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Abstract

The Additive Analysis/Synthesis model represents sounds as the superposition of
sinusoidal components with time-evolving parameters. Crucial parts of this tech-
nique are, among others, the estimation of the parameters (instantaneous fre-
quency and amplitude and the initial phase of a single partial tone at a given time)
and the tracking of the temporal evolution of corresponding partials by means of
these parameters.

In this thesis we use the Ambiguity Function (a member of the family of bilinear time-
frequency distributions) for the estimation of frequency and amplitude. The initial
phase is calculated from the Analytic Signal. Finally, we show how a Hidden Markov
Model can be used for the tracking of partials. In addition to the aforementioned
parameters, the Ambiguity Function provides us with an estimator for the chirp
rate, which can be used to improve the tracking of partials.

A prototype application developed for this thesis using Matlab® shows an im-
provement of the estimators and the assignment of partials to trajectories com-
pared to more traditional methods.

Zusammenfassung

Additive Analyse/Synthese modelliert Klänge als Überlagerung von Sinuskompo-
nenten mit zeitvarianten Parametern. Zwei essenzielle Teilgebiete dieser Methode
sind die Schätzung der Parameter (Frequenz, Amplitude und Initialphase zu ei-
nem gegebenen Zeitpunkt) und die zeitliche Verfolgung von zusammengehörigen
Teiltönen mithilfe dieser Parameter.

In der vorliegenden Arbeit wird die Ambiguitätsfunktion (eine bilineare Zeit-Frequenz
Distribution) verwendet, um Frequenz und Amplitude zu schätzen. Die Phase
wird aus dem analytischen Signal berechnet. Außerdem wird gezeigt, wie man
ein Hidden-Markov Modell zur Verfolgung von Partialtönen verwenden kann. Die
Ambiguitätsfunktion liefert zusätzlich zu den genannten Parametern noch einen
Schätzer für die Chirp-Rate, der die Bestimmung der Teiltontrajektorien verbessert.

Eine im Rahmen dieser Arbeit entwickelte Matlab®-Applikation zeigt eine Ver-
besserung der Schätzer und der Trajektorienzuordnung verglichen mit traditionel-
leren Methoden.
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Introduction

Additive synthesis is one of the oldest synthesis techniques in electronic music. It
is in most cases used together with an automated analysis process which analyzes
an input sound and provides a set of parameters which evolve over time and
which represent the partial tones contained in the sound. These parameters can
then be processed at will, can be altered in pitch, intensity and duration, merged
with parameters of another sound, gradually morphed into the parameters of yet
another sound and so on. A set of such parameters can then be used to synthesize
a new sound.
There is not a single way to realize the parameter extraction mentioned above. In

the history of additive synthesis several techniques were proposed and most likely
a few will also be introduced in the future. This thesis describes a recent method
for the estimation of parameters of partial tones. It is based on the Ambiguity
Function, which has already been used for decades in very different fields such as
radar technology but not very commonly in audio signal processing. The Ambi-
guity Function is a bilinear time-frequency distribution, a two-dimensional function
of time and frequency.
Once the parameters of the partial tones have been extracted (with whichever

technique chosen), they are sorted into trajectories to model the evolution of the
partial tones within the sound. This is also called partial tracking. In this thesis we
describe several different ways to implement this tracking of partials.
The Ambiguity Function provides, additional to frequency and amplitude, an

estimator for the chirp rate (the amount of which the frequency of a partial tone
changes per unit time). With the aid of the chirp rate the assignment of partial
tones to their respective trajectories can be enhanced.
One of the techniques for tracking partials involves the Hidden Markov Model
technique, a statistical framework used in many different fields like speech recog-
nition, optical character recognition and genomics. In the following paragraphs a
brief summary is given for each chapter:

In chapter 1 a general overview is given about the Additive Analysis/Synthesis
scheme. The main parts of this set of techniques are shown with an emphasis on
the tasks being discussed in later chapters, namely the estimation of parameters
and the tracking of partials. The sinusoidal model and the sinusoidal + noise model
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Introduction

are presented. The main focus is on the analysis part; the synthesis part is only
briefly mentioned.

Chapter 2 deals with the Fourier transform and with a time-frequency representa-
tion traditionally used in spectral estimation of audio data, namely the Short Time
Fourier Transform, and its shortcomings in the current context.

Chapter 3 tries to ensure an unambiguous use of the terms instantaneous fre-
quency and instantaneous amplitude and presents a means of determining these pa-
rameters in a mono-component signal, the Analytic Signal. We will recall that the
Hilbert transform can be used to obtain an analytic signal from an arbitrary real
signal.

In chapter 4, the concept of Bilinear Time-Frequency Distributions is presented.
One of them (the Ambiguity Function) will be used later on to improve the es-
timation of instantaneous frequency and amplitude of partial tones and it will
additionally provide us with an estimator for the chirp rate, which in turn will be
used for the tracking of partials.

Chapter 5 is dedicated to the description of the basic building blocks of the
prototype application implemented for this thesis. It shows how the input signal is
split into frames, how it is filtered, how the Ambiguity Function is used to estimate
frequency, amplitude and chirp rate, how the estimated partials are tracked, et
cetera.

Chapter 6 explains in detail the estimation of the parameters from the Ambiguity
Function and the estimation of the initial phase by means of the analytic signal.

In chapter 7, Hidden Markov Models are presented, including the three kinds of
problems that can be solved in this context. The Viterbi algorithm, a solution to the
second problem, is explained.

Chapter 8 shows how partial tones can be tracked based on the parameters es-
timated earlier. First, a method which acts locally between frames is presented,
later on it is shown how a Hidden Markov Model can be used to globally optimize
partial trajectories.

8



Introduction

Chapter 9 shows how the presented algorithms perform in various circumstances.
Examples using artificial signals but also sound recordings of single instruments
are presented.

Finally, chapter 10 summarizes the main ideas of this thesis and lists some as-
pects which should be improved in future works.

The appendix shows a few calculations (concerning the Ambiguity Function) which
are displayed in such detail that it would distract the reader from the point made
in the respective chapter in the main part of the thesis. If one wants to recalculate
the equations, however, it should be an easy task with the calculation steps given
in the appendix.
The appendices also hold a section about implementational details which are

related to the actual situation and to the discretization of some concepts which are
mainly presented for continuous variables. However, they are not needed for the
understanding of the general ideas.
Furthermore, a little section describes an analysis/synthesis technique called

Spectral Modeling Synthesis, which was used during research for this thesis but was
later replaced by our own Matlab® code.

In the very end, we provide the reader with a list of the numerous abbrevia-
tions used throughout the text (except in this introduction), a list of mathematical
symbols and, finally, the bibliography.
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Chapter1
Additive Analysis/Synthesis

Among the different sound processing techniques, chained analysis-synthesis of
sound signals is very often used in music, but also in sound engineering, audio
coding and recording. The basic goal of analysis/synthesis is to conceive rele-
vant models to represent acoustical signals by a set of temporal functions (the
control parameters). These temporal functions are extracted from a pre-recorded
sound during the analysis process. Re-synthesis produces a signal that sounds
perceptually identical to the original sound. By modifying and substituting con-
trol parameters, this analysis-synthesis scheme can provide for very refined and
precise processing of sound material. For example, it may allow one to produce
a family of synthetic sound signals derived from a single original one or to carry
out a morphing between two key sounds.
Since the synthesis procedure consists of adding up the sinusoidal waveforms

for each of the interpolated amplitudes, frequencies and phases, the procedure is
particularly suited for performing time-scale modification by simply expanding
or compressing the frequency tracks. The instantaneous frequency locations and
magnitudes are preserved while modifying their rate of change in time.
Here we will briefly present the Sinusoidal Model and thereafter an extension,

the Sinusoidal + Noise Model.
The analysis process is frame based, meaning that the signal is analyzed at
a particular moment in time, providing an undersampled version of the control
parameters, the analysis location is then advanced through the audio by using a
sliding window, and the process is repeated.

1.1 Sinusoidal Representation

This representation is generally associated with the contribution by McAulay and
Quatieri [MQ86], but there are several related techniques proposed by different
authors. Here we try to keep the description of the model as general as possible.
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Chapter 1 Additive Analysis/Synthesis

sound input

×
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sinusoidal trajectories


frequency
amplitude
phase Figure 1.1: The Sinusoidal Analysis Scheme

The Sinusoidal Model is based on the assumption that a sound is composed of
a deterministic component (i. e. sinusoids) with slowly varying frequency, ampli-
tude and phase parameters. This can be stated mathematically as

s(t) = Re

{
R∑

r=1

ar(t) e jψr(t)

}
, where ψr(t) = 2π

t∫
0

fr(σ) dσ + φr, (1.1)

with fr(t) the frequency track of the rth sinusoidal component (out of a total num-
ber of R). φr represents a fixed phase offset (at time t = 0) which accounts for the
initial state of each sine wave. φr is often called the initial phase.
The goal of the analysis process is to find the sinusoidal components within the

sound and to determine the temporal function of the control parameters ar(t) and
ψr(t). As the control parameters are changing comparatively slowly they do not
need to be determined for each audio sample. It is sufficient to split the signal
under analysis into frames and to calculate the control parameters ar, fr and φr for
each frame. As regards the synthesis, these sets of parameters changing at frame
rate are interpolated to oversample the parameters at sampling rate.
The building blocks of the analysis based on the sinusoidal model, as shown in

figure 1.1, are described below.

Windowing
As a first step, the time line is broken down into a contiguous sequence of frames.
This can be done by simply cutting out a portion of the signal with the desired
frame length, which in fact means using a rectangular window. However, as ap-
plying a window means convolving the spectrum of the signal with the window’s
spectrum, it is generally advisable to use a smoother window than the rectangular
window in order to minimize the spectral spread.
The frame rate has to be chosen fast enough to avoid aliasing of the control

parameters. To allow for a reasonably slow frame rate, one of the preconditions
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1.1 Sinusoidal Representation

for the additive synthesis model is a slow variation of the parameters frequency
and amplitude.

Spectral Estimation
The purpose of this operation is to produce a general characterization of the fre-
quency content of the signal within the frame. Frequency estimations of the sine
waves will be extracted from this characterization and, at a later step of the pro-
cess, manipulated to produce an overall time-varying spectral representation of
the signal.
In many implementations the Short Time Fourier Transform (STFT) is used to

calculate the spectrum. In this case, the windowing process mentioned above is
constitutive of the STFT definition and computation (see section 2.2).

Peak Picking
In this step local maxima of the magnitude of the spectrum are determined. These
show likely positions of the partial tones at a given time and form a set of so called
partial candidates. Which of these candidates are finally selected to represent the
partials, is determined in the following step, the peak tracking.
When, as in many practical implementations, a discrete Fourier transform is

used for the spectral estimation, the frequency resolution is limited to discrete
steps of sampling frequency divided by the number of Fourier transform bins. To
allow for more precise frequency values between these given steps, interpolation
can be used.
Also a subset of local maxima can be selected including only a given number of

frequencies with the highest corresponding amplitudes or including only partial
candidates with an amplitude bigger than a given threshold. Or only the partial
candidates inside a given frequency range can be taken into account. It is desirable
to have a robust parameter extraction algorithm since the signal in many cases is
contaminated by “additive acoustic noise”.

Peak Continuation
Once every spectral peak has been analyzed, the frequencies, amplitudes and ini-
tial phases of all partial candidates are passed to a peak continuation step. It is in
the peak continuation step that this collection of instantaneous estimations will be
layered into a coherent representation of partials.
The role of the peak continuation step is to identify the partials within the sound

sample from the partial candidates. A partial is represented in what is called a
partial trajectory. In the peak continuation step, partial candidates that are com-
puted at the previous step are sorted into a set of appropriate partial trajectories.
The resulting tracks are required at the synthesis stage, as synthesis parameters
are interpolated along these tracks.

