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Abstract

The objective of this diploma thesis is the selection and evaluation of appropriate low-level fea-

tures and derived feature characteristics for automated recognition and classification of speech

under varying emotions and mental stress levels. Importance is attached to obtaining results

which are applicable to speech under a broad spectrum of stress types and independent of the

language spoken. For this purpose, speech data from an English database of speech under stress

(SUSAS) is analyzed as well as a German database of emotional speech (Emo-DB) and an En-

glish corpus of non-prompted air traffic control speech (ATCOSIM).

Basic features are extracted using the speech analysis software Praat; including pitch, inten-

sity, F1/F2 frequency and bandwidth, harmonicity, MFCCs, and properties of the glottal source

spectrum. Further processing steps, implemented in MATLAB, comprise a phoneme boundary

and class detection with subsequent feature extraction utilizing the phoneme grid as a new time

base. These additional features include phoneme durations and a feature based on the nonlinear

Teager Energy Operator (TEO).

The discriminative power of single features is estimated by means of appropriate statistical

tests on the derived characteristics. This results in a feature ranking list for a selected combina-

tion of two emotional classes, from which the best performing set of features is then determined

iteratively. Using this feature set, a supervised classification method (k-nearest neighbours) is

employed in a cross-validation process. Its outcome is the percentage of correctly assigned

emotional classes, which is taken as a measure of performance. Finally, a “shared” feature set is

found by intersecting optimum feature sets of individual experiments.

For acted emotional speech, results of up to 98% correct classification rate (CCR) are achieved

using individual feature sets, which are degraded by not more than 12% when taking the shared

feature set for classification. Workload level classification performance reaches up to 70% CCR

for individual feature sets and likewise degrades by 12% maximum when using the shared set,

what ends up in rather moderate classification rates around 60% CCR though.
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Zusammenfassung

Ziel dieser Diplomarbeit ist die Auswahl und Beurteilung geeigneter Sprachmerkmale (Features)

und daraus abgeleiteter Feature Characteristics zur automatischen Erkennung und Einteilung

von gesprochener Sprache in verschiedenen emotionalen Zuständen und bei unterschiedlicher

psychischer Belastung. Die Ergebnisse sollen für unterschiedliche Arten von Stress anwendbar

und unabhängig von der gesprochenen Sprache sein. Zu diesem Zweck werden Sprachdaten

einer englischen Datenbank mit Sprache unter Stressbedingungen (SUSAS), einer deutschen

mit emotionaler Sprache (Emo-DB) sowie eines englischen Sprachkorpus mit Fluglotsen-Funk-

verkehr analysiert.

Grundlegende Features wie Tonhöhe, Intensität, Frequenzen und Bandbreiten der ersten bei-

den Formanten, Harmonizität, MFCCs und Eigenschaften der glottalen Anregung werden mit

Hilfe der Sprachanalyse-Software Praat extrahiert. Anschließend wird eine Phonemgrenzen-

erkennung und -klassifizierung durchgeführt, was Voraussetzung für die Berechnung der Pho-

nemdauer sowie eines auf dem Teager Energy Operator (TEO) basierenden Features ist. Diese

Berechnungen werden – wie auch die weiteren Schritte – in MATLAB implementiert.

Das Differenzierungspotential der einzelnen Merkmale wird mit Hilfe geeigneter statistischer

Tests bestimmt, woraus sich eine Rangliste der Features für eine Auswahl zweier emotionaler

Klassen ergibt. Aus dieser wird iterativ diejenige Kombination von Features ermittelt, die die

besten Ergebnisse bei der Klassifikation mit einer überwachten Methode (k-nearest neighbours)

liefert. In einem Vergleichsprüfungsverfahren wird so der Prozentsatz der korrekt zugeordneten

emotionalen Klassen berechnet, der das Ergebnis darstellt. Ein “allgemeines” Set von Merk-

malen wird schließlich durch Bildung der Schnittmenge aus den Einzelergebnissen gewonnen.

Bei der Analyse gespielter Emotionen werden unter Verwendung der jeweils besten Feature-

Sets Ergebnisse von bis zu 98% korrekter Erkennungsrate (CCR) erzielt; bei Verwendung des

allgemeinen Sets verschlechtert sich die CCR um maximal 12%. Die Erkennung von Arbeits-

belastung (Workload) erreicht bis zu 70% CCR, eine vergleichbare Abnahme von 12% bei Ver-

wendung des allgemeinen Sets bedeutet hier im Endeffekt jedoch eher mäßige Erkennungsraten

um etwa 60% CCR.
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Chapter 1.

Preface

1.1. Motivation

Stress is the response to physical or mental challenges and is accompanied by specific emotions.

The emotional state can – consciously or unconsciously – affect the speech behavior.

With this knowledge, it must be possible to draw conclusions on the emotional state from

identifying speech markers of stress within the speech signal, which can be obtained by extract-

ing appropriate (i.e., descriptive) features.

The speech signal is an interesting source for stress analysis, since it can be measured in a

non-invasive, contact-free, and non-intrusive way (see Fig. 1.1).

Figure 1.1.: Taxonomy of stress measurement methods.

A speech monitoring system which is able to quantify a speaker’s degree of stress could serve

as a measure of human performance wherever an individual is responsible for other people’s

safety. In the area of air traffic management (ATM), an air traffic control operator is in charge

of a certain sector of the airspace. Sector sizes are regularly conformed to the respective traffic

loads, subject to a supervisor’s subjective decision. These decisions could be objectified by

means of indicators of human stress provided by such a monitoring system [19].

Likewise, the physical and mental state of a pilot could be observed in order to activate

emergency procedures in case of impending loss of control over the aircraft. Knowledge of

a speaker’s emotional state can also be beneficial in improving the performance of speech de-

tection algorithms by taking into account its impact on the physiological properties of speech
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production; other interesting fields include neutral-to-emotional speech synthesis or “emotion

equalization” in speech.

1.2. Objective

Many approaches in the area of emotional speech and speech under stress have been presented

over the last years, most of them concentrating on improving classification rates for different

talking styles. Prevalently, the genus of talking styles implies classes of different qualities;

while some are apparently related to certain emotions or kinds of stress (e.g. angry, loud or fast),

others like question depend on the situation rather than on the present emotional state.

The majority of these studies employ the SUSAS database (see 3.2.1), which is a discrete

set of single-word utterances with very limited vocabulary. This fact implies that up to now, a

significant amount of research results have been obtained using speech fragments without any

contextual relation.

By contrast, the aim of this thesis is to construct a “transferable” analysis framework which

performs equally well on any kind of emotional or stressful speech material; without requesting

additional metadata such as labelled phoneme boundaries or a-priori knowledge on the speaker

(as it is the case with, e.g. model-based approaches). A set of features is to be found that matches

the above-mentioned prerequisites best possible.

An existing approach operating on the SUSAS database is expanded by introducing additional

features, before the analysis framework is applied to a German database of emotional speech

and an English corpus of non-prompted air traffic control speech to examine the feature set’s

transferability with respect to foreign languages, continuous speech samples, and workload-

related tasks.

1.3. Restrictions

The speech material representing different emotional states consists of acted speech solely; i.e.,

it has not been recorded in “real-life” situations. While this ensures full control over recording

quality and content on the one hand, it prevents control over the quality of the expressed emotion

on the other hand, since the speaker may tend to accentuate some features while suppressing

others [17].

Concerning workload-related stress, it is important to point out the difference between the

terms of taskload and workload. While the former is an objective measure for the demand of the

work (and the parameter that can be specified via the experimental setup), the latter stands for the

subjective capacity utilization (and the parameter that impacts the speech production process).

Since human beings can hardly be approximated as linear, time-invariant systems, there will

always be a nonlinear relationship between taskload and workload.

Johannes Luig Investigations on a Robust Feature Set for Classification of Speech under Stress
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An interesting issue in this context is the relation between taskload and performance, as a

speech monitoring system’s intended field of application could be called “performance predic-

tion”. The effect that a very low taskload can also lead to high workload and thus to lower

performance has been described by de Waard [16] and is sketched in figure 1.2.

Figure 1.2.: Workload and performance as a function of the demand (from [16]).

The fact that people differ in physical and mental toughness will furthermore lead to a wide

statistical spread of feature values. This results in overlapping classes in the feature space, which

impedes the classification process.

Finally, the broad definition of the term “stress” and the fact that a “neutral” state is merely

defined by the absence of stress (cp. 2.1.1) may cause a small overlap when intersecting optimum

feature sets of different stress types, which is the technique to obtain a “transferable” set of

features.

1.4. Explanation of Terms

Stress

Wherever the term “stress” appears in this thesis, it always refers to some kind of physical or

psychological pressure influencing an individual. The linguistic meaning of “stress” (as the

emphasis given to a syllable) is never the subject of discussion.

Emotional Classes

Since emotions and stress are highly related to each other (see 2.1.3), the term “emotional class”

is used to describe acted emotions as well as workload levels or actual stress.

Johannes Luig Investigations on a Robust Feature Set for Classification of Speech under Stress
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Phonemes

The Encyclopædia Britannica defines a phoneme to be “the smallest unit of speech distinguish-

ing one word (or element) from another” [36]. Roughly speaking, every language of the world

has its distinct set of phonemes from which speech is constructed by concatenating these single

unit sounds to meaningful utterances.

In most western languages, it is not the case that a certain phoneme can be assigned to one

corresponding letter in the alphabet. The phoneme /k/ can, e.g., be represented by the letters k

and c, as in kit and cat.

Features and Feature Characteristics

To be able to differentiate between signal properties extracted directly from the speech signal

(which are certainly “features”) and descriptive scalar values derived from these properties, the

latter is referred to as “feature characteristics”. The n-dimensional feature vector used in the

classification process consists of n feature characteristics, each representing a statistical property

of a corresponding time series of feature values.

1.5. Outline

This thesis is organized as follows:

Chapter 2 starts off by looking at different types of stress and by pointing out how they

influence the speech production process. A general survey of research on emotional speech and

speech under stress concludes the introduction into the topic.

Chapter 3 outlines the presented work including the general analysis framework, speech

databases used for the experiments, features taken into consideration, the task of phoneme

boundary detection, numerical and graphical feature evaluation techniques, methods to reduce

the feature space dimension, and the classification procedure.

Chapter 4 takes a closer look at the algorithms implemented in Praat and MATLAB, explain-

ing parameters and settings used.

Chapter 5 presents the results of the two main experiments that have been conducted to

investigate the degree of transferability, which is the main issue of this work.

Chapter 6 discusses the results presented in chapter 5, pointing out achievements as well as

open tasks. Furthermore, an outlook on future research as a consequence of the presented work

is given.

