
Exemplar-based audio inpainting
in musical signals

PhD Thesis
of

Andrés Marafioti

Date: October 31, 2020

Matriculation number: 11730789
PhD program: Sound and Music Computing (V 094 750)

Advisor: Prof. Dr. Robert Höldrich
Co-advisor: Dr. Piotr Majdak
External reviewer: Dr. Peter Balazs
Project leader: Dr. Nicki Holighaus

http://www.oeaw.ac.at
http://www.kfs.oeaw.ac.at
http://www.kug.ac.at/einrichtungen/einrichtungen/kuenstlerisch-wissenschaftliche-einheiten/doktoratsschule-fuer-das-wissenschaftliche-doktoratsstudium/start.html
https://iem.kug.ac.at/institut-fuer-elektronische-musik-und-akustik-iem.html

Abstract

Audio inpainting deals with local gaps of degraded or lost information, which recon-
struction aims at providing meaningful information and preventing audible artifacts.
Audio inpainting is a large field, offering many solutions for short gaps, i.e., of less than
25 ms. Inpainting longer gaps, i.e., of around 1 second, is only available by leveraging
repetition, i.e., by copying information from other parts of the signal into the gap.

This PhD project aims at expanding the field of audio inpainting in three ways: 1) by
providing new methods to expand the gap durations to be reconstructed, 2) by studying
how the missing information can be generated for gaps in the range of seconds, and
3) by studying the applicability of new machine-learning techniques to audio inpaint-
ing. To do this, we developed a neural network (context encoder) for audio inpainting
that targets exact recovery of gaps up to 120 ms by extracting patterns from a music
dataset and learning to predict the gap content. This context encoder demonstrated
the potential of machine-learning techniques for audio inpainting. Then, we developed
a time-frequency generative adversarial network (TiFGAN), which combines advance-
ments in phase retrieval, a careful choice of time-frequency representation, and state of
the art machine learning modeling techniques. Next, we adapted the concept of TiFGAN
to audio inpainting and developed a generative adversarial context encoder for long au-
dio inpainting (GACELA), which targets gaps in the range of seconds. GACELA was
evaluated in listening test with gaps ranging from 375 to 1500 ms, showing reasonable
inpainting performance, and exhibiting no significant decrease in performance with in-
creasing gap duration. In contrast to other available systems, GACELA targets long gaps
without copying an information from the available portion of the signal, but it rather
makes an informed prediction of the gap’s content. Given the nature of such long gaps
in music, GACELA can provide various solutions for one and the same gap. Over the
course of the PhD, the importance of phase retrieval when dealing with time-frequency
representations became apparent. Thus, the Phd closes with an in-depth analysis of the
interaction between phase-retrieval algorithms, the parameters used to compute a time-
frequency representation, and the audio content. Alongside this analysis, we provide an
algorithm to optimize the performance of an arbitrary phase-retrieval algorithm.

In summary, the Phd studied urging issues in the field of audio inpainting and addressed
them by developing and implementing novel machine-learning systems. All of the imple-
mentations developed within this PhD were released as free and open-source software,
ensuring the reproducibility of our findings by others.

Abstract

Audio-Inpainting befasst sich mit lokalen Lücken von verzerrten oder verlorenen In-
formationen, wobei die Rekonstruktion darauf abzielt, aussagekräftige Informationen
bereitzustellen und hörbare Artefakte zu verhindern. Audio-Inpainting ist ein großer
Forschungsbereich, der zahlreiche Lösungen für kurze Lücken, d.h. von weniger als 25 ms,
bereits jetzt schon bietet. Das Inpainting längerer Lücken, d.h. von etwa einer Sekunde,
ist nur durch Kopieren von Informationen aus anderen Teilen des Signals möglich.

Dieses PhD-Projekt zielt darauf ab, das Forschungsgebiet des Audio-Inpaintings auf drei
Arten zu erweitern: 1) durch Bereitstellung neuer Methoden zur Verlängerung der zu
rekonstruierenden Lückendauer, 2) durch Untersuchung, wie die fehlenden Informatio-
nen für Lücken im Bereich von Sekunden rekonstruiert werden können, und 3) durch Un-
tersuchung neuer Techniken von maschinellem Lernen für Audio-Inpainting. Zu diesem
Zweck entwickelten wir ein neuronales Netzwerk (Context-Encoder), das auf die exakte
Wiederherstellung von Lücken bis zu 120 ms abzielt, indem Muster aus einem Musik-
datensatz extrahiert und gelernt werden, um den Lückeninhalt vorherzusagen. Dieser
Context-Encoder veranschaulichte das Potenzial maschineller Lerntechniken für Audio-
Inpainting. Anschließend entwickelten wir ein sogenanntes "Time-frequency generative
adversarial network" (TiFGAN), das Fortschritte bei der Phasenrekonstruktion, eine
sorgfältige Auswahl der Zeitfrequenzdarstellung und modernste Modellierungstechniken
für maschinelles Lernen kombiniert. Als nächstes passten wir das Konzept von TiFGAN
an Audio-Inpainting an und entwickelten einen "Generative adversarial context encoder
for long audio inpainting" (GACELA), welcher Lücken im Bereich von Sekunden rekon-
struieren kann. Im Gegensatz zu anderen verfügbaren Systemen zielt GACELA auf lange
Lücken ab, ohne eine Information aus dem verfügbaren Teil des Signals zu kopieren,
sondern erstellt stattdessen eine fundierte Vorhersage des Lückeninhalts. Angesichts der
Natur derart langer Lücken in der Musik kann GACELA verschiedene Lösungen für ein
und dieselbe Lücke anbieten. GACELA wurde in Hörexperimenten mit Lücken im Bere-
ich von 375 bis 1500 ms evaluiert. Die Resultate zeigten eine angemessene Inpainting-
Leistung, wobei mit zunehmender Lückendauer keine signifikante Leistungsabnahme
auftrat. Im Verlauf des PhDs wurde die Bedeutung der Phasenrekonstruktion in Zeit-
frequenzdarstellungen deutlich. Daher schließt der PhD mit einer eingehenden Analyse
der Wechselwirkung zwischen Phasenrekonstruktionsalgorithmen, den Zeitfrequenzpa-
rametern und dem Audioinhalt ab. Als Ergebnis der Analyse entstand ein Algorithmus
zur Optimierung der Leistung eines beliebigen Phasenrekonstruktionalgorithmus.

Zusammenfassend untersuchte das PhD-Projekt relevante Probleme im Bereich von
Audio-Inpainting durch dieEntwicklung und Implementierung neuartiger maschineller
Lernsysteme. Alle im Rahmen dieses PhDs entwickelten Implementierungen wurden als
freie Open-Source-Pakete veröffentlicht, um die Reproduzierbarkeit unserer Ergebnisse
durch andere zu gewährleisten.

Acknowledgements

I came to Austria thanks to an offer from Nicki Holighaus. I owe Nicki a great deal
of gratitude for enabling me to achieve my goals, motivating me to learn with rich
discussions, and helping me focus on my work. I am deeply thankful to him as well
for including me in his social circles and inviting me to play board games. Likewise, I
want to thank my co-advisor Piotr Majdak. He lead me by example with his passion
and determination for Science. My work would not have been as rigorous, were it not
for him. He also motivated me to publish at the AES conference, where I met several
dear colleagues. He later invited me to give my first talk in German at an AES austrian
meeting. After only two years of studying German, this was a challenging but enriching
experience which encouraged me in my language learning path. Further, I want to thank
a dear colleague of mine, Nathanaël Perraudin. During my PhD, we worked hand in
hand, coding together many experiments where he shared his extensive knowledge on
machine learning with me. He also invited me for a stay at the Swiss Data Science Center
in Zürich, where I became acquainted with other interesting researchers and approaches
for doing science. Further, I extend my gratitude to my advisor Robert Höldrich who
always replied positively to my ideas and helped me mold them into concrete research
directions.

I wish to thank the Acoustics Research Institute of the Austrian Academy of Sciences
as a whole. This institution housed me for the past three years and offered me ev-
ery opportunity to succeed in my PhD. The institute’s laboratories equipped me with
excellent tools for my experiments ranging from GPUs to train networks, to listening
chambers to perform listening tests. Beyond that, the institute provided me with friends
who helped me bear the -sometimes- stressing experience of a PhD and shared with me
many charming evenings. This endless list includes amazing researchers such as Nicola
Klingler, Daniel Haider, Jan Luttenberger, Karolina Ignatiadis, Sridhar Srinivasan, Han-
nah Leykum, Martin Lindenbeck, Carina Lozo, Katharina Pollack, Shristi Rajbamshi,
Luis Alberto Escudero, Christian Gottschall, Marisa Hoeschele, Maike Klingel, Günther
Koliander, Sebastian Schmutzhard, and Bernhard Wagner.

Finally, I want to extend my gratitude to some friends who personally helped me with
this PhD. My roommates Mona and Belén, who during the 2020 quarantine gave me
breaks from work and always brought me the best coffee. My friend Michi, who helped
me navigate the world of Austrian culture and taught me how to make chili sin carne.
My parents, Roberto and Cristina, who kept connected across an ocean’s distance and
helped me feel closer to home. And my partner Simone. In 2018, during our holidays in
Morocco, I received an urgent review for TiFGAN. Simone, instead of being angry that
I needed to work during our holidays, decided to drive during the rest of the trip so
that I could work on the review. She then proceeded to discuss extensively the review
with me and helped me strengthen every point of it, leading to the paper being accepted
shortly thereafter. That anecdote is exemplary of the type of partner Simone has been
to me during this period of my life.

Contents

abstract i

1 Introduction 1

1.1 Computer Music Modeling . 1

1.2 Audio representations . 4

1.3 Audio inpainting . 8

1.4 Outline . 13

2 Audio inpainting of music by means of neural networks 15

3 A context encoder for audio inpainting 24

4 Adversarial generation of time-frequency features with application in
audio synthesis 36

5 GACELA – A generative adversarial context encoder for long audio
inpainting 50

6 Time-Frequency Phase Retrieval for Audio — The Effect of Transform
Parameters 63

7 Concluding remarks 75

1

Chapter 1

Introduction

1.1 Computer Music Modeling

Ada Lovelace wrote on 1842 that one day machines “might compose elaborate and sci-
entific pieces of music of any degree of complexity and extent.” (1). Her vision came as
part of a study on the initial designs for a general purpose computing device made by
Charles Babbage (2). Over a century later, in 1955, Hiller and Isaacson started to bring
Lovelace’s vision into reality by investigating how to automatically generate music with
one of the first computers ever built, the Illiac I (3). Ever since, the field of computer
music modeling has had a lot of progress mixed but it has also proven to be particularly
challenging due to the many different interactions present in a musical piece, shown
in Fig. 1.1. One major challenge in music modeling is the wide range of timescales in
dependencies from pitch and timbre (short-term), through rhythm (medium-term) to
song structure (long-term) (4; 5). To address this, it is common to divide the problem
into two parts: ‘composition’ and ‘performance’. This is analogous to the discrete struc-
ture embedded in music’s generative process, in the words of Hawthorne et al. (4): ”a
composer creates songs, sections, and notes, and a performer realizes those notes with
discrete events on their instrument, creating sound“. For the composition, there is a
system which generates an intermediate representation analog to a sheet of music. The
composition itself is an incredibly hard task, with interlacing actors such as melody,
harmony, rhythm, and instrumentation. For the intermediate representation there are
many candidates (6; 7; 8), but the most common one is MIDI (9; 4; 10). MIDI has the
great advantage of being ready to interpret and modify: Users can interact with MIDI
pieces before the performance step. The performance step can then be done by humans,

1.1 Computer Music Modeling 2

machines, or a mixture of the two. When machines are involved, the intermediate rep-
resentation, for example MIDI, is used to condition a synthesizer which produces an
audio signal. Today, several companies follow this or similar workflows to automatically
generate music such as AIVA1, OpenAI2, and Sony3. It is also now common practice to
use neural networks for both composition and performance. When a neural network is
used to synthesize audio, we refer to it as a neural audio synthesizer (NAS).

Figure 1.1: Concept map for automatic music generation systems. The various
aspects that play a role in the composition are listed as well as the
various components of a composition. These components exist in vari-
ous time-scales. For example, the timbre and its changes are perceived
in milliseconds, whereas the harmony is perceived as an encompassing
property of the music in the range of seconds. Finally, the variousThe
three leftmost panels show that tcomponents of the composition are
materialized into notes. Figure from Herremans et al. (6).

1.1.1 Neural audio synthesizers

Exactly one year before the beginning of this PhD project, Van den Oord et al. submitted
to arxiv their paper “Wavenet: a generative model for raw audio” (11). In terms of quality,
Wavenet was a substantial leap forward for NAS. This was substantially due to the use
of dilated convolutions, which allowed Wavenet to be conditioned on samples coming
from signals orders of magnitude larger than previous models, while still generating
audio on a sample level, see Fig. 1.2. Nevertheless, Wavenet has two main issues: 1)
the authors have not disclosed their code, and their description of their (commercially

1https://aiva.ai/
2https://openai.com/blog/jukebox/
3https://www.flow-machines.com/

https://aiva.ai/
https://openai.com/blog/jukebox/
https://www.flow-machines.com/

1.1 Computer Music Modeling 3

used) system was imprecise, making most available implementations unreliable, and
2) Wavenet is an autoregressive model, meaning that for each sample it produces, it
requires many previous samples to be available. Since audio sampling rate is usually
quite large (44.100 samples per second being the audio CD standard). This implies
that one would need to run 44.100 iterations of Wavenet per second to generate audio,
and each iteration is fairly costly. Unofficial implementations4 reported that using a
smaller version of Wavenet to generate just 4.000 samples of audio, needs 4 minutes on
a powerful GPU (Tesla K805). Van den Oord et al. addressed this issue in 2017 with
their paper entitled: “Parallel WaveNet: Fast High-Fidelity Speech Synthesis”(12), in
which they propose Parallel Wavenet, a second network which can be trained to learn
Wavenet’s model, while being considerably faster at generation time. Again, they did
not release an implementation. And even though the Parallel Wavenet addressed the
issue with the slow generation speed of the original Wavenet, it did so while introducing
more complexity to the system.

Figure 1.2: Schematic of wavenet. At the bottom, in blue, we find the input of
wavenet, this is the time-domain audio signal. The solid arrows rep-
resent the dilated convolutions and the striped arrows represent the
missing connections for a normal convolution. At the top, in orange,
we find the output of wavenet. Following the solid arrows it is clear
how dilated convolutions allow wavenet to generate samples condi-
tioned on a large input, without needing to perform all of the costly
operations of a normal convolution. Figure from Van den Oord et
al. (11)

Around the time this PhD project began, Mehri et al. published a competing method to
Wavenet “SampleRNN: An unconditional end-to-end neural audio generation model” (13).
In their contribution, they introduced SampleRNN which, like Wavenet, also generates
‘raw’ audio on a sample basis. Instead of using dilated convolutions, SampleRNN com-
bined memory-less modules, namely autoregressive multilayer perceptrons, and stateful
recurrent neural networks in a hierarchical structure, see Fig. 1.3. This allowed them
to achieve similar or even better performance than Wavenet in terms of audio quality.

4https://github.com/basveeling/wavenet
5https://www.nvidia.com/en-gb/data-center/tesla-k80/

https://github.com/basveeling/wavenet
https://www.nvidia.com/en-gb/data-center/tesla-k80/

1.2 Audio representations 4

Even better, Mehri et al. released an implementation of their algorithm, making it easy
for researchers to modify it and apply it to different problems.

Figure 1.3: Schematic for the SampleRNN network at timestep i with 3 tiers.
As a simplification in this schematic only one RNN and up-sampling
ratio 4 is used for all tiers. SampleRNN uses a hierarchy of modules,
each operating at a different temporal resolution. Each module con-
ditions the one below it, with the lowest module (tier 1) outputting
sample-level predictions. Each higher module operates on an increas-
ingly longer timescale and a lower temporal resolution, here by a
factor of 4. Figure from Mehri et al. (13)

Both Wavenet and SampleRNN are autoregressive NAS that share a big issue: they
both model audio as a time representation with a high temporal resolution. One way
to address this issue is by conditioning NAS on a larger temporal scale (14; 5), but
even then the NAS that finally produce the signal are fairly sophisticated (13; 15; 16;
17; 18). An interesting way to address this issue is to model audio as a time-frequency
(TF) representation. In this way, the temporal resolution becomes a parameter of the
model. In 2019, Vazques and Lewis made use of this and released Melnet (19), which
combines an autoregressive model with a TF representation as shown in Fig. 1.4. Despite
Melnet and other recent improvements in neural synthesizers modeling audio in the TF
domain (20; 21), the state-of-the-art neural synthesizers still model audio in the time
domain.

1.2 Audio representations

In this PhD project, the goal was to study audio inpainting of musical signals and de-
velop solutions for it. Preparing the plan for the PhD, it became clear that NAS offered
new ways to address audio inpainting which we should include in the study. While inves-
tigating NAS, we became interested in the gap in performance between NAS in the time

1.2 Audio representations 5

Figure 1.4: Melnet structure. Each of the four images represents an RNN oper-
ating on a spectrogram. The black square is the next coefficient that
melnet will generate. The gray squares represent coefficients that were
already generated. Each arrow denotes an individual RNN cell and
arrows of the same color use shared parameters. Each black squared
is generated from information coming from the 4 RNNs. The three
leftmost panels show that three of these are used in the time-delayed
stack to extract features from all preceding frames. The rightmost
panel shows that the fourth is used in the frequency-delayed stack
to extract features from all preceding elements within the current
time-step. Figure from Vasquez and Lewis (19)

0 500 1000 1500
Time (sample)

0

200

Signal

60 80 100 120 140
Time (sample)

0

100

Zoom in

0 1000
Time (samples)

0.00

0.25

0.50

0.75

1.00

Fr
eq

ue
nc

y
(n

or
m

al
ize

d) Log magnitude

0

20

40

0 1000
Time (samples)

Phase

2

0

2

0 1000
Time (samples)

Phase time-derivative

40

20

0

20

40

0 1000
Time (samples)

Phase frequency-derivative

40

20

0

20

40

Figure 1.5: Signal representations. Top row: Time-domain representation: wave-
form of a test signal (pure sines and pulses). Bottom row: Time-
frequency domain representation: STFT: log-magnitude, i.e., spec-
trogram (left), phase (center-left), time-direction phase derivative
(center-right) and frequency-direction phase derivative (right). For
small log-magnitude, phase derivatives were set to zero. Frequency-
direction derivative was computed after demodulation.

domain and in the TF domain. After all, TF representations of audio are widely ap-
plied to neural networks, e.g., for solving discriminative tasks, in which they outperform
networks directly trained on the waveform (22; 23; 24). TF representations are also com-
monly chosen to condition NAS (25; 26), e.g., Tacotron 2 (27) relies on non-invertible
mel-frequency spectrograms and Timbretron (28) relies on the constant-Q transform.
In those cases, the generation of a time-domain signal from the TF coefficients is then
achieved by training a conditional NAS to act as a vocoder. To study the performance
of NAS in the TF domain, we decided to focus on the short-time Fourier transform
(STFT) (29; 30), the best understood and widely used TF representation in the field
of audio processing. Audio signals represented using the STFT are more intuitive and

1.2 Audio representations 6

easier to interpret than in the original time domain, see Fig. 1.5.

1.2.1 The discrete short-time Fourier transform

We consider finite signals s ∈ CL and indices in the signal domain are to be understood
modulo L. The discrete STFT of s, with the analysis window g ∈ RL, time step a ∈ N
and M ∈ N frequency channels is given by

Sg(s)[m,n] =
∑

l∈L
s[l]g[l − na]e−2πiml/M

= |Sg(s)[m,n]| eiφg(s)[m,n],
(1.1)

for n ∈ [0, . . . ,N−1], whereN = L/a is the number of time steps, andm ∈ [0, . . . ,M−1].
Similar to the time step a, the frequency step of the STFT is defined as b = L/M . If s
and g are real-valued, the STFT is Hermitian in m and it is sufficient to store the first
MR = b(M/2) + 1c channels. We can write Sg(s)[m,n] = exp(Mg[m,n] + iφg[m,n]), with
log-magnitude Mg and phase φg.

Depending on the choice of transform parameters a, M , and the window g, the discrete
STFT encodes time and frequency information with different properties. The full STFT,
i.e., with a = 1 and M = L, is a smooth function, owing to significant overlap between
the time range covered by adjacent time positions. When increasing the time step a over
1, the time resolution of the STFT decreases. Similarly, when decreasing the number of
channels M below L, the frequency resolution of the STFT decreases. Jointly, time and
frequency resolution can be likened to the pixel resolution in digital imaging. For the
STFT, this joint resolution is characterized by the redundancy, D = M/a. Figure 1.6
shows examples of STFT magnitudes calculated with the same window g, for various
redundancies D. Especially at redundancy D = 2, it can be seen that some characteristic
features of the STFT magnitude are obscured, e.g., local minima.

1.2.2 Inverse STFT for signal synthesis

For any synthesis window g̃ ∈ RL, the inverse STFT of S ∈ CM×N with respect g̃ is
given by

s̃[l] =
∑

n∈N

∑

m∈M
S[m,n]g̃[l − na]e2πiml/M , (1.2)

1.2 Audio representations 7

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(n

or
m

al
ize

d)

D = 1

50

40

30

20

10

0
D = 2

50

40

30

20

10

0

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(n

or
m

al
ize

d)

D = 4

50

40

30

20

10

0
D = 8

50

40

30

20

10

0

0 2000 4000
Time (samples)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(n

or
m

al
ize

d)

D = 32

50

40

30

20

10

0

0 2000 4000
Time (samples)

D = 128

50

40

30

20

10

0

Figure 1.6: Spectrograms computed at different redundancies (D). The spectro-
gram becomes much smoother and better resolved at higher redun-
dancies.

for l ∈ [0, . . . ,L − 1]. If s̃ = s for all s ∈ CL and with S = Sg(s), then the STFT Sg

is invertible, i.e., it forms a frame in the sense of (30; 31; 32) and g̃ is a dual window
for g. Generally, in order to obtain an invertible STFT, the redundancy larger one,
D =M/a ≥ 1 is required.6.

However, for redundancies D > 1, the STFT is overcomplete (or redundant), and Sg

6In contrast to common practice, the number of channels M may be smaller than the number of
nonzero samples in g

1.3 Audio inpainting 8

maps into a strict subspace of CM×N . In other words, not every matrix S ∈ CM×N

represents a valid STFT. We call S consistent if there is a signal s, such that S = Sg(s)

and inconsistent otherwise. Implicitly, the inverse STFT operation applied to S performs
a projection onto the image of Sg, as visualized in Fig. 1.7. In practice, this means
that the inverse STFT, applied to inconsistent coefficients S produces a signal s̃ with
Sg(̃s) 6= S, i.e., the time-frequency content of S is distorted in s̃. In the setting of phase
retrieval, synthesis from a given spectrogram |Sg(s)| with a mismatched phase estimate
φ will thus often lead to a erroneous reconstruction.

Figure 1.7: STFT consistency. Blue circle: Set of all possible TF coefficients. Yel-
low circle: set of time-domain signals. Green circle: set of consistent
STFT coefficients. An inverse STFT done on a point from the blue
set yields a point from the yellow set. An STFT from this point yields
a point from the green circle, introducing a projection error. An in-
verse STFT done on a point from the green circle yields a point from
the yellow set, which after a subsequential STFT is remapped to the
original point in the green set without any projection errors.

1.3 Audio inpainting

In 2012, Adler et al. (33) published their paper entitled “Audio inpainting", marking
the first time Audio inpainting was used to refer to the restoration of lost informa-
tion in audio and establishing a clear parallel to Image Inpainting (34; 35; 36), a task
exemplified in Fig. 1.8. In the past, audio inpainting had been referred to as audio inter-
/extrapolation (37; 38), or waveform substitution (39). The general assumption for audio
inpainting is that audio is represented in some domain as data and some chunks of that
data are corrupted yielding gaps in the representation. Reconstruction is usually aimed
at providing a coherent and meaningful information while preventing audible artifacts
so that the listener remains unaware of any occurred problem.

The number and duration of the gaps as well as the type of corruption is manifold.
For example, in declicking and declipping, corruptions may be frequent, but mostly

1.3 Audio inpainting 9

Figure 1.8: Image inpainting is the process of filling in gaps on images. On the
left, we present an image with a gap that needs to be filled. A neural
network called ‘context encoder’ was used to fill in the gap, producing
the image on the right. Interestingly, this network understood that the
gap should contain windows, even though no evidence of windows was
found at the borders. Figure from Pathak et al. (36)

confined to disconnected time-segments of only few milliseconds duration or less. We
refer to inpainting such gaps as inpainting of short gaps. In contrast, we define medium
gaps as those with tens of milliseconds duration, a scale on which the non-stationary
characteristic of audio already becomes important, but the extrapolation of the missing
information from short context surrounding the gap still seems feasible. Medium gaps
may arise as a consequence of packet loss in audio transmission (40) or when short
interruption happens while reading audio from partially damaged physical media. In-
terestingly, not much has been done for audio inpainting of medium gaps. Lastly, gaps
on a scale of hundreds of milliseconds or even seconds may happen, e.g., when reading
partially damaged physical media, in live music recordings, when unwanted noise orig-
inating from the audience needs to be removed, or in audio transmission with a total
loss of the connection between transmitter and receiver lasting for seconds. We refer to
inpainting such gaps as inpainting long gaps.

For inpainting short gaps, various solutions have been proposed. (33) proposed a frame-
work based on orthogonal matching pursuit (OMP), which has inspired a consider-
able amount of research exploiting TF sparsity (41; 42; 43; 44) or structured sparsity
(45; 46; 47). Being tempted to extend these works to medium gap durations, one gets
disappointed quite soon because for increasing gap durations (from the originally tar-
geted of 10 ms to medium gap durations of around 50 ms), the reconstruction quality
substantially decreases, see Fig. 1.9. The degradation originates in the combination of
the TF representation and the assumption of sparsity: TF sparse methods are ill-suited

1.3 Audio inpainting 10

to restore gaps that approach or exceed the duration of the TF analysis and synthesis
windows. This limitation is also valid, if less severe, for structured TF sparsity, rendering
the sparsity-based methods as unsatisfactory for inpainting medium duration gaps. TF
domain is popular for inpainting short gaps, e.g., interpolation of audio based on a Gabor
regression model (48), or nonnegative matrix and tensor factorization (49; 50; 51). More
recently, a powerful framework has been proposed for various audio inverse problems (52)
including time-domain audio inpainting, source separation (53), and declipping (54) even
in a multichannel scenario (55). All of these systems require valid audio data within a
time-domain window, cf. (54), which makes them perfect for inpainting short gaps, but
unsatisfactory for medium gap durations.

Figure 1.9: Signal to noise ratio (SNR, in dB) showing the quality of audio in-
painting by various algorithms. Janssen is an adaptive interpolation
method applied to the time-domain signal. The other algorithms at-
tempt to solve the audio inpainting problem as an optimization task
where the goal is to find a signal that has sparse representation under
the STFT, while belonging to the set of feasible solutions. `1 is a type
of optimization that leads to a convenient convex minimization. The
SParse Audio INpainter (SPAIN) solves the task using the ADMM
optimizer. S-SPAIN targets the synthesis and A-SPAIN targets the
analysis variant of the optimization. The Orthogonal Matching Pur-
suit (OMP) approximates the optimization task in a similar fashion
as the `1 variants. Figure from Mokry et al. (44)

Interestingly, not much has been done for audio inpainting of medium gaps. In fact, the
most promising options for medium gap durations come from linear prediction coding
(LPC) (57). While LPC may sound antiquated, it is particularly suitable for musical

1.3 Audio inpainting 11

Figure 1.10: Procedure for eliminating impulsive error in an audio signal. Top:
An impulse response h′ is computed for the section before the er-
ror and another one h′′ for the section after the error. Middle: The
sections before and after the error are extrapolated with the im-
pulse responses. Bottom: The solution for the gap is a weighted
average of the two proposed solutions. Figure from Kauppinen et
Kauppinen. (56)

instrument sounds as it models the way the sound is created by many instruments, i.e., by
means of weighted sum of resonances. From the algorithmic perspective, LPC is simple
but recursive, thus, allows to synthesize complex sound signals at a low computational
power. Initially proposed for inpainting short bursts of lost samples (58), LPC-based
inpainting algorithms model the signal as an acoustic source filtered by an all-pole
filter. The model parameters are derived from the context and the missing signal part
is synthesized by extrapolating the context into the gap. LPC-based methods work
well for inpainting gaps for durations from 5 to 100 ms (38; 59). LPC-based methods
are particularly good in inpainting gaps consisting of many consecutive missing audio
samples surrounded by reliable context (59). In our experiments for medium gaps, the
LPC-based algorithm (59) performed better than the latests reports on OMP-based
algorithms (44). As it seems, when it comes to inpainting medium gaps, the LPC-based

1.3 Audio inpainting 12

method (59), outlined in Fig. 1.10, seems to be the best choice for a reference method.

For inpainting long gaps, recent methods leverage repetition and determine the most
promising reliable segment from uncorrupted portions of the input signal(40; 60). Restora-
tion is then achieved by inserting the determined segment into the gaps. These methods
do not claim to restore the missing gap perfectly, they aim at plausibility. For exam-
ple, a method based on MFCC feature similarity has been proposed for packet loss
concealment (40). It explicitly targets a perceptually plausible restoration. Similarly,
exemplar-based inpainting was proposed based on a graph encoding spectro-temporal
similarities within an audio signal (60), as illustrated in Fig. 1.11. In both studies, gap
durations were beyond several hundreds of milliseconds and their reconstruction needed
to be evaluated in psychoacoustic experiments. Other examples for similar methods are
(61; 62; 63; 64). While all these methods might be in general capable of inpainting
gaps of long duration, the target of the inpainting is always plausible instead of exact
reconstructions.

Figure 1.11: Graph encoding spectro-temporal similarities within an audio signal
with a gap in order to do long audio inpainting. The regions con-
sidered for the transitions are in gray with the gap in between them
in white. All available transitions for the reconstruction are in light
gray with the optimally selected transitions T1 and T2 in blue. The
nodes indexes l0, l1 and k0, k1 correspond to the beginnings and the
ends of the transitions T1 and T2. Figure from Perraudin et al. (60)

In conclusion, when starting with my thesis, the following issues were evident in the
field of audio inpainting:

1. Audio inpainting of medium gaps durations (between 50 and 200 ms) only poorly
studied, with LPC being only promising for signals consisting of weighted sum of
resonances.

2. No methods for audio inpainting of medium gap durations explicitly targeting

1.4 Outline 13

same-content reconstruction.

3. No methods for audio inpainting of long gaps (durations beyond 200 ms) for non-
repetitive signals.

4. New developments in machine learning greatly improving the field of image in-
painting, but not studied for audio inpainting yet.

1.4 Outline

This PhD project was focused on audio inpainting in musical signals addressing the issues
listed above. The goal was to better understand the problems and provide approaches for
potential solutions. We begin with inpainting gaps of middle-duration in musical signals
and we introduce the context encoder for audio inpainting, which targets gaps below
120 milliseconds. Chapter 2 introduces the context encoder as a model generating spec-
trograms, from which we recovered the phase and generate time-domain audio signals.
We evaluated the results on music signals originating from single instrument sounds
and general music, and compared them against a method based on LPC-extrapolation.
In chapter 3, we expand on the initial model, and use it to generate either magnitude
STFT coefficients, or complex-valued STFT coefficients.

Chapter 4 introduces TiFGAN, a generative adversarial network based on a model in-
troduced by Donahue et al. (65) to generate spectrograms. TiFGAN was tested for a
range of relevant parameters, including different windows, different STFT parameters,
and different phase retrieval algorithms. Additionally, we developed a measure of ‘consis-
tency’ of magnitude STFTs based on the phase-magnitude relations (66). This measure
was useful to demonstrate that STFTs computed using a poor selection of parameters
are more prone to errors.

In chapter 5, we introduce GACELA, a generative adversarial context encoder for long
audio inpainting. GACELA combines TiFGAN with the context encoder for audio in-
painting. For this, we replaced the encoder-decoder architecture designed in chapters 2
and 3 for a generator consisting of an encoder of time-averaged mel-spectrograms and
a decoder of the encoded signal plus a latent variable, introducing variability into the
system. In addition to the new encoder-decoder architecture, we introduced a discrimi-
nator that evaluates the inpainted signals at five different temporal resolutions following
the different time scales of music.

1.4 Outline 14

Over the course of the PhD, the importance of phase retrieval when dealing with time-
frequency representations became apparent. Thus, in chapter 6 we introduce an in-depth
analysis of the interaction between phase-retrieval algorithms, the parameters used to
compute a time-frequency representation, and the audio content. Alongside this study,
we provide an algorithm to optimize the performance of an arbitrary phase-retrieval
algorithm.

Finally in chapter 7, we summarize the results and findings obtained in the context of
this PhD project. We further discuss the limitations of the present models in order to
stimulate future research.

15

Chapter 2

Audio inpainting of music by means of
neural networks

This work was published as

Marafioti, A., Holighaus, N., Majdak, P., Perraudin, N. (2019): Audio inpainting of
music by means of neural networks, in: 146th Audio Engineering Society Convention.
Dublin, Ireland.

The idea for this paper came from a collaboration between all authors. I, with guidance
from the second author, designed a pre- and post-processing pipeline to study how neural
networks can synthesize different representations of audio. I, in collaboration with the
third author, designed and carried the evaluation. I, with guidance from the fourth
author, designed and implemented the model. I also gathered the used datasets and
cleaned them. With the help of the third author, I wrote the manuscript, which was
then revised by the second and fourth authors.

Audio Engineering Society

Convention Paper
Presented at the 146th Convention

2019 March 20 – 23, Dublin, Ireland
This convention paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed by at
least two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This convention paper has been
reproduced from the author’s advance manuscript without editing, corrections, or consideration by the Review Board. The
AES takes no responsibility for the contents. This paper is available in the AES E-Library (http://www.aes.org/e-lib), all rights
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the
Audio Engineering Society.

Audio inpainting of music by means of neural networks
Andrés Marafioti1, Nicki Holighaus1, Piotr Majdak1, and Nathanaël Perraudin2

1Acoustics Research Institute, Austrian Academy of Sciences, Wohllebengasse 12–14, 1040 Vienna, Austria
2Swiss Data Science Center, ETH Zürich, Universitätstrasse 25, 8006 Zürich

Correspondence should be addressed to Andrés Marafioti (amarafioti@kfs.oeaw.ac.at)

ABSTRACT

We studied the ability of deep neural networks (DNNs) to restore missing audio content based on its context, a
process usually referred to as audio inpainting. We focused on gaps in the range of tens of milliseconds. The
proposed DNN structure was trained on audio signals containing music and musical instruments, separately,
with 64-ms long gaps and represented by time-frequency (TF) coefficients. For music, our DNN significantly
outperformed the reference method based on linear predictive coding (LPC), demonstrating a generally good
usability of the proposed DNN structure for inpainting complex audio signals like music.

1 Introduction

Locally degraded or even lost information is often en-
countered in audio processing tasks. Some common
examples are lost information in audio transmission,
corrupted audio files, and audio signals locally con-
taminated by noise. Audio inpainting deals with the
reconstruction of lost information in audio. The goal
for the reconstruction is that the listener remains un-
aware of any occurred problem. In order to do so, audio
inpainting aims at providing coherent and meaningful
information while preventing audible artifacts. Success-
ful algorithms are limited to deal with a specific class
of audio signals, they focus on a specific duration of
the problematic signal parts, and exploit a-priori infor-
mation about the problem. In this work, we explore a
new machine-learning algorithm with respect to the re-
construction of audio signals. From all possible classes
of audio signals, we limit the reconstruction to either

music, or individual musical instruments. We focus on
the duration of the problematic signal parts, i.e., gaps,
being in the range of tens of milliseconds. Further, we
exploit the available audio information surrounding the
gap, i.e., the context.
The proposed algorithm is based on an unsupervised
feature-learning algorithm driven by context-based
sample prediction. The description here is a summary,
more details can be found in [1]. The algorithm re-
lies on a neural network with convolutional and fully-
connected layers trained to generate sounds being con-
ditioned on its context. Such an approach was first
introduced for images [2] where the terminology of
the context encoder (CE) was coined as an analogy
to auto encoders [3]. Hence, we treat our algorithm
as an audio-inpainting context encoder. Trained with
time-frequency (TF) coefficients, our CE is aimed to
recover the lost TF coefficients within the gap based on
provided TF coefficients of the gap’s surroundings. The

16

Marafioti, Holighaus, Majdak, and Perraudin Audio inpainting of music by means of neural networks

TF coefficients were obtained from an invertible repre-
sentation, namely, a redundant short-time Fourier trans-
form (STFT)[4, 5], in order to allow a robust synthesis
of the reconstructed time-domain signal based on the
network output. The considered CE reconstructs mag-
nitude TF coefficients only, from which a time-domain
signal is synthesized by applying the fast Griffin-Lim
algorithm [6, 7].

Deep-learning for audio synthesis and loss con-
cealment. The synthesis of musical audio signals
using deep learning is very challenging [8], as a mu-
sic signal is comprised of complex sequences ranging
from short-term structures (any periodicity in the wave-
form) to long-term structures (like figures, motifs, or
sections). In order to simplify the problem brought
by long-range dependencies, music synthesis in mul-
tiple steps has been proposed including an intermedi-
ate symbolic representation like MIDI sequences [9],
and features of a parametric vocoder [10]. The state-
of-the-art audio signal synthesis require sophisticated
networks, [11, 12, 13], nonetheless struggling to model
long-term structures without additional conditioning.
The generation of audio with DNNs via TF coefficients
was proposed, e.g., in the field of text-to-speech synthe-
sis [14, 15]. In the field of speech transmission, DNNs
have been used to achieve packet loss concealment [16].
In this contribution, we explore the restoration of an au-
dio segment with DNNs, from limited temporal audio
context presented as TF coefficients.

Related audio-inpainting algorithms. Audio in-
painting techniques for time-domain data loss com-
pensation can be roughly divided into two categories:
(a) Methods that attempt to recover precisely the lost
data relying only on very local information in the direct
vicinity of the corruptions. They are usually designed
for reconstructions of gap with a duration of less than
10 ms and also work well in the presence of randomly
lost audio samples, e.g., [17, 18, 19, 20, 21]. (b) Meth-
ods that aim at providing a perceptually pleasing oc-
clusion of the corruption, i.e., the corruption should
not be annoying, or in the best case undetectable, for
a human listener, e.g., [22, 23]. Such approaches are
often based on self similarity, require a more global
analysis of the degraded audio signal, and rely heavily
on repetitive structures in audio data. They often cope
with data loss beyond hundreds of milliseconds. Here,
we target gap durations of tens of milliseconds, a scale
where the non-stationary characteristic of audio already

becomes important, but prediction of the missing infor-
mation from the context data still seems to be realistic,
such that none of the above methods apply. For simple
sounds like those of musical instruments, linear predic-
tion coding (LPC) can be applied and has been shown
to work well for gaps in the range of 5 to 100 millisec-
onds, e.g., [24, 25]. Although its performance relies
heavily on the underlying stationarity assumption, it
seems to be the only competitive, established method
in the considered scenario, as it can be seen in [26].

2 Context Encoder

We consider the audio signal s ∈ RL, containing L sam-
ples of audio. The central Lg samples of s represent the
gap sg, while the remaining Lc samples on each side of
the gap from the context. We distinguish between sb
and sa, which is the context signals before and after the
gap, respectively.

