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Co-advisors: Stephen Travis Pope, Univ.Ass. DI Dr. Alois Sontacchi



2



Polyhydra by Manuela Meier 2006.
Photograph by Romana Rust.

3



Für Manuela.

4



Many thanks to Stephen Travis Pope and Robert Höldrich for supporting this project, and to
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Abstract

As a collaboration with the Center for Research in Electronic Arts Technology
(CREATE) at the University of California at Santa Barbara (UCSB), this thesis
addresses sound spatialization in the AlloSphere, a research environment currently
under construction as a shared facility of the California Nanosystems Institute and
UCSB’s Media Arts and Technology program. This spherical construction, which
has a diameter of approximately 10 meters and accommodates ten to twenty peo-
ple on a centered bridge, features interactively controllable projection of visual and
aural data on its entire inner surface.

The theoretical foundations of spatial hearing and a short history of periphonic
sound spatialization are presented. An overview of spatialization techniques (Vec-
tor Base Panning, Higher Order Ambisonics, holophonic approaches) is given. A
Higher Order Ambisonic C++ library for the CSL framework (CREATE Signal li-
brary) has been developed together with J. Castellanos and G. Wakefield, which can
be used to set up Ambisonic systems up to third order on distributed computing
systems. A periphonic loudspeaker layout design strategy is presented. It bases on a
hybrid approach of geodesic spheres and minimal energy configurations, allowing to
balance the design process between localization homogeneity and psychoacoustical
layout optimization. An according Matlab library has been developed to generate
loudspeaker layouts and evaluate them in combination with different spatialization
algorithms.

Keywords: 3D sound, surround sound, periphony, sound spatialization, vir-
tual environments, virtual reality, augmented reality, Higher Order Ambisonics,
B-format, Vector Base Amplitude Panning, holophony, regular polyhedra, Platonic
solids, geodesic spheres, minimimal energy configurations, CSL

Diese Diplomarbeit - eine Kooperation mit dem Center for Research in Elec-
tronic Arts Technology (CREATE) an der University of California at Santa Barbara
(UCSB) - behandelt die Spatialisierung von Klängen in der AlloSphere, einer derzeit
im Bau befindlichen Forschungseinrichtung des California Nanosystems Institute
und des Media Arts and Technology Programmes an der UCSB. Diese kugelförmige
Anordnung mit einem Radius von ca. 10 Metern bietet Raum für zehn bis zwanzig
Leute und erlaubt eine interaktiv steuerbare Projektion von visuellen Daten und
Klängen auf ihrer gesamten Innenfläche.

Die theoretischen Grundlagen räumlichen Hörens sowie eine kurze Geschichte
periphoner Klangspatialisierung werden präsentiert. Es wird ein Überblick über
entsprechende Techniken (Vector Base Panning, Higher Order Ambisonics, holo-
phone Ansätze) gegeben. Mit einer gemeinsam mit J. Castellanos und G. Wakefield
entwickelten Higher Order Ambisonic C++ Bibliothek für CSL (CREATE Signal
Library) kann Ambisonic bis zu dritter Ordnung auf verteilten Rechnersystemen
realisiert werden. Eine Strategie zum Design periphoner Lautsprecheranordnungen
wird präsentiert. Dieser Hybridansatz geodäsischer Anordnungen und Anordnungen
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minimaler Energie ermöglicht Kompromisse zwischen homogener Lokalisation und
psychoakustischen Optimierungen. Eine entsprechende Matlab Bibliothek erlaubt
den Entwurf von Lautsprecheranordnungen und deren Evaluierung in Kombination
mit verschiedenen Spatialisierungstechniken.