Johannes Luig Investigations on a Robust Feature Set for Classification of Speech under Stress



Chapter 2.

Analysis of Speech under Stress

2.1. Stress and its Influence on the Speech Production

Process

2.1.1. A Definition of “Speech under Stress”

Stress is the response to physical or mental challenges and can be caused by a variety of reasons.

The stimuli producing a stress response are referred to as stressors and have been classified by

Hansen et al. [24]. Table 2.1 sets examples for each of the four categories.

Stressor Order Description Stressors

0 Physical Vibration, Acceleration (G-force), Personal Equip-

ment, Pressure Breathing, Breathing Gas Mixture

1 Physiological Medicines, Narcotics, Alcohol, Nicotine, Fatigue,

Sleep Deprivation, Dehydration, Illness, Local

Anesthetic

2 Perceptual Noise, Poor Communication Channel, Poor Grasp

of Language

3 Psychological Workload, Emotion, Task-related Anxiety, Back-

ground Anxiety

Table 2.1.: Taxonomy of Stressors (from [24]).

Due to this multitude of possible stressors, speech under stress is defined as speech showing

any divergence from a pre-defined “neutral” state regarding speaking style, selection and usage

of words, or duration of single utterances [22].

Stress can be seen as one of several factors affecting speech; what implies, of course, that a

specific level of stress does not necessarily lead to comparable responses when affecting different

individuals. Figure 2.1 depicts the relationship of speech, stress, and respective influences.
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Figure 2.1.: Stress as one of several influences on the speech production process (from [19]).

2.1.2. An Extended Model of Speech Production

The established model of speech production can be sketched as follows: the lungs produce an

air flow causing vibration of the vocal folds located within the larynx (see figure 2.2). As a

consequence of this, the air flow is cut into audible pulses (the source), which are subsequently

spectrally modified by the articulators (which include all parts of the vocal tract above the larynx

– the filter), before being radiated from the lips.

Figure 2.2.: The human vocal tract (from [46], adapted).
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To study all possible effects of stress on the speech production process, this purely physical

model has to be extended by the “control unit” workflow; i.e., what happens inside the brain

before muscular actions are executed.

The speech production model shown in figure 2.3 was introduced by Hansen [24]. It starts

with the idea what to say, followed by the creation of an appropriate sentence (linguistic pro-

gramming). This sequence of words to produce has to be translated into a sequence of articu-

latory targets first, before appropriate neuro-muscular commands are created and transmitted to

the muscles controlling the respiratory system and the vocal tract.

Figure 2.3.: An extended model of speech production and the influence of external stimuli (stressors) of

various orders (from [24]).

Third-order stressors affect the speech production process at its highest level. A high work-

load or emotional states like anxiety or fear may affect the ideation process and the creation of

the utterance; even the articulary target generation will be impacted via para-linguistics.

Johannes Luig Investigations on a Robust Feature Set for Classification of Speech under Stress



Chapter 2. Analysis of Speech under Stress 8

Second-order stressors have their effects at the conversion of the linguistic program into

neuro-muscular commands, with noise being the most prominent stressor. The term perceptual

stressor indicates that there is some kind of conscious interpretation of the stressor [35], but

without involving higher-level emotions.

First-order stressors modify the neuro-muscular signal transduction process and thus pro-

voke changes in articulator movement; the proprioceptive feedback loop may also be affected.

Responsible are chemical effects in most instances, be it externally (e.g., medical or narcotic

drugs) or internally triggered (e.g., illnesss or fatigue).

Zero-order stressors directly result in physical changes to the speech production system.

The mental stage is not affected, but the articulator responses change due to some kind of force

they are exposed to.

2.1.3. Stress and Emotions

Up to now, the terms stress and emotions have been used with equal meaning. This is, of course,

not completely true, since emotions belong to the category of third-order stressors that influence

consciousness and emotional state of an individual. At the same time we know that any kind

of stress – even if caused by lower-order stressors – will always be accompanied by specific

emotions [22].

However, the fact that we can not precisely distinguish between stress and emotions has little

effect on the recognition task. Hansen and his group [22, 24, 50, 54] treat acted emotional speech

in the same manner as speech under background noise and speech produced by performing a

computer response task, and just distinguish between simulated and actual stress.

Throughout the literature, both terms are widely equated with each other; approaches focusing

on emotion solely report similar findings and work with similar features as approaches concen-

trating on stress. An interesting point is made by Cowie and Cornelius [14], who state that it

has not yet been verified if “positive” emotions such as happiness may produce comparable out-

comes as stress (which is always associated with “negative” emotions such as anger), e.g., an

increase in pitch or intensity.

This thesis uses the term emotional class globally; i.e., for acted emotions as well as for

different workload levels and for situations in which people are exposed to “actual stress”.

2.2. Related Work

Summarizing an ESCA-NATO workshop on speech under stress in 1995, Murray et al. [35]

published a paper in which a basic definition of stress is given and a variety of stress models is

proposed. An important issue is the distinction between the causes and the effects of stress and

how they are related.

Johannes Luig Investigations on a Robust Feature Set for Classification of Speech under Stress
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As a follow-up, Hansen et al. [24] authored a comprehensive technical report for the NATO

research and technology organization in 2000. Although focusing on military speech technology,

this paper serves as a prime summary of speech-under-stress related work by the time; including

definitions, a database overview, a chapter on features for analysis and one on stress classification

and detection methods.

A more general and compact work with similar content was published in the Lecture Notes in

Computer Science series in 2007 [22], which forms the basis of investigations reported in this

diploma thesis (cp. section 3.1.2).

Ververidis and Kotropoulos [48] overview the area of emotional speech recognition concern-

ing available databases, typical features used for analysis, and classification techniques including

artificial neural networks, multichannel Hidden Markov Models, and mixtures of HMMs.

Hagmüller et al. [19] concentrate on acoustic correlates of workload-induced stress in speech.

While a bigger part of the paper corresponds to Hansen’s work [24, 22], it still is a fundamental

work concerning workload-induced stress.

These publications are the basic essentials from literature on speech under stress. Those

papers dealing mainly with features considered in this thesis are mentioned in the respective

Literature subsections in 3.3.

Johannes Luig Investigations on a Robust Feature Set for Classification of Speech under Stress
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Feature Selection and Evaluation

3.1. Methodology

3.1.1. General Analysis Framework

A variety of low-level features is extracted from the buffered audio signal, resulting in one value

per feature and frame. For each of these feature series, mean and variance as well as other

specific feature characteristics are computed, which are then evaluated regarding their ability to

separate between emotional classes.

Figure 3.1.: The feature extraction and evaluation framework.

The discriminative power of single features is estimated by means of appropriate statistical

tests (see section 3.5.1), resulting in a feature ranking list for a selected combination of two
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emotional classes. The best performing set of features is then determined iteratively.

Subsequently, a supervised classification method (see section 3.5.4) is employed in a cross-

validation process. Its outcome is the percentage of correctly assigned emotional classes, which

is taken as a measure of performance.

Features and derived characteristics are described in detail in section 3.3. Figure 3.1 represents

the two main analysis stages, extraction and evaluation, in a compact way.

3.1.2. Guidelines

Prof. John H.L. Hansen is the director and founder of the Center for Robust Speech Systems

at the University of Texas at Dallas (USA). He is the author of more than 250 journal and

conference papers and several books in the area of speech and signal processing; his first paper

on stress and its acoustic correlates in the speech signal was published in 1989 [25].

In 2007, he published a chapter in the book series Lecture Notes in Computer Science [22]

considering analysis and recognition of speech under stress, which summarizes the findings of

many years of research in this area and serves as a benchmark for this thesis.

So the first step is to verify Hansen’s results by performing feature extraction on the SUSAS

database (see 3.2.1), using just those methods suggested in the above-mentioned article. The

proposed features include fundamental frequency (pitch), duration of single phonemes, intensity

level, spectral level and slope of glottal pulses, and frequency and bandwidth of the first two

formants.

To broaden the spectrum of research, jitter and shimmer of glottal pulses, the first 12 mel-

frequency cepstral coefficients (MFCCs), harmonicity, zero-crossings, and a feature based on the

Teager Energy Operator (TEO-CB-AutoEnv) are extracted as potentially meaningful features in

addition to the Hansen approach.

3.1.3. Verification of Transferability

Since the main intent of the presented work is to produce results which are applicable to speech

under a broad spectrum of stress types, two other databases with differing focuses are employed

(full particulars on these databases can be found in section 3.2).

The dependency on the spoken language and possible effects caused by analysis of continu-

ous speech (rather than single-word utterances) is then studied by analyzing a German emotional

database (see 3.2.2) in the same manner as described above. Results are compared for the emo-

tional classes neutral and angry, which are contained in both SUSAS and the Emo-DB database.

Finally, this analysis framework is applied to the ATCOSIM corpus (see 3.2.3) in order to

study the effects of variably induced taskload levels for the small, discrete word set versus a

large set of non-prompted speech.
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3.2. Databases

The presented work investigates speech data from three different databases, which are briefly

presented in the following paragraphs.

3.2.1. SUSAS

The SUSAS database [21] comprises Speech Under Simulated and Actual Stress in five different

domains and was especially created for investigating speech under stress. The vocabulary covers

35 single-word utterances from aircraft communication. Three of these five domains are selected

for analysis; namely Talking Styles (neutral, slow, fast, soft, loud, clear, angry and question),

Single Tracking and Dual Tracking computer response tasks.

SUSAS is employed in the majority of literature on speech under stress research and thus

taken as a reference for the current work.

3.2.2. Emo-DB

The Emo-DB database [11] consists of 10 different German utterances produced in seven (acted)

emotional states, each produced by 5 female and 5 male speakers. The simulated emotions

include angry, anxious, bored, disgusted, joyful, sad, and neutral.

This database has been chosen in order to be tested against SUSAS’ talking styles domain,

which contains two equivalent emotional classes; neutral and angry.

3.2.3. ATCOSIM

The ATCOSIM speech corpus [27] contains about 10 hours of non-prompted, clean Air Traffic

Control Simulation speech recorded during real-time simulations. In contrast to the remaining

two databases, the data is not categorized into emotional classes, and no metadata in terms of

label files with phoneme information is provided.

But since a list of appearing utterances exists, phoneme labels and boundaries can be never-

theless determined with the HTK toolkit (see 3.4.2), using a standardized lexicon file. With a

check against the SUSAS computer response domains in mind, emotional classes are assigned

approximately (described in section 4.3.2).
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3.3. Selection of potentially meaningful Features

3.3.1. Pitch

Motivation. Pitch (or fundamental frequency, f0), is the most prominent and the most widely

used speech characteristic for stress classification. This is based on the fact that humans tend

to increase their respiration rate in stressful situations, what causes an increase in subglottal

pressure during speech, which itself leads to an increased pitch [41].

