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Abstract 

The aim of this diploma thesis is to design a software tool that makes a new kind of 

transformation of audio signals possible. This can subsequently be used to synthesize music 

from audio signal fragments (“Concatenative Music Synthesis“). Many applications, e.g. 

genre classification of music or generation of playlists etc., analyse and compare audio signals 

using coefficients (“features”) describing, for example, timbre and harmony properties. These 

features are extracted from the audio signal itself. This diploma thesis attempts a new 

approach to the re-synthesis of audio signals. As in a mosaic, an existing song is newly 

constructed from small parts (“frames”) of other songs already stored in a database. The 

length of the frames corresponds to musically meaningful units. For the implementation of the 

tool, suitable onset- and beat tracking methods are evaluated and the selection of suitable 

parameters describing the subjective semantic similarities is determined by listening tests. 

Zusammenfassung 

Die vorliegende Diplomarbeit zielt auf die Entwicklung eines Software-Tools ab, das eine 

neuartige Klang- bzw. Musikstücktransformation ermöglicht. Damit soll in weiterer Folge 

eine musikalisch sinnvolle Synthese von Musikstücken aus kleinen Audiosignal-Einheiten 

(„Concatenative Music Synthesis“) durchgeführt werden können. Bei vielen Anwendungen, 

wie z.B. Klassifizierung von Musik nach Genres, Generierung von Playlists etc., werden 

Musikstücke auf Basis des Audiosignals analysiert und verglichen. Als Maß dafür werden 

meist klangfarbenbeschreibende und harmoniebeschreibende Koeffizienten („Features“), die 

aus dem Signal selbst extrahiert werden, verwendet. In der vorliegenden Arbeit wird nun 

versucht, diesen Ansatz zur Resynthese von Audiosignalen zu nutzen. Vergleichbar einem 

Mosaik wird ein bestehender Song aus vielen kleinen, vorher analysierten und kategorisierten 

Teilen („Frames“) anderer, bereits in einer Datenbank gespeicherter Musikstücke, neu erstellt. 

Die Abgrenzung von Frames erfolgt anhand musikalischer Sinneinheiten. Für die Umsetzung 

werden geeignete Onset-Detection- bzw. Beattracking-Verfahren evaluiert und geeignete 

Parameter zur Beschreibung der subjektiven semantischen Entsprechungen und Ähnlichkeiten 

werden anhand eines Hörversuches festgelegt. 
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1 Introduction 

In this thesis, a software tool is presented that is able to re-synthesize a song or musical piece 

from audio signal fragments stored in a database. Audio signals are segmented according to 

their rhythmic structure and analysed in regard to their descriptive features and a new song is 

created by concatenating the existing database fragments. 

This thesis is organised as follows: Chapter 1 serves as an introduction to the topics that are 

discussed in this thesis, including a short preview of the implemented synthesis algorithm, the 

used beat and onset detection system, the used descriptive features that characterise audio 

signals and the listening test that was carried out in order to evaluate subjective similarities 

between audio signals.  

Section 2 is dedicated to the general concept of concatenative music synthesis, with an 

overview over the history of this branch of electro-acoustic music and the different 

approaches presented by a multitude of authors as well as the implementations of these 

systems.  

In Chapter 3, the audio synthesis interface implemented in this thesis is presented. The 

organisation of the audio signals database is explained in detail, as well as the organisation of 

the synthesis algorithm that creates new music from audio frames contained in the 

aforementioned database. 

For this thesis, a number of different onset detection algorithms were implemented and 

evaluated in order to ensure the best possible segmentation of audio signals. These 

algorithms, all based on some spectral feature of the audio signal, are described in Chapter 4. 

The method used to determine the actual onsets from local maxima extracted from the 

detection functions that are created in different ways are explained. Also, the inter-onset 

interval beat tracking system that evaluates and corrects the results of the onset detection 
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algorithms is talked about. Lastly, the evaluation results of the different onset detection 

methods are presented.  

Chapter 5 introduces the temporal, spectral and statistical low-level features characterising 

audio signals that are evaluated in this thesis. The correlation between the temporal evolution 

of these features and the positions of onsets is also investigated in this section. 

In section 6, the listening test that was carried out in order to determine subjective similarities 

between audio signals and their relationships to features computed from the signals, as well as 

the test results and conclusions, are described in detail. 

Section 7 discusses the results and provides a perspective on future tasks and research topics. 

1.1 Algorithm Framework 

The tool for concatenative music synthesis presented in this diploma thesis is implemented as 

a Graphical User Interface called “ConCat Music Synthesis Interface” under MATLAB. To 

run the tool, a working installation of MATLAB 7.x is required. Reasons for choosing 

MATLAB as development environment are the wide-spread use, its cross-platform 

compatibility and GUIDE, the development environment for Graphical User Interfaces. 

Another advantage of MATLAB is that it is widely used as a teaching tool and signal 

processing tool in the academic and industrial environment. 

The basic structure of the algorithm is implemented as follows: a database is created by taking 

a number of songs or audio signals and analysing them. The data is divided into musically and 

psycho-acoustically meaningful segments by performing beat tracking and onset detection to 

determine fitting segment boundaries. A number of relevant audio features are extracted to 

describe the respective audio fragment. These are then re-sorted into clusters and sub-clusters, 

thereby arranging the database not in a chronological and therefore coincidental manner but 

according to basic signal parameters. Clustering takes into account the characteristics of 

stored data which correspond to human perception [1], which also has the added benefit of 

drastically reducing the computing time required for the algorithm. The fragments are first 

ordered according to their duration and then according to their pitch. Since the frames are 

segmented in relation to the detected onsets and the beat, the segment length is directly 
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related to the rhythmic structure of the audio signal. This makes the organisation of the audio 

database psycho-acoustically valid since it takes into account both the rhythmic and the 

melodic structure of the analysed audio signals.  

After creating and editing the database, the song that is to be re-synthesized (the target song) 

is loaded and analysed in the same way as the database audio data by segmentation and 

feature extraction. For every data frame, the database is searched and the cluster and sub-

cluster where the most similar frames are stored are detected. On the basis of this information 

the frames in the found sub-cluster are compared to the current target song frame by matching 

the respective feature vectors and the information concerning the database frame with the best 

fit is returned. This information enables the re-synthesis algorithm to concatenate the found 

matching database frames to create a new song. The relevance of the selected low-level 

features for subjective similarity of audio segments is determined by a listening test.  

 

Figure 1.1  Re-synthesis algorithm structure 
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1.2 Beat Tracking 

The automatic extraction of a structured pulse or rhythm from audio signals, called beat 

tracking, has been a major topic of research in Digital Audio in the last decade. Beat tracking 

algorithms attempt to create a symbolic representation of what human listeners experience as 

“beat” or “pulse”. In this work, the beat of a signal is defined as a “sequence of equally 

spaced temporal units” [2] that describes the musical pulse or tempo. It should be noted that 

the grouping of beats into bars and the accents on strong beats (for example on the first note 

and in a lesser degree on the third note of pieces in 4/4 time signature) and its modelling is 

not in the scope of this work. 

Existing research has focused on two approaches to beat tracking: some authors implemented 

methods where the beat is predicted directly via filter banks and resonators [2], while others 

based their method on the evaluation of onset detection results, grouping detected note onsets 

and extracting beat hypotheses from the discovered patterns [3]. While algorithms relying on 

onset detection are more flexible, they require the detection to be robust enough so that 

reliable beat estimates can be computed, thereby limiting their applicability. 

1.2.1 Onset Detection 

Music is an inherently non-stationary process – few people would classify a stationary tone or 

sound as music because there is no musical meaning or information without change. Music is 

an “event-based phenomenon” [3], which means that its attributes such as timbre, intensity or 

note length change with varying speeds during a music piece. Onsets are perceived and can be 

detected when a sound changes in this way. 

Onset detection is a method to automatically detect these crucial “events” in audio signals and 

is used in a variety of applications including music analysis, segmentation ([5], [6]) – thereby 

enabling the cut-and-paste operations used by concatenative music synthesis –, audio/video-

synchronisation [7], indexing [6] and many more. Many audio applications require accurate 

onset detection in order to work properly. For example, the improvement of low bit-rate audio 

quality that is sought after in newer compression standards requires accurate onset detection 

in order to segment audio files into regions with consistent statistical attributes, which in turn 
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can be processed more efficiently [3]. This principle is also used in digital signal processing 

to adapt audio effects and transformations like pitch-shifting to the audio signal itself [8]. 

Since the term “onset” is used differently in different contexts, the terms used in this thesis 

will be defined as follows: “onset” is the point in time when the musical “event” appears, i.e. 

when there is significant and quick change in signal characteristics. It is the earliest time the 

event can possibly be detected.  

 

Figure 1.2  Onset definition [3] 

When working with monophonic sound, the simplest solution for detecting onsets would be to 

differentiate the signal envelope and look for the signal areas where major positive changes 

reside. The onsets would then be the starting points of these changes. 

This approach is not the optimal solution to this problem for a number of reasons: the 

amplitude of sounds, especially in the low frequency area, does not always increase 

monotonically, leading to more than one local maximum in the area of the actual onset and it 

may take some time for low-frequency sounds to reach the point where the increase in 

amplitude is the sharpest. Another difficulty arises when dealing with polyphonic audio data 

because the signals of the different instruments are superimposed.  

Therefore, audio signals are processed in order to emphasise characteristics of the signal that 

can be used as indicators for onsets while still retaining the basic structure of the original 

signal. Afterwards, most existing approaches use down-sampling to reduce the data volume. 

The result of this processing is called a detection function or novelty function and could be 
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described as a simplified version of the audio signal. After this, algorithms that pick out local 

peaks are applied to the detection function to locate the onsets. 

 

Figure 1.3  Onset detection systems workflow [3] 

Pre-processing is used in some onset detection algorithms to accentuate aspects of the signal 

that are more relevant for the task at hand. Two approaches are widely used: the division of 

the signal into multiple frequency bands and transient/stable separation. Analysis over a 

number of frequency bands is used to increase the reliability of onset detection by combining 

results of filter bank outputs [9] or in combination with global tempo estimates [2]. In 

algorithms using transient/stable separation, the residual between an audio signal and a 

Spectral Modelling Synthesis (SMS) model is calculated. Sudden increases in the residual 

energy mark regions where the model and the original signal are mismatched and thus serve 

as indicators for onsets [10]. 

After the (optional) pre-processing stage the audio signal is down-sampled and transformed 

into a detection function. The approaches to this problem can be divided into two groups 

according to how data reduction is achieved. In the first group characteristic signal features 

are evaluated, the other bases its calculation on probabilistic signal methods. 
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Early onset detection methods based on signal features followed the amplitude envelope itself 

[3]. Variations included watching the energy envelope or the first-order difference of the 

amplitude envelope [10]. In the spectral domain, methods were proposed that use weighted 

short-time spectral energy measures or phase deviations as onset indicators [3] and methods 

that consider both [11].  

Probabilistic signal models describe statistical features of audio signals. By using them, it is 

possible to match given audio signals to signal models and infer likely onset times. Of course, 

this approach is greatly dependent on the quality of the chosen signal model [3].  

The last stage of onset detection algorithms consists of a peak-picking algorithm that chooses 

the most likely onset candidates from local maxima of the detection function. Often there is 

also an intermediate stage where the detection function is further processed to facilitate peak-

picking, for example by smoothing1 or normalising it. The peak-picker itself uses a threshold 

which can be fixed or adaptive. All local maxima that remain above the threshold are assumed 

to be indicative of onsets. 

1.3 Features 

Feature extraction is not only used in audio signal processing. It is essentially a way to 

reduce data volume by removing redundant information. This makes feature extraction an 

important tool in many fields other than audio, for example in image data processing [6] or 

pattern recognition [12]. 

The concept of describing the properties of audio signals with features was created for the 

purpose of characterising different audio signals and making statements about the similarity 

or dissimilarity between them. It has been attempted with varying results to use this 

information for purposes such as genre classification [13], thumbnailing [14], database 

organisation and searching [1] and many more. 

The common approach to feature extraction is to use short-time analysis windows in the time 

and spectral domain. For meaningful results, it is important to regard only audio segments 

                                                 
1 Using a low-pass filter or a moving average window, which eliminates fast signal changes  
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that are mostly stationary, because the inclusion of transient regions produces artefacts and 

analysis errors. The series of obtained low-level features can be combined to create high-level 

feature vectors [15]. 

Some features evaluated in this thesis are calculated “by hand” using either implementations 

of feature definitions or functions already existing in MATLAB1, some of them are obtained 

by using the “MIR Toolbox” created by Olivier Lartillot [16]. This toolbox offers a wide 

variety of musical descriptors and features.  

Features calculated in the time domain include volume (RMS) information and the zero-

crossing rate describing the number of sign changes of the signal amplitude. In the spectral 

domain, a number of different features are computed. These include the spectral centroid, 

which contains information about the center of gravity of the energy distribution, two 

measures of high-frequency content (spectral roll-off and brightness), indicators for harmonic 

structures in the signal spectrum (irregularity and roughness), pitch and MFCC (mel-

frequency cepstral coefficients) information as well as chroma estimation. In addition, 

statistical information about the signal spectrum is extracted by computing the statistical 

moments skewness and kurtosis as well as the flatness of the spectral distribution.  

While there are countless audio features in literature [13], it is not advisable to use a high 

number of them for similarity or classification tasks. The computation time necessary to 

compare multi-dimensional feature vectors makes real-time implementations impossible. 

Also, many features are highly correlated, thus rendering a major number of them 

unnecessary. 

1.4 Subjective Similarity Evaluation 

To determine which audio features best correlate with subjective similarity perceptions, a 

listening test was carried out. Its goal was to arrive at a weighted combination of audio 

features that together give a meaningful measure of similarity between audio signals. The 

found feature combination is used by the concatenative music synthesis algorithm to 

determine the database fragments that best match the target song frames perceptually. By 
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comparing the features extracted from audio signal segments that were judged to be similar 

by trained listeners, a six-dimensional feature vector that describes an audio signal is arrived 

at. 

The test was implemented in the form of an A-B comparison. The subjects could all be 

classified as expert listeners. Most of them were Audio Engineering students with trained 

ears. They were asked to compare short audio fragments regarding their subjective similarity 

and to rate the similarity on a scale.  

The results are evaluated using Multi-Dimensional Scaling (MDS), a technique used in 

statistics applications to reveal similarity relationships and to reduce data dimensions [17]. 

 

 

 

                                                                                                                                                         
1 Statistical features are calculated using existing functions from the pre-defined “Statistics Toolbox” 
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2 Concatenative Music Synthesis 

The groundwork for sound synthesis in general and granular synthesis and micro-montage in 

particular was laid by the British physicist Dennis Gabor in the late 1940s, who postulated 

that musical tones are made up by a combination of elementary “grains” or atoms. Following 

the then recent discovery of discrete energy levels of atoms and atom nuclei, he described 

sound as a “succession of discrete units of acoustic energy” [18]. 

The practical origins of concatenative music synthesis – also called Adaptive Concatenative 

Sound Synthesis (ACSS) in literature [19] – as a tool for music composition can be traced 

back to the beginnings of electro-acoustic music in the second half of the 20th century. Back 

then, artists used the newly developed magnetic tape techniques to concatenate, splice and 

generally manipulate short sounds or music fragments. One of the most famous composers of 

this era, Pierre Schaeffer, presented his concept of “sound objects” which are similar to the 

fragments or segments used in concatenative synthesis as “clearly delimited segments in a 

source recording” and “the basic units of composition” [20]. At present, composers are able to 

create and transform sound fragments digitally, eliminating the need for written “notes” and 

scores. Digital synthesis “makes it possible to compose directly with sound, rather than by 

having to assemble notes” (Max Mathews in [21]).  

The principle of sound synthesis has remained the same over the years – the desired sounds 

are created by concatenating segments synthesized from other sounds based on some measure 

of similarity, which could be defined as an “audio collage”. The segments are chosen by a 

“unit selection algorithm” to fit a specified “target” so as to minimise the difference between 

the synthesis product and the target, much like an adaptive system. In fact, some authors view 

concatenative synthesis not as a synthesis method but an “adaptive digital audio effect” [8] 

where synthesis or transformation tasks are controlled by features extracted from some sort of 

target, or a complex and automated remix apparatus. The similarity between database and 

target segment is mostly computed by comparing low-level or high-level features 
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(“descriptors”). In contrast to “normal” composition and synthesis techniques which are 

“rule-based” this approach can be defined as “data-driven” – synthesis rules are induced from 

already existing data so as to preserve its attributes and details and not from abstract rules or 

sound models. Examples of concatenative synthesis taken from other artistic fields could 

include Arcimboldo’s paintings of faces composed of fruit – small picture “segments” are 

used to create a bigger picture – or the “pointilistic” paintings of Georges-Pierre Seurat. 

At the present time, concatenative music synthesis can be used to effectively manage large 

sound databases and it also provides an intuitive and simple approach to sound fragment 

manipulation. Database management is an interesting research field nowadays because of the 

large amount of data that is used and manipulated by the average person, e.g. photos, audio 

tracks, films etc. The size of music databases is limited only by available disk space, which 

has increased exponentially over the past years while at the same time it has become much 

cheaper.  The amount of time saved by a quick and efficient sound concatenation algorithm 

can be spent on experimenting, fine-tuning and on actual composition tasks, thus eliminating 

the need for time-consuming data or tape manipulation. 

As Max Mathews wrote in 1969, “The two fundamental problems in sound synthesis are (1) 

the vast amount of data […] – hence the necessity of a very fast program – and (2) the need 

for a simple, powerful language in which to describe a complex sequence of sounds.” [22]. 

The first problem has become irrelevant due to the availability of cheap memory and due to 

the marked improvement in digital processor performance (processor power has grown 40% 

per year over the past decade), which allows real-time implementation of sound manipulation 

algorithms. The second one “cannot, in principle, ever be completely solved” [21] because 

manipulating individual sound samples is too time-consuming. To circumvent this problem, 

samples are synthesized algorithmically, where a small number of variables controls a very 

much larger number of samples. 

2.1 Historical Overview 

This chapter presents the history of concatenative music synthesis and Audio Montage as 

separate branches in electro-acoustic music. Their origins are traced back to the 1950s, when 
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composers started experimenting with magnetic tape. A short introduction to digital audio 

signal montage is given. 

2.1.1 Analog Montage 

As mentioned above, the origins of concatenative music synthesis can be traced back to the 

1950s where innovative artists started experimenting with short fragments of magnetic tape. 

The process of concatenating the segments was an arduous and time-consuming task and was 

performed by selecting, splitting and fusing sound segments recorded on magnetic tape. In 

this way it could take several months, if not years, to create musical pieces that were 

performed in a few minutes. 

As the compositions of this period created new definitions of music and music performance 

the borders between the “styles” of electro-acoustic music were fleeting and were only later 

categorised as “micro-montage music”, “musique concrète” etc. The one thing they had in 

common was the approach to the composition tasks, using techniques that can be defined as 

“granular synthesis”. 

Two well-known composers who worked with montage composition in the fifties were John 

Cage (“Williams Mix”, 1952, where the musical “score” consists of graphical instructions for 

the splicing and gluing together of tape material [23]) and Iannis Xenakis, whose work 

includes “Diamorphoses” (1957) and “Concrèt PH” (1958, an introduction to the Varèse’s 

“Poème electronique” written for the World Fair in Brussels) and “Analogique B” (1959, 

using electronically synthesized sounds [24]). 
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Figure 2.1  Score excerpt from John Cage’s „Williams Mix“ [23] 

2.1.2 Digital Montage 

The technique of montage composition began to be more widely used with the onset of the 

“Digital Era” when computers became affordable. The price reduction of memory led to large 

music and sound databases that could be manipulated with digital controllers – today, even 

ordinary personal computers are powerful and fast enough for these tasks. 

Composers that used digital montage include famous names like Horacio Vaggione, Curtis 

Roads, Noah Creshevsky and Barry Truax.  

Curtis Roads is very active in sound synthesis research and composition. He has worked on 

many algorithms and programs for music synthesis, for example a program for pulsar 

synthesis called “PulsarGenerator” and programs for granular synthesis – “Cloud Generator” 

(1995, with John Alexander) where time stretching and shifting is implemented by 

manipulating grains from sound files, or the “Creatovox” (1999, with Alberto de Campo), 

which is a synthesis engine built for the performance of granular synthesis and can be played 

via MIDI interface [18]. Roads is also a ground-breaking composer, as evidenced by “Klang-
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1” (1974), the first granular synthesis composition realised by computer. He also pioneered 

automated granular synthesis – his work “Prototype” (1975) is the first music piece using this 

composition method. “Half-Life” (2004) uses audio material created by the above-mentioned 

Pulsar Synthesis. 

Horacio Vaggione uses repeated and transformed piano sounds in his piece “Schall” (1995). 

He also experiments with multiple time scales and rearrangement of sound “particles”, 

realised in “Agon” (1998), where Vaggione breaks up and rearranges percussion instrument 

sounds. He also composed pieces where instruments and electro-acoustic segments are played 

simultaneously, as in “MYR-11” (1997) [25]. 

It should be noted that both Vaggione and Roads used customised software programmed by 

themselves to generate sounds. 

Noah Creshevsky describes his own style as “hyperrealism”, a style where samples taken 

from everyday situations and acoustic environment are mutated by eliminating the 

characteristics that define them as ordinary. One typical example of his style is his work 

“Borrowed Time” (1995), where he combines fragments of vocal music from the 12th century 

until the present. 

The first composer to implement real-time granular synthesis in an interactive environment 

was Barry Truax, who used signal processors for this time-consuming task. He incorporated 

this technique into the PODX computer music system at Simon Fraser University in 

Vancouver in 1986. He used sample-based granular synthesis for his famous work “Wings of 

Nike” (1987), an audio-visual composition. His partner Theo Goldberg created the images 

and Truax used only two phonemes (each about 170 milliseconds long) to create a twelve-

minute soundscape. 

Two composers who incorporate culturally meaningful and symbolic sounds into their works 

are James Tenney, who, using the same tape manipulation techniques as Xenakis, re-

contextualises fragments from the Elvis Presley-sung “Blue Suede Shoes” in his work 

“Collage #1 (Blue Suede)” (1961) and John Oswald, who recombines short fragments taken 

from popular music of this decade, illustrated in his “Plexure” (1993). 
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2.2 Approaches to Concatenative Music Synthesis 

Concatenative synthesis has been a popular technique in speech processing since the 1980s. 

Using a database of spoken characters, phonemes, syllables, words and sentences can be 

constructed by concatenating the recorded characters. By modifying the database waveforms, 

a higher degree of realism is introduced. Programs that concatenate spoken words stored in 

databases use this approach, called CTTS (Concatenative Text To Speech) [19], on a higher 

level. This technique can be useful when a limited number of words is combined in many 

different ways, for example for announcements at train stations or in car navigation systems.  

CTTS is often judged to produce more realistic-sounding results than parametric models [19]. 

This alternative approach has the advantage of not needing large sound sample databases.   

As mentioned above, composers of electro-acoustic and electronic music have used 

techniques similar to concatenative music synthesis. 