Schlagwörter: 3D Sound, Surround Sound, Periphonie, Klangspatialisierung,
virtuelle Umgebungen, virtuelle Realitäten, erweiterte Realitäten, Higher Order
Ambisonics, B-Format, Vector Base Amplitude Panning, Holophonie, reguläre Polyeder,
platonische Körper, geodäsische Kugeln, Anordnungen minimaler Energie, CSL



CONTENTS 8

Contents

I Theory of Spatial Hearing 12

1 Localization in the Horizontal Plane 13
1.1 Interaural Level Differences (ILDs) . . . . . . . . . . . . . . . . . . . 14
1.2 Interaural Time Differences (ITDs) . . . . . . . . . . . . . . . . . . . 14
1.3 Lateral Localization (Cone of Confusion) . . . . . . . . . . . . . . . . 16

2 Localization in the Median Plane 17

3 Distance Perception 18
3.1 Loudness of the Direct Wavefront . . . . . . . . . . . . . . . . . . . . 18
3.2 Atmospheric Absorption . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Proximity Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Relative Delay of Early Reflections to Direct Sound . . . . . . . . . . 19
3.5 Intensity Ratio of Direct Sound to Reverberation . . . . . . . . . . . 20
3.6 ILDs as a Function of Distance . . . . . . . . . . . . . . . . . . . . . 20

4 Dynamic Localization 20

5 Other Criteria of Spatial Hearing 21

6 Evaluating Periphonic Sound Localization 21
6.1 Velocity and Energy Vector according to Gerzon . . . . . . . . . . . 22
6.2 Generalized Velocity Vector . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Active and Reactive Sound Intensity . . . . . . . . . . . . . . . . . . 24
6.4 Complex u Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

II History of Periphonic Sound Spatialization 26

7 Stereo 27

8 Quadrophony, Octophony 29

9 First-Order Ambisonic (B-Format) 29

10 Dolby Standards, 5.1 31

11 Current Research 32

12 Examples of Periphonic Sound Spatialization Systems 32
12.1 The Spherical Auditorium at the World Fair 1970 in Osaka . . . . . 33
12.2 The IEM CUBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

III Theory of Periphonic Soundfield Reproduction 37

13 Vector Base Panning 37
13.1 Panning within a Single Loudspeaker Base . . . . . . . . . . . . . . . 37
13.2 Periphonic Panning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
13.3 Source Spread (MDAP) . . . . . . . . . . . . . . . . . . . . . . . . . 39



CONTENTS 9

13.4 Critique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

14 Holophony 40
14.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . 41
14.2 Discretization of the Loudspeaker Array . . . . . . . . . . . . . . . . 42
14.3 Restriction to Monopole Sources . . . . . . . . . . . . . . . . . . . . 43
14.4 Reconstruction of Enclosed Sources . . . . . . . . . . . . . . . . . . . 44

15 Higher Order Ambisonic 44
15.1 Derivation of the Ambisonic Representation . . . . . . . . . . . . . . 46

15.1.1 Derivation of the Encoding Process . . . . . . . . . . . . . . . 47
15.1.2 Derivation of the Decoding Process . . . . . . . . . . . . . . . 48
15.1.3 Equivalent Panning Functions . . . . . . . . . . . . . . . . . . 49

15.2 Ambisonic Encoding Functions . . . . . . . . . . . . . . . . . . . . . 49
15.3 Soundfield Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 52

15.3.1 Soundfield Rotation . . . . . . . . . . . . . . . . . . . . . . . 52
15.3.2 Dominance (Zoom) and Focus . . . . . . . . . . . . . . . . . 53
15.3.3 Mirroring, W-Panning . . . . . . . . . . . . . . . . . . . . . . 54

15.4 Decoding Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
15.4.1 Pseudoinverse . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
15.4.2 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
15.4.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 56

15.5 Decoder Flavors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
15.6 Source Distance Encoding (NFC-HOA) . . . . . . . . . . . . . . . . 58
15.7 Room Reflection Cancellation . . . . . . . . . . . . . . . . . . . . . . 61

16 Sound Object Encoding (O-Format) 62
16.1 Frequency-Invariant Radiation Pattern . . . . . . . . . . . . . . . . . 63
16.2 Surface Shape and Object Size . . . . . . . . . . . . . . . . . . . . . 65
16.3 Natural Sound Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 66
16.4 Frequency-Variant Radiation Pattern . . . . . . . . . . . . . . . . . . 67

17 Evaluation of Synthesized Soundfields 68
17.1 Integrated Wavefront Error (D-Error) . . . . . . . . . . . . . . . . . 68
17.2 Sound Pressure Errors . . . . . . . . . . . . . . . . . . . . . . . . . . 68
17.3 Direction Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