Literature. Hansen et al. [22, 24] performed t- and F-tests1 on the SUSAS data and conclude

that mean and variance can serve as good indicators over a wide variety of emotional classes,

while higher-order moments and contours are no effective traits for stress classification.

Lively et al [33] investigated effects of cognitive workload on the speech production process

and noticed that speakers under workload tend to produce an utterance with a monotone pitch

(rather than reducing jitter); i.e., pitch variance is decreased. Similar results are reported by

Brenner et al. [10], who monitored speakers performing a speeded arithmetic task while talking.

Burkhard and Sendlmeier [12] developed a speech synthesizer for emotional expression and

report that pitch variance can especially be used to distinguish between the emotional states

sadness and boredom.

Implementation. Pitch is extracted using Praat (see 4.1.2). The algorithm implemented in the

software tool performs an acoustic periodicity detection based on an auto-correlation method

presented in [5].

Adjustable parameters are: frame rate (set to 10ms), pitch floor (set to 75Hz), and pitch

ceiling (set to 600Hz). By specifying the minimum pitch, the analysis window length (which is

set to the length of three maximum periods automatically) has implicitly been set to 40ms. The

algorithm further uses a Hanning window.

Pitch tracks for different emotional classes are depicted in figure 3.14 on page 27.

Characteristics. Statistical moments up to fourth order are computed to keep information on

the shape of the distribution function. An exemplary pitch distribution is shown in figure 3.2 on

page 14.

3.3.2. Intensity

Motivation. As for fundamental frequency, it seems obvious that the intensity of an utterance

correlates with the speaking person’s emotional state. A noisy environment, an experience or

intense emotions are so-called perceptual stressors (cp. 2.1.1) which cause an increase in vocal

effort to make oneself heard. [22].

1The t-test checks if the mean values of two normally distributed samples are equal, while the F-test provides a

measure for the probability that two independent samples have the same variance.
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Figure 3.2.: Pitch histogram plots for talking styles angry vs. neutral (Emo-DB database)

Beyond, speakers tend to emphasize parts of an utterance containing the most important in-

formation while de-emphasizing others in time-critical situations [13, 30], which might result in

increased variance of intensity.

Literature. Hansen at al. [22, 24] extracted RMS energy of single phonemes as well as of com-

plete words, finding that mean intensity possesses a good level of stress discriminating ability.

In opposition to the initial assumption, intensity variance is not consistently successful for stress

detection, however.

Implementation. The intensity of a discrete-time signal2 x[n] is computed relative to the human

auditory threshold using

I = 10 · log10

(
1

N · p2
0

N∑
n=1

x2[n]

)
[dB SPL] (3.1)

where N stands for the analysis window length and p0 = 2 · 10−5Pa is the normative auditory

threshold for a 1000Hz sine wave.

Praat’s intensity algorithm uses a Kaiser window to ensure sidelobes below −190dB. Ad-

justable parameters include frame rate and pitch floor, which are again set to 10ms and 75Hz,

2The signal x[n] is assumed to be a “pure” speech signal. Since the speech data used does not contain any non-

speech segments in between and pauses at the beginning or at the end of an utterance have been removed via

end-point detection, this assumption is valid and there is no need for a Voice Activity Detection algorithm (yet).
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respectively. The algorithm choses the analysis window length to be 3.2 (rather than 3) divided

by the minimum pitch in order to keep the pitch-synchronous intensity ripple low [8].

Intensity tracks for different emotional classes are depicted in figure 3.14 on page 27.

Characteristics. Mean and variance are computed for each phoneme class individually; i.e.,

we end up with a total of 8 feature characteristics; two for each of the phoneme classes vowel,

semivowel, consonant, and diphthong. Overall intensity distributions are shown in figure 3.3.

Figure 3.3.: Intensity histogram plots for talking styles angry vs. neutral (Emo-DB database)

3.3.3. Duration

Motivation. An increased respiration rate does not only lead to an increased pitch (cp. 3.3.1),

but also affects the temporal pattern when the same amount of words is to be produced within

shorter time windows between consecutive breaths.

Furthermore, the above-mentioned intensified emphasis and de-emphasis of more and less

important fractions of the utterance (cp. 3.3.2) may also be expressed in terms of changes in

(sub-word) duration.

Literature. According to Hansen et al. [22], induced stress may lead to shifts in duration

between consonants and vowels while the overall word duration remains constant. Thus, they

propose the consonant-to-vowel duration ratio (CVDR), the consonant-to-semivowel duration

ratio (CSVDR), and the vowel-to-semivowel duration ratio (VSVDR) as potential discriminat-

ing characteristics for stress classification.

Implementation. The duration feature is calculated in a secondary feature extraction step,

where a phoneme boundary detection algorithm (see section 3.4) has been executed previously.

With this phoneme time grid available, phoneme durations are obtained by simply computing

the first-order difference.

Characteristics. Mean and variance are computed for each phoneme class individually. In

addition, average CVDR, CSVDR, and VSVDR are determined as described above. Distribution

Johannes Luig Investigations on a Robust Feature Set for Classification of Speech under Stress



Chapter 3. Feature Selection and Evaluation 16

plots for mean and variance of overall durations as well as CVDR can be found in figure 3.4 on

page 16.

Figure 3.4.: Duration histogram plots for talking styles angry vs. neutral (Emo-DB database)

3.3.4. Glottal Source Characteristics

Characteristics derived from the glottal source include jitter, shimmer, spectral mean, and spec-

tral slope.

Explanation of Terms. Jitter is the variation of a periodic signal property; which in this case

is the frequency of the glottal pulses. Shimmer refers to the variation of the amplitude of single

pulses.

Motivation. Responses to induced stress include changes in subglottal air pressure or vocal-fold

tension as well as irregular closures of the vocal folds during phonation. Especially the dryness

of the mouth in situations of excitement or anger can effect the condition of the vocal folds [22].

These non-uniformities are suspected to affect a variety of measurable characteristics.

Literature. Clary and Hansen [13] investigated spectral glottal features and found out that

differentiating features include spectral slope and amplitude; the latter especially in the 2kHz

to 4kHz band [22].

Implementation. Extracting glottal pulses requires prior pitch analysis, which delivers voiced/
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unvoiced decisions and frequency information for voiced segments. For each of these voiced

segments, a number of glottal pulses is found by detecting the absolute extremum of the ampli-

tude around the interval midpoint. Once found, a recursive cross-correlation searching method

is employed which searches for additional points towards the interval edges [8]. The pitch ex-

traction parameters equal those listed in 3.3.1.

The relative local jitter is computed once per utterance, which is the average absolute differ-

ence between consecutive periods divided by the average period. Similarly, the relative local

shimmer is calculated by dividing the average absolute difference between the amplitude of

consecutive pulses by the average amplitude. Both Features are extracted using Praat.

For features derived from the glottal spectrum, a pitch-corrected Long-Term Average Spec-

trum (LTAS) is computed, which represents the logarithmic power spectral density (PSD) as

a function of frequency relative to the normative auditory threshold. For details on the pitch-

corrected method, see [6]. Parameters are set as follows: maximum frequency (4kHz), subband

width (50Hz), shortest and longest period (0.1ms and 20ms, respectively), and maximum pe-

riod factor (default setting of 1.3 kept).

Characteristics. All four glottal source-related features are scalar values and thus directly taken

as feature characteristics. Exemplary distributions of glottal source-relate features are depicted

in figure 3.5.

Figure 3.5.: Histogram plots of jitter, shimmer, spectral mean, and spectral slope for talking styles angry

vs. neutral (Emo-DB database)
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3.3.5. Vocal Tract Spectrum

Motivation. Formants are the characteristic frequency components of human speech. Physical

and physiological stressors impact the muscles which control the articulators or the articulator

movement itself (cp. figure 2.3 on page 7), so the presence of stress will traceable in the speech

signal.

Literature. Hansen and his research group [22] analyzed mean and variance of formant fre-

quencies and bandwidths. They found out that stress certainly does effect typical vocal tract

movement, with greater effects on F1 and F2 than on F3 and F4. They performed a series of

t-tests, assuming both equal and unequal variance, but arrived at the conclusion that no general

statement could be made concerning the quality of single parameters.

Implementation. F1 and F2 are extracted using one of several analysis methods provided by

the Praat tool. It resamples the audio file to twice the maximum formant frequency before its

spectrum is “flattened” by applying pre-emphasis3. Subsequently, LPC coefficients are com-

puted for Gaussian-windowed frames using the Burg method. F1 and F2 are then tracked within

a specified frequency range.

Parameters have been set as follows: frame rate to 10ms, maximum number of formants to

2, maximum formant frequency to 4kHz (which is half the sampling frequency for the SUSAS

database), effective analysis window length4 to 25ms, and the pre-emphasis filter cutoff fre-

quency to 50Hz.

Extracted formant tracks for different emotional classes can be found in figure 3.14 on page

27.

Characteristics. Mean and variance of center frequencies and bandwidths are computed for F1

and F2, respectively. Histograms of these feature characteristics are shown in figures 3.6 and

3.7.

3Vowel spectra have an average spectral slope of −6dB/octave. Since formants should match the local peaks

rather than the global spectral slope, an inverted low-pass filter with a slope of +6dB/octave is employed to

equalize this trend.
4The actual Gaussian window has twice the effective length, but values outside the [25%..75%] interval are lowered

by more than 96%, and the side-lobe attenuation is three times higher as for a “standard” Hamming window.
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Figure 3.6.: F1 histogram plots for talking styles angry vs. neutral (Emo-DB database)

Figure 3.7.: F2 histogram plots for talking styles angry vs. neutral (Emo-DB database)
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3.3.6. A TEO-based Feature: TEO-CB-AutoEnv

Theory. All the features mentioned so far are derived from a linear speech production model,

assuming that the airflow propagates in the vocal tract as a plane wave. According to studies by

Teager [45], however, the flow actually consists of separate and simultaneous vortices distributed

throughout the vocal tract, as depicted in figure 3.8.

Figure 3.8.: The nonlinear wave propagation model after Teager (from [54]).

Responsible for the “characteristic sound” of a phoneme is, following Teager, not the shape

of the vocal tract itself, but rather the resulting airflow properties exciting this resonator. Stating

that hearing could be viewed as the process of detecting the energy, Teager developed an energy

operator to reflect the instantaneous energy of the nonlinear vortex-flow interactions [54].

