be
found in section 2.3.

2.1 Excitation Signal Modelling using the LF-Model

First, we discuss the LF-model for one glottal cycle. To synthesize the derivative of the glottal flow
(dGF), which is interpreted as the excitation signal in the source-filter model context, the LF-model is
executed repeatedly. Thereby, specific parameter variations, necessary for the singing voice signals,
are defined to model effects such as vibrato.

2.1.1 The LF-Model for one Glottal Cycle

The LF-model is a four-parameter model of the dGF-signal. In addition to the four parameters, also
the fundamental frequency f0 is needed. Originally published by Liljencrants, Fant and Lin in [18],
the LF-model was reused many times as for instance in the literature by Gobl in [22]. In the following,
the LF-model and its parameters are presented, for one glottal cycle.

Let E(t) be the dGF-signal corresponding to the excitation produced by the vocal folds. According
to the LF-model, the dGF-signal E(t) is defined as

E(t) =
{
E1(t) for t ≤ te
E2(t) for te < t ≤ tc

=

E0eαtsin(ωgt) for t ≤ te
−E0
εtp

(
e−ε(t−te) − e−ε(tc−te)

)
for te < t ≤ tc

(2.1)

with the four parameters tp, te, ta and Ee. One period of the dGF signal is called a glottal pulse or
glottal cycle, and its duration is tc = T0 = 1

f0
, where f0 is the desired fundamental frequency and T0

5



Chapter 2. Synthesis of Sung Vocal Signals Bereuter & Kraxberger

the corresponding fundamental period. Furthermore, we know the following relations:

tp = 1
2Rgf0

. . . time of the zero crossing of dGF

te = 1 +Rk
2Rgf0

. . . time instance when the vocal folds close

ta = Ra
f0

. . . time constant of the return phase

ωg = 2πRgf0 . . . frequency of dGF in the opening phase,

(2.2)

where Rg, Rk and Ra are parameters of the LF-model formulation by Gobl [22].

For the parameter α in Equation 2.1, we look at E(t = te).

E(te) = E0eαtesin(ωgte) ⇐⇒ eαte = E(te)
E0sin(ωgte)

=⇒ α = 1
te

ln

(
E(te)

E0sin(ωgte)

) (2.3)

We call E(te) = EE the amplitude of the dGF at the time instance of the glottal closure (GCI) and
the time instance t0 is called glottal opening instant (GOI). In the OPENGLOT-implementation, the
parameter ε is evaluated iteratively, such that at t = te, enabling a smooth transition between the two
parts of the dGF-curve, i.e. E1(t = te) ≈ E2(t → te). Therewith, the LF-model is complete. In
Figure 2.1, one glottal cycle of the dGF-signal is shown.

Figure 2.1 dGF-signal according to the LF-model [18, Fig. 2]

Due to the nature of digital signal processing and the implementation of the proposed analysis algo-
rithm with software applications such as Matlab or C++/JUCE the excitation signal from Equation 2.1

6



Bereuter & Kraxberger 2.1. Excitation Signal Modelling using the LF-Model

is discretized using a sampling frequency fs leading to:

E(t)
t7→ n

fs−−−→ E

(
n

fs

) n
fs
7→n

−−−−→ E[n]

or equivalently E[n] =
+∞∑

n=−∞
E(t)δ

(
t− n

fs

)
,

(2.4)

where δ(·) denotes the Dirac-delta distribution used here for the discretization of E(t) at equally
spaced sampling intervals, with the sampling period 1

fs
and n ∈ Z, in accordance to [25].

2.1.2 Modelling different Voice Qualities with the LF-Model

The LF-Model defined by Equation 2.11 has four parameters, which shape the dGF-curve, summa-

rized in the parameter vector θ =
[
EE Ra Rg Rk

]T
. The parameters Ra, Rg and Rk determine

the time instances mentioned in Equation 2.2. Additionally, the fundamental frequency f0 and sam-
pling frequency fs are needed. The parameters θ define the shape of one glottal cycle and therefore
determine the voice quality. Gobl defines the parameters for different voice qualities in [22, Table II.]
by describing them as Gaussian random variables N

(
µ, σ2), where µ is the mean value and σ is the

standard deviation. Inherently, the parameters have some variability.

Gobl defines EE in dB and Ra, Rg and Rk in %. The values from Gobl are listed in Table 2.1.

Table 2.1 LF-model parameters for different voice qualities according to [22, Table II.].

Parameter modal (m) breathy (b) creaky (c)

EE,dB N
(
0, 0.12) dB N

(
0.7, 0.42) dB N

(
1.8, 0.32) dB

Ra,% 1 % N
(
2.5, 0.62)% N

(
0.8, 0.52)%

Rg,% N
(
117, 7.42)% N

(
117, 7.42)% N

(
113, 11.02)%

Rk,% N (34, 1) % N (34, 1) % N (20, 2.4) %

For the OPENGLOT-framework, linear parameters are needed, thus the following conversion formu-
las are used:

EE,dB ∝ N
(
µEE,dB , σ

2
EE,dB

)
dB =⇒ EE ∝ 10

µEE,dB
20 + 10

N
(

0,σ2
EE,dB

)
20

R% ∝ N
(
µR% , σ

2
R%

)
% =⇒ R ∝ N

(
µR%

100 ,
(
σR%

100

)2
) (2.5)

The parameters of the LF-model need to be adapted for certain voice qualities, because using the
Gaussian randomized parameter set, physically impossible parameter combinations also have a cer-
tain probability (mainly ta < 0, which is impossible). To cope with this edge case, some parameter
adaptions are needed.

Parameter Adaptions for Breathy and Creaky Voice. The parameter Ra must be positive,
because this leads to a positive time instance ta. Therefore, a proposal candidateRa,prop is drawn from

7



Chapter 2. Synthesis of Sung Vocal Signals Bereuter & Kraxberger

the Gaussian distribution described in Table 2.1. If Ra,prop < −
µRa,%

100 , a negative ta would occur, so
a new sample is drawn from the distribution. This operation can be interpreted as a truncation of the
Gaussian distribution towards one side. The other parameters are unproblematic and need no further
adaptions.

In order to visualize the impact of the chosen voice quality on the dGF signal, Figure 2.2 shows the
different dGF waveforms for the three different voice qualities modal, breathy and creaky.

2.1.3 Distinctive Features of Singing Voice

Aspiration Noise for Breathy Voice. In addition to the excitation signal’s shape being the de-
terming factor of the voice quality, Lu and Smith suggest the addition of spectrally shaped, amplitude
modulated Gaussian noise for a better simulation of breathy voice signals in [39]. The aspiration
noise is generated in the following steps: Firstly, Gaussian white noise with an amplitude of EE

8 is
amplitude modulated using a Hann window which is centered around the glottal closure instant. The
amplitude modulated white noise is filtered with a de-emphasis filter H(z) = 1

1−pz−1 with p = 0.9
followed by a 10th order IIR high-pass filter with a pass-band ripple of 0.2 dB and a cut-off-frequency
of fg,noise = 4 kHz. Finally, this aspiration noise is added to the excitation signal created with the
LF-model.

Vibrato. Sundberg defined vibrato in [66] as being a regular fluctiation of pitch, timbre and/or
loudness. To model the fluctuations, variations in both amplitude and frequency have been considered,
with the variation in amplitude being called shimmer, whereas the variation in frequency is called
jitter. Shimmer can be interpreted as an amplitude modulation, and jitter can be interpreted as a
frequency modulation. For a shimmer, a sinusoidal signal with the desired shimmer parameters was
generated and multiplied onto the dGF-signal. The jitter was created by applying a variation in the
fundamental frequency f0 of the LF-model, i.e. successive glottal cycles show a variation in their
fundamental period T0 according to the frequency modulation parameters. Each modulation has two
subparameters describing the extent (ratio) and speed (frequency) of the excitation signal’s variation.

The parameters of shimmer and jitter are listed in Table 2.2. Sciri and Sundberg suggest a shimmer
ratio in the range of 6 % to 8 %. In [62, p. 25], Sciri also describes the jitter ratio in a musical context.
A ratio of one semitone in both directions, which corresponds to a ± 6 % pitch deviation around the
fundamental frequency f0, is suggested.

Table 2.2 parameters of jitter and shimmer

Parameter Value Reference

jitter ratio Rjit = 1− 1
21/12 =̂± 1 semitone≈̂ ± 6 % [62, p.25]

jitter frequency fjit = 6 Hz [62]

shimmer ratio Rshim = 0.07=̂7 % [62, 66]

shimmer frequency fshim = 6 Hz [62]

The application of the vibrato on the synthesized signal is shown in subsection 2.3.3. The synthesized
excitation signal E(t) for the three different voice-qualities with the additional features (Aspiration
Noise and Vibrato) can be seen in Figure 2.2.

It is visible in Figure 2.2, that the amplitude for creaky vocal signals is smaller than the for breathy or
modal voice. Furthermore, the creaky vocal signal has a larger time interval where it is zero, which is

8



Bereuter & Kraxberger 2.2. All-Pole-Filter Modelling of a Vocal Tract

Figure 2.2 dGF-signal for the different voice qualities of the LF-model [18, Fig. 2]

the reason why the creaky vocal signal can be described as sparse. The effects of the aspiration noise
are visible for the breathy case and the effects of vibrato (in the form of an amplitude modulation)
can be seen in the non-constant negative amplitudes occuring at the GCIs for all voice qualities. The
difference in the amplitude values with respect to Figure 2.1 can be lead back to the fact that different
amplitude gains were used. Note that, while Figure 2.1 was taken from [18], Figure 2.2 was created
with the synthesizer implemented in Matlab and explained in section 2.3.

2.2 All-Pole-Filter Modelling of a Vocal Tract

In the context of this work, the vocal tract’s responsibility is solely considered to be the articulation
and voicing of different vowels, which are produced using the variability of the vocal tract’s geometry.
Interpreted in a signal processing context, these variations result in different filter transfer functions
for each spoken or sung sound. Gold and Rabiner suggested in [23], that the vocal tract can be
modelled with an all-pole filter. In contrast to that, Ziegerhofer suggested in her Master’s Thesis [74]
that the all-pole-model is limited, when it comes to modelling female vocal tracts due to tracheal
coupling and interactions between the voice source and the vocal tract. As the literature on gender-
specific topics of this matter is rare, we focused on existing data, which is unfortunately mainly
present for males. Therefore, four formants with the frequencies F1, F2, F3 and F4 (in Hz) have been
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modelled with the all-pole filter model from [23]. Therein, the transfer function Hi(z) for the i-th
formant is given by

Hi(z) =
1 + r2

i − 2ricos
(
bi
fs

)
1−

(
2ricos

(
bi
fs

))
z−1 + r2

i z
−2
, (2.6)

where ri = e−
πgi
fs with fs being the sampling frequency, bi = 2πFi is the angular frequency and gi

is the bandwidth of the i-th formant.1 By combining the four transfer functions H1(z) to H4(z), the
transfer function HVT(z) of the vocal tract can be written as

HVT(z) =
4∏
i=1

Hi(z). (2.7)

Transforming this relation back into time-domain results in the impulse response hVT[n], such that

hVT[n] = Z−1{HVT(z)} , (2.8)

where Z−1{·} denotes the inverse z-transform.

The source filter S(z) and the transfer function
(
1− z−1) approximating the mouth-to-transducer

radiation, which were also introduced in [23, p. 83], have been neglected here in accordance to [1].

Formant Frequencies and Bandwidths. The literature on the exact frequencies of the formants
for singing voice is rare. Fleischer et al. [19] investigated 3D models of human vocal tracts singing
the vowels /a/, /i/ and /u/, which were acquired with MRI data for sung vowels. They simulated the
acoustic field inside the vocal tract with a finite element method and evaluated the formant frequencies
and bandwidths. The missing data for the vowels /e/ and /o/ was taken from [23], but we set F4 =
3000 Hz. For the formant frequencies of the vowel /a/, [23] was used with the bandwidths from [19].
In Table 2.3, the parameters of the vocal tract filter (formant frequencies F1 to F4 and bandwidths b1
to b4) which were used in the synthesizer are listed with their respective references.

Table 2.3 formant frequencies and formant bandwidths of the vocal tract filter according to [19,23]

Vowel Frequency (in Hz) Bandwidth (in Hz) Reference

F1 F2 F3 F4 g1 g2 g3 g4 Frequency Bandwidth

/a/ 730 1090 2440 3000 68 33 69 74 [23, Tab. I] [19, Tab. 1]

/e/ 530 1840 2480 3000 60 100 120 175 [23, Tab. I] [23, Tab. II]

/i/ 360 1700 2313 2827 49 38 59 74 [19, Tab. 1] [19, Tab. 1]

/o/ 570 840 2410 3000 60 100 120 175 [23, Tab. I] [23, Tab. II]

/u/ 409 1356 2533 2819 38 42 67 79 [19, Tab. 1] [19, Tab. 1]

The final step to obtain the synthesized sung vocal signal y[n] is a convolution of the discretized
excitation signal E[n] from Equation 2.1 with the impulse response of the vocal tract filter hVT[n].
This corresponds to filtering the source (dGF) signal E[n] with the vocal tract filter HVT(z), i.e.

s[n] = (E ∗ hVT)[n]. (2.9)
1Gold and Rabiner used the half-bandwidth, which in our formulation is compensated by the factor π instead of 2π in the

exponent.
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The convolution of the discretized excitation signal with the vocal tract filter impulse response is not
explicitly calculated in the implementation, as there are a lot of Matlab-commands enabling easier
computation (for example filter()). More details on the Matlab-implementation can be found in
the following section 2.3.

2.3 Implementation in Matlab

For the purpose of this project, parts of the code provided in repository 1 of OPENGLOT [1], used
for spoken vowel synthesis, were extended to better suit the nature of sung vowels, as described
in section 2.1 and section 2.2. Figure 2.3 shows the flow chart and provides an overview on the
synthesis algorithm. In this section, the implementation of the synthesis algorithm’s individual blocks
is discussed.

2.3.1 Input Parameters

The entry point to the synthesis algorithm is the Matlab file singsynth.m. In Figure 2.3 the input
parameters are marked in green. To clarify the connection between Figure 2.3 and the Matlab code,
the input parameters are listed with the variable names used in Matlab.

• f0: Fundamental frequency f0. If jitter is applied, this variable represents the central value of
fundamental frequency, around which the actual fundamental frequency is fluctuating.

• jitter: Array containing the jitter parameters

jitter =
[
jitterFlag Rjit fjit

]
, (2.10)

where jitterFlag is a boolean value denoting if jitter should be applied, Rjit is the jitter ratio
and fjit the jitter frequency.

• voiceQual: The parameter voiceQual is a string that denotes the desired voice quality, which
can be either modal, breathy or creaky (in short m, b, or c, respectively), i.e. voiceQual ∈
{m, b, c}.

• fgNoise: Cut-off frequency fg,noise for the high-pass filter that is used for shaping the aspiration
noise as described in subsection 2.1.3. fg,noise can also be used as the parameter fixing the noise-
level of the “breathy“ voice. A lower cut-off frequency adds more aspiration noise and lets the
voice become more “breathy“. A natural breathyness level can be achieved with fg,noise =
4000 Hz.

• vowel: String that denotes the desired vowel, which either /a/, /e/, /i/, /o/ or /u/, i.e. vowel ∈
{a, e, i, o, u}.

• shimmer: Array containing the parameters of the shimmer such that

shimmer =
[
shimmerFlag Rshim fshim

]
, (2.11)

where shimmerFlag is a boolean value denoting if shimmer should be applied, Rshim is the
shimmer ratio and fshim the shimmer frequency.

These input parameters are complemented by the sampling frequency fs and the desired duration
sigLen in seconds, which are implicitly needed, The renderFlag, determines if a wav-file of the
voice sound should be rendered. Furthermore, the parameter LFParams can be used in conjuction
with voiceQual = ’custom’, to skip the randomization of the glottal parameters defined in Table 2.1
and use fixed LF parameters.

11
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2.3.2 Return Parameters

The Matlab function singsynth(), whose input parameters are described in subsection 2.3.1, re-
turns the following parameters, which are marked orange in Figure 2.3. To clarify the connection
between Figure 2.3 and the Matlab code, the output parameters are listed with the variable names
used in Matlab.

• trueParamGlot: The true glottal parameters θ =
[
EE Ra Rg Rk

]T
, that were actually

used for the synthesis of the dGF signal.

• sig: Synthesized singing voice signal (dGF-signal filtered by vocal tract filter with vibrato, if
desired).

• dGF: Synthesized dGF signal

• GF: Synthesized glottal flow signal

• trueParamVT: filter coefficients of the vocal tract filter HVT(z)
• f0return: frequency vector containing the fluctuating fundamental frequency f0. For each

element in f0return, the LF-model method lf.m was called once, meaning that successive
glottal cycles are following the frequency modulation defined by the jitter parameters listed in
Table 2.2.

2.3.3 Signal Flow of the Synthesis Algorithm

The signal flow shown in Figure 2.3 can be divided into three parts: First, the dGF-signal is synthe-
sized, then the vocal tract filter coefficients are calculated, and finally, the dGF-signal is filtered with
the vocal tract filter. In the following section, these parts are discussed.

Synthesis of the dGF-Signal. If jitter is desired (jitterFlag = 1), a frequency vector f0,mod
(f0mod in Matlab) containing the fluctuating fundamental frequency f0 is created according to Rjit
and fjit as follows,

f0,mod =
[
f0,mod[0] · · · f0,mod[Njit − 1]

]T
f0,mod[n] = f0 +Rjit · f0 · sin

(
2πfjit

fs,jit
n

)

fs,jit = Njit

tlen
= df0 · tlene

tlen
,

(2.12)

whereNjit = df0 · tlene is the frequency vector length in samples (calculated with the ceiling operation
d·e), tlen is the signal length in seconds, denoted in Matlab with tlen, and f0 is the mean value of
fluctuating fundamental frequency f0,mod.

For each element of the fundamental frequency vector f0,mod, lf.m is called to create one cycle of
the dGF signal. Thereby, the randomized glottal parameters according to Table 2.1 are used, which
are determined by the voice quality (parameter voiceQual). The true glottal parameters that were
actually used (after the randomization), are returned in the array trueParamGlot. For breathy voice,
aspiration noise according to subsection 2.1.3 is added to the dGF-signal. The resulting signal is
the synthetic dGF signal, which is returned via the parameter dGF. The dGF-signal E[n] can be
numerically integrated with the Matlab-function cumsum() [41], which results in the glottal flow
(GF).
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After the frequency modulated excitation signal is created. Amplitude modulation is applied accord-
ing to Rshim and fshim, if desired. Mathematically this can be formulated such that

EAM[n] =
(

1−Rshim +Rshim · cos
(2πfshim

fs
n

))
· E[n].

E[n] . . . excitation signal before amplitude modulation (Equation 2.9)

EAM[n] . . . amplitude modulated excitation signal

(2.13)

Note that the amplitude modulation for the sung vocal signals created in the course of this project,
was applied post vocal tract filtering. Meaning that in Equation 2.13,E[n] should actually be replaced
with s[n]. However as mentioned in [74], where shimmer and jitter are defined as measures calculated
from so called Electroglottography (EGG) signals, which correspond to the excitation signal at the
vocal folds, hence the formulation of Equation 2.13 including the excitation signal. Also the modelled
vocal tract filter is a linear time invariant filter, leading to negligible differences between signals where
the amplitude modulation was applied pre or post vocal tract filtering. An exemplary comparision of a
sung vocal signal where the amplitude modulation was applied onto the excitation signal (sAM, pre[n])
with another sung vocal signal where the amplitude modulation was applied post vocal tract filtering
(sAM, post[n]) is shown in Figure 2.4. The differences between the two signal variants lie in the range
of the third decimal place. For the evaluations executed in section 3.4 signals where the amplitude
modulation was applied post filtering (sAM, post[n]) were used.

Figure 2.4 Comparison of signals with amplitude modulation pre VT-filtering vs. post VT-filtering

Synthesis of the Vocal Tract Filter. The vocal tract filter is synthesized according to the desired
vowel with the procedure described in section 2.2. Thereby, the formant frequencies and bandwidths
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defined in table Table 2.3 are used. The vocal tract filter is stored by means of its coefficients, which
are also returned via the parameter trueParamVT.