Curtis Roads used the “Granulation” technique to segment audio signals and – after optional 

transformations and modifications – reassemble them later. However, his approach belongs 

more into the realm of granular synthesis or micro-montage due to the shortness of the used 

samples [18]. Trevor Wishart uses a similar approach termed “Brassage” which is the French 

word for “jumbling” or “mixing”. These methods have been used chiefly to create 

soundscapes, i.e. “dynamic audio environments” [19].  

In the realm of (electronic) dance music, Nick Collins devised the “BBCut” extension 

libraries for SuperCollider, a high-level programming language for audio synthesis and 

algorithmic composition. His algorithm chops up audio files according to the beats found in 

the files and reassembles them, creating a “jumbled” but synchronous version of the original 

song [19].  

Ian Simon developed an alternative method for concatenative synthesis. His algorithm is 

related to concatenative speech synthesis and includes concepts from image processing. It 

synthesizes audio material corresponding to a specified MIDI score from an existing 

monophonic audio file and the matching MIDI score [26].  
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Tristan Jehan introduced the concept of “music cross-synthesis”. In his approach, he not only 

considers the raw audio data for analysis, he also considers the human perception and 

characterises audio files by their specific “audio DNA sequence” [27]. 

2.3 Existing Concatenative Music Synthesis   
Implementations 

Beside the manual tape-based concatenative synthesis approaches in the 1950s, there have 

been quite a few computer-based or automated implementations of concatenative music 

synthesis, starting in the late 1990s. They can be sorted into a couple of categories according 

to their synthesis/selection methods. To illustrate this classification, examples will be given 

for the respective categories. 

 

Figure 2.2  Concatenative music synthesis implementations [20] 

2.3.1 Spectral Similarity 

In this category, source frames are defined and matched to the target by analysing short-time 

spectra. Because the segments are so short (generally in the neighbourhood of a few 
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milliseconds), there have to be selection rules governing the placement of fragments into the 

current context. 

Kobayashi’s “Sound Clustering Synthesis” achieves a consistent re-synthesis of classical 

music pieces by matching frame spectra using a vector-based function [20]. There are two 

constraints governing the re-synthesis placement of frames: the database frame must match 

the target frame and the transition between target frames and re-synthesized frames must be 

smooth. 

2.3.2 Segmental Similarity 

The segments in this category are selected by stochastic methods or by using similarity 

analysis based on low-level signal descriptors. 

The freely available “Soundmosaic” interface [28] segments sounds by dividing them into 

two units and calculating their distance. Sound segments having the largest distance are 

switched, which implies a great amount of time spent searching and it slows the algorithm 

somewhat. The distance between segments is computed either by calculating the inner 

distance (the dot product) or by calculating the “Manhattan” or L1-distance. 

Bob Sturm’s “MATConcat” is a MATLAB-based Graphical User Interface [19]. It was the 

first system to compose electro-acoustic music pieces (“Concatenative Variations of a 

Passage by Mahler” and “Dedication to George Crum, American Composer”). The user can 

specify the desired segment length, after which a six-dimensional feature vector is computed 

which consists of low-level descriptors like RMS and spectral centroid values. The database 

frames are matched to the target frames by comparing the feature vectors.  

2.3.3 High-Level Descriptors 

The “MoSievius” system devised by Lazier and Crook [29] works in real-time and is based on 

looping sound segments. The user chooses descriptor ranges for classes like the spectral 

centroid, instrument or spectral flux manually and segments are picked when their descriptor 

values lie in the specified range. It also includes a control mechanism for real-time source 

selection called the “SoundSieve” that limits the search space by isolating sub-spaces of 

segments that have certain desired characteristics in common. 
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Given a monophonic recording, its MIDI score and a target MIDI score, the “Audio 

Analogies” [26] system attempts to synthesize audio to correspond to the target score. To 

ensure reaching exactly the right note pitch and duration, pitch-synchronous overlap-add 

techniques (PSOLA) are used to transform the audio material. The optimisation of the 

concatenation cost is solved by using a Viterbi algorithm to minimise a “match” cost function 

regarding the frame similarity and a “transition” cost function regarding the frame 

concatenation. 

An elaborate implementation of concatenative music synthesis created by Schwarz [30], 

“Caterpillar” does not segment music by fixed analysis but by aligning the audio data with its 

score. Several continuous and discrete descriptors based on the MPEG-7 descriptor set [31] 

are computed. The unit selection algorithm uses a Viterbi algorithm to find the best frame 

match by trying to minimise two cost functions: a “target cost” describing the similarity of 

database and target segment and a “concatenation cost” specifying the “join quality” of two 

adjacent segments.  

 

Figure 2.3  The “Caterpillar” system [30] 

The “Caterpillar” data flow structure is representative for most concatenative music synthesis 

algorithms. While audio and symbolic scores are not needed by every algorithm, the principle 
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of source sound analysis and selection and the subsequent synthesis and/or transformation 

always apply. 

 



Concatenative Music Composition 

 Institute of Electronic Music and Acoustics 20 

3 The ConCat Music Synthesis 
Interface 

In this chapter, the ConCat Music Synthesis Interface is described in detail. The 

implementation in Matlab is discussed in Appendix C. 

The ConCat Music Synthesis Interface is developed as a Graphical User Interface in 

MATLAB. This platform was chosen because of its platform compatibility and wide-spread 

use in academic institutions. The interface allows the user to create and edit audio databases 

and re-synthesize music from segments taken from these databases. It also allows the user to 

choose between different onset detection algorithms. 

 

Figure 3.1  ConCat Music Synthesis Interface 
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The graphic tool depicted in Figure 3.1 serves as an interface to the underlying concatenative 

music synthesis algorithm. The user can choose the analysis options best suited to individual 

purposes and/or music styles.  

3.1 Algorithm Structure 

The first step necessary to perform concatenative synthesis is the creation of a sound 

database. The database can be hand-tailored to fit specific needs; for example, if the goal is to 

create a song that closely matches a target song, the database should be as large as possible, 

incorporating music from different genres and styles. If, on the other hand, a particular artistic 

concept is followed, it may be more useful to use smaller databases suited to the 

compositional needs. In any case, the size of the database is only limited by storage and 

computing time constraints. 

Once a database is set up, it is possible to re-synthesize any given song or audio signal. This 

is done by searching the database for segments that are similar to the extracted segments of 

the target song. These segments are transformed if necessary and then concatenated to form a 

new song or audio signal that best matches the target song or signal. 

3.1.1 Database Creation and Organisation 

The database itself is created by analysis and subsequent segmentation in the time domain. 

The segment borders are located by performing a beat tracking analysis after a pre-processing 

stage where the signal is converted to mono format, filtered with a FIR (Finite Impulse 

Response) filter and down-sampled to 11,025 kHz in order to reduce computing time. To 

ensure correct onset detection at the start of the audio file, the file is zero-padded. The 

specific algorithm used for onset detection can be chosen among five possibilities, “Chroma” 

(based on the evaluation of energies in chroma bands, see section 4.2.3), “Complex” (an 

approach that evaluates amplitude and phase progression in the frequency domain [11], see 

section 4.2.4), “MFCC” (based on the trajectory of the first MFC coefficient, see section 

4.2.5), “Modulation Spectrum 1” (based on short-time spectrum band trajectories [32], see 

section 4.2.6.1) and “Modulation Spectrum 2” (based on short-time spectrum band 

trajectories weighted according to characteristic drum frequencies [32], see section 4.2.6.2). 
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The following beat tracking algorithm based on a simple onset-interval histogram method can 

be turned off or on. This leads to musically meaningful audio fragments because the fragment 

length is highly correlated with the rhythmic structure of the audio signal. On the assumption 

that every frame starts with an onset and that therefore an “attack” phase exists where the 

signal is not deterministic, the audio segment is divided into two distinct regions.  

 

Figure 3.2  Frame segmentation with transient and stable regions [33] 

The first region – the “transient” region - has a defined length in order to simplify calculations 

and is not analysed. The reason for this is that the following part of the audio signal is 

assumed to be the more characteristic and recognisable part of a sound. While it would be 

possible to extend the algorithm to include separate analysis of transient regions, this is 

omitted for simplicity and computing time reasons. The second region is defined as the 

duration between the end of the transient region and the start of the next frame. This region 

with variable length is assumed to be stable. After making sure the frame is at least 1024 

samples (about 11 milliseconds) long to avoid dimension mismatch problems, it is windowed 

with a Hanning window to minimise spectral leakage effects and analysed in regard to 

descriptive audio features.  

The segment start- and stop-time as well as the extracted features are stored in a data lookup 

table. 
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Figure 3.3  Segmentation of an audio signal into frames and extraction of signal parameters 

Concerning the organisation of the database, the stored frames are sorted by perceptive 

criteria. The primary perceptive qualities of sounds are loudness, pitch, duration and timbre 

[34]. Since the loudness of frames is adjusted by the algorithm, the focus of the organisation 

criteria is on frame length and spectral attributes. To further reduce computation time and 

create a perceptually relevant database organisation, the stored frames that were sorted 

“chronologically” are rearranged by sorting them into clusters and sub-clusters according to 

the segment length and the segment pitch, thereby creating a three-dimensional cube 

containing the frame data. This means that sounds are represented not only by their 

mathematical and physical properties but also by their perceptual attributes [1]. This 

eliminates the need for time-intensive linear searching. 
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Figure 3.4  Database organisation with clusters and sub-clusters [33] 

This shortens the re-synthesis computation time for a standard pop-song by a factor of about 
310  to 410  (see e.g. [33] or section 7.2) while the time needed for the clustering is negligible 

in comparison. In this thesis, different clustering methods are evaluated to find the 

perceptually best-suited organisation method. The clusters are created according to either 

segment length or by pitch, the sub-clusters according to the spectral roll-off value [33] or by 

measures describing melodic content, such as chroma class, pitch and spectral centroid. 

Empirical evaluation of the re-synthesis results using the different organisation methods 

shows that the best results are obtained using length and a “melodic” parameter such as the 

pitch, chroma or spectral centroid parameter. Since one goal of the database organisation was 

to ensure uniform distribution of frames among clusters and sub-clusters, the chroma value 

was ruled out as organisation parameter. After evaluating a number of re-synthesized songs, 

the pitch value was chosen as the second organisation parameter. 

 

Figure 3.5  Database sorting 

Ideally, the number of elements in the sub-clusters should be uniformly distributed to 

minimise searching time. For n clusters and m sub-clusters, the clustering algorithm finds (n-

1) equally spaced boundary points between the shortest and the longest frame and (m-1) 

equally spaced boundary points between the frames with the biggest difference in pitch. The 

segments are then sorted into the respective clusters and sub-clusters by finding the 
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boundaries nearest to the segment length (cluster) and the segment pitch (sub-cluster), 

respectively.  The cluster and sub-cluster sizes can be varied depending on whether the goal is 

to minimise searching time or assignment errors - clustering represents a kind of pre-selection 

method with the above-mentioned advantages and disadvantages. In this thesis, the generic 

approach where the cluster and sub-cluster sizes are determined by the database size, thereby 

approximating uniform distribution, was selected.  

It should also be mentioned that by using this database organisation, audio segments are 

stored in such a way that frames lie in close proximity to frames displaying similar 

characteristics, while different segments are separated by a greater distance. This mirrors the 

neurophysiologic organisation of the human and animal cortex [1].  

Once a database is created or loaded, it is possible to re-synthesize a target song from existing 

database frames. 

3.1.2 Synthesis 

At the start of the synthesis algorithm, a target song representing the desired re-synthesis 

result is loaded. For obvious reasons, this target song cannot be part of the library.  

The target song is analysed in the same way as the database songs. First, segmentation is 

performed by onset detection and - optionally - beat detection. The clustering algorithm 

detects the appropriate clusters and sub-clusters from where the re-synthesis audio frame 

should be taken. 

The next task is to identify the frame in the selected cluster and sub-cluster that best matches 

the target song frame. This is done by computing a distance measure for every frame. The 

distance itself is computed by comparing the values of a feature set. A meaningful 

combination of features that are suited for this task was found by evaluating the subjective 

similarities of audio signals using a listening test which is described in chapter 6, resulting in 

a six-dimensional feature vector containing the first mel-frequency cepstral coefficient 

(MFCC), the zero-crossing rate, the pitch value and three features describing the statistical 

properties of the  spectral distribution of the signal, namely flatness, skewness and kurtosis 

(for more information on these features, see chapter 5). The database segment that displays 

the highest similarity to the target song frame is selected and a pointer is created that shows 
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the re-synthesis algorithm where to look when concatenating the audio segments. The 

Euclidean distance is used in this thesis for similarity evaluation. For two six-dimensional 

feature vectors, it is calculated as follows: 

6
2

1

( )s k k
k

x y
=

Δ = −∑                                                                  (3.1)                                    

where sΔ  is the segment dissimilarity (i.e. distance), k stands for the index of the feature, x 

for the database segment and y for the target song segment. If the database frame happens to 

be shorter or longer than the target song frame, it is scaled in a way that the segment durations 

match. This is achieved by using the fragment length adaptation algorithm described in 

section 3.1.2.2. 

Target song frames that are purely transient1 are handled separately. Those are not analysed 

and the re-synthesis algorithm skips them, leaving the frames themselves in place. Although 

this means that some segments of the target song are not replaced, which implies that no re-

synthesis in the strict sense of the word takes place, this limitation was deemed necessary due 

to the reasons stated in chapter 3.1.1. 

The information about the selected database fragments is gathered in a look-up table 

containing the frame position and current and desired length information as well as other 

necessary data. 

Song T Start T Stop S Start S Stop 
Distanc
e Gain Pad Time-Scale Target Length 

1 
275541

7 
275644

4 
275644

5 
276954

0 108,37 0,97 0 13,49 13095
7 26833 27860 27861 37116 0,65 2,13 0 2,31 9255

1 
237150

5 
237253

2 
237253

3 
237363

2 41,02 0,66 0 6,09 6695

12 
794261

7 
794364

4 
794364

5 
794906

0 15,60 0,68 0 2,12 5415

22 
933300

9 
933403

6 
933403

7 
933945

2 5,41 0,22 0 2,40 5415
3 879573 880600 880601 891136 10,29 1,35 0 44,83 10535

3 
835741

7 
835844

4 
835844

5 
835902

0 1546,18 2,26 0 11,64 6695

12 
237150

5 
237253

2 
237253

3 
237363

2 25,33 1,17 0 3,76 4135

4 
237150

5 
237253

2 
237253

3 
237363

2 24,25 0,65 0 4,93 5415

                                                 
1 in the segment, there is no stable region that can be analysed 
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3 
794261

7 
794364

4 
794364

5 
794906

0 3,99 0,79 0 2,12 5415
1 879573 880600 880601 884736 19,16 0,48 0 17,60 4135

Table 3.1  Excerpt from a song information look-up table 

Table 3.1 shows such a generated look-up table. The data in the columns is used to re-

synthesize the target song. Included are the database song number (“Song”), the start and stop 

points of the transient signal part (“T Start” and “T Stop”) in samples, the start and stop points 

of the stable signal part (“S Start” and “S Stop”) in samples, the calculated feature distance 

(“Distance”), the necessary gain adjustment factor (“Gain”), the number of needed zeros for 

padding (“Zero Pad”) as well as the time-scaling factor (“Time-Scale”), if necessary, and the 

target song length (“Target Length”). 

After all data that is necessary for re-synthesis purposes is gathered, the found synthesis 

frames are processed to minimise synthesis artefacts and to ensure a consistent volume curve 

and a correct frame time adjustment. 

3.1.2.1 Volume Adaptation 

For consistent volume management, it is important to take into account the fact that the 

volume information about the segment is extracted from the stable region of the segment, but 

the frame is concatenated as a whole, including the transient region that was not analysed in 

the process. Therefore, a gain curve has to be used that adaptively adjusts the gain across the 

transient and stable region of the frame. This is realised by using a so-called “Smart Gain” 

curve that reaches its maximum at a position in the stable region where no damage to the 

overall audio signal can be done by over-emphasising or blurring the transient region [33]. 

The curve is designed with the idea in mind to place the volume curve slope between the 

transient region start and a position well after the stable region start. The gain is defined as 1 

(= 0 dB) at the start of the transient region and reaches half the desired total gain at the start of 

the stable region. Thus the full gain is reached some time after the stable region start.  
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Figure 3.6  Smart Gain adjustment 

3.1.2.2 Fragment Length Adaptation 

In most cases, it will be necessary to adapt the database frame length to the target frame 

length. If the database segment is too short, two possibilities present themselves: the length 

can be changed by looping or by stretching. In this thesis, the “stretching” approach is 

implemented because simple looping of fragments leads to perceived discontinuities in the 

sound. This happens because listeners are generally accustomed to a “release” phase of 

continuous sounds that cannot be reproduced by simple looping methods and more complex 

looping approaches were found to be beyond the scope of this thesis. If the database segment 

is too long, it is simply cut at the appropriate points.  

To ensure smooth segment transitions, the frames are faded in and out by applying half a 

Hanning window to the first and last millisecond. The segments are then concatenated with an 

overlap of one millisecond. 

The time stretching algorithm is based on the TimeScaleSOLA algorithm presented in [35] 

adapted to work with stereo signals [33]. 

The algorithm is based on correlation methods. The audio signal to be stretched is divided 

into segments of equal length. These are shifted according to a time scaling factor which 

corresponds to variable overlap block lengths. The overlapping areas are then cross-correlated 

to find the position where the similarity between the blocks is highest. This corrects the 

primary positions of the blocks in respect to each other but makes a second comparison of 
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database and target song frame lengths necessary. The blocks are faded in and out at the 

maximum similarity points and are superposed sample-wise.  

 

Figure 3.7  TimeScale SOLA algorithm [35] 

Figure 3.7 shows an example of time-stretching applied to a signal, which is divided into 

three segments. These are moved subsequently into overlapping positions and the correlation 

between the overlapping areas is calculated. 
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4 Beat Tracking 

Beat tracking is an important part of the concatenative music synthesis algorithm used in this 

thesis because it ensures a perceptually meaningful segmentation of database and target audio 

material.  

In this chapter, some of the existing beat tracking methods are presented. The main focus will 

lie on beat tracking systems that are based on onset detection in the spectral and in the time 

domain, as well as approaches that are based on probabilistic signal models. The onset 

detection methods and the inter-onset interval1 beat tracking system implemented in this 

thesis are explained in detail.  

Music is a non-stationary process where different “events” in regard to melodic and rhythmic 

structure present themselves. Human listeners can detect these events easily - even untrained 

listeners are able to track beat structures by “tapping along” using hands or feet. Noticeable 

changes in pitch or intensity serve as indicators of such musical events happening. The 

changes have to happen in a significantly short time to be classified as events, thereby 

distinguishing them from simple and gradual changes in sounds that occur naturally as a 

result of tone decay or modulations. This thesis concerns itself only with the chain of events 

defined as the “tempo” of a music piece without taking into account the grouping into bars 

and higher-order structures  and the relationships between the distinct events that are 

normally associated with the “rhythm” structure of a piece.  

The need for reliable and fast beat detection systems arose with the advent of automatic music 

analysis systems and the areas where they are applied have increased considerably over the 

last years. These include harmonic analysis [5], database management and indexing [6] and 

audio signal transformations, including digital audio effects [8].  
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Many beat tracking systems use transcriptive methods, where the beat is estimated by first 

detecting discrete events (“onsets”) and the results are used in a later stage to group together 

the distinct onsets to beat structures [2]. Another approach is the one devised by Scheirer [2], 

who tries to arrive at a beat estimate without having to rely on a “transcription” stage.  

In this thesis, the term “onset” will be used when referring to the one time instant that marks 

the start of a transient event in an audio signal.  

 

Figure 4.1  Onset definition [3] 

4.1 Existing Beat Tracking Systems 

In this section, an overview of existing beat tracking methods is presented. In the first part of 

the section, beat tracking systems that use signal information extracted in the time domain are 

presented, in the second part spectral domain methods are discussed. A brief overview over 

systems that are based on stochastic models is given at the end of this section. 

The basic structure of the beat tracking algorithm is similar in many approaches. After an 

optional pre-processing stage, the original audio signal is transformed into a (for the most part 

highly down-sampled) version called a detection function that exhibits the characteristic 

behaviour of the signal. From this detection or novelty function, onsets are derived by peak-

                                                                                                                                                         
1 the time between successive onsets 
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picking algorithms. The found onsets are then analysed to yield beat information and, in some 

cases, rhythm information.  

The pre-processing stage is used in some beat tracking algorithms to accentuate properties 

that are useful for finding onset information or to increase the reliability of the detection 

method. A widely used approach is to divide the audio signal into a number of sub-bands and 

to analyse the signal in the respective frequency bands. Examples of this technique can be 

found in [2], [9] or [36]. Some authors also use techniques derived from research concerning 

music signal modelling by separating transient from stable regions using Spectral Modelling 

Synthesis (SMS) or Transient Modelling Synthesis (TMS) ([37], [38]). This approach 

considers the difference (residual) between the audio signal and a signal derived from a SMS 

model fed with the signal parameters. Sudden energy increases in the residual are interpreted 

as a deviation of the signal from the spectral model, marking transient events [10]. The TMS 

model can be considered as an extension to the SMS model based on the discrete cosine 

transform (DCT) of the residual signal [38].  

The post-processing stage generally consists of a peak-picking algorithm that extracts local 

maxima indicative of onsets from the detection function. Some systems also use an optional 

stage where the detection function is manipulated to facilitate this task, e.g. by removing 

noise with low-pass filters or normalising the function. By using a threshold, local maxima 

are picked out and assumed to be onsets. The threshold can be fixed, which means that all 

local maxima above the threshold are taken to be onsets. This approach only works when the 

signal does not exceed a certain dynamic range. By using a smoothed, i.e. low-pass filtered 

version of the detection function as an adaptive threshold, the dynamic of the signal does not 

impact the detection function [3].  

4.1.1 Time Domain Approaches 

Early approaches to beat tracking took advantage of the fact that, especially in music signals 

with percussive elements, the signal amplitude increases significantly in a short period of time 

when a transient event occurs. By following the amplitude envelope or, in other cases, the 

energy amplitude envelope (both of which can be easily calculated by rectification and 

subsequent low-pass filtering of the signal or the squared signal), onsets can be reliably 
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detected when working with strongly percussive monophonic or non-complex music signals. 

Such an envelope follower for a signal x[n] can be described as follows: 

2

2

1[ ] [ ] [ ]

N

Nk

E n x n k w k
N

=−

= +∑          (4.1) 

where w[k] is a finite-length window function. 

Variations on these systems include working with the time derivative of the signal energy or 

the logarithm of the signal energy or a combination thereof, resulting in sharper peaks (local 

maxima) in the detection function.  

Klapuri evaluates the signal change in relation to the signal level [9], which corresponds to 

the differentiation of the logarithm of the amplitude envelope.  

(log( [ ]))[ ] d E nd n
dt

=            (4.2) 

This is psycho-acoustically motivated – according to Weber’s law, the smallest change in the 

intensity of a signal that can still be detected is constant and related to the respective signal 

intensity: 

.I const
I
Δ

=            (4.3) 

This transformation results in well-defined peaks in the detection function and resolves the 

problem of blurred peaks in a detection function that is based solely on the envelope 

information. 