18 Loudspeaker Layout Design 69
18.1 Design Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

18.1.1 Vector Base Panning Layouts . . . . . . . . . . . . . . . . . . 69
18.1.2 Higher Order Ambisonic Layouts . . . . . . . . . . . . . . . . 70
18.1.3 Homogeneity vs. Psychoacoustics . . . . . . . . . . . . . . . . 71
18.1.4 Horizontal Plane . . . . . . . . . . . . . . . . . . . . . . . . . 71
18.1.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

18.2 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
18.2.1 Platonic Solids . . . . . . . . . . . . . . . . . . . . . . . . . . 72
18.2.2 Archimedian and Catalan Solids . . . . . . . . . . . . . . . . 73
18.2.3 Johnson Solids . . . . . . . . . . . . . . . . . . . . . . . . . . 74

18.3 Geodesic Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
18.4 Minimal Energy Configurations . . . . . . . . . . . . . . . . . . . . . 77
18.5 Loudspeaker Array Calibration . . . . . . . . . . . . . . . . . . . . . 78
18.6 Towards a Hybrid Loudspeaker Layout Design Strategy . . . . . . . 79



CONTENTS 10

IV Practical Contributions 83

19 Project Background 83
19.1 The AlloSphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
19.2 Audio in the AlloSphere . . . . . . . . . . . . . . . . . . . . . . . . . 85
19.3 The CREATE Signal Library (CSL) . . . . . . . . . . . . . . . . . . 87

20 Higher Order Ambisonic Classes for CSL 90
20.1 The HOA AmbisonicFramestream Class . . . . . . . . . . . . . . . . 90
20.2 The HOA Encoder Class . . . . . . . . . . . . . . . . . . . . . . . . . 90
20.3 The HOA Mixer Class . . . . . . . . . . . . . . . . . . . . . . . . . . 91
20.4 The HOA Rotator Class . . . . . . . . . . . . . . . . . . . . . . . . . 91
20.5 The HOA SpeakerLayout Class . . . . . . . . . . . . . . . . . . . . . 92
20.6 The HOA Decoder Class . . . . . . . . . . . . . . . . . . . . . . . . . 93
20.7 The HOA Utility Class . . . . . . . . . . . . . . . . . . . . . . . . . . 93
20.8 Code Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
20.9 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

21 3LD: Library for Loudspeaker Layout Design 97
21.1 Core Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

21.1.1 spharmonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
21.1.2 ezspherical . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

21.2 Loudspeaker Layout Generation and Modification . . . . . . . . . . . 98
21.2.1 platonicsolid . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
21.2.2 bucky2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
21.2.3 geosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
21.2.4 minenergyconf . . . . . . . . . . . . . . . . . . . . . . . . . . 100
21.2.5 rotate xyz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
21.2.6 map to surface . . . . . . . . . . . . . . . . . . . . . . . . . . 101

21.3 Loudspeaker Driving Signal Calculation . . . . . . . . . . . . . . . . 102
21.3.1 amb3d encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 102
21.3.2 amb3d decoder . . . . . . . . . . . . . . . . . . . . . . . . . . 103
21.3.3 amb3d regularity . . . . . . . . . . . . . . . . . . . . . . . . . 103
21.3.4 vbp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
21.3.5 calibrate layout . . . . . . . . . . . . . . . . . . . . . . . . . . 104

21.4 Soundfield Rendering and Evaluation . . . . . . . . . . . . . . . . . . 104
21.4.1 soundfielder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
21.4.2 direction deviation, pressure errors . . . . . . . . . . . . . . . 106

21.5 Helper Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
21.5.1 solospharm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
21.5.2 handlespharm . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
21.5.3 cart3sph, sph3cart, deg2rad, rad2deg . . . . . . . . . . . . . . 107
21.5.4 plot3LD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

22 AlloSphere Scenario 109
22.1 Loudspeaker Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
22.2 Soundfield Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 111
22.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

V Appendix 118



CONTENTS 11

A AlloSphere Geometry 118
A.1 Radius of the AlloSphere . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.2 Circumference in the Horizontal Plane . . . . . . . . . . . . . . . . . 120
A.3 Surface of the AlloSphere . . . . . . . . . . . . . . . . . . . . . . . . 121