Kaiser [31] introduced an elegant form of this Teager Energy Operator as

Ψc =
(
d

dt
x(t)

)2

− x(t)

(
d2

dt2
x(t)

)
(3.2)

or, for discrete-time signals,

Ψd = x2[n]− x[n+ 1]x[n− 1] . (3.3)

In both cases, Ψ denotes the TEO, while x(t) and x[n] are the continuous and the sampled

speech signal, respectively.

Zhou, Hansen and Kaiser [54] perform critical-band filtering on the speech signal before

applying the TEO operator. In a further step, these bandpass TEO profiles are segmented into

frames with subsequent autocorrelation envelope analysis performed. For each frame and critical

band, the area under this autocorrelation envelope is calculated and normalized by half the frame
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length (which equals the area under the “ideal” envelope in consequence of 0% pitch variation

within the frame) [54].

Figure 3.9.: Extraction of the TEO-CB-AutoEnv feature (from [54]).

The idea behind this approach sketched in figure 3.9 is that the autocorrelation envelope can

track the variability of the fine energy structure reflected in the TEO critical band partition.

Motivation. As an alternative, nonlinear approach, features derived from the TEO are without

any competitor and may reflect properties of the speech production process that are not covered

by features derived from the linear model of speech production.

Literature. The research group around Hansen published a number of papers on the usage of

the TEO as a new feature for stress recognition and classification [52, 53, 54, 23, 40, 39, 42],

most of them demonstrating the discriminative power of the TEO-CB-AutoEnv feature in stress

clasification or discussing methods for transforming the [frames × subbands] matrix (which is

the outcome of their proposed TEO feature analysis) into a scalar value.

Jabloun [29] and Fernandez [18] applied an inverse DCT to the logarithm of average Tea-

ger energy in spectral subbands and in so doing extracted “TEO-based cepstral coefficients” as

features for stress detection.

Implementation. The TEO-CB-AutoEnv feature is implemented in MATLAB, using vowel

parts as input. The implementation does exactly follow the approach described above, except

that 24 critical bands are used instead of 16 as it is the case in [54].

Characteristics. Mean and variance are computed for the average energy over all critical bands.

To reflect the dynamics between adjacent frames, the absolute value of average first-oder dif-

ferences (TEO Mean Difference) is computed. Last, following [39], a characteristic score is

obtained using

S =
N∑

n=1

E(n) ·Wn(n)−
N∑

n=1

E(n) ·Wst(n) (3.4)

where n = 1 . . . N denotes the subband index, Wn and Wst are specific weighting schemes for

“neutral” and “stressed”, respectively, and E(n) represents the overall energy in the n-th critical

band. This feature will be referred to as the TEO Weighted Score.

Distributions of TEO-derived feature characteristics are shown in figure 3.10 on page 22.
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Figure 3.10.: TEO-derived feature characteristic histogram plots for talking styles angry vs. neutral (Emo-

DB database)

3.3.7. Mel-Frequency Cepstral Coefficients (MFCCs)

Motivation. Mel-Frequency Cepstral Coefficients represent the spectrum of a signal in a com-

pact way, at which the resolution of this representation depends on the number of coefficients

chosen. MFCCs are used widely in the area of speech processing; mainly in speech recogni-

tion and speech coding algorithms, where the cepstral domain is useful for the extraction of the

spectral envelope and the separation of signals [47].

Literature. Zhou et al.[54] take MFCCS and pitch information as reference features for inves-

tigations on stress classification performance and report that the TEO-based features perform

significantly better; although it is important to note that a very small subset of six (!) words

out of the SUSAS vocabulary was used for testing, five of them consisting of one single syllable

only. So the question is if these results are valid for other kinds of data as well; but this is exactly

what this thesis is about.

Hansen [26] did not employ MFCCs directly as a feature for stress classification, but rather

makde use of the coefficient’s sensitivity to noise to develop a stress compensation scheme,

which is used in a preprocessing stage to speech recognition systems.

Bou-Ghazale [9] points out that, depending on the way of computation (linear-perdiction

based or DFT based), MFCC performance may vary in terms of robustness in noise or for speech
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under stress.

Implementation. For each frame, a MFCC vector is computed as follows: the Fourier transform

of a windowed signal block is mapped onto the Mel scale (which is a quasi-logarithmic scale

closely related to the critical band scale) using triangular filters. The logarithm of the filterbank

output is then again transformed by means of a Discrete Cosine Transform (DCT), such that the

ith MFCC (i = 1 . . . N ) can be obtained by [15]:

ci =
N∑

j=1

Pj cos
(

π · i
N(j − 0.5)

)
, (3.5)

where Pj denotes the power in the jth filter (in dB). Discarding higher-order coefficients ensures

a certain smoothness of the mel-frequency spectrum.

The Praat implementation accepts the following parameters: number of coefficients (12 plus

c0), frame rate (10ms), analysis window length (25ms), position of first filter (100mel), and

distance between filters (100mel).

Harmonicity tracks for different emotional classes are depicted in figure 3.14 on page 27.

Characteristics. The first four coefficients are each averaged over the whole utterance. As an

additional characteristic, the MFCC variances are calculated for each frame and subsequently

averaged as well. This will be referred to as the MFCC mean variance. Exemplary distributions

of MFCC-derived feature characteristics are shown in figure 3.11 on page 24.

3.3.8. Harmonicity

Motivation. Harmonicity (also known as Harmonics-to-Noise Ratio, HNR) is a measure of the

degree of acoustic periodicity. It can be used as a measure of voice quality, as a hoarse voice

will show lower harmonicity values than a “healthy” voice.

Literature. Alter et al. [1] examine harmonicity as one of several indicators for the perceptional

features breathiness and roughness on a self-recorded database comprising the acted emotional

states happy, neutral and cold anger. They report slightly higher values of harmonicity for the

angry talking style than for the others; it is furthermore noticed that harmonicity correlates with

the accentuation type of the sentence, i.e., which syllable is emphasized.

Implementation. The Praat algorithm performs a periodicity detection using a forward cross-

correlation analysis method described in [5]. Harmonicity is expressed in dB: a value of, e.g.,

20dB indicates that 99% of the signal energy is contained in the periodic part and just 1% in the

stochastic part (= noise), since 10 log10(99
1 ) ≈ 20.

Characteristics. For harmonicity, lower-order statistical moments (mean and variance) are cal-

culated. Figure 3.12 on page 24 shows distributions for mean and variance of the extracted

harmonicity tracks.
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Figure 3.11.: MFCC histogram plots for talking styles angry vs. neutral (Emo-DB database)

Figure 3.12.: Harmonicity histogram plots for talking styles angry vs. neutral (Emo-DB database)
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3.3.9. Zero-Crossing Rate

Motivation. The zero-crossing rate measures the number of sign changes in the time domain.

This can be interpreted as a measure of noisiness or tonality (in musical terms); it may even be

used as a coarse approximation of pitch.

Literature. Junqua [30] compared speech produced in the presence of noise with clean speech

and arrived at the conclusion that the zero-crossing rate increases for most phoneme classes –

but, surprisingly, for female speakers only.

Implementation. For each windowed block extracted from the time-domain speech signal x[n],

the number of zero-crossings is computed with

ZC =
1
2

∑
|sgn(x[n])− sgn(x[n− 1])| with sgn(x) =

 −1 for x < 0

1 for x ≥ 0
, (3.6)

which has to be subsequently normalized by the block size in samples to yield the zero-crossing

rate. This feature has been implemented in Matlab.

Characteristics. As for harmonicity, mean and variance are calculated as feature characteristics.

The corresponding exemplary distributions are shown in figure 3.12.

Figure 3.13.: Histogram plots of zero-crossing rates for talking styles angry vs. neutral (Emo-DB database)

3.3.10. Summary

A total of 29 feature characteristics is derived from the low-level features listed in this section.

For the sake of clarity, the characteristics are summarized in table 3.1 on page 26
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Feature Derived Characteristic

Pitch Mean value

Pitch Average deviation

Pitch Standard deviation

Pitch Variance

Pitch Skewness

Pitch Kurtosis

Intensity Mean (for each phoneme class individually)

Intensity Variance (for each phoneme class individually)

Duration Mean (for each phoneme class individually)

Duration Variance (for each phoneme class individually)

Duration Consonant/vowel duration ratio

Duration Consonant/semivowel duration ratio

Duration Vowel/semivowel duration ratio

Jitter

Shimmer

Mean of glottal pulse spectrum

Slope of glottal pulse spectrum

F1 Frequency Mean

F1 Frequency Variance

F1 Bandwidth Mean

F1 Bandwidth Variance

F2 Frequency Mean

F2 Frequency Variance

F2 Bandwidth Mean

F2 Bandwidth Variance

Harmonicity Mean

Harmonicity Variance

MFCC c1, c2, c3, c4
MFCC Mean variance

TEO-CB-AutoEnv Mean of mean

TEO-CB-AutoEnv Variance of mean

TEO-CB-AutoEnv Mean difference

TEO-CB-AutoEnv Weighted score

Zero-Crossings Mean

Zero-Crossings Variance

Table 3.1.: Feature characteristics taken for evaluation.

Johannes Luig Investigations on a Robust Feature Set for Classification of Speech under Stress



Chapter 3. Feature Selection and Evaluation 27

NEUTRAL ANGRY HIGH WORKLOAD

Time (s)
0 0.432

-1

1

0

Time (s)
0 0.64

-1

1

0

Time (s)
0 0.424

-1

1

0

Time (s)
0 0.432

Pi
tc

h 
(H

z)

100

400

Time (s)
0 0.64

Pi
tc

h 
(H

z)

100

400

Time (s)
0 0.424

Pi
tc

h 
(H

z)

100

400

Time (s)
0 0.432

50

90

In
te

ns
ity

 (
dB

)

Time (s)
0 0.64

50

90

In
te

ns
ity

 (
dB

)

Time (s)
0 0.424

50

90

In
te

ns
ity

 (
dB

)

Time (s)

Fo
rm

an
t f

re
qu

en
cy

 (
H

z)

0 0.432
0

1000

2000

3000

Time (s)

Fo
rm

an
t f

re
qu

en
cy

 (
H

z)

0 0.64
0

1000

2000

3000

Time (s)

Fo
rm

an
t f

re
qu

en
cy

 (
H

z)

0 0.424
0

1000

2000

3000

0 0.432 0 0.64 0 0.424

A
ud

io
 S

ig
na

l

A
ud

io
 S

ig
na

l

A
ud

io
 S

ig
na

l

H
ar

m
on

ic
ity

 (
dB

)

Time (s)

H
ar

m
on

ic
ity

 (
dB

)

Time (s)

H
ar

m
on

ic
ity

 (
dB

)

Time (s)

Figure 3.14.: PCM waveforms and a variety of extracted features for the word enter (from the SUSAS

database) spoken under three different stress conditions.
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3.4. Phoneme Boundary Detection

3.4.1. A Text-independent Approach

In order to determine the phoneme boundaries automatically, a text-independent approach pre-

sented in [3] is followed. Independence of text means that phonetic segmentation of speech can

be performed without prior knowledge of the phoneme sequence. The algorithm consists of two

main steps, which are presented in the following.