The architecture of our network is an encoder-decoder
pipeline fed with the context information, summarized
in Figure 1. Instead of passing the time-domain signals
sb and sa directly to the network, the audio signal is
pre-processed to obtain STFT coefficients, separated
into real and imaginary parts, i.e. SRe

b ,SIm
b and SRe

a ,SIm
a ,

which form the input to the encoder. For the remainder
of the paper, we assume an STFT with 257 (unique)
channels, hop size 128 and a length 512 Hann win-
dow. The TF representation is propagated through the
encoder and decoder, both trained to predict TF co-
efficients representing the gap, S′g. The output of the
decoder is then post-processed in order to synthesize
a reconstruction in the time domain, s′. The network
structure is comprised of standard, widely-used build-
ing blocks, i.e., convolutional and fully-connected lay-
ers, and rectified linear units (ReLUs) and inspired by
the context encoder for image restoration [2]. The net-
work was implemented in Tensorflow [27]. For the
training, we applied the stochastic gradient descent
solver ADAM [28]. Our software, along with instruc-
tive examples, is available to the public.1

Encoder. The encoder is a convolutional neural net-
work with six layers followed by reshaping. The inputs
SRe

b ,SIm
b ,SRe

a ,SIm
a of the context information are treated

as separate channels, thus, the network is required to
learn how the channels interact and how to mix them.

1www.github.com/andimarafioti/audioContextEncoder

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 2 of 8

17

Marafioti, Holighaus, Majdak, and Perraudin Audio inpainting of music by means of neural networks

Fig. 1: The encoder is a convolutional network. The four channel time-frequency input is transformed into an
encoding of size 2048. The decoder generates magnitude time-frequency coefficients from the encoding
produced by the encoder.

Similar to [2], all layers are convolutional and sequen-
tially connected via ReLUs [29], after which batch
normalization [30] is applied.

Decoder. The decoder begins with a fully connected
layer (FCL) with a ReLU nonlinearity in order to spread
the encoder information among the channels and five
deconvolution layers, with reshaping after the fully-
connected, as well as the third and fourth deconvolution
layers. Similar to [2], after the FCL all subsequent
layers are (de-)convolutional and, as for the encoder,
connected by ReLUs with batch normalization.

Post-processing. The aim of the post-processing
stage is to synthesize the reconstructed audio signal in
the time domain. To this end, the reconstructed gap
TF coefficients from the decoder, S′g, are inserted be-
tween the TF coefficients of the context, Sb and Sa,
forming the sequence S′ = (S′b,S

′
g,S
′
a), after discard-

ing partially unreliable information from Sb and Sa to
form S′b and S′a. By performing the insertion directly
in the time-frequency domain, we prevent transitional
artifacts between the context and the gap, since synthe-
sis by the inverse STFT introduces an inherent cross-
fading. The decoder output represents the magnitudes
of the TF coefficients and the missing phase informa-
tion is obtained by applying 100 iterations of the fast
Griffin-Lim algorithm [6, 7] implemented in the Phase
Retrieval Toolbox Library [31]. The resulting complex-
valued TF coefficients S′g are then transformed into a
time-domain signal s′ by inverse STFT.

Loss Function. As a loss function we computed the
mean squared error (MSE), by comparing the squared
`2-norm of the difference between the original gap
TF coefficients Sg and the reconstructed gap TF co-
efficients S′g, as it is customary for this type of net-
work [32]. The MSE depends, however, on the total
energy of Sg, clearly putting more weight on signals
containing more energy. On the other hand, normalized
mean squared error (NMSE), while invariant under am-
plitude changes, is unstable when ‖Sg‖2 is too small.
Therefore, we propose to use a weighted mix between
MSE and NMSE for the calculation of the loss func-
tion, which additionally contains a regularization term
controlling the trainable weights as proposed in [33]

T(Sg,S′g,w) =
‖Sg−S′g‖2

c−1 +‖Sg‖2 +
λ
2 ∑

i
w2

i , (1)

where the constant c > 0 controls the incorporated com-
pensation for small amplitude and λ is the regulariza-
tion parameter. In our experiments, c = 5 and λ = 0.01
yielded good results.

3 Evaluation

The main objectives of the evaluation were to inves-
tigate the general ability of the network to adapt to
the considered class of audio signals and compare to
the reference method, i.e., LPC-based extrapolation as
proposed in [25]. Additionally, we considered the ef-
fects of changing the gap duration. We considered two

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 3 of 8

18

Marafioti, Holighaus, Majdak, and Perraudin Audio inpainting of music by means of neural networks

classes of audio signals: instrument sounds, and music.
For both, the network was trained on the targeted signal
class, with an assumed gap size of 64 ms. Reconstruc-
tion was evaluated on the trained signal class for 64 ms
and 48 ms gaps. Reconstruction quality was evaluated
by means of signal-to-noise ratios (SNR) applied to
the magnitude spectrograms, to accommodate for per-
ceptually irrelevant phase changes. All results were
compared to the reconstruction based on the reference
method.

Parameters. The sampling rate was 16 kHz. We
considered audio segments with a duration of 320 ms,
which corresponds to L = 5120 samples. Each segment
was separated in a gap of 64 ms (or 48 ms, correspond-
ing to Lg = 1024 or Lg = 768 samples) of the central
part of a segment and the context of twice of 128 ms (or
136 ms), corresponding to Lc = 2048 (or Lc = 2176)
samples.

Dataset. The dataset representing musical instru-
ments was derived from the NSynth dataset [34].
NSynth is an audio dataset containing 305,979 mu-
sical notes from 1,006 instruments, each with a unique
pitch, timbre, and envelope. Each example is four sec-
onds long, monophonic, and sampled at 16 kHz. The
dataset representing music was derived from the free
music archive (FMA) [35]. The FMA is an open and
easily accessible dataset, usually used for evaluating
tasks in musical information retrieval (MIR). We used
the small version of the FMA comprised of 8,000 30-s
segments of songs with eight balanced genres sampled
at 44.1 kHz. We resampled each segment to the sam-
pling rate of 16 kHz. The original segments in the two
datasets were processed to fit the evaluation parame-
ters and afterwards training, validation, and testing sets.
For the instruments, we used the splitting proposed
by [34], leading to 19.4M, 0.9M and 0.3M samples for
training, validation and testing, respectively. The music
dataset, was split into approximately 70%, 20% and
10%, (5.2M, 1.5M and 0.7M samples) respectively.

Training. The network was trained individually for
the instrument and music dataset for 600k steps at a
learning rate of 10−3, followed by 200k steps at 10−4,
resulting in two trained networks.

Evaluation metrics. For the evaluation of our re-
sults in the TF domain, we calculated SNR(|Sg|, |Srg|),
where Srg represents the central frames of the STFT

computed from the restored signal s′ and thus repre-
sents the restoration of the gap.

SNRMS(|Sg|, |Srg|) = 10 log
‖|Sg|‖2

‖|Sg|− |Srg|‖2 (2)

We refer to the average of this metric (across all seg-
ments of a testing dataset) to as SNRMS, where MS ref-
erences to magnitude spectrogram. Note that SNRMS is
directly related to the logarithmic inverse of the spectral
convergence proposed in [36].

Reference method. We compared our results to
those obtained with a reference method following [25,
Section 5.3], based on LPC [37]. The reference method
extrapolates the signal into the gap from both sides,
mixing the two extrapolations with a squared-cosine
weighting function. Our implementation of the LPC
extrapolation is available online2. Results produced by
the reference method are evaluated identically to our
own results.

4 Results and discussion

Comparison to the reference method. Table 1 pro-
vides the SNRMS for our method and the LPC-based
reference reconstruction method. When tested on mu-
sic, on average, the CE outperformed the LPC-based
method by 1.4 dB. When tested on instruments, the
network underperformed by 8.6 dB.

Music Instruments
Mag LPC Mag LPC

Mean 7.6 6.3 20.2 30.6
Std 4.2 5.1 9.2 18.9

Table 1: SNRMS (in dB) of reconstructions of 64 ms
gaps for the networks and the LPC-based
method.

When looking more in the details of the reconstruc-
tion, both methods showed different characteristics:
In Figure 2 we show spectrograms of an instrument
signal with frequency-modulated components. The
LPC-based reconstruction shows a discontinuity in the
middle of the gap instead of a steady transition. This
is the consequence of the two extrapolations (forward
and backwards), mixed in the middle of the gap. The
network trained on the music learned how to represent

2www.github.com/andimarafioti/audioContextEncoder

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 4 of 8

19

Marafioti, Holighaus, Majdak, and Perraudin Audio inpainting of music by means of neural networks

frequency modulations and provides less artifacts in
the reconstruction, which yielded a 5 dB larger SNRMS.
Another interesting examples are shown in Figure 3.
The top row shows an example in which the network
outperformed the LPC-based method. In this case, the
signal is comprised of steady harmonic tones in the left
side context and a broadband sound in the right side
context. While the LPC-based method extrapolated the
broadband noise into the gap, the network was able
to foresee the transition from the steady sounds to the
broadband burst, yielding a prediction much closer to
the original gap, with a 13 dB larger SNRMS than that
from the LPC-based method. On the other hand, the net-
work not always outperformed the LPC-based method.
The bottom row of Figure 3 shows spectrograms of
such an example. This signal had stable sounds in the
gap, which were well-suited for an extrapolation, but
rather complex to be perfectly reconstructed by the net-
work. Thus, the LPC-based method outperformed the
network yielding a 9 dB larger SNRMS.

Fig. 2: Sections of magnitude spectrograms (in dB)
of an exemplary signal reconstruction. Left:
Original signal. Center: Reconstruction by the
network. Right: Reconstruction by the LPC-
based method. The network provided a 5 dB
larger SNRMS.

The excellent performance of the LPC-based method
reconstructing instruments can be explained by the as-
sumptions behind the LPC well-fitting to the single-
note instrument sounds. These sounds usually consist
of harmonics stable on a short-time scale. LPC extrap-
olates these harmonics preserving the spectral enve-
lope of the signal. Nevertheless, the network yielded
an SNRMS of 22.0 dB, on average, demonstrating a
good ability to reconstruct instrument sounds. When
applied on music, the performance of both methods
was much poorer, with our network performing slightly

Fig. 3: Magnitude spectrograms (in dB) of exemplary
signal reconstructions. Left: Original signal.
Center: Reconstruction by the network. Right:
Reconstruction by the LPC-based method. Top:
Example with the network outperforming the
reference by an SNRMS of 13 dB. Bottom: Ex-
ample with the network underperforming the
reference by an SNRMS of 9 dB.

but statistically significantly better than the LPC-based
method. The better performance of our network can be
explained by its ability to adapt to transient sounds and
modulations in frequencies, sound properties that the
LPC-based method is not suited to handle.

Effect of the gap duration. The proposed network
structure can be trained with different contexts and gap
durations. For problems of varying gap duration, a net-
work trained to the particular gap duration might appear
optimal. However, training takes time, and it might be
simpler to train a network to a single gap duration and
use it to reconstruct any shorter gap as well. To test this
approach, we introduced gaps of 48 ms in our testing
datasets. These gaps were then reconstructed by the
network trained for 64 ms gaps. Table 2 shows the
results of our method and and reference method, which
are similar to those obtained for 64 ms gaps.

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 5 of 8

20

Marafioti, Holighaus, Majdak, and Perraudin Audio inpainting of music by means of neural networks

Music Instruments
Ours LPC Ours LPC

Mean 7.9 6.9 19.4 33.2
Std 4.0 5.5 9.7 20.1

Table 2: SNRMS (in dB) of reconstructions of 48 ms
gaps for the network and the LPC-based
method.

5 Conclusions and Outlook

We proposed a convolutional neural network architec-
ture working as a context encoder on TF coefficients.
For the reconstruction of complex signals like music,
that network was able to outperform the LPC-based
reference method, in terms of SNR calculated on mag-
nitude spectrograms. However, LPC yielded better
results when applied on more simple signals like in-
strument sounds. In general, our results suggest that
standard components and a moderately sized network
can be applied to form audio-inpainting models when
training on time-frequency coefficients, offering a num-
ber of angles for future improvement. More details on
these can be found in [1].

Generally, better results can be expected for increased
depth of the network and the available context. Un-
fortunately, our preliminary tests of simply increasing
the network’s depth led to minor improvements only.
As it seems, a careful consideration of the building
blocks of the model is required instead. Finally, music
data can be highly complex and it is unreasonable to
expect a single trained model to accurately inpaint a
large number of musical styles and instruments at once.
Thus, instead of training on a very general dataset, we
expect significantly improved performance for more
specialized networks that could be trained by restricting
the training data to specific genres or instrumentation.
Applied to a complex mixture and potentially preceded
by a source-separation algorithm, the resulting mod-
els could be used jointly in a mixture-of-experts, [38],
approach.

Acknowledgments

This work has been supported by Austrian Science
Fund (FWF) project MERLIN (Modern methods for
the restoration of lost information in digital signals;I
3067-N30). We gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Titan X
Pascal GPU used for this research.

References

[1] Marafioti, A., Perraudin, N., Holighaus, N., and
Majdak, P., “A context encoder for audio inpaint-
ing,” arXiv preprint arXiv:1810.12138, 2018.

[2] Pathak, D., Krahenbuhl, P., Donahue, J., Darrell,
T., and Efros, A., “Context Encoders: Feature
Learning by Inpainting,” 2016.

[3] Goodfellow, I., Bengio, Y., and Courville, A.,
Deep Learning, MIT Press, 2016, http://www.
deeplearningbook.org.

[4] Portnoff, M., “Implementation of the digital phase
vocoder using the fast fourier transform,” IEEE
Trans. Acoust. Speech Signal Process., 24(3), pp.
243–248, 1976.

[5] Gröchenig, K., Foundations of Time-Frequency
Analysis, Appl. Numer. Harmon. Anal.,
Birkhäuser, 2001.

[6] Griffin, D. and Lim, J., “Signal estimation from
modified short-time Fourier transform,” IEEE
Transactions on Acoustics, Speech and Signal
Processing, 32(2), pp. 236–243, 1984.

[7] Perraudin, N., Balazs, P., and Søndergaard, P. L.,
“A fast Griffin-Lim algorithm,” in Applications of
Signal Processing to Audio and Acoustics (WAS-
PAA), 2013 IEEE Workshop on, pp. 1–4, IEEE,
2013.

[8] Dieleman, S., Oord, A. v. d., and Simonyan,
K., “The challenge of realistic music generation:
modelling raw audio at scale,” arXiv preprint
arXiv:1806.10474, 2018.

[9] Boulanger-Lewandowski, N., Bengio, Y., and
Vincent, P., “Modeling Temporal Dependencies
in High-Dimensional Sequences: Application to
Polyphonic Music Generation and Transcription,”
in ICML, 2012.

[10] Blaauw, M. and Bonada, J., “A Neural Paramet-
ric Singing Synthesizer,” CoRR, abs/1704.03809,
2017.

[11] Mehri, S., Kumar, K., Gulrajani, I., Kumar,
R., Jain, S., Sotelo, J., Courville, A., and Ben-
gio, Y., “SampleRNN: An Unconditional End-
to-End Neural Audio Generation Model,” CoRR,
abs/1612.07837, 2016.

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 6 of 8

21

Marafioti, Holighaus, Majdak, and Perraudin Audio inpainting of music by means of neural networks

[12] van den Oord, A., Dieleman, S., Zen, H., Si-
monyan, K., Vinyals, O., Graves, A., Kalch-
brenner, N., Senior, A., and Kavukcuoglu, K.,
“WaveNet: A Generative Model for Raw Audio,”
CoRR, abs/1609.03499, 2016.

[13] Donahue, C., McAuley, J., and Puckette, M.,
“Synthesizing Audio with Generative Adversar-
ial Networks,” ArXiv e-prints, 2018.

[14] Wang, Y., Skerry-Ryan, R., Stanton, D., Wu, Y.,
Weiss, R., Jaitly, N., Yang, Z., Xiao, Y., Chen, Z.,
Bengio, S., Le, Q., Agiomyrgiannakis, Y., Clark,
R., and Saurous, R., “Tacotron: A Fully End-to-
End Text-To-Speech Synthesis Model,” CoRR,
abs/1703.10135, 2017.

[15] Shen, J., Pang, R., Weiss, R., Schuster, M., Jaitly,
N., Yang, Z., Chen, Z., Zhang, Y., Wang, Y.,
Skerry-Ryan, R., Saurous, R., Agiomyrgiannakis,
Y., and Wu, Y., “Natural TTS Synthesis by Con-
ditioning WaveNet on Mel Spectrogram Predic-
tions,” CoRR, abs/1712.05884, 2017.

[16] Lee, B.-K. and Chang, J.-H., “Packet Loss Con-
cealment Based on Deep Neural Networks for
Digital Speech Transmission,” IEEE/ACM Trans.
Audio, Speech and Lang. Proc., 24(2), pp. 378–
387, 2016, ISSN 2329-9290, doi:10.1109/TASLP.
2015.2509780.

[17] Adler, A., Emiya, V., Jafari, M., Elad, M., Gri-
bonval, R., and Plumbley, M., “A constrained
matching pursuit approach to audio declipping,”
in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2011,
doi:10.1109/icassp.2011.5946407.

[18] Adler, A., Emiya, V., Jafari, M. G., Elad, M.,
Gribonval, R., and Plumbley, M. D., “Audio In-
painting,” IEEE Transactions on Audio, Speech
and Language Processing, 20(3), pp. 922–932,
2012, doi:10.1109/TASL.2011.2168211.

[19] Toumi, I. and Emiya, V., “Sparse non-local simi-
larity modeling for audio inpainting,” in ICASSP
- IEEE International Conference on Acoustics,
Speech and Signal Processing, Calgary, Canada,
2018.

[20] Siedenburg, K., Dörfler, M., and Kowalski, M.,
“Audio inpainting with social sparsity,” SPARS

(Signal Processing with Adaptive Sparse Struc-
tured Representations), 2013.

[21] Lieb, F. and Stark, H.-G., “Audio inpainting:
Evaluation of time-frequency representations and
structured sparsity approaches,” Signal Process-
ing, 153, pp. 291–299, 2018.

[22] Bahat, Y., Schechner, Y., and Elad, M., “Self-
content-based audio inpainting,” Signal Process-
ing, 111, pp. 61–72, 2015, doi:10.1016/j.sigpro.
2014.11.023.

[23] Perraudin, N., Holighaus, N., Majdak, P., and
Balazs, P., “Inpainting of long audio segments
with similarity graphs,” IEEE/ACM Transactions
on Audio, Speech and Language Processing,
PP(99), pp. 1–1, 2018, ISSN 2329-9290, doi:
10.1109/TASLP.2018.2809864.

[24] Etter, W., “Restoration of a discrete-time sig-
nal segment by interpolation based on the left-
sided and right-sided autoregressive parameters,”
IEEE Transactions on Signal Processing, 44(5),
pp. 1124–1135, 1996, doi:10.1109/78.502326.

[25] Kauppinen, I. and Roth, K., “Audio signal
extrapolation–theory and applications,” in Proc.
DAFx, pp. 105–110, 2002.

[26] Mokrỳ, O., Záviška, P., Rajmic, P., and Veselỳ, V.,
“Introducing SPAIN (SParse Audion INpainter),”
arXiv preprint arXiv:1810.13137, 2018.

[27] Abadi, M., Agarwal, A., Barham, P., Brevdo,
E., Chen, Z., Citro, C., Corrado, G., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Goodfellow,
I., Harp, A., Irving, G., Isard, M., Jia, Y., Joze-
fowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke,
V., Vasudevan, V., Viégas, F., Vinyals, O., Warden,
P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng,
X., “TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems,” 2015, software
available from tensorflow.org.

[28] Kingma, D. and Ba, J., “Adam: A Method for
Stochastic Optimization,” 2014.

[29] Ramachandran, P., Zoph, B., and Le, Q., “Search-
ing for Activation Functions,” 2017.

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 7 of 8

22

Marafioti, Holighaus, Majdak, and Perraudin Audio inpainting of music by means of neural networks

[30] Ioffe, S. and Szegedy, C., “Batch Normal-
ization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift,” CoRR,
abs/1502.03167, 2015.

[31] Průša, Z., “The Phase Retrieval Toolbox,” in AES
International Conference On Semantic Audio, Er-
langen, Germany, 2017.

[32] Zhao, H., Gallo, O., Frosio, I., and Kautz, J.,
“Loss Functions for Image Restoration With Neu-
ral Networks,” IEEE Transactions on Computa-
tional Imaging, 3(1), pp. 47–57, 2017, ISSN 2333-
9403, doi:10.1109/TCI.2016.2644865.

[33] Krogh, A. and Hertz, J., “A Simple Weight De-
cay Can Improve Generalization,” in Advances
in neural information processing systems 4, pp.
950–957, Morgan Kaufmann, 1992.

[34] Engel, J., Resnick, C., Roberts, A., Dieleman, S.,
Eck, D., Simonyan, K., and Norouzi, M., “Neural
Audio Synthesis of Musical Notes with WaveNet
Autoencoders,” 2017.

[35] Defferrard, M., Benzi, K., Vandergheynst, P., and
Bresson, X., “FMA: A Dataset for Music Anal-
ysis,” in 18th International Society for Music In-
formation Retrieval Conference, 2017.

[36] Sturmel, N. and Daudet, L., “Signal reconstruc-
tion from STFT magnitude: A state of the art,” in
International conference on digital audio effects
(DAFx), pp. 375–386, 2011.

[37] Tremain, T. E., “The Government Standard Linear
Predictive Coding Algorithm: LPC-10,” Speech
Technology, pp. 40–49, 1982.

[38] Yuksel, S. E., Wilson, J. N., and Gader, P. D.,
“Twenty years of mixture of experts,” IEEE trans-
actions on neural networks and learning systems,
23(8), pp. 1177–1193, 2012.

AES 146th Convention, Dublin, Ireland, 2019 March 20 – 23
Page 8 of 8

23

24

Chapter 3

A context encoder for audio inpainting

This work was published as

Marafioti, A., Perraudin, N., Holighaus, N., and Majdak, P., "A Context Encoder
For Audio Inpainting," in IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 27, no. 12, pp. 2362-2372, Dec. 2019, doi: 10.1109/TASLP.2019.2947232.

The expansion of the study presented in 2 came from a collaboration between all authors.
I, with guidance from the second author, studied, implemented and evaluated different
models, finally setting on the one explored in the publication. I, with guidance from the
third author, designed a pre- and post-processing pipeline to provide the model with two
competing audio representations. I, in collaboration with the fourth author, designed
and carried the evaluation. I also gathered the used datasets and cleaned them. With
the help of the second and third author, I wrote the manuscript, which was then revised
by the fourth author. I also designed and implemented the accompanying website.

2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2019.2947232, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

1

A context encoder for audio inpainting
Andrés Marafioti, Nathanaël Perraudin, Nicki Holighaus, and Piotr Majdak

Abstract—We study the ability of deep neural networks (DNNs)
to restore missing audio content based on its context, i.e., inpaint
audio gaps. We focus on a condition which has not received
much attention yet: gaps in the range of tens of milliseconds. We
propose a DNN structure that is provided with the signal sur-
rounding the gap in the form of time-frequency (TF) coefficients.
Two DNNs with either complex-valued TF coefficient output
or magnitude TF coefficient output were studied by separately
training them on inpainting two types of audio signals (music
and musical instruments) having 64-ms long gaps. The magnitude
DNN outperformed the complex-valued DNN in terms of signal-
to-noise ratios and objective difference grades. Although, for
instruments, a reference inpainting obtained through linear
predictive coding performed better in both metrics, it performed
worse than the magnitude DNN for music. This demonstrates
the potential of the magnitude DNN, in particular for inpainting
signals that are more complex than single instrument sounds.

I. INTRODUCTION

Locally degraded or even lost information is encountered in
various audio processing tasks. Some examples are corrupted
audio files, lost information in audio transmission (referred to
as packet-loss in the context of voice-over-IP transmission),
and audio signals locally contaminated by noise. Restoration
of lost information in audio has been referred to as audio
inpainting [1], audio inter-/extrapolation [2], [3], or waveform
substitution [4]. Reconstruction is usually aimed at providing a
coherent and meaningful information while preventing audible
artifacts so that the listener remains unaware of any occurred
problem. Successful algorithms are limited to deal with a
particular class of audio signals [5], or they focus on a specific
duration of the problematic signal parts [6], and/or they exploit
a-priori information about the problem [7].

In this work, we explore a new machine-learning algorithm
with respect to the reconstruction of lost parts of audio signals,
i.e., gaps. From all possible classes of audio signals, we limit
the reconstruction to instrumental music, i.e., mix of sounds
from musical instruments organized in time. We focus on
gaps of medium durations, that is, in the range of tens of
milliseconds. We assume that gaps are separated in time, such

Manuscript received on October 2018; revised on April 2019.
Andrés Marafioti, Nicki Holighaus, and Piotr Majdak are with the Acoustics

Research Institute, Austrian Academy of Sciences, Wohllebengasse 12–14,
1040 Vienna, Austria.

Nathanaël Perraudin is with the Swiss Data Science Center, ETH Zürich,
Universitätstrasse 25, 8006 Zürich

Accompanying web page (sound examples, Matlab and Python code, color
figures):
https://andimarafioti.github.io/audioContextEncoder/.
We thank the reviewers and the editor for their review and their helpful
suggestions. This work has been supported by Austrian Science Fund (FWF)
project MERLIN (Modern methods for the restoration of lost information
in digital signals;I 3067-N30). We gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Titan X Pascal GPU used
for this research.

that the local audio information surrounding the gap, namely,
the context, is reliable and can be exploited.

The proposed algorithm is based on an unsupervised
feature-learning algorithm driven by context-based sample
prediction. It relies on a DNNs with convolutional and fully
connected layers (FCLs) trained to generate TF representations
of sounds being conditioned on contextual TF information.
We call the algorithm context encoder, as introduced for
images [8] in analogy to auto encoders [9]. Our context
encoder aims at studying the general ability of DNNs to
accurately inpaint audio in the range of tens of milliseconds
from limited but reliable context in order to determine factors
with the largest potential for future improvement and details
requiring a more sophisticated method.

A. Related deep-learning techniques

Deep learning excels in classification, regression, and
anomaly detection tasks [9] and it has also shown good results
in generative modeling with techniques such as variational
auto encoders [10] and generative adversarial networks [11].
Unfortunately, for audio synthesis only the latter has been
studied, applying it to generate snippets of sound [12]–[14].
In order to obtain meaningful results, state-of-the-art audio
synthesis requires sophisticated networks [15], [16]. While
these approaches directly predict audio samples based on the
preceding samples, in the speech-synthesis field, synthesis of
audio in domains other than time such as spectrograms [17],
and mel-spectrograms [18], [19] have been proposed. In the
field of speech transmission, DNNs have been used to achieve
packet loss concealment [20].

The synthesis of musical audio signals using deep learning,
however, is even more challenging [21]. A music signal is
comprised of complex sequences ranging from short-term
structures (any periodicity in the waveform) to long-term struc-
tures (like figures, motifs, or sections). In order to simplify the
problem brought by long-range dependencies, music synthesis
in multiple steps has been proposed including an intermediate
symbolic representation like MIDI sequences [22], and fea-
tures of a parametric vocoder [23].

While these contributions provide insights on the design of
a neural network for audio synthesis, none of them addresses
conditions in which some audio information has been lost, but
the surrounding context is available.

B. Related audio-inpainting algorithms

The term ”audio inpainting” was coined by Adler et al. to
describe a large class of inverse problems in audio processing,
while focussing their own study on the restoration of gaps in
audio signals [1]. The general assumption for audio inpainting
is that audio is represented in some domain as data and

25

2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2019.2947232, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

2

some chunks of that data are corrupted yielding gaps in the
representation.

The number and duration of the gaps as well as the type
of corruption is manifold. For example, in declicking and de-
clipping, corruptions may be frequent, but mostly confined to
disconnected time-segments of only few milliseconds duration
or less. We refer to inpainting such gaps as inpainting of
short gaps. On the other hand, gaps on a scale of hundreds of
milliseconds or even seconds may happen, e.g., when reading
partially damaged physical media, in live music recordings,
when unwanted noise originating from the audience needs
to be removed, or in audio transmission with a total loss of
the connection between transmitter and receiver lasting for
seconds. We refer to inpainting such gaps as inpainting long
gaps.

In contrast, we define medium gaps as those with tens of
milliseconds duration, a scale on which the non-stationary
characteristic of audio already becomes important, but the
extrapolation of the missing information from short context
surrounding the gap still seems feasible. Medium gaps may
arise as a consequence of packet loss in audio transmission [5]
or when short interruption happens while reading audio from
partially damaged physical media. Interestingly, not much has
been done for audio inpainting of medium gaps.

In contrast, for inpainting short gaps, various solutions have
been proposed. [1] proposed a framework based on orthogonal
matching pursuit (OMP), which has inspired a considerable
amount of research exploiting TF sparsity [24]–[27] or struc-
tured sparsity [28]–[30]. Being tempted to extend these works
to medium gap durations, one gets disappointed quite soon
because for increasing gap durations (from the originally
targeted of 10 ms to medium gap durations of around 50 ms),
the reconstruction quality substantially decreases, see Fig. 1
in [27]. The degradation originates in the combination of the
TF representation and the assumption of sparsity: TF sparse
methods are ill-suited to restore gaps that approach or exceed
the duration of the TF analysis and synthesis windows. This
limitation is also valid, if less severe, for structured TF sparsity,
rendering the sparsity-based methods as unsatisfactory for
inpainting medium duration gaps. TF domain is popular for
inpainting short gaps, e.g., interpolation of audio based on a
Gabor regression model [6], or nonnegative matrix and tensor
factorization [31]–[33]. More recently, a powerful framework
has been proposed for various audio inverse problems [34] in-
cluding time-domain audio inpainting, source separation [35],
and declipping [36] even in a multichannel scenario [37]. All
of these systems require valid audio data within a time-domain
window, cf. [36], which makes them perfect for inpainting
short gaps, but unsatisfactory for medium gap durations.

On the other hand, for inpainting long gaps, recent methods
leverage repetition and determine the most promising reliable
segment from uncorrupted portions of the input signal [5],
[7]. Restoration is then achieved by inserting the determined
segment into the gaps. These methods do not claim to restore
the missing gap perfectly, they aim at plausibility. For exam-
ple, a method based on MFCC feature similarity has been
proposed for packet loss concealment [5]. It explicitly tar-
gets a perceptually plausible restoration. Similarly, exemplar-

based inpainting was proposed based on a graph encoding
spectro-temporal similarities within an audio signal [7]. In
both studies, gap durations were beyond several hundreds of
milliseconds and their reconstruction needed to be evaluated
in psychoacoustic experiments. Other examples for similar
methods are [38]–[41]. While all these methods might be in
general capable of inpainting gaps of medium duration, the
target of the inpainting is always plausible instead of accurate
reconstructions.

When restricting the inpainting to simple sounds such as
musical instruments, linear prediction coding (LPC) [42] can
be applied even for medium gap durations. While LPC may
sound antiquated, it is particularly suitable for the instrument
sounds as it models the way the sound is created by many
instruments, i.e., by means of weighted sum of resonances.
From the algorithmic perspective, LPC is simple but recursive,
thus, allows to synthesize complex sound signals at a low com-
putational power. Initially proposed for inpainting short bursts
of lost samples [43], LPC-based inpainting algorithms model
the signal as an acoustic source filtered by an all-pole filter.
The model parameters are derived from the context and the
missing signal part is synthesized by extrapolating the context
into the gap. LPC-based methods work well for inpainting
gaps for durations from 5 to 100 ms [3], [44]. LPC-based
methods are particularly good in inpainting gaps consisting
of many consecutive missing audio samples surrounded by
reliable context [44]. In our experiments for medium gaps,
the LPC-based algorithm [44] performed better than the latests
reports on OMP-based algorithms [27]. As it seems, when it
comes to inpainting medium gaps, the LPC-based method [44]
seems to be the choice for a reference method.

The performance of LPC-based methods relies on the
underlying assumption of signal stationarity. Deep-learning
techniques, on the other hand, promise a more generalized
signal representation. A combination of TF representation
with deep-learning techniques may provide better inpainting
whenever the lost data cannot be predicted by LPC. Thus,
here, we propose to link deep-learning techniques with audio
inpainting.

II. CONTEXT ENCODER

Our end-to-end system is presented in Fig. 1. We consider
the audio signal s consisting of the gap sg and the context
signals before and after the gap, sb and sa, respectively (Fig.
1a). Given that convolutional networks applied directly on
time-domain signals would require extremely large training
datasets [45], we provide the network with TF coefficients. The
TF coefficients are obtained from an invertible representation,
namely, a redundant short-time Fourier transform (STFT) [46],
[47]. Our network, inspired by the context encoder for image
inpainting [8], is an encoder-decoder pipeline fed with TF
coefficients of the context information, Sb and Sa (Fig. 1b).
In order to study the general ability of DNNs to accurately
inpaint audio in the range of tens of milliseconds, our network
is comprised only of standard widely-used building blocks,
i.e., convolutional layers, FCLs, and rectified linear units

26

2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2019.2947232, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

MARAFIOTI, PERRAUDIN, HOLIGHAUS, AND MAJDAK: A CONTEXT ENCODER FOR AUDIO INPAINTING 3

STFT Context
Encoder Merge Synthesis

sb sasg

Sb Sa

0

Sg'

sg'

Sb' Sa'Sg'

sb' sa'

Sb' Sa' a)
b) c) d)

e)

Fig. 1. The end-to-end system. a) Audio signal in the time domain, sg is the gap. b) Audio signal in the TF domain, Sb and Sa is the context before
and after the gap, respectively. c) Reconstructed gap Sg

′ in the TF domain. d) Reconstruction Sg
′ merged with the stripped context Sb

′ and Sa
′ in the TF

domain. e) Reconstructed signal in the time domain, including the inpainted gap, sg ′.

(ReLUs).1 The network predicts TF coefficients of the gap
Sg
′ (Fig. 1c), which are then merged with the stripped TF

coefficients of the context, (Fig. 1d), in order to synthesize
the reconstruction in the time domain, s′ (Fig. 1e).

To study the effect of the phase of the reconstructed TF
representations, we considered two equivalent networks with
different outputs: (a) complex network, i.e., a network directly
reconstructing the complex-valued TF coefficients which are
then applied to the inverse STFT for the synthesis of the
time-domain audio signal, and (b) magnitude network, i.e., a
network reconstructing the magnitude coefficients only, which
are then applied to a phase-reconstruction algorithm in order to
obtain complex-valued TF coefficients required for the signal
synthesis. From accurate TF magnitude information, phaseless
reconstruction methods such as [48]–[50] are known to provide
perceptually close, often indiscernible, reconstruction despite
the resulting time-domain waveforms usually being rather
different.

The software was implemented in Tensorflow [51] and is
publicly available.2

A. Pre-processing stage
We use STFT, which enables a robust synthesis of the time-

domain signal from the reconstructed TF coefficients.3 The
STFT is determined by the analysis window, hop size a, and
the number of frequency channels M . In our study, the analysis
window was an appropriately normalized Hann window of
length M and a was M/4, enabling perfect reconstruction by
an inverse STFT with the same parameters and window.

The STFT is applied to the signal s ∈ RL (containing L
samples of audio) resulting in S, both of which consist of the
context before and after the gap (containing Lc samples each)
and the gap (containing Lg samples),

s =

sb
0Lg×1
sa

 and S =

(
Sb,0(M/2+1)×Ng

, Sa

)
,

1Before fixing the network structure described in the remainder of this
section, we experimented with different standard architectures, depths, and
kernel shapes, out of which the current structure showed the most promise.

2www.github.com/andimarafioti/audioContextEncoder
3This is in contrast to machine-learning methods solving classification tasks,

in which such a synthesis is not targeted.

where sb, sa ∈ RLc , Ng = (Lg −M)/a + 1, and Sb, Sa ∈
C(M/2+1)×Nc with Nc = Lc/a. 0R×C is a matrix with R
rows and C columns containing only zeros.

Then, Sb and Sa are split into real and imaginary parts,
resulting in four channels SRe

b , SIm
b , SRe

a , SIm
a , which are fed

to the network.

B. Encoder

For the architecture of the encoder, [8] used the first five
layers from [52] to process images. To adapt the design of
our network to process TF coefficients, our encoder consists
of six regular convolutional layers sequentially connected
via ReLUs, after which batch normalization [53] is applied.
Instead of using classical squared filters, we used rectangular
filters to give the encoder more capacity on frequency over
time in the TF representation. For M = 512, the resulting
encoder architecture is shown in Figure 2.

The inputs SRe
b , SIm

b , SRe
a , SIm

a of the context information
are treated as separate channels, thus, the network is required
to learn how the channels interact and how to mix them.
Because the encoder is comprised of only convolutional layers,
the information can not reliably propagate from one end
of the feature map to another. This is a consequence of
convolutional layers connecting all the feature maps together,
but never directly connecting all locations within a specific
feature map [8].

C. Decoder

Similar to [8], the decoder begins with a FCL and a
ReLU nonlinearity in order to spread the encoder’s information
among the channels. FCLs are computationally expensive; in
our case it contains 38% of all the parameters of the network.
All the subsequent layers are (de-)convolutional and, as for the
encoder, connected by ReLUs with batch normalization. The
first three layers use squared filters, the remaining two layers
use rectangular filters to give the decoder more capacity on
frequency over time in the output TF representation. Figure 3
shows the decoder architecture for M = 512 and a gap size
Lg = 1024 samples.

27

2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2019.2947232, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

4

32
channels 128

channels
512

channels
256

channels
160

channels

Reshape

128
channels

width: 8

height:
129

4

43 2

15 2
8

1

2048

(89, 7)

2
8

2
8

(3,17)
(2,11)

(1,9) (1,5) (2,5)

1
channel

Fig. 2. The encoder is a convolutional network with six layers followed by reshaping. The four channel TF input is encoded into a matrix of size of 2048.
Gray rectangles represent the convolution filters with size expressed as (height, width). White cubes represent the signal.

The decoder does not only output the gap content, but
also the TF coefficients connecting the gap with the context.
Thus, the decoder output Sg

′ is larger than the original
gap by M/a − 1 columns before and after the gap each,
i.e., Sg

′ ∈ C(M/2+1)×((Lg+M)/a−1). In our example with
Lg = 1024, M = 512 and a = M/4, shown in Fig. 3, every
decoder output channel is of size 257× 11.

Note that the final layer depends on the network. For the
complex network, the final layer has two outputs, correspond-
ing to the real and imaginary part of the complex-valued TF
coefficients. For the magnitude network, the final layer has a
single output for the magnitude TF coefficients. We denote the
output TF coefficients as Sg

′.

D. Post-processing stage

The post-processing stage synthesizes the audio signal of the
context and the inpainted gap. To this end, (M/a− 1) coeffi-
cients of the context extending into the gap are removed, yield-
ing the stripped context, Sb

′, Sa
′ ∈ C(M/2+1)×(Nc−M/a+1).

Then, the reconstructed TF coefficients from the decoder, S′g ,
are inserted between the TF coefficient of the stripped context,
Sb
′ and Sa

′, yielding the sequence S′ = (Sb
′, Sg

′, Sa
′), having

the same size as S. Stripping the context and insertion of the
reconstruction directly in the TF domain prevents transitional
artifacts between the context and the gap because synthesis by
the inverse STFT introduces an inherent cross-fading.