13
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Figure 1.2: Sinusoidal trajectories of the Shakuhachi recording from [WBF+00]. The red
sections have the highest amplitudes.

The number of peaks may change rapidly from frame to frame. To cope with
that, a concept of “birth” and “death” of partial trajectories is introduced. When
there are more partials in one frame than in the previous one it means that some
partial tracks are “born”. On the other hand, when there are less partials, some
trajectories have “died”. Also, when partials exhibit too large frequency difference
to satisfy the continuation criteria it can mean the death of one track and the birth
of another.
The continuation algorithm selects the two closest frequencies between two

frames and if their difference is within a given threshold they are assigned to
the same trajectory. This is repeated until the threshold is reached or until there
are no more peaks left on one side. The remaining peaks in the first of the two
frames have to “die”, while the remaining peaks on the second frame are each
assigned to a new trajectory.
The result is a collection of all partials present in the signal, where each par-

tial is completely defined in terms of its individual frequencies, amplitudes and
initial phases for each analysis frame. Figure 1.2 shows the sinusoidal tracks of a
sound example, where the color of the trajectories represents the amplitude of the
partials.

1.2 Sinusoidal + Noise Representation

A natural sound is normally not entirely representable by a purely sinusoidal
model, especially if the number of partials shall be limited. The reason for that
is that neither noise-like components nor transient events can be modeled accu-
rately with a finite number of sinusoids. To account for that shortcoming, an
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1.2 Sinusoidal + Noise Representation

Figure 1.3: The Deterministic + Stochastic
Analysis Scheme
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extension of the McAulay/Quatieri model [MQ86] was introduced: The sinusoidal
+ noise model, also known as Deterministic + Stochastic (D+S) Model [SS90]. It is de-
picted schematically in figure 1.3. A well known implementation of this model is
Spectral Modeling Synthesis (SMS). More information about SMS can be found in
appendix c.
The D+S model can provide an excellent time-varying spectral description of

a sound. The benefits of the separation of sinusoids from noise are twofold in
that it provides maximum perceptual relevance to the signal, as well as maximum
computational efficiency. Furthermore, the generality of the representation allows
it to serve as the basis for many meaningful transformations.
The technique by which the sound is analyzed is a two part process of deter-

ministic analysis and stochastic analysis. The deterministic analysis was already
described in the previous section, the stochastic analysis does the following:

Calculation of the Residual Component
The sinusoidal tracks are resynthesized, generating the deterministic part of the
representation. This deterministic component is then subtracted from the original
input signal, which results in the stochastic component. When the analysis is
accurate enough, this component does not hold any tonal information but only
transient events and noise.
It is important that the synthesis uses the correct phase information because

only with the correct initial phase a partial can be removed from the input sound
by destructive interference. For a human listener, however, the phase information
is not perceptible (except in transient parts).
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Figure 1.4: Result of the resynthesis of the Suling flute recording from [WBF+00]. The
residual part consists of modulated noise (mainly the breath of the performer) and some
transient components caused by the articulation.

Figure 1.4 shows the waveforms for an example audio file. It shows the original
waveform, the resynthesized sinusoidal trajectories and the difference of the two
signals, the residual waveform.

Stochastic Approximation
The residual part can be saved as a time signal without further modification. To
gain flexibility and to reduce memory requirements, however, it can be modeled
using a source-filter model, i. e. filtered white noise. This can be done in both time
and frequency domain. In general, the frequency domain approach is much less
computationally demanding than filtering in the time domain.
The residual component can also be saved as a single STFT per frame. As the

frequency resolution of the residual part is less important, the size of the STFT can
be much smaller than the one used for spectral estimation.

1.3 Synthesis

The synthesis of the D+S model is, like its analysis, a two-part process. The deter-
ministic and stochastic components are synthesized separately and then summed.
For a given frequency track and in between two frames a cubic function is used to
unwrap and interpolate the phase such that the phase track is maximally smooth.
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1.4 Drawbacks

The derivation of this interpolating cubic function can be found in [MQ86]. The
interpolated phase function is fed to a sine-wave generator, which is amplitude
modulated and added to the other sine waves to give the deterministic output.
The stochastic component is obtained by filtering white noise with the recorded
filter parameters, or, if a STFT was used, by calculating the inverse STFT for each
frame [SS90].
Some implementations realize both sinusoidal and residual synthesis in the fre-
quency domain, add the two parts still in the frequency domain and then perform
only a single inverse STFT per frame to save processing power [RD92].

1.4 Drawbacks
There are two drawbacks in the just technique described above, which are ad-
dressed in this research work.
Firstly, the frames are supposed to have stationary spectral characteristics for

their whole duration, but, in contradiction to this, the model aims to analyze time-
varying parameters. The methods presented later in this work, assume that the
frequencies of the partial tones change linearly within a frame. The amplitudes
are still handled as being constant during a frame, though.
Secondly, in the peak continuation process only the frequency difference is taken

into account. This can lead to a wrong continuation of trajectories if frequencies
are very close, changing rapidly or if they are crossing. In chapter 8 two improved
algorithms using the chirp rate are presented.
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Chapter2
Frequency Representation of Time Signals

In many cases it is most natural to represent an audio signal as a function over
time (with values proportional to air pressure or voltage or . . . ). It can, however,
also be very interesting to have a representation over frequency, i. e. to know how
the energy of the signal is spread over the different frequencies.
The mathematics of the frequency representation was conceptualized by Joseph

Fourier in early 19th century in the context of thermodynamics [Fou22]. He found
out that every signal can be represented by a superposition of an infinite number
of sine waves. The characteristics of a signal are modeled by constructive and
destructive interference between the sine waves.
The conversion from the time domain into the frequency domain is done by the
so-called Fourier transform.

2.1 Fourier Transform

The Fourier transform is defined by

X( f ) = F
t→ f
{x(t)} =

∫
x(t) e−j2π f t dt. (2.1)

Its counterpart, the inverse Fourier transform, is given by

x(t) = F−1
t← f
{X( f )} =

1
2π

∫
X( f ) e j2π f t d f . (2.2)

As one can see in equation (2.1), the computation of the frequency content X( f0)
of a signal at a single frequency value f0 requires a complete knowledge of the
past and future of the signal x(t). On the other hand, as seen in equation (2.2), the
computation of an instantaneous signal value x(t0) requires the knowledge of an
infinite number of frequency components X( f ).
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Chapter 2 Frequency Representation of Time Signals

Any type of signal, except an infinitely long sinusoid with constant frequency
and amplitude is modeled by a superposition of possibly infinitely many sinu-
soids. Even a single sinusoid modulated in frequency and/or amplitude is repre-
sented by an infinite number of unmodulated sinusoids.
The Fourier transform is a very powerful mathematical tool and has revolution-

ized mathematics and other fields. It is also heavily used in signal processing,
especially since the introduction of the Fast Fourier Transform (FFT) in 1965 [CT65].
For the analysis of an audio signal, however, it has some severe drawbacks. Even

though the signal can be perfectly reconstructed from the frequency representation
X( f ), we cannot simply get any temporal information from it. We can see which
frequencies are present in the signal and to which extent, but we cannot easily
see which frequency is there at which time. Neither can we distinguish if one
frequency is present in the signal for a long time with small amplitude or if it is
there for a short time with high amplitude.

2.2 Short Time Fourier Transform
To get rid of the shortcomings mentioned before up to a certain extent, the Short
Time Fourier Transform (STFT) was introduced. It is basically the same idea of
the Fourier transform, but only applied to a local time interval. This is done
by windowing the input signal x(t) with a window w(t) centered at the time of
interest and then applying the Fourier transform to the windowed signal. The
STFT is defined as [Coh95]:

STFTx(t, f ; w) =
∫

x(τ)w(t− τ) e−j2π f τ dτ, (2.3)

where the length on which the window w(t) is non-zero is T. The type of window
function used is a critical factor that determines the overall accuracy of the STFT.
A good discussion on the use of window functions and considerations of their
appropriateness is presented in [Har78].
The STFT does not completely solve the problems of locating events in time.

Within a given window there is still no time information. The smaller the win-
dow, the better can an event be localized in time, but it is impossible to achieve
arbitrarily fine resolution in both time and frequency simultaneously. This limita-
tion is referred to as the uncertainty principle [Coh95].

Using the STFT for spectral analysis
The STFT has to be performed on a time segment of length T > 0. This is to say
that any STFT analysis will form a spectral representation from this limited time
segment, but cannot explicitly determine the instantaneous frequency of the sig-
nal. When the spectral representation of the STFT is analyzed to determine the

20



2.2 Short Time Fourier Transform

instantaneous signal characteristics at a particular frequency, there is a standard
assumption that the signal is stable in frequency and amplitude for the entire du-
ration of the analysis window. When the STFT is used to determine instantaneous
signal parameters of a signal which is not completely stable for the duration of the
window, there will be distortion of the physical reality of the signal in the spec-
tral representation. This distortion will manifest itself in three characteristics that
can be observerd from the spectrum, namely in frequency, amplitude and phase.
Although the frequency, amplitude and phase extracted in this case can be used
to correctly re-synthesize the signal, they cannot be individually interpreted or
modified in a meaningful way.
When transforming a linear chirp, components of all frequencies which were

passed during the frame (and even more) will be present. Using a smooth win-
dow it will be possible to detect the frequency at the center of the window, which
represents the instantaneous frequency at this time. The amplitude of the chirp,
however, cannot be recovered because it is distributed over all frequency compo-
nents. The amount by which the amplitude is scaled is proportional to the chirp
rate of the signal [MB95]. It is also shown in [MB95] that the STFT representation will
suffer from a shift in the phase angle at the frequency of the peak as a result of the
signal’s non-stationary nature. Again, the amount by which the phase is shifted is
proportional to the chirp rate of the partial.
When doing the analysis for additive synthesis, we expect the parameters to

change continuously over time but we extract the values of the parameters only at
the frame rate. When using the STFT for the analysis, however, we assume that the
same parameters are not changing at all during a frame.
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Chapter3
About Instantaneous Frequency and

Amplitude
In this chapter we give a short overview about the concept of instantaneous fre-
quency and amplitude and how to extract them from an audio signal. The inter-
ested reader can find much more information and deeper insight into this topic in
[Pic97, Boa92a, Boa92b].
The simplest time-varying signal is the sinusoid. It is a solution to many dif-

ferential equations and it is common in nature. It is characterized by a constant
amplitude A and a constant frequency f0:

x(t) = A cos(2π f0t).

One could now try to generalize the simplicity of the sinusoid by hoping that a
general signal can be written in the form

x(t) = A(t) cos(θ(t)),

and may be tempted to believe that A(t) would be the instantaneous amplitude
and θ(t) would be the instantaneous phase of the signal x(t). Furthermore, the
instantaneous frequency of the signal x(t) would be

f (t) =
1

2π

dθ(t)
dt

.

Unfortunately, this is not the case. The problem is, that for a given signal x(t)
there can be found infinitely many pairs of A(t) and θ(t) which generate the same
signal.

3.1 Analytic Associate
This ambiguity can be avoided if we use a complex signal of the form

z(t) = a(t) e jφ(t) = x(t) + jy(t),
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Chapter 3 About Instantaneous Frequency and Amplitude

where a(t), φ(t), x(t) and y(t) are real-valued and a(t) ≥ 0.
From this signal the instantaneous amplitude a(t) and the instantaneous phase

φ(t) can be unambiguously extracted by determining the magnitude and phase of
its complex values:

ax(t) ≡ |zx(t)|,

fx(t) ≡ 1
2π

d
dt

arg zx(t).