 

Figure 4.2  Differentiated envelope (dotted line) and differentiated logarithm                                                   of 
envelope (solid line) [9] 
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4.1.2 Frequency Domain Approaches 

Approaches in the spectral domain have been found to be successful even with complex 

polyphonic audio signals. This approach has also proved to be computationally effective [3]. 

A special case of this approach is transient detection using wavelets. Daudet [39] uses dyadic 

wavelet decomposition of the residual of a signal. The transient events are linked to the larger 

wavelet coefficients and form “structures” across the dyadic plane. A regularity modulus 

describing the regularity of the signal is used as detection function. 

4.1.2.1 Magnitude / Energy Information 

The fact that transient events are generally linked to a broadband energy increase is exploited 

to extract onset information from the audio signal spectrum. The major part of audio signal 

energy is usually located in the lower part of the frequency spectrum. Therefore, energy 

increases in high frequency bands are indicative of onsets.  

By weighting higher frequency bands proportionately higher than lower frequency bands, 

approaches based on instantaneous short-time spectra have been found to perform well when 

used to analyse strongly percussive signals (High Frequency Content approach, [12]). The 

mathematical expression of this approach is given by 
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where k stands for the bin index. By using the absolute value of the bin index as a weighting 

function, the spectrum is linearly emphasised towards high frequencies. 

Other methods use the differences in the spectra between successive short-term analysis 

frames to extract onset information from audio data. This can be done by considering short-

time spectra as points in a multidimensional space and computing the “distance” between 

those points. Different distance measures have been used in literature: for example, Masri 

[12] uses the L1 or Manhattan distance norm, Duxbury [36] the rectified L2 distance norm.  
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H stands for the rectifying function that is equal to zero for negative values. This has the 

effect that only increases in the signal energy are considered, while energy decrease 

information is discarded.  

Foote [6] builds a similarity matrix by correlating short-time power spectra and applies a 

“checkerboard” kernel to the matrix, thereby detecting boundaries between areas of high and 

low similarity. 

 

Figure 4.3  Checkerboard kernel with tapered edges to avoid edge effects [6] 

An advantage of this method is that by varying the size of the kernel, different characteristics 

of the signal can be investigated. If the kernel is small, events on a small time-scale such as 

onsets are detected. Larger kernels work well to detect higher-level signal structures such as 

repeated bars or verse/chorus segments. 

4.1.2.2 Phase Information 

Recent approaches to onset detection have made use of the fact that information about the 

temporal structure of a signal is contained in the phase spectrum [11]. For a stable sinusoid 

signal, the change of phase of distinct spectral bins is expected to remain constant over 

adjacent short-time spectral frames. If the actual phase value deviates significantly from the 

expected value, a transient event probably has happened. By analysing the distribution of the 

deviations, transient events can be detected.  
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Figure 4.4  Deviation of expected and actual phase between successive short-time analysis frames [3] 

4.1.2.3 Phase and Magnitude Information 

An approach that takes into account phase information as well as magnitude information has 

been proposed by Bello [11] and is implemented in this thesis. The stationarity of separate 

spectral bins is determined by calculating the Euclidean distance between the observed 

complex Fourier coefficients and the coefficients of previous short-time analysis frames. 

These distances are summed over the frequency band to generate an onset detection function. 

The approach is explained in detail in section 4.2.4. 

4.1.3 Probabilistic Approaches 

Stochastic models of signals have been used to extract beat information from audio signals. 

By analysing the quality of “fit” of the model to the signal itself, i.e. the similarity between 

the assumed and the actual probability distributions, information about transient events can be 

gathered [3]. This approach is heavily dependent on a high-quality signal model. 

The samples of the signal x(n) can be described as belonging to one of two signal models, in 

this case either a transient or a stable state [3]. The relationship between the respective 

probability density functions is used to define a log-likelihood ratio 

( )log
( )

b

a

p xs
p x

=            (4.6) 

The model expectations are calculated by computing the Kullback-Leibler distance between 

the model probability distribution and the observed probability distribution. Sign changes in 
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the short-time average of the log-likelihood ratio are taken to be indicative of a model change. 

The log-likelihood ratio could therefore be described as a binary detection function. 

Another approach [40] relies on one single global model to describe the signal. Once the 

system has been trained, it can identify stable regions while transient events come as a 

“surprise” to the system. The “surprise” can be mathematically evaluated by following the 

negative log-probability of the signal. 

{ }( )log ( ) ( ),s p x n x j j n= − <        (4.7) 

4.1.4 Comparison 

According to their reduction method, the presented onset detection algorithms exhibit certain 

strengths and weaknesses, depending also on the audio signal type that is analysed. While 

methods in the time domain are simple to implement and take little time, their accuracy 

decreases when the audio signal is complex or polyphonic or when amplitude modulations 

take place. 

Approaches in the spectral domain take a longer time to compute, yet can generally be 

described as more robust. When faced with percussive signals, magnitude-based methods 

work quite well, especially when the frequencies are weighted towards higher frequencies and 

the energy changes are detectable in the whole spectral band. However, the detection rate 

deteriorates when the signal contains parts without significant energy increases, such as soft 

onsets or string instruments playing legato. These can be quite reliably detected by onset 

detection methods that use phase information, where the tonal qualities of the signal are 

evaluated. The drawback of these methods is the susceptibility to phase distortions stemming, 

for example, from noisy signal components or distortions introduced in the recording process. 

The onset detection method using wavelet regularity makes time resolutions of only a handful 

of samples possible, which is better than the time resolution of the human hearing system. 

However, the resulting detection functions are very noisy, thereby making extensive post-

processing necessary.  
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Probabilistic onset detection methods work well for a wide range of signals when the used 

signal model is of high quality. On the other hand, the training process necessary to train the 

algorithm can be very time-consuming. 

 

Figure 4.5  Comparison of different normalised detection functions for a pop song [3] 

In the above picture, different onset detection functions are shown. The differences in the 

quality and noisiness of the detection functions are clearly visible. A smooth function with 

clearly defined peaks generally means a small number of false onset detections and a possibly 

higher number of missed onsets, while less smooth curves increase the probability of finding 

all onsets and at the same time the probability for false detections. This means that the onset 

detection function should be chosen according to the needs of the application that is to be 

implemented. For some applications, for example time-stretching algorithms, it may be more 
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important to find all onsets, even if it means accepting a high number of false detections. For 

others, e.g. beat tracking, the minimisation of false detections is paramount. 

4.2 Implemented Beat Tracking System 

For a perceptually meaningful segmentation of audio signals, a robust beat tracking system is 

critical. Only by reliably detecting the boundaries of fragments that make sense musically can 

the concatenative music synthesis concept produce acceptable results. 

In this thesis, a beat tracking system is implemented by finding onset times in audio signals 

and subsequently evaluating the resulting inter-onset interval times to form a beat hypothesis. 

This hypothesis is then used to enhance the results obtained by the onset detection algorithm.  

 

Figure 4.6  Beat tracking system 

In this section, the principal structure of the beat tracking algorithm is presented. The 

individual onset detection algorithms as well as the beat-tracking algorithm employed are 

explained in detail.  

4.2.1 Onset Detection Algorithms Structure 

All the onset detection algorithms presented in this paper follow the same general structure: 

The audio signal to be analysed is pre-processed, afterwards the signal is reduced to an 

intermediate representation called detection function. From this, the exact onset time 

locations are extracted by a peak-picking algorithm that selects local maxima that fulfill 

certain criteria.  



Concatenative Music Composition 

 Institute of Electronic Music and Acoustics 40 

 

Figure 4.7  Onset detection systems workflow [3] 

The pre-processing stage limits the original signal to one channel by converting stereo signals 

to mono format. The signal is also low-pass filtered with a standard FIR filter and down-

sampled to reduce the data volume.  

The processed signal is then reduced or transformed into a representation that exhibits the 

characteristics of the original audio signal while emphasising the data traits that facilitate 

onset detection. This detection function exhibits a number of local peaks that are evaluated in 

the peak-picking stage to find the exact onset locations. The detection function is created by 

evaluating the energy changes in chroma classes (“Chroma-based Onset Detection”, section 

4.2.3), by calculating the change of Fourier coefficients in the complex frequency domain 

(“Onset Detection in the Complex Frequency Domain”, section 4.2.4), by following the mel-

frequency cepstral coefficients (“MFCC-based Onset Detection”, section 4.2.5) and by 

locating changes in the modulation spectrum sub-band trajectories (“Onset Detection based 

on Modulation Spectra”, section 4.2.6). 

The peak-picking algorithm then chooses the peaks that are most likely to be onset events. 

The locations of the peaks are forwarded to the beat tracker, which in turn determines the 

likely beat of the signal and processes the onset time information accordingly. This is done by 

evaluating the inter-onset intervals.  
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4.2.2 Pre-Processing 

The first stage in onset detection algorithms consists of a pre-processing stage where the 

audio signals are transformed in order to conform to a standard signal representation. This 

ensures that onset and beat information about signals can be compared even when the signals’ 

characteristics like channel number and sampling rate are different. 

 

Figure 4.8  Pre-processing 

The audio signal is limited to one channel by converting the information from stereo channels 

into a mono channel, if necessary. 

In order to reduce calculation time while preserving most of the information about the signal, 

it is down-sampled to 11.025 kHz. An added benefit of this computation is the standardisation 

of the sampling rate for all audio signals to the above rate. This is achieved by using the pre-

defined Matlab function decimate (from the Signal Processing Toolbox). This function uses 

an 8th-order Chebyshev low-pass filter before the actual decimation stage. 

A well-known and widely used representation of a signal in the time-frequency domain is the 

Short-Time Fourier Transform (STFT), a method that computes the signal spectrum during 

short time windows. The window is set to a fixed length of 11.6 milliseconds (128 samples at 

11.025 kHz) and a hop-size1 of 5.8 milliseconds (64 samples at 11.025 kHz). To avoid 

spectral leakage, the signal is windowed using a Hanning window. For better spectral 

resolution, the STFT length is expanded to 23.2 milliseconds (256 samples at 11.025 kHz) by 

simple zero-padding.  

                                                 
1 The duration between the start of successive time windows 
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4.2.3 Chroma-based Onset Detection 

This chapter introduces the concept of chroma as opposed to tone height or pitch. The energy 

change in different chroma bands or classes is used for an onset detection function 

implemented in this thesis that will be presented thereafter. 

The term “chroma” is used to distinguish the cyclic frequency relationships illustrated in the 

circle of fifths from the tone height itself. Tone height maps an increase or decrease in 

perceived pitch caused by an increase or decrease in signal frequency to a linear scale, while 

the chroma or pitch class describes the circular nature of interval relationships that repeats 

itself for every octave [14]. The difference between the two concepts is illustrated by the so-

called Shepard scale, where sinusoidal signals, separated by octaves, are superimposed. By 

progressively changing the base pitch of the signal, an auditory illusion of constantly rising or 

falling pitch is created. Another example of this phenomenon is that a chord that is played in 

different ways is still perceived as the same chord because the discrete tones that make up the 

chord stay in the same pitch or chroma class. 

The chroma scale itself consists of twelve distinct values corresponding to the twelve 

semitones without enharmonic equivalents represented in the circle of fifths. When two or 

more tones are found to belong to one chroma value, this implies that the tones are one or 

more octaves apart from each other. This leads to a chroma helix that looks like the circle of 

fifths from above. The pitch height is represented by the vertical changes in the helix while 

the chroma is constituted by its rotation. 
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Figure 4.9  Chroma helix [41] 

The tracking of chroma values as a twelve-dimensional vector over time leads to a time-

frequency representation of the signal called chromagram [41] or Harmonic Pitch Class 

Profile (HPCP).  

 

Figure 4.10  Semitone-quantised chromagram (Beatles, „Eight Days a Week“) [41] 

So, by mapping short-time signal spectra onto a chroma scale, the energy of the signal is 

compressed from the number of STFT bins used to 12, leading to a very compact 

representation of the signal. This can also be used for similarity evaluation purposes by 

comparing the chroma values concentrated in 12-dimensional feature vectors to compute a 

measure of similarity. Bello [5] combines the chroma representation with Hidden Markov 

Models (HMM) to determine harmonic content and larger-scale segments in music signals. 

Other authors rely on chroma detection to estimate the key or the chord structure of a music 

piece [41] or to create similarity matrices from which large-scale song segments such as 

chorus or verse can be inferred [14].  
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4.2.3.1 Approach Overview 

The fact that the circularity of the chroma definition is intuitively clear for every musician 

makes it a useful mid-level representation of audio [5]. Changes in the chroma structure of an 

audio signal indicate the presence of onsets. Even if the same note is played twice in 

succession, there will be a short time during the attack of the second tone that the chroma 

value will jump from the defined value of the first note to a value determined by the sharpness 

of the onset event, thus evidencing the presence of an onset. The implementation of a chroma-

based onset detection function presented in this thesis takes advantage of this fact by 

following the energy distribution in the respective chroma bands over time. After some pre-

processing, the STFT of the signal is calculated and mapped onto a twelve-point chroma 

scale. The energies in the chroma bands are summed and their change is tracked to create a 

detection function which has to undergo some post-processing, after which the local maxima 

are taken as onsets. 

 

Figure 4.11  Chroma-based onset detection 

The first stage of the onset detection function is constituted by the pre-processing and STFT 

calculation stage that is explained in detail in section 4.2.2. 

A chroma axis reaching from the E0 tone at 41 Hz up to 5 kHz is then created by using the 

just temperament to create the respective chroma boundaries. The upper boundary is set at 5 

kHz because the majority of the signal energy is concentrated in the lower frequency bands. 

The STFT bins are then mapped to this chroma scale according to their frequency value while 

taking care that the difference between the STFT bin frequency and the chroma frequency 

scale does not exceed 15 cents (this corresponds to a deviation of approximately 1 7  of a 

semitone).  
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Figure 4.12  Energy spectrum of one STFT frame (Cream, „Sunshine Of Your Love“)                           showing 
the concentration of the signal energy in the low frequency range 

The above figure shows the energy spectrum, i.e. the squared magnitude spectrum of an audio 

signal. The energy is visibly concentrated at the lower end of the spectrum. By sorting the 

energies at distinct frequency bands into the appropriate pitch class, the chroma energy 

distribution is obtained. 

 

Figure 4.13  Energy distribution in chroma classes for one STFT frame (Cream, „Sunshine Of Your Love“) 
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By evaluating the energy distribution using musical knowledge about harmonies and chord 

formations, assumptions concerning the harmonic structure of the analysed signal can be 

made [41]. For example, Figure 4.13 shows a concentration of the signal energy around the B 

tone, suggesting a well-defined tonal center of the current STFT frame. 

To avoid false detections due to signal segments where there is little energy, i.e. pauses or 

silent regions, frames containing less energy than a fixed threshold (in this case, a threshold 

of 1% of the maximal energy found in a frame of the signal works quite well) are disregarded 

by the algorithm. 

In a later stage, a chroma vector is created where the name of the chroma class containing the 

maximum of the energy present in every frame is stored, thus leading to a description of the  

tonal progression of the signal over time.  

 

Figure 4.14  Chroma progression (Cream, „Sunshine Of Your Love“) 

The detection function itself is created by calculating the ratio of the energy present in tonal 

components to the total energy contained in every STFT frame.  

[ ][ ]
[ ]c

E mr m
E m

=           (4.8) 

with m as the frame number, E[m] as the total frame energy and [ ]cE m as the tonal energy 

contained in the detected chroma class. Highly tonal components of audio signals, for 
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example instruments playing sustained notes, will tend to have a ratio close to one because a 

major part of the signal energy will be concentrated around the fundamental frequency, while 

onsets that are characterised by a flat, broadband spectrum will tend to have much larger 

ratios as the energy of the spectrum will be equally divided across all chroma values. From 

this information, a detection function that shows maxima at probable onset locations can be 

created.  

Two ways to create a detection function are explored: in the first, the ratio of tonal energy is 

tracked over time. After some low-pass filtering to eliminate noise and spurious peaks, the 

ratio is differentiated and half-wave rectified, which amounts to determining the positive 

changes in the energy ratio. The second method uses an approach presented in [42] where the 

ratio is first compressed with a logarithmic function motivated by the fact that humans detect 

signal intensity changes in relation to the signal intensity itself. Then a weighted sum is 

calculated of the compressed, low-pass filtered ratio and a half-wave rectified differential of 

the compressed, low-pass filtered ratio. 

The first approach to the detection function calculation uses a simple Butterworth low-pass 

filter1 to smooth the signal, thereby removing many spurious maxima. This results in a lower 

number of falsely detected onsets but has the drawback of missing some onsets. As onsets are 

accompanied by positive energy changes, only large positive changes in the filtered ratio are 

of interest. The changes are determined by calculating the first-order difference of the energy 

ratio, i.e. 

[ ] [ ] [ 1]r m r m r m′ = − −          (4.9) 

This differential ratio is then half-wave rectified to create the final detection function as 

follows: 

( )[ ] [ ]
[ ]

2
r m r m

df m
′ ′+

=                  (4.10) 

                                                 
1 The Matlab function filtfilt filters signals with the previously determined filter coefficients with no phase 
distortion by running the reversed filtered signal back through the filter. 
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The second approach to the creation of the detection function follows the compression and 

combination of ratios used in [42]. To create a perceptually relevant representation, the data is 

first compressed using μ-law compression: 

( )
( )

ln 1 [ ]
[ ]

ln 1c

r m
r m

μ
μ

+
=

+
                            (4.11) 

with μ as the compression factor that can be adjusted to provide near-linear transformation for 

small values of μ and near-logarithmic transformation for large values of μ. The compression 

behaves generally linear near zero but logarithmic for higher values. This is due to the fact 

that the human hearing system can discriminate changes in a signal in proportion to the signal 

itself. As in the previous approach, the compressed ratio is then low-pass filtered to smooth 

the ratio curve by removing irrelevant peaks, resulting in a smoothed ratio ,c sr . The same 

differentiation and half-wave rectification described above is also performed in this approach.  
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The overall detection function is computed by performing a weighted summation of the half-

wave differential version and the previous, smoothed ratio curve: 

( ) , ,[ ] 1 [ ] [ ]r
c s c s

LP

fdf m r m r m
f

λ λ= − + %                (4.13) 

where rf  is the frame rate (i.e. the decimated sampling frequency) and LPf  is the cut-off 

frequency of the low-pass filter used to smooth the signal. λ is the factor that determines the 

balance between the two transformed energy ratios and the factor r

LP

f
f

 compensates the small 

amplitude of the differential energy ratio [42]. 

The balance factor λ was set to 0.8, however, any value above 0.5, i.e. with a higher emphasis 

on the differentiated, rectified ratio works well. The onset detection method is evaluated with 

and without this compression and combination approach. The results are detailed in section 

4.3. 
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Figure 4.15  Chroma-based onset detection function (blue) with labelled onsets (red)                                      
(Cream, „Sunshine Of Your Love“) 

The last stage of the algorithm consists of a peak-picking part where local maxima are picked 

out using an adaptive threshold to determine likely onsets. For more information on peak-

picking refer to section 4.2.7. 

4.2.4 Onset Detection in the Complex Frequency Domain 

In most cases, an onset event is accompanied by an increase in the energy of the signal. The 

phase values tend to change abruptly as well. Some onset detection methods track the signal 

energy, others the phase curve to detect transient events. 

In this section, the relationships between energy and phase changes during transient events 

and stable periods are briefly investigated. Afterwards, the implementation of Bello’s [11] 

approach to onset detection used in this thesis is presented. 

4.2.4.1 Spectrum Change at Transient Events 

To investigate the relevance of changes in the energy and phase spectrum in regard to 

transient events, different audio signals are analysed accordingly.  
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Every audio signal is analysed using the STFT. The signals are segmented into 23.2 

millisecond frames. These are then windowed with a Hanning window to minimise spectral 

leakage and zero-padded to a length of 46.4 milliseconds for better frequency resolution. 

Then the Fast Fourier Transform (FFT) of the frames is computed, with an overlap of 11.6 

milliseconds between successive frames. 

The energy changes as well as the unwrapped phase changes that happen from frame to frame 

are calculated and the changes are combined by computing the mean energy and phase 

changes in ten octave frequency bands covering the whole spectrum. The changes that take 

place between frames that contain no onsets are compared to the changes between a stationary 

and the successive transient frame.  

The onsets are labelled by hand, using the Sound Onset Labeliser [43] and the resulting onset 

times are used to mark frames where onset events take place. The used audio material is taken 

from popular music. The following figures illustrate the differences in the spectrum change 

when a transient event is present and when there is no onset, respectively. 

 

Figure 4.16  Mean energy and phase change between stationary frames (top) and between frames          
containing transient events (bottom) (Cream, “Sunshine Of Your Love”) 

Figure 4.16 (top) shows the normalised unwrapped phase change and the logarithmic energy 

change when there are no transient events present. Every point in the figure stands for the 
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mean change in an octave band of the signal spectrum between successive frames containing 

no onsets and every colour stands for such a frame pair. The majority of changes is 

concentrated around 0 dB energy change and 0 rad/π phase change. In contrast, Figure 4.16 

(bottom) shows the spectrum changes when a stable frame is followed by a frame containing 

an onset. Again, the points denote the mean changes in octave bands between frames and the 

different colours stand for the respective frame pairs. The red rectangle represents the region 

where 90% of the change values of frames lie when there is no onset present. The spectrum 

changes are much more pronounced and spread over a larger area. This supports the 

assumption that onset events are for the most part accompanied by major changes in the phase 

and energy spectrum, respectively. As the size and location of the red rectangle shows, the 

spectrum change is much less evident when a stable frame follows another, while there is still 

some energy and phase change due to, for example, modulations and decay effects. While 

90% of change values in regard to energy and phase change between stable frames lie in the 

rectangle, the percentage of change values between stable and onset frames lie at 17% for 

energy changes and 32% for phase changes. 

For further illustration of this fact, another example of a modern pop song analysed in regard 

to energy and phase changes in the spectrum is given below.  

 

Figure 4.17  Mean energy and phase change between stationary frames (top) and between frames        
containing transient events (bottom) (Muse, “Muscle Museum”) 
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As in Figure 4.16, the unwrapped phase change between frames containing no transient 

events (top) and between frames containing transient events (bottom) is plotted versus the 

logarithmic energy change. As in Figure 4.16 (top), few changes in the phase spectrum are 

higher than ,
2 2
π π⎡ ⎤−⎢ ⎥⎣ ⎦

. While there are some outliers concerning the energy spectrum above 

50 dB, the major part is concentrated between 0 dB and approximately 30 dB.  

In Figure 4.17 (bottom), the space taken up by the majority (90%) of frame change values 

without an onset - again denoted by the red rectangle - is significantly smaller than the space 

occupied by the change values when an onset event is preceded by a stable frame. However, 

in contrast to the first example (Cream’s “Sunshine Of Your Love”), the energy changes 

between stable frames are not markedly different from those between a stable and a transient 

frame – 58% of energy change values of the latter also lie in the red rectangle. This suggests 

that, at least for this particular audio signal, a phase-based onset detection method is likely to 

work better than an energy-based method. However, this fact cannot be generalised, as the 

following example shows. 

 

Figure 4.18  Mean energy and phase change between stationary frames (top) and between frames 
containing transient events (bottom) for a simple drum track 
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The upper part of Figure 4.18 depicts the change between stationary frames. The spread of the 

energy and the phase of stationary frames is much more pronounced than in the previous 

pictures. 