For the complex network, the decoder output represents the
real and imaginary parts of complex-valued TF coefficients
Sg
′ and the inverse STFT can be directly applied yielding s′.
For the magnitude network, the decoder output represents

the magnitudes of the TF coefficients and the missing phase
information needs to be estimated separately. First, the phase
gradient heap integration algorithm proposed in [54] was
applied to the magnitude coefficients produced by the decoder
in order to obtain an initial estimation of the TF phase. Then,
this estimation was refined by applying 100 iterations of the
fast Griffin-Lim algorithm [48], [49]. We modified the version
implemented in the Phase Retrieval Toolbox Library [55]

to use the valid phase from the context at every iteration.4

The resulting complex-valued TF coefficients Sg
′ were then

transformed into a time-domain signal s′ by inverse STFT.

E. Loss Function

The network training is based on the minimization of the
total loss of the reconstruction. To this end, the reconstruction
loss is computed by comparing the original gap TF coefficients
Sg with the reconstructed gap TF coefficients Sg

′. Targeting
an accurate reconstruction of the lost information, we optimize
an adapted `2-based loss instead of mixing the `2-loss with
an adversarial term [8]. For this type of network [56], the
comparison can be done on the basis of the squared `2-norm of
the difference between Sg and Sg

′, commonly known as mean
squared error (MSE). The MSE would depend on the total
energy of Sg , putting more weight on signals containing more
energy. In order to avoid that, the normalized mean squared
error (NMSE) can be used, which normalizes MSE by the
energy of Sg . Compared to MSE, NMSE puts more weight
on small errors when the energy of Sg is small. In practice,
however, minor deviations from Sg are insignificant regardless
of the content of Sg , and NMSE would be too sensitive.

Therefore, for the calculation of the loss function, we use
a weighted mix between MSE and NMSE,

F(Sg, Sg
′) =

‖Sg − Sg
′‖2

c−1 + ‖Sg‖2
, (1)

where the constant c > 0 controls the incorporated compen-
sation for small amplitude. In our experiments, c = 5 yielded
good results.

Finally, as proposed in [57], the total loss is the sum of the
loss function and a regularization term controlling the trainable
weights in terms of their `2-norm:

T = F (Sg, Sg
′) +

λ

2

∑

i

w2
i , (2)

with wi being weights of the network and λ being the
regularization parameter, here, set to 0.01. The numerical

4The combination of these two algorithms provided consistently better
results than separate application of either.

28

2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2019.2947232, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

MARAFIOTI, PERRAUDIN, HOLIGHAUS, AND MAJDAK: A CONTEXT ENCODER FOR AUDIO INPAINTING 5

128
channelsFCL

8
8

width: 1

height:
2048

(11,257)

(8,8)
1

channel

1

2048

Reshape

32
channels

16
16

(5,5)

512
channels

32
32

(3,3)

257
channels

32
32

Reshape

128
channels

514
16

11
channels

Reshape

32
channels

257
8 257

11

1 or 2
channels

(5,67)

Fig. 3. The decoder architecture for the complex and magnitude network producing one and two channels of TF coefficients, respectively. All other conventions
as in Figure 2.

optimizations were done using the stochastic gradient descent
solver ADAM [58].

III. EVALUATION

The main objective of the evaluation was to investigate our
networks’ ability to adapt to audio signals. The evaluation
is based on a comparison of the inpainting results to those
obtained for the reference method, i.e., LPC-based extrapo-
lation [44]. The inpainting quality was evaluated by means
of objective difference grades (ODGs, [59]) and signal-to-
noise ratios (SNRs) applied to the time-domain waveforms
and magnitude spectrograms.

We considered two classes of audio signals: instrument
sounds and music. The respective networks were trained on
the targeted signal class, with an assumed gap size of 64 ms.
Reconstruction was evaluated on the trained signal class and
other signals for 64 ms gaps.

Additionally, we evaluated the effect of the gap duration by
evaluating the magnitude network for 48 ms gaps.

A. Parameters

The sampling rate was 16 kHz. We considered audio
segments with a duration of 320 ms, which corresponds to
L = 5120 samples. For the STFT, the size of the window
and the number of frequency channels M were fixed to
512 samples, and a was 128 samples.

Each segment was separated in a gap of 64 ms correspond-
ing to Lg = 1024 of the central part of a segment and the
context of twice of 128 ms, corresponding to Lc = 2048
samples. Consequently, Nc was 16, the input to the encoder
was Sb, Sa ∈ C257×16, and the output of the decoder was
Sg
′ ∈ C257×11.

B. Datasets

The dataset representing musical instruments was derived
from the NSynth dataset [60]. NSynth is an audio dataset
containing 305,979 musical notes from 1,006 instruments,
each with a unique pitch, timbre, and envelope. Each example
is four seconds long, monophonic, and sampled at 16 kHz.

The dataset representing music was derived from the free
music archive (FMA, [61]). The FMA is an open and easily

accessible dataset, usually used for evaluating tasks in musical
information retrieval. We used the small version of the FMA
comprised of 8,000 30-s segments of songs with eight balanced
genres sampled at 44.1 kHz. We resampled each segment to
the sampling rate of 16 kHz.

The original segments in the two datasets were processed
to fit the evaluation parameters. First, for each example the
silence at the beginning and end was removed. Second, from
each example, pieces of the duration of 320 ms were copied,
starting with the first segment at the beginning of a segment,
continuing with further segments with a shift of 32 ms. Thus,
each example yielded multiple overlapping segments s. Then,
the energy of the segments was evaluated and the ones that
were completely silent were removed. Note that for a gap of
64 ms, the segment can be considered as a 3-tuple by labeling
the first 128 ms as the context before the gap sb, the subsequent
64 ms as the gap sg , and the last 128 ms as the context after
the gap sa.

In order to avoid overfitting, the datasets were split into
training, validation, and testing sets before segmenting them.
For the instruments, we used the splitting proposed by [60].
The music dataset, was split into 70%, 20% and 10%, re-
spectively. The statistics of the resulting sets are presented in
Table I.

Count Percentage
Instruments training 19.4M 94.1
Instruments validation 0.9M 4.4
Instruments testing 0.3M 1.5
Music training 5.2M 70.0
Music validation 1.5M 20.0
Music testing 0.7M 10.0

TABLE I
SUBDIVISION OF THE DATASETS USED IN THE EVALUATION. COUNT IS

THE AMOUNT OF EXAMPLES. PERCENTAGE IS CALCULATED WITH
RESPECT TO THE FULL DATASET.

C. Evaluation metrics

The first metric was the SNR in dB,

SNR(x, x′) = 10 log
‖x‖2

‖x− x′‖2 (3)

29

2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2019.2947232, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

6

calculated separately for each segment of a testing dataset.
Then, we averaged SNRs across all segments of a testing
dataset.

For the evaluation in the time domain, we used
SNR(sg, sg

′), which is the SNR calculated on the gaps of
the actual and reconstructed signals, sg and sg ′, respectively.
We refer to the average of this metric across all segments to
as SNR in the time domain (SNRTD).

The SNR was also calculated on the magnitude spectro-
grams in order to accommodate for perceptually less-relevant
phase changes. We calculated SNR(|Sg|, |Srg|), where Srg

represents the central 5 frames of the STFT computed from
the restored signal s′ and thus represents the restoration of
the gap. In other words, we compute the SNR between the
spectrograms of the original signal and the restored signal in
the region of the gap. We refer to the average of this metric
(across all segments of a testing dataset) to as SNRMS, where
MS stands for magnitude spectrogram. Note that SNRMS is
directly related to the spectral convergence proposed in [62].

Additionally, we computed the ODGs, which correspond to
the subjective difference grade used in human-based audio test
and is derived from the perceptual evaluation of audio quality
(PEAQ, [59]). ODG range from 0 to−4 with the interpretation
shown in Tab. II. We calculated the ODGs on signals of 2-s
duration, with the inpainted gap beginning at 0.5-s. We used
the algorithm implemented in [63].

ODG Impairment
0 Imperceptible
-1 Perceptible, but not annoying
-2 Slightly annoying
-3 Annoying
-4 Very annoying

TABLE II
INTERPRETATION OF ODGS.

D. Training

Both complex and magnitude networks were trained for
the instrument and music dataset, resulting in four trained
networks. Each training started with the learning rate of
10−3. In the case of the magnitude network, the reconstructed
phase was not considered in the training. Every 2000 steps,
the training progress was monitored. To this end, signals
from the validation dataset were inpainted and the weighted
NMSE was calculated between the predicted and the actual
TF coefficients of the gap. When converging, which usually
happened after approximately 600k steps, the learning rate was
reduced to 10−4 and the training was continued by additional
200k steps.5 Table III shows the SNRMS calculated for the
training, validation, and testing datasets. The similar values
across subsets indicate no evidence for an overfitting.

5We also considered training on the instrument training dataset (800k steps)
followed by a refinement with the music training dataset (300k steps). While
it did not show substantial differences to the training performed on music
only, a pre-trained network on music with a subsequent refinement to genre
may show improvements for that genre.

Music Instruments
Train Valid Test Train Valid Test

Mag Mean 7.6 7.8 7.8 22.1 21.9 21.9
Std 4.2 4.0 4.3 9.9 10.2 10.0

Complex Mean 4.9 5.1 5.4 17.8 18.3 18.2
Std 4.0 4.2 4.5 10.5 10.3 10.1

TABLE III
OVERFITTING CHECK BY MEANS OF SNRMS (IN DB) CALCULATED

BETWEEN GENERATED AND ORIGINAL TF-COEFFICIENTS WITHOUT THE
SYNTHESIS STEP FOR 64 MS GAPS.

E. Reference method

We compared our results to those obtained with a ref-
erence method based on LPC. For the implementation, we
followed [44], especially [44, Section 5.3]. In detail, the
context signals sb and sa were extrapolated onto the gap
sg by computing their impulse responses and using them as
prediction filters for a classical linear predictor. The impulse
responses were obtained using Burg’s method [64] and were
fixed to have 1000 coefficients according to [2] and [65]. Their
duration was the same as that for our context encoder in order
to provide the same amount of context information. The two
extrapolations were mixed with the squared-cosine weighting
function. Our implementation of the LPC extrapolation is
available online6.

Then, we evaluated the results produced by the reference
method in the same way as we evaluated the results produced
by the networks.

IV. RESULTS AND DISCUSSION

A. Ability to adapt to the training material

As a general rule, a trained neural network should perform
well on the distribution that it learned from. As the instrument
dataset is made of discrete in-tune instrument notes, each note
can be considered as a sum of discrete frequencies arranged
in time. If our network was able to adapt to the instrument
sounds then it should perform on these frequencies better than
on others.

To evaluate this, we probed our trained networks with
stationary tones of various frequencies. The pure tones were
directly synthesized as sine oscillations with a fixed frequency.
The probes were generated within a logarithmic frequency
range from 20 Hz to 8 kHz, linear phase shift range from
0 to π, and linear amplitude range from 0.1 to 1. The duration
was 320 ms corresponding to 5120 samples at the sampling
rate of 16 kHz.

Figure 4 shows the SNRMS of the reconstruction obtained
with the complex network. The abscissa shows notes, i.e.,
frequencies corresponding to the Standard pitch (with A corre-
sponding to the frequency of 440 Hz). For the network trained
on the instruments, the SNRMS was large in the proximity
of notes and decreased by more than 15 dB for frequencies
between the notes. This shows that the network was able
to better predict signals corresponding to the trained notes,
indicating a good adaptation to the trained material.

Music contains more broadband sounds such as drums,
breathing, tone glides, i.e., sounds with non-significant energy

6www.github.com/andimarafioti/audioContextEncoder

30

2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2019.2947232, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

MARAFIOTI, PERRAUDIN, HOLIGHAUS, AND MAJDAK: A CONTEXT ENCODER FOR AUDIO INPAINTING 7

A4 A# B C C# D D# E F F# G G# A5
Notes

10

15

20

25

30

35

SN
R M

S[
dB

]

Fig. 4. SNRMS for reconstruction of pure tones with the complex network
trained on the instrument (black) and music (grey) dataset. SNRMS are shown
as a function of musical notes corresponding to the Standard pitch, i.e., the
note A4 corresponds to the frequency of 440 Hz.

at frequencies between the Standard pitch being non-stationary
even within the tested 320 ms. A network trained on music
is expected to be less sensitive to predictions performed on
Standard pitch only. Figure 4 shows the SNRMS obtained for
the reconstruction of pure tones with the network trained on
the music. The SNRMS fluctuations were smaller than those
from the network trained on the instruments. This further
supports our conclusion about the good ability of our network
structure to adapt to various training materials.

B. Effect of the network type

The difference between the magnitude and complex net-
works both trained on instruments can be anticipated from
the Figure 5, which shows the SNRMS of the reconstructions
of pure tones. As an average over frequency, the magnitude
network provided an SNRMS of 10.2 dB larger than that
of the complex network. For the magnitude network, the
SNRMS was more or less similar for frequencies up to 200
Hz and decreased with frequency. For the complex network,
the SNRMS decrease started already at approximately 100 Hz
and was much steeper than that of the magnitude network.
Above the frequency of approximately 4 kHz, the complex
network provided an extremely poor SNRMS of 5 dB or less,
indicating that the complex network had problems reconstruct-
ing the signals at higher frequencies. This is in line with [66],
where neural networks were trained to reconstruct phases of
amplitude spectrograms and their predictions were also poorer
for higher frequencies.

Unfortunately, the problem of poor high-frequency recon-
struction also persisted when predicting instrument sounds
instead of pure tones. Figure 6 shows the spectrogram of
an original sound from the instrument testing set (left panel)
and of its reconstruction obtained from the complex network
(center panel). The reconstruction clearly fails at frequencies
higher than 4 kHz.

In order to further compare between the two network
types, reconstructions of the testing datasets were performed.
Table IV shows the SNRMS and ODG of those predictions.
The magnitude network resulted in consistently better results
with an SNRMS difference of 2.3 dB and 3.5 dB when tested

0.1 0.5 1 2 4 8
Frequency [kHz]

0

10

20

30

40

SN
R M

S[
dB

]

Magnitude network
Complex network

Fig. 5. SNRMS for reconstruction of pure tones with the complex (black)
and magnitude (grey) networks both trained to the instruments database. The
thicker lines show averages over 25 surrounding frequency points.

0 10 200

1

2

4

8

Fr
eq

ue
nc

y
[k

Hz
]

0 10 20 0 10 20

Fig. 6. Magnitude spectrograms (in dB) of an exemplary signal reconstruction.
Left: Original signal. Center: Reconstruction by the complex network. Right:
Reconstruction by the LPC-based method. The gap was the area between the
two red lines.

on music and instruments, respectively. Similarly, ODGs favor
the magnitude network, although to a smaller extent. The
comparison may appear flawed because the magnitude network
has to predict only half of the features to be predicted by
the complex network, at almost the same number of neurons.
However, even doubling the size of the complex network
would not yield significantly better predictions, as the link
between the size of a DNN and its performance is not
proportional [67].

In addition to the improvement in SNRMS and ODG of the
magnitude network over the complex network, the complex
network predictions were observed to often be corrupted by
clearly audible broadband noise7.

Music Instruments
Mag Complex LPC Mag Complex LPC

Mean SNRMS 7.7 5.4 6.3 22.4 18.5 30.5
Std SNRMS 4.3 4.5 5.1 10.7 10.2 18.9
Mean ODG -0.8 -1.0 -0.8 -1.6 -1.8 -0.3
Std ODG 0.4 0.2 0.2 1.0 0.9 0.3

TABLE IV
SNRMS (IN DB) AND ODGS OF RECONSTRUCTIONS OF 64 MS GAPS FOR

THE COMPLEX AND MAGNITUDE NETWORKS, AS WELL AS FOR THE
LPC-BASED METHOD.

7visit https://andimarafioti.github.io/audioContextEncoder/ for audio exam-
ples.

31

2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2019.2947232, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

8

C. Comparison to the reference method

Table IV provides the SNRMS and ODGs for the LPC-
based reference reconstruction method. When tested on music,
on average, our magnitude network outperformed the LPC-
based method in terms of SNRMS by 1.4 dB. When tested on
instruments, our magnitude network underperformed the LPC
by 8.6 dB, which was also reflected in poorer ODGs. Both
SNRs and ODGs reveal a consistent picture. The LPC-based
method seems to better inpaint instruments. The CE seems
to be better or equivalent for inpainting music. This can be
attributed to the better compliance of the instruments with the
LPC, and a better universality of our CE.

In order to look more deeply into the differences between
the two inpainting methods, we compared their abilities to
inpaint frequency sweeps. A sweep represents a controlled
frequency modulation, which violates the assumptions for the
LPC and is not present in the data the CE was trained on. The
signal consisted of a sum of five linear frequency sweeps with
a 320-ms duration each, starting frequencies of 500, 2000,
3500, 5000 and 6500 Hz, and bandwidth of 500 Hz. Figure 7
shows the signal and the inpainting results. The gap inpainted
by the LPC method (right panel) shows constant frequencies
expanding into the gap causing a discontinuity in the gap’s
center. In contrast, the gap inpainted by the magnitude network
(center panel) follows the frequency changes better at the price
of noise appearing between the sweeps.

Other interesting examples are shown in Figure 8. The
top row shows an example in which the magnitude network
outperformed the LPC-based method. In this case, the signal is
comprised of steady harmonic tones in the left side context and
a broadband sound in the right side context. While the LPC-
based method extrapolated the broadband noise into the gap,
the magnitude network was able to foresee the transition from
the steady sounds to the broadband burst, yielding a prediction
much closer to the original gap, with a 13 dB larger SNRMS
than that from the LPC-based method.

On the other hand, the magnitude network did not always
outperform the LPC-based method. The bottom row of Fig. 8
shows spectrograms of such an example. This signal had stable
sounds in the gap, which were well-suited for an extrapolation,
but rather complex to be perfectly reconstructed by the magni-
tude network. Thus, the LPC-based method outperformed the
magnitude network yielding a 9 dB larger SNRMS.

0 13 24 370

1

2

4

8

Fr
eq

ue
nc

y
[k

Hz
]

0 13 24 37 0 13 24 37

Fig. 7. Log-magnitude spectrograms (in dB) of an exponential frequency
sweep. Left: Original signal. Center: Reconstruction by the magnitude net-
work. Right: Reconstruction by the LPC-based method.

0 13 24 370

1

2

4

8

Fr
eq

ue
nc

y
[k

Hz
]

0 13 24 37 0 13 24 37

0 13 24 370

1

2

4

8

Fr
eq

ue
nc

y
[k

Hz
]

0 13 24 37 0 13 24 37

Fig. 8. Magnitude spectrograms (in dB) of exemplary signal reconstructions.
Left: Original signal. Center: Reconstruction by the magnitude network. Right:
Reconstruction by the LPC-based reference method. Top: Example with the
magnitude network outperforming the reference by an SNRMS of 13 dB.
Bottom: Example with the magnitude network underperforming the reference
by an SNRMS of 9 dB.

Finally, Table V presents the SNRTD of reconstructions of
the instrument and music. Note that the SNRTD provided for
the magnitude network is for the sake of completeness only.
The SNRTD metric is highly sensitive to phase differences,
which do not necessarily lead to perceptual differences and,
for the magnitude network, is reconstructed with an accuracy
of up to a constant phase shift. Thus, SNRTD can remain low
even in cases of very good reconstructions. Hence, here, we
compare the performance of the complex network with that of
the LPC-based method only.

For the music, on average, the complex network outper-
formed the LPC-based method providing a 0.3 dB larger
SNRTD. Given the large standard deviation, we performed a
pair t-test on the SNRTD which showed that the difference
was statistically significant (p < 0.001). For the instruments,
on average, the LPC-based reconstruction outperformed our
network by 12 dB.

The excellent performance of the LPC-based method re-
constructing instruments can be explained by the assumptions
behind the LPC well-fitting to the single-note instrument
sounds. These sounds usually consist of harmonics stable on a
short-time scale. LPC extrapolates these harmonics preserving
the spectral envelope of the signal. Nevertheless, the mag-
nitude network yielded an SNRMS of 22.4 dB, on average,
demonstrating a good ability to reconstruct instrument sounds.

When applied on music, the performance in terms of
SNRMS of both methods was much poorer, with our network
performing slightly but statistically significantly better than the
LPC-based method. The better performance of our network
can be explained by its ability to adapt to transient sounds
and modulations in frequencies, sound properties that the LPC-
based method is not suited to handle.

32

2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2019.2947232, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

MARAFIOTI, PERRAUDIN, HOLIGHAUS, AND MAJDAK: A CONTEXT ENCODER FOR AUDIO INPAINTING 9

The gap duration of 64 ms is close to those tested in [27]
when comparing various OMP methods. For 50 ms, their ap-
proaches showed SNRTD below 2 dB and ODG values around
-3 (see their Fig. 1 and 4). The LPC-based method showed
average SNRTD of 3.8 dB and ODGs of -0.8. This confirms
our assumption that for the studied range, the LPC is better
suited than the sparsity-based audio inpainting techniques.

Music Instruments
Complex Mag LPC Complex Mag LPC

Mean 3.8 1.1 3.5 16.0 14.6 28.0
Std 4.1 3.9 5.0 9.7 10.8 19.1

TABLE V
SNRTD (IN DB) OF RECONSTRUCTIONS OF 64 MS GAPS FOR THE

COMPLEX AND MAGNITUDE NETWORKS, AS WELL AS FOR THE
LPC-BASED METHOD.

D. Effect of the gap duration

The proposed network structure can be trained with different
contexts and gap durations. For problems of varying gap
duration, a network trained to the particular gap duration might
appear optimal. However, training takes time, and it might be
simpler to train a network to single gap duration and use it to
reconstruct any shorter gap as well.

In order to test this idea, we introduced gaps of 48 ms
(corresponding to Lg = 768 samples) in our testing datasets.
These gaps were then reconstructed by the magnitude network
trained for 64 ms gaps. As this network outputs, at reconstruc-
tion time, a solution for a gap of length 64-ms, the 48-ms gaps
needs to be enlarged. We tested three approaches to enlarge
them: by discarding 16 ms forwards, 16 ms backwards, or
8 ms forwards and 8 ms backwards (centered).

Table VI shows SNRMS obtained from averaging the recon-
structions of the three types of gap enlargements. Also, the
corresponding SNRMS for the LPC-based method are shown.
The results are similar to those obtained for larger gaps:
for the instruments, the LPC-based method outperformed our
network; for the music, our network outperformed the LPC-
based method.

Music Instruments
Ours LPC Ours LPC

Mean 8.0 6.9 21.8 33.2
Std 4.6 5.5 11.8 20.1

TABLE VI
SNRMS (IN DB) OF RECONSTRUCTIONS OF 48 MS GAPS FOR THE

MAGNITUDE NETWORK AND THE LPC-BASED METHOD.

V. CONCLUSIONS AND OUTLOOK

We proposed a neural network architecture for inpainting
medium gaps of audio. The study aims at showing general
abilities of a neural network working on TF coefficients as a
context encoder. The proposed network was able to adapt to
the particular frequencies provided by the training material.
It was able to reconstruct frequency modulations better than
the LPC-based reference method and it was able to inpaint
gaps shorter than the trained ones. For the reconstruction
of complex signals like music, our network was able to

outperform the LPC-based reference method, in terms SNR
calculated on magnitude spectrograms, and both methods were
rated equally with ODG between imperceptible and perceptible
but not annoying. LPC yielded better results when applied
on more simple signals like instrument sounds. In general,
our results suggest that standard DNN components and a
moderately sized network can be applied to form audio-
inpainting models, offering a number of angles for future
improvement.

For example, we have analyzed two types of networks. The
complex network works directly on the complex-valued TF
coefficients. The magnitude network provides only magnitudes
of TF coefficients as output and relies on a subsequent
phase reconstruction. We observed clear improvement of the
magnitude network over the complex network especially in
reconstructing high-frequency content.

From our study, it follows that DNNs, when applied to
inpainting audio gaps for medium durations, do not suffer
from the restrictions of previous methods. Additionally, even
for a simple DNN, the performance on complex signals is
already on par with the state of the art. It also follows
that by representing audio as TF coefficients, a generative
network developed for image inpainting can be adapted to
audio inpainting.

Generally, better results can be expected for increased depth
of the network and the available context. Experiments with our
method for longer medium-duration gaps and longer context
can be easily implemented just by adapting the parameters of
the network. Nevertheless, we expect technical limitations like
computational power to be an issue for long contexts. Instead,
a study of more efficient audio features will be required.
Our STFT features, meant in this study as a reasonable first
choice, provided a decent performance, however, in the future,
we expect hearing-related features to provide better recon-
structions. In particular, an investigation of Audlet frames,
i.e., invertible time-frequency systems adapted to perceptual
frequency scales, [68], as features for audio inpainting seem
to offer intriguing opportunities.

In the future, instead of training on a very general dataset,
improved performance can be obtained for more specialized
networks trained to specific genres or instrumentation. Further,
applied to a complex mixture and potentially preceded by a
source-separation algorithm, our proposed architecture could
be used jointly in a mixture-of-experts, [69], approach.

REFERENCES

[1] A. Adler, V. Emiya, M. G. Jafari, M. Elad, R. Gribonval, and M. D.
Plumbley, “Audio inpainting,” IEEE Transactions on Audio, Speech and
Language Processing, vol. 20, no. 3, pp. 922–932, March 2012.

[2] I. Kauppinen, J. Kauppinen, and P. Saarinen, “A method for long ex-
trapolation of audio signals,” Journal of the Audio Engineering Society,
vol. 49, no. 12, pp. 1167–1180, 2001.

[3] W. Etter, “Restoration of a discrete-time signal segment by interpolation
based on the left-sided and right-sided autoregressive parameters,” IEEE
Transactions on Signal Processing, vol. 44, no. 5, pp. 1124–1135, may
1996.

[4] D. Goodman, G. Lockhart, O. Wasem, and W.-C. Wong, “Waveform
substitution techniques for recovering missing speech segments in packet
voice communications,” IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 34, no. 6, pp. 1440–1448, dec 1986.

33

2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2019.2947232, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

10

[5] Y. Bahat, Y. Schechner, and M. Elad, “Self-content-based audio inpaint-
ing,” Signal Processing, vol. 111, pp. 61–72, jun 2015.

[6] P. J. Wolfe and S. J. Godsill, “Interpolation of missing data values for
audio signal restoration using a gabor regression model,” in Proc. of
ICASSP, vol. 5. IEEE, 2005, pp. v–517.

[7] N. Perraudin, N. Holighaus, P. Majdak, and P. Balazs, “Inpainting of
long audio segments with similarity graphs,” IEEE/ACM Transactions
on Audio, Speech and Language Processing, vol. PP, no. 99, pp. 1–1,
2018.

[8] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. Efros, “Context
encoders: Feature learning by inpainting,” in Proc. of CVPR, 2016.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[10] D. Kingma and M. Welling, “Auto-encoding variational bayes.” in Proc.
of ICLR, 2014.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[12] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio synthe-
sis,” in Proceedings of the 7th International Conference on Learning
Representations, 2019.

[13] A. Marafioti, N. Perraudin, N. Holighaus, and P. Majdak, “Adversarial
generation of time-frequency features with application in audio
synthesis,” in Proc. of the 36th ICML, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. Long Beach, California, USA:
PMLR, 09–15 Jun 2019, pp. 4352–4362. [Online]. Available:
http://proceedings.mlr.press/v97/marafioti19a.html

[14] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and
A. Roberts, “Gansynth: Adversarial neural audio synthesis,” in Proceed-
ings of the 7th International Conference on Learning Representations,
2019.

[15] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo,
A. Courville, and Y. Bengio, “SampleRNN: An unconditional end-to-
end neural audio generation model,” in Proc. of ICLR, 2017.

[16] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet:
A generative model for raw audio,” CoRR, vol. abs/1609.03499, 2016.
[Online]. Available: http://arxiv.org/abs/1609.03499

[17] Y. Saito, S. Takamichi, and H. Saruwatari, “Text-to-speech synthesis us-
ing STFT spectra based on low-/multi-resolution generative adversarial
networks,” in Proc. of ICASSP. IEEE, 2018, pp. 5299–5303.

[18] J. Shen, R. Pang, R. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerry-Ryan, R. Saurous, Y. Agiomyrgiannakis,
and Y. Wu, “Natural TTS synthesis by conditioning WaveNet on mel
spectrogram predictions,” in Proc. of ICASSP. IEEE, 2018.

[19] Z. Jin, A. Finkelstein, G. J. Mysore, and J. Lu, “Fftnet: A real-time
speaker-dependent neural vocoder,” in Proc. of ICASSP. IEEE, 2018,
pp. 2251–2255.

[20] B.-K. Lee and J.-H. Chang, “Packet loss concealment based on deep
neural networks for digital speech transmission,” IEEE/ACM Trans.
Audio, Speech and Lang. Proc., vol. 24, no. 2, pp. 378–387, Feb. 2016.
[Online]. Available: http://dx.doi.org/10.1109/TASLP.2015.2509780

[21] S. Dieleman, A. v. d. Oord, and K. Simonyan, “The challenge of realistic
music generation: modelling raw audio at scale,” in Proc. of NeurIPS,
2018.

[22] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Modeling
temporal dependencies in high-dimensional sequences: Application to
polyphonic music generation and transcription,” in Proc. of ICML, 2012.

[23] M. Blaauw and J. Bonada, “A neural parametric singing synthesizer,”
in Proc. of INTERSPEECH, 2017.

[24] A. Adler, V. Emiya, M. Jafari, M. Elad, R. Gribonval, and M. Plumbley,
“A constrained matching pursuit approach to audio declipping,” in Proc.
of ICASSP. IEEE, may 2011.

[25] I. Toumi and V. Emiya, “Sparse non-local similarity modeling for audio
inpainting,” in Proc. of ICASSP. Calgary, Canada: IEEE, Apr. 2018.

[26] S. Kitić, N. Bertin, and R. Gribonval, “Sparsity and cosparsity for
audio declipping: a flexible non-convex approach,” in LVA/ICA 2015
- The 12th International Conference on Latent Variable Analysis and
Signal Separation, Liberec, Czech Republic, Aug. 2015, p. 8. [Online].
Available: https://hal.inria.fr/hal-01159700

[27] O. Mokrý, P. Záviska, P. Rajmic, and V. Veselý, “Introducing SPAIN
(sparse audion inpainter),” CoRR, vol. abs/1810.13137, 2018. [Online].
Available: http://arxiv.org/abs/1810.13137

[28] C. Gaultier, S. Kitić, N. Bertin, and R. Gribonval, “AUDASCITY:
AUdio Denoising by Adaptive Social CosparsITY,” in 25th European

Signal Processing Conference (EUSIPCO), Kos, Greece, Aug. 2017.
[Online]. Available: https://hal.inria.fr/hal-01540945

[29] K. Siedenburg, M. Kowalski, and M. Dörfler, “Audio Declipping with
Social Sparsity,” in Proc. of ICASSP. Florence, Italy: IEEE, May
2014, pp. AASP–L2. [Online]. Available: https://hal.archives-ouvertes.
fr/hal-01002998

[30] F. Lieb and H.-G. Stark, “Audio inpainting: Evaluation of time-frequency
representations and structured sparsity approaches,” Signal Processing,
vol. 153, pp. 291–299, 2018.

[31] J. Le Roux, H. Kameoka, N. Ono, A. De Cheveigne, and S. Sagayama,
“Computational auditory induction as a missing-data model-fitting prob-
lem with bregman divergence,” Speech Communication, vol. 53, no. 5,
pp. 658–676, 2011.

[32] P. Smaragdis, B. Raj, and M. Shashanka, “Missing data imputation
for time-frequency representations of audio signals,” Journal of signal
processing systems, vol. 65, no. 3, pp. 361–370, 2011.

[33] U. Şimşekli, Y. K. Yılmaz, and A. T. Cemgil, “Score guided audio
restoration via generalised coupled tensor factorisation,” in Proc. of
ICASSP. IEEE, 2012, pp. 5369–5372.

[34] C. Bilen, A. Ozerov, and P. Prez, “Solving time-domain audio inverse
problems using nonnegative tensor factorization,” IEEE Transactions on
Signal Processing, vol. 66, no. 21, pp. 5604–5617, Nov 2018.

[35] Ç. Bilen, A. Ozerov, and P. Pérez, “Joint audio inpainting and source
separation,” in International Conference on Latent Variable Analysis and
Signal Separation. Springer, 2015, pp. 251–258.

[36] ——, “Audio declipping via nonnegative matrix factorization,” in 2015
IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA). IEEE, 2015, pp. 1–5.

[37] A. Ozerov, Ç. Bilen, and P. Pérez, “Multichannel audio declipping,” in
Proc. of ICASSP. IEEE, 2016, pp. 659–663.

[38] E. Manilow and B. Pardo, “Leveraging repetition to do audio imputa-
tion,” in 2017 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA). IEEE, 2017, pp. 309–313.

[39] B. Martin, P. Hanna, T. V. Thong, M. Desainte-Catherine, and P. Ferraro,
“Exemplar-based assignment of large missing audio parts using string
matching on tonal features.” in Proc. of ISMIR, 2011, pp. 507–512.

[40] R. C. Maher, “A method for extrapolation of missing digital audio data,”
Journal of the Audio Engineering Society, vol. 42, no. 5, pp. 350–357,
1994.

[41] A. Lukin and J. Todd, “Parametric interpolation of gaps in audio signals,”
in Audio Engineering Society Convention 125. Audio Engineering
Society, 2008.

[42] T. E. Tremain, “The government standard linear predictive coding
algorithm: Lpc-10,” Speech Technology, pp. 40–49, Apr. 1982.

[43] A. Janssen, R. Veldhuis, and L. Vries, “Adaptive interpolation of
discrete-time signals that can be modeled as autoregressive processes,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34,
no. 2, pp. 317–330, 1986.

[44] I. Kauppinen and K. Roth, “Audio signal extrapolation–theory and
applications,” in Proc. DAFx, 2002, pp. 105–110.

[45] J. Pons, O. Nieto, M. Prockup, E. M. Schmidt, A. F. Ehmann, and
X. Serra, “End-to-end learning for music audio tagging at scale,” in
Proc. of ISMIR, 2018.

[46] M. Portnoff, “Implementation of the digital phase vocoder using the fast
fourier transform,” IEEE Trans. Acoust. Speech Signal Process., vol. 24,
no. 3, pp. 243–248, 1976.

[47] K. Gröchenig, Foundations of Time-Frequency Analysis, ser. Appl.
Numer. Harmon. Anal. Birkhäuser, 2001.

[48] D. Griffin and J. Lim, “Signal estimation from modified short-time
fourier transform,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 32, no. 2, pp. 236–243, 1984.

[49] N. Perraudin, P. Balazs, and P. L. Søndergaard, “A fast griffin-lim
algorithm,” in Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2013 IEEE Workshop on. IEEE, 2013, pp. 1–4.

[50] Z. Průša, P. Balazs, and P. Søndergaard, “A noniterative method for
reconstruction of phase from stft magnitude,” IEEE/ACM Transactions
on Audio, Speech and Language Processing, vol. 25, no. 5, pp. 1154–
1164, 2017.

[51] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”

34

2329-9290 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TASLP.2019.2947232, IEEE/ACM
Transactions on Audio, Speech, and Language Processing

MARAFIOTI, PERRAUDIN, HOLIGHAUS, AND MAJDAK: A CONTEXT ENCODER FOR AUDIO INPAINTING 11

2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. of NIPS, 2012, pp.
1097–1105.

[53] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. of ICML,
2015, pp. 448–456.

[54] Z. Průša and P. L. Søndergaard, “Real-Time Spectrogram Inversion
Using Phase Gradient Heap Integration,” in Proc. Int. Conf. Digital
Audio Effects (DAFx-16), Sep 2016, pp. 17–21.

[55] Z. Průša, “The Phase Retrieval Toolbox,” in AES International Confer-
ence On Semantic Audio, Erlangen, Germany, June 2017.

[56] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image
restoration with neural networks,” IEEE Transactions on Computational
Imaging, vol. 3, no. 1, pp. 47–57, March 2017.

[57] A. Krogh and J. Hertz, “A simple weight decay can improve generaliza-
tion,” in Advances in neural information processing systems 4. Morgan
Kaufmann, 1992, pp. 950–957.

[58] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. of ICLR, 2015.

[59] I. Recommendation, “1387: Method for objective measurements of per-
ceived audio quality,” International Telecommunication Union, Geneva,
Switzerland, 2001.

[60] J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, and
K. Simonyan, “Neural audio synthesis of musical notes with wavenet
autoencoders,” in Proc. of ICML, 2017, pp. 1068–1077.

[61] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, “Fma: A
dataset for music analysis,” in 18th International Society for Music
Information Retrieval Conference, 2017.

[62] N. Sturmel and L. Daudet, “Signal reconstruction from stft magnitude:
A state of the art,” in International conference on digital audio effects
(DAFx), 2011, pp. 375–386.

[63] P. Kabal et al., “An examination and interpretation of itu-r bs. 1387:
Perceptual evaluation of audio quality,” TSP Lab Technical Report, Dept.
Electrical & Computer Engineering, McGill University, pp. 1–89, 2002.

[64] J. P. Burg, “Maximum entropy spectral analysis,” 37th Annual Interna-
tional Meeting, Soc. of Explor. Geophys., Oklahoma City, 1967.

[65] I. Kauppinen and J. Kauppinen, “Reconstruction method for missing
or damaged long portions in audio signal,” Journal of the Audio
Engineering Society, vol. 50, no. 7/8, pp. 594–602, 2002.

[66] S. Takamichi, Y. Saito, N. Takamune, D. Kitamura, and H. Saruwatari,
“Phase reconstruction from amplitude spectrograms based on von-mises-
distribution deep neural network,” in International Workshop on Acoustic
Signal Enhancement (IWAENC), 2018, pp. 286–290.

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770–778.

[68] T. Necciari, N. Holighaus, P. Balazs, Z. Pra, P. Majdak, and O. Derrien,
“Audlet filter banks: A versatile analysis/synthesis framework using
auditory frequency scales,” Applied Sciences, vol. 8, no. 1:96, 2018.

[69] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of
experts,” IEEE transactions on neural networks and learning systems,
vol. 23, no. 8, pp. 1177–1193, 2012.

35

36

Chapter 4

Adversarial generation of
time-frequency features with
application in audio synthesis

This work was published as

Marafioti, A. , Perraudin, N., Holighaus, N., and Majdak, P., “Adversarial generation
of time-frequency features with application in audio synthesis,” in Proc. of the 36th
ICML, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. Long Beach, California, USA:
PMLR, 09–15 Jun 2019, pp. 4352–4362.

The idea to focus on audio representations for neural sound synthesis came from the
collaboration between all authors. I, with the second author, explored and implemented
the use of generative adversarial networks. I, with the third author, explored and de-
signed two competing representation for audio in the time-frequency domain. I, with the
fourth author, designed, performed, and evaluated the listening test. I, with the second
and third authors, wrote the manuscript which was then revised by the fourth author.
I also designed and implemented the accompanying website.

Adversarial Generation of Time-Frequency Features
with application in audio synthesis

Andrés Marafioti 1 Nicki Holighaus 1 Nathanaël Perraudin 2 Piotr Majdak 1

Abstract
Time-frequency (TF) representations provide
powerful and intuitive features for the analysis
of time series such as audio. But still, generative
modeling of audio in the TF domain is a sub-
tle matter. Consequently, neural audio synthesis
widely relies on directly modeling the waveform
and previous attempts at unconditionally synthe-
sizing audio from neurally generated invertible
TF features still struggle to produce audio at sat-
isfying quality. In this article, focusing on the
short-time Fourier transform, we discuss the chal-
lenges that arise in audio synthesis based on gen-
erated invertible TF features and how to overcome
them. We demonstrate the potential of deliberate
generative TF modeling by training a generative
adversarial network (GAN) on short-time Fourier
features. We show that by applying our guidelines,
our TF-based network was able to outperform a
state-of-the-art GAN generating waveforms di-
rectly, despite the similar architecture in the two
networks.