The signal z(t) is called the analytic associate of x(t). The yet unknown signal y(t)
has to be created in a way that z(t) has the properties of an analytic signal. Those
properties and how to obtain y(t) is shown in the rest of this chapter. In-depth
coverage of this topic including all necessary proofs can be found in [Coh95, Pic97].
It turns out that the signal y(t) must have a phase lag of 90° to the input signal

x(t). This is called to be in quadrature to the input signal.

3.2 Hilbert Transform
The unknown signal y(t) (the imaginary part of the desired analytic signal) can
be obtained by means of the so called Hilbert transform H{x(t)} and with it the
analytic associate of x(t) can be written as

zx(t) = x(t) + jH{x(t)} ,

with

H{x(t)} = F−1
t← f

{
−j sgn( f ) F

t→ f
{x(t)}

}
. (3.2)

The 90° phase shift can be seen nicely in the following examples:

H{cos(2π f0t)} = sin(2π f0t) and
H{sin(2π f0t)} = − cos(2π f0t).

The transfer function of the Hilbert transform is −j sgn( f ) as seen in equa-
tion (3.2), its impulse response is F−1{−j sgn( f )} = 1

πt . The Hilbert transform
can therefore also be defined in the time domain:

H{x(t)} = (x ∗ u)(t), with u =
1

πt
. (3.3)

For the calculation of this convolution we have to evaluate the Cauchy principal
value of an improper integral. Because of that, the frequency domain approach
is mathematically simpler than the time domain approach. In a software imple-
mentation both approaches are possible but the frequency domain approach is
normally easier to implement and computationally faster. Details for the time
domain implementation can be found in [RFB94] and for the frequency domain
implementation in [Mar99].

24



3.3 Properties of the Analytic Signal

3.3 Properties of the Analytic Signal
The following points are explained in detail including proofs in [Coh95]:

• The analytic signal has a one-sided Fourier transform, i. e. there are no neg-
ative frequencies.

• The energy of the analytic signal is twice the energy of the original signal.

• The energy of the real part is equal to the energy of the imaginary part.

• The analytic procedure puts the low frequency content in the amplitude and
the high frequency content in the term e jφ(t).

• The analytic associate of an already analytic signal is the signal times two.

• The convolution of an analytic signal with an arbitrary function results in an
analytic signal.

• The product of an analytic signal a(t) e jφ(t) with an arbitrary signal s(t) re-
sults only in an analytic singnal if the highest frequency in s(t) is lower then
(or equal to) the highest frequency in a(t).

We will be using the analytic signal as input to the Ambiguity Function (AF) de-
scribed in section 4.3. This has two benefits:

1. The AF needs normally an input signal which is oversampled at twice the
sampling rate to avoid aliasing. When using the analytic signal, this over-
sampling can be omitted because the analytic associate uses only half the
bandwidth of the original real signal.

2. Using the analytic signal avoids cross components between positive and neg-
ative frequencies that would arise when using a real valued input signal.

The analytic associate is also used in section 6.5 to estimate the initial phase, be-
cause the initial phase information is lost when calculating the AF.
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Chapter4
Time-Frequency Distributions

In chapter 2 we mentioned that it is strictly speaking not possible to extract the
instantaneous frequency (see chapter 3) from the Short Time Fourier Transform
(STFT). We cannot get information for a given time instant from the STFT because
its frequency and amplitude information is a mean value over the duration of the
window. We also showed in chapter 2 that the amplitude is altered depending on
the chirp rate of the signal.
We now present a class of distributions which can solve the aforementioned

problems: the bilinear Time-Frequency Distributions (TFDs). Although they can
help us to estimate instantaneous frequency and amplitude, they have some draw-
backs themselves.
Bilinear structures do not adhere to the principle of linear superposition, i. e.

when we analyze a sum of two (or more) signals, we get not the same result
as when we analyze the two (or more) components separately and then add the
results. Actually, we get the sum of the results plus additional components, so-
called interference terms or cross terms.
Bilinear systems can generally not be used to determine the initial phase of a

signal. This is because the autocorrelation functions used in their construction
effectively eliminate the phase information of the signal. Therefore, we use the
analytic signal (see chapter 3) for the estimation of the initial phase.

4.1 Instantaneous Autocorrelation Function

Basis of all bilinear time-frequency distributions presented here is the Instanta-
neous Autocorrelation Function (IAF). It is defined by

Kx(t, τ) = x
(

t +
τ

2

)
x∗
(

t− τ

2

)
. (4.1)

The IAF of x(t) is the product of the signal x(t) with its complex conjugate. The
two functions are time shifted with a relative lag of τ.
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4.2 Wigner-Ville Distribution
Eugene Wigner first introduced this distribution in 1932 in the context of quantum
statistical mechanics [Wig32]; in 1948, Jean Ville applied it to signal processing
[Vil48]. The Wigner Distribution (WD) and the Wigner-Ville Distribution (WVD) are
formally the same. The difference is only the field in which it is used and that
the WVD is normally used with the analytic associate (see section 3.1) of the signal
under analysis. The WVD is defined as

Wz(t, f ) =
∫

z
(

t +
τ

2

)
z∗
(

t− τ

2

)
e−j2π f τ dτ. (4.2)

More compactly, we can also write

Wz(t, f ) = F
τ→ f
{Kz(t, τ)}.

As shown in [Coh95], the WVD is always real-valued:

W∗x (t, f ) =
∞∫
−∞

x∗
(

t +
τ

2

)
x
(

t− τ

2

)
e j2π f τ dτ (4.3a)

= −
−∞∫
∞

x∗
(

t− τ

2

)
x
(

t +
τ

2

)
e−j2π f τ dτ (4.3b)

=
∞∫
−∞

x∗
(

t− τ

2

)
x
(

t +
τ

2

)
e−j2π f τ dτ (4.3c)

=Wx(t, f )

Equation (4.3a) shows the complex conjugate of the WVD defined in equation (4.2).
From line (4.3a) to line (4.3b) τ was substituted by −τ. Hence dτ became −dτ
which is the reason for the minus sign in front of the integral. Also, if τ is inte-
grated from −∞ to ∞, as a result −τ is integrated from ∞ to −∞. From line (4.3b)
to line (4.3c) the direction of the integration is reversed and therefore the minus in
the beginning is removed.
Due to the quadratic nature of the WVD, the WVD of the sum of two signals x(t)
and y(t) is not the sum of their respective WVDs, but rather

Wx+y =Wx +Wy +Wxy +Wyx. (4.4)

The terms with two different subscript indices are called cross terms and the ones
with a single index are called auto terms because they involve a cross correlation
and an auto correlation, respectively. The cross WVD is defined as

Wxy(t, f ) =
∫

x
(

t +
τ

2

)
y∗
(

t− τ

2

)
e−j2π f τ dτ. (4.5)
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Figure 4.1: Magnitude of the Windowed Ambiguity Function of a linear chirp with a
chirp rate of 19Hz/s. The length of the Hanning window used for the AF is 64 sam-
ples, the sampling frequency is 128Hz. The absolute frequency cannot be seen in this
representation because this information is only contained in the phase of the AF.

The cross WVD is complex-valued. However, since Wxy = W∗yx and therefore
Wxy +Wyx is real, equation (4.4) on the preceding page can be written as

Wx+y =Wx +Wy + 2Re
{
Wxy

}
.

For a signal s(t) with N partials this becomes [Coh95]:

s(t) =
N∑

n=1

ansn(t)

Ws =
N∑

n=1

|an|2Wsn + 2
N−1∑
n=1

N∑
k=n+1

Re{ana∗kWsnsk} .

Here we see that the WVD of a signal with N partials will contain N auto terms
and N(N − 1)/2 cross terms.
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Figure 4.2: Magnitude of the Windowed Ambiguity Function of a linear chirp with a
chirp rate of 51Hz/s.

4.3 Ambiguity Function

The Ambiguity Function (AF) is closely related to the WVD. However, its output
domain is not the (t, f )-domain but the Doppler-lag (ν, τ)-domain, also known as
the ambiguity plane. This is because the IAF Kz(t, τ) is not integrated with respect
to the lag τ but with respect to the time t. Therefore the AF is defined as

Az(ν, τ) =
∫

z
(

t +
τ

2

)
z∗
(

t− τ

2

)
e−j2πνt dt, (4.6)

or, more compactly
Ax(ν, τ) = F

t→ν
{Kz(t, τ)} . (4.7)

Figures 4.1 and 4.2 show the AFs of two linear chirps. The AF suffers from the
same non-linear superposition behaviour as the WVD and all other bilinear TFDs.
The AF of a sum of two components is

Ax+y = Ax +Ay +Axy +Ayx, (4.8)
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Figure 4.3: Magnitude of the Windowed Ambiguity Function of the sum of two linear
chirps with the chirp rates 19Hz/s and 51Hz/s, respectively. The amplitude of the second
one is 20% lower compared to the first one.

with Axy being the cross AF

Axy(ν, τ) =
∫

x
(

t +
τ

2

)
y∗
(

t− τ

2

)
e−j2πνt dt.

Figure 4.3 shows the AF of the sum of the two chirps from figures 4.1 and 4.2. The
interference terms can be clearly seen between the two ridges. For a signal s(t)
with N partials equation (4.8) on the preceding page becomes:

s(t) =
N∑

n=1

ansn(t)

As =
N∑

n=1

N∑
k=1

anakAsnsk .

As with the WVD, terms with two times the same index are called auto terms and
terms with differing indices are called cross terms.
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Figure 4.4: Magnitude of the Windowed Ambiguity Function of a linear chirp with a
chirp rate of −51Hz/s.

Figure 4.5 on the facing page shows the AF of the sum of chirp signals whose
AFs are depicted in figures 4.1, 4.2 and 4.4. The AF has the advantage that it
maps the auto terms to the center (origin) of the ambiguity plane and cross terms
away from the center. The AF shows a symmetry around the origin described by
A(ν, τ) = A∗(−ν,−τ) [Coh95].
We can get a somehow different point of view if we rewrite the definition of the

AF in equation (4.6) on page 30 like this [Boa03]:

Az(ν, τ) =
∫

z
(

t +
τ

2

) [
z
(

t− τ

2

)
e j2πνt

]∗
dt.

The expression in square brackets can be obtained by delaying z
(
t + τ

2

)
in time by

τ and shifting it in frequency by ν, indicating that Az(ν, τ) is the correlation of the
signal with a time-delayed and frequency-shifted version of itself.
This correlation is well known in radar theory as the Sussman ambiguity func-
tion; the name “ambiguity” arises from the equivalence between time-shifting and
frequency-shifting for linear FM signals, which are frequently used in radar. Hence
the Doppler-lag (ν, τ) domain is also called the ambiguity domain.
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Figure 4.5: Magnitude of the Windowed Ambiguity Function of the sum of three linear
chirps with the chirp rates 19Hz/s, 51Hz/s and −51Hz/s, respectively. Compared to the
first one, the amplitude of the second and third one is 20% and 30% lower, respectively.

4.4 Cohen’s Class Distributions
All TFDs discussed here are actually members of the same class of distribution of-
ten called Cohen’s class (although by Cohen himself it is called general class [Coh95]).
This class characterizes TFDs by an auxiliary function, the kernel function. The
properties of a distribution are reflected by simple constraints on the kernel. By
examining the kernel one can readily ascertain the properties of the distribution.
For a list of kernels, their properties and properties of their respective TFDs see
[Coh95, Boa03]. There cannot be an exhaustive list, because infinitely many ker-
nels can be generated. The gerneral class, from which all TFDs can be obtained, is
defined in [Boa03] and [Fla99] as

ρx(t, f ; γ) =
∫∫
Wx(s, ξ)γ(s− t, ξ − f ) ds dξ, (4.9)

where γ(t, f ) is the two dimensional kernel.
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Chapter5
The Experimental Setup

In this chapter we show the setup used for applying the concepts discussed in pre-
vious chapters – namely the analytic signal and the Ambiguity Function (AF) – to
additive analysis. This setup is implemented in Matlab® using mainly standard
commands and a few functions from the Signal Processing Toolbox.
Initially, the free software program SMSTools1 was used as a part of the setup,

but the relevant functions have since been reimplemented in Matlab® as ex-
plained in appendix c.
Figure 5.1 on the following page shows the functional units of the used setup.