Preprocessing Step

Signal preprocessing includes critical-band filtering, equal loudness pre-emphasis, and spectral

intensity-loudness compression.

Critical-band filtering is realized by means of an equivalent rectangular bandwidth (ERB)

filterbank5 using an efficient implementation of the Patterson-Holdsworth gammatone filter bank

described by Malcolm Slaney in [44].

For equal loudness pre-emphasis, a (discrete) approximation of an equal loudness curve for

frequencies up to 5kHz (found in [49]) given by

E[k] =
k4(k2 + 56.8 · 106)

(k2 + 6.3 · 106)2(k2 + 0.38 · 109))
(3.7)

is used to pre-emphasize the short-time spectra XCBi [n, k] (with critical-band index i, frame

index n, and frequency bin index k) over all critical bands. This is done by simple multiplication:

XCBi,PE [n, k] = XCBi [n, k] · E[k] . (3.8)

Intensity-loudness compression is nothing but a cubic root compression of the spectral mag-

nitude:

XCBi,PE,comp[n, k] = (XCBi,PE [n, k])
1
3 . (3.9)

After subsequent summation over all frequency bins,

xi[n] =
∑
k

XCBi,PE,comp[n, k] , (3.10)

the outcome of this preprocessig stage is the spectral energy within critical bands for each frame.

It is represented by a collection of M time sequences,

X̃ = {xi[n]} with n = 1 . . . N, i = 1 . . .M , (3.11)

where N is the total number of frames and M corresponds to the number of critical bands6.

5The ERB scale is closely related to the Bark scale, but defined analytically instead of being measured. For detailled

information on this topic, see [28].
6In the presented approach, the number of time sequences is further reduced by summing over groups of three Bark

bands. Since no special point was found in that, this step is omitted in the implementation.
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Boundary Detection Step

For each single time sequence xi[n], a set {Ja
i [n]} of so-called jump functions is defined as

follows:

Ja
i [n] =

∣∣∣∣∣∣
n−1∑

m=n−a

xi[m]
a
−

n+a∑
m=n+1

xi[m]
a

∣∣∣∣∣∣ (3.12)

where the parameter a controls the analysis interval of this peak detection function. In words:

the averages over a previous and following frames are compared with each other, and great

differences lead to high peaks in the jump function. An example is given in fig. 3.15.

Figure 3.15.: A sequence xi(n) and the corresponding jump function Ji(n), computed with a span of ±5

frames (from [3]).

Next, the problem of non-simultaneous jump occurances wthin each of the M sequences is

to be solved. A fitting algorithm places the segmentation boundary in the center of a cluster of

quasi-simultanoues jumps. The output of this procedure, which is in detail described in [3], is

an accumulation function acc[n] containing defined peaks which are easy to detect. An example

is depicted in figure 3.16.

The algorithm is regulated by three parameters; a, b, and c. The role of a as being the±span of

the jump detection function and thus setting the height of the peaks has already been addressed

(cp. equation 3.12). The parameter b serves as a threshold for the peak heighths; if exceeded, the

corresponding peak is taken into consideration for the accumulation function. Finally, c adjusts

the width of the “jump clusters” in which the algorithm searches for a center.

Johannes Luig Investigations on a Robust Feature Set for Classification of Speech under Stress



Chapter 3. Feature Selection and Evaluation 30

Figure 3.16.: A typical accumulation function (from [3]).

Performance

The authors evaluated their algorithm on the DARPA-TIMIT database7 and report results of

∼ 74% correctly detected boundaries when allowing no over-segmentation; i.e., the number of

detected points must not exceed the number of true phoneme boundaries. The term “correctly

detected” includes an allowed deviation of ±20ms in this case.

Details on the usage within this thesis can be found in section 4.1.3.

3.4.2. Detection using Hidden Markov Models (HMMs)

The HTK Toolkit

Since the ATCOSIM database does not provide labelled data, but transcriptions of the (non-

prompted) utterances, an additional phoneme boundary detection method is used. It employs the

HTK Toolkit developed at the Engineering Department of Cambridge University, which forms a

very flexible framework for building and manipulating HMMs. HTK is freely available as a set

of library modules and tools in C and can be downloaded from the HTK website8.

An excellent tutorial on Hidden Markov Models can be found in [38]. For detailed information

on the HTK toolkit, the interested reader is recommended to study the HTK book [51]. This

section deals just with the parameters and settings used.

7The DARPA database for continuous speech recognition is described in [37].
8http://htk.eng.cam.ac.uk
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Parameters and Settings

The task to be performed is called forced alignment, i.e., a phoneme label is to be aligned to a

determined position in the speech signal. This requires the sequence of words to be available as

well as a lexicon file containing phonectic transcriptions for each single word.

Features used for analysis include the first 13 MFCCs, where the zeroth coefficient serves as a

measure for the energy contained in the signal, while the rest approximates the spectral shape. In

addition, the delta and acceleration coefficients are taken into consideration, which are the first-

and second-order differences of coefficients of consecutive frames. Employing these widely

used settings, we end up with a 39-dimensional feature vector extracted from each signal frame.

Phonemes are modeled by three-state HMMs (one state for the beginning, one for the middle,

and one state for the end), while for silence and short pause, two states are sufficient.

3.5. Feature Evaluation and Classification

3.5.1. Numerical Feature Evaluation

Having computed the feature characteristics listed in section 3.3, two alternative statistical tests

are performed, which are briefly overviewed in the following paragraphs. The test result is in

both cases a feature ranking list for a selected combination of emotional classes. Out of the 10

top-ranked feature characteristics, the best performing combination is determined iteratively.

Criterion 1: Fisher’s Ratio

Fisher’s Ratio is the ratio between inter-class scatter (distance of mean values) and intra-class

scatter (combination of variances) and is given by [4]

FR(n) =
(µC1(n)− µC2(n))2

σ2
C1

(n) + σ2
C2

(n)
. (3.13)

It reflects the discriminative power of feature n between the two classes C1 and C2.

Criterion 2: Area Under ROC Curve

A Receiver Operating Characteristics (ROC) graph is a way to visualize the performance of

a binary classifier by plotting the true positives rate over the false positives rate for a varying

decision threshold (an example is shown in figure 3.17). The area under this ROC curve (in

the unit square) is equivalent to the probability that a randomly chosen sample will be classified

correctly. It is a non-parametric statistical test and further equivalent to the Wilcoxon test of

ranks [20].
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Figure 3.17.: A reciever operating characteristics curve (from [20]).

3.5.2. Graphical Feature Evaluation

To be able to comprehend and to verify the results achieved by numerical evaluation (see 3.5.1),

the MATLAB implementation also provides a graphical user interface that visualizes the feature

space in up to 3 dimensions for selected database and emotional classes. A screenshot is shown

in figure 3.18.

3.5.3. Dimension Reduction

Principal Component Analysis (PCA)

Principal Component Analysis, also known as Karhunen-Loève-Transformation, is a method

to reduce the dimensionality of a feature space. It works based on the hypothesis that those

directions showing the greatest variance contain the most information. (It must be carefully

checked if this is true, especially for bigger data sets!)

Mathematically speaking, PCA is an orthogonal linear transformation mapping the data to a

new coordinate system such that the direction of the greatest variance is projected onto the first

coordinate, the second greatest variance onto the second coordinate and so on. An example for

three dimensions is depicted in figure 3.19 on page 33.

A lower-dimensional representation of the data can be obtained by ignoring a specific number

of higher-order dimensions, depending on the amount of variance to be maintained. PCA is an

unsupervised technique and as such does not include label information of the data.
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Figure 3.18.: Feature space visualization as a part of the MATLAB tool.

Figure 3.19.: Consecutive steps of PCA (from [43]).
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Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis is related to Principal Component Analysis in that both look for

linear combinations of variables which best explain the data. But contrary to PCA, LDA is a

supervised technique incorporating class affiliation and tries to yield the largest mean differences

between classes. Again, the hypothesis that the mean is an appropriate discriminating factor has

to be verified.

Figure 3.20 sketches the two extreme cases, where either one of the discussed methods fails

although the data are obviously well-separated.

Figure 3.20.: PCA vs. LDA: two extreme cases (from [32]).

A comparison of PCA and LDA concerning performance on databases of different sizes can

be found in [34].

3.5.4. Classification

k-Nearest Neighbours Algorithm

In order to set a baseline of performance, the (rather simple) k-nearest neighbours algorithm is

chosen for classification. The basic principle is as follows: an object to classify is assigned to

the most frequent class among the k nearest training samples.

An example is shown in figure 3.21 on page 35: the blue circle is our unknown object and to

be assigned either to the “green triangles” or the “orange squares” class. For k = 3, the decision

will be “orange squares”; for k = 5, it will be “green triangles”.

n-Fold Cross Validation

The scenario is as follows: emotional classes are known for the data samples and the aim is

to estimate how accurately our feature set will perform on an unknown data set (this is called

supervised learning). To do so, the data set is partitioned into n segments, from which n − 1

are used as training data for the classification algorithm, while 1 partition serves as “unknown”

data.
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Figure 3.21.: The basic principle of k-nearest neighbours classification.

To ensure that the result (in terms of the correct classification rate) does not depend on the

sample distribution in the training data set, this process is repeated n times. Figure 3.22 sketches

how n-fold cross validation is performed in a loop, with each of the n data set partitions used

exactly once as the validation set.

Figure 3.22.: The basic principle of n-fold cross validation.
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Implementation

This chapter takes a closer look on how the presented methods are realized. As already depicted

in figure 3.1 (on page 10), the analysis framework comprises two main stages: feature extraction

and feature evaluation.

4.1. Feature Extraction

Figure 4.1.: Flow chart of the feature extraction stage.
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4.1.1. Overview

To understand the quite complex analysis workflow, have a look at the flow chart above. In

the current implementation, three different tools are involved into the analysis process; namely

Praat, HTK, and Matlab – which does not pose any problem, since real-time compatibility has

never been part of the requirements.

All features are extracted for a series of overlapping frames of varying length depending on

the respective feature; but with a constant frame rate (cp. 4.3.1).