1. Introduction
Despite the recent advance in machine learning and gener-
ative modeling, synthesis of natural sounds by neural net-
works remains a challenge. Recent solutions rely on, among
others, classic recurrent neural networks (e.g., SampleRNN,
Mehri et al., 2017), dilated convolutions (e.g., WaveNet,
Van Den Oord et al., 2016), and generative adversarial net-
works (e.g., WaveGAN, Donahue et al., 2019). Especially,
the latter offers a promising approach in terms of flexibility
and quality. Generative adversarial networks (GANs, Good-
fellow et al., 2014) rely on two competing neural networks

1Acoustics Research Institute, Austrian Academy of Sciences,
Wohllebengasse 12–14, 1040 Vienna, Austria. 2Swiss Data Sci-
ence Center, ETH Zürich, Universitätstrasse 25, 8006 Zürich. Cor-
respondence to: Andrés Marafioti <amarafioti@kfs.oeaw.ac.at>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

trained simultaneously in a two-player min-max game: The
generator produces new data from samples of a random
variable; The discriminator attempts to distinguish between
these generated and real data. During the training, the gen-
erator’s objective is to fool the discriminator, while the
discriminator attempts to learn to better classify real and
generated (fake) data. Since their introduction, GANs have
been improved in various ways (e.g., Arjovsky et al., 2017;
Gulrajani et al., 2017). For images, GANs have been used
to great success (Karras et al., 2018; Brock et al., 2019). For
audio, GANs enable the generation of a signal at once even
for durations in the range of seconds (Donahue et al., 2019).

The neural generation of realistic audio remains a challenge,
because of its complex structure, with dependencies on vari-
ous temporal scales. In order to address this issue, a network
generating audio is often complemented with another neu-
ral network or prior information. For example, the former
may require a system of two parallel neural networks (Van
Den Oord et al., 2018), leading overall to more complex
systems, while the latter can take the form of a separate
conditioning of networks (Shen et al., 2018; Sotelo et al.,
2017; Engel et al., 2017). It is usually beneficial to train
neural networks on a high-level representation of sound,
instead on the time-domain samples. For example, Tacotron
2 (Shen et al., 2018) relies on non-invertible mel-frequency
spectrograms. Generation of a time-domain signal from the
mel coefficients is then achieved by training a conditioned
WaveNet to act as a vocoder.

Time-frequency (TF) domain representations of sound are
successfully used in many applications and rely on well-
understood theoretical foundations. They have been widely
applied to neural networks, e.g., for solving discriminative
tasks, in which they outperform networks directly trained on
the waveform (Dieleman & Schrauwen, 2014; Pons et al.,
2017). Further, TF representations are used to parameter-
ize neural synthesizers, e.g., Tacotron 2 mentioned above
or Timbretron (Huang et al., 2019), which modifies timbre
by remapping constant-Q TF coefficients of sound, condi-
tioning a WaveNet synthesizer. Despite the success of TF
representations for sound analysis, why, one could ask, has
neural sound generation via invertible TF representations
only seen limited success?

ar
X

iv
:1

90
2.

04
07

2v
2

 [
cs

.S
D

]
 1

6
M

ay
 2

01
9

37

Adversarial Generation of Time-Frequency Features

In fact, there are neural networks generating invertible TF
representations for sound synthesis. They were designed to
perform a specific task such as source separation (Fan et al.,
2018; Muth et al., 2018), speech enhancement (Pascual et al.,
2017), or audio inpainting (Marafioti et al., 2018) and use a
specific and well-chosen setup for TF processing. While the
general rules for the parameter choice are not the main focus
of those contributions, these rules are highly relevant when
it comes to synthesizing sound from a set of TF coefficients
generated, e.g., by a neural network.

When both the TF representation and its parameters are
appropriately chosen, we generate a highly structured, in-
vertible representation of sound, from which time-domain
audio can be obtained using efficient, content-independent
reconstruction algorithms. In that case, we do not need to
train a problem-specific neural synthesizer. Hence, in this
article, we discuss important aspects of neural generation
of TF representations particularly for sound synthesis. We
focus on the short-time Fourier transform (STFT, e.g., Allen,
1977; Wexler & Raz, 1990), the best understood and widely
used TF representation in the field of audio processing. First,
we revisit some properties of the continuous STFT (Port-
noff, 1976; Auger et al., 2012; Gröchenig, 2001) and the
progress in phaseless reconstruction of audio signals from
STFT coefficients (Průša et al., 2017). Then, we discuss
these properties in the context of the discrete STFT in order
to compile guidelines for the choice of STFT parameters en-
suring the reliability of sound synthesis and to provide tools
monitoring the training progress of the generative models.
For the latter, we introduce a novel, experimental measure
for the consistency of the STFT. Eventually, we demonstrate
the applicability of our guidelines by introducing TiFGAN,
a network which generates audio using a TF representa-
tion. We provide perceptual and numerical evaluations of
TiFGAN demonstrating improved audio quality compared
to a state-of-the-art GAN for audio synthesis1. Our soft-
ware, complemented by instructive examples, is available at
http://tifgan.github.io.

2. Properties of the STFT
The rich structure of the STFT is particularly apparent in
the continuous setting of square-integrable functions, i.e.
functions in L2(R). Thus, we first discuss the core issues
that arise in the generation of STFTs within that setting,
recalling established theory along the way, and then move
to discuss these issues in the setting of discrete STFTs.

1During the preparation of this manuscript, the work (Engel
et al., 2019) became publicly available. In addition to well chosen
STFT parameters, usage of the time-direction phase derivative
enabled their model, GANSynth, to produce significantly better
results than previous methods. The authors kindly provided us with
details of their implementation, enabling a preliminary discussion
of similarities and differences to our guidelines.

2.1. The continuous STFT

The STFT of the function f ∈ L2(R) with respect to the
window ϕ ∈ L2(R) is given by

Vϕ f(x, ω) =

∫

R
f(t)ϕ(t− x)e−2πiωt dt (1)

The variable (x, ω) ∈ R2 indicates that Vϕ f(x, ω) de-
scribes the time-frequency content of f at time x and fre-
quency ω. The STFT is complex-valued and can be rewrit-
ten in terms of two real-valued functions as Vϕ f(x, ω) =
exp(Mϕ(x, ω) + iφϕ(x, ω)), whenever Vϕ f(x, ω) 6= 0.
The logarithmic magnitude (log-magnitude) Mϕ is uniquely
defined, but the phase φϕ is only defined modulo 2π. Fur-
ther, while Mϕ is a smooth, slowly varying function, φϕ
may vary rapidly and is significantly harder to model accu-
rately. Nonetheless, both functions are intimately related.
If ϕ(t) = ϕλ(t) := e−πt

2/λ is a Gaussian window, this
relation can be made explicit (Portnoff, 1976; Auger et al.,
2012) through the phase-magnitude relations

∂φϕλ
∂x (x, ω) = λ−1

∂Mϕλ
∂ω (x, ω),

∂φϕλ
∂ω (x, ω) = −λ∂Mϕλ

∂x (x, ω)− 2πx,
(2)

where ∂
∂• denotes partial derivatives with respect to •.

Hence, as long as we avoid zeros of Vϕ f , the phase φϕλ
can be recovered from Mϕλ up to a global constant. Since
the STFT is invertible, we can recover f from Mϕλ up to a
global phase factor as well, such that it is sufficient to model
only the magnitude Mϕλ .

Note that the partial phase derivatives are of interest by
themselves. In contrast to the phase itself, they provide an
intuitive interpretation as local instantaneous frequency and
time and are useful in various applications (Dolson, 1986;
Auger & Flandrin, 1995). Further, as suggested by (2),
the phase derivatives might be a more promising modeling
target than the phase itself, at least after unwrapping and
demodulation2 as detailed in (Arfib et al., 2011).

Note that not every function F ∈ L2(R2) is the STFT of
a time-domain signal because the STFT operator Vϕ maps
L2(R) to a strict subspace of L2(R2). Formally, assuming
that the window ϕ has unit norm, the inverse STFT is given
by the adjoint operator V∗ϕ of Vϕ and we have V∗ϕ(Vϕ f) =
f for all f . Now, if F ∈ L2(R2) is not in the range of
Vϕ, then f = V∗ϕ F is a valid time-domain signal, but
F 6= Vϕ f , i.e., F is an inconsistent representation of f ,
and the TF structure of F will be distorted in Vϕ f .

In the presence of phase information, consistency of F
can be evaluated simply by computing the norm difference
‖F − Vϕ(V

∗
ϕ F)‖ which can also serve as part of a train-

ing objective. If only magnitudes M̃ are available, we can

2Formally, demodulation is simply adding 2πx to
∂φϕλ
∂ω

(x, ω).

38

Adversarial Generation of Time-Frequency Features

0 250 500 750 1000 1250 1500 1750 2000
Time (sample)

0

50

100

150

200
Signal

60 80 100 120 140
Time (sample)

−10

0

10

20
Zoom in

0 500 1000 1500 2000
Time (samples)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(n

or
m

al
ize

d)

Log magnitude

−20

−10

0

10

20

30

0 500 1000 1500 2000
Time (samples)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(n

or
m

al
ize

d)

Phase time-derivative

−40

−20

0

20

40

0 500 1000 1500 2000
Time (samples)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(n

or
m

al
ize

d)

Demodulated phase frequency-derivative

−100
−75
−50
−25
0
25
50
75
100

Figure 1. Signal representations. Top row: waveform of a test signal (pure tone and pulses). Bottom row: STFT features: log magnitudes
(left), time-direction phase derivatives (center) and frequency-direction phase derivatives (right). For small log magnitude, phase
derivatives were set to zero. Frequency-direction derivative was computed after demodulation.

theoretically exploit the phase-magnitude relations (2), re-
construct the phase, and then evaluate consistency. Unless
otherwise specified, coefficients that are not necessarily con-
sistent are indicated by the symbol∼, e.g., generated magni-
tudes M̃. In practice, phase recovery from the magnitude M̃
introduces errors of its own and the combined process may
become too expensive to be attractive as a training objective.
Thus, it might be preferable to evaluate consistency of the
generated magnitude directly, which, for Gaussian windows,
can be derived from (2)

(
λ ∂2

∂x2 + λ−1 ∂2

∂ω2

)
Mϕλ(x, ω) = −2π. (3)

Note that, although (Portnoff, 1976) already observed that
M̃ is an STFT magnitude if and only if (3) holds (and eM̃

is square-integrable), our contribution is, to our knowl-
edge, the first to exploit this relation to evaluate consis-
tency. Furthermore, the phase-magnitude relations (2) and
the consistency equivalence (3) can be traced back to the
relation of Gaussian STFTs to a certain space of analytic
functions (Bargmann, 1961; Conway, 1973).

In the context of neural networks, the ultimate goal of
the generation process is to obtain a time-domain signal,
but we can only generate a finite number of STFT co-
efficients. Therefore, it is essential that inversion from
the generated values is possible and synthesis of the time-
domain signal is robust to distortions. In mathematical
terms, this requires a window function ϕ and time and fre-
quency steps a, b ∈ R+ specifying a snug STFT (or Ga-
bor) frame (Christensen, 2016). While a comprehensive
discussion of STFT frames is beyond the scope of this ar-
ticle, it is generally advisable to match a, b to the width
of ϕ and its Fourier transform ϕ̂. In the case where both
ϕ and ϕ̂ are at least remotely bell-shaped, a straightfor-
ward measure of their widths are the standard deviations
σϕ = σ(ϕ/‖ϕ‖L1) and σϕ̂ = σ(ϕ̂/‖ϕ̂‖L1). Hence, we ex-
pect good results if a/b = σϕ/σϕ̂. For Gaussian windows
ϕλ, we have σϕλ/σϕ̂λ = λ, such that λ is often referred to

as time-frequency ratio. For such ϕλ, the choice a/b = λ is
conjectured to be optimal3 in general (Strohmer & Beaver,
2003), and proven to be so for (ab)−1 ∈ N (Faulhuber &
Steinerberger, 2017). Furthermore, the relations (2) and
(3) only hold exactly for the undecimated STFT and must
be approximated. For this approximation to be reliable, ab
must be small enough. The theory suggests that ab ≤ 1/4
is generally required for reliable reconstruction of signals
from the magnitude alone (Balan et al., 2006). For larger
ab, the values of the STFT become increasingly independent
and little exploitable (or learnable) structure remains.

These considerations provide useful guidelines for the
choice of STFT parameters. In the following, we translate
them into a discrete implementation.

2.2. The discrete STFT

The STFT of a finite, real signal s ∈ RL, with the analysis
window g ∈ RL, time step a ∈ N and M ∈ N frequency
channels is given by

Sg(s)[m,n] =
∑

l∈L
s[l]g[l − na]e−2πiml/M , (4)

for n ∈ N,m ∈ M , where we denote, for any j ∈ N, j =
[0, . . . , j − 1] and indices are to be understood modulo L.
Similar to the continuous case, we can write Sg(s)[m,n] =
exp(Mg[m,n] + iφg[m,n]), with log-magnitude Mg and
phase φg. The vectors Sg(s)[·, n] ∈ CN and Sg(s)[m, ·] ∈
CM are called the n-th (time) segment andm-th (frequency)
channel of the STFT, respectively.

Let b = L/M . Then, the ratio M/a = L/(ab) is a measure
of the transform redundancy and the STFT is overcomplete
(or redundant) if M/a > 1. If s and g are real-valued, all
time segments are conjugate symmetric and it is sufficient
to store the first MR = bM/2c channels only, such that the

3In the sense of the frame bound ratio, which is a measure of
transform stability (Christensen, 2016).

39

Adversarial Generation of Time-Frequency Features

Figure 2. Overview of spectral changes resulting from different
phase reconstruction methods. (1) Original log-magnitude, (2-4)
log-magnitude differences between original and signals restored
with (2) cumulative sum along channels (initialized with zeros),
(3) PGHI from phase derivatives (4) PGHI from magnitude only
and phase estimated from Eq. (5).

STFT matrix can be reduced to the size MR ×N .

The inverse STFT with respect to the synthesis
window g̃ ∈ RL can be written as s̃[l] =∑
n∈N

∑
m∈M Sg(s)[m,n]g̃[l − na]e2πiml/M , l ∈ L. We

say that g̃ is a dual window for g, if s̃ = s for all s ∈ RL
(Strohmer, 1998; Janssen, 1997; Wexler & Raz, 1990).

Note that the number of channels M can be smaller than
the number of nonzero samples Lg of g, as long as a and
M respect the widths of g and its Fourier transform ĝ as
discussed in Sec. 2.1. This yields aM ≈ Lσgσĝ as a general
guideline with σg = σ(g/‖g‖`1) and σĝ = σ(ĝ/‖ĝ‖`1).
Furthermore, with the redundancy M/a ≥ 4, there is suf-
ficient dependency between the values of the STFT, e.g.,
to facilitate magnitude-only reconstruction. In our experi-
ence, this choice represents a lower bound for reliability of
discrete approximation of (2).

! Implementations of STFT in SciPy and Tensorflow in-
troduce a phase skew dependent on the (stored) window
length Lg (usually Lg � L) and with severe effects on
any phase analysis and processing if not accounted for.
This can be addressed with the conversion between (4)
and other conventions presented in the supplementary
material D and (Arfib et al., 2011; Pruša, 2015).

2.3. Phase recovery and the phase-magnitude
relationship

Let ∂• denote some discrete partial differentiation scheme.
Discrete approximation of the phase-magnitude relationship

(2) results in

∂nφg[m,n] ≈
aM

λ
∂mMg[m,n],

∂mφg[m,n] ≈ −
λ

aM
∂nMg[m,n]− 2πna/M,

(5)

as derived in (Průša et al., 2017). For non-Gaussian windows
g, choosing λ = σg/σĝ has shown surprisingly reliable
results, but accuracy of (5) depends on the proximity of
the window g to a Gaussian nonetheless. Optimal results
are obtained for Gaussian windows at redundancy M/a =
L. While STFTs with M/a = 4 perform decently and
are considered in our network architecture. In Section 3
we show that a further, moderate increase in redundancy
has the potential to further elevate synthesis quality. As
an alternative to estimating the phase derivatives from the
magnitude, it may be feasible to generate estimates of the
phase derivative directly within a generative model.

It may seem straightforward to restore the phase from its
time-direction derivative by summation along frequency
channels as proposed in (Engel et al., 2019). Even on real,
unmodified STFTs, the resulting phase misalignment intro-
duces cancellation between frequency bands resulting in
energy loss, see Fig. 2(2) for a simple example. In prac-
tice, such cancellations often leads to clearly perceptible
changes of timbre4. Moreover, in areas of small STFT mag-
nitude, the phase is known to be unreliable (Balazs et al.,
2016) and sensitive to distortions (Alaifari & Wellershoff,
2019; Alaifari & Grohs, 2017; Mallat & Waldspurger, 2015),
such that it cannot be reliably modelled and synthesis from
generated phase derivatives is likely to introduce more dis-
tortion. Phase-gradient heap integration (PGHI, Průša et al.,
2017) relies on the phase-magnitude relations (5) and by-
passes phase instabilities by avoiding integration through
areas of small magnitude, leading to significantly better and
more robust phase estimates φ̃, see Fig. 2(4). PGHI often
outperforms more expensive, iterative schemes relying on
alternate projection, e.g., Griffin-Lim (Griffin & Lim, 1984;
Le Roux et al., 2010; Perraudin et al., 2013), at the phaseless
reconstruction (PLR) task. Generally, PLR relies heavily
on consistent STFT magnitude for good results. Note that
the integration step in PGHI can also be applied if phase
derivative estimates from some other source are available,
e.g., when training a network to learn time- and frequency-
direction phase derivatives. For an example, see Fig. 2(3).

2.4. Consistency of the STFT

The space of valid STFTs with a given window is a lower
dimensional subspace of all complex-valued matrices of
size MR ×N and a given, generated matrix S̃ may be very
far from the STFT of any time-domain signal, even if it

4See http://tifgan.github.io for examples.

40

Adversarial Generation of Time-Frequency Features

looks correct. To prevent artifacts, it is important to ensure
that S̃ is consistent. Let iSg̃ denote the inverse STFT with
the dual window g̃, see Sec. 2.2. Consistency of S̃ can be
evaluated by computing the projection error

eproj = ‖S̃− Sg(iSg̃(S̃))‖, (6)

where ‖ · ‖ denotes the Euclidean norm. When eproj is large,
its effects on the synthesized signal are unpredictable and de-
graded synthesis quality must be expected. Although eproj is
an accurate consistency measure, it can be computationally
expensive. Further, its use for evaluating the consistency of
magnitude-only data is limited: When preceded by phase
recovery, eproj is unable to distinguish the error introduced
by the employed PLR method from inconsistency of the
provided magnitude data.

As an alternative, we instead propose an experimental mea-
sure that evaluates consistency of the log-magnitude directly.
The proposed consistency measure exploits the consistency
relation (3). An approximation in the spirit of (5) yields

λ

a2
∂2nMg[m,n] +

M2

λ
∂2mMg[m,n] ≈ −2π. (7)

In practice, and in particular at moderate redundancy, we
found (7) to be prone to approximation errors. Experimen-
tally, however, a measure inspired by the sample Pearson
correlation (Lyons, 1991) provided promising results. Let
M̃ be the generated magnitude, we have

DMn = |∂2nM̃ + πa2

λ |, DMm = |∂2mM̃ + πλ
M2 |, (8)

where the terms πa2/λ and πλ/M2 are obtained by dis-
tributing the shift 2π in (7) equally to both terms on the left
hand side. We define the consistency %(M̃) of M̃ as

%(M̃) := r(DMn,DMm), (9)

where r(X,Y) is the sample Pearson correlation coefficient
of the paired sets of samples (X,Y). If the equality is satis-
fied in (7), then %(M̃) = 1. Conversely if %(M̃) ≈ 0, then
(7) is surely violated and the representation is inconsistent.
The performance of % as consistency measure is discussed
in Section 3 below.

3. Performance of the consistency measure
The purpose of the consistency measure % is to determine
whether a generated log-magnitude is likely to be close to
the log-magnitude STFT of a signal, i.e. it is consistent. As
discussed above, consistency is crucial to prevent degraded
synthesis quality. Hence, it is important to evaluate the
dependence of its properties on changes in the redundancy,
the window function and its sensitivity to distortion.

In a first test, we compute the mean and standard deviation
of % on a speech and a music dataset, see Section 4 for

1/2 1 2 4 8 16 32 64 128 512
Redundancy [M/a]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Co
ns

ist
en

cy

Speech - Gauss
Speech - Hann
Music - Gauss
Music - Hann
Random matrix

Figure 3. Consistency as function of the redundancy for various
time-domain windows. Random matrix from Gaussian distribu-
tion.
details, at various redundancies, using Gaussian and Hann
windows with time-frequency ratio λ ≈ 4 and STFT pa-
rameters satisfying aM/L = 4, see Fig. 3. We note that
a Gaussian random matrix takes surprisingly high values
for % and, thus, % is not reliable below redundancy 4. For
Gaussian windows, mean consistency increases with redun-
dancy, while the standard deviation decreases, indicating
that % becomes increasingly reliable and insensitive to signal
content. This analysis suggests that a redundancy of 8 or 16
could lead to notable improvements. At redundancy 4, spec-
trograms for both types of data score reliably better than the
random case, with speech scoring higher than music. The
Hann window scores worse than the Gaussian on average in
all conditions, with a drop in performance aboveM/a = 16.
This indicates that % is only suitable to evaluate consistency
of Hann window log-magnitudes for redundancies in the
range 6 to 16.

In a second test, we fix a Gaussian STFT with redundancies
4 and 8 and evaluate the behaviour of % under deviations
from true STFT magnitudes. To this end, we add various
levels of uniform Gaussian noise to the STFT before com-
puting the log–magnitude, see Fig. 4. At redundancy 8
we observe a monotonous decrease of consistency with in-
creasing noise level. In fact, the consistency converges to
the level of random noise at high noise levels. Especially
for music, % is sensitive to even small levels of noise. At
redundancy 4, the changes are not quite as pronounced, but
the general trend is similar. While this is not a full analy-
sis of the measure %, it is reasonable to expect that models
that match the value of % closely generate approximately
consistent log-magnitudes

Furthermore, the results suggest that % has a low standard
deviation across data of the same distribution. In the context
of GANs, where no obvious convergence criterion applies,
% can thus assist the determination of convergence and di-
vergence by tracking

γ =
∣∣∣EM∼PMreal

[
%(M)

]
− EM∼PMfake

[
%(M)

]∣∣∣ . (10)

41

Adversarial Generation of Time-Frequency Features

0 10 20 30 40 50 60 70 80
SNR [dB]

0.55

0.60

0.65

0.70

0.75

0.80

Co
ns

ist
en

cy

Speech - Red 8
Speech - Red 4
Music - Red 8
Music - Red 4

Figure 4. Consistency as a function of SNR obtained by adding
complex-valued Gaussian noise to the STFT coefficients.

4. Time-Frequency Generative Adversarial
Network (TiFGAN)

To demonstrate the potential of the guidelines and principles
for generating short-time Fourier data presented in Section 2,
we apply them to TiFGAN, which unconditionally generates
audio using a TF representation and improves on the current
state-of-the-art for audio synthesis with GANs. For the
purpose of this contribution, we restrict to generating 1
second of audio, or more precisely L = 16384 samples
sampled at 16 kHz. For the short-time Fourier transform,
we fix the minimal redundancy that we consider reliable,
i.e., M/a = 4 and select a = 128,M = 512, such that
MR = 257, N = L/a = 128 and the STFT matrix S
is of size CMR×N . This implies that the frequency step is
b = L/M = 32, such that we chose for the analysis window
g a (sampled) Gaussian with time-frequency ratio λ = 4 =
aM/L. Since the Nyquist frequency is not expected to hold
significant information for the considered signals, we drop
it to arrive at a representation size of 256 × 128, which is
well suited to processing using strided convolutions.

0 50 100
Time (samples)

0.0

0.5

1.0

Fr
eq

ue
nc

y
(n

or
m

al
ize

d)

0 5e-2 1e-1

5e3
1e4

2e4

-10 -5 0
5e2
1e3

2e3

Figure 5. From left to right: log-magnitude spectrogram, distribu-
tion of the magnitude, distribution of the log-magnitude.

The log-magnitude distribution is closer to human sound
perception and, as show in Fig. 5, it doesn’t have the large
tail of the magnitude STFT coefficients, therefore we use
it for the training data. To do so, we first normalize the
STFT magnitude to have maximum value 1, such that the
log-magnitude is confined in (−∞, 0]. Then, the dynamic
range of the log-magnitude is limited by clipping at −r
(in our experiments r = 10), before scaling and shifting
to the range of the generator output [−1, 1], i.e. dividing

Figure 6. The general architecture with parameters T = 16384,
a = 128, M2 = 256 c = 1, 3, d = 100. Here b = 64 is the
batch size. The orange and green steps describe the pre- and
post-processing stages.

by r/2 before adding constant 1. The network trained to
generate log-magnitudes will be referred to as TiFGAN-M.
Generation of, and synthesis from, the log-magnitude STFT
is the main focus of this contribution. Nonetheless, we
also trained a variant architecture TiFGAN-MTF for which
we additionally provided the time- and frequency-direction
derivatives of the (unwrapped, demodulated) phase5 (Arfib
et al., 2011; Dolson, 1986).

For TiFGAN-M, the phase derivatives are estimated from
the generated log-magnitude following (5). For both
TiFGAN-M and TiFGAN-MTF, the phase is reconstructed
from the phase derivative estimates using phase-gradient
heap integration (PGHI, Průša et al., 2017), which requires
no iteration, such that reconstruction time is comparable to
simply integrating the phase derivatives. For synthesis from
the STFT, we use the canonical dual window (Strohmer,
1998; Christensen, 2016), precomputed using the Large
Time-Frequency Analysis Toolbox (LTFAT, Průša et al.,
2014), avalable at ltfat.github.io.

GAN architecture: The TiFGAN architecture, depicted
in Fig. 6, is an adaptation of DCGAN (Radford et al., 2016)
and similarly to WaveGAN and SpecGAN (Donahue et al.,
2019), we add one convolutional layer each to generator and
discriminator to enable the generation of larger matrices.
Moreover, we generate data of size (256, 128), a rectangu-
lar array of twice the width and four times the height of
DCGANs output, and twice the height of SpecGAN, such
that we also adapted the filter shapes to better reflect and cap-

5Phase derivatives were obtained using the gabphasegrad
function in the Large Time-Frequency Analysis Toolbox (LTFAT,
Průša et al., 2014).

42

Adversarial Generation of Time-Frequency Features

ture the rectangular shape of the training data6. Precisely in
comparison to SpecGAN, we use filters of shape (12, 3) in-
stead of the 31% smaller (5, 5). To compensate, we further
reduce the number of filter channels of the fully-connected
layer and the first convolutional layer of the generator by a
factor of 2. Since these two layers comprise the majority of
parameters, our architecture only has 10% more parameters
than SpecGAN in total. More details on the architecture can
be found in Section A of the supplementary material.

Training: During training of TiFGAN, we monitored the
relative consistency γ of the generator (10) in addition to the
adversarial loss, negative critic and gradient penalty. In the
optimization phase, networks that failed to train well, could
often be detected to diverge in consistency and discarded
after less than 50k steps of training (1 day), while promising
candidates quickly started to converge towards the consis-
tency of the training data, i.e., γ → 0, see Fig. 7. Networks
with smaller γ synthesized better audio, but when trained
for many steps, they were sometimes less reliable in terms
of semantic audio content, e.g., for speech they were more
likely to produce gibberish words than with shorter training.
Our networks were trained for 200k steps as this seemed
to provide reasonably good results in both semantic and
audio quality. We optimized the Wasserstein loss (Gulrajani
et al., 2017) with the gradient penalty hyperparameter set to
10 using the ADAM optimizer (Kingma & Ba, 2015) with
α = 10−4, β1 = 0.5, β2 = 0.9 and performed 5 updates
of the discriminator for every update of the generator. For
the reference condition, we used the pre-trained WaveGAN
network provided by (Donahue et al., 2019)7.

Figure 7. Eq. (10) for three networks. Gray: failed network. Red:
TiFGAN-M. Blue: TiFGAN-MTF as in Sec. 4.

Comparison to SpecGAN (Donahue et al., 2019):
TiFGAN is purposefully designed to be similar to Spec-
GAN8 to emphasize that the main cause for improved re-
sults is the handling of time-frequency data according to the

6When training on piano data, we also observed that, when
using square filters, the frequency content of note onsets was
unnaturally dispersed over time. This effect was notably reduced
after switching to tall filters

7https://github.com/chrisdonahue/wavegan
8Note that SpecGAN is of equal size as WaveGAN.

guidelines in Section 2.2. SpecGAN relies on an STFT of re-
dundancyM/a = 2 with Hann window of length Lg = 256,
time step a = 128 and M = 256 channels. According to
Section 2.2, this setup is not very well suited to generative
modeling. PLR in particular is expected to be unreliable,
which is evidenced by the results reported in (Donahue et al.,
2019), which employ the classical Griffin-Lim algorithm
(Griffin & Lim, 1984) for PLR. The choice of STFT param-
eters for SpecGAN fixes a target size of shape (128, 128),
while for TiFGAN the target size is (256, 128). This re-
quired some changes to the network architecture, as pre-
sented above. Finally, SpecGAN performs a normalization
per frequency channel over the entire dataset, preventing the
network to learn the natural relations between channels in
the STFT log-magnitude, which are crucial for consistency,
as shown in Section 2.2.

4.1. Evaluation

To evaluate the performance of TiFGAN, we trained
TiFGAN-M and TiFGAN-MTF using the procedure out-
lined above on two datasets from (Donahue et al., 2019): (a)
Speech, a subset of spoken digits ”zero” through ”nine”
(sc09) from the ”Speech Commands Dataset” (Warden,
2018). This dataset is not curated, some samples are noisy
or poorly labeled, the considered subset consists of approxi-
mately 23,000 samples. (b) Music, a dataset of 25 minutes
of piano recordings of Bach compositions, segmented into
approximately 19,000 overlapping samples of 1 s duration.

Evaluation metrics: For speech and music, we provide
audio examples online9. For speech, we performed listening
tests and evaluated the inception score (IS) (Salimans et al.,
2016) and Fréchet inception distance (FID) (Heusel et al.,
2017), using the pre-trained classifier provided with (Don-
ahue et al., 2019). For the real data and both variants of
TiFGAN, we moreover computed the consistency %, see Eq.
(9), and the relative spectral projection error (RSPE) in dB,
after phase reconstruction from the log-magnitude, i.e.,

10 log10

(
‖|S̃| − | Sg(iSg̃(S̃))|‖

‖S̃‖

)
, (11)

where |S̃| = |Sg(s)| in the case of real data and |S̃| =
exp(M̃), with the generated log-magnitude M̃, for the gen-
erated data. Phase-gradient heap integration was applied to
obtain S̃ from |S̃| (and generated phase derivatives in the
case of TiFGAN-MTF).

Listening tests were performed in a sound booth and sounds
were presented via headphones, see supplementary material
B. The task involved pairwise comparison of preference
between four conditions: real data extracted from the dataset,

9http://tifgan.github.io

43

Adversarial Generation of Time-Frequency Features

vs TiFGAN-M vs TiFGAN-MTF vs WaveGAN Cons RSPE (dB) IS FID
Real 86% 90% 94% 0.70 -22.0* 7.98 0.5
TiFGAN-M – 67% 75% 0.67 -13.8 5.97 26.7
TiFGAN-MTF 33% – 55% 0.68 -12.5* 4.48 32.6
WaveGAN 25% 45% – – – 4.64 41.6

Table 1. Results of the evaluation. First three left columns: Preference (in %) of the condition shown in a row over the conditions show in
a column, obtained from listening tests. Cons: averaged consistency measure ρ. RSPE: as in Eq. (11). IS: inception score. FID: Fréchet
inception distance. *These values were obtained by discarding the phase and reconstructing from the magnitude only. For the listening
tests, the signals contained the full representation.

TiFGAN-M generated examples, TiFGAN-MTF generated
examples, and WaveGAN generated examples. In each
trial, listeners were provided with two sounds from two
different conditions. The question to the listener was ”which
sound do you prefer?”. Signals were selected at random
from 600 pre-generated examples per condition. Each of
the six possible combinations was repeated 80 times in
random order, yielding 480 trials per listener. The test lasted
approximately 45 minutes including breaks which subjects
were allowed to take at any time. Seven subjects were
tested and none of them were the authors. A post-screening
showed that one subject was not able to distinguish between
any of the conditions and thus was removed from the test,
yielding in 2880 valid preferences in total from six subjects.

Results: The results are summarized in Table 1. On av-
erage, the subjects preferred the real samples over Wave-
GAN’s in 94% of the examples given. For TiFGAN-MTF,
the preference decreased to 90% and for TiFGAN-M further
to 86%. The large gap between generated and real data can
be explained by the experimental setup that enables a very
critical evaluation. Nonetheless, it is apparent that TiFGAN-
M performed best in the direct comparison to real data by a
significant margin. Comparison of the other pairings leads
to a similar conclusion: Subjects preferred TiFGAN-MTF
over WaveGAN in 55% of the examples given, TiFGAN-M
over WaveGAN in 75% and TiFGAN-M over TiFGAN-
MTF in 67%. While TiFGAN-M clearly outperformed the
other networks, TiFGAN-MTF was only slightly more often
preferred over WaveGAN.

The analysis of IS and FID leads to similar conclusions:
TiFGAN-M showed a large improvement on both measures
over the other conditions, with still a large gap to the real-
data performance. On the other hand, comparing WaveGAN
to TiFGAN-MTF, the results for both measures are mixed.

When evaluating the magnitude spectrograms generated by
TiFGAN-M, TiFGAN-MTF, and those obtained from the
real data, we notice that their consistencies are similarly
close. Going a step further and applying PGHI to these mag-
nitude spectrograms, the relative projection errors (RSPE)
of the two networks are similar, but worse than those of the
real signals, meaning that there is room for improvement
in this regard. For the listening tests, PGHI was applied
to the output of TiFGAN-MTF using the generated phase

derivatives. In this setting, the RSPE was -7.5 dB, a substan-
tially smaller value. This confirms our finding that phase
reconstruction provides better results than phase generation
by our network.

In summary, TiFGAN-M provided a substantial improve-
ment over the previous state-of-the-art in unsupervised
adversarial audio generation. Although the results for
TiFGAN-MTF are not as clear, we believe that direct gen-
eration of phase could provide results on par or better than
the magnitude alone and should be systematically investi-
gated. Further research will focus on avoiding discrepancies
between the phase derivatives and the log-magnitude.

5. Conclusions
In this contribution, we considered adversarial generation
of a well understood time-frequency representation, namely
the STFT. We proposed steps to overcome the difficulties
that arise when generating audio in the short-time Fourier
domain, taking inspiration from properties of the continu-
ous STFT (Portnoff, 1976; Auger et al., 2012; Gröchenig,
2001) and from the recent progress in phaseless reconstruc-
tion (Průša et al., 2017). We provided guidelines for the
choice of STFT parameters that ensure the reliability of
phaseless reconstruction. Further, we introduced a new mea-
sure assessing the quality of a magnitude STFT, i.e., the
consistency measure. It is computationally cheap and can
be used to a-priori estimate the potential success of phase-
less reconstruction. In the context of GANs, it can ease the
assessment of convergence at training time.

Eventually, we demonstrated the value of our guidelines in
the context of unsupervised audio synthesis with GANs. We
introduced TiFGAN, a GAN directly generating invertible
STFT representations. Our TiFGANs, trained on speech
and music outperformed the state-of-the-art time-domain
GAN both in terms of psychoacoustic and numeric evalu-
ation, demonstrating the potential of TF representations in
generative modeling.

In the future, further extensions of the proposed approach
are planned towards TF representations on logarithmic and
perceptual frequency scales (Brown, 1991; Brown & Puck-
ette, 1992; Holighaus et al., 2013; 2019; Necciari et al.,
2018).

44

Adversarial Generation of Time-Frequency Features

Acknowledgments
This work has been supported by Austrian Science Fund
(FWF) project MERLIN (Modern methods for the restora-
tion of lost information in digital signals;I 3067-N30). We
gratefully acknowledge the support of NVIDIA Corpora-
tion with the donation of the Titan X Pascal GPU used for
this research. We would like to thank the authors of (Engel
et al., 2019) for providing us with details of their implemen-
tations prior to presenting it at ICLR 2019, allowing us to
have their approach as a comparison. We would also like to
thank the anonymous reviewers and Peter Balazs for their
tremendously helpful comments and suggestions.

References
Alaifari, R. and Grohs, P. Phase retrieval in the general set-

ting of continuous frames for banach spaces. SIAM jour-
nal on mathematical analysis, 49(3):1895–1911, 2017.

Alaifari, R. and Wellershoff, M. Stability estimates for
phase retrieval from discrete gabor measurements. arXiv
preprint arXiv:1901.05296, 2019.

Allen, J. Short term spectral analysis, synthesis, and modifi-
cation by discrete fourier transform. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 25(3):235–
238, 1977. doi: 10.1109/TASSP.1977.1162950.

Arfib, D., Keiler, F., Zölzer, U., Verfaille, V., and Bonada, J.
Time-frequency processing. DAFX: Digital Audio Effects,
pp. 219–278, 2011.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein
generative adversarial networks. In Proc. of ICML, pp.
214–223, 2017.

Auger, F. and Flandrin, P. Improving the readability of
time-frequency and time-scale representations by the re-
assignment method. IEEE Trans. Signal Proc., 43(5):
1068 –1089,, may 1995.

Auger, F., Chassande-Mottin, É., and Flandrin, P. On phase-
magnitude relationships in the short-time fourier trans-
form. IEEE Signal Process. Lett., 19(5):267–270, 2012.

Balan, R., Casazza, P., and Edidin, D. On signal recon-
struction without phase. Applied and Computational
Harmonic Analysis, 20(3):345–356, 2006.

Balazs, P., Bayer, D., Jaillet, F., and Søndergaard, P. The
pole behavior of the phase derivative of the short-time
fourier transform. Applied and Computational Harmonic
Analysis, 40(3):610–621, 2016.

Bargmann, V. On a Hilbert space of analytic functions
and an associated integral transform part i. Commu-
nications on Pure and Applied Mathematics, 14(3):

187–214, 1961. doi: 10.1002/cpa.3160140303. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpa.3160140303.

Brock, A., Donahue, J., and Simonyan, K. Large scale GAN
training for high fidelity natural image synthesis. In Proc.
of ICLR, 2019.

Brown, J. C. Calculation of a constant Q spectral transform.
The Journal of the Acoustical Society of America, 89(1):
425–434, 1991.

Brown, J. C. and Puckette, M. S. An efficient algorithm for
the calculation of a constant Q transform. The Journal
of the Acoustical Society of America, 92(5):2698–2701,
1992.

Christensen, O. An Introduction to Frames and Riesz Bases.
Applied and Numerical Harmonic Analysis. Birkhäuser
Basel, Second edition, 2016. ISBN 978-3-319-25611-5;
978-3-319-25613-9.

Conway, J. B. Functions of one complex variable. Springer-
Verlag New York [New York], 1973. ISBN 3540900624
0387900616 0387900624.