B Conventions used in the Literature 123
B.1 Coordinate System Conventions . . . . . . . . . . . . . . . . . . . . . 123
B.2 Ambisonic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 123

C Platonic Solids 124



12

Figure 1: Coordinate system used in this thesis

Part I

Theory of Spatial Hearing
Our spatial hearing bases on two different sort of cues: those we use to evaluate the
direction of a sound source and those we use to evaluate its distance. The first group
can be further divided into different cues for azimuth1 and elevation2. Considering
these properties of human hearing, it is useful to introduce a spherical coordinate
system for the description of periphonic soundfields. We will use a coordinate sys-
tem as in figure 1 throughout the rest of this thesis.

In this left-oriented system, we assume the xy plane to be located at the height
of the ears of an average listener. If there is any prefered direction a listener in
the periphonic soundfield typically faces, we will assume this to be the direction of
the x axis, which is also the zero degree direction for both, azimuth and elevation.
The azimuth θ increases from 0 to π counterclockwise and decreases from 0 to −π
clockwise, whereas the elevation φ increases from 0 to π

2 towards the positive z axis,
and decreases from 0 to −π

2 towards the negative z axis. The distance of a sound
soucre is indicated by the radius r.

The x/y plane is also refered to as the horizontal plane or ear plane. The x/z
plane (or median plane) cuts through the symetry axis of the listener’s head and
separates the acoustical environment into a left and right half, while the y/z plane
(or frontal plane) is used to distinguish front and rear in our coordinate system.

While our angle naming convention follows a standard popular in the USA, the

1The azimuth is the horizontal angle in a spherical coordinate system.
2The elevation (or zenith) is the vertical angle in a spherical coordinate system.
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letters φ and θ are often used exactly the other way around in European countries (φ
for azimuth and θ for elevation). Another source of confusion is a convention widely
used in mathematics, which assumes the elevation to be zero in the direction of the
z axis and to increase towards the xy plane. To prevent any misinterpretations,
different conventions used in the most important literature sources of this thesis are
presented in the appendix (chapter B.1).

For a spherical coordinate system following these conventions, cartesian coordi-
nates can be derived with the equations

x = r cos θ cos φ

y = r sin θ cos φ

z = r sinφ

and cartesian coordinates can be converted back into our coordinate system with
the equations3

r =
√

x2 + y2 + z2

θ = arctan
(

y

x

)
+ π · u0 (−x) · sgn (y)

φ = arctan
z√

x2 + y2
+ π · u0

(
−
√

x2 + y2

)
· sgn (z) = arcsin

z

r

In the case of a coordinate system following different conventions regarding ori-
entation or angels, these six equations will have to be adopted accordingly.

1 Localization in the Horizontal Plane

Spatial hearing in the horizontal plane is the result of a combination of the two
major phenomena of binaural hearing: Interaural Level Differences (ILDs) and In-
teraural Time Differences (ITDs). The first are the major cue for localizing higher
frequencies, whereas the latter are particularly relevant in the low-frequency area.
Together, they allow for evaluation of the azimuth of a sound source at a very de-
tailed resolution. Figure 2 shows the localization blur4 in the horizontal plane for
a fixed head. Note that head rotations greatly contribute to improved localization,
which will be discussed in chapter 4. In this chapter, we will use the term ipsilateral
as an attribute for the ear which is closer to a sound event than the contralateral
ear. For example, for a sound wave arriving from the left (as seen from the listener’s
perspective), the left ear is considered ipsilateral and the right ear contralateral (and
vice versa for sounds from the right).

3In these equations, u0 (unity step function with u0 (0) = 0) and sgn (the signum function) are used as
logical switches for finding the value of θ and φ in the correct quadrant. For this purpose, the atan2(y,x)
function is provided in many computer languages.