The diagram in figure 4.1 can be read from top to bottom, which traces the chronology from

the PCM waveform to a set of feature characteristics. At the same time, it can be read from left

to right, indicating the sequence of computational steps:

• Extraction of basic features is implemented in Praat by means of an analysis script for

each of the three databases. Individual scripts are necessary due to different speech file

formats and directory structures within the databases.

• If phoneme boundaries are to be detected by HTK, this task has also to be accomplished

before running the Matlab analysis functions. The text-independent approach (cp. 3.4.1),

however, is implemented in Matlab.

• Matlab analysis depends on data delivered by the previous items in terms of text files

stored on hard disk.

The advantage of this method is the independence of computational steps, which facilitates

testing and de-bugging.

4.1.2. Basic Features (Praat)

Praat (Dutch for “talk”) is an open-source computer program for speech analysis and synthesis

[7] developed by Paul Boersma and David Weenink from the Institute of Phonetic Sciences at

the University of Amsterdam in the Netherlands. It is freely available from the internet1 and is

used by many researchers in the field of speech and communication sciences.

Pitch, intensity, F1/F2 frequency and bandwidth, harmonicity, MFCCs and glottal spectral

features are extracted using a script which writes all extracted information to text files (one file

per speech file and feature). An example can be found in appendix A.1; parameters and settings

used are discussed in section 3.3 for each feature, respectively.

4.1.3. Further Feature Extraction (Matlab)

The main part of the analysis stage is implemented in various Matlab functions, all being con-

trolled by SpeechAnalysis.m. The following pseudo-code sketches the main issues:

1http://www.fon.hum.uva.nl/praat/
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% SpeechAnalysis.m

determine speech data locations

open analysis settings GUI

for 1 to (number of selected domains)

for 1 to (number of files in current domain)

read in speech file

read metadata file

extract features on frame level

perform phoneme boundary detection

(or use HTK results instead)

extract features on phoneme level

compute feature statistics

store results

end

save results of current domain

end

Feature Extraction on Frame Level

Feature extraction on frame level, i.e., based on frame-wise signal analysis, includes Praat text

file import and the computation of the zero-crossing rate (cp. 3.3.9). Results are stored in the

MATLAB structure FEATURES.FrameLevel as depicted in figure 4.2.

Figure 4.2.: MATLAB structure containing features extracted on frame level.

Phoneme Boundary Detection

Unfortunately, the quality of label data provided with the SUSAS database leaves a lot to be

desired (see section 4.4.1). This is why phoneme boundary detection performance could be

reliably evaluated on Emo-DB labels solely. (As already mentioned, ATCOSIM does not provide

any label files at all.)

The implementation of the text-independent approach has been tested using those parameter

settings proposed in the paper to prevent over-segmentation (cp. 3.4.1). An example is depicted

in figure 4.3.
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Figure 4.3.: Phoneme boundary detection using the text-independent approach.

Surprisingly, phoneme segmentation using the text-independent approach performs nearly

equally well as the HMM-based detection method, as shown in table 4.1. Using generous values

for ∆allowed, the text-independent method even outperforms the HTK toolkit.

±∆allowed 20 ms 30 ms 40 ms

HTK Toolkit 71.17% 80.83% 86.15%

Text-independent approach 63.78% 80.93% 90.78%

Table 4.1.: Correct detection rates (CDR) of correctly identified phoneme boundaries within specified

uncertainty intervals ∆ for both detection methods.

The correct detection rates (CDR) are computed by

CDR = 100 · TP

TP + FP + FN
[%] , (4.1)

where TP indicates the number of true positives (correct detections), FP stands for the num-

ber of false positives (incorrect detections), and FN represents the number of false negatives

(missed detections).

Aversano and his colleagues [3] calculate the same quantity by

CDRAv = 100 · # correctly detected segmentation points
# “true” segmentation points

= 100 · TP

TP + FN
[%] . (4.2)
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Using their formula, the algorithm as implemented would yield a CDR of 77.52% for a ∆ of

±20ms and thus outperform their best result obtained, which is reported to equal 73.58% (13193

correctly detected phoneme bounds out of 17930 true phoneme bounds over the whole DARPA-

TIMIT database)2.

An alternative idea for improving the percentage of correct detections would be to tune the

parameters in such a way that a significant amount of over-segmentation is produced, before sub-

sequent discontinuity analysis of extracted low-level features verifies or weakens the case made

that each of the outcoming points of time represent a phoneme boundary. In other words, a post-

processing stage would be introduced that removes the oversupplied amount of segmentation

points by means of discontinuity detection in those features which are extracted anyway.

Feature Extraction on Phoneme Level

After having determined phoneme classes and their temporal boundaries using the HTK toolkit

[51], the phoneme durations are calculated (cp. 3.3.3). This is done separately for each class;

i.e., vowels, semivowels, consonants, and diphthongs. Additionally, the Critical Band Based

TEO Autocorrelation Envelope (cp. 3.3.6) is computed on the basis of this phoneme time grid,

taking vowel parts as input.

Frame-based features are averaged within phoneme bounds to end up with consistent analysis

results. Features derived from the glottal source are extracted once per utterance and thus require

no further processing. The structure FEATURES.PhonemeLevel is organized as shown in figure

4.4.

Figure 4.4.: MATLAB structure containing features extracted on phoneme level.

2The Emo-DB database shows a total of 26909 labeled phoneme bounds, of which 20870 were detected correctly.

The corresponding ratio equals 77.56%, which is approximately the same as 77.52% taking roundoff errors into

account – q.e.d.
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Feature Interpretation and Statistics

Having extracted all features on basis of the phoneme time grid, the corresponding feature char-

acteristics are calculated as described in section 3.3. For quasi-historical reasons, the MATLAB

structure is entitled “statistics”, which does not describe all of its content correctly, however.

Figure 4.5.: MATLAB structure containing feature characteristics.

4.2. Feature Evaluation

Figure 4.6.: Flow chart of the feature evaluation stage.

The feature evaluation process, as depicted in figure 4.6, is controlled by Classification.m,
which comprises the following steps:
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% Classification.m

import analysis results

re-organize data structure

open classification settings GUI

determine "groups" for cross-validation

for 1 to (number of groups)

divide data set into "training" and "test"

train KNN classifier with training data

perform KNN classification with test data

evaluate classification results

end

average over classification results

4.2.1. A Note on Iterative Feature Evaluation

It is to note that an implicit constraint was made by iteratively decreasing the number of fea-

tures from 10 to 1 during feature evalution (cp. chapter 5): the hypothesis that a combination

of individually best performing features at highest ranks always outperforms a combination of

lower-ranked features is not necessarily true. It might be the case, e.g., that a feature set [#2, #4,

#5] results in a higher CCR than [#1, #2, #3].

This task could be accomplished more accurately by performing sequential backward selec-

tion [4], i.e., starting with a full set of features and calculating Fisher’s ratio for this combinaton

of features (µ → µ, σ2 → Σ). In the next steps, one feature is eliminated and the ratio is com-

puted for the n−1 remaining features. This is done n times in a loop, until the minimum ratio is

found and the corresponding feature is discarded, before the whole thing starts again, now from

n− 1 features.

This approach is not subject to the above-mentioned constraint, but still suffers from nesting:

once a feature has been discarded, it can not be re-considered.

4.2.2. Classification

In the k-nearest neighbours implementation, distances are determined by computing the Eu-

clidean distance between two points; the factor k is approximated by k =
√
N (with N being

the number of feature vectors in the validation data set).

For n-fold cross validation, it is ensured that the classes are equally represented in the samples

for both the training and the validation data set. The number of folds is set to 10.
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4.3. Other Issues

4.3.1. Frame Rate

The global analysis frame rate is set to 10ms, which corresponds to the shortest phoneme dura-

tion observed in the data.
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Figure 4.7.: Normalized histogram over phoneme durations (SUSAS and Emo-DB) from 10 to 600ms.

4.3.2. ATCOSIM workload calibration

The ATCOSIM corpus has not been designed for the purpose of workload-induced stress recog-

nition, so that assignments of utterances to a specific emotional class are missing. There are two

possible ways of approximating the instantaneous workload at a given point in time:

• Determining the current taskload by counting the “utterances per minute” or

• Assuming that the operator’s screen is initially blank and the workload level rises by-and-

by, reaching its climax at the end of the recording session.

Furthermore, the latter accounts for the fact that fatigue grows the longer a demanding task has

to be performed; which introduces an additional stressor.

We decided to group the utterances of each session into three categories; namely low work-

load (0 . . . 10min.), medium workload (10 . . . 40min.), and high (40 + min.) workload. Thus,

we obtain appropriate counterparts to SUSAS’ computer response task domains, which are cat-

egorized into the same classes.
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4.4. Occured Problems

4.4.1. Bad SUSAS Label Files

During HTK performance analysis, it was found that many of the SUSAS label files are some-
what strange in content. As an example, the SUSAS labfile for “break” (speaker with Boston
accent, emotional class angry) is shown, which looks as follows:

0 260 sil

260 460 b

460 940 r

940 2500 ey

2500 3660 k

3660 4096 sil

The HTK labfile for the same speech file has the following content:

seperator ;

nfields 1

#

0.208 26 sil ; score -70.372986 ;

0.242 26 b_cl ; score -68.599457 ;

0.3 26 b ; score -45.037262 ;

0.362 26 r ; score -32.933506 ;

0.502 26 ey ; score -35.310688 ;

0.696 26 k_cl ; score -75.229362 ;

0.95 26 k ; score -67.300201 ;

0.954 26 sil ; score -74.975967 ;

Dividing the sample-based values in the SUSAS labfile by fs should yield the phoneme

boundaries in seconds and approximately match those bounds detected by the HMM-based algo-

rithm – which is not the case at all. To visualize the difference, SUSAS labels have been scaled

in such a way that the last entry matches the last label defined by HTK (the first entry is zero in

both cases). The result is depicted in figure 4.8, showing the PCM waveform and the phoneme

boundaries extracted using HTK and as provided with the SUSAS database.

4.4.2. Reduced Number of ATCOSIM Files

Due to the fact that we deal with non-prompted speech, some of the ATCOSIM utterances con-

tain vocabulary which is not part of the standardized English lexicon file that is used for HTK

analysis:

• It seems to be common practice that operators say hallo and goodbye to the pilots in their

national language.

• The respective airline company names are, of course, not part of the lexicon. Besides,

names are not pronounced consistently; this may be due to the fact that the operators have

German, Swiss German or Swiss French native tongue.

For this reason, only about 5800 utterances out of 10000 are taken for analysis.
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Figure 4.8.: Example of bad SUSAS label file.