Dieleman, S. and Schrauwen, B. End-to-end learning for
music audio. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pp.
6964–6968. IEEE, 2014.

Dolson, M. The phase vocoder: A tutorial. Computer Music
Journal, 10(4):14–27, 1986.

Donahue, C., McAuley, J., and Puckette, M. Adversarial
audio synthesis. In Proc. of ICLR, 2019.

Engel, J., Resnick, C., Roberts, A., Dieleman, S., Norouzi,
M., Eck, D., and Simonyan, K. Neural audio synthesis
of musical notes with wavenet autoencoders. In Proc. of
ICML, pp. 1068–1077, 2017.

Engel, J., Agrawal, K. K., Chen, S., Gulrajani, I., Donahue,
C., and Roberts, A. GANSynth: Adversarial neural audio
synthesis. In Proc. of ICLR, 2019.

Fan, Z.-C., Lai, Y.-L., and Jang, J.-S. R. SVSGAN:
Singing voice separation via generative adversarial net-
work. In 2018 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 726–
730. IEEE, 2018.

Faulhuber, M. and Steinerberger, S. Optimal gabor frame
bounds for separable lattices and estimates for jacobi
theta functions. Journal of Mathematical Analysis and
Applications, 445(1):407–422, 2017.

45

Adversarial Generation of Time-Frequency Features

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Griffin, D. and Lim, J. Signal estimation from modified
short-time fourier transform. IEEE Transactions on
Acoustics, Speech and Signal Processing, 32(2):236–243,
1984.

Gröchenig, K. Foundations of Time-Frequency Analysis.
Appl. Numer. Harmon. Anal. Birkhäuser, 2001.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein GANs.
In Advances in Neural Information Processing Systems,
pp. 5767–5777, 2017.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. GANs trained by a two time-scale update
rule converge to a local nash equilibrium. In Advances in
Neural Information Processing Systems, pp. 6626–6637,
2017.

Holighaus, N., Dörfler, M., Velasco, G. A., and Grill, T. A
framework for invertible, real-time constant-Q transforms.
IEEE Transactions on Audio, Speech, and Language Pro-
cessing, 21(4):775–785, 2013.

Holighaus, N., Koliander, G., Průša, Z., and Abreu, L. D.
Characterization of analytic wavelet transforms and a new
phaseless reconstruction algorithm. Preprint, submitted
to IEEE Trans. Sig. Proc., 2019. URL http://ltfat.
github.io/notes/ltfatnote053.pdf.

Huang, S., Li, Q., Anil, C., Bao, X., Oore, S., and Grosse,
R. B. TimbreTron: A WaveNet (CycleGAN (CQT (Au-
dio))) pipeline for musical timbre transfer. In Proc. of
ICLR, 2019.

Janssen, A. From continuous to discrete Weyl-Heisenberg
frames through sampling. Journal of Fourier Analysis
and Applications, 3(5):583–596, 1997.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progressive
growing of GANs for improved quality, stability, and
variation. In Proc. of ICLR, 2018.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In Proc. of ICLR, 2015.

Le Roux, J., Kameoka, H., Ono, N., and Sagayama, S. Fast
signal reconstruction from magnitude STFT spectrogram
based on spectrogram consistency. In Proc. Int. Conf.
Digital Audio Effects, volume 10, 2010.

Lyons, L. A Practical Guide to Data Analysis for Physical
Science Students. Cambridge University Press, 1991.

Mallat, S. and Waldspurger, I. Phase retrieval for the cauchy
wavelet transform. Journal of Fourier Analysis and Ap-
plications, 21(6):1251–1309, 2015.

Marafioti, A., Perraudin, N., Holighaus, N., and Majdak, P.
A context encoder for audio inpainting. Preprint, sub-
mitted to IEEE TASLP., 2018. URL https://arxiv.
org/pdf/1810.12138.pdf.

Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S.,
Sotelo, J., Courville, A., and Bengio, Y. SampleRNN: An
unconditional end-to-end neural audio generation model.
In Proc. of ICLR, 2017.

Muth, J., Uhlich, S., Perraudin, N., Kemp, T., Cardinaux, F.,
and Mitsufuji, Y. Improving DNN-based music source
separation using phase features. In Joint Workshop on
Machine Learning for Music at ICML, IJCAI/ECAI, and
AAMAS, 2018.

Necciari, T., Holighaus, N., Balazs, P., Průša, Z., Majdak,
P., and Derrien, O. Audlet filter banks: A versatile analy-
sis/synthesis framework using auditory frequency scales.
Applied Sciences, 8(1:96), 2018.

Pascual, S., Bonafonte, A., and Serrà, J. SEGAN: Speech
enhancement generative adversarial network. In Proc. of
Interspeech, pp. 3642–3646, 2017.

Perraudin, N., Balazs, P., and Søndergaard, P. L. A fast
Griffin-Lim algorithm. In Applications of Signal Pro-
cessing to Audio and Acoustics (WASPAA), 2013 IEEE
Workshop on, pp. 1–4. IEEE, 2013.

Pons, J., Nieto, O., Prockup, M., Schmidt, E. M., Ehmann,
A. F., and Serra, X. End-to-end learning for music audio
tagging at scale. CoRR, abs/1711.02520, 2017. URL
http://arxiv.org/abs/1711.02520.

Portnoff, M. Implementation of the digital phase vocoder
using the fast fourier transform. IEEE Trans. Acoust.
Speech Signal Process., 24(3):243–248, 1976.

Průša, Z., Søndergaard, P. L., Holighaus, N., Wiesmeyr,
C., and Balazs, P. The Large Time-Frequency Analysis
Toolbox 2.0. In Sound, Music, and Motion, LNCS, pp.
419–442. Springer International Publishing, 2014. ISBN
978-3-319-12975-4. doi: 10.1007/978-3-319-12976-1\
25.

Pruša, Z. STFT and DGT phase conventions and phase
derivatives interpretation. Technical report, Acoustics
Research Institute, Austrian Academy of Sciences, 2015.

Průša, Z., Balazs, P., and Søndergaard, P. A noniterative
method for reconstruction of phase from STFT magnitude.
IEEE/ACM Transactions on Audio, Speech and Language
Processing, 25(5):1154–1164, 2017.

46

Adversarial Generation of Time-Frequency Features

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. In Proc. of ICLR, 2016.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Rad-
ford, A., and Chen, X. Improved techniques for training
GANs. In Advances in Neural Information Processing
Systems, pp. 2234–2242, 2016.

Shen, J., Pang, R., Weiss, R., Schuster, M., Jaitly, N., Yang,
Z., Chen, Z., Zhang, Y., Wang, Y., Skerry-Ryan, R.,
Saurous, R., Agiomyrgiannakis, Y., and Wu, Y. Natural
TTS synthesis by conditioning WaveNet on mel spectro-
gram predictions. In Proc. of ICASSP, 2018.

Sotelo, J., Mehri, S., Kumar, K., Santos, J. F., Kastner, K.,
Courville, A., and Bengio, Y. Char2wav: End-to-end
speech synthesis. In Workshop on ICLR, 2017.

Strohmer, T. Numerical algorithms for discrete Gabor expan-
sions. In Feichtinger, H. G. and Strohmer, T. (eds.), Gabor
Analysis and Algorithms: Theory and Applications, Appl.
Numer. Harmon. Anal., pp. 267–294. Birkhäuser Boston,
1998.

Strohmer, T. and Beaver, S. Optimal OFDM system de-
sign for time-frequency dispersive channels. IEEE Trans.
Comm., 51(7):1111–1122, July 2003.

Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., and
Kavukcuoglu, K. Wavenet: A generative model for raw
audio. CoRR abs/1609.03499, 2016.

Van Den Oord, A., Li, Y., Babuschkin, I., Simonyan, K.,
Vinyals, O., Kavukcuoglu, K., van den Driessche, G.,
Lockhart, E., Cobo, L., Stimberg, F., Casagrande, N.,
Grewe, D., Noury, S., Dieleman, S., Elsen, E., Kalchbren-
ner, N., Zen, H., Graves, A., King, H., Walters, T., Belov,
D., and Hassabis, D. Parallel WaveNet: Fast high-fidelity
speech synthesis. In Proc. of ICML, pp. 3918–3926, 2018.

Warden, P. Speech commands: A dataset for
limited-vocabulary speech recognition. arXiv preprint
arXiv:1804.03209, 2018.

Wexler, J. and Raz, S. Discrete gabor expansions. Signal
Processing, 21(3):207 – 220, 1990. doi: https://doi.org/
10.1016/0165-1684(90)90087-F.

47

Adversarial Generation of Time-Frequency Features

Supplementary Material

A. Detail of the the GAN architecture
Table 2 presents the details of the convolutional architecture
used by TFGAN-M and TFGAN-MTF. Here B = 64 is the
batch size.

Operation Kernel Size Output Shape
Generator

Input z N (0, 1) (B, 100)
Dense (100, 256s) (B, 256s)
Reshape (B, 8, 4, 8s)
DeConv 2D (Stride 2) (12, 3, 8s, 8s) (B, 16, 8, 8s)
LReLu (α = 0.2) (B, 16, 8, 8s)
DeConv 2D (Stride 2) (12, 3, 8s, 4s) (B, 32s, 16, 4s)
LReLu (α = 0.2) (B, 32s, 16, 4s)
DeConv 2D (Stride 2) (12, 3, 4s, 2s) (B, 64, 32, 2s)
LReLu (α = 0.2) (B, 64, 32, 2s)
DeConv 2D (Stride 2) (12, 3, 2s, s) (B, 128, 64, s)
LReLu (α = 0.2) (B, 32, 32, 2d)
DeConv 2D (Stride 2) (12, 3, s, c) (B, 256, 128, c)

Discriminator
Input (B, 256, 128, c)
Conv 2D (Stride 2) (12, 3, c, s) (B, 128, 64, s)
LReLu (α = 0.2) (B, 128, 64, s)
Conv 2D (Stride 2) (12, 3, s, 2s) (B, 64, 32, 2s)
LReLu (α = 0.2) (B, 64, 32, 2s)
Conv 2D (Stride 2) (12, 3, 2s, 4s) (B, 32, 16, 4s)
LReLu (α = 0.2) (B, 32, 16, 4s)
Conv 2D (Stride 2) (12, 3, 4s, 8s) (B, 16, 8, 8s)
LReLu (α = 0.2) (B, 16, 8, 8s)
Conv 2D (Stride 2) (12, 3, 8s, 16s) (B, 8, 4, 16s)
LReLu (α = 0.2) (B, 8, 4, 16s)
Reshape (B, 512s)
Dense (512s, 1) (B, 1)

Table 2. Detailed architecture of the Generative adversarial net-
work. Scale s = 64. Channels c = 1 for the magnitude network
and c = 3 for the network that also outputs the derivatives.

B. Listening test location
Figures 8 and 9 show the physical setup of the listening test,
including the sound booth and additional equipment.

C. Comparison to GANSynth:
A direct comparison between the results of the very recent
GANSynth architecture (Engel et al., 2019), which ob-
tained unprecedented audio quality for adversarial audio
synthesis, and TFGAN is not straightforward, since GAN-
Synth considers semi-supervised generation conditioned on
pitch, while we considered unsupervised generation to facil-
itate the comparison with WaveGAN. Further, the network
architecture (Karras et al., 2018) on which GANSynth is
built is significantly larger and more sophisticated than our

Figure 8. Inside of the sound booth used to perform the listening
test.

Figure 9. Sound booth from the outside with equipment for exter-
nal monitoring of ongoing tests.

DCGAN-derived architecture. The adaptation of TFGAN
to a comparable architecture and its application to semi-
supervised generation generation is planned for future work.
For now, we can only observe that a key ingredient of GAN-
Synth is the usage of the time-direction phase derivative,
which in fact corroborates our claim that careful modeling
of the structure of the STFT is crucial for neural generation
of time-frequency features. As discussed in Section 2.3, the
PLR method employed in GANSynth can be unreliable and
synthesis quality can likely be further improved if a more
robust method for PLR is considered. Audio examples for
different PLR methods are provided in the supplementary
material.

48

Adversarial Generation of Time-Frequency Features

D. Short-time Fourier phase conventions
In Section 2.2, we introduced the STFT in the so-called
frequency-invariant convention. This is the convention pre-
ferred in the mathematical community. It arises from the
formulation of the discrete STFT as a sliding window DFT.
There are various other conventions, depending on how the
STFT is derived and implemented. Usually, the chosen con-
vention does not affect the magnitude, but only the phase
of the STFT. When phase information is processed, it is
crucial to be aware of the convention in which the STFT
is computed, and adapt the processing scheme accordingly.
Usually, the conversion between conventions amounts to
the point-wise multiplication of the STFT with a predeter-
mined matrix of phase factors. Common phase conventions
and the conversion between them are discussed in (Dolson,
1986; Arfib et al., 2011). The 3 most wide-spread conven-
tions, the last of which is rarely described, but frequently
implemented in software frameworks, are presented here:

Frequency-invariant STFT: The m-th channel of the
frequency-invariant STFT can be interpreted as demod-
ulating the signal s with the pure frequency e−2πiml/M ,
before applying a low-pass filter with impulse response
g[−·]. Therefore, the phase is expected to change slowly
in the time-direction, it is already demodulated. The time-
direction phase derivative indicates the distance of the cur-
rent position to the local instantaneous frequency. On the
other hand, the evolution of the phase in frequency-direction
depends on the time position. Hence, the frequency-
direction derivative indicates the (absolute) local group de-
lay, sometimes called the instantaneous time.

Time-invariant STFT: Given by

STFTti
g(s)[m,n]

=

dLg/2e−1∑

l=−bLg/2c
s[l + na]g[l]e−2πiml/M ,

(12)

the time-invariant STFT can be interpreted as filtering the
signal s with the band-pass filters g[−·]e2πim(·)/M . Hence,
the phase is expected to revolve at roughly the channel cen-
ter frequency in the time-direction and the time-direction
phase derivative points to the (absolute) local instantaneous
frequency. In the frequency direction, however, the phase
in the frequency-direction changes slowly, i.e. it is demod-
ulated in the frequency-direction. The frequency-direction
phase derivative indicates the distance to the local instan-
taneous time. In each, the frequency- and time-invariant
STFT, the phase is demodulated in one direction, but moves
quickly in the other. In Section 2.3, we propose to use the
derivative of the demodulated phase in both directions, such
that we must convert between the two conventions. This

conversion is achieved simply by pointwise multiplication
of the STFT matrix with a matrix of phase factors:

STFTg(s)[m,n] = e−2πimna/M STFTti
g(s)[m,n]

=W [m,n] STFTti
g(s)[m,n].

(13)

Equivalently, if φg = arg(STFTg(s)) is the phase of the
frequency-invariant STFT and φti

g = arg(STFTti
g(s)), then

φg[m,n] = φti
g[m,n]− 2πimna/M .

Simplified time-invariant STFT: In many common
frameworks, including SciPy and Tensorflow, the STFT
computation follows neither the frequency- nor time-
invariant conventions. Instead, the window g is stored
as a vector of length Lg with the peak not at g[0], but at
g[bLg/2c]. The STFT is then computed as

STFTsti
g (s)[m,n] =

Lg−1∑

l=0

s[l + na]g[l]e−2πiml/M . (14)

The above equation is slightly easier to implement,
compared to the frequency- or time-invariant STFT, if
M ≥ Lg, since in that case, g ∈ RLg can simply be
zero-extended to length M , after which the following
holds: STFTsti

g (s)[·, n] = DFTM (s(n))[m], with s(n) =

[s[na]g[0], . . . , s[na+M − 1]g[M − 1]]T ∈ RM . Compar-
ing (12) with (14), we can see that the latter introduces a
delay and a phase skew dependent on the (stored) window
length Lg . In general, we obtain the equality

STFTsti
g (s)[m,n]

= e−2πimbLg/2c/M STFTti
g(s[·+ bLg/2c])[m,n].

(15)

If the hop size a is a divisor of bLg/2c, then we can convert
into a time-invariant STFT:

STFTti
g(s)[m,n+ bLg/2c/a]

= e2πimbLg/2c/M STFTsti
g (s)[m,n],

(16)

or equivalently φg[m,n + bLg/2c/a] = φti
g[m,n +

bLg/2c/a] − 2πim(na + bLg/2c)/M = φsti
g [m,n] −

2πimna/M . Note that, additionally, SciPy and Tensor-
flow do not consider s circularly, but compute only those
time frames, for which the window does not overlap the
signal borders, i.e., n ∈ [0, . . . , b(L− Lg)/ac]. If an STFT
according to the convention (14), with N time frames and
aligned with the time-invariant STFT is desired, the signal s
can be extended to length L+ Lg by adding bLg/2c zeros
before s[0] and dLg/2e zeros after s[L− 1].

49

50

Chapter 5

GACELA – A generative adversarial
context encoder for long audio
inpainting

This work was accepted for publication as

Marafioti, A. , Majdak, P., Holighaus, N., and Perraudin, N., "GACELA - A generative
adversarial context encoder for long audio inpainting" in IEEE/ACM Journal of Selected
Topics in Signal Processing, Special issue on reconstruction of audio from incomplete or
highly degraded observations.

The idea to combine the studies performed in Sec. 3 and 4 came from a collaboration
between all the authors. I studied and implemented the main improvements to the model
presented in this study. I, collaborating with the second author, designed, implemented,
and evaluated the listening tests. I had several discussions with the third and fourth
authors during all stages of the study which greatly influenced it. The manuscript was
written by me and revised by all other authors. I also designed and implemented the
accompanying website.

1

GACELA
A generative adversarial context encoder for

long audio inpainting of music
Andrés Marafioti, Piotr Majdak, Nicki Holighaus, and Nathanaël Perraudin

Abstract—We introduce GACELA, a conditional generative
adversarial network (cGAN) designed to restore missing audio
data with durations ranging between hundreds of milliseconds
and a few seconds, i.e., to perform long-gap audio inpainting.
While previous work either addressed shorter gaps or relied on
exemplars by copying available information from other signal
parts, GACELA addresses the inpainting of long gaps in two
aspects. First, it considers various time scales of audio infor-
mation by relying on five parallel discriminators with increasing
resolution of receptive fields. Second, it is conditioned not only on
the available information surrounding the gap, i.e., the context,
but also on the latent variable of the cGAN. This addresses
the inherent multi-modality of audio inpainting for such long
gaps while providing the user with different inpainting options.
GACELA was evaluated in listening tests on music signals of
varying complexity and varying gap durations from 375 ms
to 1500 ms. Under laboratory conditions, our subjects were
often able to detect the inpainting. However, the severity of
the inpainted artifacts was rated between not disturbing and
mildly disturbing. GACELA represents a framework capable
of integrating future improvements such as processing of more
auditory-related features or explicit musical features. Our soft-
ware and trained models, complemented by instructive examples,
are available online.

I. INTRODUCTION

Audio signals frequently suffer from undesired localized
corruptions. These corruptions can be a product of issues
during the recording, packet-loss in transmission, or a faulty
storage such as a scratched vinyl record. Although the cor-
ruptions may have different causes, the study of their removal
can be unified as the restoration of localized lost informa-
tion, usually called audio inpainting [1]. This restoration has
also been referred to in the literature as audio interpolation
and extrapolation [2], [3], or waveform substitution [4]. For

Manuscript received on May 2020;
Andrés Marafioti, Piotr Majdak, and Nicki Holighaus are with the Acoustics

Research Institute, Austrian Academy of Sciences, Wohllebengasse 12–14,
1040 Vienna, Austria.

Nathanaël Perraudin is with the Swiss Data Science Center, ETH Zürich,
Universitätstrasse 25, 8006 Zürich

Accompanying web page with sound examples and code:
https://tifgan.github.io/gacela/.
We specially thank Michael Mihocic for running the experiments at the
Acoustics Research Institute’s laboratory during the coronavirus pandemic as
well as the subjects for their participation.
We thank the reviewers and the editor for their review and their helpful
suggestions. This work has been supported by Austrian Science Fund (FWF)
project MERLIN (Modern methods for the restoration of lost information
in digital signals;I 3067-N30). We gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Titan X Pascal GPU used for
this research.

corruptions shorter than fifty milliseconds, the goal of audio
inpainting algorithms has been to recover the lost information
exactly [5]. But as the corruptions affect longer periods of
time, that goal becomes unrealistic. For long corruptions, audio
inpainting algorithms attempt to reduce the damage by prevent-
ing audible artifacts and introducing new coherent information.
The new information needs to be semantically compatible, a
challenging task for music, which often has a strict underlying
structure with long dependencies. Previous work [6] tried
to exploit this structure by repurposing information already
available in the signal instead of generating new information.
This approach has obvious downsides as it expects music
to have repetitions and it usually modifies the length of the
corruption. Others [7] have proposed methods that do generate
new information, but aim at exact reconstruction and therefore
fail to generalize for corruptions approaching or exceeding one
hundred milliseconds.

In this contribution, we introduce GACELA, a novel audio
inpainting algorithm that generates new information and is
specifically designed to address corruptions in the range be-
tween hundreds of milliseconds and seconds. In particular, we
study GACELA for the reconstruction of musical signals, i.e.,
a mix of sounds from musical instruments organized in time.
Further, we assume that areas of lost information are separated
in time, such that the local information surrounding the gap,
the context, is reliable and can be exploited. GACELA relies on
a conditional generative adversarial network (cGAN) [8], [9],
[10] with a Wasserstein loss [11] conditioned on the encoded
context information. We refer to the generator of GACELA
as a context encoder following [12], [7]. GACELA aims at
generating content that matches the sound characteristics and
respects the semantic cohesion of the available context. In this
contribution, we explain our design choices and we provide a
thorough evaluation of GACELA to determine factors with
the largest potential for future improvement. Our software
and trained models, complemented by instructive examples,
is available at https://tifgan.github.io/gacela/.

A. Related audio-inpainting algorithms

Adler et al. first used the term “audio inpainting” to describe
a large class of inverse problems in audio processing [1].
However, they mostly studied the restoration of gaps in audio
signals. In general, audio inpainting problems are concerned
with restoring audio in situations where chunks of data are

51

2

missing. The missing data takes the form of gaps in the time-
domain or in some feature representation.

The characteristics of the gaps, such as their lengths, their
amount and the type of corruptions in them are manifold.
In declicking and declipping, for example, corruptions are
frequent, they only have a duration of a few milliseconds or
less and are mostly confined to disconnected time-segments.
They serve as primary examples for inpainting of short gaps.
On the other hand, gaps may have a length of hundreds of
milliseconds or even seconds, e.g., when reading partially dam-
aged physical media, in live music recordings when unwanted
noise originating from the audience needs to be removed, or in
audio transmission with a total loss of the connection between
transmitter and receiver lasting for seconds. We refer to such
cases as inpainting of long gaps.

Inpainting of short gaps has been explored by various
research groups, expanding on [1], where a framework based
on orthogonal matching pursuit (OMP) was proposed. These
works rely on exploiting time-frequency (TF) sparsity [13],
[14], [15], [5] or structured sparsity [16], [17], [18]. As
discussed in [5], such methods do not extend well to longer
gaps, see also [19] for a recent study of sparsity-based audio
inpainting. Other methods for short gap inpainting and relying
on TF representations employ, e.g., a regression model [20],
or nonnegative matrix and tensor factorization [21], [22], [23].
More recently, a powerful framework has been proposed for
various audio inverse problems [24] including time-domain
audio inpainting, source separation [25], and declipping [26]
even in a multichannel scenario [27].

Interpolation algorithms based on linear prediction coding
(LPC) [28] are flexible enough to cover various gap lengths,
but pose strong assumptions on stationarity of the distorted sig-
nal [29], [3], [30]. Nonetheless, they outperform the aforemen-
tioned short gap methods on gap durations above 50 ms [5].
Despite a recent contribution by the authors proposing a neural
context encoder to perform inpainting of medium duration
gaps [7], [31], LPC is still, in our opinion, amongst the most
promising methods for inpainting medium duration gaps.

For inpainting long gaps, exceeding several hundred mil-
liseconds, recent contributions have been proposed to leverage
repetition to determine a promising reliable segment from
uncorrupted portions of the input signal. Such methods achieve
reconstruction by copying the determined segments into the
gaps. They do not claim to restore the missing gap perfectly,
instead they target plausibility of the proposed solution. For
example, exemplar-based inpainting was proposed based on a
graph encoding spectro-temporal similarities within an audio
signal [6]. Other examples of long gap audio inpainting by
means of exemplars include [32], [33], [34], [35], [36]. Not
aiming for accurate recovery of the missing information, but
instead for a plausible solution, computational criteria based on
numerical comparison to a reference, such as signal-to-noise
ratio, spectral convergence, or objective difference grade are
ill-suited for assessing the quality of long gap inpainting.

Starting around 2019, several groups of researchers have
attempted to tackle the audio inpainting problem using deep

neural networks and TF representations. In [37], spectrogram
inpainting from combined audio and video information is
proposed, while [38] considers inpainting of TF masked speech
data. The context encoder presented in [7], [31] is specifically
targeted to medium duration gaps. Generally speaking, deep
audio inpainting seems to be a particularly tough instance of
conditioned deep neural audio synthesis, since the conditioning
only contains indirect information about the content to be
generated, which nonetheless needs to be seamlessly inserted
into the existing reliable audio.

B. Related deep-learning techniques / audio synthesis with ML

There have been many attempts to synthesize audio using
neural networks. However, neural audio synthesis remains a
challenging task because of the presence of complex structures
with dependencies on various temporal scales. Neural audio
synthesizers are often conditioned to reduce the dependencies
on larger temporal scales [39], [40], but even then the networks
that finally synthesize the signal are fairly sophisticated [41],
[42], [43], [44], [45]. This can be partially explained by these
networks modeling audio as a time representation with a high
temporal resolution; audio time signals usually have at least
16,000 samples per second. In contrast, when modeling audio
as a TF representation, the temporal resolution is a parameter
of the model. In fact, TF representations of audio are widely
applied to neural networks, e.g., for solving discriminative
tasks, in which they outperform networks directly trained on
the waveform [46], [47], [48]. TF representations are also
commonly chosen to condition neural synthesizers [49], [50],
e.g., Tacotron 2 [51] relies on non-invertible mel-frequency
spectrograms and Timbretron [52] relies on the constant-Q
transform. In those cases, the generation of a time-domain
signal from the TF coefficients is then achieved by training
a conditional neural synthesizer to act as a vocoder. Despite
recent improvements in neural synthesizers modeling audio
in the TF domain [53], [54], [55], the state-of-the-art neural
synthesizers still model audio in the time domain.

We can obtain valuable insights on the design of a neu-
ral synthesizer for audio inpainting from music synthesizers.
Modeling music has proven particularly difficult due to a
wide range of timescales in dependencies from pitch and
timbre (short-term), through rhythm (medium-term) to song
structure (long-term) [56], [40]. The long-range dependencies
can be addressed by synthesizing music in multiple steps.
Different features have been proposed as intermediate rep-
resentations [57], [58], [59], with a common symbolic one
being MIDI [60], [56], [61]. Conditioning neural synthesizers
with neurally generated MIDI has many advantages: 1) it
is analogous to the discrete structure embedded in music’s
generative process, in the words of [56]: ”a composer creates
songs, sections, and notes, and a performer realizes those
notes with discrete events on their instrument, creating sound“.
2) MIDI is easy to interpret and modify. Users can interact
with MIDI pieces generated from a network before the neural
synthesizer plays them. However, MIDI has a major drawback:
in order to learn from it, one needs large-scale annotated

52

MARAFIOTI, MAJDAK, HOLIGHAUS, AND PERRAUDIN: GACELA - A GENERATIVE ADVERSARIAL CONTEXT ENCODER FOR LONG AUDIO INPAINTING 3

datasets. For piano music, [56] addressed this by creating such
a dataset, but for general music we have not found a suitable
dataset.

II. THE INPAINTING SYSTEM: GACELA

Our generative adversarial context encoder (GACELA) tar-
gets music inpainting of long gaps, i.e., in the range between
hundreds of milliseconds and seconds. In this range, there are
usually multiple plausible solutions for music inpainting and
we consider the task as multimodal. For example, on a gap
where originally a single chord was played, there could be
several other chords that fill in the gap while still sounding
plausible. For each chord there are even several variations:
different intensities or onsets for each note. The multi-modality
present at this range needs to be taken into account to
model the task. Considering that a standard regression loss
models a unique solution, it would lead to an average of
the possible solutions and it is a bad fit for the task at this
range. To solve this challenge, we model the task with a
Wasserstein cGAN [11], which is able to model the distribution
of possible gap replacements instead of producing a single
candidate. cGANs rely on two competing neural networks
trained simultaneously in a two-player min-max game: The
generator produces new data conditioned on both real data and
samples of a random variable; The discriminator attempts to
distinguish between the combination of the conditioning data
and either the generated or the real data. During the training,
the generator’s objective is to fool the discriminator, while the
discriminator attempts to learn a better classifier for real and
generated (fake) data.

An overview of our end-to-end audio generation is presented
in Fig. 1. As in [7], we consider the audio signal s consisting
of the gap sg and the context signals before and after the gap,
sb and sa, respectively. The signal s is transformed into mel-
scale TF spectrograms (mel spectrograms) and unreliable time
frames, i.e., those that have nonnegligible overlap with the
gap, are discarded. The remaining mel coefficients form the
preceding context Sb and succeeding context Sa. After further
dimensionality reduction, the contexts serve to condition the
generator. The output of the generator is a log-magnitude
STFT Sg , from which an audio signal is synthesized using
established methods for phaseless reconstruction.

The proposed adversarial context encoder is comprised of
a generator network and five discriminator networks, which
consider the (generated or real) audio content in the gap
region and its context at different scales. Each discriminator
receives the generated (or real) gap data, as well as different
amounts of context, encoded either as log-magnitude short-
time Fourier coefficients or mel spectrograms, depending on
the scale of the considered context. The discriminators do
not receive pairs of real and inpainted signals to compare,
but a mixture of signals from both classes. This discourages
GACELA from performing an exact reconstruction of the lost
information. The generator, a context encoder conceptually
split into two identical encoder networks and one decoder
network, is conditioned on the real context data encoded as

mel spectrograms. To date, several formulations of conditional
architectures have been proposed [10], [8], [9]. In this contribu-
tion, we opt to condition solely on the close-range context, i.e.,
few seconds of TF audio data preceding and succeeding the
gap. Converting the time-domain audio into a log-magnitude
TF representation partially addresses the problem of the range
of time-dependencies, since a large number of audio samples
are represented by a small number of time frames in the TF
representation. Hence, all audio data is transformed into, and
represented by, log-magnitude short-time Fourier spectrograms
and sometimes further processed into mel spectrograms [62].
The latter is the de-facto standard for a perceptually motivated
dimensionality-reduced TF representation and is well-suited
as a basic encoding for larger scale conditioning data, when
reduced precision is sufficient or even desired. The former
on the other hand provides a redundant, highly detailed and
interpretable representation of audio from which the source
signal can be reconstructed in excellent quality by means of
recent algorithms for phaseless reconstruction [63], [64], [65],
[66].

The software was implemented in PyTorch [67] and is
publicly available, as well as every trained model discussed
here.1 The models were trained for 7 days or 400 thousand
steps on an Nvidia Titan X Pascal GPU. At inference time,
GACELA’s generator requires 14 ms to produce a batch of
64 750 ms gaps at a sampling rate of 22.05 kHz. The audio
processing blocks described in the next subsection are com-
puted using the Tifresi package [68]. For computing the STFT
and mel representations, Tifresi depends on LTFATpy [69] and
librosa [70], respectively.

A. Processing stages
In addition to the network architecture, the proposed

training- and generation-time pipelines require some simple,
fixed signal processing blocks to transform the data at various
points in the processing chain.
• STFT: Computes the log-magnitude STFT spectrogram

of the input audio waveform. Optionally, the STFT phase
can be stored for later use. In the provided implementa-
tion, all STFTs are computed using truncated Gaussian
windows with a hop size of a = 256 and M = 1024
frequency channels, following the guidelines proposed
in [54], leading to a representation with redundancy
M/a = 4.

• ISTFT: Given a log-magnitude STFT and matching
STFT phase, the ISTFT block performs STFT inversion.
Inversion is matched to the STFT block in the following
sense: When log-magnitude and phase input equal the
output of STFT, the waveform output of ISTFT equals the
waveform input of STFT. See [71], [72], [73] for more
information on how to invert redundant STFTs.

• PGHI: Constructs a candidate phase for a given log-
magnitude STFT spectrogram by means of phase gradient
heap integration [63]. The output phase can be combined
with the input spectrogram for use with ISTFT.

1www.github.com/tifgan/GACELA

53

4

MEL MEL

ISTFT PGHI

TA 4

sb
sg

sa Sb Sa

Sg

Encoder

Encoder Decoder

Latent
variable

Generator

TA 4

Discriminators Training

Generation

STFT

Fig. 1. Overview of the end-to-end audio generation system. STFT represents a short-time Fourier transform, MEL transforms the spectrograms onto the
mel-scale, TA 4 time-averages every 4 successive time frames. PGHI refers to phase construction by means of phase gradient heap integration, which extends
the phase from the real context into the generated spectrogram. At training time, the generator output is forwarded to the discriminators. During generation,
an audio waveform is generated by processing the output with the PGHI and ISTFT blocks, the latter computing an inverse short-time Fourier transform.

• MEL: Computes a mel-scale spectrogram from a given
log-magnitude STFT spectrogram. In the provided imple-
mentation, all mel spectrograms are set to have 80 filters
covering frequencies from 0 Hz to 22.05 kHz.

• Time-Averaging (TA X): Reduces the time dimension
of a log-magnitude STFT spectrogram or MEL spectro-
gram by a factor of X , where X is a positive integer.
Dimensionality reduction is achieved by averaging every
X successive time frames of the input spectrogram.

At generation time, the audio processing blocks are used
to preprocess the generator’s input. During audio synthesis,
they are used to post-process the generator’s output as shown
in Figure 1. During training, the discriminator’s input is
preprocessed as well, as shown in Figure 2.

We use PGHI [63] over competing phaseless reconstruction
algorithms such as Griffin-Lim [74] or LeRoux’s weighted
least squares [66] for various reasons: PGHI is non-iterative,
highly efficient and often outperforms other algorithms in
terms of perceptual reconstruction quality, sometimes even
significantly [63], [75], [64].

B. The adversarial context encoder

Generator: The overall structure of the generator is shown
in Fig. 1. The preceding and succeeding contexts are each
provided to their associated encoder network after passing
through the preprocessing chain, consisting of an STFT block,
followed by a MEL and TA 4 block. Both encoders share
the same architecture: 4 convolutional layers with stride 2
and ReLU activations. Parameters are not shared between the
encoders. Both encoder outputs and a realization of the latent
variable are concatenated and passed to the decoder. The latent
variable is a random point drawn from a 128-dimensional
uniform distribution. The decoder itself is comprised of a fully-
connected layer with output size 8192, followed by 4 trans-

posed convolution layers with stride 2, further 2 convolutional
residual layers and a final transposed convolution layer. The
decoder output has exactly the shape of the gap in the original
log-magnitude STFT spectrogram and is interpreted as log-
magnitude STFT coefficients for the purpose of synthesis and
propagation through the discriminators.

Discriminators: We adapt the multi-scale architecture from
[76] to TF representations, with five discriminators operating
on five different time scales and two different frequency rep-
resentations. In the audio domain, multiple discriminators op-
erating on different scales have successfully been used as well
[43], where the authors directly process time-domain audio.
In the proposed architecture, all discriminators are supplied
with TF spectrograms and the receptive field is increased by
a factor of two between successive discriminators, see Fig. 2.
Every discriminator has five convolutional layers with stride 2.
While the first two discriminators, with smaller receptive field,
process log-magnitude STFT spectrograms directly, further
discriminators process mel coefficients. Since the increased
receptive field is achieved by time-averaging, the number of
input time frames is equal for all discriminators. On the other
hand, the input mel spectrograms supplied to discriminators 3
through 5 possess a reduced number of frequency channels,
such that these discriminators were allocated 4 times less
channels in every convolutional layer. The number of discrim-
inators Nd determines the amount of context information that
is considered by GACELA and which needs to be encoded by
its generator. The first discriminator’s receptive field covers
the full generated gap (Sg) and every successive discriminator
has twice the receptive field of the previous one. Therefore, the
generator needs to encode a context of size 2Nd−1 ·width(Sg).
In this structure, increasing the number of discriminators
exponentially increases the amount of context conditioning the
generator. In our work, five discriminators yielded promising

54

MARAFIOTI, MAJDAK, HOLIGHAUS, AND PERRAUDIN: GACELA - A GENERATIVE ADVERSARIAL CONTEXT ENCODER FOR LONG AUDIO INPAINTING 5

MEL

TA 4

-

D3

TA 8 TA 16TA 2

D2 D4 D5D1

Fig. 2. Overview of the multi-scale discriminator architecture. D1-D5
represent the individual discriminators. The different receptive fields of the
discriminators are marked in colors. The center, marked with red lines, is the
input of the first discriminator and contains only the generated or real gap.

results.

III. EVALUATION METHODS

The main objective of the evaluation is to determine to
which extent our system can restore localized corruptions in
different types of musical signals. We want to determine 1)
the effect of the complexity level of the musical signal on
the inpainting performance and 2) the effect of the gap length
on the inpainting performance. To address the first item, we
built five different datasets of musical signals with increasing
complexity from two types of audio signals: audio synthesized
from MIDI files and recorded from physical instruments. For
the second item, the system was trained with an inserted gap
size of either 375ms, 750 ms or 1,5 s. For these two tests, we
evaluated the inpainting quality by means of listening tests.

The second objective of the evaluation is to better under-
stand how the system performs the inpainting to facilitate im-
proving it in the future and to gain insight for the development
of other similar systems. Since our system relies on PGHI for
phase reconstruction, we evaluated the impact of PGHI on the
audio inpainting. Further, we investigate the influence of the
latent variable on the generator and the processing of context
data by the encoder. Finally, we compare our method to the
one presented in [6].

A. Complexity levels

We expect the success of our method to be correlated to
the complexity of the music it is trained on. We verified

this hypothesis with listening tests. To do so, we trained the
method on different datasets with increasing complexity. The
first two datasets were synthesized from MIDI data using
pretty midi [77], specifically it’s fluidsynth API. We generated
just one instrument and set that instrument to the piano
program 1 so that the whole dataset would have the same
sound complexity and to reduce the variability in the datasets.
In total, we trained networks with five complexity levels, out
of which four surpassed an initial informal evaluation, such
that they were considered for the listening tests. Therefore,
we tested 4 complexity levels, with 3 conditions per case, and
12 songs, giving us a total of 144 stimuli per block for this
test.

1) Simple midi. The simplest case we handled was
‘hand-written’ MIDI data. Here, the MIDI annotations have
little variation since they are written down by humans on a
quantized structure. For this case, we used the Lakh MIDI
dataset [78], a collection of 176,581 unique MIDI files, 45,129
of which have been matched and aligned to entries in the
Million Song Dataset [79]. The Lakh MIDI dataset was gener-
ated with the goal of facilitating large-scale music information
retrieval, both symbolic (using the MIDI files alone) and audio
content-based (using information extracted from the MIDI files
as annotations for the matched audio files).

2) Midi recorded from human performances. For the
second complexity level, we used MIDI data that was extracted
from performances on a piano. Here, the added complexity
is the lack of a strict musical structure such as the quan-
tized tempo at level 1. For this case, we used the Maestro
dataset [56], containing over 200 hours of paired audio and
MIDI recordings from ten years of International Piano-e-
Competition. In this competitions, virtuoso pianists perform
on Yamaha Disklaviers which, in addition to being concert-
quality acoustic grand pianos, utilize an integrated high-
precision MIDI capture and playback system. The MIDI data
includes key strike velocities and sustain/sostenuto/una corda
pedal positions. The repertoire is mostly classical, including
composers from the 17th to early 20th century.