Filtering the dGF-Signal with the Vocal Tract Filter. Using the Matlab-function filter()
[45], the synthesized dGF-signal is filtered with the vocal tract filter. This corresponds to the convo-
lution mentioned in Equation 2.9. If shimmer is desired the convolution changes to:

s[n] = (EAM ∗ hVT)[n] (2.14)

This concludes the synthetic voice signal generation. The synthetic vocal signal s[n], is returned via
the parameter sig.

Measurement Noise. Under certain circumstances, it might be desired to add a small amount of
shaped white noise to the synthesized vocal signal. On the synthesis side, this can be interpreted
as making the synthesized signals more “realistic”2, and on the analysis side this noise is used to
regularize the analysis algorithm calculations. Essentially, zero-mean, unit-variance Gaussian white
noise w[n] is filtered with the transfer function HnoiseSh(z), which is defined as

HnoiseSh(z) = z

z − e
−2πfc,noiseSh

fs

hnoiseSh[n] = Z−1{HnoiseSh(z)}

(2.15)

where fc,noiseSh is the cutoff frequency of the noise shaping filter and hnoiseSh[n] is the impulse re-
sponse of this filter. Thus, the result of the noise shaping can be calculated such that

wnoiseSh[n] = (w ∗ hnoiseSh) [n]. (2.16)

Then, a signal to noise-ratio SNRnoiseSh in dB is introduced, which is used to calculate the amplitude
of the additive shaped noise wnoiseSh[n]. The noise is added to the synthesized vocal signal (here s[n]
is used to denote a synthesized vocal signal with or without shimmer), such that

snoiseSh[n] = s[n] + max (s[n]) · 10
−SNRnoiseSh

20 · wnoiseSh[n]. (2.17)

In the present implementation, the following values for fc,noiseSh and SNRnoiseSh were used

fc,noiseSh = 10 Hz and SNRnoiseSh = 96 dB. (2.18)

In the Matlab-implementation, the addition of the measurement noise, as defined in Equation 2.17,
can be found in the file V12b_LPA_JUCE_Matlab_Reference/Main_LP_Analysis_Algorithm_
Prototype.m. It is activated by setting MeasNoiseFlag = 1.

2.3.4 Matlab Code Files

The synthesis algorithm shown in Figure 2.3 was implemented in seperate files. The structure of the
Matlab files listed below was introduced by Alku et al. in repository 1 of [1]. The purpose of each
file is listed as follows:

2In this context, “realistic” means similar to a real recording of a real singer, which always ehibit some background noise.
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• singsynth.m: This file acts as an entry point to the synthesis algorithm and it is called from
the Matlab. In itself, the file calls synthFrame_V04.m and exports the sound by calling
renderFile.m, if desired.

– The input parameters are listed in subsection 2.3.1.

• synthFrame_V04.m:

– maps voice quality to glottal parameters according to Table 2.1 and Table 2.2

– creates dGF signal by calling lf.m repeatedly

– maps vowel to formant frequencies and bandwidths according to Table 2.3

– creates vocal tract filter by calling makeVT.m

– filters dGF signal with vocal tract filter

• lf.m: creates one glottal cycle according to the LF-model with the parameters defined in
synthFrame_V04.m

• makeVT.m: calculates the coefficients of the vocal tract filter HVT(z)
• renderFile.m: exports the audio files in wav-format, if desired
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3 Analysis of Sung Vocal Signals
In chapter 2 the main idea of the synthesis algorithm is the source-filter model, where the convolution
of an excitation signal with a vocal-tract filter delivers a synthesized sung vocal signal. The main goal
of the algorithm’s analysis part is to calculate back to the source signal, or equivalently, the excitation
signal. This means that the convolution of the vocal tract filter’s impulse response with the excitation
signal shown in Equation 2.9 needs to be reverted. This is obtained by inversely filtering the sung
vocal signal with an estimated all-pole vocal tract filter, which leads to the excitation signal, also
called derivative glottal flow (dGF) as mentioned in section 2.1. This method, called Glottal Inverse
Filtering (GIF) is described in [1]. A template for the analysis’ signal flow was proposed by Drugman
et al. in [13]. It consists of a pre-processing stage, after which the glottal signals are estimated by
Glottal Inverse Filtering (GIF).

In the following sections the adapted pre-processing stage (section 3.1) as well as different estimation
methods used to estimate the vocal tract filter (section 3.2) are introduced. In the post-processing
stage, a vowel estimation based on the estimated formant frequencies of the vocal tract is performed,
and a method to evaluate the voice quality is introduced (section 3.3). The results of the different
vocal tract filter estimation methods are evaluated using a Monte Carlo simulation (see section 3.4).
In the synthesis and analysis algorithm’s overview shown in Figure 1.2 the blocks Pre-Processing and
Linear Prediction Analysis are the relevant blocks dicussed in this section.

As a basis for the forthcoming sections, some considerations need to be made. Firstly, it is defined,
that we operate with a block-based signal processing approach, which uses downsampling of the
original signal. Both are defined a priori in the following paragraphs.

Block-Based Signal Processing. The analysis-stage of this algorithm, as discussed in this sec-
tion, operates as a block-based signal processing chain. This means that the executed subroutines
(marked as blue blocks in Figure 1.2) work on the signal in a blockwise manner. The signal is
blocked with the following blocking parameters:

• block-length: tblock = 80 ms
• hopsize: thop = 24 ms (corresponds to an overlap of 70 %)

In the discrete time-domain tblock becomes Nblock = bfs · tblocke, the same holds for the hopsize thop.
In Matlab the blocking is executed using the buffer() command [40].

Downsampling. For speech analysis algorithms the second step of the analysis stage is commonly
the decimation of the sampling frequency. As shown in Figure 1.2, before the signal is organized
according to the buffer structure (80 ms blocks with 70 % overlap), the signal is filtered with a 30th
order Anti-Aliasing FIR-Filter created with the Matlab command fir1() [47]. Each signal block
is then downsampled by a factor of three, meaning that every third sample of a signal block is used,
whereas the others are discarded. Effectively, a signal sampled with 48 000 kHz is downsampled to
fs = 16 000 kHz and 44 100 kHz signals are downsampled to fs = 14 700 kHz.

It is important to note that, from now on, the sampling frequency’s symbol fs refers to the decimated
sampling frequency, and also the sung vocal signal’s notation s[n] refers to a downsampled 80 ms
signal-block rather than the whole signal, as the following steps are all executed in a blockwise
manner and were created with the intention of a real-time application implementation.
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3.1 Pre-Processing

The pre-processing step’s aim is to deliver information on the sung vocal signal, necessary for further
analysis as mentioned in section 3.2. The pre-processing can be summarized by four processing steps:

1. computation of the residual signal

2. estimation of fundamental frequency

3. estimation of glottal instants

4. pre-emphasis filtering

In [13] the polarity estimation is introduced as an additional pre-processing step. Due to the fact,
that the analysis stage was created to solely analyze the synthesized signals described in chapter 2,
where the polarity of the signals can be fully controlled, a polarity estimation is not necessary for the
proposed analysis algorithm. In Figure 1.2 the polarity check is visualized as a optional subroutine
but it is not implemented in the analysis stage and therefore isn’t further explained. Nevertheless, a
robust way of polarity estimation was proposed by Drugman in [12].

The remaining steps concerning the estimation of the fundamental frequency proposed in [14], and
the detection of the glottal instants mentioned in [15] and [16] both use a residual signal in order
to evaluate the relevant information. The calculation of the residual signal is described in subsec-
tion 3.1.1, and its further processing to retrieve the fundamental frequency and the glottal instants are
introduced in subsection 3.1.2 and 3.1.3.

3.1.1 Computation of the LP residual

The residual signal e[n] is obtained by inverse filtering as described in [14]. So at this point of the
algorithm a rough estimation of a vocal tract filter using linear prediction is already executed. With
the help of the Levinson-Durbin recursion mentioned in subsection 3.2.1 a rough estimate of the vocal
tract filter is obtained and the sung vocal signal is inversly filtered. A LP order prough of

prough =
⌊
fs, dec

1000

⌉
+ 2 (3.1)

is used (b·e denotes rounding to the nearest integer).

To ensure the distinction between the residual signal and the dGf-signal, whose calculation with the
linear prediction analysis is mentioned in section 3.2, the residual signal is denoted with e[n] whereas
the dGF-signal is denoted with E[n] and its estimate with Ê[n].
Due to the all-pole-filter assumption concerning the vocal tract filter, its inverse filter corresponds to
a finite impulse response (FIR) filter. In Matlab the inverse filtering is executed with the filter()-
command [45], in which the roughly estimated vocal tract filter poles are used as zeros. The first
2 ·prough +1 samples are set to zero in order to delete FIR-filtering artifacts which, which would effect
the final normalization of the residual signal in an unwanted manner. A comparison of a sung vocal
signal, and the residual signal estimated from it is shown in Figure 3.1.

The impulse-like character of the residual signal e[n] is visible in the second subplot of Figure 3.1. If
the residual signal is compared to the exemplary dGF signals of figure Figure 2.2, the form of the dGF
signal E[n] can already be suspected even though it looks very noisy. The aim of the pre-processing
is to obtain information from the vocal signal which helps to modify the LP algorithms or their input
data, such that the final dGF estimates the synthesized dGF better.
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Figure 3.1 Synthesized sung vocal signal and residual signal obtained by inverse filtering with a
roughly estimated vocal tract

3.1.2 Estimation of Fundamental Frequency f0 and Voiced/Unvoiced Detection

The first usage of the residual signal e[n] is found in the estimation of the fundamental frequency f0,
which also includes the voiced/unvoiced detection of the current signal block. The f0 estimation and
voicing detection are based on [14]. The fundamental idea is based on a adapted summation of the
so-called residual harmonics. Three steps are executed before the fundamental frequency is estimated
and the voiced/unvoiced decision is made.

1. The residual signal e[n] is transformed to frequency domain and normalized to the overall
spectral energy

ẽ[k] = Fn7→k{e[n]}[k]

e[k] = ẽ[k]√
NFFT−1∑
k=0

ẽ2[k]

∆f = fs
NFFT

fk = ∆f · k, with k = 0, 1, . . . , NFFT − 1,

(3.2)

where fk if the frequency in Hz, k is the discrete frequency index, fs is the sampling frequency
in Hz, NFFT is the length of the frequency transform, ∆f is the discrete frequency resolution
and F {·} is a N -point discrete Fourier transform (N -point DFT), as implemented in Matlab’s
fft()-command [43]. Alternatively, we can also address the discrete frequency bins k using
their respective frequency fk, thus it is possible to write e(fk) where fk = ∆f · k, as defined
in the equation above.

2. The residual harmonics are summed to obtain the summation of residual harmonics (SRH),
inside a frequency interval given with fk ∈ [f0,min, f0,max]. The energy of the harmonic series
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is summed up and the energy at frequencies between the harmonics is subtracted and therefore
deemphasized as described in [14], such that

SRH(fk) = e(fk) +
Nharm∑
m=2

e(m · fk)− e((m− 1/2) · fk), (3.3)

where Nharm is the number of harmonics that are to be summed. In the implementation from
[14], a interval of fk ∈ [f0,min, f0,max] = [50 Hz, 640 Hz], a frequency resolution of ∆f = 1 Hz
and Nharm = 5 harmonics are used.

3. The last step is that the maximum value of SRH(fk) is determined. The frequency for which
the maximum value occurs determines the fundamental frequency estimate f̂0 and the value at
the maximum SRHmax is used for simple thresholding in order to achieve the voiced/unvoiced
decision.

SRHmax = max {SRH(fk)}

f̂0 = argmax
fk

{SRH(fk)}
(3.4)

A signal block is deemed to be a voiced signal block if

SRHmax > 0.07. (3.5)

The Matlab implementation of [14] found in the COVAREP database established by Degottex et
al. in [11] was created for offline analysis of whole signals, and a blocking of the signal is included
within the SRH algorithm. Due to the fact, that the implementation of this algorithm is already based
on blockwise processing, the given implementation found in [11] was adapted and the signal blocking
was removed. Also, in the implementation by Drugman, a more adaptive thresholding approach is
given, where the statistics of SRH(fk) are taken into account and the voiced/unvoiced threshold is
adapted according to the standard deviation of SRH(fk). In the algorithm proposed in this project the
simpler method with a fixed threshold was chosen. Nevertheless, a smoothing of SRHmax over the
course of the signal blocks is applied with the help of a first order integrator leading to the following
difference equation

SRHmax[n] = (1− α) · SRHmax[n− 1] + α · SRHmax[n], (3.6)

where α = 0.5 is a smoothing factor, and n is the time index on block-basis.

With the help of the synthesizer described in chapter 2, sung vocal signals with different vowels,
fundamental frequencies and voice qualities were created to analyze the stability of the proposed
voiced/unvoiced decision algorithm in a frequency range of f0 ∈ [50 Hz, 520 Hz]. The 2 s long
signals were cut in half and 0.5 s of a zero-mean Gaussian white noise were added in the middle. An
exemplary signal is shown in Figure 3.2.

A smoothing factor of α = 0.5 was chosen, and the smoothed SRH-values were calculated according
to Equation 3.6. In Figure 3.5, the results of the analysis are shown. It can be seen that over the
whole frequency range and all analyzed vowels, the voiced regions in the time range of 0 s− 1 s and
1.5 s − 2.5 s lie above the chosen threshold of SRHmax[n] = 0.07. And for the unvoiced region in
the middle, SRHmax[n] decreases below the threshold, denoting an unvoiced signal segment.
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Figure 3.2 Exemplary signal used for analysis of f0-estimation and VUV-detection

The course of one fundamental frequency estimation over time shown in Figure 3.3 corresponds to
one synthesized signal for one vowel and one fundamental frequency f0. The signals are buffered into
80 ms-blocks with a 70 % overlap. The block length was chosen to ensure that a block contains at
least 5 periods of the lowest period in our range of interest. Considering a lowest frequency of 70 Hz,
5.6 periods can be contained in one 80 ms long signal block. If the block length is halfed to 40 ms
it is not possible to estimate the lowest considered frequency of 70 Hz with the proposed method, as
visible in Figure 3.4. The estimated fundamental frequency f̂0 is then calculated for each block with
the proposed f0-estimation, based on the summation of residual harmonics shown in Equation 3.4.
The estimated fundamental frequency values for each block of the signals created for the different
vowels and fundamental frequency were all plotted into the same figure. As for the stability of the
f0-estimation, it can be seen that the estimated fundamental frequency lies within the range defined
by the jitter ratio defined in Table 2.2 for all vowels and all fundamental frequencies. The mentioned
range is defined as ± 1 semitone from f0,true.

During the unvoiced part, no fundamental frequency is estimated (denoted in the implementation with
not-a-number (NaN) values). The analysis of the f0-estimation and the voiced/unvoiced detection
were perfomed in Matlab and the corresponding code Main_SRH_Analysis.m can be found in the
folder V11_Pre_Processing_Analysis/Pitch_Tracker_Comparison/.

Figure 3.3 f0-estimation analysis over frequency for modal voice with a block-length of 80 ms
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Figure 3.4 f0-estimation analysis over frequency for modal voice with a block-length of 40 ms

Figure 3.5 SRHmax[n] for different vowels, fundamental frequencies and modal voice quality
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As visible in Figure 1.2, f̂0 is needed for the autocorrelation method with cepstral refinement, and for
the windowed covariance method, described in subsections 3.2.2 and 3.2.4, respectively.

3.1.3 Detection of Glottal Opening and Closure Instants

The next pre-processing step, which a voiced sung vocal signal block passes, is the glottal instant
(GI) detection. Its purpose is to detect the glottal opening instants (GOI), and the glottal closure
instants (GCI) of all glottal cycles included in the signal block. The presented GI detection was
put together from two publications. The GCI detection was taken from the SEDREAMS approach
discussed in [16], for which an exemplary implementation is published in [11]. The GOI detection has
been implemented as proposed in [15]. For both methods the residual signal as well as the so-called
mean-based signal are of significant importance.

Computation of the mean-based signal. The mean-based signal can be understood as the output
of a 0 Hz oscillator, which means it can be interpreted as a sinusoidal-like signal oscillating at the
fundamental frequency of the given speech singal. According to Drugman and Dutoit, the mean-
based signal ymean[n] is computed with [15]

ymean[n] = 1
2N + 1

N∑
m=−N

w[m]s[n+m],

N =
⌊
k · fs
2 · f̂0

⌉
, k ∈ [1.5, 2]

(3.7)

where f̂0 is the fundamental frequency estimate for the current signal block, w[n] is the window
function with a length of 2N + 1 samples, fs denotes the current sampling frequency, and s[n]
denotes the signal block of the synthesized sung vocal signal. Furthermore, the factor k lies within
the range of 1.5 to 2 according to [15], and was chosen to be k = 1.7 following the implementation
in [13].

As visible in Equation 3.7, the mean-based signal is calculated from a correlation between a window
function and the signal block. In accordance to [16], for w[n] a Blackman-window is used. The
window length is 2N + 1 and N is calculated from the current signal block’s fundamental frequency
estimate. If the window-length is chosen too short, multiple unwanted extrema occur, that cause false
alarms. A window length chosen too long could lead to oversmoothing, effecting in false alarms
concerning the glottal instants [16, p. 4].

In Matlab the computation of Equation 3.7 is approximated using the filter()-command [45],
whereas the array containing the window values is used as numerator coefficients and the window
length is used as the sole denominator coefficient of filter().

Figure 3.6 shows a comparison between a sung vocal signal block and its corresponding mean-based
signal.

GCI-Detection. The detection of GCIs, as proposed in [16], is executed in two steps. The first
step is to derive intervals of presence, where a GCI is expected, based on the mean-based signal.
The time intervals discussed in [16] deviate from the intervals calculated in the implemented version
in [11]. Due to the good performance of the implemented version found in the repository of [11], its
GCI detection procedure was replicated. Therein, a peak finding algorithm is used, which detects all
extrema in the mean-based signal. Additionally, it has to be ensured that the first occuring extremum
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Figure 3.6 Comparison of a sung vocal signal block and its mean-based signal

is a minimum and the last a maximum. In Matlab, such a peak finder is given with the findpeaks()-
command [46]. Also, there must be as many minima, as there are maxima. After all, minima and
maxima of the mean-based signal are detected within the intervals, in which a GCI is anticipated. The
intervals are centered around the minima of the mean-based signal, and their length is given with 0.35
times the fundamental period. For further explanation please note that the array ymean, min holds the
positions of all mean-based minimas in one signal block.

How the intervals are centered around the minimum is part of the second step: the refinement with
the help of the residual signal. Each maximum of the residual signal exceeding a threshold of 0.4 is
used to calculate a relative position of the GCI inside a glottal cycle.

The set of the residual signal peak-positions is denoted as the vector epeak, whereas a single peak-
position is denoted as epeak. The same notation holds for the mean-based extrema. Thus, epeak can be
formulated as

epeak = {n ∈ [1, Nblock] : e[n] > 0.4} . (3.8)

The Matlab equivalent of Equation 3.8 could be achieved with the find() or findpeaks() com-
mand [46]. For each residual peak-position epeak, the position of the mean-based signal’s closest mini-
mum is evaluated by determining the minimal distance between each residual peak-position epeak and
all mean-based minima positions, denoted as ymean, min, such that

ymean, min = min
{∣∣ymean, min − epeak

∣∣} . (3.9)

For each peak in the residual signal, the distance between the closest minimum ymean, min and its
following maximum ymean, max is calculated. The relative position of a GCI within a glottal cycle
λGCI is then calculated by normalizing the distance between a residual peak-position epeak and the
closest mean-based signal minimum ymean, min, with the distance between the minima and maxima
closest to the peak. This is done for each detected peak in the residual signal and the median value of
the resulting vector is calculated, such that

λGCI = median

{ (
epeak − ymean, min

)
(ymean, max − ymean, min)

}
. (3.10)

Note that equation Equation 3.10 only works if the the residual peak-positions in epeak and the mean-
based extrema-positions in ymean, min and ymean, max are sorted in such a away that only the closest
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mean-based minima is subtracted from each single residual peak-position, as indicated by Equa-
tion 3.9. Also each array indicated by bold notation in Equation 3.10 holds position values and
therefore λGCI results in a median relative position. The median relative position of a GCI inside a
glottal cycle λGCI is then used as a ratio to refine the intervals in which a GCI is expected. In Fig-
ure 2.1, the continuous-time instant at which a GCI occurs, is denoted as te. Considering a discrete-
time calculation basis, the discrete-time instant is written as ne = te · fs, where ne ∈ [ne,start, ne,end].
Using the GCI-ratio λGCI, which stands in no relation to any time-basis due to its relative nature1, the
relative start and end instances αstart and αend of the anticipated GCI time-intervals can be calculated,
such that

αstart = λGCI − 0.35 and αend = λGCI + 0.35. (3.11)

With the information of Equation 3.11, the GCI-intervals can be derived for all minima of the mean-
based signal. Firstly, half of the current signal-block’s local pitch period in samples N0

2 is calculated
by computing the distance between two consecutive extrema, i.e.