In the next few paragraphs we will briefly describe each component and how they
are linked up with each other. Chapters 6 and 8 describe in more detail the key
features parameter estimation and peak continuation.

Ambiguity Function
The AF is the centerpiece of the whole process, so we will start our description with
it. If its input is a linear chirp, we expect to find a linear ridge in the magnitude of
its output, passing through the origin. From the slope of this ridge we can estimate
the chirp rate and it is also along this ridge where we will get our frequency and
amplitude estimators. As we cannot use the AF for estimating the initial phase, we
will use the analytic signal to do that. Chapter 6 explains the parameter estimation
both based on the AF and the analytic signal.

Frame Segmentation
As mentioned earlier, the estimators based on the AF expect the signal to be a
linear chirp. In general, when analyzing music or speech signals, this will not be
the case. However, if we take parts of the signal with a sufficiently short duration,
we can assume that the frequency progression will be almost linear during this
short time.

1http://clam.iua.upf.edu/
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Figure 5.1: The Prototype Ap-
plication

Band-Pass Filter Bank
Another prerequisite for using the AF as an estimator is that its input is a mono-
component signal. To fulfill this requirement, we split a general audio frame into
a set of single partial tones by filtering the frame with a band-pass filter which
has as center frequency the frequency of the partial tone we want to isolate. More
details on the filter can be found in appendix b.2. Once we have generated a set of
partial tones, we run the estimation process on each of them separately. To be able
to apply the appropriate band-pass filters, we have first to find a set of frequencies
where we expect the partial tones to be.

Spectral Estimation
To obtain the frequencies of likely partial tones that can be used to control the
band-pass filters, we first of all split the signal into frames at the same frame rate
as in the main branch. One of the reasons we use a distinct frame separation is

36



to be able to use a different frame size and/or windowing for each branch. The
other reason is that in the main branch the analytic associate is calculated before
the frame segmentation process.
For each frame then the Short Time Fourier Transform (STFT) is computed. This

is in fact done by windowing each frame with a smooth window and then calcu-
lating the Fast Fourier Transform (FFT) of the windowed frame.
From the magnitude of the STFT all local maxima are determined. A certain

number of the highest maxima is then used as center frequencies in the band-pass
filters. The maximum number of selected frequencies can be set according to the
expected number of partial tones in the signal under analysis.

Analytic Associate
The benefits of using the analytic associate of the signal rather than the signal itself
are threefold:

• First, it gives us a possibility to estimate the initial phase, which cannot be
obtained from the AF.

• Furthermore, within the AF it avoids cross-components that would arise be-
tween the positive and negative frequencies of a real signal.

• The third benefit is that the analytic signal needs only half the bandwidth
of the original real signal. Hence we can use it, without need for any over-
sampling, as input to the AF. A real signal would have to be oversampled at
twice the original sampling rate to avoid aliasing.

As depicted in figure 5.1 on the preceding page, we are calculating the analytic
associate of the whole input signal before the frame segmentation. As all filtering
processes, the generation of the analytic signal has side effects at the beginning
and the end of the audio data. If we would obtain the analytic associate for
each frame, we would have to deal with these effects at the beginning and end
of each frame, but when doing the calculation before the frame segmentation
we encounter them only in the very first and very last frame. Additionally, as
we normally use overlapping frames, the frame-wise calculation of the analytic
associate would result in much more samples to be filtered in total.
We must bear in mind, however, that the multiplication of an analytic signal

with an arbitrary function does not generally result in an analytic signal. In the
windowing process incorporated in the calculation of the (windowed) AFwe there-
fore have to apply certain restrictions to the windowing function. The windowed
signal is only an analytic signal if the highest frequency contained in the win-
dow function is lower than the lowest frequency in the analytic signal to be win-
dowed [Coh95].
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Ridge Verification
The peak picking done at the beginning selects the most prominent peaks from
the spectrum but it can of course not tell if there are really partial tones at the
peak frequencies or if the peaks are caused by transient events or by noise. At the
ridge verification step we try to find out how close the output of the AF is to our
ideal template, the linear chirp. This is done by calculating the estimators for the
frequency using all phase values along the detected ridge. Then we calculate the
standard deviation of all the estimated frequencies. If the standard deviation is
below a given threshold, we suppose that we are dealing with a partial tone, but
if not, the calculated estimators will not give a reliable result, because they only
work with linear chirps. If the ridge verification indicates that the current filtered
frame does not contain a linear chirp, or at least something similar, the estimators
are ignored and not added to any trajectory.

Peak Continuation
All sets of estimators for a frame which passed the ridge verification are now
compared to the estimators of the previous and the next frame. We try to find
out which of these partial tones belong to the same trajectory. How this works in
detail is shown in chapter 8. It is also explained there how a new trajectory can be
“born” and, if its time has come, how a trajectory “dies”.
After the peak continuation we have already the sinusoidal representation of

the signal. The estimators for all frames together with the information to which
trajectory they belong can now be saved to be used for further processing like
pitch shifting or time stretching or many others.

Calculation of the Residual Part
The sinusoidal representation can now be used to obtain the residual signal. The
residual signal also shows if partials are detected correctly. If all tonal components
are detected, the residual signal should contain only transients and noise.
To calculate the residual part, we first resynthesize the sinusoidal tracks and

then subtract the sinusoidal component from the original signal. It is very im-
portant that we use the correct initial phase information because only then the
sinusoidal component can be removed by destructive interference.
For the resynthesis of the sinusoidal trajectories we use a matlab function writ-

ten by Dan Ellis, available from his homepage2 at Columbia University in New
York.

2http://www.ee.columbia.edu/~dpwe/resources/matlab/sinemodel/
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Chapter6
Improving the Estimation

This chapter shows how to estimate chirp rate, frequency, amplitude, and initial
phase from the Ambiguity Function (AF) and the analytic signal respectively.
A requirement for the following estimators is, that the signal we analyze is a

mono-component signal, i. e. only one isolated partial tone. We meet this require-
ment by band-pass filtering the input frames based on the frequency information
obtained from a raw estimation based on the Short Time Fourier Transform (STFT).
See appendix b.2 for implementational details about the band-pass filter.

6.1 Windowed Ambiguity Function

We cannot use the AF directly as defined in equation (4.6) on page 30 in a practical
implementation, because it includes an integral from −∞ to ∞ which means that
we would also need an infinitely long input signal. To be able to deal with finite
input signals we could simply restrict the integration interval to a certain time
T, i. e. integrate only from −T/2 to T/2. This requires the input signal z(t) to be
defined in a range −(T/2 + τ/2) < t < (T/2 + τ/2). The calculation of the AF of a
linear chirp under this time restriction can be found in appendix a.2.
Setting limits to the time axis essentially imposes a rectangular window to the

Instantaneous Autocorrelation Function (IAF) before calculating the Fourier trans-
form. Often, however, it is desirable to use window functions other than the
rectangular window. This is particularly the case when one may wish to suppress
cross-terms that may arise as a result of partials near the chronological end of the
windowed signal. When using an arbitrary window w(t), we get the windowed
Ambiguity Function

Az(ν, τ; w) = F
t→ν
{w(t)Kz(t, τ)} , or more verbosely,

Az(ν, τ; w) =
∫

w(t)z
(

t +
τ

2

)
z∗
(

t− τ

2

)
e−j2πνt dt.

(6.1)
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The effect of this window must be taken into account when estimating the ampli-
tude later in this chapter.

6.2 Chirp Rate Estimation
If the input to the AF is a linear chirp, we can expect a linear ridge in the magnitude
of the output. To find this ridge, and especially its slope, we search for the absolute
maxima of the AF along the Doppler (ν) axis.
As the frequency axis is discretized in steps of fs/N Hertz (where fs is the sam-

pling frequency and N is the size of the FFT), we use parabolic interpolation to
allow for a finer frequency resolution.
The maxima theoretically lie on a straight line passing through the origin and

only one time-frequency point would suffice to exactly determine the ridge, but
practically this will not be exactly the case. Therefore we use all maxima and try to
find a straight line which comes closest to them. A meaningful way to do that is to
find a line from which the mean squared difference to the points is minimal. Such
a line fitting procedure is called least square linear regression. Implementational
details to the ridge detection process can be found in appendix b.4.
As we expect that the line passes through the origin, the only output of the

regression process is the slope of the ridge.

6.3 Frequency and Amplitude Estimation
As shown in appendix a.3, the windowed AF of a linear chirp is

Az(ν, τ; w) = a2W(ν− ατ) e j2π f0τ, (6.2)

where W( f ) is the Fourier transform of the window w(t), f0 is the frequency at
time t = 0 (which represents the temporal center of the frame) and α is the chirp
rate (in Hz/s).
The frequency information is only contained in the complex exponential, there-

fore we have to calculate the phase angle Φ(ν, τ) of the AF and extract the fre-
quency from it. Theoretically, we could just calculate the frequency at arbitrary
values of ν and τ by using:

f0 =
Φ(ν, τ)

2πτ
, where Φ(ν, τ) = arg(Az(ν, τ; w)). (6.3)

Although the values of (ν, τ) where the estimator is computed should not matter,
the estimation works best at relatively large magnitude values of the AF. At small
magnitudes phase values can be altered due to numerical errors. This is the reason

40



6.4 Ridge Verification

why we estimate frequencies near the detected ridge (where ατ = ν). Also, in
theory one reading of the phase value would be sufficient, but we obtain the
values along the whole ridge and take the mean average of all of them to make
the estimator consistent.
It also turned out that a more stable estimator can be found by multiplying

equation (6.3) on the preceding page by τ and then differentiate both sides getting

f0 =
1

2π

∂Φ(ν, τ)
∂τ

. (6.4)

Our final frequency estimator is the average value

f0 =
1

2π

∂Φ(ν, τ)
∂τ

∀(ν, τ) where ατ = ν.

Based on equation (6.2) on the facing page an estimator for the amplitude can be
found by

a =

√∣∣Az(ν, τ; w)
∣∣∣∣W(0)

∣∣ , wherever ατ = ν.

Here we do not use a single point of (ν, τ) either, but estimate the amplitude as
the average value of all amplitude values along the detected ridge. We exclude the
amplitude at the origin when estimating the amplitude, because this is the point
where all components contribute to, including eventual noise components in the
signal which we do not want to affect the amplitude estimator of the partial tone.
The frequency and amplitude could of course also be estimated from the an-

alytic signal by the derivation of the phase (divided by 2π) and the magnitude,
respectively. The estimators based on the AF, however, are more stable and more
exact, particularly when the signal is contaminated by strong noise.

6.4 Ridge Verification

The spectral estimation based on the STFT provides a set of partial candidates per
frame. It does not, however, give any information if a partial candidate really
represents a partial tone of the input sound or if it was detected because of noise
or another error. For the presented estimation process to work correctly we must
be sure that the input meets our given restrictions. Only if it is a mono-component
linear chirp, we can successfully use our estimators.
If a filtered frame does not have the necessary properties, the estimators will be

wrong and they will distort the resynthesized sound. Therefore it is indispensable
for us to verify if a given set of estimators is valid or not.
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In case of a perfectly linear chirp the frequency estimator from equation (6.4) on
the previous page has the same value for any (ν, τ) along the ridge. Of course in
practice these values will vary. When the variation is comparatively small, we can
assume that we are dealing with a signal sufficiently close to a linear chirp, if not,
we know that the peak was detected spuriously and can be discarded. To measure
the variation we compute the standard deviation of all frequency estimations along
the ridge.