3) Audio recordings of piano performances. For the third
complexity level, we used real recorded performances of grand
pianos. These are the same pieces from the second complexity
level. This level adds the sound complexity of a real instrument
compared to a simple midi synthesized sound.

4) Free music. For the fourth level of complexity, we
wanted to test the system on a broader scenario including
a more general definition of music. On this level, the added
complexity is the interaction between several real instruments.
To remove some variation from the dataset, we trained the
network on a single genre, in this case either rock or electronic
music (for the listening test we only used rock samples). For
this complexity level, we used the free music archive dataset
(FMA, [80]), particularly, a subset we generated by segmenting
the ‘small’ dataset by genre. FMA is an open and easily
accessible dataset, usually used for evaluating tasks in musical
information retrieval. The small version of FMA is comprised
of 8,000 30-s segments of songs from eight balanced genres

55

6

sampled at 44.1 kHz.

B. Gap durations

We expect the success of our method to be correlated to
the length of the gap. To verify this hypothesis, we trained
different networks on different gap lengths and evaluated them
with listening tests. We kept the network structure as fixed as
possible, such that Fig. 2 still applies to every network trained
for this experiment. The selected gap lengths were either 372
ms, 743 ms or 1486 ms. Since we expect the effect of the gap
length to be independent from the effect of the complexity
of the music, we trained all networks on the third complexity
level: real piano recordings. To evaluate the effect of the gap
durations on the inpainting performance, we included two
additional conditions to the listening tests2.

C. Objective difference grade (ODG)

In order to evaluate the influence of the phase reconstruction
algorithm, PGHI, we computed the objective difference grade
(ODG, [81]), which corresponds to the subjective difference
grade used in human-based tests, derived from the perceptual
evaluation of audio quality. ODG ranges from 0 to −4 with
the interpretation shown in Tab. I; it was computed using the
implementation provided with [82]. In our evaluation, ODG
was calculated on signals with the phase in the gap discarded
and reconstructed using PGHI.

ODG Impairment
0 Imperceptible
-1 Perceptible, but not annoying
-2 Slightly annoying
-3 Annoying
-4 Very annoying

TABLE I
INTERPRETATION OF ODG.

D. Listening tests

We performed listening tests to determine the effects of the
complexity level and the gap length on the inpainting perfor-
mance. Note that a computational assessment of the inpainted
quality by means of, e.g., ODG, was not feasible because
ODG and other similar methods compare to a reference. Our
inpainting results, however, are expected to be different, for
which ODG would output grades in the range of “annoying”
or worse for all inpaintings. Here, we are interested in the
severity of the artifact even when the inpainted information is
different than the original one.

Subjects. Candidates completed a self-assessment question-
naire about their music listening habits. For the evaluation,
only candidates who listened to at least 4 hours of music per
week were considered. In total, eight subjects were selected
for the test. They were paid on an hourly basis. Before the

2For this test, we did not need to include an additional 60 stimuli since the
743 ms gaps, the clicks, and the real signals were already considered on the
complexity level.

experiment, the subject was informed about the purpose and
procedure of the experiment and five exemplary files were
presented: 1) a sound with a gap, 2) the same sound with
a click, 3) the same sound with a poor reconstruction, 4) the
same sound with a good but detectable reconstruction, and 5)
the original sound. Any questions with respect to the procedure
were clarified.

Apparatus. The tests were conducted in a sound-attenuating
chamber of the Acoustics Research Institute (ARI). The stimuli
were generated on a personal computer connected to a sound
interface (Fireface UC, RME GmbH) and presented to the
listener via headphones (HDA 200, Sennheiser Inc.) driven by
a headphone amplifier (hp-1, Sonible GmbH). The responses
were collected via touch screen mounted on a display (ProLite
T1930SR-B1, Iiyama Inc). A custom-made software frame-
work (ExpSuite, ARI/Austrian Academy of Sciences) was used
to control the experiment.

Task. The task was similar to that from [6]. In each trial,
the subject listened to a sound stimulus and was asked to pay
attention to a potential artifact. A slider scrolled horizontally
while the sample was played indicating the current position
within a stimulus. The subject was asked to tag the artifact’s
position by aligning a second slider with the beginning of
the perceived artifact. Then, while listening again to the same
stimulus, the subject was asked to confirm (and re-align if
required) the slider position and answer the question “How
poor was it” The possible answers were: (0) no issue (“Kein
Fehler”), (1) not disturbing (“Nicht störend”), (2) mildly
disturbing (“Leicht störend”), and (3) not acceptable (“Nicht
akzeptabel”). Then, the subject continued with the next trial
by tapping the “next” button.

Conditions. Three conditions were tested: inpainted, clicked
and reference (original). For the inpainted condition, the song
was corrupted at a random place with a gap and then recon-
structed with our method. The reconstructed song was cropped
2 to 4 seconds (randomly varying) before and after the gap
resulting in samples of 4.4 to 9.5 seconds duration. For the
reference condition, the same cropped segment was used. The
reference condition did not contain any artifact and was used to
estimate the sensitivity of a subject. For the click condition, a
click was superimposed to the cropped segment at the position
where the random gap started. The artifact in this condition
was used as a reference artifact and was clearly audible.

Across our datasets, the differences between songs are larger
than in a single song, so we do not test the same song more
than once. Instead, for each test 12 songs were used. The
combination of complexity levels and gap lengths described in
the remainder of this section resulted in a block of 168 stimuli.
All stimuli were normalized in level. Within the block, the
order of the stimuli and conditions was random. Each subject
was tested with two blocks, resulting in 336 trials per subject
in total. Subjects were allowed to take a break at any time,
with two planned breaks per block. For each subject, the test
lasted approximately three hours.

56

MARAFIOTI, MAJDAK, HOLIGHAUS, AND PERRAUDIN: GACELA - A GENERATIVE ADVERSARIAL CONTEXT ENCODER FOR LONG AUDIO INPAINTING 7

Complexity level ODG (PGHI) ODG (Click)
1) Simple MIDI -0.109 -3.286
2) Recorded MIDI -0.125 -3.091
3) Recorded piano -0.231 -3.503
4) Free music -0.618 -1.732

TABLE II
MEAN ODG OF PGHI ACROSS 64 SONGS FOR DIFFERENT DATASETS

IV. RESULTS

A. Impact of the phase reconstruction

In order to assess the impact of the phase reconstruction
on the inpainting quality, we evaluated the ODG of the real
signals against signals which consisted of unaltered magnitude
coefficients and PGHI applied only to recover the phase on the
gap. This way, we were able to estimate the impact the PGHI
will have for an output of the network that does not introduce
problems at the STFT level. Additionally, since we apply ODG
to the full signals used on the listening tests, we also compute
ODG for the click signals, to confirm that ODG is sensitive
to localized distortions.

The mean ODG obtained for 64 songs in the datasets used
for the listening tests for both PGHI applied to the phase
coefficients in the gap and a click applied at the beginning
of the gap is presented in Table II. From this, we can see
that on the two MIDI datasets and the maestro recordings, the
effect of PGHI would be very hard for listeners to detect, and
even then it would not be annoying. On the other side, the
click would always be easy to detect and annoying. For the
most complex dataset, i.e., free music, the influence of PGHI
was between imperceptible and perceptible but not annoying,
and the influence of the click was perceptible and between
not annoying and slightly annoying. This indicates that for the
considered datasets, the effect of PGHI on the overall quality
of the results will be small.

B. Effect of the latent variable

We condition the generator not only on the encoded context,
but also on the latent variable, a random variable drawn from
a uniform distribution. We expect different realizations of the
random variable to output different solutions for the task.
However, this might not be the case: It has been reported
that cGANs with strong conditioning information do not rely
heavily on the additional noise input distribution [83], [84],
[43]. In order to evaluate whether the generator output changes
depending on the latent variable, we generate, for the same
context drawn from the complexity level 3, several different
outputs, only changing the latent variable realization.

The mean and standard deviation of the generated spectro-
grams for eight different samples from the latent variable and
eight different contexts from the maestro dataset are shown
in Fig. 3. We can see here that the mean is not completely
blurred, but the standard deviation is not small. This indicates
that the output does not change drastically with the different
samples from the latent variable, but there is still significant
variation. Going into more singular cases, in Fig. 4, we can

Fig. 3. Top: Each column represent the mean of 8 generated gaps drawing
different samples from the latent variable and keeping the context fixed.
Bottom: Standard deviation of those 8 gaps.

Fig. 4. Every two columns separated with red lines show two different outputs
of the system for the same contexts and different samples from the latent
variable.

see 4 pairs of gaps generated with 4 contexts and different
realizations of the latent variable. On these, the differences on
the spectrograms are clear and exemplify what we observed by
analyzing a larger batch of examples. Differences can manifest,
e.g., changes to the intensity with which some notes are played
or modified chord sequences. Additionally, in our website3 we
provide sound samples for the examples from Fig. 4. These
sound samples are clearly distinguishable from one another.

C. Attention of the encoder

Our system encodes the context of the lost information in
order to use it as conditioning for a generative network. A key
variable here is how much context is encoded by the system
since the amount of context is proportional to the computation

3https://tifgan.github.io/gacela/

57

8

Fig. 5. Top is input spectrograms for the encoder (after time and mel average)
and bottom is the encoder output averaged across channels.

Fig. 6. Top left is input spectrograms for the encoder (after time and mel
average). Others are channels for the output of the encoder.

time. Therefore, we evaluate how the context is being exploited
by the network; we provide the encoder with different contexts
drawn from the complexity level 3 and analyze the output it
produces. Since the encoder is comprised only of convolutional
layers, and convolution is translation equivariant, the encoder
outputs preserve the localization of the information. Hence by
analyzing the output, we know which part of the input mel-
spectrogram was encoded for the network to decode a solution
for the gap. Fig. 5 shows different spectrograms that were
given as input to the encoder before the gap and the average
encoded output across channels. The sparse nature of the code
tells us that the encoder puts its attention mostly on the two
encoded time bins adjacent to the gap. In the time-domain, this
corresponds to roughly 1.4 seconds of audio content, when the
full context represents 5.6 seconds. While not displayed, the
situation is symmetric for the post-gap encoder. Fig. 6 shows
different channels of the encoders output for one particular
input. We observe here that even though the mean is focusing
on the information closer to the gap, the rest of the mel-
spectrogram is still useful and encoded.

D. Comparison to the similarity graph algorithm.

Even though both the similarity graph algorithm (SGA) and
our method inpaint gaps of audio content in a similar range,
they rely on very different conditions: a) SGA should have
sufficient material to compute the similarity graph on and find
a suitable solution, e.g., a full song. In contrast, the neural
network only takes a few seconds of audio context. b) SGA
does not require any training and can adapt to multiple datasets
and gap lengths, while our network needs hours of re-training

for each new type of music and (currently) target gap length.
c) SGA may modify the length of the gap, as well as the total
length of the song and some uncorrupted audio content at the
border of the gap. Our method only replaces the corrupted
portion of the song. d) Once trained, filling the gap using the
network is computationally more efficient than SGA.

Since the conditions for both methods are so different, they
suffer from different drawbacks. SGA always fills the gap with
content that has the same audio quality as the rest of the piece,
since it fills the gap with content from the piece. However,
the two transitions between the borders around the gap can be
unnatural if the algorithm picks an unsuitable gap replacement.
Furthermore, this selection relies crucially on the existence of a
good replacement in the current song. Eventually, SGA results
can be erratic with the reconstruction being either very good or
relatively poor with a good/poor ratio depending highly on the
specific piece of music it is applied to. Our network is limited
differently as it can only access a few seconds of information
around the gap and only works on the type of data it has been
trained on. Therefore, the perceived disturbances in the gap
reconstruction are different from SGA. In general, the quality
of the reconstruction is more uniform and the transitions are
not the main source of artifacts.

Under these considerations, a comparison to SGA in terms
of listening tests is outside of the scope of this contribution.
There are conditions for which SGA provides an optimal
solution: A localized corruption within a repetitive song, where
the solution does not need to be computed quickly and a
change in song duration is unproblematic. On the other side,
our method can handle other conditions such as streamed
signals where the full content is not available, signals that
present repetitive corruptions in intervals such that long context
is not available, or signals without repetition. Nevertheless, we
applied our method trained on the complexity level 4 to the
rock songs used for the listening tests in [6] and provide them
on the webpage4.

E. General perceptual impact: detection and severity.

Detection results are shown in the left panel of Fig. 7. The
average detection rates for the click, inpainting, and reference
conditions were 99.9±0.4%, 84.7±9.3%, and 15.6±7.3%, re-
spectively. The almost perfect detection rate and small variance
in the click condition demonstrates a good attention of our
subjects, for whom even a single click was clearly audible. The
clearly non-zero rate in the reference condition shows that our
subjects were highly motivated to find artifacts. The detection
rate in the inpainted condition was between those from the ref-
erence and click conditions. Note that the reference condition
did not contain any artifacts, thus, the artifact detection rate in
that condition is here referred to as the false-alarm rate. The
large variance of the false-alarm rate shows that it is listener-
specific. Thus, for further analysis, the detection rates from the
inpainted condition were related to the listener specific false-
alarm rate, i.e., the sensitivity index d’ was used [85]. The

4https://tifgan.github.io/gacela/

58

MARAFIOTI, MAJDAK, HOLIGHAUS, AND PERRAUDIN: GACELA - A GENERATIVE ADVERSARIAL CONTEXT ENCODER FOR LONG AUDIO INPAINTING 9

Fig. 7. Perceived artifacts across all subjects. Left panel: Statistics of
the detection rate. Left-center panel: Statistics of the sensitivity index d′,
i.e., the artifact-detection rate relative to the false-alarm rate, with d′ = 1
corresponding to the chance rate. Right-center panel: Statistics of the severity
ratings. Right panel: Statistics of the correlation coefficients between the
perceived artifact position versus begin (B), end (E), and best choice of B
and E (X) of the artifact in the inpainting condition. Conditions: reference
(R), inpainted (I), and click (C), reference when perceived as artifact (Rp),
inpainted when perceived as artifact (Ip). Statistics: Median (circle), 25% and
75% quartiles (thick lines), coverage of 99.3% (thin lines, assuming normal
distribution), outliers (crosses, horizontally jittered for a better visibility).

false-alarm rate can be considered as a reference for guessing,
thus, d’ = 1 indicates that the artifacts were detected at the
level of chance rate. The left-center panel of Fig. 7 shows the
statistics of d’ for the inpainting and the click conditions. For
the click condition, the average across all subjects was 8.2
± 5.2, again demonstrating a good detectability of the clicks.
For the inpainting condition, the average d’ was 6.9 ± 4.2,
i.e., slightly below that of the click. A t-test performed on
listeners’ d’ showed a significant (p = 0.018) difference from
click-detection, indicating that our listeners, as a group, were
less able to detect the inpainting than the click condition.

The center-right panel of Fig. 7 shows the statistics of
the severity ratings reported in the real, inpainted and click
conditions. For the click condition, the ratings were close to
3 (”not acceptable”) with an average across all subjects of
2.83 ± 0.33. This indicates that on average, our subjects rated
the clicks as not acceptable. In contrast, for the inpainted
condition, the average rating was 1.41±0.26, between “not
disturbing” and “mildly disturbing”. This average considers
undetected inpainted signals, rated with a 0. The average rating
for detected inpainted signals was 1.66 ± 0.24. This is still
significantly (p < 0.001) lower than the severity of the clicks
as revealed by a paired t-test calculated between the ratings for
clicks and inpainted for detected artifacts. This indicates that
when the inpainting artifacts were perceived, their severity was
rated significantly lower than that of the clicks. Additionally,
when the reference signals were classified as having an artifact,
they were on average rated across all subjects with 1.21±0.22.

The right panel of Fig. 7 shows the average correlation
coefficients between the perceived position of the inpainting
and its actual position. The correlations indicate that as soon
as our subjects detected an artifact, they had some estimate
of its position within the stimulus. For the clicks, the higher

Fig. 8. Effect of the complexity level. Left panel: Statistics of the artifact
detection rate (as in Fig. 7, the additional lines connect the medians). Center
panel: Sensitivity representing ability to detect artifacts shown as statistics.
Right panel: Ratings of artifact severity shown as statistics. Click: sounds
distorted with a click. Inpaint: sounds distorted with a gap of 750 ms and
then inpainted by GACELA.

correlation indicates that our subjects were able to exactly
determine and report the position of the click.

F. Effect of the complexity level

The left panel of Fig. 8 shows the percentages of artifacts
perceived for every condition as a function of the complexity
level. The click was perfectly detected on every complexity
level, but the false-alarm rate varied across the complexities.
The center panel of Fig. 8 shows the statistics of sensitivity to
detect an artifact as a function of the complexity level.

For the statistical analysis, a three-way analysis of variance
(ANOVA) was performed on sensitivities. The main factors
were subject, complexity level, and type of distortion (in-
painted and click) and all two-level interactions were included.
The main effect of distortion was significant (p < 0.001)
indicating that the inpainting significantly reduced the rate of
perceived artifacts.

The main effect of complexity and its interaction with
the type of distortion were significant as well (p < 0.001,
p = 0.007, respectively). A multiple post-hoc comparison
(Tukey-Kramer test) showed that for the complexity levels of
one and two, the rates in the click conditions were significantly
(p < 0.05) higher and lower, respectively, when compared
to those for levels of three and four. This is a consequence
of our subjects having a lower false-alarm rate in the Click
condition for the most simple, MIDI-based, piano sounds,
aligned to a regular grid, but higher for the still simple, but
not so-regular, grid-based, and more natural MIDI-generated,
piano sounds. Given such a tiny change in the tested sound
material, the origin of such a large change in the detection
rates can be explained by having our experiment run into
ceiling effects – The obtained sensitivities were high and well
above the chance rate (d′ = 1). Thus, the observed effect of
individual complexity levels might be more related to random
fluctuations at a ceiling of well detectable events than to a
systematic impact of a factor. Thus, while we conclude that

59

10

Fig. 9. Effect of the gap duration. Left panel: Sensitivity representing ability
to detect artifacts shown as statistics (as in Fig. 7). Right panel: Ratings
of artifact severity shown as statistics. Click: sounds distorted with a click.
Inpaint: sounds distorted with a gap and then inpainted by GACELA. Gap
durations: 375 ms (S), 750 ms (M), and 1500 ms (L).

inpainting generally reduced the detection rate, more insight
can be gained from the analysis of severity ratings.

The right panel of Fig. 8 shows the ratings of artifact
severity when an artifact was detected. A two-way ANOVA
was performed on the severity ratings with the factors subject
and complexity level.5 The effect of the level was significant
(p = 0.038) indicating that across all subjects, the severity
of the artifacts increased with the complexity. Despite its
significance, the effect was small with all average ratings for
inpaintings detected as artifacts being between “not disturbing”
and “mildly disturbing”.

We conclude that GACELA’s performance varied with the
complexity of the music. While the detection rates varied in a
non-systematic way with the complexity, the artifact severity
ratings varied in a more systematic way, showing less severe
artifacts at lower music complexities. Still, the artifact severity
was rated as better than “mildly disturbing” for any level of
complexity.

G. Effect of the gap duration.

The left panel of Fig. 9 shows the sensitivities to detect an
artifact as a function of gap duration obtained for the third level
of complexity (piano recordings). For the statistical analysis,
we performed a three-way ANOVA on these sensitivities
with the factors subject, gap duration, and type of distortion
(inpainted and click) including their two-level interactions.
The main effect of distortion was significant (p < 0.001)
indicating that the inpainting significantly reduced the rate
of perceived artifacts. The main effect of the gap duration
was not significant (p > 0.05) indicating that the detectability
did not change with the gap duration. Further, the interaction
between the distortion and the gap duration was not significant
(p = 0.4), indicating that improvements achieved by the
inpainting did not depend on the gap duration.

5The amount of data did not allow us to include the interaction between
the subject and complexity level in that test.

The right panel of Fig. 9 shows the ratings of artifact severity
when an artifact is detected. Their average values on the
short inpainting (375 ms), medium inpainting (750 ms) and
long inpainting (1500 ms) were 1.56±0.24, 1.61±0.27, and
1.77±0.45, respectively. This indicates that on average, our
subjects rated the inpainting results between ”not disturbing”
and ”mildly disturbing”, even for the longer gaps of 1500 ms.
For the statistical analysis, we performed a two-way ANOVA
on the severity ratings with the factors subject and gap
duration. The effect of the gap duration was not significant
(p = 0.17). That effect remained not significant (p = 0.07)
even when performing the ANOVA on the the ratings including
non-detected gaps (rated as 0) indicating that the ratings did
not change with the gap duration.

We conclude that the gap duration did not affect GACELA’s
performance significantly for inpainting gaps of durations
between 375 ms and 1500 ms.

V. CONCLUSIONS AND OUTLOOK

We introduced GACELA, a system for the restoration of
audio information in gaps with a duration ranging between
hundreds of milliseconds and seconds. GACELA is based on
a cGAN and represents a further development of our context
encoder designed for audio inpainting of gaps up to tens
of milliseconds [7]. The improvements consider two aspects.
First, GACELA handles various time scales of audio informa-
tion by considering five parallel discriminators with increasing
resolution of receptive fields to prompt the generator’s output
to consider these time scales. Second, GACELA incorporates
the inherent multi-modality of audio inpainting at such gap
durations by being conditioned not only on the available
information surrounding the gap but also on the latent variable
of the cGAN. This provides the option to fill-in the gap with
various content, depending on user’s needs.

GACELA was evaluated numerically and in listening tests6.
While our subjects were able to detect most of the inpaintings
under laboratory conditions, the artifact severity was rated be-
tween “not disturbing” and “mildly disturbing”. The detection
rate and the severity ratings depended on the complexity of
the sounds, as defined by the method of audio generation
(MIDI vs. recordings) and the number of instruments. The
inpainted segments were more likely to be detected in sounds
with larger complexity, with an exception found for the sim-
plest complexity level represented as MIDI-generated piano
music generated from artificial MIDI scores. Interestingly,
our subjects were most sensitive to any type of corruption
applied within this complexity level, confounding this part
of the results. Further, the inpainting quality did not change
significantly with the inpainting gap duration, with durations
tested between 350 ms and 1500 ms. While we generally do
expect a deteriorating inpainting quality with increasing gap
duration, further investigations are required to more closely
determine that link. Also, as the training time increases with
the gap and context durations, GACELA may require structural

6We also encourage the reader to listen to the samples provided in https:
//tifgan.github.io/gacela/ to obtain an impression of GACELA’s performance.

60

MARAFIOTI, MAJDAK, HOLIGHAUS, AND PERRAUDIN: GACELA - A GENERATIVE ADVERSARIAL CONTEXT ENCODER FOR LONG AUDIO INPAINTING 11

improvements in order to be able to deal with significantly
longer gaps.

Our results show the urgency of lowering the artifact-
detection rate in the future, which is a very ambitious goal
for long audio inpainting. Such a system would receive a new
piece of music and generate a sound in which an attentive
listener can not detect any artifacts. To this end, we expect
future systems to better exploit auditory features and musical
structures. In GACELA, the auditory features are represented
by the compressed mel-spectrograms. In the future, generators
directly producing features in the auditory space might provide
improvements. A promising avenue in this regard are Audlet
frames, i.e., invertible TF systems adapted to perceptually-
relevant frequency scales [86]. GACELA aims to preserve the
musical structure by relying on discriminators handling various
temporal scales separately. More explicit features such as beat-
and chord-tracking, incorporated to both the training of neural
networks as well as their assessment might further improve
the inpainting quality in future systems.

REFERENCES

[1] A. Adler, V. Emiya, M. G. Jafari, M. Elad, R. Gribonval, and M. D.
Plumbley, “Audio inpainting,” IEEE Transactions on Audio, Speech and
Language Processing, vol. 20, no. 3, pp. 922–932, March 2012.

[2] I. Kauppinen, J. Kauppinen, and P. Saarinen, “A method for long ex-
trapolation of audio signals,” Journal of the Audio Engineering Society,
vol. 49, no. 12, pp. 1167–1180, 2001.

[3] W. Etter, “Restoration of a discrete-time signal segment by interpolation
based on the left-sided and right-sided autoregressive parameters,” IEEE
Transactions on Signal Processing, vol. 44, no. 5, pp. 1124–1135, may
1996.

[4] D. Goodman, G. Lockhart, O. Wasem, and W.-C. Wong, “Waveform
substitution techniques for recovering missing speech segments in packet
voice communications,” IEEE Transactions on Acoustics, Speech and
Signal Processing, vol. 34, no. 6, pp. 1440–1448, dec 1986.

[5] O. Mokrỳ, P. Záviška, P. Rajmic, and V. Veselỳ, “Introducing spain
(sparse audio inpainter),” in 2019 27th European Signal Processing
Conference (EUSIPCO). IEEE, 2019, pp. 1–5.

[6] N. Perraudin, N. Holighaus, P. Majdak, and P. Balazs, “Inpainting of
long audio segments with similarity graphs,” IEEE/ACM Transactions
on Audio, Speech and Language Processing, vol. PP, no. 99, pp. 1–1,
2018.

[7] A. Marafioti, N. Perraudin, N. Holighaus, and P. Majdak, “A context en-
coder for audio inpainting,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 27, no. 12, pp. 2362–2372, 2019.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, 2014, pp. 2672–
2680.

[9] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee,
“Generative adversarial text to image synthesis,” in Proc. of ICML, 2016,
pp. 1060–1069.

[10] T. Miyato and M. Koyama, “cgans with projection discriminator,” in
Proc. of ICLR, 2018.

[11] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proc. of ICML, 2017, pp. 214–223.

[12] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. Efros, “Context
encoders: Feature learning by inpainting,” in Proc. of CVPR, 2016.

[13] A. Adler, V. Emiya, M. Jafari, M. Elad, R. Gribonval, and M. Plumbley,
“A constrained matching pursuit approach to audio declipping,” in Proc.
of ICASSP. IEEE, may 2011.

[14] I. Toumi and V. Emiya, “Sparse non-local similarity modeling for audio
inpainting,” in ICASSP - IEEE International Conference on Acoustics,
Speech and Signal Processing, Calgary, Canada, Apr. 2018.

[15] S. Kitić, N. Bertin, and R. Gribonval, “Sparsity and cosparsity for audio
declipping: a flexible non-convex approach,” in LVA/ICA 2015 - The
12th International Conference on Latent Variable Analysis and Signal
Separation, Liberec, Czech Republic, Aug. 2015, p. 8.

[16] C. Gaultier, S. Kitić, N. Bertin, and R. Gribonval, “AUDASCITY: AUdio
Denoising by Adaptive Social CosparsITY,” in 25th European Signal
Processing Conference (EUSIPCO), Kos, Greece, Aug. 2017.

[17] K. Siedenburg, M. Kowalski, and M. Dörfler, “Audio Declipping with
Social Sparsity,” in Proc. of ICASSP. Florence, Italy: IEEE, May 2014,
pp. AASP–L2.

[18] F. Lieb and H.-G. Stark, “Audio inpainting: Evaluation of time-frequency
representations and structured sparsity approaches,” Signal Processing,
vol. 153, pp. 291–299, 2018.

[19] O. Mokrỳ and P. Rajmic, “Audio inpainting: Revisited and reweighted,”
In revision in IEEE TASLP, 2020.

[20] P. J. Wolfe and S. J. Godsill, “Interpolation of missing data values for
audio signal restoration using a gabor regression model,” in Proc. of
ICASSP, vol. 5. IEEE, 2005, pp. v–517.

[21] J. Le Roux, H. Kameoka, N. Ono, A. De Cheveigne, and S. Sagayama,
“Computational auditory induction as a missing-data model-fitting prob-
lem with bregman divergence,” Speech Communication, vol. 53, no. 5,
pp. 658–676, 2011.

[22] P. Smaragdis, B. Raj, and M. Shashanka, “Missing data imputation
for time-frequency representations of audio signals,” Journal of signal
processing systems, vol. 65, no. 3, pp. 361–370, 2011.

[23] U. Şimşekli, Y. K. Yılmaz, and A. T. Cemgil, “Score guided audio
restoration via generalised coupled tensor factorisation,” in Proc. of
ICASSP. IEEE, 2012, pp. 5369–5372.

[24] C. Bilen, A. Ozerov, and P. Pérez, “Solving time-domain audio inverse
problems using nonnegative tensor factorization,” IEEE Transactions on
Signal Processing, vol. 66, no. 21, pp. 5604–5617, Nov 2018.

[25] Ç. Bilen, A. Ozerov, and P. Pérez, “Joint audio inpainting and source
separation,” in International Conference on Latent Variable Analysis and
Signal Separation. Springer, 2015, pp. 251–258.

[26] ——, “Audio declipping via nonnegative matrix factorization,” in 2015
IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA). IEEE, 2015, pp. 1–5.

[27] A. Ozerov, Ç. Bilen, and P. Pérez, “Multichannel audio declipping,” in
Proc. of ICASSP. IEEE, 2016, pp. 659–663.

[28] T. E. Tremain, “The government standard linear predictive coding
algorithm: Lpc-10,” Speech Technology, pp. 40–49, Apr. 1982.

[29] A. Janssen, R. Veldhuis, and L. Vries, “Adaptive interpolation of
discrete-time signals that can be modeled as autoregressive processes,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34,
no. 2, pp. 317–330, 1986.

[30] I. Kauppinen and K. Roth, “Audio signal extrapolation–theory and
applications,” in Proc. DAFx, 2002, pp. 105–110.

[31] A. Marafioti, N. Holighaus, P. Majdak, and N. Perraudin, “Audio
inpainting of music by means of neural networks,” in Audio
Engineering Society Convention 146, Mar 2019. [Online]. Available:
http://www.aes.org/e-lib/browse.cfm?elib=20303

[32] Y. Bahat, Y. Schechner, and M. Elad, “Self-content-based audio inpaint-
ing,” Signal Processing, vol. 111, pp. 61–72, jun 2015.

[33] E. Manilow and B. Pardo, “Leveraging repetition to do audio imputa-
tion,” in 2017 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA). IEEE, 2017, pp. 309–313.

[34] B. Martin, P. Hanna, T. V. Thong, M. Desainte-Catherine, and P. Ferraro,
“Exemplar-based assignment of large missing audio parts using string
matching on tonal features.” in Proc. of ISMIR, 2011, pp. 507–512.

[35] R. C. Maher, “A method for extrapolation of missing digital audio data,”
Journal of the Audio Engineering Society, vol. 42, no. 5, pp. 350–357,
1994.

[36] A. Lukin and J. Todd, “Parametric interpolation of gaps in audio signals,”
in Audio Engineering Society Convention 125. Audio Engineering
Society, 2008.

[37] H. Zhou, Z. Liu, X. Xu, P. Luo, and X. Wang, “Vision-infused deep
audio inpainting,” in Proceedings of the IEEE International Conference
on Computer Vision, 2019, pp. 283–292.

[38] M. Kegler, P. Beckmann, and M. Cernak, “Deep speech inpainting of
time-frequency masks,” in Proc. of INTERSPEECH, 2020.

[39] J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, and
K. Simonyan, “Neural audio synthesis of musical notes with wavenet
autoencoders,” in Proc. of ICML, 2017, pp. 1068–1077.

[40] S. Dieleman, A. van den Oord, and K. Simonyan, “The challenge of
realistic music generation: modelling raw audio at scale,” in Advances
in Neural Information Processing Systems, 2018, pp. 7989–7999.

[41] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo,
A. Courville, and Y. Bengio, “SampleRNN: An unconditional end-to-
end neural audio generation model,” in Proc. of ICLR, 2017.

61

12

[42] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based
generative network for speech synthesis,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 3617–3621.

[43] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z. Teoh, J. Sotelo,
A. de Brébisson, Y. Bengio, and A. C. Courville, “Melgan: Generative
adversarial networks for conditional waveform synthesis,” in Advances
in Neural Information Processing Systems, 2019, pp. 14 910–14 921.

[44] M. Bińkowski, J. Donahue, S. Dieleman, A. Clark, E. Elsen,
N. Casagrande, L. C. Cobo, and K. Simonyan, “High fidelity speech
synthesis with adversarial networks,” in Proc. of ICLR, 2020.

[45] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande,
E. Lockhart, F. Stimberg, A. van den Oord, S. Dieleman, and
K. Kavukcuoglu, “Efficient neural audio synthesis,” in Proc of ICML,
ser. Proceedings of Machine Learning Research, J. Dy and A. Krause,
Eds., vol. 80, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018,
pp. 2410–2419.

[46] S. Dieleman and B. Schrauwen, “End-to-end learning for music audio,”
in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on. IEEE, 2014, pp. 6964–6968.

[47] J. Pons, O. Nieto, M. Prockup, E. M. Schmidt, A. F. Ehmann, and
X. Serra, “End-to-end learning for music audio tagging at scale,” in
Proc. of ISMIR, 2018.

[48] R. Abbasi, P. Balázs, A. Noll, D. Nicolakis, M. A. Marconi, S. M. Zala,
and D. J. Penn, “Applying convolutional neural networks to the analysis
of mouse ultrasonic vocalizations,” in Proc. of the 23rd international
congress on Acoustics, 2019.

[49] Y. Saito, S. Takamichi, and H. Saruwatari, “Text-to-speech synthesis
using STFT spectra based on low-/multi-resolution generative adversarial
networks,” in Proc. of ICASSP. IEEE, 2018, pp. 5299–5303.

[50] Z. Jin, A. Finkelstein, G. J. Mysore, and J. Lu, “Fftnet: A real-time
speaker-dependent neural vocoder,” in Proc. of ICASSP. IEEE, 2018,
pp. 2251–2255.

[51] J. Shen, R. Pang, R. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen,
Y. Zhang, Y. Wang, R. Skerry-Ryan, R. Saurous, Y. Agiomyrgiannakis,
and Y. Wu, “Natural TTS synthesis by conditioning WaveNet on mel
spectrogram predictions,” in Proc. of ICASSP. IEEE, 2018.

[52] S. Huang, Q. Li, C. Anil, X. Bao, S. Oore, and R. B. Grosse, “Tim-
bretron: A wavenet(cycleGAN(CQT(audio))) pipeline for musical timbre
transfer,” in Proc. of ICLR, 2019.

[53] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and
A. Roberts, “Gansynth: Adversarial neural audio synthesis,” in Proc.
of ICLR, 2019.

[54] A. Marafioti, N. Perraudin, N. Holighaus, and P. Majdak, “Adversarial
generation of time-frequency features with application in audio
synthesis,” in Proc. of the 36th ICML, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. Long Beach, California, USA:
PMLR, 09–15 Jun 2019, pp. 4352–4362. [Online]. Available:
http://proceedings.mlr.press/v97/marafioti19a.html

[55] S. Vasquez and M. Lewis, “Melnet: A generative model for audio in the
frequency domain,” in Proc. of ICLR, 2020.

[56] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-Z. A. Huang,
S. Dieleman, E. Elsen, J. Engel, and D. Eck, “Enabling factorized piano
music modeling and generation with the MAESTRO dataset, v2,” in
Proc. of ICLR, 2019.

[57] D. Herremans, C.-H. Chuan, and E. Chew, “A functional taxonomy of
music generation systems,” ACM Computing Surveys, vol. 50, pp. 1–30,
2017.

[58] M. Blaauw and J. Bonada, “A neural parametric singing synthesizer,” in
Proc. of INTERSPEECH, 2017.

[59] S. Chowdhury, A. V. Portabella, V. Haunschmid, and G. Widmer,
“Towards Explainable Music Emotion Recognition: The Route via Mid-
level Features,” in Proc. of the 20th International Society for Music
Information Retrieval Conference, 2019, pp. 237–243.

[60] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Modeling
temporal dependencies in high-dimensional sequences: Application to
polyphonic music generation and transcription,” in ICML, 2012.

[61] R. Manzelli, V. Thakkar, A. Siahkamari, and B. Kulis, “Conditioning
deep generative raw audio models for structured automatic music,” in
Proc. of ISMIR, 2018.

[62] L. R. Rabiner and R. W. Schafer, Theory and applications of digital
speech processing. Pearson Upper Saddle River, NJ, 2011, vol. 64.

[63] Z. Průša, P. Balazs, and P. Søndergaard, “A noniterative method for
reconstruction of phase from stft magnitude,” IEEE/ACM Transactions

on Audio, Speech and Language Processing, vol. 25, no. 5, pp. 1154–
1164, 2017.

[64] Z. Průša and P. Rajmic, “Toward high-quality real-time signal reconstruc-
tion from STFT magnitude,” IEEE Signal Processing Letters, vol. 24,
no. 6, June 2017.

[65] N. Perraudin, P. Balazs, and P. L. Sondergaard, “A fast griffin-lim
algorithm,” in Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2013 IEEE Workshop on. IEEE, 2013, pp. 1–4.

[66] J. Le Roux, H. Kameoka, N. Ono, and S. Sagayama, “Fast signal
reconstruction from magnitude STFT spectrogram based on spectrogram
consistency,” in Proc. 13th Int. Conf. on Digital Audio Effects (DAFx-
10), Sep. 2010, pp. 397–403.

[67] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.

[68] A. Marafioti, N. Perraudin, N. Holighaus, and P. Majdak, “Tifresi: Time
frequency spectrogram inversion,” https://github.com/andimarafioti/
tifresi, 2020.

[69] “Ltfat: The large time-frequency analysis toolbox.” [Online]. Available:
ltfat.github.io

[70] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,
and O. Nieto, “librosa: Audio and music signal analysis in python,” in
Proc. of the 14th python in science conference, 2015, pp. 18–25.

[71] K. Gröchenig, Foundations of Time-Frequency Analysis, ser. Applied and
Numerical Harmonic Analysis. Birkhäuser Boston, 2001.

[72] O. Christensen, An Introduction to Frames and Riesz Bases, ser. Applied
and Numerical Harmonic Analysis. Birkhäuser Boston, 2002.

[73] H. Feichtinger and T. Strohmer, Gabor Analysis and Algorithms: The-
ory and Applications, ser. Applied and Numerical Harmonic Analysis.
Birkhäuser Boston, 1997.

[74] D. Griffin and J. Lim, “Signal estimation from modified short-time
fourier transform,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 32, no. 2, pp. 236–243, 1984.

[75] Z. Průša and P. L. Søndergaard, “Real-Time Spectrogram Inversion
Using Phase Gradient Heap Integration,” in Proc. Int. Conf. Digital Audio
Effects (DAFx-16), Sep 2016, pp. 17–21.

[76] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro,
“High-resolution image synthesis and semantic manipulation with con-
ditional gans,” in In Proc of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 8798–8807.

[77] C. Raffel and D. P. W. Ellis, “Intuitive analysis, creation and manipu-
lation of midi data with pretty midi,” in Proc. of the 15th ISMIR, Late
Breaking and Demo Papers, 2014.

[78] C. Raffel, “Learning-based methods for comparing sequences, with ap-
plications to audio-to-midi alignment and matching,” Ph.D. dissertation,
Columbia University, 2016.

[79] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and P. Lamere, “The
million song dataset,” in In Proc. of the 12th ISMIR, 2011, pp. 591–596.

[80] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, “Fma: A
dataset for music analysis,” in 18th International Society for Music
Information Retrieval Conference, 2017.

[81] I. Recommendation, “1387: Method for objective measurements of per-
ceived audio quality,” International Telecommunication Union, Geneva,
Switzerland, 2001.