N0
2 = ymean, max − ymean, min. (3.12)

Again, bold notation indicates that the calculations in the implementation are executed multiple times
for all remaining extrema, leading to multiple local pitch period estimates in one block, denoted asN0.
With the relative start and end instances, αstart and αend respectively, and the local half pitch-period,
the starting and end instances for the GCI-intervals in the signal block can be calculated using

ne,start = ymean, min −
⌊
αstart ·

N0
2

⌉

ne,end = ymean, min −
⌊
αend ·

N0
2

⌉
.

(3.13)

Within the all intervals defined by ne,start and ne,end, the position of the residual signal’s maximum
amplitude are evaluated, delivering the GCI estimates n̂e in one block, such that

n̂ie = argmax
n

(e[n])
∣∣∣∣∣
nie,end

nie,start

∀ i = 1, 2, . . . , NGCI = # (GCI-intervals)

n̂e =
{
n̂1
e, n̂

2
e, . . . , n̂

NGCI
e

}
(3.14)

The #(·) operator returns the number of elements in an array. It can be viewed as the mathemati-
cal notation of the matlab command length() [50]. The GCI-Detection process is summed up in
Figure 3.8. The intervals the GCIs are anticipated in, centered around the mean-based minima, are
shown in the second subplot. The location of the intervals and their relation to the residual signal is
shown in the third subplot. The fourth subplot of Figure 3.8 shows an exemplary estimation of the
GCIs, as the estimated GCIs coincide with the true GCIs located at the negative maximum amplitude
of the dGf.

GOI-Detection. For the GOIs, the position estimation is also executed in presence intervals where
a GOI is anticipated. In [15], the presence intervals are determined to start at a maximum and end

1In fact, it is dimensionless.
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at the next negative zero-crossing of the mean-based signal. The comparison with the ground truth
showed, that for the evaluation of the synthesized sung vocal signal the interval has to be chosen
between the positive zero-crossing and the next maximum, rather than the proposed interval of [15].
The start instances at the positive zero-crossing are denoted with n0,start, and the end of the intervals
with n0,end. Additionally, a guarding margin of 0.25 ms is proposed to ensure that the GOI is placed
within the anticipation interval. In order to achieve a better adaption towards sung vocal signals the
guarding margin is modified: Considering a frequency modulation of± 1 semitone, as a consequence
to the vibrato defined in Table 2.2, the GOIs in the signal also move within the vicinity of± 1 semitone.
This leads to a relation between the guarding margin’s length Nguard and the current fundamental
frequency estimate f̂0, i.e.

Nguard =
(

1
f̂0 · 2−

1
12
− 1
f̂0 · 2

1
12

)
· fs. (3.15)

To compute the intervals,
⌊
Nguard

2

⌉
is added to n0,end, and the other half is subtracted from n0,start.

The estimated discrete-time GOI position n̂0 is calculated by evaluating the residual signal amplitude
maximum’s position in the calculated interval range, similiar to the GCI estimation described earlier.

n̂i0 = argmax
n

(e[n])
∣∣∣∣∣
ni0,end+

⌊
Nguard

2

⌉
ni0,start−

⌊
Nguard

2

⌉
∀ i = 1, 2, . . . , NGOI = # (GOI-intervals)

n̂0 =
{
n̂1

0, n̂
2
0, . . . , n̂

NGOI
0

}
(3.16)

In the second subplot of Figure 3.8 the modified intervals between the positive zero-crossing and the
next maximum are visible. The interval’s placement around the GOI is visible when comparing the
GOI-interval and the true dGF. It becomes visible that the interval is centered around the GOI.

Performance Evaluation of GI Detection. When looking at the fourth subplot of Figure 3.8 it
becomes visible, that the GCI detection is much more accurate than the GOI detection. In order to
analyze the performance of the GI-detection, sung vocal signals with different vowels, fundamental
frequencies and voice qualities were synthesized and the GI-detection was evaluated. To quantify
the performance for different parameter sets, two percentage measures were evaluated. The number
of the true glottal instants (known from the groundtruth dGf) located within the found glottal instant
intervals was set into relation with the overall number of the true glottal instants. This results in the
percentage measure PGI,1 which is calculatable for both glottal instants (GOIs and GCIs).

PGI,1 = # (true GIs in GI-intervals)
#(true GIs)

(3.17)

If for instance an interval extends over a whole signal-block the percentage measure PGI,1 would still
result in a high percentage. This shows that PGI,1 alone is a non-informative measure. In order to
make statements on the GI-Detection’s performance, a second percentage measure PGI,2, comparing
the number of intervals with the number of the true glottal instants is introduced, such that

PGI,2 = # (GI-intervals)
# (true GIs)

. (3.18)
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The performance measures are calculated for all GCIs and GOIs, which is indicated by their index
notation. The previously mentioned signals used to evaluate PGI,1 and PGI,2 were created in such
a way, that the signal length depends on the fundamental frequency f0, ensuring that each signal
realization contains the same amount of glottal instants. In Figure 3.7, the percentage measures
concerning the GCI-and GOI-measures are visualized. The subplots of the left column show the
evaluation of PGI,1 and the subplots in the right column compare PGI,2 for different fundamental
frequencies f0, different vowels (/a/, /e/, /i/, /o/ and /u/ ) and voice qualities (modal, breathy and
creaky).

For both glottal instants the high percentage of PGI,2 indicates, that the number of found intervals
coincides with the number of true GIs. The reason why PGI,2 does not reach 100 % can be found
in the zero-padded beginning and end of the mean-based signal. Due to the zero-padding, which is
necessary to conceal filtering artifacts, the first and last glottal instants of each signal block are not
detected correctly, leading to a systematic error of arround 10 %. Concerning PGI,1, Figure 3.7 shows,
that for certain vowels and higher fundamental frequencies the presence intervals determined by the
mean-based signal analysis are misplaced for all three voice-qualities. Especially the GOI-intervals
are wrongly placed, when the signals are synthesized with f0 = 370 Hz or higher.

In addition, for signals with vowels whose first formant is placed at relatively low frequencies (that
are /i/ and /u/ ), the detection reaches its limits, when the fundamental frequency or its first harmonics
reach the vicinity of the first formant. This leads to a faulty rough estimation of the vocal tract
filter, which is necessary for the computation of the residual signal mentioned in subsection 3.1.1.
Consequently, this might entail a incorrect refinement using the residual signal when estimating the
GCI-intervals.

The placement of the GOI intervals within the signal block only depends on the positions of the
positive zero crossings and the maxima of the mean-based signal. As there is no refinement using the
residual signal, it can also be assumed that the GI-interval estimation based on the mean-based signal
reaches its limits for higher fundamental frequencies. In Figure 3.9 a worst case example is shown.
The synthesized signal block contains the sung vowel /i/ and its fundamental frequency is given with
f0 = 470 Hz. It is visible, that the GCI-intervals are still placed in close vicinity to the true GCIs,
whereas the GOI-intervals are displaced, leading to wrong estimated glottal opening instants, which
reflects the results obtained in subsection 3.3.4.

The GCI- and GOI-detection is needed for the window computation used in the windowed covariance
method described in subsection 3.2.4. Also the GCIs are a vital part of the voice quality classification
based on the skewness features described in section 3.3.
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(a) GCI detection measures

(b) GOI detection measures

Figure 3.7 Glottal instants performance measures in dependence on f0, vowels and voice-quality
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3.1.4 Pre-Emphasis Filtering

The last pre-processing step before the vocal tract filter estimation with linear prediction is executed, is
the pre-emphasis filtering. The goal of the pre-emphasis filtering is to “whiten” the sung vocal signal,
meaning that we aim for a flatter spectrum of the input signal. The whitening helps to regularize the
linear prediction process, as it was designed for white noise signals. As proposed in [67, p.200], a
very simple first order IIR high-pass-filter is chosen for the pre-emphasis filter. The transfer-function
of the pre-emphasis filter is given with

Hpre(z) = 1− αpre · z−1

αpre = e
− 2π·fpre

fs .

(3.19)

For the implementation fpre = 10 was chosen, with the downsampled sampling frequency fs =
16 000 kHz this leads to αpre = 0.9961.

Figure 3.10 Frequency response of the pre-emphasis filter

The pre-emphasis filtering is the last processing step a signal block runs through before it is processed
by the linear prediction methods described in the following section 3.2.
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3.2 Vocal Tract Filter Esimation using Linear Prediction

With the information on the fundamental frequency f̂0 and the position of the glottal instants (n̂e and
n̂0), a more detailed linear prediction analysis is performed on the pre-emphasis filtered sung vocal
signal. Before the different methods are thoroughly explained, a general theoretical introduction into
linear prediction is given.

It was already mentioned in chapter 2, that the underlying model for speech signals is the source-filter
model, where the filter in this case represents the vocal tract filter. It is modeled as an all-pole filter
with p poles showing the following transfer function:

H(z) = G

1−
p∑

k=1
akz−k

= S(z)
V (z) (3.20)

The integer p is also called the linear prediction order, and defines the amount of filter coefficients cal-
culated in order to estimate the vocal tract filter in all methods discussed in the following subsections.
The choosing of the linear prediction order still remains a subject open for discussion, as there are sev-
eral approaches e.g. [69] propose a heuristic method using a “reflection coefficient cutoff“, whereas
in [31] a LP order dependent on the fundamental frequency is proposed. Nevertheless, for the analysis
executed during this project the same order as used by Degottex et al. in the implementations of [11]
was used which corresponds to the rough LP order mentioned in Equation 3.1.

Based on Equation 3.20 and the assumption of an input signal v[n], a linear difference equation with
constant coefficients can be formulated by inverse z-transform [56, p. 934], such that

Z−1
{
S(z)− S(z)

( p∑
k=1

akz
−k
)

+GV (z)
}

= s[n]−
p∑

k=1
aks[n− k] +Gv[n].

s[n] =
p∑

k=1
aks[n− k] +Gv[n]

(3.21)

Equation 3.21 allows the following interpretation: a signal prediction ŝ[n], calculated via a linear
combination of coefficients ak and past signal samples s[n− k], is subtracted from the current signal
sample s[n], resulting in the prediction error eLP[n]. Thus, the relation can be rewritten such that

s[n] =
p∑

k=1
aks[n− k]︸ ︷︷ ︸
ŝ[n]

+Gv[n]︸ ︷︷ ︸
eLP[n]

.

eLP[n] = s[n]− ŝ[n] = s[n]−
p∑

k=1
aks[n− k]

(3.22)

With the assumption, that the zeroth coefficient is one (a0 = 1) the sum forming ŝ[n] in Equation 3.22
can be extended for k = 0, leading to the following equation for the error eLP[n],

eLP[n] = s[n]−
p∑

k=1
aks[n− k] =

p∑
k=0

aks[n− k], with a0 = 1. (3.23)

For the error eLP[n], a minimum mean square error (MMSE) problem can be set up. Let a denote
a vector containing the filter coefficients ak ∀ k = 1, . . . , p, the cost function JMSE(a) for such a
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problem is given with

JMSE(a) = E
{
e2

LP[n]
}

= E


( p∑
k=0

aks[n− k]
)2


JMSE(a) = E


( p∑
i=0

ais[n− i]
) p∑

j=0
ajs[n− j]

 = E


p∑
i=0

p∑
j=0

ais[n− i]s[n− j]aj


(3.24)

As shown in [38, p.10], the expectation operator E{·} can also be viewed as an averaging over time
inside the interval defined by n0 and n1. Therefore, if the expectation operator is rewritten as a sum,
the cost function JMSE(a) is obtained, such that

JMSE(a) = 1
|n1 − n0|

 n1∑
n=n0

p∑
i=0

p∑
j=0

ais[n− i]s[n− j]aj

 . (3.25)

Due to the independence of ai and aj with respect to n, the sum operations can be interchanged. Thus

JMSE(a) = 1
|n1 − n0|


p∑
i=0

p∑
j=0

aiaj

(
n1∑

n=n0

s[n− i]s[n− j]
)

︸ ︷︷ ︸
φij

 . (3.26)

The term φij describes a covariance function. It will later be important, concerning the distinction
between the autocorrelation method and covariance method for linear prediction. Using the notation
φij , the cost function can further be simpliefied to [38, eq.2.9]

JMSE(a) = 1
|n1 − n0|

 p∑
i=0

p∑
j=0

aiajφij

 = 1
|n1 − n0|

 p∑
i=0

p∑
j=0

aiφijaj

 . (3.27)

In order to calculate to calculate the coefficients which minimize the given cost function JMSE(a), the
corresponding derivative with resprect to the coefficients aj is calculated and set to zero [38, eq.2.11],
such that

∂JMSE(a)
∂aj

= 2
|n1 − n0|

[ p∑
i=0

aiφij

]
!= 0.

p∑
i=0

aiφij
!= 0 with a0 = 1

p∑
i=1

aiφij + φ0j = 0

(3.28)

Thus, the following system of equations for the coefficients ai is reached.

p∑
i=1

aiφij = −φ0j where j = 1, 2, . . . , p (3.29)
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If Equation 3.29 is solved for the coefficients ai, the cost function is minimized, and the obtained filter
coefficients can be used as the estimate for the all-pole filter’s coefficients mentioned in Equation 3.20.
To solve Equation 3.29, φij has to be calculated. It is given with:

φij =
n1∑

n=n0

s[n− i]s[n− j] (3.30)

The averaging interval’s range, defined through n0 and n1, defines which optimization method is
applied. There are two basic methods concerning the size of the interval, leading to the distinction
between autocorrelation or covariance methods for linear prediction. [38, p.11]

Estimation Error and Filter Gain. If one takes a closer look at the relations established in Equa-
tion 3.22, the estimation error eLP[n] is given with

eLP[n] = Gv[n]. (3.31)

The mean square error JMSE(a) is then given with

JMSE(a) = E
{
e2

LP[n]
}

= E
{
G2v2[n]

}
= G2E

{
v2[n]

}
. (3.32)

Ideally, v[n] is deemed to be zero-mean, Gaussian white noise with unit variance, as discussed in [71,
p.230]. This would result in E

{
v2[n]

}
= σ2

v = 1, and thus the filter gain could be exactly estimated
by taking the square root of the remaining prediction error, such that

G =

√
E
{
e2

LP
}√

E{v2[n]}
=

√
E
{
e2

LP
}

σ2
v

=
√
E
{
e2

LP
}
. (3.33)

Nevertheless, the underlying input-signal modeled by the LF-model defined in section 2.1 is not a
white noise process and therefore the estimated filter gain Ĝ is always erroneous. In fact, the filter
gain error is defined by the term

√
E{v2[n]}, such that

Ĝ = G
√
E{v2[n]} =

√
E
{
e2

LP
}
. (3.34)

Thus, for the given excitation signals, synthesized by the proposed vocal signal synthesis algorithm
of chapter 2, the gain estimation using the remaining prediction error, can not be an exact estimation
of G.

This behavior also explains the reason for the implemented whitening process using the pre-emphasis
filter mentioned in subsection 3.1.4. The filter estimation using linear prediction works best, if Gaus-
sian white noise input signals are used. Unfortunately, Gaussian noise processes are not realistic
excitation signals for voiced speech/vocal signals. As this is the only available method to estimate
the gain with linear prediction, the estimated gain Ĝ calculated from the remaining prediction er-
ror’s square root is used in all implemented methods. In the following subsections, the four linear
prediction methods used in the analysis are discussed.

3.2.1 Autocorrelation Method

The autocorrelation method is given, if the averaging interval mentioned in Equation 3.29 ranges from
n0 = −∞ to n1 = ∞. Naturally, in practical applications the infinite time interval is limited with
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n ∈ [0, N −1], where N is the number of available samples. Therefore, we use the following relation
to calculate φij

φij =
∞∑

n=−∞
s[n− i]s[n− j] ≈

N−1∑
n=0

s[n− i]s[n− j] (3.35)

The limits of the sum can be manipulated in such a way, that the covariance function φij becomes the
autocorrelation function rss[|i− j|], as it can be found in [38, eq. 2.12]. Thus,

φij =
N−1∑
n=0

s[n− i]s[n− j] =
N−1−|i−j|∑

n=0
s[n]s[n+ |i− j|] = rss[|i− j|]. (3.36)

In order to calculate an exact autocorrelation function, infinitely many signal samples would be nec-
essary. The limitations due to finite intervals lead to a remaining prediction error, additional to the
error inflicted by the non-white input signal as described in Equation 3.32 [56, p. 942-944].

Therefore, the calculation of the coefficients minimizing the cost function are to be interpreted as an
estimation and the coefficient’s notation changes from ai to âi, where the hat symbol denotes the
estimation. For the minimization equation shown in Equation 3.29, this results in

p∑
i=1

âirss[|i− j|] = −rss[|j|], j = 1, 2, . . . , p. (3.37)

Using vector-matrix notation, the sum of Equation 3.37 can be written as an inner product, such that

[
rss[|1− j|] rss[|2− j|] . . . rss[|p− j|]

]

â1

â2
...

âp

 = −rss[|j|], j = 1, 2, . . . , p (3.38)

This vector operation has to be executed for all j = 1, 2, . . . , p, thus the equation system can be
formulated as a matrix vector multiplication:

rss[0] rss[1] rss[2] . . . rss[p− 1]
rss[1] rss[0] rss[1] . . . rss[p− 2]
rss[2] rss[1] rss[0] . . . rss[p− 3]

...
...

...
. . .

...

rss[p− 1] rss[p− 2] rss[p− 3] . . . rss[0]


︸ ︷︷ ︸

Rss



â1

â2

â3
...

âp


︸ ︷︷ ︸
âopt

= −



rss[1]
rss[2]
rss[3]

...

rss[p]


︸ ︷︷ ︸

rss+1

(3.39)

Here it is obvious, that Rss is an autocorrelation matrix. Due to the fact, that only real-valued input
signals are considered, the autocorrelation matrix is symmetric and it shows Toeplitz structure. These
equations are known as the Yule-Walker equations. The vector rss+1 can be interpreted as an autocor-
relation vector with a lag of one. Assuming that the symmetric matrixRss is invertible, the equations
can be solved for the coefficients with the following relation. [56, p.938]

âopt = R−1
ss rss+1 (3.40)

An efficient algorithm enabling the solution of this equation system was proposed by Trench in [68],
called the Levinson-Durbin algorithm. The iterative implementation of this algorithm is well and
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extensively documented and a renowned way to solve the Yule-Walker equations [38, p. 12]. Due to
the considerable documentation [68], [38, p. 12] or [70, p. 182] and already existing implementations,
e.g. in form of the Matlab command levinson() [51], no further discussion of the Levinson-Durbin
algorithm is carried out.

Implementation in Matlab. In the implementation proposed in this project, the autocorrelation
function is calculated via the frequency domain. Firstly, a voiced signal block is filtered with the pre-
empahsis filter mentioned in subsection 3.1.4. The pre-emphasis filtered input signal is denoted with
s[n]. Afterwards, the signal is windowed with a Hann-windoww[n] resulting in s̃[n] = s[n]·w[n], and
finally the autocorrelation function rss[m] is calculated by squaring the magnitude in the frequency
domain, as shown in the following Equation 3.41.

Nblock = btblock · fse with tblock = 80 ms

NDFT = 2blog2(Nblock)+1e . . . number of DFT samples

W =

Nblock∑
n=0

w[n]

Nblock

rss[m] = F−1
k 7→m

{∣∣∣∣Fn7→k{s̃[n]}[k]
W

∣∣∣∣2
}

[m] with m ∈ [0, NDFT − 1],

(3.41)

where W denotes a correction factor necessary due to the windowing. Due to the fact that NDFT >
Nblock, the lag index of the autocorrelation function rss[m] is denoted with m, rather than the original
time index n. The autocorrelation rss[m] of the current signal block is then used to execute the
Levinson-Durbin recursion which solves Equation 3.40 to obtain the estimated optimal all-pole vocal
tract filter coefficients âopt for this signal block.