6.5 Estimation of Initial Phase
As shown in a previous chapter, the instantaneous frequency and amplitude for
each partial tone in each frame is not enough information to resynthesize a signal.
It is unescapable to also estimate the initial phase at the center of each frame. Only
with the correct phase information a partial tone can be subtracted successfully.
Unfortunately, the initial phase information is lost during the calculation of the AF
(see appendix a.2).
We estimate then the initial phase by means of the analytic signal. As shown in

figure 5.1 on page 36 the analytic associate is already computed before the frame
segmentation, and later each partial tone is separated by a band-pass filter, so it is
sufficient to just measure the phase angle of the filtered signal at the center of the
frame.
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Chapter7
Hidden Markov Models

AHidden Markov Model (HMM) is a doubly stochastic process with an underlying
stochastic process that is not observable (that is why it is called “hidden”) but can
be observed through another set of stochastic processes that produce a sequence
of observations. A very good introduction to HMMs is given in [RJ86].
Among the many areas where HMMs are successfully used are speech recogni-
tion, optical character recognition and bioinformatics. In [DGR93] it is shown how
HMMs can be used for the tracking of partials in additive analysis/synthesis.
In this chapter we give a general overview of the HMM technique and in sec-

tion 8.2 we show how HMMs can be used for tracking partial tones.

7.1 Structure

A HMM has N hidden states q1, q2, . . . , qN . At each clock time t a new state is
entered based on a transition probability which depends on both the previous and
the current state. The probability to change to state qj provided that the previous
state was qi is aij. Note that the process can remain in the previous state qk if the
probability akk is greater than zero. All probabilities aij form the transition matrix
A.

q1 q2

a12

a21

start
π1 π2

a11 a22

q1

v1

v2

v3

b1(1)
b1(2)

b1(3)

q2

v1

v2

v3

b2(1)
b2(2)

b2(3)

Figure 7.1: Example for a Hidden Markov Model with N = 2 and M = 3. The left part
shows the two states and their state transition probabilities, the part on the right shows
the output probabilities for each of the states.
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Chapter 7 Hidden Markov Models

The model can generate M observable output symbols v1, v2, . . . , vM. Each state
qj has its own probability distribution bj(k) to emit the output symbol vk. As
there are N states, there are also N probability distributions b1(k), b2(k), . . . , bN(k)
which are combined into an output probability matrix B. We are concentrating on
HMMs with discrete output symbols, but there are also models with continuous
observation variables.
After each transition is made, an observation output symbol Ot is produced

according to the output probability distribution bj of the current state qj. The
whole observation sequence O consists of T observations O1, O2, . . . , OT.
At clock time t = 1, the first state has to be selected. This is done with the initial
state distribution π = {π1, π2, . . . , πN}, where πi is the probability that the model
begins with state qi at time t = 1.
The observation sequence O is generated as follows:

1. Choose an initial state i1, according to the initial state distribution π

2. Set t = 1

3. Output Ot according to bit(k), the symbol probability distribution in state it

4. Choose it+1 according to aitit+1 , the state transition probability distribution
for state it

5. Set t = t + 1; return to step 3 if t < T, otherwise terminate the procedure

A HMM can be described in compact notation by the probabilities λ = (A, B, π)
and by the two numbers M and N. Figure 7.1 on the previous page shows a simple
example for a HMM with two states and three output symbols.

7.2 The Three Problems
A HMM can be used in real world applications solving one (or several) of the
following three problems:

Problem 1 How to compute the probability P(O|λ) that a given output sequence
O is produced by a given HMM λ = (A, B, π). This is called the evaluation
problem. It can also be useful, if two or more competing models are possible,
to find out which one has the highest probability of producing the output
sequence O.

Problem 2 How to choose a state sequence I = i1, i2, . . . , iT which is the most
probable sequence given the output sequence O. In this problem we try to
uncover the hidden state sequence.

The tracking of partial tones falls into this category (see section 8.2).
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7.3 Viterbi Algorithm

Problem 3 How to optimize the model parameters λ = (A, B, π) to get a max-
imum probability P(O|λ) for a given output sequence O. This is called a
training sequence.

Problem 1 can either be solved by directly calculating and summing the probabil-
ities for all possible state sequences (this is normally computationally unfeasible)
or using the so-called forward-backward procedure. Problem 2 can be solved with the
Viterbi algorithm, and problem 3 can be solved with the Baum-Welch method.
For the tracking of partials we are interested only in problem 2, therefore we

will describe the appropriate algorithm (the Viterbi algorithm) in the following
section. A description of the strategies to solve the two other problems can be
found in [RJ86].

7.3 Viterbi Algorithm

The Viterbi algorithm finds for each observation sequence the most probable state
sequence of the HMM that would have produced the observations. As described in
[RJ86], the Viterbi algorithm uses the following recursive process:

Step 1 – Initialization (for 1 ≤ i ≤ N)
For every state qi the probability that it generates the given first output sym-
bol O1 at time t = 1 is calculated. This probability δ1 consists of the product
of the initial probability πi and the output probability bi(O1) for each state qi.

• δ1(i) = πibi(O1)

• Ψ1(i) = 0

Step 2 – Recursion (for 2 ≤ t ≤ T and 1 ≤ j ≤ N)
Starting from the probabilities δt−1 calculated in the previous step, all possi-
ble state transitions and the probabilities that they generate the given output
symbol Ot are evaluated. The maximum probability per state is stored in δt.

• δt(j) = max
1≤i≤N

[δt−1(i)aij] bj(Ot)

To be able to track back the state sequence in step 4, we have to save the state
index from the previous time t− 1 with the maximum probability to change
to the actual state. This index is saved to Ψt for each state.

• Ψt(j) = argmax
1≤i≤N

[δt−1(i)aij]
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Step 3 – Termination
In the set of probabilities of the last time instant t = T, a maximum is found
which shows the probability P∗ of the most probable path taken through the
states. The index i∗T shows the state in which it ended.

• P∗ = max
1≤i≤N

[δT(i)]

• i∗T = argmax
1≤i≤N

[δT(i)]

Step 4 – Path (state sequence) backtracking (for t = T − 1, T − 2, . . . , 1)
To get not only the last state but all the states visited on the optimal path we
have to find our way back through the matrix Ψ.

• i∗t = Ψt+1(i∗t+1)

The resulting state sequence i∗1 , i∗2 , . . . , i∗T solves problem 2.

46



Chapter8
Tracking of Partials

Once the parameters frequency, amplitude, initial phase and chirp rate have been
estimated for each partial candidate in each analysis frame, we try to find possible
trajectories that partial tones could have taken during the progression of the orig-
inal audio signal. The grouping of partials into trajectories has two interests, both
of them making the additive analysis/synthesis scheme as powerful and effective
as it is.
The first reason is to reduce the number of partial candidates. In general, not

all partial candidates can be meaningfully assigned to valid partial trajectories.
Those that cannot are not used for synthesis and can be discarded. Hence memory
requirements and computational complexity are reduced. Additionally, one may
want to use only trajectories with a given minimum length for the same reasons.
The second reason why partials are grouped into trajectories is because the

parameters are interpolated along the trajectories during synthesis. This way we
store only one value of frequency, amplitude and phase per frame, but we are still
able to reconstruct a continuous evolution of the parameters at sampling rate.

8.1 “Straightforward” Approach

In section 1.1 we presented the peak continuation algorithm used by McAulay and
Quatieri [MQ86]. This procedure compares the frequencies of partial candidates
of adjacent frames and selects those partials as belonging to the same trajectory
which have the smallest frequency difference. Additionally, a threshold is used
that limits the maximum frequency change a trajectory can incorporate from one
frame to the next.
An improvement of this technique was presented in [Kos05]. It uses the chirp

rate, estimated by means of the Ambiguity Function (AF), and the frequency of each
partial candidate to detect if two partial candidates belong to the same trajectory
or not. This has the advantage that if there are several partial candidates very close
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Figure 8.1: Example where the tracking method used in [Kos05] does not lead to the
correct result. The figure to the very right has the smallest frequency difference (∆[2, 4])
and therefore the partial candidates 2 and 4 would be wrongly assigned to the same
trajectory.

in frequency, they can still be correctly assigned to their respective trajectories if
their chirp rates are distinct enough.
The method described in [Kos05] calculates the expected frequencies midway
between two frames k and k + 1:

f1[i, k] = fi,k +
T
2

αi,k and f2[j, k] = f j,k+1 −
T
2

αj,k+1,

where f1[i, k] is the expected frequency between frames k and k + 1 based on the
ith frequency and chirp rate of the kth frame, f2[j, k] is the expected frequency at
the same time but based on the jth frequency and chirp rate of the (k + 1)th frame.
The indices i and j are limited to 1 ≤ i ≤ M and 1 ≤ j ≤ N with M and N being
the number of partial candidates in the kth and (k + 1)th frame, respectively.
Now f1 and f2 are compared and the pairs with the smallest frequency differ-
ence

∆k[i, j] =
∣∣ f1[i, k]− f2[j, k]

∣∣ (8.1)

are assigned to corresponding trajectories. For further details see [Kos05].
This algorithm is without doubt an improvement over the one used by McAulay

and Quatieri [MQ86], but it still can give wrong results, especially when partials
are crossing. Figure 8.1 shows a situation of partial candidates and their chirp
rates where the algorithm gives the wrong result. Clearly partials 1 and 4 belong
to the same trajectory and partials 2 and 3 belong to a different one. The smallest
frequency difference, regarding to equation (8.1), is ∆[2, 4], which would mean
that partial 2 and 4 would be assigned to one trajectory and partial 1 and 3 to
another one.
In this thesis we introduce a slightly modified method for the tracking of par-

tials, which should avoid the aforementioned shortcoming. We do not use the
difference between the predicted frequencies between two frames but their differ-
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Figure 8.2: Example for the tracking method proposed in this thesis. The two figures in
the middle have the smallest frequency differences (∆[2, 3] and ∆[1, 4]) and therefore the
partial candidates are assigned to the correct trajectories.

ence to the mean frequency of a pair of partial candidates. The new frequency
distances are

∆k[i, j] = max
(∣∣∣∣ f1[i, k]−

fi,k + f j,k+1

2

∣∣∣∣ , ∣∣∣∣ f2[i, k]−
fi,k + f j,k+1

2

∣∣∣∣). (8.2)

Using these frequency differences, we can find the corresponding pairs of partial
candidates even if their trajectories are crossing. Figure 8.2 shows an example for
crossing trajectories (the same as in figure 8.1 on the preceding page), where, using
the frequency distances from equation (8.2), the partial candidates are assigned to
the correct trajectories.
The matching mechanism for tracking the partials from frame k to frame k + 1
finds the smallest ∆k[i, j] considering all pairs of (i, j). If the smallest distance,
∆k[i1, j1], is below a given threshold, the partial candidates with the frequencies
fi1,k and f j1,k+1 are assigned to the same trajectory. Then the process is repeated by
finding the smallest ∆k[i, j] considering all pairs of (i, j) except the ones containing
i1 or j1. The algorithm continues like that until the smallest difference is bigger
than the frequency threshold. All remaining partial candidates are discarded.