The lower figure depicting the change between stable frames and frames containing transient 

events shows that the majority of phase change between stable frames reaches up to [ ],π π− . 

This implies that a phase-based onset detection will probably not yield satisfactory results 

because phase change is, in this case, not a reliable indicator for transient events. In fact, the 

region where 90% of the phase changes between stable frames lie (denoted by the red 

rectangle) is also occupied by 88% of the phase changes of stable-to-transient regions. The 

ratio concerning energy changes lies at 90% for stable frames to 66% for stable-to-transient 

regions. The figure suggests that for this audio signal, an energy-based onset detection 

method should produce better results than a phase-based method. 

This section shows that onsets are accompanied by significant changes in the energy and 

phase values of the STFT spectrum. It also demonstrates that for some audio signals, the 

phase changes are more pronounced than the energy changes while for other signals it is the 

other way round. So, while for certain audio signals phase-based onset detection methods 

produce good results, for others energy-based methods seem better suited. To avoid having to 

adapt the onset detection algorithm to the signal, it seems a good solution to combine the two 

approaches by considering the phase as well as the energy of the spectrum for onset detection. 

This was proposed in [11] and implemented in this thesis and is presented in the next chapter. 

4.2.4.2 Approach Overview 

In many types of music, especially in modern pop and rock music, the introduction of a new 

note (onset) will be accompanied by a sharp increase in the signal energy. This is especially 

true for signals with strong percussive elements.  

By computing the first-order difference of the signal energy, which corresponds to the energy  

change over time, onsets can be identified by picking out local maxima. Another possibility 

for detecting changes in the magnitude or energy of the signal is given by computing the 

STFT of a signal x[n] weighted with a sliding window w as 
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with k as the frequency bin index, k = 0,1,…,N-1 and m as the STFT frame index, and 

comparing the difference between successive frames. These approaches work well for simple, 

percussive signals (see also section 4.2.4.1) and are fast and easy to implement.  

For other types of signals, it may be more suitable to find onsets by working with the phase 

information of the signal spectrum. By evaluating the difference between the expected and the 

actual phase value, onsets can be detected when the deviation between these values is high. 

This method works well with non-percussive signals containing so-called “soft” onsets, i.e. 

onsets that do not exhibit major energy changes, such as a violin playing legato. However, 

phase distortions present in the signal can lead to the deterioration of detection results. 

Bello [11] presents a method where phase and magnitude information of a signal are 

combined in the complex frequency domain to create an onset detection function. In doing so, 

the advantages of the respective methods are combined – the ability of the phase approach to 

find “soft” onsets is combined with the robustness of the magnitude approach and its ability to 

find percussive onsets.  

 

Figure 4.19  Spectrogram and waveform of an audio signal with the onset detection functions of                     the 
phase-based approach (upper middle), the magnitude-based approach (lower middle)                                and the 

combined approach in the complex frequency domain (bottom) [11] 
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As seen in Figure 4.19, this approach leads to well-defined local maxima in the detection 

function corresponding to onsets. 

The algorithm implemented in this thesis uses a pre-processing stage to standardise the signal 

representation. In later stages, the STFT of the signal is computed, which serves as a basis for 

the onset detection algorithm. From the STFT values, the signal representation in the complex 

frequency domain using magnitude and phase is extracted. A detection function is then 

created by considering the frame-wise changes in the real and the imaginary parts of the 

expected and the detected magnitude and phase values of the spectrum. The detection 

function then is post-processed and local maxima in the function are accepted as onset events. 

 

Figure 4.20  Onset detection in the complex frequency domain 

The audio signal that is to be analysed is first pre-processed and its STFT representation is 

calculated (for more information, refer to section 4.2.2). 

The expected combination of spectral magnitude and phase for the k-th bin of the STFT is 

given by 

ˆ [ ]ˆ ˆ[ ] [ ] kj m
k kS m R m e φ=                  (4.15) 

where ˆ [ ]kR m  is the expected magnitude value and should, for stationary frames, equal the 

magnitude of the previous frame 

ˆ [ ] [ 1]k kR m S m= −                  (4.16) 

and ˆ [ ]k mφ  is the expected phase value, calculated as the sum of the unwrapped phase of the 

previous frame with the unwrapped phase difference of the preceding frames 

( )ˆ [ ] arg 2 [ 1] [ 2]k k km princ m mφ ϕ ϕ= − − −               (4.17) 

On the other hand, the actual magnitude and phase for the k-th bin is given by 
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[ ][ ] [ ] kj m
k kS m R m e φ=                  (4.18) 

The measure for the stationarity for the k-th bin of a signal between two successive frames 

can be computed by calculating the (Euclidean) distance between the actual and the expected 

complex vectors: 

{ }2 2ˆ ˆ[ ] ( [ ]) ( [ ]) ( [ ]) ( [ ])k k k k km S m S m S m S m⎡ ⎤ ⎡ ⎤Γ = ℜ −ℜ + ℑ −ℑ⎣ ⎦ ⎣ ⎦            (4.19) 

This equation can be simplified by rotating ˆ [ ]kS m  onto the real axis, which means setting the 

expected phase value ˆ [ ]k mφ  to zero. 

 

Figure 4.21  Deviation between actual and expected bin in the complex frequency domain,                             (a) 
normal and (b) rotated on the real axis [11] 

This means that [ ]kS m  can be rewritten using the phase deviation value , [ ]k mφΔ  explained 

above: 

, [ ][ ] [ ] kjd m
k kS m R m e φ=                  (4.20) 

It can be shown that [ ]k mΓ  equals the spectral difference measure [ ]S mΔ  if and only if the 

phase deviation value is equal to zero [11]. This means that the phase behaves as expected 

(the difference between successive frames remains constant) and only the energy difference is 

used to create the detection function. Otherwise, the phase value also influences the detection 

function. 
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The detection function itself is constituted by concatenating the complex distance measures 

for each frame into a continuous function as described by 

1
[ ] [ ]

N

k
k

df m m
=

= Γ∑                  (4.21) 

The detection function is then processed using a low-pass filter to smooth the function and 

remove any unwanted spurious peaks. Then local maxima are picked out by an adaptive peak-

picking algorithm. For more information on post-processing and peak-picking see chapter 

4.2.7. 

 

Figure 4.22  Complex frequency domain detection function (blue) with labelled onsets (red)                   (Cream, 
„Sunshine Of Your Love“) 

4.2.5 MFCC-based Onset Detection 

In this chapter, a brief explanation of Mel-Frequency Cepstral Coefficients (MFCCs) is given. 

For a more detailed description, refer to section 5.2.1. Then the implemented onset detection 

that works by following the MFCCs over time is presented. 

Mel-Frequency Cepstral Coefficients represent the spectral characteristics of a signal in a 

very compact way. They are used heavily in speech processing applications, mainly in speech 
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recognition and speech coding algorithms where the cepstral domain is useful for the 

extraction of the spectral envelope and the separation of signals [44]. The resolution of the 

MFCCs varies according to the chosen number of coefficients.  

 

Figure 4.23  Mel-Frequency Cepstral Coefficient calculation 

The calculation of the coefficients is realised as follows: first, the magnitude spectrum of the 

signal is determined, for example by using the FFT. The magnitude spectrum is then filtered 

by a Mel filter bank, which is a group of triangular filters that fulfills the purpose of grouping 

together frequency components according to the Mel scale, which is based on the human 

perception of pitch distances. The logarithm is then computed over the summation of the 

frequency groups. This mirrors the behaviour of the human cochlea, where neuronal impulses 

are evaluated in frequency groups, resulting in an integration of the impulses. In the last stage 

of the calculation, the values obtained from the filter bank are transformed into the cepstral 

domain using the Discrete Cosine Transform (DCT) [45].  

4.2.5.1 Approach Overview 

The idea behind the onset detection algorithm is to track MFC coefficients over time. Two 

methods were implemented: in the first one, only the first MFCC is tracked (see section 

5.2.1); in the second one, linear regression is used to determine a weighting vector which is 

applied to the MFCCs to generate a detection function. 

 

Figure 4.24  MFCC-based onset detection function structure 
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The standard pre-processing stage consists of converting the signal to mono format if 

necessary and down-sampling to 11.025 kHz (for more information on the pre-processing 

stage, refer to section 4.2.2). 

The signal is then divided into overlapping equal-length frames, for each of which the 

MFCCs are calculated. The MFCC computation is explained in detail in section 5.2.1. 

 

Figure 4.25  First 5 MFC coefficients and labelled onsets (red markers)                                                  (Cream, 
„Sunshine Of Your Love“) 

Two different approaches are explored in order to create a detection function from the MFCC 

data: by using signals where the onsets are known (they were hand-labelled using the Sound 

Onset Labeliser GUI [43]), linear regression is employed to try to find a suitable weighted 

combination of MFCCs that represent a well-tuned detection function; the second method 

used is to follow the first MFCC over time.  

Linear regression is a mathematical method that describes the relationships between a 

dependent variable and any number of independent variables, which is assumed to be a linear 

function. A simple example of linear regression could be 

0 1 1 2 2( ) ... n ny x c c x c x c x ε= + + + + +                (4.22) 
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where y(x) are the dependent variables, 1... nc c  stand for constant values, ε for a random term, 

1... nx x  are the independent variables and n determines the number of parameters to be 

estimated. More complex linear regression models also incorporate mixed and quadratic 

terms of nx . However, for this thesis the reliance on only first-order independent variables 

was deemed to suffice. 

In matrix notation, the above equation can be written as 

1 11 12 1 1 1
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              (4.23) 

or, in simplified notation, 

y x c ε= ⋅ +
rr r r                   (4.24) 

To estimate the weighting coefficients cr , following equation is used: 

( ) 1T Tc x x x y
−

=
r r r r r                  (4.25) 

This means that by knowing the independent variables, which in our case are the trajectories 

of the MFCCs over time, and the dependent variables - in our case the exact points in time 

when onsets appear - it should be possible to find a good weighting vector that can be used to 

create a detection function. The dependent variable yr  is modelled by creating a pulse train 

with pulses at the times of labelled onsets and convolving the result with a Hamming window 

of 50 millisecond length. However, it was found that the first approach using only the first 

MFC coefficient works as well or better with most signals, especially percussive ones, 

whereas the second approach using a weighted sum of MFC coefficients has the drawback 

that it has to be “trained” before use because the weighting factors change when using 

different signals, therefore a large amount of training time and computation time is needed for 

this algorithm to work well.  
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Figure 4.26  Weighting factors determined by linear regression for different audio signals 

Figure 4.26 shows that the weights for different signals show a large amount of variation. The  

weighting factors for the first 20 MFC coefficients for an excerpt from a pop song with 

percussive elements (Cream, “Sunshine Of Your Love”), an excerpt from a pop song 

containing no percussive elements (Fugees, “Ready Or Not”) and a short drum loop are 

depicted. While the first few coefficients are weighted similarly, the following weights differ 

greatly, which indicates that the first coefficients behave similarly in audio signals of different 

genres. Another fact that speaks for the choice of the first MFCC as detection function is the 

fact that for the most evaluated audio signals, only a small number of MFCCs carries 

meaningful information. 

For further information on the evaluation results concerning MFCC-based onset detection see 

section 4.3. 
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Figure 4.27  First 20 MFCCs over time (Cream, „Sunshine Of Your Love“) 

Figure 4.27 shows that only the first three MFC coefficients carry meaningful spectral 

information. This is due to the compression of the spectrum. While there is still some 

information in MFCCs 4 through 11, it is visibly less than in the first ones. Coefficients with a 

higher number can be said to be ineffective in describing the audio signal spectrum. 

As in the onset detection method based on chroma values (section 4.2.3.1), the chosen 

detection function is processed in order to remove any irrelevant peaks and enhance the 

relevant peaks. Again two methods are evaluated: one using the half-wave rectified 

differential of the smoothed detection function, the other using a combination of the smoothed 

and the half-wave rectified differential smoothed version of the detection function [42]. Both 

methods are described in detail in section 4.2.3.1, and evaluation results for both methods are 

given in chapter 4.3. 

In the final algorithm stage, the local maxima of the created detection function are picked out 

and taken as onset times. For more information on peak-picking, see section 4.2.7. 



Concatenative Music Composition 

 Institute of Electronic Music and Acoustics 63 

 

Figure 4.28  MFCC-based onset detection function (blue) with labelled onsets (red)                                         
(Cream, „Sunshine Of Your Love“) 

4.2.6 Onset Detection based on Modulation Spectra 

This chapter focuses on the implementation of onset detection functions based on the 

evaluation of modulation spectra, i.e. the STFT-transformed trajectories of STFT sub-bands. 

The first part of the chapter will present the concept of modulation spectra. The following two 

subsections will describe in detail the implementations of two different approaches to creating 

a detection function from modulation spectrum information. The methods differ in the 

creation of the detection function itself; while the first sums the modulation spectra weighted 

toward higher frequencies, the second uses a weighting method based on the characteristic 

frequencies of drum and percussion signals. 

The usual way to interpret the STFT is as a frame-by-frame evaluation of the spectral 

characteristics of a given signal, i.e. a “series of time-localised spectra” [32]. But from 

another point of view, the STFT can be interpreted as the sub-band output of a filter bank. 

Every sub-band output can in turn be viewed as the temporal evolution of the signal 

amplitude and phase in the frequency range determined by the sub-band center frequency and 

sub-band width called the sub-band trajectory. Therefore, the STFT corresponds to a 

combined representation of sub-band trajectories.  
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Every sub-band trajectory can now be analysed in regard to its spectrum, just like any signal 

in the time domain. This new domain, which could be described as the spectrum of spectrum, 

is called modulation spectrum or modulation frequency domain [32]. Computing the STFT of 

[ ]kX n 1 results in the transformed signal [ , ]kX p q% , the three-dimensional representation of the 

modulation spectrum with the modulation frequency p and the new time q. The time is 

decimated because the new time axis is determined by the original STFT frame rate.  

 

Figure 4.29  Modulation spectrum principle 

Figure 4.29 shows the principle of modulation spectrum calculation. In order to obtain a 

single representation of the modulation spectrum (much like the spectrogram) and not the 

modulation spectra of the respective sub-bands, the sub-bands are added together. In this 

thesis, the sub-bands are weighted towards higher-frequency sub-bands before summation in 

order to amplify the spectral parts that have a greater influence on onset detection. 

Modulation spectra are used for describing and improving speech intelligibility [32] by 

removing noise disturbances or acoustic reverberation effects. The modulation spectrum 

domain is also very useful for applications that concern themselves with evaluating the 

amplitude modulation of the respective sub-band trajectories. For example, a sinusoidal signal 

with constant amplitude will exhibit no changes in the modulation spectrum, there will only 

                                                 
1 The short-time spectrum of x[n] of the k-th sub-band 
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be a DC component visible. In contrast, any other signal with changing amplitude or 

frequency will exhibit clearly visible changes in the modulation spectrogram. The changes 

will be more or less pronounced according to the sub-band that is analysed.  

This quality is clearly visible in Figure 4.30, where the modulation spectra of different sub-

bands are shown. The analysed signal is a simple drum recording using only bass drum, snare 

drum and a hi-hat. In the lowest analysed sub-band around 40 Hz, only the signal changes due 

to the bass drum are visible, the second sub-band shows the changes due to the snare drum 

and the third sub-band is composed of snare-drum and hi-hat influences. The hi-hat starts in 

the second part of the recording and is visible in the fast but not very pronounced changes 

starting at approximately 12 seconds. While the structure of more complex recordings cannot 

be resolved as easily as in this example, the principle still remains the same. 

 

Figure 4.30  Modulation spectra of different sub-bands (top: 40 Hz,                                                            
middle: 340 Hz, bottom: 5 kHz for a simple drum track) 

In order to be able to create a detection function from the sub-band modulation spectra, these 

have to be grouped together. The spectra can simply be added or some kind of weighting can 

be used to enhance sub-bands that have a greater impact on onset detection, leading to a 

single modulation spectrum representation that can be evaluated. 
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Figure 4.31  Grouped modulation spectrum (top) and spectrogram (bottom) of a simple drum track 

Figure 4.31 shows the grouped modulation spectrum and the spectrogram of a simple drum 

track. The advantage of the modulation spectrum is apparent – changes in the signal energy 

are much more pronounced and visible than in the spectrogram of the signal.   

In this thesis, an attempt is made to create an onset detection function by following the 

weighted modulation spectrum sub-bands over time. The assumption is made that when 

onsets appear in a signal, there will be a broad-band increase in energy in the modulation 

spectrum of the signal. The next subsections present the two approaches considered for this 

application where the major difference consists of the weighting method of the sub-band 

modulation spectra. The basic principle of both approaches is shown in Figure 4.32. 

 

Figure 4.32  Onset detection based on modulation spectra 

After pre-processing, the STFT is calculated, from which the modulation spectrum is derived. 

This in turn is transformed to create the detection function, from which the onsets are 
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determined after a post-processing stage. The difference between the two approaches 

mentioned above lies in the computation of the combined modulation spectrum from the sub-

band modulation spectra using different weighting methods. 

 

Figure 4.33  Modulation spectrum calculation  

The first approach presented in chapter 4.2.6.1 uses weighting of sub-bands towards higher 

frequencies, emphasizing changes in the upper part of the spectrum, while the second 

approach described in chapter 4.2.6.2 uses musical knowledge to place higher emphasis on 

frequency regions where characteristically high energies from drum sounds are found. 

4.2.6.1 Sub-Band Energy Trajectories 

As explained in the previous section, broad-band changes in the modulation spectrum can be 

interpreted as onsets in the signal. The modulation spectrum is calculated by STFT-analysing 

the sub-band trajectories of a STFT representation of a time-domain signal x[n] and describes 

the modulations in the spectral amplitudes of a signal over time. This section will present the 

basic approach taken to create a detection function from modulation spectrum data. The next 

section will present an alternative approach to the same problem. 

The first stage of the algorithm consists of the pre-processing and STFT calculation section 

described in chapter 4.2.2. 

In the second stage, the modulation spectrum is calculated from the STFT representation. The 

sub-band representation of the signal spectrum is created by grouping the trajectories of the 

spectral bin magnitudes in octave bands around a center frequency 0k  by summation. This 
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results in 10 sub-bands with center frequencies reaching from 30 Hz to 8.5 kHz. Each sub-

band is in turn analysed using a second STFT stage.  

This second analysis stage uses an 18-point frame length corresponding to approximately 420 

milliseconds and a hop-size of 1, i.e. no time decimation. The frame length of 18 points was 

determined after extensive testing (for more information, see chapter 4.3). Finally, the frames 

are again multiplied with a Hanning window and zero-padded to 512 points. By computing 

the FFT of the signal segments the modulation spectral domain representation of the signal is 

obtained. 

In order to be able to create a single representation of the signal, the sub-band modulation 

spectra are combined. This is achieved by summing the octave-band modulation spectra 

weighted towards higher-frequency bands.  

10

1

[ ] [ ]p
p

X q pX q
=

=∑% %                  (4.26) 

where p stands for the sub-band index, [ ]pX q%  for the modulation spectrum of the p-th sub-

band and [ ]X q%  for the combined modulation spectrum representation. This is a weighting 

biased towards high frequencies similar to the weighting used in [12]. The idea behind this 

weighting approach is to take advantage of the fact that between onsets, the major part of the 

signal energy is contained in the lower part of the modulation frequency spectrum. Between 

onsets, the audio signal energy changes only slightly due to the mostly stationary nature of the 

signal in that segment compared to the more abrupt changes with uniform distribution over 

the modulation frequency bandwidth when onsets are present. 
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Figure 4.34  Modulation spectrum (top) and weighted modulation spectrum (bottom)                             (Cream, 
„Sunshine Of Your Love“) 

Figure 4.34 shows the effect of weighting towards higher frequencies. The modulation 

spectrum of up to 5 Hz changes only slightly throughout the signal, while the upper 

modulation spectrum changes due to the onsets present in the signal. The weighted approach 

depicted in the lower part of the figure displays a more broad-band change in the modulation 

spectrum, thus making it easier to identify the onsets. 

The next algorithm stage consists of creating a detection function from the modulation 

spectrum data. Two methods are evaluated to this end: firstly, the modulation spectra are 

divided into modulation frequency sub-bands which are weighted towards higher modulation 

frequencies and summed; a second approach uses linear regression to determine the optimal 

combination of modulation frequency sub-bands for the creation of a detection function. 

Independently of the detection function creation mode, the weighted and summed modulation 

spectrum described above is divided into eight octave bands covering the complete 

modulation frequency bandwidth, in our case up to a little above 40 Hz. This is done because, 

as seen in Figure 4.34, the energy in the low modulation frequencies tends to be uniformly 

high, in contrast to the higher modulation frequency bands where there are numerous sharp 

increases in the signal energy mainly due to onset events.  
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In the first approach, a weighting similar to the method used to form the complete modulation 

spectrum presented previously is used: 

8

1

[ ] [ ]p
p

df q pX q
=

= ∑ %                  (4.27) 

where df[q] describes the detection function, p the modulation spectrum octave band index 

and [ ]pX q% stands for the p-th modulation frequency octave band. 

The second detection function creation method uses linear regression to determine a suitable 

sub-band weighting function (for more information about linear regression, refer to section 

4.2.5.1). By using the sub-band modulation spectrum trajectories over time as independent 

variables and the convolution of a pulse train with pulses at the previously determined onset 

times with a 50-millisecond Hanning window as the dependent variable, a weighting vector is 

calculated.  

After evaluating the onset detection results for either weighting method, it was decided to use 

the first approach that uses linear weighting of modulation-spectrum sub-bands towards 

higher modulation frequencies in the onset detection algorithm. While in some cases the 

second approach works as well or better as the first one, the drawbacks of the linear 

regression approach, including the additional computation time and the dependency on 

similar audio signals which arises from the differences in the weighting function for different 

signals, are felt to be too severe for this application.  
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Figure 4.35  Weighting factors determined by linear regression for different audio signals 

In Figure 4.35, the optimal weights determined by linear regression for the weighting of the 

modulation spectrum sub-bands for different signals are shown. While the major part of the 

weights has similar values, the differences in the first few weighting coefficients is striking – 

the nearly linear weighting calculated for a non-percussive fragment of The Fugees’ “Ready 

Or Not” cannot be compared to the weighting deemed suitable for the two other, more 

percussive signals.  

The detection function is post-processed in the next algorithm stage in order to de-noise it and 

to emphasise the local maxima, thereby facilitating the peak-picking operations that are 

carried out afterwards. To enhance the relevant peaks and remove irrelevant ones, two 

different approaches are used: one uses the half-wave rectified differential of the smoothed 

detection function, the other uses a combination of the smoothed detection function and the 

half-wave rectified differential smoothed detection function. Both methods are described in 

chapter 4.2.3.1. 
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Figure 4.36  Modulation spectrum-based onset detection function (blue) with labelled onsets (red)         (Cream, 
„Sunshine Of Your Love“) 

The detection function is then post-processed and the function maxima are selected and taken 

as onset times. For more information on post-processing and peak-picking, see section 4.2.7. 