Theoretically, the autocorrelation would only be exact, if there were infinitely many signal samples
available. Nevertheless, due to the occurrence of finite length signals in practical implementations,
there remains a prediction error for the autocorrelation method [56, p. 942-944]. The remaining
prediction error is used to estimate the filter gain with equation 3.34.

The calculation of the autocorrelation is executed in the Matlab script calcAutoCorr.m. The trans-
formation into the frequency domain is carried out with the fft() command [43].

To summarize the autocorrelation method, its signal flow leading to the estimated poles of the VT
filter is visualized in Figure 3.11. Figure 3.12 shows an exemplary signal block and the corresponding
autocorrelation function. In Matlab it has to be ensured that the autocorrelation values corresponding
to lag zero are placed in the center of the array as shown in figure Figure 3.12.

Levinson-Durbin
Algorithm to estimate

LPC coefficients 
levinsondurbin.m

 
LPC coefficients =
poles of VT Filter

 

pre-emphasis
filtered 

voiced signal block

Calculate Auto
Correlation  

calcAutoCorr.m

Figure 3.11 Processing steps of the autocorrelation method
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Figure 3.12 Exemplary sung vocal signal block and corresponding autocorrelation function

3.2.2 Autocorrelation Method with Cepstral Refinement

The theoretical background concerning the estimation of the filter coefficients for this method co-
incides with the autocorrelation method mentioned in subsection 3.2.2. The difference lies in the
autocorrelation function used to solve Equation 3.40. In [60], Rahman and Shimamura proposed
the usage of a cepstral refinement enabling harmonic suppresion of the fundamental frequency and
its multiples, contained in the autocorrelation function, caused by the impulsive excitation signal. 2

The main advantage of a cepstrum is that the periodic source components can be separated from the
vocal tract filter which as applied through a non-linear operation (convolution) [60, p.2]. Basically,
the refinement can be interpreted as a smoothing of the autocorrelation function through so-called
cepstral liftering. The autocorrelation is again calculated via the frequency domain as mentioned in
3.2.1. The cepstral refinement comprises, the computation of the autocorrelation function’s cepstrum
crss[q], with [70, p. 66]

crss[q] = F−1
k 7→q{ln(|Fm 7→k{rss[m]}[k]|)}[q] . (3.42)

. Afterwards in the cepstral domain a lifter window is applied. The liftered cepstrum is then trans-
formed back to the time domain. The DFT resolution is calculated as mentioned in Equation 3.41, the
same resolution is used for the inverse Fourier transform denoted in Equation 3.42.

2The term cepstrum was coined by Bogart, Healy and Tukey in 1963. It is a semantically playful adaption of the word
spectrum. There are more semantical pairs, such as frequency/quefrency, filter/lifter and many more. A brief overview
on the history of cepstrum is given in [57].
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Lifter Window Computation. The next step is the computation of a lifter window, which is de-
signed as a tapered cosine, or Tukey window. In contrast to the lengths of the lifter-window mentioned
in [60], a length Nwc dependent on the estimated fundamental frequency f̂0 of the current signal is
used, defined by

Nwc =
⌊

1
f̂0
· fs · 0.85

⌉
. (3.43)

The window is then computed as a Tukey window with the length of Nwc. The Tukey window is
defined in [5, eq. 6.9] for an interval of 0 ≤ x ≤ 1. A discretized version for x = n

Nwc
can be

formulated, such that

wc[n] =



1
2

(
1− cos

(
2π
αwc

n
N

))
, 0 ≤ n <

⌊
N ·αwc

2

⌉
1,

⌊
N ·αwc

2

⌉
≤ n <

⌊
N − N ·αwc

2

⌉
1
2

(
1− cos

(
2π
α −

2π
αwc

n
N

))
,
⌊
N − N ·αwc

2

⌉
≤ n ≤ N

. (3.44)

The window length N is chosen as N = 2 ·Nwc, as the lifter window has to be a symmetric, allowing
a correct reconstruction of the smoothed autocorrelation r̃ss[m] as formulated in Equation 3.45. The
parameter αwc defines, how much of the windowed data is tapered at the beginning end the end of
the signal block [5, p. 69]. For the implemented algorithm αwc = 0.5 was chosen. In Matlab, the
window is computed with the command tukeywin() [55].

Applying the Lifter Window. To apply the liftering operation on the calculated cepstrum crss[q]
from Equation 3.42, the Tukey lifter window has to be shifted into the correct position. Firstly, the
window has to be zero-padded from length N to the length of the cepstrum, which coincides with
the autocorrelation length NDFT. This way, the zero-padded lifter window has the same length as
the cepstrum. After zero-padding, the lifter window is then shifted circularly in the following way:
The first half of the Tukey window is placed at the last Nwc samples of the autocorrelation function
and the second half of the Tukey window is placed at the first Nwc samples of the autocorrelation
blocks. The placement of the window over a exemplary normalized cepstrum is shown in Figure 3.13,
where the cepstrum was only normalized for visualization purposes. The calculations in the algorithm
implementation are executed for a non-scaled cepstrum. After the lifter window is shifted into the
right position, the lifter operation reduces to an element-wise multiplication between the cepstrum
crss[q] and the window wc.

Refined Autocorrelation Function. Following the liftering operation, a refined autocorrelation
function r̃ss[m] can be calculated by reverting Equation 3.42 back to the time domain, such that

r̃ss[m] = F−1
k 7→m

{∣∣∣eFq 7→k{crss[q]·wc[q]}[k]
∣∣∣}[m] . (3.45)

Figure 3.15 visualizes the cepstral refinement and its effects on the autocorrelation function. In the
first subplot of Figure 3.15, the cepstrum of an exemplary signal block and the corresponding lifter
window is visible. Through the element-wise multiplication, the low quefrency content of the spec-
trum is preserved. The first peak outside of the lifter window, can be interpreted as an more fluctuating
spectral component due to the peak’s position at a higher quefrency. The position of the peak corre-
sponds to the estimated signal period T̂0, thus it can be assumed, that the cepstral peak represents the
spectral fluctuations created by the periodic excitation signal.
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Figure 3.13 Exemplary cepstrum and Tukey lifter window

Low quefrencies correspond to low spectral fluctuations, which are caused for example by the vo-
cal tract filter. These low-quefrency fluctiations are often described as the spectral envelope [60].
The spectral envelope of a sung vocal signal’s autocorrelation shows the formant structure. This is
also visible when comparing the spectrum of the liftered and unliftered autocorrelation, r̃ss and rss
respectively, which are shown in the third subplot of Figure 3.15.

The high dynamic in the autocorrelation’s spectrum can be explained with the already high signal
to noise ratio in the original signal, due to its synthetic nature. As mentioned in subsection 2.3.3,
the only noise applied to the sung vocal signal is high-pass filtered additive Gaussian white noise,
where the manually fixed signal to noise ratio amounts to 96 dB, as defined in Equation 2.18. The
additive noise’s influence is drastically reduced in the autocorrelation domain, because due to its lack
of covariance, it has only an effect on the autocorrelation bin for lag zero. This leads to an even higher
signal to noise ratio and dynamic in the autocorrelation of a voiced sung vocal signal block.

To conclude the autocorrelation method using cepstral refinement for the vocal tract filter coefficient
estimation, its signal flow is shown in Figure 3.14.

As shown in Figure 3.14, the signal flow starts with a voiced and pre-emphasis filtered signal block.
Then its autocorrelation is calculated according to Equation 3.41. The next step is the cepstral re-
finement: By attenuating the excitation signals periodic influence with a lifter window in the cepstral
domain, a smoothed autocorrelation is calculated according to Equation 3.45. In the implementation,
this is done in the Matlab file CepsLift.m found in the folder 00_ABGABE_Matlab/V12b_LPA_
JUCE_Matlab_Reference/. The cepstrally refined autocorrelation function is then used to solve the
Yule-Walker equation given in Equation 3.40, with the help of the Levinson-Durbin algorithm.

Cepstral-Liftering of
Excitation-Signal 
CepsLift.m

Levinson-Durbin
Algorithm to estimate

LPC coefficients 
levinsondurbin.m

 
LPC coefficients =
poles of VT Filter

 

f0

pre-emphasis
filtered 

voiced signal block

Calculate Auto
Correlation  

calcAutoCorr.m

Figure 3.14 Processing steps of the autocorrelation method with cepstral refinement

39



Chapter 3. Analysis of Sung Vocal Signals Bereuter & Kraxberger

Figure 3.15 Cepstral refinement on the autocorrelation function using liftering

3.2.3 Covariance Method

The initial equation for the covariance method is Equation 3.29. The difference towards the autocor-
relation method lies in the different averaging interval for the calculation of φij . Where the averaging
interval of the autocorrelation method was chosen to range over all available signal samples, the
averaging interval of the covariance method is chosen to start at the p-th sample, such that

φij =
N−1∑
n=p

s[n− i]s[n− j]. (3.46)

The averaging interval is predefined and φij is called the covariant function in accordance to [38, p.12-
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13]. Using Equation 3.29 and Equation 3.46, a matrix-vector equation system can be set up for the
covariance method [38, p.13], such that

p∑
i=1

âiφij = −φ0j , j = 0, 1, . . . , p.

[
φ1j φ2j . . . φpj

]


â1

â2

â3
...

âp


= −φ0j , j = 0, 1, . . . , p

(3.47)

As already derived for the autocorrelation method, the sum rewritten as an inner vector product has
to be exectued for all j = 0, 1, . . . , p and can therefore also be noted as a matrix-vector product in
accordance to [38, p. 11], thus

φ11 φ12 φ13 . . . φ1p

φ21 φ22 φ23 . . . φ2p

φ31 φ32 φ33 . . . φ3p
...

...
...

. . .
...

φp1 φp2 φp3 . . . φpp


︸ ︷︷ ︸

Φ



â1

â2

â3
...

âp


︸ ︷︷ ︸
âopt

= −



φ01

φ02

φ03
...

φ0p


︸ ︷︷ ︸

ψ

. (3.48)

In contrast to the autocorrelation method, the matrix Φ is neither an autocorrelation matrix, nor does
it show Toeplitz structure. However, as the indices i and j iterate over the same values, they are
interchangeable, thus

φij = φji, ∀ i = 0, 1, . . . , p and ∀ j = 0, 1, . . . , p. (3.49)

Therefore, Φ is a symmetric matrix with the dimensions [p × p]. Due to the given symmetry of Φ,
Equation 3.48 can be solved for the optimal coefficients âopt with

âopt = Φ−1ψ. (3.50)

This matrix-vector equation can be solved using Cholesky decomposition [38, p. 13], which allows
the factorization of a symmetric, positive semidefinite matrix into a diagonal matrix D and a lower
triangular matrix L, where

Φ = LDLT , (3.51)

as shown in [24, p. 143]. With this property, the matrix inversion occuring in Equation 3.50 can
be solved more efficiently. The Matlab Code cholesky.m can be found in the folder 00_ABGABE_
Matlab/V12b_LPA_JUCE_Matlab_Reference/ and was taken from [59]. It is used in the LP anal-
ysis implementation to execute the covariance method with the help of the Cholesky decomposition.

The steps a voiced signal block is processed through in the LP analysis algorithm with the covari-
ance method are summarized in Figure 3.14. Similar to the autocorrelation method, the starting point
is a whitened voiced signal block (whitened by means of the pre-emphasis filter discussed in sub-
section 3.1.4), afterwards the vocal tract filter coefficients are estimated with the covariance method
using the Cholesky decomposition.
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LPC coefficients
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Cholesky Decomp. 
cholesky.m

 
LPC coefficients =
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pre-emphasis
filtered 

voiced signal block

Figure 3.16 Processing steps of the covariance method

3.2.4 Windowed Covariance Method

In analogy to the relation between the autocorrelation method and the autocorrelation method us-
ing cepstral refinement, the windowed covariance method is the modified version of the covariance
method. As visible in Figure 3.17, an additional block is present which modifies the previously
known signal flow from Figure 3.16. In addition to the block representing vocal tract filter coeffi-
cient estimation using Cholesky decomposition, another process block is present. Within this block,
a weight window is applied onto the whitened voiced signal block in time domain. The main goal
of these weight windows is to weaken the signal’s discontinuity occuring at the GCIs (i.e., the non-
differentiable place in the dGF).

For the computation of the time windows, the information derived in the pre-processing stage men-
tioned in section 3.1 is used. The estimated fundamental frequency and estimated GCIs are needed
for the window creations. In the Matlab implementation, the window creation is carried out in the
file createWeightWin.m. The file is located in the folder 00_ABGABE_Matlab/V12b_LPA_JUCE_
Matlab_Reference/.

LPC coefficients
estimation with

Cholesky Decomp. 
cholesky.m

'none' 

'c'...CPCA 

's'...SLP 

'w'...WLP 

Create Weight-
Window for

Covariance-LPC 
createWeightWin.m

 
LPC coefficients =
poles of VT Filter

 

f0 
GCIs/GOIs

pre-emphasis
filtered 

voiced signal block

Figure 3.17 Processing steps of the windowed covariance method

Three possible types of windows were implemented according to [10], wherein different weightings
define the names of the linear prediction analysis. The different analysis methods whose window
creation were implemented in createWeightWin.m are

1. the closed phase covariance analysis (CPCA),

2. the weighted linear prediction (WLP) and

3. the sparse linear prediction (SLP).

In the following paragraphs, the different windows are distinguished using the corresponding abbre-
viations. The windows are created for all glottal cycles inside a voiced signal block.
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Calculation of CPCA windows. The window used for closed phase covariance analysis is a
rectangular window which opens for the closed phase of a glottal cycle. The closed phase is defined
as the interval between a GCI n̂e and a consecutive GOI n̂0. The estimated positions of the GIs are
calculated as mentioned in subsection 3.1.3. Therefore, the discrete-time interval of the glottal closure
phase can be assumed to be the time, which is included in the interval t ∈ [t̂0, t̂e], which in samples
corresponds to the interval n ∈ [n̂0, n̂e]. According to [10], a guarding delay of 0.9 ms is added to
the GCI. If the time difference between the GOI and GCI reduces to a difference of less than 4.5 ms,
the guarding delay is decreased and fixed with 0.2 ms times of said difference. On a sample based
calculation, the CPCA window wcpca[n] for one glottal cycle (n ∈ [n0, nc]) can be formulated as
follows.

Nlim =
⌊
4.5 · 10−3 · fs

⌉
, Ncycle = |n̂e − n̂0|

nguard,1 =
⌊
0.9 · 10−3 · fs

⌉
, nguard,2 = b0.2 · |n̂e − n̂0|e

wcpca[n] =



1 ∀n ∈
[
n̂0 + nguard,1, n̂e

]
, if Ncycle > Nlim

1 ∀n ∈
[
n̂0 + nguard,2, n̂e

]
, if Ncycle < Nlim

0, else

(3.52)

The window creation is repeated for each pair of GCI and GOI detected inside the signal block.

Calculation of WLP windows. The windows used for weighted linear prediction analysis are
created as piecewise linear functions as proposed in [10]. Thereby, two amplitude levels inside the
window function are connected linearly. The maximum value of the window lies at one, and the
minimum amplitude value amounts to 0.05. The value change from the maximum to the minimum
value or vice versa is carried out in 0.45 ms with a linear ramp function. Therefore, a slope kwlp can
be calculated for the linear part of the window in the discrete time domain, such that

kwlp = 1− 0.05
b0.45 · 10−3 · fse

= 0.95
b0.45 · 10−3 · fse

. (3.53)

The low amplitude value of the window is reached at 0.32 times the current fundamental period
estimate T̂0 before a estimated GCI instant n̂e. The low amplitude value is then held for 0.4 times
T0. After this, the ramp-up process is started and the high amplitude value is reached within 0.45 ms.
Firstly, four sample-based time indices ∆1, ∆2, ∆3 and ∆4 need to be calculated, such that

∆1 =
⌊(

0.32 · T̂0 + 0.45 · 10−3
)
· fs
⌉
, ∆2 =

⌊
0.32 · T̂0 · fs

⌉
∆3 =

⌊
0.08 · T̂0 · fs

⌉
, ∆4 =

⌊(
0.08 · T̂0 + 0.45 · 10−3

)
· fs
⌉
.

(3.54)

Using the values of ∆1, ∆2, ∆3 and ∆4, the WLP window function wwlp[n] for one glottal cycle
(n ∈ [n0, nc]) can be formulated as follows.

wwlp[n] =



−kwlp · [n− (n̂e −∆1)] + 1, ∀ n ∈
[
n̂e −∆1, n̂e −∆2

]
0.05, ∀ n ∈

[
n̂e −∆2, n̂e + ∆3

]
kwlp · [n− (n̂e + ∆3)] + 0.05, ∀ n ∈

[
n̂e + ∆3, n̂e + ∆4

] (3.55)
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In Matlab, the linear sections connecting the maximum and minimum values of the windows are
calculated with the interp1() command [49].

Calculation of SLP windows. In contrast to the previous windows, the sparse linear prediction
window is defined for the whole signal block, meaning the window computation doesn’t have to be
repeated for each glottal cycle. All GCI estimates n̂e are included in the window computation. With
the SLP window, a notch is placed at each detected GCI which weakens the discontinuities. With the
fixed parameters κ and σ as well as n̂(l)

e being the l-th GCI estimate, the SLP window wslp[n] can be
defined according to [10] such that

wslp[n] = 1− κ ·
L∑
l=1

e
−
(
n−n̂(l)

e

)2

2(σfs)2 . (3.56)

As proposed in [10], the parameters were defined as κ = 0.9 and σ = 0.25 ms. κ defines the signal
dampening at each estimated GCI, where a value of κ = 0.9 means that the minimum amplitude
value for the SLP window is 0.1 at the GCIs n̂e.

Comparison of Window Functions and Conclusion. A graphical comparison of each weight
window is illustrated in Figure 3.18. The created windows for one signal block are plotted over the
signal block’s true excitation signal (dGF) for modal voice quality, in order to show the window
positioning around the estimated glottal instants.

In the first subplot of Figure 3.18 it is visible, that the flawed GOI-detections mentioned in subsec-
tion 3.1.3 lead to misplaced CPCA-windows. There are respectively long phases where the window
sets the signal to 0. This means a lot of energy is taken out of the signal block. The WLP window
shown in the second subplot shows shorter dampening phases, but still 40 % of each glottal cycle
are dampened. The most energy is preserved when using the SLP windows, shown in the third sub-
plot. Also due to the robust GCI-detection the notches contained in the SLP window are placed very
accurately.

Therefore, in order to ensure further estimation with as much signal energy as possible and due to
more robust GCI-detection the SLP window is chosen for further representation of the windowed
covariance method. This means for the forthcoming sections, when the windowed covariance method
is mentioned section 3.4, always SLP weight windows were used. The terms sparse linear prediction
and windowed covariance method are therefore used interchangeably in the following parts of this
document.

After the window is computed for one sung vocal signal block and the pre-emphasis filtered sung
vocal signal is multiplied with the window, the windowed covariance method then uses the same
steps same steps to solve Equation 3.50, as the covariance method.
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Figure 3.18 Comparison of windows implemented for the windowed covariance method (CPCA,
WLP and SLP)
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3.3 Post-Processing and Classification of Vowel and Voice Quality

This section describes, how an estimation of the dGF is computed, using estimated filter coefficients
of the vocal tract filter, which have been calculated based on a blocked signal using a linear prediction
method as described in section 3.2. Further, the estimated dGF is then used to calculate features,
enabling voice quality classification, whereas the filter coefficients are used to determine which vowel
was sung. On a general level, the post-processing and classification stage can be split up into four
parts:

1. inverse filtering with the estimated vocal tract filter to calculate the estimated dGF, as described
in subsection 3.3.1

2. calculation of formant frequencies from the estimated vocal tract filter coefficients, as described
in subsection 3.3.2

3. indication of vowel based on the estimated formant frequencies, as described in subsection 3.3.3

4. indication of voice quality based on two skewness measures calculated from the dGF, as de-
scribed in subsection 3.3.4

Each of these steps is discussed in detail in the following subsections. Note, that in principle the
vocal tract filters of all four linear prediction methods discussed in section 3.2 can be used for the
post-processing. If not stated otherwise, the figures displayed in the following subsections are created
using the autocorrelation method with cepstral refinement from subsection 3.2.2.