[82] P. Kabal et al., “An examination and interpretation of itu-r bs. 1387:
Perceptual evaluation of audio quality,” TSP Lab Technical Report, Dept.
Electrical & Computer Engineering, McGill University, pp. 1–89, 2002.

[83] M. Mathieu, C. Couprie, and Y. LeCun, “Deep multi-scale video
prediction beyond mean square error,” in Proc of the ICLR, Y. Bengio
and Y. LeCun, Eds., 2016.

[84] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 1125–1134.

[85] N. A. Macmillan and C. D. Creelman, Detection theory: A user’s guide.
Psychology press, 2004.

[86] T. Necciari, N. Holighaus, P. Balazs, Z. Průša, P. Majdak, and O. Derrien,
“Audlet filter banks: A versatile analysis/synthesis framework using
auditory frequency scales,” Applied Sciences, vol. 8, no. 1:96, 2018.

62

63

Chapter 6

Time-Frequency Phase Retrieval for
Audio — The Effect of Transform
Parameters

On the 12th of November 2020, this work was submitted to IEEE Transactions on Signal
Processing as

Marafioti, A., Holighaus, N., and Majdak, P. (2020): Time-Frequency Phase Retrieval
for Audio — The Effect of Transform Parameters.

Over the course of this PhD, we were constantly optimizing the performance of phase re-
trieval for our specific applications. We realized how important the choice of parameters
was for the qualitative performance of phase retrieval and how often in the literature
results using a poor choice of parameters were under-performing. Therefore, we decided
to make this study focusing on the parameters of the transform used for phase retrieval
and how they affect the qualitative performance. I, as the first author, implemented all
of the experiments. I, in collaboration with my co-authors, decided which parameters to
test. I, as the first author, proposed the evaluation using auditory-based and signal-based
measures. The manuscript was written by me and revised by all other authors.

1

Time-Frequency Phase Retrieval for Audio —
The Effect of Transform Parameters

Andrés Marafioti, Nicki Holighaus, and Piotr Majdak

Abstract—In audio processing applications, phase retrieval
(PR) is often performed from short-time Fourier transform
(STFT) coefficients. Although PR performance has been observed
to depend on the considered STFT parameters and audio
data, the extent of this dependence has not been systematically
evaluated yet. To address this, we studied the performance of
three PR algorithms for various types of audio content and
various STFT parameters such as redundancy, time-frequency
ratio, and type of the window. The quality of PR was studied
in terms of auditory-based and signal-based measures, namely
objective difference grade, and signal-to-noise ratio of the STFT
magnitude. Our results show that PR quality improved with
increasing redundancy, with a strong relevance of the time-
frequency ratio. The effect of the audio content was smaller
but still observable. Interestingly, for optimal PR quality, each
of the three algorithms required a different set of parameters,
demonstrating the relevance of individual parameter sets for a
fair comparison across PR algorithms. Based on these results,
we developed a tool for finding optimal STFT parameters,
considering arbitrary PR algorithms and types of audio content.

I. INTRODUCTION

Phase is a crucial component of audio signals and affects
how humans perceive sounds [1] and speech [2], [3]. When
processing audio, a signal is often represented in the complex-
valued short-time Fourier transform (STFT) domain [4], [5],
[6]). Many audio applications focus on processing the STFT
magnitude [7], [8], [9], [10]. In order to synthesize the targeted
time-domain signal, they estimate the STFT phase from the
processed STFT magnitudes by performing phase retrieval
(PR) [11], [12]. The necessity of PR also arises in the generation
of a signal described only by STFT magnitude [13], [14].
PR algorithms have been used successfully in the field of
audio [15], [16], [17], including specific applications such as
audio inpainting [18], [19], but many applications exist beyond
the audio domain, e.g., X-ray crystallography [20], [21] and
imaging [22], [23].

The phaseless input to PR algorithms is usually given by
transform coefficients with respect to some dictionary. The
classic problem of Fourier PR [24] has been extended to

Manuscript received on November 2020;
The authors are with the Acoustics Research Institute, Austrian Academy

of Sciences, Wohllebengasse 12–14, 1040 Vienna, Austria.
Accompanying web page (sound examples, implementations):

https://github.com/andimarafioti/
phaseRetrievalEvaluation.
We thank Nathanaël Perraudin for the fruitful discussions we had over the
years about the importance of the quality of phase retrieval in more complex
systems. This work has been supported by Austrian Science Fund (FWF)
project MERLIN (Modern methods for the restoration of lost information in
digital signals;I 3067-N30).

deal with various time-frequency (TF) representations, most
notably the STFT, the best understood and most widely used TF
representation in the field of audio processing. Still, a systematic
investigation of the extent to which STFT parameters affect
audio quality after PR seems to be missing.

To fill this gap, we evaluated the performance of PR
algorithms under systematic variation of the STFT parameters
and the type of audio data. We first revisit relevant properties of
the discrete STFT [25], [26], [27] in the context of PR. We then
report on the evaluation of three PR algorithms, considering a
large range of parameters and various types of audio signals.
Finally, we describe guidelines for obtaining reliable PR
performance with the tested algorithms, and we introduce an
algorithm for finding the corresponding STFT parameters. Our
algorithm, complemented by instructive examples, is available
at https://github.com/andimarafioti/phaseRetrievalEvaluation.

A. Related phase retrieval algorithms
Phase1 retrieval for audio signals reached its first milestone

in 1984, when the Griffin-Lim algorithm that still forms the
de-facto standard for STFT phase retrieval was introduced [28].
It is iterative and computationally intensive in each iteration,
thus rendering it unusable in real-time applications. Since its
introduction, there have been considerable efforts to improve it’s
qualitative performance [29], [30] or improving its computation
time [31], [32], yielding algorithms such as the fast Griffin-Lim
algorithm (FGLA) [33]. With many improvements over the
decades, this simple algorithm is widely used [34], [35]. It is
well-known that PR may introduce audible artifacts, especially
for Griffin-Lim type algorithms, such that they are sometimes
eschewed altogether. In this contribution we show that such
artifacts are likely caused by a poor choice of STFT parameters.

In contrast to the iterative FGLA, various non-iterative
algorithms have been proposed, such as single-pass spectrogram
inversion (SPSI) [36], phase unwrapping (PU) [37] and phase
gradient heap-integration (PGHI) [38]. SPSI is based on the
idea of phase consistency [39]. The algorithm is fast and it
is directly suitable for real-time usage, but it relies on the
assumption that the signal consists of slowly varying sinusoidal
components. PU expands SPSI by treating each impulse-like
component separately, obtaining better results [37]. PGHI is
based on the phase-magnitude relations of a STFT computed
using a Gaussian window [40]. This property of the continuous
STFT only holds approximately in the discrete realm, with an
accuracy governed by the STFT parameters [41].

1From now on, we use phase when referring to the STFT phase.

64

2

All these algorithms depend on the way the TF representation
is obtained and variation of the transform parameters may
yield different PR results. Various recommendations have been
proposed, such as the technical recommendation for PGHI
to use compactly supported windows with an overlap of
87.5% [38]. Phase retrieval is a difficult inverse problem and
various mathematical studies have derived conditions that ensure
the theoretical feasibility of phase retrieval [42], describing the
problem in terms of uniqueness and numerical stability of the
solution [43], [44], [45], [46], [47]. These theoretical results
introduce requirements on the window, transform parameters,
and/or signals to ensure successful PR, but these requirements
can rarely be satisfied in practice. Even if they are, however,
they do not necessarily have any implications on the quality
achieved by widely used PR algorithms in the field of audio.
Most importantly, a systematic investigation of the transform
parameters affecting the PR quality of audio seems to be
missing.

Nevertheless, besides the general introduction to phase-
aware processing [48], [15], there are some relevant hints.
For the STFT, a large number of frequency channels seems to
be beneficial on music applications [14]. In [49], Průša and
Søndergaard compare PR performance of several algorithms,
including SPSI and a real-time variant of PGHI. They use
a fixed number of channels, but four window functions at
three redundancies each. Their results indicate an influence
of both, the window function, in particular for PGHI, and
redundancy. For wavelets as well, a larger redundancy seems
to improve the PR quality obtained by PGHI and FGLA [50],
[51]. The same results indicate an effect of the mother wavelet,
which corresponds to the STFT window. From the field of
speech processing, there is evidence that phase modifications
not only affect the sound quality but also the phonetic value
of a stop consonant [2]. Interestingly, speech reconstructed
from the phase only was understood by humans when the
analysis used high redundancy and rectangular window of
32 ms duration [3]. In this study, intelligibility followed a bell
shape with a maximum performance for windows between
15 and 35 ms [52], raising evidence for the importance of
transform parameters, and showing the demand for a systematic
evaluation of their impact on the PR quality in the field of
audio processing.

II. THE DISCRETE SHORT-TIME FOURIER TRANSFORM

We consider finite signals s ∈ CL and indices in the signal
domain are to be understood modulo L. The STFT of s, with
the analysis window g ∈ RL, time step a ∈ N and M ∈ N
frequency channels is given by

Sg(s)[m,n] =

L−1∑

l=0

s[l]g[l − na]e−2πiml/M

=
∣∣Sg(s)[m,n]

∣∣ eiφg(s)[m,n],

(1)

for n ∈ [0, . . . , L/a− 1] and m ∈ [0, . . . ,M − 1]. If s and g
are real-valued, the STFT is conjugate symmetric in m and it is
sufficient to store the first MR = b(M/2) + 1c channels. Note

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(n

or
m

al
ize

d)

D = 2

50

40

30

20

10

0
D = 8

50

40

30

20

10

0

0 2000 4000
Time (samples)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(n

or
m

al
ize

d)

D = 32

50

40

30

20

10

0

0 2000 4000
Time (samples)

D = 128

50

40

30

20

10

0

Fig. 1: Examplary spectrograms calculated for various redun-
dancies D. Calculations were done with the Gaussian window
and time-frequency ratio of λ = 8.

that φg(s) refers to the time-frequency phase, which we refer
to simply by phase throughout this document. Accordingly,
time-frequency phase retrieval is concerned with estimating the
phase, or equivalently Sg(s), from the magnitude

∣∣Sg(s)
∣∣.

A. Properties of the STFT

Depending on the choice of transform parameters a, M , and
the window g, the discrete STFT encodes time and frequency
information with different properties. The full STFT, i.e., with
a = 1 and M = L, is a smooth function, owing to significant
overlap between both the time range covered by adjacent time
positions and the frequency range covered by adjacent frequency
channels. When increasing the time step a over 1, the time
resolution of the STFT decreases. Similarly, when decreasing
the number of channels M below L, the frequency resolution of
the STFT decreases. Jointly, time and frequency resolution can
be likened to the pixel resolution in digital imaging. This joint
resolution is characterized by the redundancy (D) of the STFT,
D = M/a. Figure 1 shows examples of STFT magnitudes
calculated with the same window g, for various redundancies
D. Especially at redundancy D = 2, it can be seen that some
characteristic features of the STFT magnitude are obscured,
e.g., local minima.

Further, the window g and it’s Fourier transform ĝ control
the inherent time-frequency uncertainty [27] of the STFT,
independent of a and M . Namely, every window function g has
a certain shape in time and ĝ in frequency, which determine how
spectro-temporal signal components are smeared in the STFT
magnitude. The shape of a window is usually characterized
by its width. In the classic uncertainty principle, a window’s
time and frequency width are defined as the standard deviation

65

MARAFIOTI, HOLIGHAUS, AND MAJDAK: TIME-FREQUENCY PHASE RETRIEVAL FOR AUDIO — THE EFFECT OF TRANSFORM PARAMETERS 3

25000 30000 35000 40000
Samples

0.0

0.2

0.4

0.6

0.8

1.0

Gauss(L=65536)

0.04 0.02 0.00 0.02 0.04
Absolute frequency

0.0

0.2

0.4

0.6

0.8

1.0

Magnitude Fourier
=1
=16
=256

Fig. 2: Examples of Gaussian windows in the time domain (left)
and magnitude of their Fourier transform (right) for various
time-frequency ratios λ. The length of the windows was the
same, i.e. L = 65536 samples, in all examples.

of g and of ĝ, respectively. This notion is reasonable for any
smooth, roughly bell-shaped window.

The classic example of a bell-shaped window is the Gaussian
window. The Gaussian window minimizes the product of time
and frequency width and its Fourier transform is a Gaussian
as well. The discrete, periodized Gaussian, simply referred to
as Gaussian in this study, is defined as:

gλ[l] :=
∞∑

k=−∞
e−

π(l−kL)2

ξsλ , λ, ξs ∈ R+, (2)

where ξs is the assumed sampling rate (in Hz). It inherits from
its continuous counterpart the property that its DFT ĝλ is again
a Gaussian. The parameter λ defines jointly the width of gλ and
ĝλ, as illustrated in Figure 2, illustrating the inverse relation
between the width of gλ and ĝλ. Precisely, the width of gλ
(measured in samples) is λ times as large as the width of ĝλ
(measured in Hz). This is why λ can be referred to as the
time-frequency ratio of a Gaussian window. The effect of λ
on the STFT is shown in Figure 3, for different STFTs at the
same redundancy D.

The Gaussian window is available in public libraries such as
Scipy [53] and LTFAT [54]. However, it is not the most com-
monly used window function. Therefore, libraries specializing
in a particular field often do not implement it, e.g., PyTorch [55],
and TensorFlow [56] for machine learning. Instead, it is more
common to compute the STFT using a different window such
as the ‘Hann’, ‘Hamming’ or ‘rectangular’ windows. For those
windows g there is no exact equivalent to the time-frequency
ratio λ. Instead, one can determine λ through comparison
to the Gaussian window. Precisely, we fit λ to minimize the
`2-distance of g to gλ after peak normalization.

In conclusion, the overall numerical properties of the
discrete STFT depend on the joint choice of parameters λ
and g, governing its uncertainty, and a and M , controlling its
resolution. The most favorable properties can be achieved when
the uncertainty is matched to the resolution, [57], [58]. With
the definitions in Eqs. (1) and (2), uncertainty and resolution
are matched if and only if

λ = aM/ξs. (3)

In all our experiments, λ, a and M are linked in this fashion.

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(n

or
m

al
ize

d)

= 2

50

40

30

20

10

0
= 8

50

40

30

20

10

0

0 2000 4000
Time (samples)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(n

or
m

al
ize

d)

= 32

50

40

30

20

10

0

0 2000 4000
Time (samples)

= 128

40

30

20

10

0

10

Fig. 3: Examplary spectrograms calculated for various time-
frequency ratios λ of the Gaussian window. The same redun-
dancy of D = 128 was used in all examples.

B. Inverse STFT for signal synthesis

For any synthesis window g̃ ∈ RL, the inverse STFT of
S ∈ CM×N with respect g̃ is given by

s̃[l] =
∑

n∈N

∑

m∈M
S[m,n]g̃[l − na]e2πiml/M , (4)

for l ∈ [0, . . . , L− 1]. If a g̃ exists, such that s̃ = s for all
s ∈ CL and with S = Sg(s), then the STFT Sg is invertible, i.e.,
it forms a frame in the sense of [6], [59], [60] and g̃ is a dual
window for g. Generally, in order to obtain an invertible STFT,
the redundancy equal to or larger than one, D =M/a ≥ 1 is
required2.

For redundancies D > 1, the STFT is overcomplete (or
redundant), and Sg maps into a strict subspace of CM×N . In
other words, not every matrix S ∈ CM×N represents a valid
STFT. We call S consistent if there is a signal s, such that
S = Sg(s) and inconsistent otherwise. Implicitly, the inverse
STFT operation applied to S performs a projection onto the
image of Sg , as visualized in Fig. 4. In practice, this means that
the inverse STFT, applied to inconsistent coefficients S produces
a signal s̃ with Sg (̃s) 6= S, i.e., the time-frequency content of S
is distorted in s̃. Thus, in the setting of phase retrieval, synthesis
from a given spectrogram

∣∣Sg(s)
∣∣ with a mismatched phase

estimate φ will often lead to a poor reconstruction.

2In contrast to common practice, the number of channels M may be smaller
than the number of nonzero samples in g.

66

4

Fig. 4: Blue circle: Set of all possible TF coefficients. Yellow
circle: set of time-domain signals. Green circle: set of consistent
STFT coefficients. An inverse STFT done on a point from the
blue set yields a point from the yellow set. An STFT from
this point yields a point from the green circle, introducing a
projection error. An inverse STFT done on a point from the
green circle yields a point from the yellow set, which after a
subsequential STFT is remapped to the original point in the
green set without any projection errors.

III. GENERAL METHODS

A. Datasets

The phase of different types of audio signals may have
completely different characteristics, thus, we considered three
types of signals for the evaluation. First, we included speech
signals to the evaluation, because it is a widely used class
of signals, it consists not only of harmonic components but
also transients, and stochastic segments such as fricatives.
Second, we considered music synthesized from MIDI because
it represents a class of polyphonic sounds, being harmonic
and non-harmonic, melodic and non-melodic, but without
any ambient recording noise. Third, we considered actual
music recordings, which in addition to the MIDI-based music,
included the natural variations from the musicians and ambient
noise from the recording setup.

1) Speech. For speech, we used LJ Speech [61], which is
a public-domain English speech dataset consisting of 13,100
short audio clips of a single speaker reading passages from
seven non-fiction books. All clips vary in length from 1 to 10
seconds and have a total length of approximately 24 hours.

2) Midi synthesized music. We used the Lakh MIDI
dataset [62], a collection of 176,581 unique simple piano
MIDI files, to synthesize piano audio signals. The MIDI set
was created with the goal of facilitating large-scale music
information retrieval, both symbolic (using the MIDI files
alone) and audio content-based (using information extracted
from the MIDI files as annotations for the matched audio
files). The audio files were synthesized from MIDI data using
pretty midi [63], specifically its fluidsynth API. We generated
just one instrument and set that instrument to the piano program
1.

3) Music. We segmented the ‘small’ dataset of the free music
archive (FMA, [64]) by genre and used the genre ‘electronic’.
This was done to reduce the variability in the music structure
in our evaluations. FMA is an open and easily accessible
dataset, usually used for evaluating tasks in musical information

retrieval. The small version of FMA is comprised of 8,000
30-s segments of songs from eight balanced genres sampled at
44.1 kHz.

The audio material either had a sampling rate of 22050 Hz
or was resampled to this rate. For the experiments, we used the
first 5.6 seconds of 128 randomly selected signals, resulting in
a signal length L = 122880. For the experiments with varying
number of channels M , after reconstruction a portion of signal
of length M was removed at the beginning and the end of
the signals to avoid issues introduced by the circularity of the
considered STFT implementation.

B. Phase retrieval algorithms

We evaluated three phase retrieval algorithms implemented in
the phase retrieval toolbox (PHASERET, [65]): Phase-gradient
heap integration (PGHI) [38], fast Griffin-Lim (FGLA) [33],
and single-pass spectrogram inversion (SPSI) [36]. PHASERET
relies on LTFAT [54] for STFT computation and other basic
functionality.

1) PGHI is a non-interative method. Similar to FGLA,
PGHI implies no assumptions on the signal, but it is based on
the phase-magnitude relations of a STFT computed using a
Gaussian window [40], namely, the relation between the partial
phase derivatives of the continuous STFT with a Gaussian
window and the partial derivatives of the logarithmic STFT
magnitudes [25], [38], suggesting a dependence on the window
function as seen in [49]. In PGHI, this relation is approximated
for the discrete STFT and phase is reconstructed in an adaptive
integration scheme. The reliance on numerical differentiation
and integration suggests that the results of PGHI depend on
the STFT parameters a,M and, in particular, its redundancy
D.

2) FGLA is an iterative algorithm relying on alternating
projections and it is based on the Griffin-Lim algorithm
(GLA) [28]. GLA is an extension of the seminal Gerchberg-
Saxton algorithm [66] to the STFT, relying on alternating
projections to solve the PR problem. More specifically, given a
target STFT magnitude combined with an initial phase estimate
(often random or uniformly zero), the algorithm performs first
a projection onto the space of consistent STFTs. Since the
latter is a strict subspace of CM×N whenever the STFT is
redundant, this step is expected yield a magnitude different
from the target. Therefore, the second step keeps only the new
phase, an imposes the target magnitude. Both steps of GLA
are repeated until some stopping criterion is reached, e.g., until
convergence or after a certain number of iterations. A final
inverse STFT is then applied to synthesize a time-domain signal.
Thus, GLA does not rely on a signal model, but only on the
redundancy of the STFT. In our experiments we employ fast
Griffin-Lim (FGLA) [33], a variant of GLA which empirically
yields better results at the same number of iterations, often
significantly.

3) SPSI is another noniterative method. In contrast to FGLA
and PGHI, SPSI does not rely on mathematical properties of
the STFT, but it is based on the idea of phase consistency [39].
The algorithm is fast and it is directly suitable for real-time

67

MARAFIOTI, HOLIGHAUS, AND MAJDAK: TIME-FREQUENCY PHASE RETRIEVAL FOR AUDIO — THE EFFECT OF TRANSFORM PARAMETERS 5

ODG Impairment
0 Imperceptible
-1 Perceptible, but not annoying
-2 Slightly annoying
-3 Annoying
-4 Very annoying

TABLE I: Interpretation of ODG.

usage, but it implicitly assumes a sinusoidal signal model and
thus fails for transient and broadband components in the signal.
At every time step, SPSI locates peaks in the TF coefficients
obtained and predicts the phase by assuming a linear phase
progression at the rate of the closest peak frequency. Hence,
the rate at which the TF coefficients vary over time is expected
to be a limiting factor of phase retrieval by SPSI. The phase
prediction, being similar to the integration scheme of PGHI,
depends on the time step parameter a.

C. Evaluation measures

The results were evaluated numerically by means of two
measures. First, we considered the signal-to-noise ratio calcu-
lated on spectrograms, (SNRMS). In order to consider human-
like performance, we computed the objective difference grade
(ODG) between the original and reconstructed signals.

1) Spectrogram signal-to-noise ratio (SNRMS) is the
logarithmic ratio between the energy of the spectrogram |S|
of the original signal s and the energy of the spectrogram
difference (|Sr|−|S|), where Sr is the STFT of the reconstructed
time-domain signal sr:

SNRMS(S, Sr) = 10 log
‖S‖2

‖|Sr| −|S| ‖2
. (5)

To compute SNRMS, we used the STFT as in Eq. (1)
with M = 2048, a = 128, and the Gaussian window gλ with
λ = aM/ξs ≈ 11.886.

2) Objective difference grade (ODG) is the overall quality
measure introduced in PEAQ [67], [68] and designed to mimic
perceptual quality ratings made by a human listener. PEAQ is
a full-reference algorithm, i.e., it performs a direct comparison
between a given signal3 and a target (the original signal), and
relies on an auditory model obtained by post-processing of
an STFT. Ratings in ODG range from 0 to −4 with the
interpretation shown in Tab. I, mimicking the five-step rating
scale of mean opinion score. To evaluate ODG, we used the
implementation from [69].

IV. EXPERIMENTS

A. Sensitivity of the evaluation measures

For PR performance, we expected a significant effect of
the time-frequency ratio and redundancy across the tested PR
algorithms. In order to distinguish between actual effects of the
PR algorithm and effects induced by the evaluation measure,

3In our case, that signal is reconstructed from STFT magnitude with distorted
or reconstructed phase.

Fig. 5: ODG and SNRMS resulting from the inverse STFT
of speech signals with distorted phases. Symbols: severity of
distortion with σ = 0.1 (diamonds), σ = 0.5 (plus signs),
σ = 1.0 (squares).

we first determined the sensitivity of the evaluation measures
ODG and SNRMS to changes of these parameters.
SNRMS reflects the average amount of phase distortion

over signal duration, thus, we hypothesized that it is largely
insensitive to changes in the time-frequency ratio λ. On the
other hand, adjacent TF coefficients are highly correlated at
high redundancies D and any uncorrelated distortion imposed
on the coefficients partially cancels in the synthesis process. As
a general property of the inverse STFT, the latter should affect
ODG as well. Thus, we expected the PR quality to improve
with increasing redundancy. Generally, a prediction of the
dependence on the STFT parameters is not as straightforward
for ODG. It is, however, reasonable to expect that phase
distortion will manifest differently in synthesized time-domain
signals s̃, based on width of the synthesis window g̃, which
depends on mainly on λ. Therefore, we expect an effect of the
time-frequency ratio on ODG.

In detail, we first computed STFTs for various time-frequency
ratios λ ∈ [10−3, 104] and three redundancies D ∈ {2, 8, 32}.
Then, we added Gaussian white noise to the phases of these
STFTs. We tested three standard deviation σ ∈ {1, 0.5, 0.1}.
Note that the phase is limited to ±π, thus all phase values are
wrapped onto this range after distortion. Finally, we applied the
inverse STFT and compared the results to the original signals.
This experimental setup provides direct evidence for the extent
of sensitivity of ODG and SNRMS to the time-frequency
ratio λ and redundancy D.

Fig. 5 shows the results. For the highest distortion level
(σ = 1), SNRMS was below 8 dB and ODG worse than
‘annoying’ in most cases, indicating that this amount of
distortion substantially destroyed the original signals at every
evaluated combination of the STFT parameters. These results
reflect the output one would expect of our measures when
reconstructing spectrograms with a random phase.

For the moderate (σ = 0.5) and low (σ = 0.1) distortion
levels, a pattern emerges: at fixed time-frequency width
ratio, larger D yielded better performance in terms of larger
SNRMS and ODG. SNRMS showed little effect of time-
frequency width ratio, with a small peak at λ of approximately

68

6

10. Interestingly, for the computation of SNRMS we used
λ = 11.886 and the observed small peak may actually originate
from the parametrization of our SNRMS calculations. In
constrast, ODG seems to be more sensitive to the time-
frequency width ratio, following a bell shape with a clear
peak at the same single-digit λ for all Ds. This peak seems
to be wide for low levels of phase distortions and to become
sharper for increasing distortion level. For high redundancies
and low level of distortions, ODG saturated at its highest
possible rating withing a wide range of time-frequency width
ratios.

In summary, we observed the following: 1) SNRMS is
sensitive to the redundancy and increases with D. It does
not seem to be sensitive to the time-frequency ratio. On the
other hand, the observed minor variations across λ suggest that
SNRMS is mildly sensitive to its own parameterization, i.e. the
parameters used to compute it. SNRMS values significantly
below 10 dB are in line with what we would expect of a
random phase, drawing a threshold for the phase retrieval
algorithms. 2) ODG is sensitive to both time-frequency ratio
and redundancy, however, it shows ceiling effects for low levels
of distortion. The sensitivity to the TF ratio seems to depend on
the level of distortion, with single-digit λ being a good choice
at most redundancies. 3) Both measures showed consistently
better results with increasing redundancy, demonstrating the
increased robustness of the inverse STFT to phase distortions
with increasing redundancy.

Given the low sensitivity of SNRMS to λ and the ceiling
effects of ODG, it seems that including both measures in the
following experiments is advantageous.

B. Effect of STFT parameters on phase retrieval

In this experiment, we studied the effect of the choice of
STFT parameters on PR in terms of SNRMS and ODG.
Evaluation was performed for Gaussian windows, while varying
the redundancy D, and time-frequency ratio λ. The experiments
aims to not only to assess the effect of D and λ, but also to
demonstrate performance differences between the algorithms.

To achieve this, we created spectrograms of the speech
dataset considering redundancies D ∈ {2, 4, 8, 16, 32} and
a large range of time-frequency ratio s λ ∈ [10−3, 104],
applied all considered phase retrieval algorithms (Sec. III-B)
on those spectrograms, and calculated SNRMS and ODG of
the reconstructed signals. The results are presented in Fig. 6.

For all three algorithms, λ had a clear effect on both
SNRMS and ODG. While this confirms the link between
ODG and λ found in Exp. A, this link was not present for
SNRMS. This indicates that the level of phase distortions
created by the phase-retrieval algorithms changed with λ, i.e.,
for very large and very small λs, the level of distortions was
high, comparable to that of Gaussian white noise and σ = 1.0.

The three tested algorithms work in different ways, which is
reflected by the way they interact with the STFT parameters.
Thus, it is not surprising that the optimal set of STFT parameters
depends on the algorithm.

For PGHI, both measures showed peaks at close λ, and
those peaks were shared for every D. For PGHI peaks were
less pronounced than that for FGLA, indicating that PGHI
is less sensitive to a particular choice of λ. For ODG, the
peak was at λ = 2.32, corresponding to M = 320 for D = 2.
For SNRMS, the peak was at λ = 5.94, corresponding to
M = 512 for D = 2. The performance increased with the
redundancy, showing ceiling effects in ODG for redundancy
of 16 or larger. For redundancies of D ≥ 16, SNRMS showed
little distortions, comparable to our low distortion level with
Gaussian white noise. From these results, we conclude that for
speech signals PGHI works best at D ≥ 16 with λ being in
the range 0.65-11.89. For lower redundancies, the performance
degrades and the choice of λ becomes even more important.

For FGLA, both measures followed a thin bell shape with
peaks at close λ. This peak was the same at every redundancy
D. For ODG, the peak was at λ = 3.34, corresponding to
M = 384 for D = 2. For SNRMS, the peak was at λ = 13.37,
corresponding to M = 768 for D = 2. For both measures, the
performance increased with the redundancy for D of up to 8,
showing no improvements beyond that redundancy. This is in
contrast with Sec. IV-A, where performance improved with
increasing redundancy. From this, we conclude that for FGLA,
the choice of λ is crucial, and redundancy D below 4 lead
to significantly degraded performance, but there is no gain in
increasing D beyond 8.

For SPSI, both measures showed peaks at the same λ =
1.4 for every D, with a peak corresponding to M = 256 at
D = 2. Performance increased slightly with the redundancy.
Nonetheless, even the best performance, when compared to that
obtained for Gaussian white noise, Sec. IV-A, corresponds to
large or moderate level of distortion. The performance strongly
depended on the λ. Generally, the performance of SPSI was
substantially lower when compared across the three algorithms.
This might be an effect of the underlying signal model, i.e.,
that signals consist of slowly varying sinusoidal components,
which is too simple to describe speech signals. The dependence
on signal type is further highlighted in Exp. D.

C. Effect of the window function

From the three phase retrieval algorithms, only PGHI places
explicit assumptions on the STFT parameters, specifically the
window being a Gaussian. Therefore, we expect a particular
influence of the window function for PGHI. FGLA and SPSI,
on the other hand, makes little assumptions on the transform,
so we expect no large effect of the window function.

To verify these hypotheses, this experiment repeats the Exp.
B, with the difference that we used the Hann window, i.e.,
raised cosine window, in the STFT computations.

To match the Hann window to λ, we determine g closest
to the Gaussian gλ, as discussed in Sec. II-A. Following this,
we completed the procedure from Exp. B for a comparable
range of time-frequency ratios and the same redundancies. The
results are presented in Fig. 7.

Generally, the results show equal or worse performance than
those from Experiment IV-B. As it seems, in general, the

69

MARAFIOTI, HOLIGHAUS, AND MAJDAK: TIME-FREQUENCY PHASE RETRIEVAL FOR AUDIO — THE EFFECT OF TRANSFORM PARAMETERS 7

Fig. 6: PR performance in terms of ODG and SNRMS

obtained with three PR algorithms: PGHI, SPSI, and FGLA.
Calculations done the the Gaussian window, and various
redundancies and time-frequency ratios.

Fig. 7: PR performance for calculations done with the Hann
window. For details refer to Fig. 6.

Hann window yielded no improvement in performance over the
Gaussian window. However, there are large differences across
the algorithms.

PGHI follows the same improvement per increasing redun-
dancy as with the Gaussian window until D = 8 but it then
stagnates with a small improvement for D = 16 and no
improvement for D = 32. For both FGLA and SPSI the results
are very similar to those obtained for the Gaussian window.

D. Effect of the signal content

In this experiment, we investigated the relationship between
phase retrieval performance and the signal content. We expect
different signal contents to be optimally represented by STFTs
computed with different parameters and we expect this to
influence phase retrieval performance. The investigation was
done in two steps. First, we generated prototypical signals with
various degrees of variability in the time- and/or frequency
domain. Here, we focused on PGHI. Second, we performed a
reduced version of Exp. B on three classes of audio signals
and analyzed across them the variation of phase-retrieval
performances. Given that λ determines the time-frequency
resolution trade-off and uncertainty, we expected to find
different optimal ranges of λ depending on the signal content.

In the first step, we performed an experiment on three
synthetic signals: 1) a stationary signal containing many
harmonics, requiring a good frequency resolution, 2) a signal
containing a sequence of sine bursts with increasing frequency,
and 3) a pulse train, requiring a good temporal resolution.

The results of the experiment are shown in Fig. 8. For the
signal requiring a good frequency resolution, the performance
improved with increasing λ, with a clear λ beyond which the
performance was nearly perfect (with SNRMS > 100 dB). For
the signal requiring a good temporal resolution, we observed
the opposite: the best performance occurred for moderate λs
of around one, with rapid degradation for increasing time-
frequency ratio λ and slow degradation when decreasing λ.
For the sine bursts, PGHI performs best at moderate λ close
to 1, but the algorithm was not able to reach the results of the
stationary signal or the pulse train.

In the second step, phase retrieval was performed by all
three algorithms each of the three considered datasets. For
PGHI, we used three redundancies D ∈ {2, 8, 32}, for FGLA
only two redundancies D ∈ {2, 8}, and for SPSI only D = 8,
considering the reduced significance of redundancy for FGLA
and SPSI in previous Experiments. Fig. 9 shows the results.

Generally, for a given λ, the performance depended on the
redundancy and type of signals. For PGHI, While the dataset
had less effect on the performance than the redundancy, at
redundancy of D = 32, we found a difference in SNRMS

of approximately 20 dB between speech and electronic music.
For FGLA, the distinction in performance between different
signal contents is of approximately 8 dB between speech and
electronic music, which is not as pronounced as for PGHI. For
SPSI, there was a substantial difference in performance for
the synthesized and recorded music, reflecting the expectation
that the synthesized music signals follow more closely the
assumptions made by SPSI. Interestingly, we do not see a

70

8

Fig. 8: Effect of the signal content on the PR performance. Left: stationary harmonic tone. Center: sine bursts. Right: pulse
train. Top: spectrograms (M = 2048, a = 128). Bottom: SNRMS obtained with PGHI as a function of λ for D = 16.

Fig. 9: PR performance as an effect of the dataset. Left, center,
and right panels: PGHI, FGLA, and SPSI, respectively. As
before, color indicates redundancy: Blue (D = 32), yellow
(D = 8), and green (D = 2).All other aspects as in Fig. 6.

clear difference in performance for SPSI between speech and
synthesized music signals, despite the latter following the SPSI
signal model more closely.

E. Effect of the convergence of FGLA

A major drawback of iterative PR algorithms is the necessity
to perform multiple time-consuming iterations. In the previous
experiments, we were looking for the optimal time-frequency
ratio λ and used 100 iterations of FGLA in all comparisons.

However, there might be an interaction between the time-
frequency ratio λ and the performance per iteration, yielding a
different optimum range λ at different number of iterations.

To this end, we investigated the interaction between the STFT
parameters and the convergence properties of FGLA on the
speech dataset. The evaluation considered the Gaussian window,
the redundancy at which FGLA performed best, D = 8, and
a wide range of time-frequency ratios, λ ∈ [10−3, 104]. The
results were collected after 5, 30, 100, and 300 iterations and
are presented in Fig. 10.

After only five iterations, the range of time-frequency ratios
yielding good PR performance can be identified, both in
terms of ODG and, to a lesser extent, of SNRMS. After 30
iterations, this range is clearly evident for both measures. While
SNRMS improved with the increasing number of iteration,
ODG showed ceiling effects after 100 iterations for a wider
range of time-frequency ratios. Combined, PR performance
after 100 iterations was very good, but continued to improve
afterwards, at the cost of the computation time.

In the next step, we looked into the time-performance trade-
off for a good time-frequency ratio. To this end, we fixed
the time-frequency ratio at λ = 3.34 and performed PR with
FGLA for redundancies D ∈ {2, 4, 8, 16, 32}. We evaluated
PR performance and the computation time after each iteration
up to the maximum number of iterations of 1920. Figure 11
shows the PR performance plotted against the computational
time consumed in our workstation4. The redundancy D = 8
resulted in the best time-performance trade-off in terms of best
performance for a given computation time, with the exception
of the first 5 seconds at D = 4, where SNRMS showed
slightly better results.

4Windows 10 PC equipped with an Intel i5 7400 and 16 Gb of ram. Using
MEX backend for LTFAT and the PhaseRet toolbox.

71

MARAFIOTI, HOLIGHAUS, AND MAJDAK: TIME-FREQUENCY PHASE RETRIEVAL FOR AUDIO — THE EFFECT OF TRANSFORM PARAMETERS 9

Fig. 10: PR performance provided by FGLA after fixed number
of iterations. Calculation done for redundancy of eight and
varying time-frequency ratios λ.

Fig. 11: PR performance of FGLA as a function of the iteration
number. Calculations done for five redundancies and λ = 3.34.

In conclusion, from this experiment we learned that the
optimal range of λ for the iterative PR algorithm FGLA can
be obtained after as little as 5 iterations, greatly reducing
the computation time required to evaluate FGLA on a new
dataset. We also learned that redundancy 8 does not only
perform the best in terms of quality, but it also maximizes the
performance/computation time trade-off.

V. OPTIMIZING PARAMETERS FOR PHASE RETRIEVAL

In Exp. B, we showed that the quality of the phase-retrieval
algorithms depends on the STFT parameters and that the
optimal parameter sets depend on the algorithm. Further,
Exp. E demonstrates that the optimal parameters (M,D) for
computation time are not the same as those for reconstruction
quality. Finally, Exp. D shows that even the content of the
considered signals may affect the choice of optimal parameters.
Combined, there is no single set of parameters that is optimal for
every phase retrieval algorithm and every use case. To address

this, we developed an algorithm searching for the optimal
parameters (M,D) for a given use case. The algorithm can be
shortly described as follows:

1) Input: the evaluated phase-retrieval method, the audio
signals as an array ∫ , vectors of values for M and D each,
length L, SNRMS threshold for the selection, ODG
threshold.

2) For each signal in ∫ , the algorithm applies the phase
retrieval method on STFT magnitudes computed for all
combinations of M and D and calculates ODG and
SNRMS.

3) For each (M,D) pair, the results are averaged across all
signals ∫ .

4) Output: All parameter sets (M,D) for which both ODG
and SNRMS exceed the corresponding threshold.

The algorithm is open source and freely available5. As a proof
of concept, we applied our algorithm to generate parameter
sets for representative use cases of the algorithms considered in
this work. The determined parameter sets are shown in Table
II.

Algorithm Dataset Best for D λ M
PGHI Speech Quality 32 0.14-53.5 320-6144
PGHI Speech Speed 16 0.65-11.89 480-2048
FGLA (300) Speech Quality 8 2.32-37.15 640-2560
FGLA (50) Speech Speed 8 2.32-13.38 640-1536
SPSI Speech Quality 8 0.83-1.49 384-512
SPSI Speech Speed 4 1.16-1.67 320-384
PGHI Music Quality 32 0.21-53.5 384-6144
PGHI Music Speed 16 1.16-107.0 640-6144
FGLA (300) Music Quality 8 9.28-334.37 1280-7680
FGLA (50) Music Speed 8 9.28-95.11 1280-4096
SPSI Music Quality 8 3.34-20.9 768-1920
SPSI Music Speed 4 6.68-18.57 768-1280

TABLE II: Optimal parameter sets for various use cases. The
number in parenthesis after FGLA refers to the number of
applied iterations. Datasets as in Sec. III-A. M was derived
from λ and the redundancy D. The threshold was set to 15 dB
for SNRMS and to 0.3 for ODG.