4.4.3. Invalid Values in Feature Matrix

For classification, the feature vectors for the two selected emotional classes are “stacked” in a

feature matrix, where each row corresponds to a single observation and each column contains

all values of a specific feature characteristic over all observations (as depicted in figure 4.9).

Figure 4.9.: Extract of a feature matrix. The gray area indicates mutually exclusive feature characteristics.

Some low-level features may contain special non-numeric values that indicate a frame where

this feature is not defined; e.g., pitch information in unvoiced frames. MATLAB uses the identi-

fier NaN (Not a Number) for this purpose. When computing feature characteristics, these values
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are neglected, of course. But it may still happen that a whole feature characteristic for a single

observation is characterized with NaN, as it is the case with features extracted for individual

phoneme classes.

Since this special value is no number by definition, it is not possible to calculate a distance

to it, which is a prerequisite for k-nearest neighbours classification. As a consequence of this,

an observation is discarded whenever it contains a single NaN. Unfortunately, this happens ex-

tremely often when incorporating characteristics derived from duration or intensity, since espe-

cially the phoneme class of semivowels occurs rather infrequently. Beyond, the short single-

word utterances from SUSAS do never contain a vowel, a consonant, a semivowel, and a diph-

thong at the same time, which makes duration and intensity characteristics mutually exclusive.

This is why the idea of phoneme-class dependent features is revised with hindsight and dura-

tion as well as intensity are now just represented in terms of mean and variance – with the ex-

ception of the consonant-to-vowel duration ration (CVDR), which is still quite well-represented.
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Results

5.1. Experiment 1: Talking Styles

The first experiment compares optimal performing feature sets for classification of the talking

styles angry and neutral, employing acted emotional speech from the SUSAS and Emo-DB

databases.

Feature evaluation results are summarized in tables 5.1 and 5.3, respectively. All feature

characteristics are fairly normal distributed; with exception of the variances and pitch kurtosis,

unsurprisingly. This is why evaluation using Fisher’s Ratio does not include characteristics

derived by calculating the variance at higher ranks1.

5.1.1. Individual Results for SUSAS

Table 5.1 shows the “Top 10” of the ranking lists produced by the two statistical tests described

in section 3.5.1.

In this table, columns 3 and 5 contain the relative score for the particular features, i.e., the

normalized value of the respective criterion as an output of the statistical test applied:

rel. score(k) =
test score(k)

max(test scores)
(5.1)

Since these values have been calculated individually, the (multivariate) performance of a combi-

nation of features is still to be determined. Table 5.2 lists the classification results for the first n

features (n = 1 . . . 10) using the k-nearest neighbours method in a 10-fold cross validation pro-

cess. The parameter k is always set to round(
√
N), with N being the number of valid feature

vectors which form the input to the classification algorithm.

Although the best performing feature set is the “full” 10-dimensional set, reducing the number

of features to 3 (or even 2, taking the features chosen by Fisher’s Ratio) would not lower the CCR

significantly.

1Variance and kurtosis only reach positive values and thus are no two-sided functions. It is to note that these curves

could theoretically be projected in such a way that a their shape resembles a Gaussian normal distribution
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Fisher’s Ratio Area under ROC
Rank Feature Rel. Score Feature Rel. Score

1 Spectral slope 1.00 Mean Pitch 1.00

2 Mean Pitch 0.87 Pitch variance 0.91

3 1. MFCC 0.71 Spectral slope 0.87

4 TEO Mean Diff. 0.59 1. MFCC 0.81

5 Spectral Mean 0.54 TEO Var. of Mean 0.78

6 TEO Mean of Mean 0.50 TEO Mean Diff. 0.75

7 MFCC Mean Var. 0.42 Spectral Mean 0.73

8 TEO Var. of Mean 0.38 TEO Mean of Mean 0.71

9 Mean Intensity 0.27 MFCC Mean Var. 0.68

10 3. MFCC 0.23 3. MFCC 0.63

Table 5.1.: The 10 best performing features (SUSAS Talking Styles).

No. Fisher’s Ratio Area under ROC
Features CCR No. FVs CCR No. FVs

10 86.63% 1092 88.09% 1092

9 86.72% 1092 86.73% 1092

8 87.36% 1092 86.72% 1092

7 86.52% 1092 85.71% 1092

6 86.81% 1092 83.45% 1092

5 85.54% 1092 82.50% 1246

4 83.97% 1092 82.85% 1246

3 82.45% 1248 84.05% 1248

2 84.22% 1248 80.60% 1248

1 73.80% 1248 80.06% 1248

Table 5.2.: Percentages of correct classification rate (CCR) for varying numbers of features (SUSAS

Talking Styles).
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5.1.2. Individual Results for Emo-DB

An optimum feature set for the Emo-DB data is determined in the same manner as described

above. It is notable that both statistical tests deliver identical results for the top 7 features and

that 9 out of 10 features are the same. These results can be found in tables 5.3 and 5.4 on page

49.

The fact that scores of more than 94% correct classification rate are obtained even when using

one single feature characteristic indicate that, in this case, only little discriminative power is

contained in the remaining features. Using more than the three top-ranked features definetely

weakens the result.

Fisher’s Ratio Area under ROC
Rank Feature Rel. Score Feature Rel. Score

1 Spectral slope 1.00 Spectral slope 1.00

2 2. MFCC 0.82 2. MFCC 0.99

3 1. MFCC 0.68 1. MFCC 0.97

4 MFCC Mean Var. 0.64 MFCC Mean Var. 0.95

5 Mean Zero-Crossings 0.48 Mean Zero-Crossings 0.92

6 3. MFCC 0.41 3. MFCC 0.89

7 Mean pitch 0.40 Mean Pitch 0.88

8 TEO Mean of Mean 0.27 Mean Intensity 0.81

9 4. MFCC 0.20 TEO Mean of Mean 0.78

10 TEO Weighted Score 0.18 4. MFCC 0.71

Table 5.3.: The 10 best performing features (Emo-DB).

No. Fisher’s Ratio Area under ROC
Features CCR No. FVs CCR No. FVs

10 88.75% 158 89.29% 158

9 88.57% 158 87.95% 158

8 89.29% 158 88.66% 158

7 87.95% 158 87.95% 158

6 87.41% 158 87.41% 158

5 88.04% 158 88.04% 158

4 96.79% 158 96.79% 158

3 98.10% 158 98.10% 158

2 97.50% 158 97.50% 158

1 94.29% 158 94.29% 158

Table 5.4.: Percentages of correct classification rate (CCR) for varying numbers of features (Emo-DB).
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5.1.3. Combination of Results

To get an idea of transferability, cross-evaluation is performed in an intermediate step: the best

performing feature set for data set A (SUSAS) is applied on data set B (Emo-DB) and vice

versa. Results are presented in table 5.5, where F (·) denotes the best performing feature set

for the respective data set and the arrow points at the data set on which the classification is

performed.

F(A)→ A F(B)→ A F(B)→ B F(A)→ B

88.09% 78.80% 98.10% 98.04%

Table 5.5.: Correct classification rates for talking styles angry vs. neutral; individual feature sets.

Finally, the performance of the shared feature set is to be determined. F(A) ∩ F(B) yields that

• the slope of the glottal pulse spectrum and

• the first MFCC

are the features of interest. Results are shown in table 5.6, pointing out that SUSAS data suffers

more from the absence of pitch as a feature. It stands to reason that the short length of the SUSAS

utterances causes the extracted features to be less steady than those derived from Emo-DB data

(cp. chapter 6).

F(A) ∩ F(B)→ A F(A) ∩ F(B)→ B

75.96% 97.50%

Table 5.6.: Correct classification rates for talking styles angry vs. neutral; shared feature set.

Classification using this set of common top-performing features leads to an equal classifica-

tion rate for Emo-DB data and to a decrease of 12% for the SUSAS database.

5.2. Experiment 2: Workload Tasks

In the second experiment, the SUSAS dual tracking domain is tested against the ATCOSIM

database. Both data sets contain three emotional classes, namely neutral/low stress, medium

stress, and high stress. In order to maximize results, the first category is classified against the

third one, respectively.

5.2.1. Individual Results for SUSAS

Tables 5.7 and 5.8 on page 51 contain the results for the SUSAS dual tracking domain. All

explanatory notes form above hold likewise.
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Fisher’s Ratio Area under ROC
Rank Feature Rel. Score Feature Rel. Score

1 TEO Weighted Score 1.00 TEO Weighted Score 1.00

2 MFCC Mean Var. 0.65 Spectral Mean 0.80

3 Spectral Mean 0.44 1. MFCC 0.79

4 1. MFCC 0.42 Intensity Var. 0.76

5 3. MFCC 0.41 MFCC Mean Var. 0.75

6 Mean Intensity 0.33 3. MFCC 0.72

7 Spectral Slope 0.31 Mean Intensity 0.67

8 Mean Zero-Crossings 0.29 Pitch Variance 0.67

9 4. MFCC 0.29 Mean Pitch 0.67

10 TEO Mean of Mean 0.29 Mean Zero-Crossings 0.66

Table 5.7.: The 10 best performing features (SUSAS Dual Tracking).

No. Fisher’s Ratio Area under ROC
Features CCR No. FVs CCR No. FVs

10 60.81% 1398 58.94% 1386

9 59.71% 1398 65.52% 1386

8 62.01% 1398 65.15% 1386

7 69.95% 1398 66.68% 1386

6 63.67% 1398 65.22% 1386

5 62.87% 1398 63.42% 1386

4 60.08% 1398 64.21% 1386

3 58.09% 1398 60.45% 1398

2 55.65% 1398 58.23% 1398

1 57.65% 1398 57.65% 1398

Table 5.8.: Percentages of correct classification rate (CCR) for varying numbers of features (SUSAS Dual

Tracking).
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5.2.2. Individual Results for ATCOSIM

Tables 5.9 and 5.10 show the feature ranking list and the classification results for the ATCOSIM

data, repectively.

Fisher’s Ratio Area under ROC
Rank Feature Rel. Score Feature Rel. Score

1 Spectral Mean 1.00 Glottal Jitter 1.00

2 Mean Intensity 0.88 Spectral Mean 0.78

3 Glottal Jitter 0.60 Mean Intensity 0.72

4 TEO Var. of Mean 0.42 TEO Var. of Mean 0.64

5 Mean Harmonicity 0.21 Mean Pitch 0.63

6 Zero-Crossings Var. 0.19 Intensity Var. 0.61

7 Glottal Shimmer 0.19 Mean F2 Bandwidth 0.46

8 F2 Bandwidth Var. 0.17 Duration Variance 0.45

9 3. MFCC 0.17 Mean Harmonicity 0.40

10 Mean F2 Frequency 0.16 F2 Bandwidth Var. 0.36

Table 5.9.: The 10 best performing features (ATCOSIM).