3.3.1 Inverse Filtering

With any of the linear prediction algorithms, described in section 3.2, linear prediction coefficients
âopt = [â0, . . . , âp]T and a estimated filter gain Ĝ can be derived (p is the linear prediction order).
The coefficients âopt are defined in Equation 3.40 for the autocorrelation method, and in Equation 3.50
for the covariance method. Thus, the estimated vocal tract filter in z-domain is given as

ĤVT(z) = Ĝ
p∑

k=0
âkz−k

= Ĝ

ν(z) , (3.57)

where a0 = 1, and ν(z) denotes the denominator for later reference.

To estimate the dGF of a sung vocal signal using the estimated vocal tract filter ĤVT(z), the filter
from Equation 3.57 must be inverted. In time domain, this results in the following relation

Êfull[n] = 1
Ĝ

p∑
k=0

âks[n− k] (3.58)

where s[n] is the synthesized sung vocal signal as described in chapter 2 and Ê[n] denotes the esti-
mated dGF. In Matlab, filter() is used for this operation [45]. After the inverse filtering, the first
2 · p samples of Ê[n] are set to zero, because they contain the initial transient response of the linear
prediction filter which is not meaningful in this context.

Ê[n] =
{

0 for 0 ≤ n ≤ (2 · p)− 1
Êfull[n] else

(3.59)

From the estimated dGF Ê[n], an estimation of the glottal flow ÊGF[n] can be calculated with the
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cumulative sum of the dGF, such that

ÊGF[n] =
n∑
k=0

Ê[k]. (3.60)

The inverse filtering algorithm delivering the estimated dGF as well as the estimation of the glottal
flow is implemented in the Matlab-file AllPoleInvFilt.m, which can be found in the folder V12b_
LPA_JUCE_Matlab_Reference/.

3.3.2 Calculation of Formant Frequencies from Estimated Filter Coefficients

The algorithm described in this subsection provides an estimate of the vocal tract filter by means of
its coefficients âk, as defined in Equation 3.57. The fundamental theorem of algebra states, that the
denominator ν(z) of the estimated vocal tract filter’s transfer function can be rewritten by means of
its complex zeros z0,k, such that

ν(z) =
p∑

k=0
âkz
−k = 1

zp

p∑
k=0

âkz
p−k = 1

zp

p∏
k=0

(z − z0,k) . (3.61)

The zeros z0,k of ν(z) are in general complex-valued, and their location in the z-plane determines
the bandwidth and the frequency of the estimated vocal tract’s corresponding pole. To calculate the
zeros, the eigenvalue problem of the companion matrix needs to be solved, as demonstrated in [72].
Therefore, the companion matrixA is set up in accordance to [52] such that

A =



−â1 −â2 −â3 · · · −âp−1 −âp
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


(3.62)

This matrix A has size p × p, and its eigenvalues are equivalent to the zeros z0,k of ν(z). The
eigenvalues z0,k can be calculated by means of a Matlab command eig() [42], or the equivalent
command from a C++ library like Eigen [26].

The noted matrix is a transposed form of the companion matrix, as used in Matlab [52], in contrast to
this form, other literature (for example Werner [72]) often mentions a direct form of the companion
matrixA. However, due to the fact that âk ∈ R ∀k = 0, . . . , p, the eigenvalue calculation is invariant
to a transposition of the companion matrix, because the zeros z0,k are either real-valued or occur in
complex conjugated pairs.

From the set of complex zeros z0,k, which are the poles of the estimated vocal tract filter ĤVT(z) only
those with an imaginary part greater or equal to zero are further considered, i.e. if Im{z0,k} < 0, the
zero gets omitted, because it has a conjugate complex zero which carries the necessary information for
the following steps. The formant frequencies Fi and the corresponding bandwidthsBi are determined
in the following way:

Fi = tan−1
(
Im{z0,i}
Re{z0,i}

)
· fs2π

Bi = −ln(|z0,i|) ·
fs
π
,

(3.63)
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where fs is the sampling frequency and i is the index for all zeros with non-negative imaginary parts.
For each pair of Fi and Bi, denoted subsequently as 〈Fi, Bi〉, limitation parameters are checked,
because it is not meaningful to consider all estimated poles z0,i of the vocal tract filter to be formants.
Therefore, the following limitation parameters are introduced:

• upper bandwith limit Bmax

• minimum formant frequency Fmin

• maximum formant frequency Fmax

The following values for the limitation parameters are used in the presented implementation:

Bi < Bmax = 500 Hz, Fi > Fmin = 90 Hz, Fi < Fmax = 3.5 kHz. (3.64)

From all 〈Fi, Bi〉 that fulfill these criterions, the two pairs with the smallest formant frequencies Fi
are considered the estimated formant F̂1 and F̂2, respectively. For example considering the estimation
of the first formant F̂1

F̂1 = min {Fi} ∀ 〈Fi, Bi〉 : Bi < Bmax ∧ Fi > Fmin ∧ Fi < Fmax. (3.65)

Based on the estimated first and second formants F̂1 and F̂2, a classification of the sung vowel can be
obtained, as described in the following subsection.

3.3.3 Indication of Vowel based on Estimated Formant Frequencies

Based on the first two formants F1 and F2, Sendlmeier et al. have established a map of spoken
German vowels in [63, 64]. Their study is based on Nfemale = 58 female and Nmale = 69 male
participients, which were asked to realize 16 different vowels embedded in two-syllable standard
German words. The formant frequencies were measured with the software PRAAT [6, 63]. Before
them, Hillenbrand et al. have executed a similar study for spoken English in [27] with Nfemale = 48
female and Nmale = 45 male participients with Nchild = 46 children. Due to the more recent research,
the data of Sendlmeier et al. was used in the successive vowel classification and visualization process.

Sendlmeier et al. present their research data for each vowel by means of a mean value and a standard
deviation with respect to F1 and F2 for each vowel. The mean is denoted as µvow and the standard
deviation as σvow.

µvow =

µF1

µF2

 , σvow =

σF1

σF2

 (3.66)

In Figure 3.19, the ellipses indicate the vowel location within the F1/F2-plane.3

From Figure 3.19 one can assert, that the distinction of 16 different vowels is not feasible in the
context of this project, because an extensive amount of overlap is given within the groups of vowels.
Therefore, a subset Svow of Sendlmeier’s 16 vowels was selected to provide a vowel classification,
such that

Svow =
{

/a:/, /E:/, /i:/, /O/, /u:/, /y:/, /@/
}

=
{
vi

}7

i=1
, (3.67)

where the elements vi of Svow are denoted with the IPA-symbols according to [64]. Each vowel in
Svow has a corresponding mean vector µvow and standard deviation vector σvow. Thus, for each vowel

3Note, that Sendlmeier et al. do not provide information about the covariance between F1 and F2. Therefore, the covari-
ance is assumed to be zero.
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Figure 3.19 Location of vowels in the formant plane defined by the first two formants F1 and F2
according to [63, Figure 1]

in Svow, a bivariate normal probability density function (PDF) pvow,i(x) is set up, which leaves for
the i-th vowel in Svow

pvow,i(x) = 1√
(2π)2 det Σvow,i

e−
1
2 (x−µvow,i)TΣ−1

vow,i(x−µvow,i)

with Σvow,i =

σ2
F1,i

0
0 σ2

F2,i

 ,
(3.68)

where x is a point of interest in the F1/F2-plane whose probability of membership to the i-th vowel
in Svow should be evaluated, where Σvow,i is the covariance matrix of the i-th vowel. Commonly, the
point x is a grid point of a mesh grid that discretizes the F1/F2-plane. Given a PDF pvow,i(x) for each
vowel in Svow, each mesh grid point x is classified to belong to the vowel with the highest probability,
i.e.

vi,opt(x) = argmax
i∈Svow

pvow,i(x), (3.69)

where vi,opt(x) denotes the vowel in Svow, that has the highest probability for the mesh grid point x.

Weighting of Gender. Sendlmeier et al. provide the data (mean µvow,i and standard deviation
σvow,i of the i-th vowel) forNmale = 69 males andNfemale = 58 females seperately. This enables four
different data weighting schemes, which are explained in the following. Let µvow,male,i and σvow,male,i
be the mean and standard deviation for males, and µvow,female,i and σvow,female,i for females of the i-th
vowel in Svow, respectively. Four different weighting options are possible:

• use the mean and standard deviation measured for females only

• use the mean and standard deviation measured for males only
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• use a weighted average for mean and standard deviation, i.e.

µvow,i = Nfemale · µvow,female,i +Nmale · µvow,male,i

Nfemale +Nmale

σvow,i = Nfemale · σvow,female,i +Nmale · σvow,male,i

Nfemale +Nmale

(3.70)

• use an unweighted average for mean and standard deviation, i.e.

µvow,i = µvow,female,i + µvow,male,i

2

σvow,i = σvow,female,i + σvow,male,i

2

(3.71)

The effects of the different weighting methods can be seen in Figure 3.20. From Figure 3.20 it
becomes clear, that in general, women have higher formants than males, especially when looking at
the central /schwa/ sound. In the synthesizer described in chapter 2, only male formant frequencies,
as listed in Table 2.3, have been considered, due to the lack of data on the LF-model parameters for
female speakers in [22]. Therefore, the vowel map displaying male data only, as showed in Subfigure
(b), is used for further applications.

Graphical Indication of Present Vowel. To indicate the vowel of a given sound, a point is
plotted in the coloured F1/F2-plane for male data, which is shown in Figure 3.20 (b). Based on the
point’s location, the user has a visual indication of the present vowel. For the five vowels of interest,
examples of the visual vowel indication are presented in Figure 3.21. Note that in Figure 3.21 (e) it
is indicated that the actual vowel /u/ is classified as being a /schwa/, but the estimated formants F1
and F2 correspond with the synthesized vocal tract filter listed in Table 2.3. Therefore it is important
to notice, that there are discrepancies in the literature on the exact location of formant frequencies, at
least between [19] and [63] for the formant frequencies concerning the vowel /u/.
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(a) only female data (b) only male data

(c) weighted average (d) unweighted average

Figure 3.20 Comparison of vowel maps for different weighting methods of male and female formant
frequencies. Data source [64]
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(a) vowel /a/ (b) vowel /e/

(c) vowel /i/ (d) vowel /o/

(e) vowel /u/

Figure 3.21 Visual indication of the present vowel for a modal voice quality with a fundamental
frequency of f0 = 150 Hz
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3.3.4 Classification of Voice Quality based on Skewness Measures

In this section, the classification of voice quality is explained. In order to classify the voice quality,
the estimated dGF, denoted as Ê[n], obtained by inverse filtering as described in subsection 3.3.1, two
skewness-related measures are used:

1. the skewness of the dGF amplitude values and

2. a skewness-related measure of the estimated glottal flow (GF).

In the following section, the two skewness-related measures are described in detail.

Skewness of dGF Amplitude Values. One of the two features used to enable an assignment of
a synthesized speech sound to a voice quality is the skewness of the dGF amplitude values sdGF. It is
defined as

sdGF = E


(
Ê[n]− µÊ

)3

σ3
Ê

 , (3.72)

where E{·} denotes the expectation operator, Ê[n] is the estimated dGF of one signal block, µÊ and
σÊ are the mean and the standard deviation of the dGF amplitude values, respectively. This is the
third standardized central moment, which is calculated by dividing the third central moment [58, eq.
(5-68)] through the standard deviation σÊ to the power of three . For mean µÊ and standard deviation
σÊ , the following estimators are used

µÊ = 1
N

N−1∑
n=0

Ê[n] σÊ =

√√√√ 1
N

N−1∑
n=0

∣∣∣Ê[n]− µÊ
∣∣∣2. (3.73)

The mean estimator stems from [58, p. 307]. Note, that for the standard deviation, the biased4

estimation was used, in contrast to [58, eq. (8-13)]. In Matlab, the skewness of the dGF amplitude
values is calculated with skewness() [53]. Thus, we obtain one value for sdGF for each signal block.

In Figure 3.22, histogram and skewness value for the three voice qualities are displayed for a funda-
mental frequency of f0 = 120 Hz.

Skewness-Related Measure of GF. The second skewness-related measure aims at the skewness
of the glottal flow (GF) for each glottal cycle. To separate the glottal cycles, we need the estimated
GCIs as described in subsection 3.1.3. Precisely, the vector n̂e, that contains all estimated GCIs, is
needed as defined in Equation 3.14. To estimate the glottal flow ÊGF[n], the cumulative sum of the
mean-excempt dGF Ê[n] is calculated as follows:

ÊGF[n] =
n∑
k=0

(
Ê[k]− µÊ

)
(3.74)

The estimated GF is ÊGF[n] scaled to the interval [0, 1] by subtracting its minimum value and dividing
by its maximum value, which results in the scaled GF ÊGF,sc[n], such that

ÊGF,sc[n] =
ÊGF[n]−min

(
ÊGF[n]

)
max

(
ÊGF[n]−min

(
ÊGF[n]

)) . (3.75)

4The bias is introduced by the factor 1/N , in contrast to the factor of the unbiased standard deviation estimate, which is
1/(N − 1).
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Figure 3.22 Comparison of the dGF skewness values for different voice qualities using a fundamen-
tal frequency of f0 = 120 Hz

The process of calculating the GF is illustrated in Figure 3.23.

Figure 3.23 Calculation of scaled GF ÊGF,sc[n] using the dGF’s cumulative sum, scaled to the
interval [0, 1] for one signal block of the synthesized vowel /a/ with a fundamental
frequency f0 = 150 Hz and modal voice quality
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Now the scaled GF is considered for each glottal cycle separately. Let i be the index of GCIs in one
audio block with the range i = 1, . . . , Nc, where Nc is the number of GCIs in that audio block. From
subsection 3.1.3, it is clear that

n̂e =
[
n̂e,1 · · · n̂e,Nc

]T
, (3.76)

where n̂e,i it the sample index of the i-th GCI in the audio block. Implicitly, we assume that n̂e,i 6=
n̂e,j 6= 0 for all i 6= j, which means that all detected GCIs are different and non-zero. Eventually,
this must be assured in an actual implementation e.g. through the usage of commands like unique()
in Matlab. Thus, the duration dc,i (in samples) of the i-th glottal cycle is the difference between two
successive GCI indices, i.e.

dc,i = n̂e,i+1 − n̂e,i where i = 1, . . . , Nc − 1. (3.77)

Each glottal cycle is then interpolated with a cubic spline interpolation, which is implemented in
Matlab’s interp1() [49]. Therefore, Ninterp = 500 query points are used in the interval [0, 1]. The
sample points are defined as dc,i linearly spaced points in the interval [0, 1] for the i-th glottal cycle
in the audio block. This way, the scaled and interpolated GF has an abscissa range in the interval
[0, 1]. Now the skewness sGF of the scaled and interpolated GF’s amplitude distribution is calculated
for each glottal cycle contained in the signal block. For instance this can be done with Matlab’s
skewness() [53]. Figure 3.24 shows the interpolation of the scaled GF and provides a histogram of
the interpolated GF amplitude values with the resulting skewness s̃GF,i for the i-th cycle.

This operation is performed for each glottal cycle in the signal block, thus we obtain Nc − 1 GF
skewness values, of which median value is taken as a representative value for one signal block. This
value is denoted as sGF, which concludes the calculation of the GF’s skewness-related measure.

sGF = median
{[
s̃GF,1 · · · s̃GF,i · · · s̃GF,Nc−1

]}
(3.78)

Justification of Voice Quality Features. The two skewness measures, which are (1) the skew-
ness of the dGF amplitude values sdGF and (2) the skewness-related measure sGF of the GF, are
considered as features of a signal block. They span a two-dimensional feature space, in which differ-
ent voice quality clusters can be determined. Figure 3.25 shows the voice quality clustering of the
synthesized ground truth. The true dGF and the true GCIs of Nit = 1000 signal realizations for each
voice quality with a duration of 0.5 s were used for the skewness calculations. Therefore, all of the
following fundamental frequencies f0 have been used for the synthesis.

f0 ∈ F0 =
{

70, 120, 170, 220, 270, 320, 370, 420, 470, 520
}

Hz (3.79)

From Figure 3.25 it is clear, that a voice quality classification based on the chosen features is possible.
The different excitation signal forms determining the voice quality of a sung vocal signal according
to the LF-model mentioned in subsection 2.1.1 seems to be represented by the proposed features
and a classification within this feature space should be possible, at least if the skewness features are
evaluated for the ground truth dGF and GCIs. In the next section, a the algorithm performance is
analyzed in order to evaluate the clustering using estimations for both dGF and GCIs. In section 3.4
the dataset containing the skewness features calculated from the ground truth dGF and GCIs are
referred to as the ground truth dataset.
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Figure 3.24 Calculation of skewness s̃GF of scaled and interpolated GF for the fourth cycle from
3.23

Figure 3.25 Feature space clustering of the ground truth for all f0 ∈ F0
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3.4 Performance Analysis of the LP Algorithms

The aim of the performance analysis is to achieve a educated decision on which analysis algorithm is
selected for the implementation in C++/JUCE. It is expected that the analysis algorithms perform dif-
ferently for varying prescribed parameters of fundamental frequency, vowel and voice quality. There-
fore, this section aims to quantify the performance of each analysis algorithm based on (i) the estima-
tion error for formant frequencies as a measure for the estimation quality of the vocal tract filter and
(ii) the clustering of voice quality features by means of the prediction performance for voice quality.
The following analysis algorithms from section 3.2 are compared performance-wise:

• autocorrelation method, as described in subsection 3.2.1,

• autocorrelation method with cepstral refinement, as described in subsection 3.2.2,

• covariance method, as described in subsection 3.2.3 and

• windowed covariance (SLP), as described in subsection 3.2.4.

To account for the synthesizer variability as defined in Table 2.1, a dataset is needed. The dataset
consists of Nit = 100 realizations with a duration of 0.5 s for each combination of

• voice quality (modal, breathy, creaky)

• vowel (/a/, /e/, /i/, /o/, /u/ )

• fundamental frequency f0 ∈ F0 where F0 is a set of 10 fundamental frequency values defined
as

F0 =
{

70, 120, 170, 220, 270, 320, 370, 420, 470, 520
}

Hz

=
{
f0,i
}10

i=1
.

(3.80)

Table 3.1 lists the size parameters of the dataset.

Table 3.1 Size of the dataset

Parameter Amount

number of fundamental frequencies f0
(corresponds to the number of elements in F0)

Nf0 = 10

number of voice qualities NVQ = 3
number of vowels Nvow = 5
number of realizations for a single combination of f0,
vowel and voice quality

Nit = 100

total number of realizations (each with a duration of 0.5 s) Ndataset = 15000

3.4.1 Algorithm Performance on Formant Estimation

Each estimation algorithm results in a set of vocal tract filter coefficients which define the location
(i.e. frequency) and shape (i.e. bandwidth) of poles of the vocal tract filter, that are interpreted as
the formants of the present vocal tract. In Figure 3.26 (a) we see the amplitude of the estimated
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vocal tract filters in frequency domain for a sung vocal signal with vowel /a/, modal voice quality and
fundamental frequency f0 = 150 Hz. The estimated vocal tracts for other vowels are displayed in
section A.2.

In Figure 3.26 (b), the vocal tract filter estimation results for the vowel /a/ with modal voice quality
and a fundamental frequency f0 = 350 Hz are displayed. Looking at Figure 3.26 (b) it is clear that
the vocal tract filter estimation for f0 = 350 Hz did not work as well as the estimations visualized
in Figure 3.26 (a), where f0 = 150 Hz was used. This already indicates a possible limitation of the
analysis algorithms, which will be discussed in subsection 3.4.3.

(a) fundamental frequency f0 = 150 Hz

(b) fundamental frequency f0 = 350 Hz

Figure 3.26 Comparison of estimated vocal tract filters for the vowel /a/ with modal voice quality
and fundamental frequencies f0 ∈ {150, 350}Hz
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In order to quantify the error of the vocal tract filter estimation results compared to the true vocal tract
filter, a formant error measure is introduced. This error measure considers the estimated vocal tract
filter’s formants, which are calculated with the algorithm described in subsection 3.3.2.

Formant Error Measure. The post-processing stage provides an estimate of the formants F̂i, as
described in subsection 3.3.2. Using the ground truth formants Fi set in the synthesizer, a formant
error measure eF in percent can be defined, such that

eF = 100
NF

NF∑
i=1

∣∣∣Fi − F̂i∣∣∣
Fi

%, (3.81)

where NF is the number of estimated formants. The formant error measure eF is used for both
variants of the performance analysis in the following paragraphs.