4The localization blur refers to the minimal difference required so that 50% of the subjects in a listening
test will detect a change in the position of a sound source [Bla74, p.30]
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Figure 2: Localization and localization blur in the horizontal plane for 100 ms white noise
impulses and fixed head position [Bla74, p.33]

1.1 Interaural Level Differences (ILDs)

Interaural Level Differences (ILD) are caused by two different effects: the attenua-
tion of sounds on the contralateral ear by the human head, and the sound pressure
amplitude decreasing with the distance of a sound source (1/r law). The latter effect
can be neglected for sound sources with distances large compared to the distance
between the two ears.5 For close sources, however, the distance between the two
ears becomes relevant, and both phenomena will add up to a higher ILD than would
be caused by a sound source in the same direction but at a greater distance [Son03,
p.9]. In this sense, the ILD serves as a distance cue as well (see chapter 3.6). On
the other hand, the attenuation effect of the head is only relevant for frequencies
above 300 Hz [Hub02, p.7], since diffraction occurs for wavelengths large compared
to the size of the human head. Thus, Interaural Level Differences are a function of
the distance of a sound source as well as of its frequency. Due to the complexity of
the diffraction effects, it is difficult to mathematically model them6.

1.2 Interaural Time Differences (ITDs)

Interaural Time Differences (ITD) occur because of the distance between the two
ears, causing a sound wave to reach the ipsilateral ear earlier than the contralateral
one. While the human hearing can detect such time differences as small as 30 µs
[Gra00, p.68], [Ker03, p.8], the maximum ITD for a sound in the horizontal plane at
an azimuth θ = ±90◦ is about 630 µs [Bla74, p.115]7. Interaural Time Differences
can be either detected in the shape of the signals themselves or in their envelopes.
In the first case, they are also refered to as Interaural Phase Differences or Interau-
ral Phase Delays. This mechanism is only relevant for frequencies below 1600 Hz,
since the phase differences become ambiguous for signals with smaller wavelengths.

5The distance between the two ears is usually assumed with 17 cm.
6[PKH99] describes a binaural auditory model for evaluation of the ILDs and ITDs. This model

bases on the head-related transfer functions (HRTFs) simulating the effects of the outer ear, and on a
gammatone filterbank modelling the inner ear.

7[Bla74] assumes a distance of 21 cm between the ears and a speed of sound at a temperature close
to 0◦C. For a ear distance of 17 cm - as often assumed in the literature - and a more Californian climate
(20◦C), we get a value of 495 µs.
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On the other hand, the detection of time differences in the envelopes (refered to as
Interaural Group Delays) works for the entire frequency range above 100 Hz, since
temporal changes in the envelope usually occur at rather low frequencies. However,
this requires transients and thus does not work for stationary signals [Bla74, p.132].

Contrary to the ILD, interaural time differences can be modeled mathematically
in a comparably simple way. Different models have been described to evaluate the
ITD caused by a plane wavefront from a certain direction. All of them make use of
a spherical head model. The simplest model [Dic97, p.118] assumes straight wave
propagation to both ears, which is only possible for an acoustically transparent
head. Although such heads are known to be rare, this is a valid assumption for low
frequencies, where diffraction around the head occurs. Another model presented in
[Gra00, p.68] assumes the wave propagation path to the contralateral ear to first
follow a straight line and then curve spherically around the head, giving a good
approximation of the ITD for higher frequencies. The most sophisticated model
of Interaural Time Differences has been presented in [Dan00, pp.35-39], where an
explicit distinction between low and high frequencies is made:

ITDLF (θ, φ) =
D(f)

c
sin θ cos φ

ITDHF (θ, φ) =
R

c
[arcsin (sin θ cos φ) + sin θ cos φ]

D(f) is the so-called equivalent head diameter, c is the speed of sound, R is the radius
of the head, θ is the azimuth and φ the elevation of the sound source. According
to [Dan00, p.35], the transition frequency between high and low frequency area is
somewhere around

fT ≈ 1.5 kHz ... 2 kHz

Besides the fact that these equations also include the elevation of the sound
source - accounting for the fact that ITDs can also occur for sounds outside the
horizontal plane - equation (1) is identical to the one presented in [Gra00, p.68],
and equation (1) is basically equivalent to the one in [Dic97, p.118]. Additionally,
the equivalent head diameter D(f) is introduced in equation (1). The reason for
this concept is the observation that for a constant head diameter of D = 2R, the
equation only yields right results for a small azimuth θ. For an azimuth close to
θ = ±π/2, the measured ITD is actually bigger than predicted by the equation,
depending on the frequency of the sound source. This irregularity can be avoided
by assuming a bigger head diameter for lower frequencies. The equivalent head
diameter D(f) corresponds to the diameter that an acoustically transparent head
needs to have in order to produce the same ITD over the entire frequency range (for
a fixed direction of the sound source of course). Although Daniel presents no exact
equation for D(f), he notes that