8.2 Using A Hidden Markov Model
The most significant advantage of using a Hidden Markov Model (HMM) for the
tracking of partials compared to using the other presented techniques is, that the
HMM based approach optimizes the trajectories globally, i. e. taking the whole sig-
nal into consideration, and not only optimizes locally from frame to frame. The
most significant difficulty is, that, as shown below, several free parameters (at least
five) have to be manipulated to tune the performance.
In the HMM used for partial tracking [DGR93], the observations are only the num-

bers of spectral peaks on each side of each frame transition. The states represent
the links (i. e. the partials) that connect these peaks. The frequency, amplitude and
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chirp rate information is used to compute the transition probabilities between the
states.

One important difference of this HMM when compared to the type of HMM de-
scribed in [RJ86] is the fact that the state transition probabilities evolve over time,
since they are obtained from the parameters (frequency, amplitude and chirp rate)
of the partial candidates.

The HMM described in [DGR93] uses the following notation: At time k, there are
hk peaks Pk[j], with 0 ≤ j < hk, ordered by growing frequency. The goal is to
assign an index Ik[j] to each peak Pk[j]. If a peak does not belong to any trajectory,
it is associated with the null index Ik[j] = 0.

At each time k, a state Sk is defined by an ordered pair of vectors (Ik−1, Ik) and
the observation is defined by an ordered pair of integers (hk−1, hk). As mentioned
above, the frequency and amplitude parameters are not taken as observations. The
output probabilities are either one or zero. The output probability of observation
of (m, n) is always one for the states defined by ordered pairs of vectors of size m
and n, and it is zero for all others.

To calculate the most probable trajectories, the Viterbi algorithm (see section 7.3)
is used. From the optimal sequence of states Sk we derive the corresponding
sequence of vectors Ik.

The crucial part of the partial tracking algorithm is the calculation of the state
transition probabilities. For the transition from a state Sk−1 into a state Sk, three
frames of peaks are concerned, corresponding to times k− 2, k− 1 and k, as the
states Sk−1 and Sk are defined by the vectors Ik−2, Ik−1 and Ik. Let fk(j) and ak(j)
be the frequency and amplitude of the peak Pk[j].

For each peak Pk[j], 0 ≤ j < hk, we evaluate a matching criterion θk(j) which
depends on two other peaks Pk−2[t] and Pk−1[r], such that Ik−2(t) = Ik−1(r) = Ik(j).
This matching criterion is defined by

θk(j) =

{
θ
(1)
k (j) if Ik(j) > 0

θ
(2)
k (j) if Ik(j) = 0

(8.3a)

with

θ
(1)
k (j) = exp

{
− [∆ fk(j, r)− ∆ fk−1(r, t)]2

σ2
f

− [∆ak(j, r)− ∆ak−1(r, t)]2

a2
k(j)σ2

a

}
(8.3b)
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and

θ
(2)
k (j) =

(
1− (1− µ) exp

{
− [∆ fk(j, r)− ∆ fk−1(r, t)]2

σ2
f n

})
×(

1− (1− µ) exp

{
− [∆ak(j, r)− ∆ak−1(r, t)]2

a2
k(j)σ2

an

})
, (8.3c)

where ∆ak(j, r) = ak(j)− ak−1(r), fk(j, r) = fk(j)− fk−1(r) and µ, σf , σa, σf n and
σan are free parameters which may vary in time.
Let the states currently considered at times k− 1 and k be Sk−1 = x and Sk = y,
respectively. To obtain the state transition probabilities, we calculate for each frame
k a global score gxy(k) over all peaks j:

gxy(k) =
hk−1∏
j=0

θk(j).

Since the sum over all probabilities from one state x to all other states Sk must
be one, we have to normalize the global scores gxy(k) to get the state transition
probabilities

Axy(k) =
gxy(k)∑

Sk

gxSk(k)
.

With the state transition probabilities Axy(k) and by means of the Viterbi algo-
rithm, the sequence of the state vectors Ik can be obtained.
“Births” and “deaths” are handled with a sliding analysis window. Within an

analysis window the number of trajectories is constant. The minimum length of
trajectories is set by the length of the analysis window. As this analysis window is
displaced only one frame at a time, “births” and “deaths” can still be detected at
each frame.
This analysis window allows a trade-off between computation time and global

optimization of partial tracks. Ideally, the whole duration of the input sound
would be analyzed at one time, to globally optimize the trajectories. However, for
long signals, the computation time would be too long. By using a sliding analysis
window, we can gain computation efficiency by sacrificing the global optimization
and optimize only within the window.

Including the Chirp Rate
Here we present two different ways of how to include the chirp rate into the calcu-
lation of the state transition probabilities. Both are based on the matching criterion
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from [DGR93] shown in equation (8.3) on the previous page. The success of the
matching criteria heavily depends on the setting of the numerous parameters.
One way to include the chirp rate is to add another term which evaluates the

continuity of the slopes of the chirp rates analog to the frequencies and amplitudes
in equation (8.3). In this case the new matching criterion is

θ
(1)
k (j) = exp

{
− [∆ fk(j, r)− ∆ fk−1(r, t)]2

σ2
f

}
×

exp

{
− [∆ak(j, r)− ∆ak−1(r, t)]2

a2
k(j)σ2

a

}
×

exp
{
− [∆αk(j, r)− ∆αk−1(r, t)]2

σ2
α

}
(8.4b)

and

θ
(2)
k (j) =

(
1− (1− µ) exp

{
− [∆ fk(j, r)− ∆ fk−1(r, t)]2

σ2
f n

})
×(

1− (1− µ) exp

{
− [∆ak(j, r)− ∆ak−1(r, t)]2

a2
k(j)σ2

an

})
×(

1− (1− µ) exp
{
− [∆αk(j, r)− ∆αk−1(r, t)]2

σ2
αn

})
, (8.4c)

where αk(j, r) = αk(j)− αk−1(r), αk(j) is the jth partial in the kth frame and σα and
σαn are two additional free parameters which may vary in time.
The second way to incorporate the chirp rate does not use the continuity of the
slopes of the parameters but the continuity of the parameters themselves. Because
the slope of the frequency holds ideally the same information as the chirp rate,
we use only the difference of the frequencies from one frame to the next instead
of the slope of the frequencies. The difference of the chirp rates is included in a
separate term. This way, the matching criterion becomes

θ
(1)
k (j) = exp

{
− [ fk(j)− fk−1(r)]2

σ2
f

− [ak(j)− ak−1(r)]2

a2
k(j)σ2

a
− [αk(j)− αk−1(r)]2

σ2
α

}
(8.5b)
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and

θ
(2)
k (j) =

(
1− (1− µ) exp

{
− [ fk(j)− fk−1(r)]2

σ2
f n

})
×(

1− (1− µ) exp

{
− [ak(j)− ak−1(r)]2

a2
k(j)σ2

an

})
×(

1− (1− µ) exp
{
− [αk(j)− αk−1(r)]2

σ2
αn

})
. (8.5c)
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Chapter9
Results

A prototype application was implemented using the concepts shown in chapters
5 and 6 for finding partial candidates and the estimation of the parameters and
the algorithm for the tracking of partial candidates presented in section 8.1. This
application was tested with sound recordings and with artificial signals.

9.1 Real Recordings
The sound recordings used were the ones from the Sound Description Interchange
Format (SDIF) comparison session [WBF+00] at the International Computer Music
Conference in the year 2000. These recordings are available for free download (see
references).
We compared the two analysis methods, the one based on the Short Time Fourier

Transform (STFT) and the one based on the Ambiguity Function (AF), by subtract-
ing the resynthesized sinusoidal representations from the original signal. If one of
these residuals has less energy, that means the corresponding algorithm extracted
more energy from the sinusoidal part of the sound, thus giving a more accurate
representation.
Table 9.1 on the following page shows the amount of attenuation of the resid-

ual compared to the original signal. The examples listed first consist of single
voiced instrumental phrases. These result in a smaller residual when using the AF
analysis. The last two, which have more transient and noisy parts yield a better
result using the STFT based analysis. In both cases the analysis was done with a
maximum of 25 partials per frame.

9.2 Artificial Signals
The errors of the estimators were evaluated with a single linear chirp contaminated
by Gaussian white noise. Tables 9.2 to 9.5 show the estimation errors averaged
over 200 frames. The frequency at the center of the frame was 5000Hz, the chirp
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STFT based AF based
Soundfile analysis (dB) analysis (dB)

leonard.trim −8.1 −12.8
harris.trim −9.9 −12.4
suling-phrase −17.0 −19.4
tatum −8.1 −9.6

berimbao −8.0 −7.2
shaku −19.7 −17.2

Table 9.1: Power of the residual signals compared to the original signal

Figure 9.1: AF of a linear chirp plus
white noise. The SNR with respect to
a 100Hz band is 39 dB
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rate was 2000Hz/s. Figures 9.1 to 9.4 show the AFs for different Signal to Noise
Ratios (SNRs). The SNRwas calculated with respect to a 100Hz frequency band. Up
to a SNR of 21dB all the estimators work reasonably well. In figure 9.4 on page 60
the ridge caused by the chirp is still visible and detectable. The green crosses
show the detected maxima in the magnitude of the AF and the blue dashed line
represents the straight line which was fitted to the maxima by linear regression.
According to table 9.5 on page 58, at a SNR smaller than 21dB the chirp rate has
very big errors and is not reliable any more.
To successfully detect crossing partials, the frequencies of the frames next to

the crossing have to be sufficiently well separated. The STFT used for spectral
analysis can only yield two separate maxima if there is at least one bin between
them with lower magnitude. When using a sampling rate of 44.1kHz and an
STFT length of 2048 bins, the two frequency components have to be more than
22Hz apart to detect them as two separate peaks. That means, to analyze, for
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AF STFT

SNR mean std. dev. max. abs. mean std. dev. max. abs.
(dB) error (Hz) (Hz) error (Hz) error (Hz) (Hz) error (Hz)

21 −0.04 0.6 1.9 0.2 0.9 2.4
18 −0.03 0.8 2.1 0.3 1.4 3.9
15 0.2 3.3 21.7 0.4 1.9 4.4
12 −0.5 4.9 37.9 0.3 2.9 8.0
9 2.3 19.0 92.3 0.2 4.3 16.0
6 1.2 46.9 187.6 2.9 53.2 343.2
3 −5.1 67.1 185.6 4.4 73.4 350.3

Table 9.2: Average errors of the frequency estimators for a linear chirp in presence of
white Gaussian noise. The SNR is given relative to a 100Hz band.

AF STFT

SNR mean std. dev. max. abs. mean std. dev. max. abs.
(dB) error (%) (%) error (%) error (%) (%) error (%)

21 0.55 3.8 16.2 12.4 3.7 28.1
18 0.63 5.6 15.0 11.5 5.4 29.8
15 0.1 7.3 26.3 11.3 6.5 28.5
12 0.1 11.0 39.8 10.4 9.8 33.0
9 −3.3 15.8 46.5 7.6 14.4 37.8
6 −5.6 16.1 44.3 3.7 14.8 38.3
3 −13.1 16.5 66.0 −15.3 22.0 62.3

Table 9.3: Average errors of the amplitude estimators for a linear chirp in presence of
white Gaussian noise. The SNR is given relative to a 100Hz band.
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AF STFT

SNR mean err. std. dev. max. abs. mean err. std. dev. max. abs.
(dB) (π rad) (π rad) err. (π rad) (π rad) (π rad) err. (π rad)

21 −0.01 0.06 0.17 −0.11 0.01 0.15
18 −0.01 0.1 0.26 −0.11 0.02 0.15
15 −0.01 0.14 0.42 −0.11 0.03 0.2
12 −0.03 0.24 0.94 −0.11 0.04 0.21
9 0.01 0.29 0.91 −0.1 0.05 0.26
6 0.02 0.37 0.98 −0.08 0.13 0.53
3 −0.06 0.47 0.99 −0.09 0.26 0.92

Table 9.4: Average errors of the initial phase estimators for a linear chirp in presence of
white Gaussian noise. The SNR is given relative to a 100Hz band.