4.2.6.2 Weighted Sub-Band Energy Trajectories 

The second algorithm implementation that uses modulation spectrum data to find onsets in 

audio signals differs from the first only in the manner of the weighting of STFT spectra. 

Therefore, this weighting method will be explained in detail while the rest of the algorithm 

will be only outlined broadly. For more information about the general structure of this onset 

detection algorithm, see section 4.2.6.1. 

The previous chapter explains in detail how changes in the modulation spectrum can be 

interpreted as onsets in the signal. When the temporal sequence of STFT representations of a 

signal is in turn analysed by calculating the STFT of the sub-bands, this leads to the 

modulation spectrum or modulation frequency domain representation that describes the 

modulations in the spectral signal amplitude over time. While the modulation energy changes 

only slowly when the audio signal is stationary, i.e. between onsets, abrupt changes in the 

energy distribution can be observed when an onset is present. When a musical note is 

sustained, the major part of the signal energy will be concentrated in the lower end of the 



Concatenative Music Composition 

 Institute of Electronic Music and Acoustics 73 

modulation spectrum (below 14 Hz) [32], while transient events such as onsets lead to a 

constantly high energy level across the whole modulation spectrum. This fact is exploited to 

find the onsets in audio signals by evaluating the energy present in modulation spectrum sub-

bands. 

As in the onset detection approach presented in the previous chapter, the audio signal is first 

pre-processed and the STFT is calculated as described in section 4.2.2. 

The next step consists of summing the spectral magnitudes in octave frequency bands, 

thereby compressing the STFT representation into 10 sub-band trajectories with center 

frequencies ranging from 30 Hz to 8.5 kHz. Each of these sub-bands is viewed as a pseudo-

temporal signal upon which the STFT is performed using a frame length of 18 points, which 

corresponds to a resolution of about 480 milliseconds, and a hop-size of 1, i.e. no time 

decimation. The frames are again windowed with a Hanning window and zero-padded to a 

length of 512 points.  The result of these calculations is the modulation spectrum 

representation of the signal for 10 different sub-bands. 

The modulation spectra of the respective sub-bands are combined to form the complete 

modulation spectrum representation. This is done by summing the sub-bands weighted 

according to the characteristic high-energy frequency bands of drum recordings. 

Standard drum sets have at least the following components: a bass drum, a snare drum and a 

hi-hat. However, as the hi-hat tends to have a very broad-band energy distribution across the 

frequency spectrum and the bass drum and snare drum often have a clear spectral centroid in 

the very low frequency regions, it was decided to concentrate on the latter drum components.  

By emphasizing the frequency bands that are characteristic of these instruments, detection 

functions that rely on spectral information to find onsets should be able to produce better 

results.  



Concatenative Music Composition 

 Institute of Electronic Music and Acoustics 74 

 

Figure 4.37  STFT representation (detail) of a simple drum signal with                                                             a 
bass drum (left) and a snare drum (right) 

Figure 4.37 shows the temporal evolution of the spectrum of a modern bass drum and snare 

drum. The major part of the bass drum’s energy is clearly concentrated below 200 Hz. The 

snare drum spectrum shows a broader energy distribution, but there is still a concentration of 

energy to be found between 200 Hz and approximately 1 kHz.  

 
Figure 4.38  Spectrograms for percussive excerpts from a Phil Collins live recording (top)                            and 

E.A.V.’s „Ding Dong“ (bottom) 
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The assumption about the spectral characteristics of bass drums and snare drums is confirmed 

after the analysis of a number of modern pop songs. Figure 4.38 shows two spectrograms that 

show the spectral distribution of bass drum and snare drum sounds. The upper figure, taken 

from a Phil Collins live recording, contains two bass drum sounds at the beginning and two 

snare drum sounds at the end. The bass drum shows a narrow-band energy concentration 

around 250 Hz while the snare drum has a more broad-band energy distribution between 200 

and 700 Hz. The lower figure, an excerpt of E.A.V.’s “Ding Dong”, shows similar 

characteristics with narrow-band bass drum energy at up to 200 Hz and more broad-band 

snare drum energy above that. 

This knowledge is used to determine a weighting function for the sub-bands of the frequency 

spectrum for use in the modulation spectrum calculation. 
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where p is the octave band index, bdp stands for the indices of octave bands that are part of 

the characteristic bass drum frequency region and sdp  stands for the indices of bands in the 

snare drum frequency region. The higher weighting of the bass drum is due to the higher 

energy concentration and also due to the fact that the bass drum is always a reliable indicator 

of a change in the signal. 

The complete modulation spectrum representation of the signal is then calculated by summing 

the weighted octave bands together. 
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where p stands for the sub-band index, [ ]pX q%  for the modulation spectrum of the p-th sub-

band and [ ]X q%  for the combined modulation spectrum representation.  

In the next step, the detection function is created from which the onsets are picked out. The 

modulation spectrum is segmented into eight octave frequency bands covering the whole 

spectrum bandwidth. The reason for this repeated sub-band division is that the energy in the 
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lower modulation frequency regions will tend to be uniformly high because even when the 

signal is assumed to be stationary, as is the case with, for example, sustained notes, there will 

be some measure of amplitude decay. However, as seen in Figure 4.34, when an onset is 

introduced in the signal, there will be a noticeable increase in the energy over the whole 

modulation spectrum bandwidth. After this segmentation, the weighted sum of the octave 

bands is calculated to form the detection function. 
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= ∑ %                  (4.30) 

where df[q] describes the detection function, p the modulation spectrum octave band index 

and [ ]pX q% stands for the p-th modulation frequency octave band. This corresponds to the 

linear weighting method presented in [12] that takes advantage of the fact that onsets tend to 

appear as broadband events in the modulation spectrum while stationary regions show a 

concentration of energy in the low modulation frequency bands. 

In the next stage, the detection function is post-processed in order to remove noise 

components and enhance relevant peaks. For more information about this algorithm stage see 

section 4.2.3.1. 

The two different approaches that are used for the enhancement of relevant peaks and the 

removal of irrelevant ones are the same as in the previous approach. 
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Figure 4.39  Modulation spectrum-based onset detection function with weighted sub-bands (blue)                with 
labelled onsets (red) for Cream, „Sunshine Of Your Love“ 

In the last stage of the algorithm, the detection function is searched for remaining maxima 

over an adaptive threshold. For more information on the peak-picking stage, see section 4.2.7. 

4.2.7 Peak-Picking 

The previous chapters present the implementation of different algorithms that create an onset 

detection function from an audio signal. These detection functions are intermediate 

representations of the signal that are calculated according to certain signal characteristics that 

are assumed to facilitate the detection of onsets present in the signal. This section is 

concerned with the implementation of an algorithm that reliably detects the onsets by finding 

local maxima in the detection function using a locally adaptive threshold. This algorithm is 

used with all onset detection function implementations. It consists of three stages: in the first 

stage suitable threshold criteria are estimated, in the second stage local maxima are identified 

and in the final stage multiple detections within a certain time slot are removed.  
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Figure 4.40  Peak-Picking stage structure 

The task of finding function values that exhibit certain characteristics has been widely 

researched in many fields, including information theory (e.g. block-switching coder 

applications [32]), audio applications such as de-noising [32] as well as in speech processing, 

for example in speaker identification tasks [46]. For most applications, there will have to be 

some kind of threshold, be it fixed or adaptive, which leads to a binary decision about 

whether some part of the signal fulfills the required characteristic or not. While in some cases, 

for example concerning modifications of perceptual attributes, this decision can be avoided by 

using continuous adaptation curves [32], in most cases a yes-no judgment concerning the 

presence of specific signal attributes is necessary. The downside of this decision-making is 

that there will be some cases when a wrong decision will be made, i.e. there will be missed 

detections as well as false detections. The key is therefore to find an algorithm that maximises 

the number of correct detections while minimising the number of false detections. 

For simple applications, a fixed threshold might be adequate. However, in the case of onset 

detection algorithms, the range of values of the detection function depends on a number of 

variables such as the signal level, the frame length and the STFT size. Therefore, if the 

threshold is chosen as a small value, there will be numerous false detections, while if the 

threshold is set at a higher value, many genuine onsets will be overlooked. Also, while in the 

case of standard pop songs the dynamic range of the audio signal is not very high, most 

classical pieces display many changes in the dynamic range and therefore in the signal 

loudness, which can lead to the algorithm missing onsets in quiet passages while detecting 

wrong onsets during loud passages. 

Because of these limitations, most audio applications use an adaptive threshold. In most 

cases, this threshold is computed as a transformed version of the signal itself [3] by using 

linear or non-linear smoothing. Still better results are obtained with a smoothing method 

relying on local medians, where smaller peaks in the vicinity of larger peaks are not masked. 

The median of a set of values is defined as the value in the middle of an ordered table of the 

set. If the length of the signal window from which the median is obtained is longer than the 



Concatenative Music Composition 

 Institute of Electronic Music and Acoustics 79 

width of the onset peak, this will not cause the adaptive threshold to rise at the peak position, 

which results in better adaptation of the threshold curve [47]. 

For the peak-picking stage implemented in this thesis, the main goal is to detect significant 

peaks in the detection function while eliminating noise and spurious peaks that result in false 

detections. This is achieved by using a constant threshold in combination with an adaptive 

threshold obtained by calculating the local median of detection function segments [11]. 

( )[ ] [ ] , ,
2 2m m
H Hthr m median df k k m mδ λ ⎡ ⎤= + ⋅ ∈ − +⎢ ⎥⎣ ⎦

            (4.31) 

This results in a frame-wise detection function threshold thr[m] that can be described as local 

adaptive filtering. δ is a constant value that represents the fixed threshold, λ is a scaling factor 

that determines the influence of the surrounding frames on the threshold and H stands for the 

window length of the median computation. The constant δ should be chosen with care since it 

has considerable influence over the ratios of correct and false detection while the scaling 

factor λ is of less importance. Values of 0.01 for the threshold δ and 0.5 for the scaling factor 

λ worked well in most cases. 

While the approach mentioned above works fairly well for selecting probable onsets from a 

detection function, additional steps are taken to further improve detection results. After the 

adaptive threshold has filtered out a number of potential onset candidates, two separate 

processing stages eliminate multiple or incorrect onset detections. 

The first correction stage makes sure that only the maximum of the values of the detection 

function over the threshold is actually recognised as an onset. This is achieved by comparing 

the detection function values to the two previous and the two ensuing values. 

[ 2] [ 1] [ ] [ 1] [ 2]df q df q df q df q df q− < − < > + > +             (4.32) 

A real peak will have a detection function value higher than the value in the previous and 

following frames. Therefore, only detection function values that match this criterion are 

processed further. 

The last stage of the peak-picking algorithm deletes any multiple detections that are possibly 

still present.  
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A sixteenth note at 208 BPM is taken to be the smallest beat that is still perceptually 

meaningful. Therefore, it is assumed that if there are multiple onset detections during that 

time span, each but one will be a false detection. At a sampling rate of 11.025 kHz, the length 

of this time segment is approximately 800 samples, which corresponds to roughly 10 analysis 

frames. A moving window is applied to the detection function in order to identify regions 

with multiple detections during that time span. In every such region, only one peak is 

assumed to be a correct detection, so only the point with the maximal detection function value 

within the region, and not the first possible detection, is selected. This is done because a 

maximum in the detection function indicates the point in time where the biggest change in the 

signal characteristic takes place. 

4.2.8 Inter-Onset Interval Beat Tracker 

The previous chapters give an overview of the different methods used in this thesis to find 

onsets in audio signals. However, the information about onset times alone is not psycho-

acoustically meaningful. By tapping along with a signal, human listeners automatically infer a 

beat hypothesis consistent with the spacing of the onsets in the music. This can be described 

as finding musical accents and subsequently filtering them in order to find underlying 

periodic structures [42]. By detecting the beat structure of a signal, the results of the onset 

detection function can be further improved because the found onset positions can be 

compared to likely beat hypotheses. This section will introduce the concept of beat structures 

and present the inter-onset interval beat tracking system implemented in this thesis. 

The perception of musical beat is founded on different time scales which are summed to form 

an idea of the rhythmical structure of the signal [42]. What is commonly described as the 

“beat” of a signal corresponds to the so-called tactus level or foot-tapping rate and is 

intuitively understood as the rate a human listener would tap along with the music. Also, the 

tempo of a piece is defined as the rate of tactus pulses. The tatum (“temporal atom”) level of 

rhythmical understanding describes the rate of the shortest meaningful pulse periods that 

appear in a music signal, while the larger-scale harmonic change rates are described on the 

measure level. In most cases, the tactus pulses will be found at integer multiples of tatum 

pulses and measure pulses at integer multiples of tactus pulses. 
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Figure 4.41  Rhythmic levels [42] 

In this thesis, the underlying tactus and tatum levels are estimated to form a beat hypothesis. 

This is achieved by evaluating the inter-onset intervals (IOI), defined as the time span 

between successive onsets, a procedure that is often used ([48], [49], [50], [51]). The 

distribution of the IOIs is evaluated separately for the tactus and the tatum level by creating 

histograms that show the aforementioned distribution. From these histograms, the most likely 

beat hypothesis is calculated by evaluating the histogram maxima and comparing the maxima 

in the tactus and the tatum IOI distribution. If this yields a clear maximum, the onset detection 

results are compared to the beat hypothesis and corrected if necessary. 

 

Figure 4.42  Inter-onset interval beat tracker 

The beat-tracking algorithm is fed with the onset detection results, i.e. the temporal positions 

of the found onsets. The time spans between onsets is determined by calculating the first-

order difference between the onsets: 

1i i it tτ −= −                   (4.33) 
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with it  as the time position of the i-th onset. From these differences the histograms of the 

tactus and tatum time scale are computed.  

The two-parameter log-normal distribution is applied to the histogram data to determine the 

distribution of IOIs across the BPM scale.  

 

Figure 4.43  Tatum and tactus inter-onset interval histogram and corresponding probability distributions [42] 

Figure 4.43 shows the number of occurrences for different inter-onset interval times for the 

tactus and tatum level as well as the log-normal distribution that corresponds to those. 

Although the parameters of the distribution depend to some extent on the musical genre of the 

signal, fixed parameters are chosen for the respective distribution since the algorithm should 

work independently of the musical genre. The scale and shape parameters are chosen by 

empirical estimation from hand-labelled data [42]. The log-normal distribution proposed by 

Parncutt [42] is given by  

2

2
1 ln

21( )
2

mp e
τ

στ
τσ π

⎡ ⎤⎛ ⎞− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=                 (4.34) 

with τ as the IOI and the scale and shape parameters σ and m. For the tactus level, σ is chosen 

as 0.28 and m as 0.55, while for the tatum level σ is estimated by 0.39 and m by 0.18 [42]. For 

graphical representation, the scale is defined in BPM (beats per minute). 
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Figure 4.44  Tactus (top) and tatum (bottom) histograms and probability distributions                                            
(Cream, “Sunshine Of Your Love”) 

Figure 4.44 shows the histogram of inter-onset intervals and the corresponding log-normal 

distribution across the BPM scale for a pop song containing percussive elements. The tempo 

of the audio signal is located around 115 BPM, the tempo that was estimated by the 

algorithm. One thing that stands out is that the peaks in the histogram are well-defined, which 

indicates that the majority of IOIs lie around only a few BPM values, which shows that the 

onset detection works correctly. The tatum histogram also shows that major peaks lie around 

the estimated tempo as well as more or less around double the estimated tempo, which 

corresponds to the above-mentioned fact that tactus pulses mostly lie at integer multiples of 

tatum pulses. 

The histogram will, however, not always show a similar distribution concentrated on a few 

major peaks. In some cases there will be too few onsets detected to reliably estimate the beat 

of the signal, while in other cases there will be numerous false detections that falsify the 

histogram. 
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Figure 4.45  Tactus (top) and tatum (bottom) histograms and probability distributions                                            
(Fugees, “Ready or Not”) 

Figure 4.45 shows the tactus and tatum histograms of IOIs and the corresponding probability 

distribution for an excerpt from a pop song that contains no percussive parts. In contrast to 

Figure 4.44, there are no clear beat candidates for this audio signal. The inter-onset intervals 

are distributed over a wide range of values and creating a beat hypothesis out of this data will 

not have the positive effects on the onset detection results as described earlier. In order to 

avoid making assumptions about the beat structure of a signal when there are no viable beat 

candidates, a threshold is introduced. The threshold is computed by comparing the arithmetic 

and the geometric mean of the beat histogram distributions.  

The arithmetic mean of a value set x is defined as 

1

1 N

A i
i

x x
N =

= ∑                   (4.35) 

while the geometric mean of the same value set is given by 

1

N
NG i

i

x x
=

= ∏                   (4.36) 

By comparing the two means, a statement about the plausibility of a beat hypothesis extracted 

from the histograms can be made. The geometric mean is always smaller than the arithmetic 

mean except in the case when all elements of the analysed value set are equal. This means 
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that if there are many similarly small peaks in the histogram, as is the case in Figure 4.45, the 

value of the two means will lie close to each other, while if there are only a few sharp and 

distinct peaks in the histogram, as seen in Figure 4.44, the two means will diverge by a large 

margin. Therefore, a beat hypothesis is only constructed if the two means show significant 

divergence:  

G Ax xν ⋅ <                   (4.37) 

The threshold parameter ν is set to 1.5 after comparing different beat histograms and their 

respective means. If the condition described above is met by the tactus histogram values, all 

histogram values that lie above the arithmetic mean are selected as possible beat candidates. If 

that is not the case, no beat hypothesis is formed.  

The next task of the beat tracking algorithm is to select the most likely beat from the 

candidates selected in the previous stage. The assumption is made that if beat hypotheses are 

formed on the tactus as well as the tatum level, every viable beat candidate on the tactus level 

should have a counterpart on the tatum level. By comparing the tactus beat candidates with 

the tatum candidates and their integer multiples with a tolerance of ±10 BPM, the beat 

candidates are narrowed down to a smaller number because any erroneous detections having 

no counterpart on the other beat level are eliminated. In the next stage, if there is still more 

than one beat candidate, the candidate with the highest value, i.e. the highest number of inter-

onset intervals of that duration, is selected as the final beat hypothesis. 

If the algorithm successfully forms a beat hypothesis, this hypothesis is used to further correct 

and enhance the onset detection results. This is achieved by setting up weighting functions 

that leave onsets found in the vicinity of probable beats untouched while deleting detected 

onsets that do not conform to the beat hypothesis. 

The first step of the onset correction algorithm consists of calculating the note durations 

corresponding to the beat hypothesis. Since human listeners tend to tap to music in quarter 

notes and most western pop songs and a big part of classical music are based on quarter beats, 

i.e. either two, three or four beats to the bar, the probable tempo is assumed to be based on 

quarter notes. From the duration of a quarter note at the assumed beat, the durations of half 

notes, full notes, eighth notes, sixteenth notes as well as quarter trioles, eighth trioles and 
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sixteenth trioles are extrapolated. These rhythmic units cover most of the rhythmic spectrum 

present in musical signals.  

In the main stage of the correction algorithm, the intervals between the detected onsets are 

compared to the note durations calculated earlier. For every note, the inter-onset intervals are 

checked to see if at least one of them is roughly as long as the note duration, with a tolerance 

of 25 milliseconds either way. If that is the case, a weighting function for every note duration 

mentioned above is set up. The function is created by setting the area around the probable 

beats to one while setting the rest of the function to zero: 

 
1 25 25

( )
0

d d
d

for t ms t t ms
w t

else
− < < +⎧

= ⎨
⎩

             (4.38) 

with dt  as the positions where the beats fall and d stands for the current note duration. This 

leads to eight different rectangular weighting functions. These weighting functions are 

convolved with a pulse train where the pulses are positioned at the detected onset times. This 

eliminates any onsets that do not conform to the computed beat hypothesis. 

 

Figure 4.46  Onset detection results correction (detail) with correction function (blue) and found onsets (red) 

Figure 4.46 shows such a correction of onset detection results. The blue rectangles show the 

course of the weighting function for, in this case, quarter notes. The red lines represent 



Concatenative Music Composition 

 Institute of Electronic Music and Acoustics 87 

detected onsets at that point in time. The first two onsets fall nicely into the computed beat 

hypothesis while the third onset was probably detected incorrectly. This last onset is deleted 

by multiplication with the weighting function, which has the value of zero at that temporal 

point, while the first two onsets remain untouched.  

4.3 Evaluation 

In the previous sections, different methods for finding onsets in audio signals are described. 

This chapter presents the results of the evaluation of these algorithms using a database of 

simple monophonic sounds and more complex pop songs from the last decades. 

The audio files used for this purpose are all sampled at 44.1 kHz with 16-bit resolution. They 

are grouped into four categories: non-pitched percussive (NPP), pitched percussive (PP), 

pitched non-percussive (PNP) and mixed (M). The NPP files contain solely percussive sounds 

extracted from drum and sequencer tracks, the PP files contain songs using instruments such 

as bass guitars with clearly percussive attacks marking onsets, the PNP files are made up 

mostly from songs using soft synthesized sounds or instruments played legato, i.e. the 

transition between successive notes is smooth. Lastly, the sound files containing complex 

mixtures (M) are taken from pop songs. A total of 26 different sound files containing 1514 

onsets is used in the evaluation process. All used sound files are listed in Appendix 9.2. 

The reference onsets are labelled by hand using the Sound Onset Labeliser interface from 

[43]. In order to fairly compare the different detection function implementations, one standard 

peak-picking algorithm is used throughout, namely the algorithm presented in [11] and 

explained in section 4.2.7.  

A detected onset is defined to be a correct detection if it falls within 35 milliseconds on either 

side of the according reference onset. While some authors use different tolerance regions for 

different signal types [52], in the interest of results compatibility across the databases a fixed 

tolerance time value is chosen. For comparison purposes, an evaluation score that combines 

the number of correctly detected onsets, false detections and missed detections is computed 

from the results [52]: 
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100%TPR
TP FP FN

= ⋅
+ +

                (4.39) 

where TP stands for the number of correct detections (true positives), FP for the number of 

incorrect detections (false positives) and FN for the number of missed detections (false 

negatives). The resulting percentage R provides information about how well the onset 

detection algorithm works. 

The influence of different hop-sizes on onset detection results is evaluated for all onset 

detection methods. For the chroma-based approach, the MFCC-based approach and both 

approaches using modulation spectra, the influence of Klapuri’s combination and 

compression method [42] is evaluated. The parameters for this approach are set to fixed 

values of 0.8 for the balance factor λ and 100 for the compression factor μ (for more 

information about this method, see chapter 4.2.3.1). The onset detection results of modulation 

spectrum-based methods with different frame lengths for the modulation spectrum calculation 

is also investigated.  