It can be expected that the algorithms exhibit a certain amount of variability, originating from inacur-
racies and uncertainties in the pre-processing stage as described in section 3.2. Additionally, due to
the variability in the dGF synthesis parameters (see Table 2.1), variations between different realiza-
tions of one parameter set (voice quality, vowel and fundamental frequency) are expected. Therefore,
two variants of the performance analysis are carried out in this subsection:

(i) analysis of the algorithm variability within single realizations using long signal durations and

(ii) analysis of the algorithm variability between multiple realizations with short signal durations.

Variability within single realization. In order to analyze the algorithm variability within single
realizations a dataset, consisting of a single, 10 s long realization for each combination of (i) funda-
mental frequency in the set F0 as defined in Equation 3.80, (ii) voice quality and (iii) vowel is created.
The formant error measure is evaluated for each signal block of each sung vocal signal in this dataset.

To visualize the distribution of formant errors for each fundamental frequency, violin plots are created
using [28]. The formant error measure violin plots for the vowel /a/ are shown in Figure 3.27. The
violin plots of the other vowels, can be found in the appendix, section A.3.

From Figure 3.27 and the corresponding figures for other vowels in section A.3 it can be concluded,
that the within-signal variability shows the least effects for the autocorrelation method using cepstral
refinement. Therefore, regarding this aspect, the autocorrelation method with cepstral refinement is
preferred.

Variability between different realizations. The formant error measure eF as defined in Equa-
tion 3.81 is evaluated using the firstNF = 4 estimated formants. The formant estimation is calculated
for all realizations of the test dataset described in Table 3.1. For each test data realization, the formant
error is evaluated.

The formant error measure violin plots for the vowel /a/ are shown in Figure 3.28. The violin plots
of the other vowels, can again be found in the appendix, section A.4.

From the formant error measure evaluations for multiple realizations displayed in Figure 3.28 and the
corresponding figures in section A.4, we see that the autocorrelation method with cepstral refinement
and the covariance method perform best in the range of f0 ∈ [70, 320]. Therefore, regarding the
variation between signal realizations, these two algorithms show the best results.
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Figure 3.27 Error of formant estimation depending on the fundamental frequency f0 for the four
algorithms with vowel /a/ (single realization)

Figure 3.28 Error of formant estimation depending on the fundamental frequency f0 for the four
algorithms with vowel /a/ (multiple realizations)
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3.4.2 Algorithm Performance on Voice Quality Variability

The algorithm, which calculates the voice quality features (i) skewness of dGF amplitude values and
(ii) skewness-related measure of GF is described in subsection 3.3.4. In the following subsection, the
clustering of the estimated features within the two-dimesional feature space are evaluated. Essentially,
the clusters obtained by calculating the skewness features for the ground truth dGF as displayed in
Figure 3.25 are compared with the clusters given by the features calculated with the proposed analysis
methods from section 3.2. Based on the frequency dependent clustering, a frequency range is selected
for which the clusters are deemed sufficiently compact, in order to achieve a meaningful classification.
Therefore, the following steps are executed:

1. train a supervised machine learning model (e.g. support vector machine) for a given frequency
range

2. evaluate the prediction error on the training and test set

3. choose a frequency range, that is as large as possible, while at the same time maintains a high
percentage of correctly classified data samples

Supervised Learning with Support Vector Machines. Due to the input parameters of the pro-
posed synthesizer, there is full knowledge of the synthesized vocal sound’s voice quality. Therefore,
one can create a large enough number of sung vocal signals with defined voice quality and evaluate
the two voice quality features. This method is known as a Monte Carlo simulation, as described
in [58, p. 285], and it allows to approximate the features’ probability density function (PDF) by
evaluating the features for a large number of sung vocal signal realizations. For this large number of
sung vocal signal realizations, a classification is obtained by a support vector machine (SVM) with
a binary classification for each class [3, Ch. 7.1.3]. An implementation of SVMs is provided by
Matlab’s fitcsvm()-command [48]. For the SVM training using the training dataset (see below),
the following parameters were used:

• second order polynomial kernel function5

• Standardize = 1
• BoxConstraint = 1

Subsequently, the predicted class was evaluated for the training and test dataset seperately using
predict(). Comparing the predicted label with the true label enables the calculation of the percent-
age of samples that have been classified correctly. Depending on the data the percentages are called
the score on the training set or score on the test set.

Creation of Training and Test Sets. We expect the clustering to be dependent on the funda-
mental frequency range, more precisely it is expected that the clustering will be more unstable with
an increasing upper frequency limit of the fundamental frequency range. Therefore, ten different
datasets were used iteratively, where in each iteration the dataset was expanded with the data for the
next higher fundamental frequency.

The a dataset of the k-th iteration consideres all fundamental frequencies contained in the set F0,k,
5Alternatively, radial basis functions could be used while achieving a similar classification quality, but they were not

considered in this project.
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which is a subset of the set F0 containing all fundamental frequencies, as defined in Equation 3.80.

F0,k =
{
f0,i
}k
i=1

with k = 1, . . . , 10

for k = 10: F0,10 = F0

(3.82)

In total, the size of the dataset Ntot can be calculated with

Ntot = Nf0 ·NVQ ·Nvow ·Nit, (3.83)

where Nf0 = k is the number of fundamental frequencies considered for the k-th iteration, NVQ = 3
is the number of different voice qualities, Nvow = 5 is the number of different vowels, and Nit = 100
the number of realizations according to Table 3.1.

For example, the dataset for f0 = 320 Hz uses estimated features of the following fundamental
frequencies

F0,6 =
{
f0,i
}6

i=1
=
{

70, 120, 170, 220, 270, 320
}

Hz. (3.84)

Therefore, the dataset for f0 = 320 Hz has the following size

Ntot = Nf0 ·NVQ ·Nvow ·Nit = 2 · 6 · 3 · 5 · 100 = 9000 data points (3.85)

This dataset consisting of skewness values evaluated from the estimated dGF (so-called measure-
ments) was subdivided into 80 % training data and 20 % test data.

In addition to the feature data samples derived from the estimated dGF, the same amount of feature
data samples from the ground truth dataset were used in order to stabilze the clustering. The data
samples taken from the ground truth skewness dataset, mentioned in subsection 3.3.4, were also split
into 80 % training data and 20 % testing data.

Both the measurement and the ground truth training datasets together are used to train the SVM,
whereas both test datasets together are used to evaluate the SVM prediction performance.

Figure 3.29 Prediction score of test and training datasets in dependence on the frequency range’s
upper limit. Comparison of cepstral autocorrelation method and covariance method.
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Evaluation of Prediction Score of SVM. In Figure 3.29, the score on the training and test set
is displayed for varying upper limits of the frequency range. Ideally, all frequencies should yield an
optimal training and test score. However, due to algorithm limitations, the clustering becomes more
unstable, as the clusters start to rotate and show multimodal behaviour within the feature space for
higher upper frequency limits of the fundamental frequency range. This can be observed, especially
for the creaky voice’s estimated skewness features. Therefore, a test score limit of more than 90 % was
considered to be sufficient. The cepstral autocorrelation method achieves this score for fundamental
frequencies up to f0 = 320 Hz, as it can be seen in Figure 3.29.

From Figure 3.29 it is clear, that in the frequency range of f0 ∈ [70, 320], the covariance method is
outperformed by the autocorrelation method with cepstral refinement with respect to the prediction
performance on both training and test datasets. Thus, the latter is considered best concerning this
aspect.

The SVM’s clustering result for fundamental frequencies of the set F0,6 is displayed in Figure 3.30.
The clustering results for the other fundamental frequency sets can be found in section A.5.
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Figure 3.30 Clustering of voice quality features considering fundamental frequencies up to f0 =
320 Hz. Comparison of cepstral autocorrelation method and covariance method.
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3.4.3 Conclusion on Performance Analysis

The performance analysis was carried out with two goals in mind. The algorithm chosen for the
implementation in C++/JUCE should show (i) a good ability in the formant frequency estimation
as well as a good performance concerning the voice quality classification, while (ii) these analysis
capabilities should be provided over a broad range of fundamental frequencies. These goals are
contradictory, meaning that for a increasing range of fundamental frequencies, the estimation and
classification performance decreases. This leads to a typical trade-off situation, where a frequency
range needs to be limited, in order to ensure a sufficiently good algorithm performance. The following
conclusions are made based on the previous performance analysis.

In subsection 3.4.1, the algorithms have been analyzed with regard to their variability on the formant
estimation within long signal realizations, and between short signal realizations. From this analysis it
can be concluded, that the autocorrelation method with cepstral refinement performs best, followed
by the covariance method.

Looking at the performance analysis with respect to the the voice quality classification and the cluster-
ing within the feature space in subsection 3.4.2 it can be concluded that a clustering can be considered
stable within the fundamental frequency range of f0 ∈ [70, 320] Hz. By evaluating the SVM’s score
on the training data as shown in Figure 3.29, for the skewness features calculated using the auto-
correlation method with cepstral refinement and the covariance method, it can be concluded that
the autocorrelation method with cepstral refinement outperforms the covariance method within the
limited frequency range.

Decision for Implementation. Based on the performance analysis of the LPC algorithms, it can
be concluded that the autocorrelation method with cepstral refinement performs best in the frequency
range f0 ∈ [70, 320] Hz. Therefore, this algorithm is chosen for the implementation in JUCE, which
is described in the following chapter.
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4 Implementation in C++ using the
JUCE-Framework

From the considerations following the performance analysis in section 3.4, we conclude that the au-
tocorrelation method using the cepstral refinement, as described in subsection 3.2.2 performs best,
which is why this method has been chosen to be implemented as a VST-plugin using the C++ frame-
work JUCE by Storer et al. [65].

The analysis and classification algorithm proposed in chapter 3 is based on a block-wise process
chain. Due to the block-wise nature of the algorithm an implementation within the JUCE-framework
is possible. In order to enable a block-wise signal flow the buffer structure of a recent plugin imple-
mentation by Holzmüller et al. [29], concerning a real-time capable Constant-Q-transformation was
used. Their code includes a buffer structure, enabling block processing which is reused in this project
for the execution of the linear prediction algorithm. In contrast to Holzmüller et al., the proposed im-
plementation is not focused on performance and resource-efficiency, but rather on a proof of concept,
to implement a real-time application of the proposed algorithm.

In the following sections each vital part of the analysis algorithm implemented using the JUCE-
framework is discussed. Also the differences between the implementation in Matlab and the dif-
ficulties that arose using the JUCE-framework are highlighted.

Before the algorithm implementation is discussed the necessary libraries as well as all implemented
classes and code files are listed and shortly discussed.

4.1 Necessary libraries, functions, C++ Classes and Code Files

Besides the libraries and functions already included in the JUCE plug-in template and the folder
“resources“ provided by Institute of Electronic Music and Acoustics (IEM) in [61], there are additional
libraries and functions necessary as listed in Table 4.1.

Table 4.1 listing of necessary libraries and functions

Function/Library Area of Application Reference

Eigen library formant detection based on polynomial roots [26]

peakfinder function analysis pre-processing - glottal instant detection [73]

fftw library Fast Fourier Transform for Windows operating systems [20]

spline.h interpolation
function

spline interpolation of glottal flow amplitude values [37]

To provide an overview of the used C++ classes, they are listed in the following. Thereby, one C++
class is implemented using a header file (*.h) and an implementation file (*.cpp).

• PluginProcessor: This is a JUCE class template and represents the entry point of the plug-
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in [30, p.12]. It creates all the other classes and also executes the anti-aliasing filtering necessary
for downsampling.

• PluginEditor: Is also a JUCE class template and is responsible for the creation of the GUI
and the visualizer components, indicating the classification results.

• LPThread: This class constitutes the main routine of the plug-in. In it, the block-wise signal
processing chain concerning the analysis and low-level feature calculation is completed.

• ClassifyVisualizer: Creates the classificiation result visualization.

In addition to the functions libraries and class files, it has to be ensured that the file DecFiltCoeff.h
is placed in the code file’s parent work directory. It contains the anti-aliasing filter coefficients and
down-sampling factor as mentioned in subsection 4.2.1.

The C++ code files are available at IEM Cloud in the folder 00_ABGABE_JUCE/LPAVoiceQualEval
(restricted access) or via IEM GIT at https://git.iem.at/PAB/lpa_voice_qual_eval (unre-
stricted access).
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4.2 Pre-Processing, Analysis and Classification implementation

In the following section the implementation of the voice-quality and formant analysis algorithm pro-
posed in chapter 3 within the C++ based framework JUCE is discussed. Firstly, an overview on
the data flow through the plugin and on the implementation of downsampling and signal blocking is
given. As parts of the downsampling are executed in the PluginProcessor class, the subsequent
subsections dealing with the pre-processing, analysis and classification of sung vocal signals are all
executed in LPThread.

4.2.1 Data Flow, Signal Blocking and Downsampling

Data Flow. Nearly the same buffer structure as in [29] was chosen to process the audio samples
into classification results. Thus, similar to [30, fig. 5], the data flow structure is given in Figure 4.1.

In contrast to the buffer structure implemented by Holzmüller et al. in [29], where only one multichan-
nel output buffer was implemented, now three output buffers for the estimation results are present, as
shown in Figure 4.1. The output buffer containing the fundamental frequency estimates for each
signal block, is a single channel structure, whereas the formant and voice-quality buffer contain two
channels. The data pushed onto the formant buffer, are the two estimated formant frequencies, calcu-
lated as mentioned in subsection 3.3.3. The two skewness measures from subsection 3.3.4 are pushed
onto the voice quality buffer.

DAW LPThread 
pushSamples()

PluginProcessor 
processBlock()

signal blocking 
Overlapping 

SampleCollector

LPThread 
run()

f0 - buffer 
outputFifoF0

formant buffer 
outputFifoFormants

voice quality buffer 
outputFifoVQ

ClassifyVisualizer 
updateData()

DAW

est. f0

est.
F1/F2

est. 
skewness 

Gf/dGf

get next signal block

audio 
samples

audio 
samples

push audio 
samples

visualized 
results

est.
F1/F2

est. 
skewness 

Gf/dGf

est. f0

push get

Figure 4.1 Data flow through the plug in implementation

Downsampling and Signal Blocking. The block-wise signal processing chain starts with the
anti-aliasing filter, which is implemented in the processBlock() routine of the PluginProcessor
class. The audio samples handed to processBlock() via the passed buffer object, are processed
through a 30-th order FIR-Filter. The FIR filter object is instantiated in the constuctor of the Plugin-
Processor class, where also the filter coefficients are loaded. Its coefficients were calculated in
Matlab using the fir1() command [47] and copied into a *.h-file. The filter coefficients and the
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downsampling factor are stored in the file DecFiltCoeff.h located in the folder 00_ABGABE_JUCE/
LPAVoiceQualEval/, from which the filter coefficients are read in and passed to the filter object us-
ing the .coefficients() member variable of the dsp::FIR::Filter<float> object [34]. From
the PluginProcessor, the audio-samples are then pushed onto a OverlappingSampleCollector
object, in which the signal gets blocked into blocks with a duration of 80 ms and an overlap of 70 %.
Note, that the blocking is still executed using the initial sampling rate. The actual downsampling is the
first step of the LPThread class’ .run() routine. The downsampling factor stored in DecFiltCoeff.
h determines, which samples of a signal block are kept and which are neglected. In the implementa-
tion, a downsampling factor of three was used, meaning every third sample of a signal block is used
and stored into a new std::vector<float> object, called LPdataVec.

LPdataVec represents a downsampled signal block which is then passed through the various process-
ing steps discussed in chapter 3. The following subsections provide a short introduction on how the
analysis steps introduced in section 3.1, section 3.2 and section 3.3 were realized in C++/JUCE.

4.2.2 Pre-Processing

The pre-processing stage comprises the computation of the LP residual, the fundamental frequency
estimation, and the voiced/unvoiced decision as well as the GCI detection. Before the LP residual is
computed, the downsampled signal block is freed of its mean and normalized. For the normalization,
the separate routine LPThread::normalizeVec() was created, which returns the normalized down-
sampled signal block. The following paragraphs deal with the remaining pre-processing steps, which
are all executed, within LPThread::run().

Computation of the LP residual. In accordance to subsection 3.1.1, a rough LP analysis of the
downsampled signal block is obtained. The rough LP includes the calculation of the non-whitened
signal block’s autocorrelation function, and the execution of the Levinson-Durbin recursion men-
tioned in subsection 3.1.1. The subroutine LPThread::calcAutoCorr() is, where the autocor-
relation function is calculated in JUCE according to Equation 3.41 using the JUCE class dsp::
FFT [33]. The subroutine LPThread::calcAutoCorr() is JUCE’s analogue of the Matlab function
calcAutoCorr() found in the folder 00_ABGABE_Matlab/V12b_LPA_JUCE_Matlab_Reference/
and its core is shown in Listing 4.5. The rough estimation of the vocal tract is then obtained from
the autocorelation function by solving the Levinson-Durbin recursion. The Matlab implementa-
tion’s function levinsondurbin.m was replicated in C++/JUCE with the subroutine LPThread::
levinsonDurbin().

It is important to note, that for the C++/JUCE implementation of the Levinson-Durbin algorithm a
regularization is necessary. For the rough pre-processing linear prediction a regularization term of
ε = 0.01 is added onto the main diagonal of the autocorrelation matrix Rss. This means, in the
practical implementation the following adapted version of the Yule-Walker equation system from
Equation 3.40 is solved to estimate the filter coefficients âopt.

âopt = (Rss + Iε)−1 rss+1, (4.1)

where I is the identity matrix. The regularization is necessary, because the estimated filter coefficients
surpassed the boundary of numeric stability due to the single precision float processing in JUCE.
This leads to estimated filter coefficients, whose roots are located outside the complex unit circle,
resulting in unstable vocal tract filter estimates. Especially the limitation of JUCE’s dsp::FFT object
to single precision lead to more inaccurate autocorrelation function estimates than in Matlab, where
the sample type default is double precision float. Another driving factor of those instabilities is the
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fact, that for the rough LP within the pre-processing, no signal whitening by means of a pre-emphasis
filter is executed. Therefore, the used synthesized sung vocal signals including its excitation signal
are far from the linear prediction’s ideal excitation signal, which would be a Gaussian white noise
signal [71, p.230].

After solving the regularized Yule-Walker equation system with the LPThread class’ subroutine
levinsonDurbin(), which returns the estimated VT filter coefficients and the VT filter gain. The
downsampled signal block is inversely filtered using LPThread::inverseFiltering, in order to
obtain the residual signal. The inverse filtering application is done with an FIR filter object using the
class dsp::FIR::Filter<SampleType> [34]. Initially, two FIR filter objects are instantiated, one
to apply the inverse filtering of the rough VT filter estimate within the pre-processing stage, and the
other one for the more accurate VT filter estimation discussed in subsection 4.2.3. The core of the
inverse filtering and the handling of the FIR Filter objects in JUCE is shown in Listing 4.1.

Listing 4.1 inverse filtering implemented in LPThread::inverseFiltering()
, line 223–232 of LPThread.cpp

223 dsp :: AudioBlock <float > audioBlock ( tempbuffer );
224 dsp :: ProcessContextReplacing <float > context ( audioBlock );
225
226 if ( roughFlag )
227 {
228 InvVTFiltRough . reset ();
229 dsp :: FIR :: Coefficients <float >:: Ptr FIRCoeffs = new dsp :: FIR :: Coefficients <float > (a, numCoeffs +1);
230 * InvVTFiltRough . coefficients = * FIRCoeffs ;
231 InvVTFiltRough . process ( context );
232 }
233 else
234 {
235 InvVTFilt . reset ();
236 dsp :: FIR :: Coefficients <float >:: Ptr FIRCoeffs = new dsp :: FIR :: Coefficients <float > (a, numCoeffs +1);
237 * InvVTFilt . coefficients = * FIRCoeffs ;
238 InvVTFilt . process ( context );
239 }

The first half of the if-condition shown in Listing 4.1 shows the implementation of the inverse fil-
tering using the rough VT filter estimate with the FIR filter object. Firstly, the new coefficients are
assigned to the FIR Filter object. Then, the audio block, which has to be available in the form of
a dsp::ProcessContextReplacing structure [35] named context is inversely filtered using the
.process() method. The same method is used for the if-condition’s second half, shown in List-
ing 4.1, which processes the inverse filtering with the more accurate VT filter estimate derived in
subsection 4.2.3.