AF

SNR mean std. dev. max. abs.
(dB) error (Hz/s) (Hz/s) error (Hz/s)

21 −3 210 689
18 87 469 2459
15 24 719 4883
12 127 1129 4708
9 422 2605 10769

Table 9.5: Average errors of the chirp rate estimators for a linear chirp in presence of
white Gaussian noise. The SNR is given relative to a 100Hz band.
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Figure 9.2: AF of a linear chirp plus
white noise. The SNR with respect to
a 100Hz band is 33 dB

Figure 9.3: AF of a linear chirp plus
white noise. The SNR with respect to
a 100Hz band is 27 dB
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example, two chirps with chirp rates of 2000Hz/s and −2000Hz/s, respectively,
the center of the frame has to be more than 250 samples away from the point
of crossing, which means on the other hand that the hopsize has to be at least
500 samples. A tradeoff has to be found between minimum detected chirp rate
difference, STFT length, sampling frequency and hopsize. Any attempt to separate
partials which are closer in frequency to each other, results in some sort of reduced
time resolution.
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Figure 9.4: AF of a linear chirp plus
white noise. The SNR with respect to
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Chapter10
Conclusions and Future Work

We presented a method for parameter estimation which uses the Ambiguity Func-
tion (AF), a bilinear time-frequency distribution, to improve the estimated val-
ues for frequency, amplitude and initial phase compared to the more traditional
method using Short Time Fourier Transforms (STFTs). Comparing the two methods
using artificial signals with known parameters showed that the AF based ampli-
tude estimators are significantly better and the frequency estimators are most of
the times slightly better than the STFT based estimators. The AF also provides an
estimator for the chirp rate, which the STFT does not.
Two different possibilities to find trajectories of partials using the estimated pa-

rameters were presented thereafter. One based on the work in [MQ86] and [Kos05],
the other one based on a Hidden Markov Model (HMM).

Crossing Trajectories
The peak tracking algorithm used in [Kos05] was enhanced to handle eventually
crossing partial tones in a better way. However, as mentioned earlier, the problem
with crossing partials is that the components can not be separated sufficiently well
before AF processing. One future task could be to examine, if two (or even more)
partials at the same time can be detected in the output of the AF. In this case, care
has to be taken of the cross terms.

Linear Chirps
In this thesis we expected the partial tones to be linear chirps (within a given
frame). The estimators for frequency, amplitude and chirp rate were based on this
assumption. One could try to find estimators for partials with less restrictions, for
example assume a quadratic chirp or an exponential chirp.

Constant Amplitude
We were estimating amplitude in a way which assumed constant amplitude per
frame. More flexibility would be reached, if one would allow amplitude changes
within a frame (for example, a linear amplitude evolution).
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Chapter 10 Conclusions and Future Work

Synthesis
The chirp rate estimated by means of the AF was used to improve the tracking of
partial tone trajectories. It could also be used in the synthesis process. As shown
in [GMdM+

03], this could significantly improve the quality of synthesis.

Computational Efficiency
Not much effort has been made to increase the computational efficiency of the
implementation. One way to improve efficiency tremendously would be to use
undersampling after the band-pass filtering. As the bandwidth is reduced by
the band-pass filters, the sampling rate can also be reduced without losing any
information. With the reduced sampling rate the number of points calculated for
the AF would be reduced. As the AF is two-dimensional this would increase the
performance significantly.
Improvements in performance could also be made by reimplementing the pro-

grams in a lower level programming language thanMatlab®. In the current state
of the implementation, however, using Matlab® is a good choice, because it en-
courages rapid prototyping and significant changes in algorithms can be realized
faster than in a low level language.
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Appendixa
Some Calculations

In this section of the appendix we do a few calculations which are too long to
make it into the main part of the thesis. Nonetheless we did not want to shorten
them to make it easy to reproduce the calculations.

a.1 A Linear Chirp
An analytic sinusoidal oscillation with time-varying frequency can be defined as

z(t) = a e jφ(t),

with a being its (in this case constant) amplitude and φ(t) being its instantaneous
phase. The instantaneous frequency is proportional to the derivative of the instan-
taneous phase:

f (t) =
1

2π

dφ

dt
.

A linear chirp features a linear frequency variation defined by f0 (the instanta-
neous frequency at time t = 0) and the chirp rate α = ∆ f/∆t, which denotes the
frequency difference per unit time. Hence, the instantaneous frequency of a linear
chirp can be written as

f (t) = f0 + αt.

We get the instantaneous phase φ(t) by integrating the instantaneous frequency
from a given time ts to t (the constant φs = φ(ts) denotes the instantaneous phase
at time ts):

φ(t) = 2π

t∫
ts

f (ξ) dξ + φs = 2π

t∫
ts

( f0 + αξ) dξ + φs

= 2π

[
f0ξ + α

ξ2

2

]t

ξ=ts

+ φs = 2π

(
f0t + α

t2

2
− f0ts − α

t2
s
2

)
+ φs.
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We can combine the constant phase contributions to φ0 = φs − 2π f0ts − παt2
s ,

where φ0 is the initial phase, i. e. the instantaneous phase at time t = 0. Using this,
a linear chirp can be written as

z(t) = a e j(2π f0t+παt2+φ0). (a.1)

a.2 The Ambiguity Function of a Linear Chirp

Inserting the linear chirp signal z(t) from equation (a.1) into the definition of the
Ambiguity Function (AF) in equation (4.6) on page 30 gives

Az(ν, τ) =
∫

a e j
“

2π f0(t+ τ
2 )+πα(t+ τ

2 )
2
+φ0

”
a e−j

“
2π f0(t− τ

2 )+πα(t− τ
2 )

2
+φ0

”
e−j2πνt dt.

When we add the exponents, many terms cancel each other out – including the
constant phase terms – resulting in

Az(ν, τ) = a2 e j2π f0τ

∫
e j2π(ατ−ν)t dt. (a.2)

This shows clearly that any initial phase information is lost when calculating the
AF. Thus we have to find other means of determining the initial phase in the
analysis process. We use the analytic signal for that task (see section 6.5).
Solving the integral in the previous equation produces an expression for the AF

of a linear chirp:
Az(ν, τ) = a2 δ(ν− ατ) e j2π f0τ, (a.3)

where δ( f ) represents the Dirac distribution. The magnitude of this expression has
the value a2 at all points where ατ = ν, i. e. on a straight line through the origin
of the ambiguity plane. In all other cases the magnitude is zero. The phase is
independent of ν and linearly related to τ.
In practice, however, we are never dealing with infinite duration signals. Thus

we have to impose finite limits to the integral in equation (a.2). When we use an
integration interval of T and hence set the limits to −T/2 and T/2 this entails that
the signal z(t) must be defined for all t in the range −(T/2 + τ/2) < t < (T/2 + τ/2).
Solving the integral with the new limits leads to

Az(ν, τ) =
a2 e j2π f0τ

j2π(ατ − ν)

[
e j2πt(ατ−ν)

]T/2

t=−T/2

=
a2 e j2π f0τ

j2π(ατ − ν)

(
e jπT(ατ−ν)− e−jπT(ατ−ν)

)
.
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a.3 The Windowed Ambiguity Function of a Linear Chirp

Knowing that e jx − e−jx

2j = sin x, we get

Az(ν, τ) = a2 sin(πT(ατ − ν))
π(ατ − ν)

e j2π f0τ .

Finally, using the sinus cardinalis, defined by sinc x = sin x
x , the AF of a linear chirp

becomes
Az(ν, τ) = a2T sinc(πT(ατ − ν)) e j2π f0τ . (a.4)

As in equation (a.3) on the facing page, the magnitude of this expression has its
maximum where ατ = ν. The temporal windowing only turns the Dirac impulses
into two-dimensional sinc functions.
In this case an estimator for the amplitude is easily found by taking the square
root of the magnitude, divided by T, at any point on the ridge:

a =

√
|Az(ν, τ)|

T
, wherever ατ = ν. (a.5)

The phase of the AF, however, is not affected at all by the time restriction.

a.3 The Windowed Ambiguity Function of a Linear Chirp
This time we insert the linear chirp signal from equation (a.1) on the preceding
page into the definition of the windowed AF, shown in equation (6.1) on page 39.
Simplifying analogously to section a.2 yields

Az(ν, τ; w) = a2 e j2π f0τ

∫
w(t) e j2π(ατ−ν)t dt.

In this equation, the integral over the window and the exponential function can
be seen as the Fourier transform of the window w(t)

W(η) = F
t→η
{w(t)} =

∫
w(t) e−j2πηt dt,

with the frequency η substituted by the term (ν − ατ). With this definition the
windowed AF of a linear chirp becomes

Az(ν, τ; w) = a2W(ν− ατ) e j2π f0τ. (a.6)

Compared with equation (a.4) this shows clearly that the time restriction to the
interval T means applying a rectangular window, whose Fourier transform has
the shape of a sinc function.
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Equation (a.6) on the preceding page provides us with the following estimator
for the amplitude:

a =

√∣∣Az(ν, τ; w)
∣∣∣∣W(0)

∣∣ , wherever ατ = ν. (a.7)

When using digital signals, W(0) can be easily obtained by summing all samples
of the window w(t) without the need to actually perform the discrete Fourier
transform.
As we already saw in the previous chapter, the phase of the AF is independent
of the window.
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Appendixb
Implementational Details

In the main part of this thesis most of the presented concepts use continuous
variables. When implementing them in software, however, we must use discrete
variables and therefore we have to adapt some of the formulations. Sometimes
when discretizing continuous variables, problems appear which did not exist in
the continuous domain. Those adaptations and problems (with solutions) are
shown here. As they are not necessary for the general understanding but only for
the understanding of the actual software implementation, they are presented in
the appendix.

b.1 Hilbert Transform/Analytic Signal

The Hilbert transform, which provides the analytic signal, has an infinite impulse
response and cannot be implemented in discrete time without loss of information.
There is no perfect implementation, only approximations.
As shown in chapter 3, the analytic signal has a one-sided Fourier transform,
i. e. there are no negative frequencies. To approximate the analytic signal, one can
calculate the Fast Fourier Transform (FFT) of the input sequence, replace those FFT
coefficients which correspond to negative frequencies with zeros and calculate the
inverse FFT of the result. In detail, we use a four-step algorithm [Mar99]:

1. Calculate the FFT of the input sequence, storing the result in a vector y. Before
transforming, zero pad the input sequence so its length N is the closest
power of two, if necessary. This ensures the most efficient FFT computation.

2. Create a vector h whose elements h(i) have the values

• 1 for i = 1, N/2 + 1,

• 2 for i = 2, 3, . . . , N/2,

• 0 for i = N/2 + 2, . . . , N.
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3. Calculate the element-wise product of y and h.