VI. CONCLUSIONS

Phase retrieval applied to STFT representations has been
reported to obtain both excellent and poor results. However,
the underlying reasons had not been studied yet. Here, we shed
more light on this matter by systematically studying the effects
of STFT parameters, window function, and audio content on
the quality of three different phase retrieval algorithms. In
doing so, our study demonstrates how to set up a system to
obtain excellent phase retrieval performance.

We considered three established algorithms reconstructing
phase from STFT magnitude: PGHI, FGLA, and SPSI. In a
systematic evaluation, we compared their performance for a
large array of conditions, including signal type and transform
parameters (time-frequency ratio λ, redundancy D, and analysis
window g). Our results show that all three algorithms were
sensitive to the redundancy and time-frequency ratio, but only

5https://github.com/andimarafioti/phaseRetrievalEvaluation

72

10

PGHI showed a sensitivity to the tested window types. This
demonstrates that the choice of parameters is crucial not only
for the performance of a phase retrieval algorithm but that it
also depends on the algorithm. For FGLA, we found that the
optimal time-frequency ratio can be found even after performing
as little as five iterations. In conclusion, our results show
that with appropriately chosen transform parameters, time-
frequency phase retrieval can achieve a high SNR and an ODG
corresponding to the category ”imperceptible”. Further, we
found differences in the performance with respect to the type
of audio data. These results indicate that the type of audio data
used in the phase retrieval application needs to be considered
when choosing STFT parameters.

In order to obtain potential sets of optimal parameters, we
have proposed an algorithm that produces the best combinations
of the redundancy and the time-frequency ratio for a specific
application. The relevance of this algorithm is twofold. First,
it can considerably improve the performance and reliability
of an application utilizing phase retrieval. Second, the input
variables of the algorithm highlight the importance of phase-
retrieval-relevant parameters to the user, raising awareness of
required parameter adaptation when applications change.

While our results demonstrate how to choose the optimal
parameter set, many applications receive TF representations
which are suboptimal for phase retrieval. An interesting follow-
up of our work may be the development of a system that
transforms a TF representation computed with a suboptimal set
of parameters into TF representations better suited for phase
retrieval.

Also, we based our investigations on consistent TF magnitude
representations only. The performance of phase retrieval in
the presence of a mild inconsistency remains to be studied,
providing an interesting direction for future work. Results from
audio generation [18], [41], [13] indicate that phase retrieval
from mildly inconsistent TF magnitudes does not necessarily
introduce human-audible artifacts.

REFERENCES

[1] M.-V. Laitinen, S. Disch, and V. Pulkki, “Sensitivity of human hearing
to changes in phase spectrum,” Journal of the Audio Engineering Society,
vol. 61, no. 11, pp. 860–877, 2013.

[2] L. Liu, J. He, and G. Palm, “Effects of phase on the perception of
intervocalic stop consonants,” Speech Communication, vol. 22, no. 4, pp.
403–417, 1997.

[3] K. K. Paliwal and L. D. Alsteris, “On the usefulness of STFT phase
spectrum in human listening tests,” Speech Communication, vol. 45, no. 2,
pp. 153–170, 2005.

[4] A. V. Oppenheim and J. S. Lim, “The importance of phase in signals,”
Proceedings of the IEEE, vol. 69, no. 5, pp. 529–541, 1981.

[5] J. Allen, “Short term spectral analysis, synthesis, and modification by
discrete Fourier transform,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 25, no. 3, pp. 235–238, 1977.

[6] J. Wexler and S. Raz, “Discrete Gabor expansions,” Signal Processing,
vol. 21, no. 3, pp. 207 – 220, 1990.

[7] E. Vincent, T. Virtanen, and S. Gannot, Audio source separation and
speech enhancement. John Wiley & Sons, 2018.

[8] S. Chowdhury, A. V. Portabella, V. Haunschmid, and G. Widmer,
“Towards explainable music emotion recognition: The route via mid-
level features,” in Proc. of the 20th International Society for Music
Information Retrieval Conference, 2019, pp. 237–243.

[9] L. Pepino and L. Bender, “Separación de fuentes musicales mediante redes
neuronales convolucionales con múltiples decodificadores,” in Jornadas
de Audio, Acústica y Sonido. UNTREF, 2018.

[10] S. Ghose and J. J. Prevost, “Enabling an IoT system of systems through
auto sound synthesis in silent video with DNN,” in 2020 IEEE 15th
International Conference of System of Systems Engineering (SoSE), 2020,
pp. 563–568.

[11] P. Magron, K. Drossos, S. Mimilakis, and T. Virtanen, “Reducing
interference with phase recovery in DNN-based monaural singing voice
separation,” in Proc. of INTERSPEECH, 2018.

[12] B. Liu, A. Cao, and H. Kim, “Unified signal compression using generative
adversarial networks,” in ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020,
pp. 3177–3181.

[13] A. Marafioti, P. Majdak, N. Holighaus, and N. Perraudin, “GACELA
– A generative adversarial context encoder for long audio inpainting,”
IEEE Journal of Selected Topics in Signal Processing, Special issue on
reconstruction of audio from incomplete or highly degraded observations,
p. to appear, 2020.

[14] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and
A. Roberts, “GANSynth: Adversarial neural audio synthesis,” in Proc.
of ICLR, 2019.

[15] T. Gerkmann, M. Krawczyk-Becker, and J. Le Roux, “Phase processing
for single-channel speech enhancement: History and recent advances,”
IEEE signal processing Magazine, vol. 32, no. 2, pp. 55–66, 2015.

[16] P. Mowlaee, J. Kulmer, J. Stahl, and F. Mayer, Single Channel Phase-
Aware Signal Processing in Speech Communication: Theory and Practice.
Wiley-IEEE Press, 2017.

[17] P. Magron, R. Badeau, and B. David, “Phase recovery in NMF for audio
source separation: An insightful benchmark,” in 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015,
pp. 81–85.

[18] A. Marafioti, N. Perraudin, N. Holighaus, and P. Majdak, “A context
encoder for audio inpainting,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 27, no. 12, pp. 2362–2372, 2019.

[19] A. Marafioti, N. Holighaus, P. Majdak, and N. Perraudin, “Audio
inpainting of music by means of neural networks,” in Audio
Engineering Society Convention 146, Mar 2019. [Online]. Available:
http://www.aes.org/e-lib/browse.cfm?elib=20303

[20] R. W. Harrison, “Phase problem in crystallography,” Journal of the
Optical Society of America A, vol. 10, no. 5, pp. 1046–1055, 1993.

[21] J. Miao, T. Ishikawa, Q. Shen, and T. Earnest, “Extending X-ray
crystallography to allow the imaging of noncrystalline materials, cells,
and single protein complexes,” Annual Review of Physical Chemistry,
vol. 59, pp. 387–410, 2008.

[22] F. Fogel, I. Waldspurger, and A. d’Aspremont, “Phase retrieval for imaging
problems,” Mathematical programming computation, vol. 8, no. 3, pp.
311–335, 2016.

[23] Y. Shechtman, Y. C. Eldar, O. Cohen, H. N. Chapman, J. Miao,
and M. Segev, “Phase retrieval with application to optical imaging:
a contemporary overview,” IEEE signal processing magazine, vol. 32,
no. 3, pp. 87–109, 2015.

[24] T. Bendory, R. Beinert, and Y. C. Eldar, Fourier
Phase Retrieval: Uniqueness and Algorithms. Cham: Springer
International Publishing, 2017, pp. 55–91. [Online]. Available:
https://doi.org/10.1007/978-3-319-69802-1 2

[25] M. Portnoff, “Implementation of the digital phase vocoder using the fast
Fourier transform,” IEEE Trans. Acoust. Speech Signal Process., vol. 24,
no. 3, pp. 243–248, 1976.

[26] F. Auger, É. Chassande-Mottin, and P. Flandrin, “On phase-magnitude
relationships in the short-time Fourier transform.” IEEE Signal Process.
Lett., vol. 19, no. 5, pp. 267–270, 2012.

[27] K. Gröchenig, Foundations of Time-Frequency Analysis, ser. Appl. Numer.
Harmon. Anal. Birkhäuser, 2001.

[28] D. Griffin and J. Lim, “Signal estimation from modified short-time
Fourier transform,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 32, no. 2, pp. 236–243, 1984.

[29] Y. Masuyama, K. Yatabe, Y. Koizumi, Y. Oikawa, and N. Harada, “Deep
Griffin–Lim iteration: Trainable iterative phase reconstruction using neural
network,” IEEE Journal of Selected Topics in Signal Processing, pp. 1–1,
2020.

[30] Y. Masuyama, K. Yatabe, Y. Koizumi, Y. Oikawa, and N. Harada, “Deep
Griffin-Lim iteration,” in Proc. of ICASSP. IEEE, 2019, pp. 61–65.

[31] Y. Masuyama, K. Yatabe, and Y. Oikawa, “Griffin–Lim like phase
recovery via alternating direction method of multipliers,” IEEE Signal
Processing Letters, vol. 26, no. 1, pp. 184–188, 2019.

73

MARAFIOTI, HOLIGHAUS, AND MAJDAK: TIME-FREQUENCY PHASE RETRIEVAL FOR AUDIO — THE EFFECT OF TRANSFORM PARAMETERS 11

[32] J. Le Roux, H. Kameoka, N. Ono, and S. Sagayama, “Fast signal
reconstruction from magnitude STFT spectrogram based on spectrogram
consistency,” in Proc. Int. Conf. Digital Audio Effects, vol. 10, 2010.

[33] N. Perraudin, P. Balazs, and P. L. Søndergaard, “A fast Griffin-Lim
algorithm,” in Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2013 IEEE Workshop on. IEEE, 2013, pp. 1–4.

[34] S. I. Mimilakis, K. Drossos, J. F. Santos, G. Schuller, T. Virtanen, and
Y. Bengio, “Monaural singing voice separation with skip-filtering con-
nections and recurrent inference of time-frequency mask,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 721–725.

[35] S. Vasquez and M. Lewis, “MelNet: A generative model for audio in
the frequency domain,” in Proc. of ICLR, 2020.

[36] G. T. Beauregard, M. Harish, and L. Wyse, “Single pass spectrogram
inversion,” in 2015 IEEE international conference on digital signal
processing (DSP), 2015, pp. 427–431.

[37] P. Magron, R. Badeau, and B. David, “Phase reconstruction of spectro-
grams with linear unwrapping: application to audio signal restoration,”
in 2015 23rd European Signal Processing Conference (EUSIPCO), 2015,
pp. 1–5.

[38] Z. Průša, P. Balazs, and P. L. Søndergaard, “A noniterative method for
reconstruction of phase from STFT magnitude,” IEEE/ACM Trans. on
Audio, Speech, and Lang. Process., vol. 25, no. 5, May 2017.

[39] J. Laroche and M. Dolson, “Improved phase vocoder time-scale modifi-
cation of audio,” IEEE Transactions on Speech and Audio processing,
vol. 7, no. 3, pp. 323–332, 1999.

[40] M. Portnoff, “Magnitude-phase relationships for short-time Fourier
transforms based on Gaussian analysis windows,” in ICASSP’79. IEEE
International Conference on Acoustics, Speech, and Signal Processing,
vol. 4. IEEE, 1979, pp. 186–189.

[41] A. Marafioti, N. Perraudin, N. Holighaus, and P. Majdak, “Adversarial
generation of time-frequency features with application in audio synthesis,”
in Proc. of the 36th ICML, K. Chaudhuri and R. Salakhutdinov, Eds.,
vol. 97. Long Beach, California, USA: PMLR, 09–15 Jun 2019,
pp. 4352–4362. [Online]. Available: http://proceedings.mlr.press/v97/
marafioti19a.html

[42] R. Balan, P. Casazza, and D. Edidin, “On signal reconstruction without
phase,” Applied and Computational Harmonic Analysis, vol. 20, no. 3,
pp. 345–356, 2006.

[43] S. Nawab, T. Quatieri, and J. Lim, “Signal reconstruction from short-time
Fourier transform magnitude,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 31, no. 4, pp. 986–998, 1983.

[44] I. Bojarovska and A. Flinth, “Phase retrieval from Gabor measurements,”
Journal of Fourier Analysis and Applications, vol. 22, no. 3, pp. 542–567,
2016.

[45] K. Jaganathan, Y. C. Eldar, and B. Hassibi, “STFT phase retrieval:
Uniqueness guarantees and recovery algorithms,” IEEE Journal of selected
topics in signal processing, vol. 10, no. 4, pp. 770–781, 2016.

[46] L. Li, C. Cheng, D. Han, Q. Sun, and G. Shi, “Phase retrieval
from multiple-window short-time Fourier measurements,” IEEE Signal
Processing Letters, vol. 24, no. 4, pp. 372–376, 2017.

[47] R. Alaifari and M. Wellershoff, “Ill-conditionedness of discrete Gabor
phase retrieval and a possible remedy,” in 2019 13th International
conference on Sampling Theory and Applications (SampTA), 2019, pp.
1–4.

[48] P. Mowlaee, R. Saeidi, and Y. Stylianou, “Advances in phase-aware signal
processing in speech communication,” Speech Communication, vol. 81,
pp. 1–29, 2016.

[49] Z. Průša and P. L. Søndergaard, “Real-time spectrogram inversion using
phase gradient heap integration,” in Proc. Int. Conf. Digital Audio Effects
(DAFx-16), Sep 2016, pp. 17–21.

[50] N. Holighaus, G. Koliander, Z. Průša, and L. D. Abreu, “Characterization
of analytic wavelet transforms and a new phaseless reconstruction
algorithm,” IEEE Transactions on Signal Processing, vol. 67, no. 15, pp.
3894–3908, 2019.

[51] N. Holighaus, G. Koliander, L. D. Abreu, and Z. Pruša, “Non-iterative
phaseless reconstruction from wavelet transform magnitude,” in Pro-
ceedings of the 22nd International Conference on Digital Audio Effects,
Birmingham, UK, 2019, pp. 2–6.

[52] K. Paliwal and K. Wójcicki, “Effect of analysis window duration on
speech intelligibility,” IEEE signal processing letters, vol. 15, pp. 785–
788, 2008.

[53] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. Mayorov,

A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng,
E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and Contributors, “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python,” Nature
Methods, vol. 17, pp. 261–272, 2020.

[54] Z. Průša, P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs,
“The large time-frequency analysis toolbox 2.0,” in Sound, Music, and
Motion, ser. LNCS. Springer International Publishing, 2014, pp. 419–
442.

[55] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.

[56] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015.

[57] T. Strohmer and S. Beaver, “Optimal OFDM system design for time-
frequency dispersive channels,” IEEE Trans. Comm., vol. 51, no. 7, pp.
1111–1122, July 2003.

[58] M. Faulhuber and S. Steinerberger, “Optimal Gabor frame bounds for
separable lattices and estimates for Jacobi theta functions,” Journal of
Mathematical Analysis and Applications, vol. 445, no. 1, pp. 407–422,
2017.

[59] T. Strohmer, “Numerical algorithms for discrete Gabor expansions,” in
Gabor Analysis and Algorithms: Theory and Applications, ser. Applied
and Numerical Harmonic Analysis, H. G. Feichtinger and T. Strohmer,
Eds. Birkhäuser Boston, 1998, pp. 267–294.

[60] A. Janssen, “From continuous to discrete Weyl-Heisenberg frames through
sampling,” Journal of Fourier Analysis and Applications, vol. 3, no. 5,
pp. 583–596, 1997.

[61] K. Ito and L. Johnson, “The LJ speech dataset,” https://keithito.com/
LJ-Speech-Dataset/, 2017.

[62] C. Raffel, “Learning-based methods for comparing sequences, with ap-
plications to audio-to-MIDI alignment and matching,” Ph.D. dissertation,
2016.

[63] C. Raffel and D. P. W. Ellis, “Intuitive analysis, creation and manipulation
of MIDI data with pretty midi,” in Proc. of the 15th ISMIR, Late Breaking
and Demo Papers, 2014.

[64] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, “Fma: A
dataset for music analysis,” in 18th International Society for Music
Information Retrieval Conference, 2017.

[65] Z. Průša, “The phase retrieval toolbox,” in AES International Conference
On Semantic Audio, Erlangen, Germany, June 2017.

[66] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the
determination of phase from image and diffraction plane pictures,” Optik,
vol. 35, pp. 237–246, 1972.

[67] T. Thiede, W. C. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, J. G.
Beerends, and C. Colomes, “PEAQ-The ITU standard for objective
measurement of perceived audio quality,” J. Aud. Eng. Soc., vol. 48, no.
1/2, pp. 3–29, 2000.

[68] ITU-R Recommendation, “1387: Method for objective measurements of
perceived audio quality,” International Telecommunication Union, Geneva,
Switzerland, 2001.

[69] P. Kabal et al., “An examination and interpretation of ITU-R BS. 1387:
Perceptual evaluation of audio quality,” TSP Lab Technical Report, Dept.
Electrical & Computer Engineering, McGill University, pp. 1–89, 2002.

74

75

Chapter 7

Concluding remarks

In this PhD project, we developed key systems and knowledge for the field of audio
inpainting. We focused on modelling audio in the time-frequency domain using neural
networks. Additionally, we studied various ways to recover phase from magnitude short-
time Fourier transforms (STFT).

In chapters 2 and 3, we focused on inpainting musical signals with gaps of middle dura-
tion, namely below 120 milliseconds. First, in chapter 2, we introduced the context en-
coder for audio inpainting which inpainted audio signals represented as magnitude STFT
coefficients. Then, in chapter 3 we expanded the context encoder for audio inpainting
and compared inpainting magnitude STFT coefficients to complex-valued STFT coeffi-
cients. We evaluated the results on music signals originating from both single instrument
sounds and general polyphonic music, and compared them to audio inpainting based on
LPC-extrapolation. We concluded that by generating magnitude STFT coefficients and
recovering the phase using a state-of-the-art phase retrieval algorithm the results were
significantly better in terms of both auditory-based and signal-based quality measures.
Moreover, we evaluated the signals with pure sines, showing that the magnitude net-
work reconstructed the pure sines better, specially for high frequencies. Finally, we
showed that the network trained on the instrument dataset learns to reconstruct more
precisely tuned notes than non-tuned notes, while the network trained on the music
dataset did not show this behaviour. From this work, we concluded that the context
encoder generating magnitude STFT coefficients performs better than that generating
complex-valued STFT coefficients. We also introduced the first neural network for au-
dio inpainting, demonstrating that machine-learning techniques can be used to solve
such problems. Chapters 2 and 3 addressed several of the problems the field of audio
inpainting as highlighted on Sec. 1.3. Nevertheless, we expect that our context encoder

76

for audio inpainting will suffer from technical limitations like computational power for
gaps of longer duration than 120 ms.

To expand on this limitation of the context encoder for audio inpainting, we further
focused on audio modeling, studying different models with the objective of repurpos-
ing them for audio inpainting. Audio inpainting requires the signal to be congruently
generated from both sides of a gap. In contrast, most neural models for audio modeling
applications generate audio by either continuing an existing signal, or by generating a
complete signal at once. Based on the knowledge we acquired, we introduced a candi-
date for audio modeling and audio inpainting, generative adversarial networks (GAN).
At the same time, Donahue et al. had published on the internet their article “Adversar-
ial Audio Synthesis” (65), in which they introduced WaveGAN, a GAN that generated
audio either in the time-domain, or as magnitude STFT from which they recovered the
phase. WaveGAN showed very promising results working on the time-domain, generat-
ing coherent audio signals of 1 second. However, the audio quality of WaveGAN was too
low for audio inpainting for which a change in audio quality is extremely easy to detect.
Donahue et al. claimed that the model generating time-domain signals produced higher
quality signals than the model generating magnitude STFT coefficients. While attempt-
ing to improve WaveGAN to be capable of audio inpainting gaps of long duration, we
developed TiFGAN, which we introduced in chapter 4. TiFGAN has a similar structure
as WaveGAN, but generates magnitude STFT coefficients with carefully chosen param-
eters, namely, a Gaussian window, number of frequencies M and hop size a, matching
the parameters that obtained the best performance for our phase retrieval algorithm.
To justify our selection of STFT parameters, we developed a measure of ‘consistency’
of magnitude STFTs based on the phase-magnitude relations. Consistency was useful
to demonstrate that STFTs computed using a poor selection of parameters are more
prone to errors. Eventually, TiFGAN despite being based on a similar network struc-
ture as WaveGAN, was significantly preferred over the latter in the listening tests we
conducted. Finally, we evaluated the idea of generating magnitude STFT coefficients
and recovering the phase, as opposite to generating magnitude STFT coefficients and
phase derivatives. In our study, once more, generating only magnitude STFT coefficients
proved to produce better results in terms of preference evaluated in listening tests.

The goal on developing TiFGAN was to be able to perform audio inpainting of longer
gaps than those achieved by the context encoder presented in chapters 2 and 3. With this
goal, in chapter 5, we introduced GACELA, a generative adversarial context encoder
for long audio inpainting. To evaluate GACELA, we designed a scale of complexity in
musical signals ranging from simple MIDI-synthesized piano to real recordings of rock

77

music. We tested GACELA for gaps of 372 ms, 743 ms and 1486 ms. The evaluation was
done in listening tests performed on eight subjects who listened to at least four hours of
music per week. In these listening tests, we compared GACELA to corrupted signals and
original signals. Under laboratory conditions, our subjects were able to detect most of
the inpaintings, but only rated the severity of the artifacts between “not disturbing” and
“mildly disturbing”. Additionally, the detection rate and the severity ratings depended
on the complexity of the sounds defined by the method of audio generation (MIDI vs.
recordings) and number of instruments. The inpainted segments were more likely to
be detected in sounds with larger complexity, with an exception found for the simplest
complexity level represented as piano music generated from MIDI scores. Unfortunately,
our subjects were most sensitive to any type of corruption applied within this complexity
level, confounding this part of results. Interestingly, the inpainting quality of GACELA
did not change significantly for inpainting gaps with a duration ranging between 350 ms
and 1500 ms.

Over the course of the PhD, we developed several networks to model audio signals in
the time-frequency domain. We consistently found that generating only magnitude co-
efficients and recovering the phase outperformed generating some type of phase. But,
this performance was only achieved when we carefully chose the parameters of the time-
frequency transform. In chapter 6, we studied systematically how this choice of pa-
rameters affects the performance of three established phase retrieval algorithms. In a
systematic evaluation, we compared their performance for a large array of conditions,
including signal type and transform parameters (redundancy, time-frequency ratio and
window type). Our results show that all three algorithms were sensitive to the redun-
dancy and time-frequency ratio, but only one of them showed a sensitivity to the tested
window types. This demonstrates that the choice of parameters is crucial not only for the
performance of a PR algorithm but that it also depends on the algorithm, demonstrating
the relevance of individual parameter sets for a fair comparison across PR algorithms.
To obtain potential sets of optimal parameters, we proposed an algorithm that produces
the best combinations of redundancy and time-frequency ratio for a specific application.
The relevance of this algorithm is twofold. First, it can considerably improve the per-
formance and reliability of an application utilizing PR. Second, the input variables of
the algorithm highlight the importance of PR-relevant parameters to the user, raising
awareness of required parameter adaptation when applications change.

In conclusion, this PhD addressed several problems found in the field of audio inpainting.
The context encoder for audio inpainting targeted a gap duration which had been ne-
glected, expanding the limits of exact reconstruction in audio inpainting. In the future,

78

we expect further improvements to decrease its computation complexity while increasing
the performance of its results, up to the point where the reconstruction is indistinguish-
able from the original signal. On the other side, for long gaps, we introduced GACELA,
which learns music structure and produces new signals to replace gaps. GACELA, by in-
tegrating music modeling, opened up a new task on audio inpainting. Our listening tests
suggest that the results from GACELA are still distinguishable from the original signals
because of small imperfections in the timbre of the signals produced by GACELA. We
expect future endeavors to solve this small caveat. Additionally, we hope future work
to evaluate long audio inpainting from a music modeling perspective. In GACELA, the
discriminators working at different time-scales ensure some musical coherence, but our
evaluation did not consider more sophisticated structures. In summary, there are still
avenues for improvement in audio inpainting at every gap duration, but the analysis and
systems developed on this thesis should provide a good starting point for interested par-
ties in improving audio inpainting. Future reproducibility of these models is guaranteed
by the consistent release of our implementations as free and open-source software.

BIBLIOGRAPHY 79

Bibliography

[1] L. F. Menabrea and A. Lovelace, “Sketch of the analytical engine invented by charles
babbage,” 1842.

[2] A. G. Bromley, “Charles babbage’s analytical engine, 1838,” Annals of the History
of Computing, vol. 4, no. 3, pp. 196–217, 1982.

[3] l. a. hiller, jr. and l. m. isaacson, “musical composition with a high-speed digital
computer,” journal of the audio engineering society, vol. 6, no. 3, pp. 154–160, july
1958.

[4] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-Z. A. Huang, S. Dieleman,
E. Elsen, J. Engel, and D. Eck, “Enabling factorized piano music modeling and
generation with the MAESTRO dataset, v2,” in Proc. of ICLR, 2019.

[5] S. Dieleman, A. v. d. Oord, and K. Simonyan, “The challenge of realistic music
generation: modelling raw audio at scale,” in Proc. of NeurIPS, 2018.

[6] D. Herremans, C.-H. Chuan, and E. Chew, “A functional taxonomy of music gen-
eration systems,” ACM Computing Surveys, vol. 50, pp. 1–30, 2017.

[7] M. Blaauw and J. Bonada, “A neural parametric singing synthesizer,” in Proc. of
INTERSPEECH, 2017.

[8] S. Chowdhury, A. Vall, V. Haunschmid, and G. Widmer, “Towards explainable
music emotion recognition: The route via mid-level features,” in Proc of ISMIR,
A. Flexer, G. Peeters, J. Urbano, and A. Volk, Eds., 2019, pp. 237–243.

[9] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, “Modeling temporal depen-
dencies in high-dimensional sequences: Application to polyphonic music generation
and transcription,” in ICML, 2012.

[10] R. Manzelli, V. Thakkar, A. Siahkamari, and B. Kulis, “Conditioning deep genera-
tive raw audio models for structured automatic music,” in Proc. of ISMIR, 2018.

BIBLIOGRAPHY 80

[11] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative
model for raw audio,” CoRR, vol. abs/1609.03499, 2016. [Online]. Available:
http://arxiv.org/abs/1609.03499

[12] A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu,
G. van den Driessche, E. Lockhart, L. Cobo, F. Stimberg, N. Casagrande,
D. Grewe, S. Noury, S. Dieleman, E. Elsen, N. Kalchbrenner, H. Zen, A. Graves,
H. King, T. Walters, D. Belov, and D. Hassabis, “Parallel wavenet: Fast high-
fidelity speech synthesis,” CoRR, vol. abs/1711.10433, 2017. [Online]. Available:
http://arxiv.org/abs/1711.10433

[13] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. Courville,
and Y. Bengio, “SampleRNN: An unconditional end-to-end neural audio generation
model,” in Proc. of ICLR, 2017.

[14] J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, and K. Si-
monyan, “Neural audio synthesis of musical notes with wavenet autoencoders,” in
Proc. of ICML, 2017, pp. 1068–1077.

[15] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based generative net-
work for speech synthesis,” in ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 3617–3621.

[16] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z. Teoh, J. Sotelo, A. de Brébis-
son, Y. Bengio, and A. C. Courville, “Melgan: Generative adversarial networks for
conditional waveform synthesis,” in Advances in Neural Information Processing Sys-
tems 32. Curran Associates, Inc., 2019, pp. 14 910–14 921.

[17] M. Bińkowski, J. Donahue, S. Dieleman, A. Clark, E. Elsen, N. Casagrande, L. C.
Cobo, and K. Simonyan, “High fidelity speech synthesis with adversarial networks,”
in Proc. of ICLR, 2020.

[18] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande, E. Lockhart,
F. Stimberg, A. van den Oord, S. Dieleman, and K. Kavukcuoglu, “Efficient neural
audio synthesis,” in Proc of ICML, ser. Proceedings of Machine Learning Research,
J. Dy and A. Krause, Eds., vol. 80, Stockholmsmässan, Stockholm Sweden, 10–15
Jul 2018, pp. 2410–2419.

[19] S. Vasquez and M. Lewis, “Melnet: A generative model for audio in the frequency
domain,” in Proc. of ICLR, 2020.

http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1711.10433

BIBLIOGRAPHY 81

[20] J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and A. Roberts,
“Gansynth: Adversarial neural audio synthesis,” in Proc. of ICLR, 2019.

[21] A. Marafioti, N. Perraudin, N. Holighaus, and P. Majdak, “Adversarial generation
of time-frequency features with application in audio synthesis,” in Proc. of the
36th ICML, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. Long Beach,
California, USA: PMLR, 09–15 Jun 2019, pp. 4352–4362. [Online]. Available:
http://proceedings.mlr.press/v97/marafioti19a.html

[22] S. Dieleman and B. Schrauwen, “End-to-end learning for music audio,” in Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on.
IEEE, 2014, pp. 6964–6968.

[23] J. Pons, O. Nieto, M. Prockup, E. M. Schmidt, A. F. Ehmann, and X. Serra, “End-
to-end learning for music audio tagging at scale,” in Proc. of ISMIR, 2018.

[24] R. H. Abbasi, P. Balázs, A. Noll, D. Nicolakis, M. Adelaide, Marconi, S. M. Zala,
and D. J. Penn, “Applying convolutional neural networks to the analysis of mouse
ultrasonic vocalizations,” in Proc. of the 23rd international congress on Acoustics,
2019.

[25] Y. Saito, S. Takamichi, and H. Saruwatari, “Text-to-speech synthesis using STFT
spectra based on low-/multi-resolution generative adversarial networks,” in Proc.
of ICASSP. IEEE, 2018, pp. 5299–5303.

[26] Z. Jin, A. Finkelstein, G. J. Mysore, and J. Lu, “Fftnet: A real-time speaker-
dependent neural vocoder,” in Proc. of ICASSP. IEEE, 2018, pp. 2251–2255.

[27] J. Shen, R. Pang, R. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang,
Y. Wang, R. Skerry-Ryan, R. Saurous, Y. Agiomyrgiannakis, and Y. Wu, “Natural
TTS synthesis by conditioning WaveNet on mel spectrogram predictions,” in Proc.
of ICASSP. IEEE, 2018.

[28] S. Huang, Q. Li, C. Anil, X. Bao, S. Oore, and R. B. Grosse, “Timbretron: A
wavenet(cycleGAN(CQT(audio))) pipeline for musical timbre transfer,” in Proc. of
ICLR, 2019.

[29] J. Allen, “Short term spectral analysis, synthesis, and modification by discrete
fourier transform,” IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 25, no. 3, pp. 235–238, 1977.

[30] J. Wexler and S. Raz, “Discrete gabor expansions,” Signal Processing, vol. 21, no. 3,
pp. 207 – 220, 1990.

http://proceedings.mlr.press/v97/marafioti19a.html

BIBLIOGRAPHY 82

[31] T. Strohmer, “Numerical algorithms for discrete Gabor expansions,” in Gabor Anal-
ysis and Algorithms: Theory and Applications, ser. Appl. Numer. Harmon. Anal.,
H. G. Feichtinger and T. Strohmer, Eds. Birkhäuser Boston, 1998, pp. 267–294.

[32] A. Janssen, “From continuous to discrete weyl-heisenberg frames through sampling,”
Journal of Fourier Analysis and Applications, vol. 3, no. 5, pp. 583–596, 1997.

[33] A. Adler, V. Emiya, M. G. Jafari, M. Elad, R. Gribonval, and M. D. Plumbley,
“Audio inpainting,” IEEE Transactions on Audio, Speech and Language Processing,
vol. 20, no. 3, pp. 922–932, March 2012.

[34] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in Pro-
ceedings of the 27th annual conference on Computer graphics and interactive tech-
niques, 2000, pp. 417–424.

[35] M. Elad, J.-L. Starck, P. Querre, and D. L. Donoho, “Simultaneous cartoon and
texture image inpainting using morphological component analysis (mca),” Applied
and computational harmonic analysis, vol. 19, no. 3, pp. 340–358, 2005.

[36] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. Efros, “Context encoders:
Feature learning by inpainting,” in Proc. of CVPR, 2016.

[37] I. Kauppinen, J. Kauppinen, and P. Saarinen, “A method for long extrapolation
of audio signals,” Journal of the Audio Engineering Society, vol. 49, no. 12, pp.
1167–1180, 2001.

[38] W. Etter, “Restoration of a discrete-time signal segment by interpolation based on
the left-sided and right-sided autoregressive parameters,” IEEE Transactions on
Signal Processing, vol. 44, no. 5, pp. 1124–1135, may 1996.

[39] D. Goodman, G. Lockhart, O. Wasem, and W.-C. Wong, “Waveform substitution
techniques for recovering missing speech segments in packet voice communications,”
IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 34, no. 6, pp.
1440–1448, dec 1986.

[40] Y. Bahat, Y. Schechner, and M. Elad, “Self-content-based audio inpainting,” Signal
Processing, vol. 111, pp. 61–72, jun 2015.

[41] A. Adler, V. Emiya, M. Jafari, M. Elad, R. Gribonval, and M. Plumbley, “A con-
strained matching pursuit approach to audio declipping,” in Proc. of ICASSP.
IEEE, may 2011.

BIBLIOGRAPHY 83

[42] I. Toumi and V. Emiya, “Sparse non-local similarity modeling for audio inpaint-
ing,” in ICASSP - IEEE International Conference on Acoustics, Speech and Signal
Processing, Calgary, Canada, Apr. 2018.

[43] S. Kitić, N. Bertin, and R. Gribonval, “Sparsity and cosparsity for audio declipping:
a flexible non-convex approach,” in LVA/ICA 2015 - The 12th International
Conference on Latent Variable Analysis and Signal Separation, Liberec, Czech
Republic, Aug. 2015, p. 8. [Online]. Available: https://hal.inria.fr/hal-01159700

[44] O. Mokrỳ, P. Záviška, P. Rajmic, and V. Veselỳ, “Introducing spain (sparse au-
dio inpainter),” in 2019 27th European Signal Processing Conference (EUSIPCO).
IEEE, 2019, pp. 1–5.

[45] C. Gaultier, S. Kitić, N. Bertin, and R. Gribonval, “AUDASCITY: AUdio
Denoising by Adaptive Social CosparsITY,” in 25th European Signal Processing
Conference (EUSIPCO), Kos, Greece, Aug. 2017. [Online]. Available: https:
//hal.inria.fr/hal-01540945

[46] K. Siedenburg, M. Kowalski, and M. Dörfler, “Audio Declipping with Social
Sparsity,” in Proc. of ICASSP. Florence, Italy: IEEE, May 2014, pp. AASP–L2.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-01002998

[47] F. Lieb and H.-G. Stark, “Audio inpainting: Evaluation of time-frequency repre-
sentations and structured sparsity approaches,” Signal Processing, vol. 153, pp.
291–299, 2018.

[48] P. J. Wolfe and S. J. Godsill, “Interpolation of missing data values for audio signal
restoration using a gabor regression model,” in Proc. of ICASSP, vol. 5. IEEE,
2005, pp. v–517.

[49] J. Le Roux, H. Kameoka, N. Ono, A. De Cheveigne, and S. Sagayama, “Compu-
tational auditory induction as a missing-data model-fitting problem with bregman
divergence,” Speech Communication, vol. 53, no. 5, pp. 658–676, 2011.

[50] P. Smaragdis, B. Raj, and M. Shashanka, “Missing data imputation for time-
frequency representations of audio signals,” Journal of signal processing systems,
vol. 65, no. 3, pp. 361–370, 2011.

[51] U. Şimşekli, Y. K. Yılmaz, and A. T. Cemgil, “Score guided audio restoration via
generalised coupled tensor factorisation,” in Proc. of ICASSP. IEEE, 2012, pp.
5369–5372.

https://hal.inria.fr/hal-01159700
https://hal.inria.fr/hal-01540945
https://hal.inria.fr/hal-01540945
https://hal.archives-ouvertes.fr/hal-01002998

BIBLIOGRAPHY 84

[52] C. Bilen, A. Ozerov, and P. Pérez, “Solving time-domain audio inverse problems
using nonnegative tensor factorization,” IEEE Transactions on Signal Processing,
vol. 66, no. 21, pp. 5604–5617, Nov 2018.

[53] Ç. Bilen, A. Ozerov, and P. Pérez, “Joint audio inpainting and source separation,”
in International Conference on Latent Variable Analysis and Signal Separation.
Springer, 2015, pp. 251–258.

[54] ——, “Audio declipping via nonnegative matrix factorization,” in 2015 IEEE Work-
shop on Applications of Signal Processing to Audio and Acoustics (WASPAA).
IEEE, 2015, pp. 1–5.

[55] A. Ozerov, Ç. Bilen, and P. Pérez, “Multichannel audio declipping,” in Proc. of
ICASSP. IEEE, 2016, pp. 659–663.

[56] I. Kauppinen and J. Kauppinen, “Reconstruction method for missing or damaged
long portions in audio signal,” Journal of the Audio Engineering Society, vol. 50,
no. 7/8, pp. 594–602, 2002.

[57] T. E. Tremain, “The government standard linear predictive coding algorithm: Lpc-
10,” Speech Technology, pp. 40–49, Apr. 1982.

[58] A. Janssen, R. Veldhuis, and L. Vries, “Adaptive interpolation of discrete-time
signals that can be modeled as autoregressive processes,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 34, no. 2, pp. 317–330, 1986.

[59] I. Kauppinen and K. Roth, “Audio signal extrapolation–theory and applications,”
in Proc. DAFx, 2002, pp. 105–110.

[60] N. Perraudin, N. Holighaus, P. Majdak, and P. Balazs, “Inpainting of long audio
segments with similarity graphs,” IEEE/ACM Transactions on Audio, Speech and
Language Processing, vol. PP, no. 99, pp. 1–1, 2018.

[61] E. Manilow and B. Pardo, “Leveraging repetition to do audio imputation,” in 2017
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WAS-
PAA). IEEE, 2017, pp. 309–313.

[62] B. Martin, P. Hanna, T. V. Thong, M. Desainte-Catherine, and P. Ferraro,
“Exemplar-based assignment of large missing audio parts using string matching
on tonal features.” in Proc. of ISMIR, 2011, pp. 507–512.

[63] R. C. Maher, “A method for extrapolation of missing digital audio data,” Journal
of the Audio Engineering Society, vol. 42, no. 5, pp. 350–357, 1994.

BIBLIOGRAPHY 85

[64] A. Lukin and J. Todd, “Parametric interpolation of gaps in audio signals,” in Audio
Engineering Society Convention 125. Audio Engineering Society, 2008.

[65] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio synthesis,” in Proc.
of ICLR, 2019.

[66] M. Portnoff, “Implementation of the digital phase vocoder using the fast fourier
transform,” IEEE Trans. Acoust. Speech Signal Process., vol. 24, no. 3, pp. 243–
248, 1976.

	Title page
	abstract
	1 Introduction
	1.1 Computer Music Modeling
	1.2 Audio representations
	1.3 Audio inpainting
	1.4 Outline

	2 Audio inpainting of music by means of neural networks
	3 A context encoder for audio inpainting
	4 Adversarial generation of time-frequency features with application in audio synthesis
	5 GACELA – A generative adversarial context encoder for long audio inpainting
	6 Time-Frequency Phase Retrieval for Audio — The Effect of Transform Parameters
	7 Concluding remarks