D(f → 0 Hz) = 3R

A further desciption of this issue can be found in [DRP99, p.5].
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Figure 3: Cone of confusion [Pul01b, p.5]

1.3 Lateral Localization (Cone of Confusion)

Interaural differences alone are not sufficient for a model of spatial hearing in the
horizontal plane, since they fail to explain how we distinguish sounds from the front
and rear hemisphere creating identical interaural differences (think of two sound
sources at azimuths 45◦ and 135◦). The area of source positions causing identical
ILDs and ITDs is usually refered to as the cone of confusion, shown in figure 3.

Two different mechanisms support our hearing in removing such ambiguities in
the lateral localization of sound sources: First, the spectral content of soundwaves
will be filtered due to interference with reflections at the pinna8 and the torso. Due
to the pinna’s asymmetry, the characteristics of this filter depend on the position of
the sound source, supporting our front-back discrimination. Second, head rotations
will cause oppositely directed changes in the interaural differences for front and
rear sound events. For example, the interaural differences created by a sound at an
azimuth of 45◦ will increase if we rotate our head to the right, whereas they will
decrease for a sound at an azimuth of 135◦. Chapter 4 provides more information
about the importance of head movements in spatial hearing.

2 Localization in the Median Plane

Sound sources in the median plane create identical ear signals. Thus, the human
ear needs to rely on monaural cues in order to evaluate the elevation angle of a
sound source. Due to the absence of interaural differences, our localization in the
median plane is generally much worse than in the horizontal plane. Figure 4 shows
the localization blur in the vertical plane9.

As in the case of lateral localization (see chapter 1.3), we use the spectral content
of a sound - which is filtered by the pinna and the torso depending on the direc-
tion of the sound source - to evaluate its position in the median plane. [Bla74] has
shown that we tend to localize a sound source at a certain elevation depending on
the presence of energy in certain frequency bands, which he refers to as directional
bands, schematically shown in figure 5. Since narrowband sounds do not provide

8The pinna is the visible part of our ear.
9Note that the data on which figure 4 bases has been collected in a different study than in the case of

figure 2.
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Figure 4: Localization and localization blur in the median plane for continuous speech of
a familiar voice [Bla74, p.36]

Figure 5: Directional bands according to [Bla74] (figure from [Hub02, p.8] with edits)

enough information regarding the directional bands, they can hardly be localized in
the median plane. [Bla74] has observed that the perceived direction in the median
plane of such a signal almost exclusively depends on its spectral content, which is
demonstrated in figure 6.

Another important cue for localization in the median plane is the familiarity
of a presented sound, which will be further discussed in chapter 5. Resembling a
somewhat ’unnatural’ listening environment, the localization of sounds from the
lower hemisphere has hardly been the target of any research so far. The collection
of according data would contribute imortant information regarding the design of
fully periphonic sound spatialization systems such as the AlloSphere (see chapter
19.1).

Figure 6: Perceived direction of a narrowband sound source located anywhere in the
median plane, depending on its center frequency (schematic illustration) [Bla74, p.36]
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3 Distance Perception

The perception of the distance of a sound source works much less reliable than the
perception of its direction, since the according cues heavily depend on the spectral
content and the familiarity of the presented content. A good summary of research
conducted in this context is given in [Gro03, pp.41-44].

3.1 Loudness of the Direct Wavefront

Since the sound pressure amplitude of a spherical wavefront decreases with its dis-
tance (1/r law), its perceived loudness can be regarded a distance cue. However,
this cue is not very reliable, since it heavily depends on the familiarity of the pre-
sented content. Also, in re-synthesized soundfields, the natural loudness of a sound
source at a certain distance can easily be overridden by electroacoustical amplifica-
tion. Besides, the spatial sound emission of natural sources usually follows complex,
frequency dependent patterns, which cannot be sufficiently modelled by spherical
wavefronts. Also, the 1/r law only holds for free field situations.10 [Bla74, p.96] has
noted that the greatest reliability of this cue can be expected for source distances
in the range of 3 to 15 meters.