4.3.1 Chroma-based Onset Detection 

The onset detection method based on the tracking of signal energy in chroma classes is 

described in chapter 4.2.3. It is evaluated with different audio signals, two different STFT-

analysis hop-sizes (256 and 512 samples, which amount to 23 and 46 milliseconds) and 

different detection function transformations (one using simple differentiation and half-wave 

rectification, the other using the compression method proposed in [42]). 
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Figure 4.47  Chroma-based onset detection performance for all audio files with hop-sizes of 256 and 512 
samples and simple differentiation and half-wave rectification (NC)                                                                 and 

the compression proposed in [42] (C) 

As can be seen in Figure 4.47, there is a large fluctuation in onset detection results according 

to the audio file that is analysed. While there are visible differences in performance according 

to hop-size and compression method differences, these are markedly less obvious than those 

that are related to the audio file characteristics – the general trend stays the same.  
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Figure 4.48  Mean chroma-based onset detection performance for all audio files with hop-sizes of 256          and 
512 samples and simple differentiation and half-wave rectification (NC)                                                             

and the compression proposed in [42] (C) 
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Figure 4.48 shows that a small hop-size combined with a simple half-wave rectification and 

differentiation of the chroma energy data leads to the best results. Compressing the data with 

Klapuri’s approach leads to worse results when using a small hop-size while it improves 

detection results when using a bigger hop-size. This may be due to the fact that the smaller 

amount of data that is computed using a hop-size of 512 samples leads to a less-defined onset 

detection function curve which is “sharpened” by the compression. 
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Figure 4.49  Mean chroma-based onset detection performance for pitched percussive, non-pitched percussive, 
pitched non-percussive and mixed audio files with hop-sizes of 256 and 512 samples and simple differentiation 

and half-wave rectification (NC) and the compression proposed in [42] (C) 

As Figure 4.48 and Figure 4.49 show, the chroma-based onset detection approach does not 

yield good results over a number of different audio signals. While there are some signals 

where the results are acceptable (signals 1, 8, 15, 25 in Figure 4.47), the results are not 

satisfactory for the major part of the evaluated audio signals. The detection method does not 

work well for any type of signal (Figure 4.49), even pitched signals which in theory should 

produce good results due to the fact that this method is pitch-based. In fact, the best results 

are achieved with non-pitched percussive signals (Figure 4.49). This method also has the 

drawback that it does not detect “soft” onsets because there is no major change in the 

relationship between tonal energy and total energy, which is the basis of the detection 

algorithm. 
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4.3.2 Onset Detection in the Complex Frequency Domain 

The approach to onset detection in the complex frequency domain is explained in chapter 

4.2.4. Since no rectification and compression is used in this onset detection method, only the 

influence of two different hop-sizes is looked at closely. 
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Figure 4.50  Performance of onset detection in the complex frequency domain                                                for 
all audio files, with hop-sizes of 256 and 512 samples 

As is the case with the chroma-based onset detection method, there are some cases where the 

algorithm works very well (e.g. signals 1, 6 and 9) while for other files the results are very 

mixed. The hop-size does not have a great influence on results, but using a small hop-size 

slightly improves detection results – using a hop-size of 256 samples leads to equal and, in 

most cases, better performance than using a hop-size of 512 samples. This is probably due to 

the better quantisation of the onset detection function when using smaller time-steps. 
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Figure 4.51  Mean complex frequency domain onset detection performance for pitched percussive, non-pitched 
percussive, pitched non-percussive and mixed audio files with hop-sizes of 256 and 512 samples 

Figure 4.51 shows the mean performance of the onset detection approach in the complex 

frequency domain. As expected, the algorithm works well for percussive signals but not as 

well for non-percussive sounds. The best results are obtained when the signals are percussive 

– pitched and non-pitched. When faced with complex, polyphonic sounds, the algorithm does 

not work as well, but still significantly better than when faced with non-percussive sounds. 

The figure also shows that a short hop-size leads to better overall results (about 5%) than a 

larger hop-size, due to the fact that the onset detection function is sampled at a higher rate. 

4.3.3 MFCC-based Onset Detection 

The onset detection based on the tracking of MFCCs over time is explained in chapter 4.2.5. 

As with the chroma-based methods, two different hop-sizes (256 and 512 samples) as well as 

different detection function creation methods, one using simple differentiation and half-wave 

rectification, the other using the compression method proposed in [42], are investigated. 
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Figure 4.52  MFCC-based onset detection performance for all audio files with hop-sizes of 256 and 512 
samples and simple differentiation and half-wave rectification (NC)                                                                 and 

the compression proposed in [42] (C) 

As Figure 4.52 shows, this approach works well for a number of different audio signals – 

many detection results lie in the 80%-100% range. This means a high number of correct 

detections and a low number of false detections. However, there are some signals where the 

algorithm does not perform nearly as well.  
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Figure 4.53  Mean MFCC-based onset detection performance for pitched percussive, non-pitched percussive, 
pitched non-percussive and mixed audio files with hop-sizes of 256 and 512 samples and simple differentiation 

and half-wave rectification (NC) and the compression proposed in [42] (C) 
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As expected, the algorithm works well with percussive (pitched and non-pitched) signals and 

not very well with non-percussive signals. When faced with complex signals, the approach 

still works very well (a score of about 70% when using simple differentiation and half-wave 

rectification). This approach yielded the best results of all evaluated onset detection methods. 

This may be due to the fact that, as described in chapter 5.4, MFCCs in general and the first 

MFC coefficient in particular (which is also used to create the detection function) are heavily 

correlated with onset times. While the curves for the different hop-sizes and detection 

function creation modes have a similar shape, their deviation is evaluated below. 
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Figure 4.54  Mean MFCC-based onset detection performance for all audio files with hop-sizes of 256           and 
512 samples and simple differentiation and half-wave rectification (NC)                                                            

and the compression proposed in [42] (C) 

Figure 4.54 shows the mean onset detection performance of the MFCC-based method for 

different hop-sizes and detection function creation methods. The best results are achieved 

using the smaller hop-size and simple half-wave rectification and differentiation. The 

advantage of using a small hop-size is that the detection function is sampled at a higher rate, 

while the slightly worse performance when using compression may be due to the fact that the 

information about the signal spectrum is already highly compressed by the transformation 

into the cepstral domain. 
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4.3.4 Onset Detection based on Modulation Spectra 

The two approaches to onset detection using modulation spectra that are implemented in this 

thesis are discussed in detail in section 4.2.6. Two different hop-sizes (256 and 512 samples) 

as well as different detection function creation methods (using simple half-wave rectification 

and differentiation, or on the other hand using the compression method proposed in [42]), are 

investigated. Also, two different modulation spectrum frame lengths are evaluated separately. 

They are set at 18 and 24 original STFT frames, i.e. 420 milliseconds and 560 milliseconds, 

respectively.  

4.3.4.1 Sub-Band Energy Trajectories 

As with the other onset detection methods, this approach is evaluated using a number of 

different options. 
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Figure 4.55  Onset detection based on sub-band trajectories performance for all audio files                            with 
hop-sizes of 256 and 512 samples and simple differentiation and half-wave rectification (NC) and the 
compression proposed in [42] (C) and modulation spectrum frame lengths of 18 and 24 STFT frames 

As can be seen in Figure 4.55, the results vary greatly according to the chosen options and the 

analysed audio files. The performance of the algorithm sorted according to the signal category 

is shown below. 
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Figure 4.56  Mean onset detection using sub-band trajectories performance for pitched percussive, non-pitched 
percussive, pitched non-percussive and mixed audio files with hop-sizes of 256 and 512 samples and simple 

half-wave rectification and differentiation (NC) and the compression proposed in [42] (C) as well as modulation 
spectrum frame lengths of 18 and 24 STFT frames 

Figure 4.56 shows that, using the options mentioned above, the best results are obtained for 

pitched percussive sounds, which means there is a broad-band increase across the modulation 

spectrum from the percussive parts and significant increase in the lower bands of the 

modulation spectrum stemming from the pitched parts. This onset detection method works 

quite well for pitched non-percussive sounds, probably due to the lower-band changes in the 

modulation spectrum mentioned earlier. However, when faced with complex signals, the 

results deteriorate, which may be due to the excess of information in the modulation 

spectrum. 
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Figure 4.57  Mean onset detection using sub-band trajectories performance for all signals with hop-sizes of 256 
and 512 samples and simple differentiation and half-wave rectification (NC) and the compression proposed in 

[42] (C) as well as modulation spectrum frame lengths of 18 and 24 STFT frames 

The best onset detection results by far are obtained using a STFT hop-size of 256 samples, 

simple differentiation and half-wave rectification and a modulation spectrum frame length of 

18 STFT frames. This is due to the better detection function quantisation when using smaller 

time-steps. Using the compression method proposed in [42] has a positive impact when using 

bigger modulation spectrum frame lengths because the larger amount of information is 

compressed. 

4.3.4.2 Weighted Sub-Band Energy Trajectories 

This detection method performed very badly over a wide range of audio files. 
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Figure 4.58  Onset detection based on weighted sub-band trajectories performance for all audio files               
with hop-sizes of 256 and 512 samples and simple differentiation and half-wave rectification (NC) and the 

compression proposed in [42] (C) and modulation spectrum frame lengths of 18 and 24 STFT frames 

As can be seen in Figure 4.58, the algorithm did not perform well for any audio signal. The 

best results are worse than the worst results of the other detection functions. This is true for 

all different signal categories, as shown below. 
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Figure 4.59  Mean onset detection using weighted sub-band trajectories performance for pitched percussive, 
non-pitched percussive, pitched non-percussive and mixed audio files with hop-sizes of 256 and 512 samples 

and simple differentiation and half-wave rectification (NC) and the compression proposed in [42] (C) as well as 
modulation spectrum frame lengths of 18 and 24 STFT frames 
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While the algorithm performs best when faced with percussive signals, as is the case with the 

other detection methods, results in all categories are well below a 10% score (Figure 4.59). 

This is unacceptable for any application. 
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Figure 4.60  Mean onset detection using weighted sub-band trajectories performance for all signals with hop-
sizes of 256 and 512 samples and simple differentiation and half-wave rectification (NC) and the compression 

proposed in [42] (C) as well as modulation spectrum frame lengths of 18 and 24 STFT frames 

Figure 4.60 shows the influences of different STFT hop-sizes, detection function creation 

methods and modulation spectrum frame lengths. The alternative using a 512-sample STFT 

hop-size, simple half-wave rectification and differentiation and a modulation spectrum frame 

length of 24 STFT frames works best. However, it is difficult to gather information about the 

algorithm performance from this data as all values are so small. 

4.3.5 Comparison 

In order to find the detection function that works best over a wide range of signals, the results 

obtained with the different onset detection methods presented above are compared directly. 

For every method, the combination of options which leads to the best mean results over all 

audio files is used. 
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Figure 4.61  Mean performance of onset detection methods („Chroma“ for chroma-based, „Complex“ for 
complex frequency domain, „MFCC“ for MFCC-based, „M1“ for sub-band trajectory based and “M2” for 

weighted sub-band trajectory based approaches) for different audio signal categories (pitched percussive, non-
pitched percussive, pitched non-percussive and mixed) 

As seen in Figure 4.61, most detection methods work best when faced with percussive 

sounds. This is explained by the fact that all methods are in principle spectrum-based, and 

percussive sounds lead to broad-band energy increases.  

The detection method based on following the first MFC coefficient over time works best for 

three out of four categories, which makes it the ideal candidate for onset detection tasks that 

have to deal with different signal types. The good performance can be explained by the fact 

that the MFCC structure over time is heavily correlated with onset times, as explained in 

chapter 5.4. The versatility of this approach is demonstrated in the next figure, where the 

mean performance of the different onset detection algorithms over all audio files is pictured. 



Concatenative Music Composition 

 Institute of Electronic Music and Acoustics 101 

0
10
20
30
40
50
60
70
80
90

100

Chroma Complex MFCC M1 M2

Onset Detection Method

S
co

re
 R

at
io

 [%
]

 

Figure 4.62  Mean performance of onset detections („Chroma“ for chroma-based, „Complex“ for complex 
frequency domain, „MFCC“ for MFCC-based, „M1“ for sub-band trajectory based and “M2” for weighted sub-

band trajectory based approaches) for all analysed audio signals 

The success rate of the MFCC-based approach can be described as very good over a variety 

of different signals, as can be seen in Figure 4.62. For a complete overview, the results of all 

onset detection methods with all different options for all evaluated audio signals are given in 

Table 4.1 and Table 4.2. 
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Chrom
a    Complex  MFCC    

           
Hop-size 256 256 512 512 256 512 256 256 512 512
Compression No Yes No Yes        -    - No Yes No Yes 
           
Bass 80 32 42 38 71 55 74 93 0 75
Boulevards 52 59 38 50 63 61 98 98 100 98
Clansman 30 30 30 31 36 29 83 83 84 83
Dingdong 36 41 30 34 47 44 99 99 100 97
Distguit 28 13 14 12 61 44 76 73 76 67
Drums 37 38 39 41 88 88 95 86 98 95
Drumduet 12 12 15 7 47 45 91 83 88 75
Drum_bands 54 62 67 75 4 27 71 71 71 71
FX 4 2 4 3 96 93 98 94 96 94
Godzilla 6 6 4 4 15 21 20 13 17 16
Guitar 31 38 27 35 40 40 94 94 94 91
Hiphop 37 43 30 35 31 32 96 86 96 86
Musclemuseum 30 31 28 28 34 34 94 95 93 91
Piano 25 14 16 19 40 38 100 100 100 100
Pingpong 57 51 48 39 52 47 88 85 93 87
Pop1 33 31 29 31 43 39 73 63 76 63
Pop2 9 12 12 8 14 17 43 43 43 27
Readyornot 29 19 22 14 10 7 29 25 29 29
Rock 6 6 4 6 16 21 20 13 17 16
Sunshine 34 30 25 27 46 31 83 76 85 87
Synth1 5 2 9 3 6 10 59 58 58 56
Synth2 9 10 11 19 13 13 63 54 57 51
Synthbass 37 30 11 12 61 50 85 79 85 67
Übermensch 37 38 36 36 45 42 95 83 94 82
Violin 61 61 71 62 52 44 57 50 50 44
Vox 13 11 13 13 13 13 14 12 15 14

Table 4.1  Onset detection results for chroma-based, complex frequency domain and MFCC-based onset 
detection methods with hop-size and compression options 
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 M1        M2        
                 

Hopsize 256 
25
6 256 256 

51
2

51
2 512 512

25
6

25
6 256 256 

51
2 

51
2 512 512

Compression No No Yes Yes No No Yes Yes No No Yes Yes No No Yes Yes
New Frame 
Length 18 24 18 24 18 24 18 24 18 24 18 24 18 24 18 24
                 
Bass 82 52 2 2 1 1 2 16 2 2 2 2 2 2 2 2
Boulevards 50 34 2 3 2 3 18 26 2 2 2 2 5 2 2 3
Clansman 43 19 0 0 4 1 3 4 0 0 0 0 0 0 0 0
Dingdong 31 29 0 0 5 28 7 0 0 0 0 0 0 0 0 0
Distguit 46 17 0 0 3 8 0 35 0 0 0 0 14 5 5 5
Drums 42 44 6 12 30 27 12 11 20 21 1 1 12 18 1 1
Drumduet 67 35 0 0 2 2 0 0 0 0 0 0 0 0 0 0
Drum_bands 47 31 8 8 18 6 6 6 0 0 0 0 8 8 8 8
FX 50 50 2 2 2 2 2 4 2 2 2 2 2 2 2 2
Godzilla 20 19 25 22 16 17 24 21 0 0 0 0 0 0 0 0
Guitar 73 10 3 4 6 6 3 2 2 2 2 2 2 2 2 2
Hiphop 68 18 4 4 4 6 4 4 7 7 4 7 10 7 7 4
Musclemuseum 78 26 1 0 2 29 46 68 0 0 0 0 0 0 0 0
Piano 75 12 2 2 2 1 2 2 2 2 2 2 2 2 2 2
Pingpong 44 30 6 3 6 12 16 19 0 0 0 0 1 1 1 1
Pop1 19 23 2 5 11 17 7 10 0 0 0 0 0 0 0 0
Pop2 21 11 5 4 8 16 6 6 0 0 0 0 0 0 0 0
Readyornot 20 20 8 8 16 17 8 8 7 7 8 8 12 7 8 8
Rock 20 18 25 21 15 17 22 21 0 0 0 0 0 0 0 0
Sunshine 30 23 4 8 9 11 8 11 0 0 0 0 0 0 0 0
Synth1 70 59 2 2 25 29 35 4 2 2 2 2 2 2 2 2
Synth2 87 58 2 2 13 6 2 4 2 2 2 2 2 2 2 2
Synthbass 81 29 7 0 16 15 3 0 0 0 0 0 0 0 0 0
Übermensch 74 29 1 1 8 33 12 29 28 30 1 1 2 33 1 1
Violin 74 50 4 3 13 17 43 48 0 0 0 0 0 0 0 0
Vox 12 11 4 4 9 8 4 7 2 2 2 2 2 2 2 2

Table 4.2  Onset detection results for sub-band trajectories (M1) and weighted sub-band trajectories (M2) onset 
detection methods with hop-size, compression and modulation spectrum frame length options 
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5 Features 

While human listeners intuitively judge the similarity or dissimilarity between audio signals, 

the task of comparing signals with a computer algorithm is quite difficult. As the temporal 

and the spectral evolutions of different signals cannot be compared directly, any 

implementation of similarity rating has to rely on a number of quantised signal characteristics 

called audio features. The general procedure is to divide the signal into short-time frames in 

which the signal is assumed to be stationary. For these reduced segments, analysis is 

performed that leads to a number of audio descriptors or low-level features. These can be 

combined to produce a high-level feature representation, in most cases a vector, which 

describes the signal as fully as possible.  

Since some of the features are heavily correlated (for example, the spectral roll-off and 

brightness measures presented in chapter 5.2 essentially describe the same audio 

characteristic), the results of a listening test concerning subjective sound similarities are 

evaluated to find a combination of features that characterises the audio signal while relying on 

as few features as possible. This is explained in detail in chapter 6.2.2. 

This chapter presents the features that are used in this thesis. First, features which describe 

signal characteristics in the time domain are explained, then features that reflect the spectral 

structure of the sound and features extracted from statistical properties of the signal spectrum 

are detailed. The last part of the chapter is dedicated to the correlation between the change in 

low-level features and the positions of onsets in audio signals. 

The temporal and most of the spectral features are calculated “by hand”, the statistical 

properties and some spectral features are computed using the MIR Toolbox [16]. The audio 

signals are analysed after decimation to 11.025 kHz and low-pass filtering using a Chebyshev 

low-pass filter. A STFT frame size of 11.6 milliseconds (128 samples at 11.025 kHz) and a 

hop-size of 5.8 milliseconds (64 samples at 11.025 kHz) are used. To minimise spectral 
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leakage, the signal is windowed using a Hanning window. For better spectral resolution, the 

frame is expanded to 23.2 milliseconds (256 samples at 11.025 kHz) by simple zero-padding.  

5.1 Temporal Low-Level Features 

Temporal low-level features are used to describe the behaviour of signals in the time domain. 

Features concerning the energy (RMS) and the noisiness of the signal (Zero-Crossing Rate) 

are evaluated. 

5.1.1 RMS 

The course of the global energy of a signal can be described by using the root-mean square 

(RMS) measure.  

2
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1 [ ]
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x x n
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= ∑          (5.1) 

This represents the mean of the squared signal amplitude in such a way that larger values 

have a greater influence on the mean than smaller values. The RMS value is closely related to 

the perceived loudness of audio signals. 

5.1.2 Zero-Crossing Rate 

The zero-crossing rate describes the number of times the signal amplitude crosses zero per 

time unit, i.e. the number of sign changes in the time domain. This can be interpreted as a 

measure of noisiness or tonality – it is also correlated with the signal pitch, since a noisy 

signal will tend to change signs more often. 

         
1

1 sgn( [ ]) sgn( [ 1])
2

N

n
zc x n x n

=

= − −∑            with 
1 0

sgn( )
1 0

for x
x

for x
− <⎧

= ⎨ ≥⎩
 



Concatenative Music Composition 

 Institute of Electronic Music and Acoustics 106 

5.2 Spectral Low-Level Features 

Spectral low-level features are used to describe the spectral structure of audio signals. 

Features evaluated in this thesis include the Mel-Frequency Cepstral Coefficients (MFCC) 

which are also used to extract onset information from signals (see chapter 4.2.5), features 

describing the amount of signal energy in high frequency bands (Spectral Roll-Off, 

Brightness), the relationships of partial tones (Roughness, Irregularity) and the tonal quality 

and center of the spectrum (Spectral Spread, Spectral Flatness, Pitch). 

5.2.1 Mel-Frequency Cepstral Coefficients 

Mel-Frequency Cepstral Coefficients represent the spectral characteristics of a signal in a 

very compact way. They are used in speech processing and coding algorithms because the 

cepstral domain, defined as the inverse transform of the logarithmic signal spectrum, is very 

useful to extract and manipulate the spectral envelope of a signal [44]. Recently, MFCCs have 

been discovered to work well as audio features ([13], [53]). The number of used MFC 

coefficients determines the resolution of the spectral envelope. 

The MFCCs are computed as follows: first, the signal magnitude spectrum is determined, in 

this case by computing the FFT. The magnitude spectrum is then filtered by a Mel filter bank, 

a filter bank of triangular filters that groups together frequency components according to the 

Mel scale1. The resulting groups are summed and the logarithm is computed, mirroring the 

behaviour of the human cochlea, where neuronal impulses are evaluated in frequency groups, 

resulting in an integration of the impulses and compression of the signal dynamic. In the last 

stage of the calculation, the values obtained from the filter bank are transformed into the 

cepstral domain using the Discrete Cosine Transform (DCT) [45]. 

                                                 
1 a frequency scale based on the human perception of pitch 
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Figure 5.1  Mel-Frequency Cepstral Coefficient Calculation 

There are also other methods of calculating the MFCCs – some authors compute the 

logarithm before filtering [53], others use different filter bank scales such as the Bark or ERB 

(Equivalent Rectangular Bandwidth) scales [13]; there are also other methods which differ 

from those presented mainly in the filter bank design and the compression method, the 

bandwidth of the evaluated spectrum and the number of computed MFCCs [45].  

The first stage of the MFC calculation algorithm implemented in this thesis consists of 

dividing the signal into frames of equal length. These frames are expanded with overlap 

segments to ensure correct calculation near the frame borders. The overlap segments are faded 

in and out by multiplication of the segment with sin²- and cos²- functions. This is to make sure 

that there is no energy loss and no clipping. 

 

Figure 5.2  Overlapping frames 

The frames are 256 samples (23.2 milliseconds at 11.025 kHz sampling rate) long, the overlap 

segments have a quarter of that length, i.e. 64 samples (about 6 milliseconds at 11.025 kHz). 

This means that the overall time resolution of the algorithm amounts to 320 samples, which at 

11.025 kHz sampling rate corresponds to approximately 29 milliseconds, a length of time 

where the signal is assumed to be stationary. 

The linear frequency scale is set by default to values from 20 Hz to half the sampling 

frequency, which in our case equals 5512 Hz (rounded). This scale is then mapped to the non-

linear Mel scale as follows: 
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        (5.2) 

with melf  as the frequency on the Mel scale and linf  as the linear frequency [54]. This closely 

approximates the Mel scale for frequencies below 1 kHz. 