The final step of LPThread::inverseFiltering() is to store the residual signal into the output
vector, whose memory address is handed to the subroutine. Back in the run() method, the residual
signal is normalized before the next pre-processing steps are executed.

Fundamental Frequency Estimation and Voiced/Unvoiced Detection. The estimation of
the fundamental frequency f̂0 of the signal block and the voiced/unvoiced decision that comes with
it is performed in LPThread::getF0andVUV(). The calculations are the same as implemented in
subsection 3.1.2, and the corresponding C++/JUCE implementation is listed in Listing 4.2.

Listing 4.2 fundamental frequency estimation with LPThread::getFOandVUV()
, line 297–337 of LPThread.cpp

297 fftF0 . performRealOnlyForwardTransform ( fftInOut .data () ,false );
298 float specSum = 0;
299 for (int ii = 0; ii < specMat .size (); ++ ii)
300 {
301 specMat [ii] = std :: sqrt(std :: pow( fftInOut [2* ii ] ,2)+std :: pow( fftInOut [2* ii +1] ,2));
302 specSum = specSum +std :: pow( specMat [ii ] ,2);
303 }
304 specSum = std :: sqrt( specSum );
305
306 for (int ii = 0; ii < specMat .size (); ++ ii)
307 specMat [ii] = specMat [ii ]/ specSum ;
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308
309 auto f0minIdx = getFreqIdx ( f0min );
310 auto f0maxIdx = getFreqIdx ( f0max );
311 std :: vector <float > SRHvec ;
312 SRHvec . resize (f0maxIdx - f0minIdx );
313
314 for (int ii = f0minIdx ; ii < f0maxIdx ; ++ ii)
315 {
316 float addTerm = 0.0f;
317 if (( nHarmonics *ii) < params . fsDec /2)
318 {
319 for (int k=2; k <= nHarmonics ; ++k)
320 {
321 addTerm = addTerm + specMat [k*ii]- specMat [juce :: roundToInt ((k -0.5f)*ii)];
322 }
323 SRHvec [ii - f0minIdx ] = specMat [ii ]+ addTerm ;
324 }
325 else
326 {
327 SRHvec [ii - f0minIdx ] = specMat [ii ];
328 }
329 }
330
331 auto F0idx = std :: max_element ( SRHvec . begin () ,SRHvec .end ()) - SRHvec . begin ();
332
333 float alphaSRH = 0.5f;
334 SRHcurr = *std :: max_element ( SRHvec . begin () , SRHvec .end ());
335 SRHsmooth = (1.0f- alphaSRH ) * SRHprev + alphaSRH * SRHcurr ;
336 SRHprev = SRHsmooth ;
337 VUVDecision = ( SRHsmooth > VUVThresh );

As it can be seen from Listing 4.2, the residual signal is written into the fftInOut array and trans-
formed to frequency domain with the .performRealOnlyForwardTransform() method of a JUCE
FFT object, see line 297. The normalization of the spectrum to the overall signal energy is applied in
the first for-loop between line 299 and 303. The summation according to Equation 3.4 is executed
within the for-loop implemented from line 314 to 329. Note that JUCE FFT objects only support
FFT lengths in the form of 2oFFT , where oFFT ∈ N is known as the FFT order. This makes it impossible
to use a FFT-length of NFFT = fs to obtain the proposed frequency resolution ∆f = 1 Hz mentioned
in [14]. For example if the signal is downsampled to fs = 16 000 Hz the FFT length in JUCE is
calculated with NFFT = 214 = 16384. This results in a frequency resolution of:

∆f = fs
NFFT

= 16000
16384 = 0.9766 Hz (4.2)

for the JUCE implementation.

The maximum value of the corresponding index of the SRH array is evaluated and smoothed according
to Equation 3.6, in order to obtain the fundamental frequency estimate f̂0 for the current signal block
and the corresponding SRH value.

The voiced/unvoiced decision is calculated in the last line of Listing 4.2. Due to the fact, that the
estimated fundamental frequency is also made visible in the plug-in implementation, there exists also
a smoothed version of the fundamental frequency estimate f̂0 – analogously to Equation 3.6 – in
order to prevent extensive fluctuations in the GUI’s frequency display. For the frequency smoothing,
a smoothing factor of α = 0.08 is chosen. If the V/UV decision deems a signal block to be unvoiced,
the frequency estimate is set to NAN, thus no further processing steps are performed and the next
signal block is popped from the buffer queue. The V/UV decision is visible in the algorithm flow
chart shown in Figure 4.4.

Glottal Closure Instant Detection. If a signal block is considered to be voiced, the next pro-
cessing step is the GCI detection. The main routine concerning the GCIs is LPThread::getGCIs(),
which is executed within the .run() method. The subroutine LPThread::getGCIs() is the JUCE
pendant to the Matlab function getGIs.m. They are both based on the calculations discussed in sub-
section 3.1.3. The only difference that occurs, is that the JUCE variant only includes a GCI detection,

72



Bereuter & Kraxberger 4.2. Pre-Processing, Analysis and Classification implementation

because there is no need for GOIs, when using the autocorrelation method with cepstral refinement.
The first step of the GCI detection is the calculation of the mean-based signal. According to Equa-
tion 3.7, the mean-based signal is computed by convoluting the voiced sung vocal signal block with a
Blackman window. The JUCE implementation of this operation is shown in Listing 4.3.

Listing 4.3 calculation of the mean based signal in LPThread::getGCIs()
, line 377–389 of LPThread.cpp

377 auto T0Est = juce :: roundToInt ( params . fsDec /F0);
378 auto winLen = juce :: roundToInt ((1.7* T0Est )/2);
379 BlackmanBuf . setSize (1, 2* winLen +1);
380
381 std :: vector <float > blackmanWindow ;
382 blackmanWindow . clear ();
383 blackmanWindow . resize (2* winLen +1);
384 WindowingFunction <float >:: fillWindowingTables ( BlackmanBuf . getWritePointer (0) , 2* winLen +1,

↪→ WindowingFunction <float >:: blackman , false );
385 BlackmanConv . loadImpulseResponse (std :: move( BlackmanBuf ), params .fsDec , juce :: dsp :: Convolution :: Stereo ::no ,

↪→ juce :: dsp :: Convolution :: Trim ::no , juce :: dsp :: Convolution :: Normalise :: yes);
386
387 dsp :: AudioBlock <float > audioBlockGI ( tempbufferGI );
388 dsp :: ProcessContextReplacing <float > contextGI ( audioBlockGI );
389 BlackmanConv . process ( contextGI );

As it can be seen from Listing 4.3, the convolution is performed with a dsp::Convolution object,
which is more efficient than doing the same operation with a dsp::FIR::Filter object for impulse
responses larger than 128 samples [32]. A Blackman window can be created using the JUCE frame-
work’s class dsp::WindowingFunction<float> and its function .fillWindowingTables [36].
Using the method .loadImpulseResponse(), the Blackman window is loaded into the convolution
object as an impulse response. The convolution itself is again computed with the .process method,
in conjunction with the audio samples transformed into a dsp::ProcessContextReplacing struc-
ture [35]. Using the peak finder function Peaks::peakfinder() from [73], the minima and maxima
of the mean-based signal are evaluated. Afterwards, the refinement using the residual signal is carried
out, in order to obtain median relative GCI-positions λGCI from Equation 3.10. To calculate a median
value, the helper function LPThread::calcMedian() was written, following [21].

Listing 4.4 GCI-detection within derived presence intervals in LPThread::getGCIs()
, line 509–546 of LPThread.cpp

509 for (int ii= 0; ii < MinPeaks .size (); ++ ii)
510 {
511 float alpha = RatioGCI - 0.35f;
512 start = MinPeaks [ii ]+ std :: round ( alpha *( MaxPeaks [ii]- MinPeaks [ii ]));
513 alpha = RatioGCI + 0.35f;
514 stop = MinPeaks [ii ]+ std :: round ( alpha *( MaxPeaks [ii]- MinPeaks [ii ]));
515 if ( start < 0)
516 start = 0;
517 else if ( start > (res.size () -1))
518 break ;
519 if (stop > (res.size () -1))
520 stop = int(res.size () -1);
521 if (stop > 0)
522 {
523 if (start <stop)
524 {
525 vec. clear ();
526 vec. resize (stop - start + 1);
527 std :: copy(res. begin () + start , res. begin () + stop + 1, vec. begin ());
528 int posi = int(std :: max_element (vec. begin () , vec.end ())-vec. begin ());
529 // In matlab for -1 is added for GCIPos estimation due to array - indices starting at 1.
530 GCIPos [Ind] = start +posi;
531 Ind ++;
532 }
533 else
534 {
535 start = 0;
536 stop = int(res.size () -1);
537 vec. clear ();
538 vec. resize (stop - start + 1);
539 std :: copy(res. begin () + start , res. begin () + stop + 1, vec. begin ());
540 int posi = int(std :: max_element (vec. begin () , vec.end ())-vec. begin ());
541 // In matlab for -1 is added for GCIPos estimation due to array - indices starting at 1.
542 GCIPos [Ind] = start +posi;
543 Ind ++;
544 }
545 }
546 }
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Equations 3.11 – 3.14 are then executed in the for-loop shown in Listing 4.4. To ensure a proper GCI
detection, there are some if-conditions included to be safe, that in case of unfortunate circumstances
no negative start positions or stop positions exceeding the signal block length occur.

Pre-Emphasis Filtering. The pre-emphasis filter is simply created as a FIR-filter object in JUCE.
The subroutine LPThread::preEmphFiltering() processes the signal block in form of a dsp:
:ProcessContextReplacing structure, using the coefficients calculated as mentioned in Equa-
tion 3.19.

4.2.3 Linear Prediction Analysis with the Autocorrelation Method Using
Cepstral Refinement

The C++/JUCE implementation’s linear prediction analysis stage, which in contrast to chapter 3 only
comprises the autocorrelation method with cepstral refinement, as reasoned in subsection 3.4.3, con-
sists of the following methods executed within the LPThread::run() routine:

1. LPThread::calcAutoCorr()

2. LPThread::fftshift()

3. LPThread::CepsLift()

4. LPThread::levinsonDurbin()

5. LPThread::inverseFiltering()

6. LPThread::normalizeVec()

Calculation of the Autocorrelation Function. The first step, which is the calculation of the
autocorrelation function, is executed in the same routine, as used in the computation of the rough
LP residual in the pre-processing as discussed in subsection 4.2.2. The core of the autocorrelation
calculation’s implementation in C++/JUCE is shown in Listing 4.5, which makes it clear that a direct
implementation of Equation 3.41 was applied.

Listing 4.5 calculation of the autocorrelation function in LPThread::calcAutoCorr()
, line 125–140 of LPThread.cpp

125 for (int ii = 0; ii < numSamples ; ++ ii)
126 {
127 fftInOut [ii] = sigBlock [ii ]* hannWindow [ii ];
128 hannSum = hannSum + hannWindow [ii ];
129 }
130
131 float W = hannSum / hannWindow .size (); // window correction term.
132
133 fft. performRealOnlyForwardTransform ( fftInOut .data () ,false );
134
135 for (int ii = 0; ii < fft. getSize (); ++ ii)
136 {
137 fftInOut [2* ii] = std :: pow( fftInOut [2* ii ]*1/W ,2)+std :: pow( fftInOut [2* ii +1]*1/W ,2);
138 fftInOut [2* ii +1] = 0.0f;
139 }
140 ifft. performRealOnlyInverseTransform ( fftInOut .data ());

Cepstral Refinement of the Autocorrelation Function. The next step is the shifting of the
autocorrelation function’s zero-lag component into the center of the array. The Matlab function
fftshift() [44] was rebuilt in C++/JUCE using the std::reverse() method. By placing the zero-
lag component into the autocorrelation array’s center, the function is ready to be transformed into the
cepstral domain. In order to avoid array entries showing true zeros, an if-condition is implemented
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in line 608 of Listing 4.6. Within the condition, true zeros are replaced by the smallest numerical
floating point value epsilon(). This is done in order to ensure, that the logarithm computation
included in the cepstrum calculation, according to Equation 3.42, does not result in an overflow (i.e.
infintely large negative values), as it is not defined for arguments which equal zero. Line 613 of
Listing 4.6 shows the inverse N -point Fourier transformation leading to the cepstrum of the current
signal block’s autocorrelation function.

Listing 4.6 cepstral transformation of the autocorrelation function in LPThread::CepsLift()
, line 604–613 of LPThread.cpp

604 fft. performRealOnlyForwardTransform ( fftInOut .data () ,false );
605 for (int ii = 0; ii < numSamples ; ++ ii)
606 {
607 fftInOut [2* ii] = std :: sqrt(std :: pow( fftInOut [2* ii ] ,2)+std :: pow( fftInOut [2* ii +1] ,2));
608 if ( fftInOut [2* ii ]==0.0 f)
609 fftInOut [2* ii] = std :: numeric_limits <float >:: epsilon ();
610 fftInOut [2* ii] = std :: log( fftInOut [2* ii ]);
611 fftInOut [2* ii +1] = 0.0f;
612 }
613 ifft. performRealOnlyInverseTransform ( fftInOut .data ());

The next step is the creation of the lifter window. As mentioned in subsection 3.2.2, the lifter window
is computed as a Tukey window. The function LPThread::tukeyWin() returns the Tukey window
calculated according to Equation 3.44. Within the for-loop implemented in lines 626–630 of List-
ing 4.7, the window is shifted into the correct position to exhibit the symmetric form exemplarily
shown in Figure 3.13. The next for-loop then applies the cepstral lifter, and the routine is concluded
by reversing the cepstrum calculation and returning to time domain as formulated in Equation 3.45.

Listing 4.7 lifter computation as Tukey-window in LPThread::CepsLift()
line 616–644 of LPThread.cpp

616 int LiftLen = juce :: roundToInt (1/ F0Est * params . fsDec *0.85) ;
617 std :: vector <float > TukeyWin ;
618 TukeyWin . clear ();
619 TukeyWin . resize (2* LiftLen );
620 tukeyWin ( TukeyWin .data () ,2* LiftLen , 0.2f );
621
622 // compute Cepstral - Lifter :
623 std :: vector <float > CepsLifter ;
624 CepsLifter . clear ();
625 CepsLifter . resize (fft. getSize ());
626 for (int ii = 0; ii < LiftLen ; ++ ii)
627 {
628 CepsLifter [ii] = TukeyWin [ LiftLen +ii ];
629 CepsLifter [ CepsLifter .size () -1-ii] = TukeyWin [LiftLen -1-ii ];
630 }
631
632 // apply Cepstral - Lifter
633 for (int ii = 0; ii < CepsLifter .size (); ++ ii)
634 fftInOut [ii] = fftInOut [ii ]* CepsLifter [ii ];
635
636 // transform back to frequency domain
637 fft. performRealOnlyForwardTransform ( fftInOut .data () ,false );
638 for (int ii = 0; ii < numSamples ; ++ ii)
639 {
640 fftInOut [2* ii] = std :: exp( fftInOut [2* ii ])*std :: exp( fftInOut [2* ii +1]);
641 fftInOut [2* ii +1] = 0.0f;
642 }
643
644 ifft. performRealOnlyInverseTransform ( fftInOut .data ());

Vocal Tract Filter Coefficient Estimation and Inverse Filtering. The refined autocorrelation
is passed through LPThread::levinsonDurbin(), which solves the regularized Yule-Walker equa-
tion formulated in Equation 4.1 and delivers the estimated VT filter coeffcients. For the Levinson-
Durbin recursion solved at this point of the implementation, a regularization term of ε = 0.001 is
used. The estimated filter coefficients are then used within the LPThread::inverseFiltering()
method shown in Listing 4.1 to obtain an estimate on the exciation signal (dGF) in correspondance
with Equation 3.58. In contrast to the inverse filtering process executed during the pre-processing
stage, the roughFlag is now set to false, yielding in the usage of the non-rough FIR filter object
shown in Listing 4.1.
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Finally, the estimated dGF is normalized using LPThread::normalizeVec(). The estimated and
normalized dGF Ê[n] is then further processed to evaluate the voice quality of the sung vocal signal
block, and the estimated VT filter coefficients are used to determine which vowel was sung. The
processing steps enabling the evaluation of the voice-quality and vowel are discussed in the following
subsection 4.2.4.

4.2.4 Formant Frequency Calculation and Voice Quality Classification

The final stage of the implementation is the classification of voice quality and the detection of the
sung vowel based on the estimated formant frequencies F1 and F2. This subsection provides an
overview on the C++/JUCE implementation’s specific topics concerning the classification stage. For
the formant frequency calculation and voice quality classification, the following methods are executed
within the LPthread::run() routine:

1. LPThread::calcFormants()

2. LPThread::calcSkewnessGF()

3. LPThread::calcSkewness()

Formant Frequency Calculation. The estimated vocal tract filter coefficients are used to calculate
the formants F1 and F2 according to subsection 3.3.2. In order to set up the companion matrixA (see
Equation 3.62) and for the calculation of its eigenvalues, the script roots() from [9] was used in a
modified version. The applied modification includes the transposition of the companion matrix, as
described in subsection 3.3.2. To evaluate the eigenvalues of A, Eigen’s function eigenvalues()
is used, just as in [9]. These eigenvalues are the zeros z0,k of the estimated the vocal tract filter’s
denominator polynomial ν(z), as defined in Equation 3.61. From the complex-valued zeros z0,k,
the formant frequencies F̂i and their respective formant bandwidths B̂i are calculated. It is checked,
whether the formants and bandwidths fulfill the criteria defined in Equation 3.65. The two formants
with the lowest frequencies (i.e. F̂1 and F̂2), that fulfill the criteria, are smoothed with LPThread:
:smoothF() and the smoothed formant frequency values are pushed onto the output FIFO buffer
outputFifoFormants.

This algorithm is implemented in LPThread::calcFormants(), which itself relies on LPThread::
roots() for the calculation of the polynomial roots via the companion matrix’s eigenvalues.

Voice Quality Classification. Based on the estimated dGF derived by inverse filtering, the two
skewness values described in subsection 3.3.4 are calculated. The two skewness measures are (i)
the skewness of dGF amplitude values and (ii) the skewness-related measure of the GF, as described
in subsection 3.3.4. The skewness of dGF amplitude values was implemented in C++/JUCE in the
function LPThread::calcSkewness(), which relies on LPThread::calcStd() and LPThread::
calcMean(). Essentially, Equation 3.72 is evaluated for the estimated dGF Ê[n] for each signal
block, as it can be seen in Listing 4.8.

Listing 4.8 skewness of dGF amplitude values, line 871–885 of LPThread.cpp
871 float LPThread :: calcSkewness (std :: vector <float > vec , float mu , float sigma )
872 {
873 float skew = 0.0f;
874 std :: vector <float > vec3mu ;
875 float tempVar1 = 0.0f;
876 float tempVar2 = 0.0f;
877 for (int ii = 0; ii < vec.size (); ii ++)
878 {
879 tempVar1 = vec[ii] - mu;
880 tempVar2 = pow(tempVar1 , 3.0f) / pow(sigma , 3.0f);
881 vec3mu . push_back ( tempVar2 );
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882 }
883 skew = calcMean ( vec3mu );
884 return skew;
885 }

For the second feature used in the voice quality classification, the skewness-related measure of the GF,
the spline-interpolation implemented in the class tk::spline from [37] is necessary. Fundamentally,
the C++ function LPThread::calcSkewnessGF() is used for the skewness calculation of the GF. In
this function, the scaled estimate of the GF ÊGF,sc[n] is calculated for each glottal cycle using the
cumulative sum as defined in Equation 3.75. In line 1029 in Listing 4.9, the interpolation of the
scaled GF using the tk::spline-object is performed.