3.2 Atmospheric Absorption

For sound source distances over 15 meters, atmospheric sound absorption due to
friction of air molecules can be regarded as an additional cue [Bla74, p.96]. The
resulting change of the signal’s spectral content will affect high frequencies more than
low frequencies, giving a damped sound impression of distant sources. However, it
has to be kept in mind that the required distances usually only occur in free field
situations.

3.3 Proximity Effect

For very close sound sources (r < 1 m), the wavefront curvature becomes rele-
vant compared to the wavelength, resulting in a proximity effect also familiar from
recordings with velocity microphones: the low frequencies of close sources will be
accentuated [BR99]. This effect is additionally supported by a property of the hu-
man auditory system which can be read from the equal loudness contours in figure
7. In the low-frequency region, these curves are flatter for higher sound pressure
amplitudes - the low frequencies of loud signals do not have to be amplified as much
in order to be perceived as loud as their high frequencies. This means that the
low frequency content of a close (and thus louder) source will be perceived louder
compared to its high frequencies than in the case of a distant (i.e. softer) source.

3.4 Relative Delay of Early Reflections to Direct Sound

In a closed room, it is possible to use the relative delay of the early reflections to the
direct sound as a cue for the distance of a sound source. Due to the finite speed of
sound, a listener will experience a delay of the direct wavefront, which increases with
the distance to the sound source. The delay pattern of the statistically distributed
early reflections will be less distance dependent. Thus, the relative delay of the

10In chapters 3.4 and 3.5, we will discuss distance cues in closed rooms.
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Figure 7: Equal loudness contours according to the old ISO 226 standard (dashed) and
to the ISO 226:2003 revision (solid) [AIS]

early reflections to the direct sound will decrease with increasing distance and can
serve as an according cue [Son03, p.9].

3.5 Intensity Ratio of Direct Sound to Reverberation

The ratio of direct sound intensity to reverberation intensity can be regarded as
another important distant cue in closed rooms. While the intensity of the direct
sound decreases with increasing distance of a sound source (1/r2 law), the inten-
sity of the reverberation will remain constant in a sufficiently diffuse room. The
according ratio can be used to evaluate the distance of the source [Son03, p.9].

3.6 ILDs as a Function of Distance

It has already been mentioned in chapter 1.1 that the Interaural Level Differences
(ILD) can be considered a function of distance for very close sound sources. The
reason for this is the fact that for source distances of r < 1 m, the distance be-
tween the two ears cannot be neglected any more and the 1/r law becomes relevant.
Compared to greater distances, where attenuation by the human head is exclusively
responsible for the ILDs, this results in an amplification of the ILDs, which we can
detect to evaluate the distance of close sound sources. [Ker03, p.13] refers to an
according study of Brungart, which has shown that distance evaluation in this area
is more exact for sources outside the median plane (for which ILDs occur). He also
notes that Interaural Time Differences have turned out to be largely independent
from the distance of a sound source.
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4 Dynamic Localization

Beyond the localization of static sound sources, dynamic localization is important
regarding the movement of sound sources, as it often occurs in natural and synthe-
sized soundfields. Dynamic localization requires changes in the relative position of
a sound source to the listener, i.e. movements of the source or movements of the
listener.

In the case of a moving sound source, the Doppler effect causes changes in the
pitch of the sound due to an interference of the speed of the sound source and
the speed of the emitted soundwaves. It can be simulated by the means of vari-
able delay lines in order to synthesize a natural acoustical environment [Zmö02, p.9].

Movements of the listener typically occur in form of small movements of the
head, which greatly contribute to an improved localization of sound events. It is
possible to distinguish two different groups of head movements:

• When trying to localize a sound source, we tend to unconsciously make small
head rotations around the z axis to create variations of the Interaural Time
Differences (ITD). These variations, which have their maximum for sounds
in the horizontal plane [Dan00, pp.43-44], can remove problems in the lateral
discrimination of sound sources caused by the cone of confusion, as described
in chapter 1.3.