 

Figure 5.3  Linear and logarithmic (Mel) frequency scales 

The Mel frequency scale is roughly linear up to 1 kHz and has a logarithmic slope above 1 

kHz. Across this frequency scale triangular filters are placed, the number of which is dictated 

by the number of MFC coefficients to be calculated, which in our case is 20. The filters are 

uniformly distributed along the frequency axis and the area under the triangle always stays the 

same. The setup of the filter bank follows Slaney’s Auditory Toolbox definition mentioned in 

[54]: This method was chosen because it performed well in evaluation tests [54]. 
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       (5.3) 

with i = 1,2,…,M as the filter number, bf  as the triangle center frequency and k = 1,2,…,N as 

the spectral bins. The result is a filter matrix with M rows and N columns containing the DFT 

coefficients, with the row sum staying constant.  

To model the human perception more closely, the filter bank is modified using an A-

weighting filter. This mostly affects the lower frequencies, which are suppressed in 
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accordance to the fact that the human hearing system is not very sensitive in low frequency 

regions, whereas the highest frequencies that appear in this approach lie in the range of 5 kHz, 

where the human ear is at its best. The filter weights are set to 

( ) ( )
2 4

( ) 2 2 2 2 2 2 2 2

12200( )
20.6 12200 107.7 737.9

dB A
fA f

f f f f
⋅

=
+ ⋅ + ⋅ + ⋅ +

        (5.4) 

The triangular filter bank is weighted with the normalised weights of the dB(A) filter by 

multiplication. 

 

Figure 5.4  Triangular filter bank weighted with dB(A) filter 

After filtering the amplitude spectrum of the signal and taking the logarithm, the transformed 

signal is given by 
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∑        (5.5) 

where m is the frame number. In the last processing stage, the DCT is used to transform the 

signal into the cepstral domain. The DCT is a transform that is used mostly in speech and 

image processing. An important property thereof called energy concentration is that, in 

contrast to the DFT, a major part of the signal energy is concentrated in the first few 

coefficients, which makes the DCT attractive for data compression tasks [55]. 
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5.2.2 Pitch 

The pitch of a sound is defined as the fundamental tone of a sound and is calculated following 

the approach presented in [35]. A local maximum in the magnitude spectrum of a signal at the 

bin 0k  by itself leads to a pitch frequency estimation 

0 0
ˆ sff k

N
= ⋅           (5.6) 

The frequency resolution is then improved by evaluating the phase difference between the 

maximum in successive frames. The conclusive frequency estimate is the given by 

1
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n n
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ϕ ϕ

π
+ −

= ⋅           (5.7) 

with h as the analysis frame hop-size, 1nϕ +  as the combination of the expected phase and the 

phase difference between expected and actual phase of the second frame and nϕ  as the known 

phase of the first frame. This correction stage that considers the phase difference leads to 

clearly improved pitch detection results [35]. 

 

5.2.3 Spectral Centroid 

The spectral centroid is an indicator of the center of gravity of the spectral energy 

distribution. It correlates with the fullness of the sound – the higher the centroid, the more 

present are higher partial tones and the more “brilliant” the sound. 
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with k as the frequency bin number and N the total of frequency bins. 
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5.2.4 Spectral Spread 

The spectral spread describes the spread of the signal spectrum in relation to the spectral 

centroid introduced above. It can be interpreted as a measure of tonality, where noisy signals 

that display a broad-band spectrum will have a higher spread than tonal sounds that are 

confined to narrow-band peaks. 
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with k as the FFT bin number, N as the total of frequency bins and CN as the spectral 

centroid. 

5.2.5 Spectral Roll-Off 

The spectral roll-off loosely describes the shape of the signal spectrum. It is a measure of the 

frequency range where the major part of the signal energy is found. The roll-off frequency 

value is found by summing the signal energy across the frequency spectrum and finding the 

frequency where a certain percentage of the signal energy lies (the percentage is mostly 

defined as 85% [15]). It is defined as the frequency bin number ro that satisfies 
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with N as the number of FFT bins. The roll-off frequency itself is then computed by  

sfRO ro
N

= ⋅                   (5.11) 

5.2.6 Spectral Brightness 

The spectral brightness is a measure of high-frequency energy content similar to the spectral 

roll-off described above. The approach differs from the roll-off calculation in that a threshold 
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frequency is fixed, in this case at 1.5 kHz and the percentage of energy above that cut-off 

frequency is computed. 
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with cf  as the threshold frequency and N as the FFT bin number. 

5.2.7 Roughness 

Roughness is a measure of the sensory dissonance that is produced by two sinusoidal signals 

with regard to the frequency ratio between them and is derived from Plomp and Levelt’s 

concept of tonal consonance [56]. The two signals can be separate notes or partial tones of a 

harmonic sound with the constraint that both have to belong to the same critical band [57]. 

The roughness is calculated using the MIR Toolbox [16]. It is computed pairwise between all 

local maxima in the spectrum. The final roughness value is gained by calculating the average 

over all roughness values. 

5.2.8 Irregularity 

The irregularity measure describes the amount of variation of the distance between 

successive partial tones in a harmonic sound [57]. This can be interpreted as an indicator for 

the tonality of a signal, where the irregularity will be lower when the partials are harmonically 

related.  

The irregularity feature is given by 
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where ka  denotes the k-th partial tone. This amounts to measuring the distances between 

consecutive partials. 

5.3 Statistical Features 

In addition to evaluating audio signals regarding their temporal and spectral characteristics, 

some statistical features are calculated and analysed in regard to their usefulness for 

describing the signals. This is done by computing the 3rd and 4th central moments as well as 

the shape of the probability distribution of the signal spectra. Central moments are defined as 

the moments around the mean of the analysed function. The relationship between the 

moments of a function, often also called moments about zero, and its central moments is 

given by 
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with m as the moment number, r as the function moment and γ as the central moment [58]. 

5.3.1 Skewness 

The third central moment of a function is called skewness and describes the asymmetry of the 

probability distribution. This means that a symmetric uniform distribution will have a 

skewness of zero while distributions that have few values much larger than the mean and 

many values smaller than the mean1 will have a negative skewness value. Distributions 

displaying a large number of values around and above the mean will have a positive skewness 

value. 

Skewness is defined as the normalised third central moment of a function and is 

dimensionless. 

(3)

3SK γ
σ

=                   (5.15) 

                                                 
1 In this case, the distribution will have a long “tail” to the left 
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with σ as the standard deviation. 

5.3.2 Kurtosis 

The fourth central moment or kurtosis contains information about the general shape of the 

probability distribution of a function. It describes the breadth and height of a distribution 

compared to a normal distribution that is defined with the same variance.  

The kurtosis is defined as 

(4)

4 3KU γ
σ

= −                   (5.16) 

where the subtraction of 3 is common in order to set the kurtosis coefficient value of normal 

distributions to zero. A high kurtosis value indicates a broad distribution while a low kurtosis 

value indicates a highly bounded distribution [58]. 

5.3.3 Flatness 

Another feature that describes the shape of probability distributions is the flatness. This is a 

measure of how flat or narrow and “spiky” a distribution is. It is defined as the ratio of the 

geometric mean to the arithmetic mean. 
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Since the geometric mean will always be smaller than the arithmetic mean, except for the case 

that the data set values are all equal (in this case the means are equivalent), a flat distribution 

will result in a flatness value close to one, while spikier distributions will result in values 

closer to zero. 
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5.4 Correlation of Low-Level Features with Onsets 

To evaluate the relationship between changes in feature values over time and onset events, the 

behaviour of 16 different audio signal features over time is correlated with the onsets present 

in 15 different audio signals. 

The evaluated features, which are described in detail in the previous chapters, include the 

RMS energy (RMS), the zero-crossing rate (ZC), the spectral roll-off factor (RO), the spectral 

brightness (BN), roughness (RN), irregularity (IR), spectral centroid (CT) and spread (SP) as 

well as the statistical features flatness (FN), skewness (SK), kurtosis (KU) and the first five 

MFC coefficients (M1…M5).  

A pulse train is created by setting pulses at onset times and windowing those using Hanning 

windows of 50 milliseconds to account for potential labelling errors or uncertainties. These 

modified pulse trains are then correlated with the feature changes over time and normalised 

by the signal energy. The same approach is used to determine the covariance1 between the 

modified pulse train and the signal features. With μ and ν as the expectation values of x[36] 

and y[36] respectively [58], the normalised cross-correlation is given by 
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with [ ]xyr m as the cross-correlation while the normalised covariance is given by 
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with [ ]xy mγ as the covariance. 

This leads to correlation and covariance curves describing the relationship between features 

and onset times.  

                                                 
1 correlation with the mean removed 
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An important indicator of the similarity between two signals is the maximum of the cross-

correlation or cross-covariance at lag zero1. This value is less an indicator of structural 

similarity2 than of overall similarity. 

 

Figure 5.5  Correlation (top) and covariance (bottom) maxima between features and onset times                    for 

15 different audio signals 

Figure 5.5 shows the correlation and covariance between the analysed features and the onset 

times present in different audio signals. It is obvious that some features seem to be more 

correlated to onsets and are therefore more useful for onset detection purposes – for example, 

the RMS energy, the zero-crossing rate and the first MFC coefficient seem to be more 

correlated with onset times than features such as flatness, roughness or irregularity. In order 

to further investigate this assumption, the mean correlation and covariance between features 

and onset times is calculated over the number of used audio signals. 

                                                 
1 when the signals are compared directly without time delay 

2 for example, the correlation of two pulse trains shows a number of high peaks at lags corresponding to the 
pulse time spans with very low values in between 
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Figure 5.6  Mean correlation (top) and mean covariance (bottom) maxima between features                          and 
onset times over 15 different audio signals 

As mentioned above and shown in Figure 5.6, spectral signal characteristics like the 

roughness or irregularity measure as well as statistical features like the flatness seem 

unsuitable for the task of onset detection, while features that are related to the energy content 

or the tonal quality of the signal such as the RMS energy, zero-crossing rate, spectral roll-off, 

spectral centroid or the first MFC coefficients will be better suited to the task. It is also 

interesting to note that features concerning the tonal quality of the sound are correlated more 

closely to the onset structure of the signal than features concerning the spectral or harmonic 

shape of the signal such as the roughness, irregularity or spectral spread measures.  
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6 Subjective Similarity Evaluation 

A crucial task in any implementation of concatenative music synthesis is to find the audio 

segments that closely match the composer’s vision of the overall sound. This is far from easy 

since the composer’s concept of a sound may not match the actual physical parameters of the 

sound. This necessitates the characterisation of sound not by abstract physical parameters but 

by perceptually meaningful feature parameters extracted from the audio data. To gather more 

information about how listeners evaluate subjective similarity between different audio signals 

and to try to find a feature or a combination of features that best describes this perceived 

similarity, a listening test was carried out. From this test, the perception space that listeners 

use to evaluate similarities is analysed by using Multi-Dimensional Scaling (MDS), leading to 

a graphical representation of the perceived similarity distances. The results of the listening 

test are evaluated using the statistical software package SPSS. The design and the realisation 

of the listening test are described in detail in the next chapter while the evaluation and 

interpretation of the results are detailed in chapter 6.2. 

6.1 Listening Test 

For concatenative music synthesis implementations, a very important part of the algorithm is 

concerned with the selection of musical fragments which are consecutively concatenated to 

produce a new signal. The difficulty herein is that as a rule the composer does not work with 

physical parameters of the sound but has a concept of how the music piece should sound. This 

complicates the task of finding the database sound fragments that match the user’s vision of 

the overall sound. Therefore, a psychoacoustic description of the stored data is desirable. By 

describing sound fragments with perceptually relevant parameters, the database can also be 

restructured, clustering perceptually similar segments. This leads to a more intuitive way of 

database organisation and has the added advantage of speeding up the search process. In order 
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to learn more about how similarity between signals is perceived by human listeners, a 

listening test was carried out which is described in detail in this chapter. Another purpose of 

this test was to determine the most meaningful way of database organisation. Three 

organisation methods were evaluated by the subjects: the first uses an approach where the 

audio elements are sorted into clusters (see section 3.1.1) according to their length and into 

sub-clusters according to their spectral centroid, the second method sorts the elements 

according to length and chroma value and the third used length and pitch of the signal to 

determine clusters and sub-clusters, respectively. 

The listening test was designed as a simple A-B comparison test, meaning the audio samples 

were played pair-wise. The task of the test subject was to define the subjective similarity 

between the two samples with a set of discrete values.  

A total of 21 audio samples was used in the test. The samples were taken from three databases 

containing the same audio material but organised in the different ways mentioned above 

(according to length/centroid, length/chroma value and length/pitch of the segment), which 

means 7 samples from each database.  

 

Figure 6.1  Evaluated database organisation methods 

The 7 samples from the respective databases were selected according to the following 

principle: for a meaningful comparison, the samples had to be sufficiently long so that the 

subjects could concentrate on the perceptual attributes but not too long so as not to confuse 

the subjects. A length of about 0.5 seconds was found to be suitable. Another constraint was 

that the samples should be of approximately equal length to ensure convenient comparison, 

which limited the database area from which samples could be chosen. In the end, the samples 

were taken from one cluster or two neighbouring clusters at the end of the length spectrum. 
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From the selected clusters, three samples were taken from one of the first few sub-clusters, 

one from a sub-cluster near the middle and another three samples from one of the last sub-

clusters.  

 

Figure 6.2  Sample selection 

In order to monitor the reliability of the answers of the test subjects, one sample pair was 

repeated twice at arbitrary points for every database organisation method. In order to evaluate 

all possible combinations between the samples, the number of comparisons is [ ]( 1) 2n n⋅ − , 

assuming that the dissimilarity is symmetrical1. This led to a total of 69 sample pairs the 

subjects had to evaluate (seven samples were taken from each of the three databases, which 

leads to 3 times 21 sample pairs, with 2 control pairs for every database). 

The test took place in a sound-proof studio at the Institute of Electronic Music and Acoustics 

in Graz using a PC as input and display device. The samples were played back using a RME 

Hammerfall MultiFace audio interface and AKG K-240 earphones. The subjects - 11 in all - 

were for the most part senior students of the audio engineering curriculum and can therefore 

be classified as experienced listeners after completing a number of courses on ear training and 

music knowledge. 

A graphical interface was implemented in Matlab where the subjects could listen as often as 

they wished to the particular sample pair and where they charted their similarity impression 

on a defined value scale. 

                                                 
1 this means that the order in which the samples are played back is of no relevance to the subjective perception 
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Figure 6.3  Listening test interface 

The subjects were asked to rate the similarity of the sample pair on a scale of -5 (dissimilar) 

up to +5 (similar). The samples were played with a one-second interval between them and 

could be repeated as often as the subject wished. After listening to a sample pair and rating 

their similarity, the subject could go on to the next sample pair. He or she could not, however, 

go back to change a rating already given. The results were stored for later evaluation. 

6.2 Evaluation 

The results obtained from the listening test were evaluated using SPSS after hand-checking 

the reliability of the results in Matlab. SPSS is a program that is widely used for statistic 

transformations and data analysis. This chapter will describe the results of analysing the 

listening test data using the Multi-Dimensional Scaling (MDS) technique, which attempts to 

visualise the correlation between subjective parameters. A distinction is made between metric 

MDS methods and non-metric MDS methods. The difference between these two approaches 

lies in the assumptions about the relationships of evaluated data and both are explained in this 

chapter. For the evaluation of the listening test that was carried out in the course of this thesis, 

the non-metric version was used for reasons explained later in the chapter. 
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6.2.1 Multi-Dimensional Scaling 

An important psychoacoustic research field is the evaluation of audio signal attributes in 

relation to the human subjective perception of the signal. A perceptual space is stipulated 

where the signal is placed by a person according to its perceived attributes. This space is 

assumed to have as many dimensions as the number of weights the person uses to form an 

opinion about the signal [59].  

In order to visualise this multi-dimensional perceptual space, Multi-Dimensional Scaling 

(MDS) is used to graphically model the space. The idea of this approach is to find the 

parameters that subjects use to form an evaluation of a given set of stimuli, in the process 

inferring the dimensionality of the used perceptual space [17]. The data points calculated by 

the MDS analysis tool are represented as points in an n-dimensional space with the distances 

between the points corresponding to the similarity between the evaluated stimuli. 

MDS operates on data derived from the difference measure or distances called proximities 

amongst a data set. A suitable representation of all respective proximities is the proximity 

matrix, a symmetric matrix with zero along the main diagonal. To arrive at the proximities of 

a given data set, either direct or indirect methods can be used. Direct methods let the subject 

assign a subjective similarity value to a pair of stimuli or sort the stimuli according to their 

similarity, while indirect methods derive the proximities from measures other than the 

similarity, for example from so-called “confusion data”. The advantage of using a direct 

rating method is that the resulting proximity data can be analysed without having to take 

additional processing steps, while the disadvantage lies in the fact that the number of sample 

pairs grows rapidly when the number of data objects increases. Indirect rating methods can be 

implemented more efficiently, but additional measurements are required to extract the 

proximity data. 

Metric MDS (which is also referred to as classical MDS [17]) assumes that the distances 

between the data values that are analysed can be described on a metric scale. This holds true, 

for example, when analysing the distances between cities or the height of test subjects. When 

using metric MDS, the distances between the data objects are preserved as broadly as possible 

in the graphical representation of the MDS space. This simplifies the calculation since there 

are no iterations to be performed. The solution is found by using linear algebra. 
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On the other hand, the assumption that the distances between data values can be expressed in 

metric terms probably does not apply to data derived from human subjective similarity 

evaluations. For this type of problem, a variant of MDS called non-metric MDS is suitable. 

Here, it is assumed that the order of the proximities and not the proximities themselves is 

meaningful. This means switching from an interval scale to an ordinal scale. In the graphical 

representation, only the order of the distances between data points is reflected while the 

distances themselves are not relevant. 

The non-metric MDS representation is extracted from data by monotonic transformation of 

the object proximities. The points in the n-dimensional space are placed in such a way as to 

minimise the squared deviations between the scaled proximities and the distances between the 

points themselves. Mathematically, this requirement is described by the stress factor 

( )2
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−
=
∑

∑

rr

r          (6.1) 

where s is the stress factor that has to be minimised, pr  is the proximity matrix, ( )f pr  stands 

for the monotonic transformation of pr  and d
r

 is the vector containing the distances between 

the points in the MDS representation. While there are different definitions of the stress factor 

available, SPSS uses the version defined by Kruskal [17] described above. The stress 

decreases when the number of dimensions is increased. Stress above 0.2 is considered an 

indication of a poorly-fitting solution while any number below 0.025 is judged to provide an 

excellent fit. 

6.2.2 Evaluation of obtained results 

The previous section describes the method used to evaluate the subjective similarity ratings 

the subjects assigned to the respective sample pairs. This chapter presents the results of this 

evaluation and interprets the findings of the listening test. In a first step, the subjective ratings 

are transformed and normalised to ensure comparability between the respective results. The 

next step consists of checking the reliability of the subjects’ answers by looking at the rating 

of the control pairs repeated during the test. Then, the corrected results from the reliable test 

subjects are evaluated using MDS and represented graphically in a two-dimensional space. 
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Figure 6.4  Listening test results evaluation 

As said previously, the subjects were asked to rate the similarity or dissimilarity of two audio 

signals on a scale ranging from -5 (dissimilar) to +5 (similar). However, as MDS operates on 

dissimilarity values only, the first step was to transform the assigned values so that small 

values signify similar objects, while large values correspond to a high degree of dissimilarity. 

This was done by using a scale between 0 (similar) and 10 (dissimilar) using the following 

operation: 

[ ] [ ] 5nv n v n= − +          (6.2) 

with v[n] as the original value and [ ]nv n  as the transformed value. The results were further 

processed to ensure comparability between the subjects’ answers by subtracting the mean 

value of answers and dividing the result by the variance of the answers. This led to a new 

similarity scale that ranged from -1 to +1. To ensure correct analysis of the data by the SPSS 

tool, the values were again shifted by one, leading to a value representation between zero 

(similar) and 2 (dissimilar). 

2

[ ][ ] 1n n
c

v

v n vv n
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−

= +          (6.3) 

with [ ]cv n  as the final similarity value. 

To check the reliability of the subjects’ answers, for each of the three databases, one of the 

sample pairs was randomly chosen as control pair. This pair was repeated twice during the 

course of the listening test. By comparing the values assigned to the similarity between the 

two samples, the constancy of a subject’s rating criteria was evaluated. To be considered 

reliable, the subject’s answers to the control pairs should remain roughly constant with each 

repetition of the sample pair. A jump of more than 2 scale values indicated that the answers of 

a particular subject were not reliable over the whole data set. 
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Figure 6.5  Spread of values assigned to the control pairs by listening test subjects 

Figure 6.5 shows that subjects 1, 4, 5, 6 and 8 do not meet the above-mentioned criterion for 

reliability. However, detailed analysis showed that the spread of the answers of subject 8 was 

skewed by one value which was significantly higher than the others at the beginning of the 

test. This was attributed to the fact that subjective evaluation principles slightly change after 

hearing a number of samples. Since the later rating values assigned by subject 8 to the control 

pairs were very similar, the subject was added to the group of reliable subjects. This meant 

that after the exclusion of subjects 1, 4, 5 and 6 there were still 7 subjects left that showed 

reliable answering behaviour over the course of the listening test. Only the results of these 

seven reliable subjects were used in the further evaluation process. 

The next task was to create proximity matrices from the similarity data obtained by the 

listening test. This was done by creating proximity matrices bP
r

 containing the mean of the 

subjective similarities of the sample pairs over the 7 remaining subjects for every database, 

where b is the database number. The matrix is symmetric, contains zeros along the main 

diagonal and has the size 7x7. The matrix elements ,i jp  contain the subjective similarity 

between the sample i = 1,2,…,7  and the sample j = 1,2,…,7.  

The proximity matrices were then entered into the SPSS interface and analysed using the 

integrated MDS algorithm ALSCAL developed by Forrest Young [60]. This led to a two-

dimensional graphical representation of the audio sample relationships (Figure 6.6). The 
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stress factors that were obtained iteratively amounted to the following values, indicating a 

very good quality of fit: 

Database Organisation Stress 
  
Length / Spectral Centroid 0,00427
Length / Pitch 0,00482
Length / Chroma 0,00506

Table 6.1  Stress factors for 2-dimensional MDS analysis for the three database organisation methods 

 

Figure 6.6  MDS representation of sample distances for reliable listening test subjects                           (database 
organised by length and spectral centroid) 

For comparison purposes, the MDS representation obtained by evaluating all subjects’ 

answers is shown in Figure 6.7. While the position of most samples does not change 

significantly, the differences in the positions of others are evident. This reinforces the 

assumption that when the similarity or dissimilarity between audio signals is not obvious, the 

judgment of subjects that have well-defined evaluation criteria is preferable to the judgment 

of more people who are not as thorough in their evaluation.  
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Figure 6.7  MDS representation of sample distances for all listening test subjects                                   (database 
organised by length and spectral centroid) 

In order to better describe the relationships between the audio samples in the graphical MDS 

representation, meaningful descriptions for the two axes have to be found. 

The most important terms in which any audio signal can be described are pitch, loudness, 

duration and an aspect that is not well defined, timbre, which is an aggregate of a number of 

spectral and temporal features [34]. If we assume that the MDS representation in some way 

models the space of attributes that listeners use to judge the similarity of signals, we can 

arrive at a useful denomination of the MDS axes. Descriptions based on qualitative signal 

aspects (for example “brightness” or “attack”) have been proposed as well as descriptions 

based on quantitative attributes (“Log-Attack-Time”, “Harmonic Spectral Centroid) [34]. The 

correlation between similarity maps and subjective sound characterisations has also been 

investigated in [1] by using attribute pairs like “thin-thick” or “sharp-dull”.  