4. Calculate the inverse FFT of the sequence obtained in step 3 and return the
first N elements of the result.

b.2 Filter Design
It is very important that the band-pass filters used to isolate the partial tones of
each frame do not change the relative phase of the partials, because only if the
phase of the isolated partial tones is the same as the phase of the partial tones
within the original sound (and if the phase is estimated correctly), the resyn-
thesized sound can be subtracted successfully and all tonal components can be
removed when calculating the residual signal. We use linear phase filters (the
phase response of the filter is a linear function of frequency) with a Finite Im-
pulse Response (FIR), because they satisfy the aforementioned requirements.
There are exactly four types of linear phase filters. The type of the filter is
determined by the type of symmetry and whether the number of samples is even
or odd. Each type of linear phase filter has specific phase and magnitude response
characteristics that help determine their applicability. For example types 3 and 4,
which both have odd impulse response symmetry, introduce a 90° degree phase
shift to the signal they filter. A type 2 linear phase filter (even impulse response
symmetry and even number of coefficients) always has a magnitude response of
zero at the Nyquist frequency. This study will use type 1 linear phase filters,
which have even symmetry and an odd number of samples. Type 1 FIR filters
have a benefit that no other type of FIR filters possess in that they can be used
to implement any arbitrary magnitude response and have uniform phase delay.
The phase delay for type 1 linear phase filters is fixed for all frequencies. For a N
sample filter the phase delay is N−1

2 samples. This study is not performed in real
time, thus arbitrarily long filters can be created without concern for the perceptual
consequence of a large delay; the delays can simply be subtracted from the filtered
signal.
An efficient algorithm for the construction of a type 1 linear phase filter with an

arbitrary magnitude response is presented in [Sal98]. In this method, the response
of the filter is constructed in the discrete frequency domain, and the impulse re-
sponse is computed by means of an inverse FFT.
Because the magnitude and phase response are symmetric, they need only to

be defined for half the sequence, since the second half of the response can be
determined from the first. This is shown for the magnitude response A[k] as

A[k] =

{
A[k] for 0 ≤ k ≤ N−1

2

A[N − k] for N+1
2 ≤ k ≤ N − 1
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and the phase θ[k] as

θ[k] =

{
−πk N−1

N for 0 ≤ k ≤ N−1
2

π(N − k) N−1
N for N+1

2 ≤ k ≤ N − 1.

The complex frequency response is defined in the frequency domain as

H[k] = |H[k]| e jθ[k],

from which the impulse response of the filter can be computed by taking the
inverse Fourier transform.

b.3 Discrete Ambiguity Function

We cannot discretize equation (4.6) on page 30 by simply replacing the continuous
variables t, τ and ν by discrete variables because the equation contains the term τ

2 .
But when we rewrite the expression, replacing τ

2 with θ, we get

Az(ν, θ) =
∫

z(t + θ) z∗(t− θ) e−j2πνt dt, (b.1)

which can now easily be discretized. However, this modification means essentially
an undersampling of the variable τ (which is a time variable) and the consequence
is that the allowed bandwidth of the signal z[n] is limited to half the Nyquist fre-
quency. The maximum allowed frequency which avoids aliasing in the ambiguity
domain is fs/4 (where fs is the sampling frequency). See [Coh95] or [Boa03] for a
proof.
In our case we can fortunately still use signals x[n] with frequencies up to the
Nyquist frequency fs/2 when we transform it to z[n], the analytic associate of x[n],
which has only half the bandwidth (see section 3.3).
When discretizing equation (b.1), we have to replace the infinite integral with a
finite sum. When we calculate the sum over N time samples, use k for the discrete
counterpart of ν, m for the discrete θ and n for the discrete time variable, we get

Az[k, m] =
∑
|n|< N

2

z[n + m] z∗[n−m] e−j2πkn/N . (b.2)

To calculate Az[k, m] for arbitrary k and m, we need the values of z[n] f0r −N
2 −

m ≤ n ≤ N
2 + m. Equation (b.2) can be written more compactly as

Az[k, m] = DFT
n→k
{z[n + m] z∗[n−m]} ,
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where DFT {x[n]} stands for the discrete Fourier transform of x[n], defined by

DFT
n→k
{x[n]} =

N−1∑
n=0

x[n] e−j2πkn/N .

Analogously, the discrete windowed AF of z[n], defined for continuous variables in
equation (6.1) on page 39, can be written as

Az[k, m; w] = DFT
n→k
{w[n]z[n + m] z∗[n−m]} , (b.3)

where w[n] is the discrete window function.

b.4 Ridge Detection
To obtain the chirp rate estimator for a filtered frame, we search for the abso-
lute maxima of Az[k, m; w], defined in equation (b.3), along the frequency shift (k)
dimension.

Parabolic Interpolation
In the discrete domain, when using a FFT-length of N to calculate the Discrete
Fourier Transform (DFT) in Az[k, m; w], the frequency shift values are limited to
ν = k fs

N Hz, for k from 0 to N − 1. To remove this restriction on the set of pos-
sible Doppler values and extend the range to any floating point number, we use
parabolic interpolation [KM02].
Parabolic interpolation is derived from the notion that a local maximum of a

Fourier transform resembles a parabola when viewed in a logarithmic scale. This
is also true for the Ambiguity Function (AF) along the k-dimension, since it is the
Fourier transform of the Instantaneous Autocorrelation Function (IAF) as shown
in equation (4.7) on page 30.
To calculate the parabolic interpolation, three points have to be known: The
sample of the local maximum at kmax with the value A(kmax), the preceding sample
at kmax − 1 with the value A(kmax − 1) and the one at kmax + 1 with the value
A(kmax + 1). To simplify the equations, we introduce

l = k− kmax. (b.4)

This way, the new indices l have the values −1, 0, and +1 and we call the three
corresponding function values A−1, A0 and A1, respectively. The parameters a, b
and c of the parabolic function

A = a + bl + cl2 (b.5)
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b.4 Ridge Detection

have to be determined in a way that the equation holds true for all of the three
given points. When we insert the known pairs (−1, A−1), (0, A0) and (1, A1) into
equation (b.5), we get

a = A0, b =
A1 − A−1

2
and c =

A−1 + A1 − 2A0

2
.

We can now find a maximum of equation (b.5) on the preceding page by differen-
tiating it and setting it to zero:

dA
dl

= b + 2cl = 0.

Consequently, the maximum is at linterp = − b
2c . Using the three given A-values,

this can be written as
linterp =

1
2

A−1 − A1

A−1 + A1 − 2A0
.

To get the position of the maximum found by interpolation we just have to undo
the change of the variable from k to l by

kinterp = linterp + kmax,

and finally, the value of the maximum at kinterp is

A(kinterp) = A0 −
linterp

4
(A−1 − A1).

Zero Padding of the FFT in the AF
If z[n] is a linear chirp, the magnitude of the discrete windowed AF is (compare
equation (a.6) on page 67):

|Az[k, m; w]| =
∣∣∣∣a2 W

[
k− α2N

f 2
s

m
]∣∣∣∣ .

If, for example, w[n] is a rectangular window of length T then the above expression
in the k-dimension (on which we search the maxima) has the shape of a sinc.
The width of the main lobe depends on the length T of the window w[n]. If
T = N, the main lobe is only two samples wide, which means that only two of
the three samples needed for parabolic interpolation are actually inside the main
lobe, leading to a wrong result of the interpolation. This problem can be fixed by
zero-padding the signal before the FFT, which results in N > T.
Alternatively (or additionally), a window with a broader main lobe in its Fourier

transform can be chosen. In either case, the three samples used for the parabolic
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interpolation should be well inside the main lobe of the Fourier transformW[k] of
the window w[n].

Linear Regression
Theoretically, all global maxima along the k-dimension of the AF of a linear chirp
lie on a straight line. To estimate the chirp rate, it would then be sufficient to use
the maximal k for an arbitrary value of m.
Practically, this is not the case. We have to find a straight line which is as close as

possible to the maxima for all m. This process is called linear regression. We search
for a straight line k = am + b which is closest to the extracted maxima (mi, ki) in
the least square sense. This means, that the sum of the squared differences from
the points to the line is minimal.
We assume that the line passes through the origin of the ambiguity plane and

therefore its equation simplifies to k = am. The parameter a is proportional to the
chirp rate α. The sum of the squared differences is∑

i

∆2
i =

∑
i

(ami − ki)2.

Differentiating this with respect to a and setting it to zero leads to

2
∑

i

(ami − ki)mi = 0 and

a =
∑

miki∑
m2

i
.

We can scale a to obtain the estimated chirp rate α in Hz/s:

α =
∆ f
∆t

= a
f 2
s

2N
.
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Spectral Modeling Synthesis

In [Kos05] a software called SMSTools was used to obtain frequencies for the band-
pass filters which ideally extract single isolated partials from a frame. SMSTools is
freely available from the CLAM homepage1 at Pompeu Fabra University (UPF). It
is an implementation of the Spectral Modeling Synthesis (SMS) concept2.

Spectral Modeling Synthesis
SMS is a variant of the Deterministic + Stochastic (D+S) model presented in sec-
tion 1.2. It uses Short Time Fourier Transforms (STFTs) for spectral estimation and
it also uses STFTs for the representation of the residual part. SMS is described in
[SBHL97].

SMSTools writes the data for the sinusoidal trajectories (consisting of frequency,
amplitude and initial phase values for each partial tone in each frame) and the
residual part into data files using the Sound Description Interchange Format (SDIF).

Sound Description Interchange Format
The SDIF was developed beginning from 1995 at the Center for New Music and
Audio Technologies (CNMAT)3 in Berkeley and at the Institut de Recherche et Co-
ordination Acoustique/Musique (IRCAM)4 in Paris. Details about the file format
can be found in [WCF+99].

sdif-matlab
SDIF files can be loaded within Matlab® using the sdif-matlab5 import functions.

So far, so good
In this thesis, however, we decided to implement the spectral estimation within
the Matlab® application, so that there is no need for data exchange with an ex-

1http://clam.iua.upf.edu/
2http://www.iua.upf.edu/sms/
3http://www.cnmat.berkeley.edu/SDIF/
4http://www.ircam.fr/sdif/
5http://recherche.ircam.fr/equipes/analyse-synthese/sdif/download/sdif-matlab/
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Appendix c Spectral Modeling Synthesis

ternal application. The spectral estimation procedure employed in our prototype
application is described in chapter 5.
Another reason not to use SMSTools anymore was, because it performs a par-

tial tracking and the calculation of the residual part, while we only need a set
of candidate frequencies per frame to control the band-pass filter bank. This fre-
quency information had to be extracted from the representation of the trajectories.
It turned out to be much more straightforward to implement the frequency esti-
mation within the prototype application.
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List of Abbreviations

AF Ambiguity Function

CNMAT Center for New Music and Audio Technologies (Berkeley, USA)

DFT Discrete Fourier Transform

D+S Deterministic + Stochastic

FFT Fast Fourier Transform

FIR Finite Impulse Response (filters)

FM Frequency Modulation

HMM Hidden Markov Model

IAF Instantaneous Autocorrelation Function

IRCAM Institut de Recherche et Coordination Acoustique/Musique (Paris, France)

SDIF Sound Description Interchange Format

SMS Spectral Modeling Synthesis

SNR Signal to Noise Ratio

STFT Short Time Fourier Transform

TFD Time-Frequency Distribution

UPF Pompeu Fabra University (Barcelona, Spain)

WD Wigner Distribution

WVD Wigner-Ville Distribution
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List of Symbols
t, τ time variables

f , ν frequency variables

x(t) continuous time signal

x[n] discrete time signal

j
√
−1

z∗ complex conjugate of z

|z| magnitude of z

Re{z} real value of z∫
integral; if no limits are specified,

∞∫
−∞

is assumed

δ( f ) Dirac distribution: δ( f ) = 0 for f 6= 0,
∫

δ( f ) d f = 1

fs sampling frequency

F{x(t)} Fourier transform of x(t), page 17

F−1{x(t)} inverse Fourier transform of x(t), page 17

H{x(t)} Hilbert transform of x(t), page 22

Kx(t, τ) instantaneous autocorrelation function of x(t), page 25

Wx(t, f ) Wigner(-Ville) distribution of x(t), page 25

Ax(ν, τ) ambiguity function of x(t), page 27

ρx(t, f ; γ) Cohen’s class distribution of x(t) with kernel γ, page 28

DFT {x[n]} discrete Fourier transform of x[n], page 56
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