Listing 4.9 skewness of scaled and interpolated GF using tk::spline
, line 1012–1045 of LPThread.cpp

1012 for (int ii = 0; ii < GCIPos .size () - 1; ii ++)
1013 {
1014 GCIdist = GCIPos [ii + 1] - GCIPos [ii] + 1; // distance between 2 successive GCIs
1015 if ( GCIdist < 3)
1016 {
1017 continue ;
1018 }
1019
1020 std :: vector <float > xFloat = linspaceVQ (0.0f, 1.0f, GCIPos [ii + 1] - GCIPos [ii] + 1); // sample points
1021 std :: vector <double > x( xFloat . begin () , xFloat .end ()); // convert to double
1022 std :: vector <double > val( GFest . begin () + GCIPos [ii], GFest . begin () + GCIPos [ii + 1]+ int (1)); // sample values ;

↪→ Data type double needed for spline interpolation
1023
1024 tk :: spline spline ;
1025 spline . set_points (x, val);
1026
1027 for (int jj = 0; jj < nInterp ; jj ++)
1028 {
1029 interpResult = spline (xq[jj ]);
1030 GfInterp . push_back ( float ( interpResult ));
1031 }
1032
1033 scalingFact = trapz (spacing , GfInterp );
1034 for (int jj = 0; jj < GfInterp .size (); jj ++)
1035 {
1036 GfInterp [jj] = GfInterp [jj] / scalingFact ;
1037 }
1038
1039 muGF = calcMean ( GfInterp );
1040 sigmaGF = calcStd (GfInterp , true);
1041 skewGFtemp = calcSkewness (GfInterp , muGF , sigmaGF );
1042 skewGfVec . push_back ( skewGFtemp );
1043
1044 GfInterp . clear ();
1045 }
1046
1047 if ( skewGfVec .size () != 0)
1048 {
1049 skewGF = calcMedian ( skewGfVec );
1050 }

The scaling to achieve unit area under the GF-curve is performed using LPThread::trapz(), which
is a replica of Matlab’s trapz()-command [54]. This can be seen in line 1033 and 1036 of List-
ing 4.9. In accordance to Equation 3.78, the skewness of the GF is calculated with LPThread::
calcMedian() in line 1050 of Listing 4.9.

4.2.5 Visual Indication of Voice Quality and Vowel

With the C++ class ClassifyVisualizer, the visualization of both vowel and voice quality is han-
dled. The member variable ClassifyVisualizer::visType is used to switch between the vowel
and voice quality map. If it is set to zero, the ClassifyVisualizer object is used as a vowel visual-
izer, and if it is set to one, the ClassifyVisualizer object is used to visualize the voice quality.

Vowel Visualization for visType = 0. The ClassifyVisualizer objects pops the formant
frequency estimation results from the FIFO buffer outputFifoFormants. According to this results,
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a point is plotted in the F1/F2-plane. The background of the F1/F2-plane is a .png-figure, which pro-
vides a coloured map of different vowels according to subsection 3.3.3 and [63,64]. The .png-figure
has been generated using the Matlab-file dataSendlmeier.m in the folder 00_ABGABE_Matlab/
Databases/vowels_Sendlmeier/. Based on the point’s location on the background figure, it can
be visually assigned to a vowel by the user. In order to provide some insight into the prevoiusly
estimated vowels, the current formant estimate is supplemented by the 14 previously computed esti-
mation results.

Voice Quality Visualization for visType = 1. In order to visualize the voice quality, the
ClassifyVisualizer object pops the two skewness values sGF and sdGF from the FIFO buffer
outputFifoVQ. Similar to the vowel visualization, a point is plotted in the sGF/sdGF-plane. In the
background, a .png-figure showing the voice quality regions, which were evaluated in advance using
the Matlab file 00_ABGABE_Matlab/V14_LPA_Matlab_Classification/Main_featureSpace_
clustering_SVM_freqRange.m, is displayed. Based on the point’s location on the background fig-
ure, a visual indication of voice quality is provided. Again, the current point is complemented by the
last 14 points in order to provide an insight into the previous block’s voice quality estimates.

4.3 Process Summary and GUI Screenshots

In order to conclude the LP analysis algorithm implementation in C++/JUCE, a short summary is
given. Figure 4.4 shows an overview of the signal flow and the control structure inside LPThread:
:run()’s core implementation. Comparing Figure 4.4 with Figure 1.2 it is visible that only one
LP analysis algorithm is implemented, namely the autocorrelation method with cepstral refinement.
Figure 4.4 is organized in such a way, that the blocks indicated by the dashed line (these are Pre-
Processing, Linear Prediction Analysis and Post-Processing/Classification) match the eponymous
blocks of Figure 1.2 with respect to their functionality.

In Figure 4.2, the estimation results for vowel and voice quality classification are shown using the
Matlab implementation, discussed in subsection 3.2.2. Thereby, a 15 s long sung vocal signal with
vowel /a/, modal voice quality and a fundamental frequency of f0 = 150 Hz was synthesized and
analyzed. The same sung vocal signal was processed through the VST implementation, whose re-
sults are shown in Figure 4.3. However, while Figure 4.2 shows the estimation results for all signal
blocks, Figure 4.3 only shows the results of 15 blocks. This is due to the real-time processing of the
implementation in C++/JUCE.

It is visible from Figure 4.2 in conjunction with Figure 4.3, that the results from the Matlab-implemen-
tation coincide with VST-plugin’s results for the given set of true parameters used in the synthesis
algorithm.

Further discussion on both implementations and their limitations can be found in chapter 5.
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(a) vowel classification in Matlab

m

b

c

(b) voice quality classification in Matlab

Figure 4.2 Result plots for vowel and voice quality classification using Matlab

Figure 4.3 Screenshot of proposed VST-plugin
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5 Conclusion

On a general level, this project consisted of three parts:

(i) a synthesis algorithm as described in chapter 2,

(ii) a comparison of four linear prediction-based analysis algorithms as described in chapter 3 and

(iii) a proof-of-concept implementation as a VST-plugin in C++ using the JUCE framework as de-
scribed in chapter 4.

The main findings of each project part are described in the following.

The synthesis algorithm described in chapter 2 built on the Liljencrants-Fant model to create a glottal
signal (dGF) with a defined voice quality and singing vibrato. The dGF signals have been filtered with
an all-pole filter modelling the human vocal tract, which results in a synthesized sung vocal signal
with defined parameters for fundamental frequency, voice quality and vowel.

In chapter 3 we described, how the four different linear prediction analysis algorithms work, and how
they have been compared with regard to their ability to approximate an all-pole vocal tract filter. The
output of the linear prediction algorithms are estimated coefficients of the vocal tract filter, which are
used to perform inverse filtering in order to compute the dGF signal. Based on the estimated filter
coefficients, the formant frequencies are calculated, which are the definitive features for the vowel
indictation. The estimated dGF-signal is used to evaluate two skewness-related measures for which a
voice quality distinction was shown to be possible. A Monte-Carlo simulation has been used to create
a dataset which accounts for the variability in the synthesizer parameters. For the formant frequency
estimation, an error measure was evaluated for the within-signal formant estimation error and the
between-signal estimation error, where the latter was evaluated for the whole Monte-Carlo dataset.
Additionally, the dataset was used to evaluate the voice quality features. Based on the evaluated voice
quality features and the ground truth, a support vector machine was trained to differantiate between
the three voice qualities. Taking all results into account, in subsection 3.4.3 it was concluded, that
the autocorrelation method with cepstral refinement performs best and is able to generate meaningful
results for a frequency range of f0 ∈ [70, 320] Hz.

Finally, in chapter 4 an implementation in C++ using the JUCE-framework has been described for the
chosen linear prediction algorithm. The aim of the implementation in C++/JUCE is to create a VST-
plugin for digital audio workstations. Building onto an existing buffer structure from a recent project
by Holzmüller et al. [29], the implementation was in general straightforward. Nevertheless, the differ-
ences between the Matlab prototype and the C++/JUCE-implementation are detailedly highlighted
in chapter 4. The results calculated with the VST-plugin match the results of the Matlab prototype.

5.1 Limitations of the Proposed Synthesis and Analysis Algorithms

During the course of this project different limitations arose in different parts of the covered processing
steps. The following paragraphs deal with the limitations that occurred during the synthesis, pre-
processing, analysis and classification stage.
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Synthesis of Sung Vocal Signals. Beginning at the first covered chapter, the sung vocal signal
synthesis as proposed in page 5, a limitation is given through the simplified assumption that sung
vocal signals are essentially speech signals with a higher fundamental frequency and vibrato. More
complex processes occuring whilst singing, such as sophisticated laryngeal mechanisms or formant
tuning as discussed in [2, p.39-41], are not covered by the implemented synthesis algorithm. Thus,
signals whose fundamental frequency exceed the first formant frequency are not realistic and therefore
lead to difficulties when it comes to estimating the VT filter of such a signal.

A small technical limitation worth noticing is, that the signal length of a synthesized signal has to be
chosen larger than 0.4 s, if signals with a fundamental frequency below 700 Hz are synthesized with
vibrato. Nevertheless, for the execution of the Monte-Carlo simulation mentioned in section 3.4, the
signal length was chosen to be 0.5 s, thus, for the presented project this limitation was of no practical
relevance.

Pre-Processing. The two main pre-processing steps which are limited due to certain parameters,
are the fundamental frequency estimation and the GOI/GCI-detection discussed in subsection 3.1.2
and subsection 3.1.3, respectively. The main drawback discussed in the context of the f0-estimation
is the fixation of a comparatively large block length with respect to a real-time implementation. In
subsection 3.1.2, it was mentioned, that the block length of 80 ms is necessary to ensure the occurance
of at least five glottal cycles in one signal block for the lowest frequency of interest. The original
routine proposed by Drugman and Alwan in [14] even presented a block-length of 100 ms as “[...]
a good compromise for being efficient in any environment.” [14, p. 1975]. The original routine
from [14] was meant to be applied offline on whole signals (in contrast to signal blocks). For the
purpose of this project, it was modified in such a way, that the calculations are executed block-wise,
without any further sub-blocking. Therewith, it was possible to reduce the block length from 100 ms
to the proposed 80 ms, which is still relatively large considering a real-time application.

Analyzing the statistical results concerning the GI detection presented in Figure 3.7, 3.8 and Fig-
ure 3.9, it becomes clearly visible that the GOI detection as proposed in [15] and executed on the
synthesized sung vocal signals is less precise than the GCI detection. As already mentioned in [15],
the reason for this circumstance can be found in the weaker non-linearity occuring at the GOIs, or as
formulated by Drugman and Dutoit: “[...] while the impulse at the GCI significantly emerges from its
neighborhood, the behaviour at the GOI is more regular since the excitation presents a discontinuity
more spread out and with a weaker strength.” [15, p. 2] The weaker non-linearity leads to a less
distinctive peak in the residual signal, which does not always exceed the other peaks in its presence
interval. Another assumption that can be drawn from evaluating the first percentage measure shown
in Figure 3.7 (b) is, that for signals with a fundamental frequency larger than 320 Hz–370 Hz, the
anticipated GOI presence intervals derived from the mean based signal are not valid. On the other
hand, the GCI detection is more robust, as visible in the performance analysis of Figure 3.7 (a). Only
for vowels with a low first formant frequency F1, namely /i/ and /u/, the GCI presence intervals are
wrongly positioned, which could be traced back to a flawed rough VT filter estimation, which influ-
ences the computation of the residual signal, and therefore has indirect effects on the refinement of
the GCI presence intervals proposed by Drugman and Dutoit in [15].

Analysis of Sung Vocal Signals. In general, when looking at the analysis algorithm’s perfor-
mance evaluation in section 3.4, it can be asserted that the misestimations concerning the VT filter
are kept in a reasonable scope for fundamental frequencies f0 ≤ 320 Hz. For signal realizations con-
taining vowels with a low first formant, e.g. /i/ and /u/, the results shown in Figure A.14 and A.16,
indicate misestimations for signals with fundamental frequencies that reach the frequency range of the
first formant, i.e. f0 ≈ F1. If the fundamental frequency f0 reaches the vicinity of the first formant
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frequency F1, the spectral envelope is falsified by the harmonic structure brought in by the excitation
signal. Thus, the VT filter estimation using linear prediction leads to misestimations, as fundamental
frequency peaks are mistaken for formant sturctures. Especially the vowels /i/ and /u/ are affectd by
this phenomenon, because of their relatively low F1 being F1 = 360 Hz for /i/ and F1 = 409 Hz
for /u/. Taking a closer look at the estimated VT filter’s frequency responses for sung vocal signal
containing the vowel /i/ at f0 = 150 Hz with modal voice quality, displayed in Figure A.6, the mis-
interpretation of the second/third harmonic as the signal’s first formant F1 is clearly visible. The
harmonic structure produced by the excitation signal interferes with the spectral envelope created by
the VT filter. It would not be fair to solely blame this circumstance on the analysis stage, as the analy-
sis algorithms were only evaluated using signals synthesized with the synthesis algorithm proposed in
chapter 2. As already mentioned, the modelling of sung vocal signals with this synthesis algorithm is
not a realistic replication of sung vocal signals by real signers, especially for fundamental frequency
reaching the range of the formant frequencies.

Taking a closer look at the autocorrelation method with cepstral refinement, the most distinctive
limitation arises with the estimated filter gain. Due to the cepstral liftering, signal energy is removed
from the autocorrelation function which – especially for signals with higher fundamental frequencies
– leads to a misestimated filter gain as shown in Figure 3.26 (b). As visible in the VT filter frequency
response, it is not just a gain offset that occurs, but rather a trend that leads to a filter gain decrease
towards lower frequencies, so a simple additive gain would probably not be sufficient. By further
investigating this behaviour, with e.g. a frequency dependent gain error evaluation, one could try to
compensate the decrease with an additional filter or maybe even a more sophisticated pre-emphasis
filter stage would suffice.

Post-Processing and Classification of Vowel and Voice Quality. The last step of the pro-
posed analysis algorithm only comes with one drawback which can not be blamed on the chosen
classification method, namely the usage of support vector machines. As the chosen classification
algorithm with respect to the voice quality, is only as good as the data that was used to train it, thus
the derived class boundaries are only valid for the proposed synthesizer. The generalization to other
signals or real sung vocal samples is not given, as there was no other labeled training data included.

Another limitation of the voice quality classification comes with the used skewness features. As
discussed in subsection 3.4.3, the skewness features only provide a meaningful clustering for funda-
mental frequencies of f0 ∈ [70 Hz, 320 Hz]. The clustering might be improved by using additional
features, e.g. mel-frequency cepstral coefficients (MFCCs) or the estimated fundamental frequency
f̂0.

The data used for the indication of the sung vowel was taken from Sendlmeier and Seebode, whose
data is based on human speech samples [63]. Therefore, it can be assumed, that the vowel indication
generalizes well for real samples, at least for human speech in German language. But then again,
besides the already mentioned complex VT processes occuring in singing [2], the formant frequencies
for sung vocal signals might also differ from the formant frequencies of speech, which was analyzed
by Fleischer et al. in [19].

5.2 Suggestions for Future Research

Based on the experience obtained over the course of this thesis and the limitations of the proposed
synthesis and analysis algorithms discussed in section 5.1, some questions in context with the pre-
sented project remain open. In the following, a list of open questions and topics for each chapter of
this project is presented. Note that this list is neither complete nor definitive. It should rather serve as
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an inspiration for the reader to continue the work in this vibrant, ever-expanding research field.

Synthesis of Sung Vocal Signals.
• How can the singing voice synthesis be improved? What are additional distinct features of

singing voice compared to speech?

• Where are the formant frequencies of different vowels for singing voice? Is it even reasonable
to model singing voice with formant data derived from speech signals? An investigation on
the vocal tract filter formants during singing, by studying real, non-generic sung vocal signals,
could be beneficial to refine the synthesizer.

• Is the modelling of female vocal tracts using the all-pole model valid enough? Are there addi-
tional gender-specific aspects that need special consideration?

• Implementation of a real-time synthesis algorithm for sung vocal signals.

• Virtualization of a singer with selectable vowel and voice quality in a 3D-environment using
recent research on the directivity of sung vocals [4, 7, 8].

Analysis of Sung Vocals Signals.
• To shed further light on the different LP-analysis algorithm’s performance a filter-gain error

evaluation would be beneficial. Especially for the autocorrelation method using cepstral refine-
ment it was shown that the proposed gain estimation is not beneficial for higher fundamental
frequencies. This effect is visible in the misestimated gain of Figure 3.26. A frequency depen-
dent gain-filter error evaluation could provide information on how to tackle the misestimation
of the filter gain for different lp analysis algorithms.

• Concerning the voice quality classification: What other features are informative in order to to
provide a distinction between voice qualities? For example can spectrum based features provide
an improvement for voice quality classification?

• Can the proposed algorithm be used for the qualitative analysis of real singers producing dif-
ferent voice qualities? In which aspects does a real singer differ from the proposed sung vocal
signal synthesizer?

Implementation in C++ using the JUCE-Framework.
• Optimize the implementation with respect to resource efficiency and performance.
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Appendix A Additional Plots

On the following pages, additional plots are included that demonstrate the effect of synthesis pa-
rameter variation, for example different vowels, voice qualities or fundamental frequencies, on pre-
processing, analysis and classification.
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A.1 SRH and Estimation of Fundamental Frequency

Figure A.1 SRHmax smoothed for different vowels, fundamental frequencies and breathy voice

Figure A.2 f0-Estimation analysis over frequency for breathy voice
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Figure A.3 SRHmax smoothed for different vowels, fundamental frequencies and creaky voice

Figure A.4 f0-Estimation analysis over frequency for creaky voice
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A.2 Estimated Vocal Tract Filters

Figure A.5 Comparison of estimated vocal tract filters for the vowel /e/ with voice quality modal
and fundamental frequency f0 = 150 Hz

Figure A.6 Comparison of estimated vocal tract filters for the vowel /i/ with voice quality modal
and fundamental frequency f0 = 150 Hz
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Figure A.7 Comparison of estimated vocal tract filters for the vowel /o/ with voice quality modal
and fundamental frequency f0 = 150 Hz

Figure A.8 Comparison of estimated vocal tract filters for the vowel /u/ with voice quality modal
and fundamental frequency f0 = 150 Hz
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A.3 Formant Estimation Error Measure within Single Realizations

Figure A.9 Error of formant estimation depending on the fundamental frequency f0 for the four
algorithms with vowel /e/ (single realization)

Figure A.10 Error of formant estimation depending on the fundamental frequency f0 for the four
algorithms with vowel /i/ (single realization)
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Figure A.11 Error of formant estimation depending on the fundamental frequency f0 for the four
algorithms with vowel /o/ (single realization)

Figure A.12 Error of formant estimation depending on the fundamental frequency f0 for the four
algorithms with vowel /u/ (single realization)

91



Appendix A. Additional Plots Bereuter & Kraxberger

A.4 Formant Estimation Error Measure between Multiple
Realizations

Figure A.13 Error of formant estimation depending on the fundamental frequency f0 for the four
algorithms with vowel /e/ (multiple realizations)

Figure A.14 Error of formant estimation depending on the fundamental frequency f0 for the four
algorithms with vowel /i/ (multiple realizations)
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Figure A.15 Error of formant estimation depending on the fundamental frequency f0 for the four
algorithms with vowel /o/ (multiple realizations)

Figure A.16 Error of formant estimation depending on the fundamental frequency f0 for the four
algorithms with vowel /u/ (multiple realizations)
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A.5 Clustering Analysis of Voice Quality Features

Figure A.17 Clustering of voice quality features considering fundamental frequencies up to f0 =
70 Hz. Comparison of cepstral autocorrelation method and covariance method.
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Figure A.18 Clustering of voice quality features considering fundamental frequencies up to f0 =
120 Hz. Comparison of cepstral autocorrelation method and covariance method.
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Figure A.19 Clustering of voice quality features considering fundamental frequencies up to f0 =
170 Hz. Comparison of cepstral autocorrelation method and covariance method.
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Figure A.20 Clustering of voice quality features considering fundamental frequencies up to f0 =
220 Hz. Comparison of cepstral autocorrelation method and covariance method.
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Figure A.21 Clustering of voice quality features considering fundamental frequencies up to f0 =
270 Hz. Comparison of cepstral autocorrelation method and covariance method.

The clustering of voice quality features considering fundamental frequencies up to f0 = 270 Hz is
displayed in Figure 3.30.
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Figure A.22 Clustering of voice quality features considering fundamental frequencies up to f0 =
370 Hz. Comparison of cepstral autocorrelation method and covariance method.
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Figure A.23 Clustering of voice quality features considering fundamental frequencies up to f0 =
420 Hz. Comparison of cepstral autocorrelation method and covariance method.
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Figure A.24 Clustering of voice quality features considering fundamental frequencies up to f0 =
470 Hz. Comparison of cepstral autocorrelation method and covariance method.
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Figure A.25 Clustering of voice quality features considering fundamental frequencies up to f0 =
520 Hz. Comparison of cepstral autocorrelation method and covariance method.
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