After subjective evaluation of the differences between the samples in the respective 

dimensions, the first dimension seemed best explained by a measure describing the change in 

the dynamic of the signal1, similar to the ADSR (Attack-Sustain-Decay-Release) description. 

This dynamic change is best visible in the temporal envelope of the signal and is loosely 

related to the Log-Attack Time (the logarithm of the duration between the signal start and the 
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signal maximum) measure used as dimension description in [34] which can be viewed as the 

“attack” phase. This assumption is supported by Figure 6.8, which shows the temporal 

envelopes of audio samples 3 and 6, which are the samples with the largest distance between 

them in the MDS representation (Figure 6.6). While sample 3 shows a significant increase in 

magnitude in the first part of the signal with a slow decay afterwards, there is no sharp change 

in the magnitude of sample 6. The dynamic changes in the other signals conform to this 

assumption in a similar way. So the first dimension of the MDS depiction can be defined as 

representing the change in the temporal envelope of the signal, ranging from high dynamic 

change (as is the case with sample 3) to little or no dynamic change (sample 6). The positions 

of the other samples are correlated with their time envelopes in a similar way. 

 

Figure 6.8  Temporal envelopes of samples 3 (top) and 6 (bottom)                                                                 
taken from the database organised by length and spectral centroid 

The same procedure as described above is followed in determining the second dimension of 

the MDS distance representation. After listening closely to the sample pairs, a good 

description of the second dimension seemed to be the “fullness” or “breadth” of the signal 

spectrum. This subjective description can be set in relation to objective signal parameters like 

                                                                                                                                                         
1 Not to be confused with the percussiveness of a signal 
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the spectral spread1 or measures describing the harmonic fullness, i.e. the presence of partial 

tones in the spectrum. A similar description is also found in literature [34], where dimensions 

are labelled as Harmonic Spectral Centroid or Harmonic Spectral Spread. A comparison 

between the distances between points in the MDS space and the shape of the spectral 

envelope of the matching signals validates the dimension description mentioned above. The 

spectral envelopes of the signals whose data points are farthest from each other in respect to 

the second MDS dimension are pictured in Figure 6.9. The first spectral envelope (sample 2) 

is very narrow compared to the second one (sample 4). This suggests that the second 

dimension of the MDS space can be defined as describing the breadth and sharpness of flanks 

of the spectral envelope of the analysed signals, ranging from narrow-band spectra with 

sharply falling flanks to broad-band spectra. The other sample signal spectral envelopes 

conform to this assumption in a similar way. 

 

Figure 6.9  Spectral envelopes of samples 2 (top) and 4 (bottom) taken from                                                         
the database organised by length and spectral centroid 

The MDS representation is now characterised by the distribution of sample data points in a 

two-dimensional space that is defined by spectral and temporal attributes of the sample 

signals. An example is shown in Figure 6.10, which shows the same thing as Figure 6.6, with 

                                                 
1 for detailed description of the spectral spread, see chapter 5.2 
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the horizontal axis now labelled and describing the manner and height of the change in the 

temporal structure of the signal (dynamic change) and the new vertical axis describing the 

signal change in the spectral domain (spectral change).  

 

Figure 6.10  MDS representation of audio sample attributes and distances                                            (database 
organised by length and pitch) 

Since the perception of spectral characteristics seems to be of great influence when evaluating 

the similarity of sounds, it was decided to organise the synthesis database by length and pitch. 

While the chroma value of a sound can be likened to the pitch value, the fact that there are 12 

fixed chroma classes makes a distribution of samples across the database that is close to 

uniform very unlikely. 

From the data obtained by MDS analysis of the listening test results, a meaningful distance 

measure describing the similarity of audio samples is obtained. This is done by combining a 

number of low-level features into a feature vector. To determine the features best suited to 

this task and their optimal weighting, linear regression is used.  

To this end, over 40 different combinations of spectral. temporal and statistical features are 

evaluated. A matrix representation of an equation system is used to find the least-squares 

solution to the problem of finding the feature combination that yields the minimal residual 

between estimated and actual distances. 
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y x c ε= ⋅ +
rr r r           (6.4) 

where yr  is a vector containing the distances between sample points obtained by the MDS 

analysis, xr  is a matrix composed of elements ,i jx  that describe the squared difference of the 

i-th low-level feature for the j-th audio sample pair, cr  stands for the vector of unknown 

weighting coefficients and εr  for the residual between the estimated and actual distances. The 

residual describing the goodness of fit of the estimated coefficients to the model is calculated 

as follows: 

ˆy yε = −
r r r           (6.5) 

with ŷ x c= ⋅
r r r  , i.e. the estimated solution. This calculation is executed for a number of 

different low-level feature combinations. By checking the size of the residual for every 

solution, the combination of features that comes closest to describing the sample point 

distances with a minimal error is found.  
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Feature Combination Name 
No. of 
Features Features Residual 

All 15
RMS, ZC, PT, MFCC1, MFCC2, MFCC3,  
RO, CT, BN, RN, IR, SP, SK, KU, FL 

0,00626492
3

Temporal / Spectral 12
RMS, ZC, PT, MFCC1, MFCC2, MFCC3,  
RO, CT, BN, RN, IR, SP 

0,04569948
5

Spectral / Stats 13
PT, MFCC1, MFCC2, MFCC3, RO, CT,  
BN, RN, IR, SP, SK, KU, FL 

0,09290663
3

Spectral 10
PT, MFCC1, MFCC2, MFCC3, RO, CT,  
BN, RN, IR, SP 0,11985442

MFCCs / Energy / Stats 11
PT, MFCC1, MFCC2, MFCC3, RO, CT,  
BN, IR, SP, SK, KU, FL 

0,16600735
2

Tonality / Energy / Stats 13
PT, MFCC1, ZC, RO, CT, RN, RMS,  
BN, IR, SP, SK, KU, FL 

0,17838940
7

MFCC1 / Centroid / Zerocross / 
Stats 6 MFCC1, CT, ZC, SK, KU, FL 

0,18736182
3

MFCC1 / Pitch / Zerocross / 
Stats 6 MFCC1, PT, ZC, SK, KU, FL 

0,18950272
6

MFCCs / Energy 8
RMS, MFCC1, MFCC2, MFCC3,  
RO, CT, BN, SP 0,22390577

Pitch 6 PT, MFCC1, RO, CT, BN, SP 
0,24313876

7

Tonality 5 ZC, MFCC1, IR, SP, RN 
0,26408027

5

MFCC1 / Pitch / Zerocross 3 MFCC1, PT, ZC 
0,27908526

2

MFCC1 / Centroid / Zerocross 3 MFCC1, CT, ZC  
0,29835460

4
Temporal / Stats 5 RMS, ZC, SK, KU, FL 0,30137455

Pitch / Zerocross / Stats 5 PT, ZC, SK, KU, FL 
0,30433586

1

Pitch / RMS / Stats 5 PT, RMS, SK, KU, FL 
0,30870982

1

MFCC1 / Pitch / RMS / Stats 6 PT, RMS, MFCC1, SK, KU, FL 
0,32285743

8

Temporal / Spectral Energy 5 RMS, SP, RO, CT, BN  
0,37881434

8

MFCC1 / Centroid / RMS / Stats 6 MFCC1, CT, RMS, SK, KU, FL 
0,40131864

9
Tonality / Energy 2 4 IR, RN, RMS, BN 0,45468815

MFCCs 3 MFCC1, MFCC2, MFCC3 
0,47842149

8

Temporal 2 RMS, ZC 
0,49199067

6

Pitch / Zerocross 2 PT, ZC 
0,49707840

6

MFCC1 / RMS / Stats 5 MFCC1, RMS, SK, KU, FL 
0,50029570

4

MFCC1 / Pitch / RMS 3 MFCC1, PT, RMS 
0,51864545

7

Pitch / RMS 2 PT, RMS 
0,52657874

8

MFCC1 / Stats 4 MFCC1, SK, KU, FL 
0,55031700

2

RMS / Harmonicity 3 RMS, BN, RN 
0,57809999

9

MFCC1 / Centroid / RMS 3 MFCC1, CT, RMS  
0,68002008

8

Stats 3 SK, KU, FL 
0,85769460

4

Tonality / Energy 1 2 RN, RMS 
0,86971520

7

MFCC1 1 MFCC1 
0,89161257

8
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Table 6.2  Feature vectors and the respective mean residual between estimated and actual distances 

Table 6.2 shows the feature vectors that result in low mean residual errors between the 

estimated and the actual distance vectors. It shows that the combination of all used features 

leads to the smallest least-squares error, which is to be expected. The following vectors are 

composed of a combination of spectral low-level features with temporal features and 

statistical features. Using only spectral features works quite well and a combination of 

temporal and statistical features also leads to acceptable results. The meaning of the feature 

abbreviations is listed in Table 6.3. For a detailed description of low-level features used, see 

section 5. 

 

RMS Root Mean Square Energy  BN Brightness 

ZC Zero-Crossing Rate  RN Roughness 

PT Pitch  IR Irregularity 

MFCC1 First MFC Coefficient  SP Spectral Spread 

MFCC2 Second MFC Coefficient  SK Skewness 

MFCC3 Third MFC Coefficient  KU Kurtosis 

RO Spectral Roll-Off  FL  Flatness 

CT Spectral Centroid    

 
Table 6.3  Used low-level features 

As Table 6.2 shows, there is a trade-off between how well a combination of features 

represents the characteristics of a signal and the number of features needed to do so, which is 

directly related to the computation time necessary. The feature highlighted in Table 6.2 

consisting of six elements – pitch, first MFC coefficient, zero-crossing rate and the statistical 

features skewness, kurtosis and flatness – was found to be suitable for designing a distance 

measure that represents the similarity or dissimilarity of audio signals. The residual between 

the actual distance and the distance achieved by linear regression is sufficiently small to 

suggest reasonable results while the number of features is sufficiently low to enable short 

calculation times. Another advantage of this feature set is that the calculation of the signal 

pitch is already implemented in the database organisation, which is arranged according to 

signal length and pitch. 
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7 Discussion of Results and 
Perspective 

In this thesis, a software tool for concatenative music synthesis was implemented. To this end, 

a graphical interface was created to give the user control over different aspects of the 

synthesis algorithm.  

The algorithm uses a pre-defined database of audio signals for the re-synthesis of target 

songs. These target songs are analysed in regard to their beat structure so as to achieve 

musically meaningful segmentation results and the resulting segments are replaced by 

database segments using a similarity distance measure.  

While evaluation of the re-synthesis results “by ear” show that the overall algorithm is far 

from perfect, it can be viewed as an encouraging step into the direction of musically and 

artistically valid algorithmic sound synthesis. It could be developed as a powerful tool for 

electronic music composition, where similar approaches have been introduced in recent years 

(for example by [19], [30]). It could eliminate the time-consuming and tiresome process of 

searching for sound sample material that corresponds to the artist’s vision – he could enter an 

exemplary sample and have the algorithm search for a matching sound segment.  

This approach could also be integrated into process-based music and performances, allowing 

the artist to focus on sound combination and processing issues while the sound material is 

chosen algorithmically. 

Two topics that have been discussed at great length in this thesis, onset detection and beat 

tracking, could also be of value to different applications in audio or speech processing. It 

would be interesting to evaluate the detection methods based on MFC coefficients and on 

modulation spectra in the context of speaker identification and segmentation because both 

MFCCs and modulation spectra are well known in the speech processing field ([32], [53]). 
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However, there are still some aspects of the re-synthesis algorithm that could be improved. 

The next sub-sections will take a closer look at some key issues discussed in this thesis and 

will provide an insight into how well the implemented solutions work as well as how they can 

be improved. 

7.1 Interface Platform and Implementation 

The ConCat Music Synthesis interface is implemented in Matlab, a programming 

environment that is widely used in the academic as well as the industrial field, which is one of 

the reasons why the environment was chosen. Many people in the audio processing and signal 

processing fields are familiar with Matlab and it is used in similar sound synthesis 

applications [19]. Another advantage of Matlab is that many functions are available that 

would otherwise have to have been implemented “by hand”, which greatly reduces the 

programming time needed to create algorithms.  

However, Matlab as a high-level programming language and environment is very slow 

compared to programming languages that are more hardware-oriented. Besides, in order for 

the interface to run, a working and up-to-date version (some issues concerning compatibility 

between different Matlab versions are known to occur) of Matlab is required. 

These drawbacks could be eliminated by porting the re-synthesis algorithm to a language such 

as C or C#, which would most likely lead to significant reductions in computation time as 

well as widen the circle of possible users of the synthesis algorithm by eliminating the need 

for a running Matlab copy on the user’s system. 

Another drawback of this system is that it works exclusively with uncompressed .wav audio 

files. In order to make the system more accessible, it will need to support audio files in 

different formats. 
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7.2 Database organisation 

As described in chapter 3.1.1, the database where segments are stored for later re-synthesis is 

designed as a three-dimensional cubic structure where segments are placed according to their 

length and their pitch value.  

While some re-synthesis results may not be optimal when the segments that are to be replaced 

have length or pitch values close to the boundaries between the cluster or sub-cluster 

elements, this organisation greatly reduces computation time and ensures optimal usage of 

disk space, which is an issue with large sound databases. 

For example, a rather small database of 40422 different sound segments would, using the 

feature vector presented in section 6.2.2, have to compare two six-dimensional vectors 40422 

times. In contrast, using the above-mentioned organisation, only the segments in a particular 

cluster and sub-cluster would have to be evaluated. In this thesis, the size of sub-clusters was 

limited to 25 elements, which means the computation time needed to find the most similar 

frame that matches the target song frame is reduced by approximately the factor 310 . 

The database is also organised in a way so as to optimally distribute the sound fragments 

between the clusters and sub-clusters. Again, this leads to a higher number of sub-optimal 

fragment match results (the more boundaries, the more yes/no-decisions are necessary and 

therefore errors are made) but greatly reduces the time needed for search and comparison 

operations.  
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Figure 7.1  Distribution of sound fragments among clusters and sub-clusters 

As Figure 7.1 shows, the database sound segments are evenly distributed among clusters and 

sub-clusters – only in the last cluster (cluster no. 81) the elements are not uniformly 

distributed.  

To further improve the database organisation, some form of compression could be used where 

length and pitch regions that are more frequent than others are quantised using smaller steps. 

For example, a probability distribution could be approximated from the length and pitch 

values and the quantisation step-size1 could be modelled after the distribution, which could 

lead to improved re-synthesis results at the expense of computation time. 

7.3 Beat Tracking 

Beat tracking and onset detection are a widely researched ([l], [2], [3], [6], [7], [9], [11], [27], 

[36], [42]) and discussed topic. As chapter 4.3 or [3] show, there are some onset detection 

approaches that work well in specific contexts and for specific signal types, however, a 

method that yields satisfying results across a wide number of musical genres has not been 
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found yet. Also, complex polyphonic music as well as signals with a prevalence of “soft” 

attacks lead to a high number of false detections regardless of the detection method used. 

There is also an inevitable trade-off between detection accuracy and computation time – while 

there have been some approaches that claim real-time ability ([2], [7], [50]), a fast but still 

reliable beat tracking method has yet to be determined. 

One way to achieve reliable onset detection results over a wide span of musical signals could 

be the usage of a “modular” approach, where the audio signal is first analysed in regard to 

certain properties and characteristics and the onset detection method is selected based on 

these properties. Such properties can include, for example, the overall harmonic structure, the 

percussiveness, the complexity or the genre of the audio signal. There have been attempts to 

classify the genre of musical signals [15], which can be used to determine the suitable onset 

detection method for audio signals – for example, rock songs usually display significant 

energy changes due to their percussive nature, which would suggest an energy-based onset 

detection method, while soul music will have a number of “soft” onsets suggesting the use of 

a phase-based detection method (see also chapter 4.1). 

The inter-onset interval beat tracking system presented in this thesis relies on a quite simple 

beat structure model. The beat tracker works well in situations where there is a clear, stable 

beat structure present in the signal. It does not account for tempo changes or more complex 

rhythmic patterns. A possible approach to this problem could be to use a number of different 

metric levels ([42]). 

Another issue in beat tracking problems is the amount of musical or psycho-acoustic 

knowledge used to design the tracking algorithm. Psycho-acoustic hearing models as well as 

rudimentary musical knowledge have been used in onset detection applications ([9], [42]). 

While the usage of assumptions based on musical knowledge (such as the location of certain 

beats in certain rhythmic structures) will improve results when dealing with certain types of 

music (for example, pop/rock songs), this approach will also lead to an increased number of 

false detection when the audio signal does not conform to the assumed rhythmic model.  

                                                                                                                                                         
1 i.e. the location of the cluster and sub-cluster boundaries 
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7.4 Features and similarity 

In this thesis, a number of temporal, spectral and statistical features are evaluated in regard to 

their relationship with the onset structure of audio signals (chapter 5.4) and with the perceived 

similarity of audio signals (chapter 6.2.2).  

Especially in the context of database management and audio signal description1, features have 

become an important issue in audio applications. Research topics in this field include 

instrument sound description [34], audio classification ([61], [62]) and the correlation 

between features [13].  

This thesis presents a six-dimensional feature vector using temporal, spectral and statistical 

features to calculate the distance (which in this case corresponds to the dissimilarity) between 

audio signals. The features used in this vector stem from a listening test concerning subjective 

similarity between audio signals, implying that human perception is a crucial issue in audio 

similarity applications. Future tasks will include deeper research into the correlation between 

human perception and signal similarity. The relationship between subjective attributes such as 

“brightness”, “sharpness” or “compactness” [1] and objective signal parameters such as 

“attack time” or “spectral deviation” [34] has not yet been fully explained. The main issue 

will be finding the smallest possible feature set that best describes the character of an audio 

signal. Although this thesis has shown a possible solution for this problem, there is still room 

for improvement in performance. 

7.5 Conclusion 

Listening to the re-synthesis results shows that the principal structure of the target song is 

reproduced quite well, while melodic and rhythmic details and finer structures are not 

reproduced as well. While a larger database than the one used for evaluation purposes in this 

thesis will lead to better results, there are still many issues that need to be addressed so that 

the algorithm can produce good results. Some of those issues were addressed in the previous 

                                                 
1 the MPEG-7 standard defines such a standard for audio signal description [31] 
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chapters, among them the need for improved onset detection and feature comparison, which 

in the author’s opinion are the most important unsolved problems. In conclusion, it can be 

said that this diploma thesis represents a step towards musically acceptable concatenative re-

synthesis of audio signals, but there is still a lot of work to be done. 
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9.2 Appendix B - Audio Signals used for Onset 
Detection Evaluation 
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Number Short Name Category Description 
    

1 Bass PP Monophonic Bass Track 
2 Pingpong NPP Excerpt from The Computer Jockeys, "Ping Pong" 
3 Sunshine Mix Excerpt from Cream, "Sunshine Of Your Love" 
4 Übermensch Mix Excerpt from Die Ärzte, "Rock'n'Roll Übermensch" 
5 Distguit PP Monophonic Distorted Guitar Track from [43] 
6 Drums1 NPP Monophonic Drum Track 
7 Drums2 NPP Monophonic Drum Track 
8 Dingdong Mix Excerpt from E.A.V., "Ding Dong" 
9 Godzilla Mix Excerpt from Fu Manchu, "Godzilla" 

10 Readyornot PNP Excerpt from The Fugees, "Ready Or Not" 
11 FX PP Monophonic Synthesizer Track 
12 Guitar PP Monophonic Clean Guitar Track from [43] 
13 Hiphop Mix Excerpt from Xzibit, "X" 
14 Clansman Mix Excerpt from Iron Maiden, "The Clansman" 
15 Musclemuseum Mix Excerpt from Muse, "Muscle Museum" 
16 Drumduet NPP Excerpt from a Phil Collins Live Recording 
17 Piano PP Monophonic Piano Track 
18 Pop1 Mix Pop Track from [43] 
19 Pop2 Mix Pop Track from [43] 
20 Rock Mix Rock Track from [43] 
21 Boulevards NPP Excerpt from Sin, "On Boulevards" 
22 Synth1 PNP Monophonic Synthesizer Track 
23 Synth2 PNP Monophonic Synthesizer Track 
24 Synthbass PP Bass Track from [43] 
25 Violin PNP Monophonic Violin Track 
26 Vox  PNP Monophonic Choral Track 

 

 

 

 

 

 

 

9.3 Appendix C – Overview of the Concatenative 
Music Synthesis Implementation in Matlab 

The implementation of the algorithm that re-synthesizes music from database fragments is 

explained in detail in this chapter. An overview of the algorithm structure and short 

descriptions of the used functions are given. 
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Figure 9.1  CSS algorithm overview with used functions (blue) and their purpose (black) 

The algorithm starts with the Matlab GUI CSS_GUI that serves as an user interface. 

Databases (called “libraries”) can be created, loaded, manipulated and viewed (using the 

Library_Info GUI). Also, the user can choose between the onset detection methods presented 

in this thesis, and the implemented beat tracker can be turned on or off. 

The CSS_GUI interface sends the chosen options and library data to the master program 

run_css. All other used functions are sub-functions used by this main script.  
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run_css starts by calling the sub-function cluster, which is used to organise the library frames 

into clusters and sub-clusters according to their length and pitch. The clustered library as well 

as information about cluster and sub-cluster boundaries is returned to run_css. 

After a target song is selected, the next step consists of calling the sub-function xtract_feats, 

where onset detection is performed in order to be able to segment the signal into suitable 

frames. The onset detection method can be chosen among the methods presented earlier 

(od_chroma for the chroma-based method, od_complex for the complex frequency domain 

method, od_mfcc for the MFCC-based method, od_modspec_1 for the sub-band trajectory 

method and od_modspec_2 for the weighted sub-band trajectory method). The optional beat 

tracker then finds beat hypotheses (find_Beat), selects the most likely beat candidate 

(select_Beat) and corrects the onset detection results using the estimated beat (correct_od). 

For every audio segment, the low-level features needed for the six-dimensional feature vector 

describing the segment are calculated. This information is returned to run_css. As can be seen 

in Figure 9.1, this function is also used to analyse and segment the audio signals that are 

added to a library or when a new library is created – the only difference is that not a target 

song but the audio signal that is to be loaded into a library is analysed. 

The library and target song information is then passed to assign_clusters, where every target 

song segment is assigned to a cluster and a sub-cluster so that the algorithm knows in which 

sub-cluster to look when comparing the target song segments to the database fragments. This 

is done by comparing the target song fragment length and pitch to the boundaries determined 

by the function cluster. 

The next step consists of finding the library fragments that best match the target song 

segments. This is implemented in compare_feats. The six-dimensional feature vectors are 

compared to each other, and all available information about the best-fitting database fragment 

is passed back to run_css. The current library is then expanded with the target song data.  

In the last algorithm step, the resynth sub-function cuts out the previously determined library 

fragments from the .wav audio signals that make up the database, performs minor signal 

manipulations like fade-in and fade-out as well as normalisation and concatenates the 

fragments to form a new .wav audio signal which can be saved. 
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