No. Fisher’s Ratio Area under ROC
Features CCR No. FVs CCR No. FVs

10 62.62% 888 57.37% 884

9 63.19% 888 59.72% 884

8 63.29% 888 57.69% 884

7 63.96% 888 54.61% 884

6 58.18% 890 55.77% 884

5 57.63% 890 55.27% 890

4 54.85% 890 55.61% 890

3 55.61% 890 55.40% 890

2 56.67% 890 55.84% 890

1 53.50% 890 54.74% 890

Table 5.10.: Percentages of correct classification rate (CCR) for varying numbers of features (ATCOSIM).

As for the SUSAS computer response task, it is a set of seven features that performs best.

5.2.3. Combination of Results

Appplying the best performing feature on the respective opposite data set leaeds to results pre-

sented in table 5.11. Here, the SUSAS dual tracking task is referred to as data set “C”, while the
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ATCOSIM data are denoted with the letter “D”.

F(C)→ C F(D)→ C F(D)→ D F(C)→ D

69.95% 61.44% 63.96% 57.73%

Table 5.11.: Correct classification rates for neutral/low stress vs. high stress; individual feature sets.

Finally, the performance of the shared feature set is to be determined. F(C) ∩ F(D) consists of

• the average level of the glottal pulse spectrum and

• the average intensity.

Results can be found in table 5.12.

F(C) ∩ F(D)→ C F(C) ∩ F(D)→ D

59.45% 57.64%

Table 5.12.: Correct classification rates for neutral/low stress vs. high stress; shared feature set.

5.3. What about the Benchmark?

As mentioned in section 3.1.2, research results by Hansen and his colleagues are taken as refer-

ence. Although their evaluation methods differ from the approach presented in this thesis, it is

nevertheless interesting to compare results.

In [54], they performed pairwise tests on isolated phonemes using a HMM-based classifier.

Amongst others, talking styles neutral and angry from the SUSAS database were tested against

each other in the following way: a cross validation loop (cp. 3.5.4) was executed, in which the

reference models were trained from 17 tokens each, while models trained from token #18 were

taken as input.

Performing a text-dependent test2, the authors report an average CCR of 95.4% for neutral and

89.8% for angry talking style when employing the TEO-CB-AutoEnv feature alone. MFCCs and

pitch yield 94.4% / 89.8% and 96.5% / 82.4%, respectively.

Results degrade slightly when using models trained on different data for testing and validation:

the TEO-CB-AutoEnv feature classifies neutral and angry with 90.8% and 93.0%, respectively;

using MFCCs as features, 59.6% and 80.0% are reached. Pitch yields 92.6% CCR for neutral

and 83.0% for angry.

2This is also known as an “in-vocabulary” test; meaning that the models for training and validation have been

trained on the same data (sub)set.
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Discussion of Results and Perspective

Regarding acted emotional speech, classification results are more than convincing. A shared

feature set has been found which reduces the performance only slightly for continuous speech

samples, but after all by 12% for isolated words. Still, it can be concluded that the presented

analysis framework is, on principle, transferable to another language without dramatic changes

in performance; being aware of the fact that English and German are related languages up to a

certain degree (as both are Germanic languages) and things might be different considering, e.g.,

Asian languages.

Another point regarding performance is that the emotional classes angry and neutral, which

are classified against each other, surely reside at opposite positions in the emotional spectrum

(when discarding “positive” emotions) and thus are likely to differ in descriptive parameters.

The real cause for selecting exactly this pair of emotional classes was, however, the fact that

the intersection of emotional classes from the SUSAS and Emo-DB databases is confined to just

these two classes.

For workload-induced stress analysis, classification results are significantly lower, but – with

approximately 70% for the dual tracking task – still can be referred to as “fair”. Intersecting best

performing individual feature sets leads to a similar reduction in performance, which is, from a

starting position of 64% for ATCOSIM data, no desirable result, as we slightly approach chance

level.

As already expected to be a general restriction, quantitative labelled workload-induced stress

data leads to diffuse classes for workload regions and therefore complicates classification at-

tempts (cp. 1.3). In addition, the used method for assigning emotional classes to the ATCOSIM

data may not have been very accurate, since classification rates are lower than for the dual track-

ing task; although the data set consists of comparatively long, continuous speech phrases which

introduce a certain amount of context.

If the ATCOSIM corpus is still to be used for analysis purposes, it is suggested to com-

bine both approaches mentioned in section 4.3.2 by multiplying the normalized “utterances per

minute” with a (downscaled) ramp to take both the instantaneous workload and the growing fa-
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tigue through a long-lasting task into account.

With glottal spectral slope and the first MFCC, the shared feature set for acted emotions

contains features which both approximate the spectral shape. For workload-induced stress data,

the set comprises spectral mean of the glottal excitation and mean intensity, which are also

closely related to each other. This accounts for the theory that different stressors leave different

traces in the speech signal.

Concerning the talking styles domain, SUSAS data significantly suffers from the absence of

pitch as a feature (see table 5.2). One could conclude that, in general, f0 plays an important

role where context is missing; but surprisingly, it is not listed among the top ten features for

the dual tracking task (cp. table 5.7), which consists of the same single-word vocabulary. On

the other hand, classification of SUSAS’ talking styles performs equally well with or without

incorporation of intensity-related features.

The fact that the k-nearest neighbours algorithm is a rather simple classification scheme em-

phasizes the excellent results regarding classification of acted emotional speech. At the same

time, it does not allow any excuse for the rather moderate classification rates for workload-

induced stress, of course.

Results may be adversely effected by the fact that all data are treated equally, regardless from

the speaker and thus ignoring certainly existent bias. Amir and Ron [2] state that “it is difficult

to define an objective scale for subjective phenomena” and recommend speaker-dependent anal-

ysis. This can be implemented by mean and variance normalization before feature evaluation.

The implementation of the proposed analysis framework is, of course, not real-time capable.

But the quintessence of this presented work in terms of a small number of features may be im-

plemented as an online application in C code or using a graphical programming language like

Pure Data (pd), when it comes to design a speech monitoring system as described in section 1.1.

Besides, stress level analysis does not necessarily have to be performed completely delay-free;

a value which is updated every few seconds would do for sure.

As a consequence of poor analysis results for workload-induced stress, it can be concluded

that there is a need for a novel specific database of non-prompted speech produced during the

performance of demanding tasks with calibrated taskload levels. A credible indicator of in-

duced workload should be incorporated, which could be realized by means of, e.g., pulse mea-

surements. Leaving the level of discrete vocabulary and isolated words also facilitates the in-

vestigation of new potential features for stress classification, including rhythmic and harmonic

characteristics.
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Appendix A.

Code Examples

A.1. Praat Feature Extraction Script

Due to different speech file formats and directory structures within the databases, an individual

script had to be written for each of the three databases used.

The following Praat script performs feature extraction (pitch, intensity, formants, harmonicity,

MFCCs and glottal source information) on the Emo-DB database and exports results as text files,

which are then imported into Matlab for subsequent analysis.

# "QueryWaveFiles_EmoDB_win"

# Written by Johannes Luig, Inst. of Electronic Music & Acoustics (IEM)

# Last revision: 19-Mar-2009

# --- settings

frameLength = 0.025

hopSize = 0.01

fMin = 75

fMax_Pitch = 600

# --- specify directory

directory$ = "D:\DATA\UNI\DA\DATABASES\Emo-DB\wav"

# --- create new sub-directories

system_nocheck mkdir ’directory$’\praat

# --- clear object list

if numberOfSelected() > 0

select all

Remove

endif

# --- create file list

Create Strings as file list... AllWaveFiles ’directory$’\*.wav

# --- get number of file list entries

noFiles = Get number of strings
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for jj to noFiles

# --- select and read jj-th wave file

select Strings AllWaveFiles

fileName$ = Get string... jj

nameLength = length(fileName$)

shortFileName$ = left$(fileName$, nameLength-4)

Read from file... ’directory$’\’fileName$’

# --- extract pitch info, export to text file

To Pitch... hopSize fMin fMax_Pitch

Down to PitchTier

Write to text file... ’directory$’\praat\’shortFileName$’_pitch.txt

# --- extract intensity info, export to text file

select Sound ’shortFileName$’

To Intensity... fMin hopSize yes

Down to IntensityTier

Write to text file... ’directory$’\praat\’shortFileName$’_intensity.txt

# --- extract formants info, export to text file

select Sound ’shortFileName$’

To Formant (burg)... hopSize 2 4000 frameLength 50

Down to FormantGrid

Write to text file... ’directory$’\praat\’shortFileName$’_formants.txt

# --- extract harmonicity, export to text file

select Sound ’shortFileName$’

To Harmonicity (cc)... hopSize fMin 0.1 1

Write to text file... ’directory$’\praat\’shortFileName$’_harmonicity.txt

# --- extract MFCCs, export to text file

select Sound ’shortFileName$’

To MFCC... 12 frameLength hopSize 100 100 0

Write to text file... ’directory$’\praat\’shortFileName$’_mfccs.txt

# --- extract glottal source info

select Sound ’shortFileName$’

To Manipulation... hopSize fMin fMax_Pitch

Extract pulses

nP = Get number of points

if nP > 1

jitter$ = Get jitter (local)... 0 0 0.0001 0.02 1.3

plus Sound ’shortFileName$’

shimmer$ = Get shimmer (local)... 0 0 0.0001 0.02 1.3 1.6

To Ltas... 4000 50 0.0001 0.02 1.3

specmean$ = Get mean... 0 0 energy

specslope$ = Get slope... 0 1000 1000 4000 energy

else

jitter$ = "NaN"

shimmer$ = "NaN"

specmean$ = "NaN"

specslope$ = "NaN"

endif
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# --- write glottal source info to text file

jitter$ = "Local Jitter:"+tab$+jitter$+newline$

shimmer$ = "Local Shimmer:"+tab$+shimmer$+newline$

specmean$ = "Spectral Mean:"+tab$+specmean$+newline$

specslope$ = "Spectral Slope:"+tab$+specslope$+newline$

infofile$ = "’directory$’\praat\’shortFileName$’_glottal.txt"

jitter$ > ’infofile$’

shimmer$ >> ’infofile$’

specmean$ >> ’infofile$’

specslope$ >> ’infofile$’

# --- remove objects from list

select all

minus Strings AllWaveFiles

Remove

endfor

# --- delete file name list

select Strings AllWaveFiles

Remove
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