• Head translations can be considered a factor in evaluating the distance of
a sound source, since the resulting variations regarding the relative position
of the sound source to the listener will be bigger for close than for distant
sources, leading to greater variations of the distance cues discussed in chapter
3. This is especially important for close sound sources, where the Interaural
Level Differences are sensitive to translations of the head (see [Son03, p.9] and
chapter 3.6).

5 Other Criteria of Spatial Hearing

Besides the signals picked up by our ears, other cues play an important role regarding
the localization of sound sources:

• If any visual cues can be related to a sound source, the localization of this
sound source will be primarily based on these11. This is an important factor
in the design of virtual environments, which typically provide visual content
as well.

• [Mal03a, p.34] has pointed out the lack in research regarding sound perception
mechanisms like chest cavity pickup and bone conduction, which could play an
important role in the localization of sounds in the low frequency area.

• The familiarity of the listener with a sound event has been described as an im-
portant factor in the evaluation of its elevation and distance [Bla74, pp.85,97].
Psychoacoustics have to be considered in this context as well: the perception
of whispering will always be one of a close, intimate event, no matter how loud
it is being reproduced.

11A popular example for this is the television, where the sound appears to be emitted by the screen
rather than by the loudspeakers next to it [Hub02, p.9].
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• Besides providing two important distance cues (see chapters 3.4 and 3.5), our
perception of room gives us a good deal of information regarding the physical
properties of a closed listening space. The pattern of the early reflections is
important for evaluating the room’s size, and the diffuse reverberation provides
information about the surface structure of the walls [Zmö02, p.9]. According
knowledge is essential in the design of reverberators and auralizers used for
synthesizing virtual acoustical environments.

• A greatly underestimated criterion of periphonic soundfields are the sound
source properties: size and frequency radiation pattern of a sounding object
provide us with valuable information about the identity of that object as well
as its position and orientation in the acoustical environment.12 If addressed
at all, this issue is usually treated globally in various techniques of synthesiz-
ing periphonic soundfields, meaning that only one size can be assigned to all
sources of a field (e.g. chapter 13.3). An approach to encode size and radiation
pattern for each single sound source is the Ambisonic O-format, discussed in
chapter 16. The size of a sounding object also relates its direction and dis-
tance, since very close sources cannot be considered point-like any more - an
assumption which we have implicitely made for the description of interaural
differences in chapter 1.

6 Evaluating Periphonic Sound Localization

Most of the localization cues discussed so far can be electroacoustically synthesized
in order to locally reconstruct desired properties of auditory localization, like in
the case of stereophonic panning (see chapter 7). However, in multi-user virtual
environments, we have to provide a much larger area of accurate sound localization
than an isolated sweet spot. In the construction of such a sweet area, the question
arises how a soundfield globally relates to its localization properties. According
knowledge will also help us to accordingly focus our efforts, neglecting unpopulated
areas. Several criteria of periphonic sound localization have been described in the
literature for evaluating the localization properties of a given soundfield. In the case
of fields which can be mathematically described, they serve as an important tool
for simulating the localization properties in periphonic audio reproduction systems.
Such a mathematical description is generally only possible for very simple circum-
stances, such as in the case of complex monochromatic fields13. The sound pressure
in a complex monochromatic field of a frequency f can be described for any point
in space ~r and time t as

p (~r, t) = |p (~r, t)| ej[ωt−φ(~r)] = P (~r, t) ej[ωt−φ(~r)] (1)

where φ is the phase angle, P is the pressure magnitude, and ω = 2πf is the ra-
dian frequency. For fields of such a form and assuming linear wavefront propagation
under free-field conditions, we can derive the sound velocity14 as [Pol00, p.1174]

~v =
1

kρc

(
∇φ + j

∇P

P

)
p (2)

12So far, we live in a world of electroacoustically synthesized soundfields in which all sound sources
permanently face the listener directly.

13The term monochromatic means that the field consists of only a single frequency. For example,
monochromatic soundfields are created by sine oscillators.

14The sound velocity is the speed at which the air molecules oscillate. It may not be confused with the
speed of sound, which is much higher.
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where c is the speed of sound (e.g. 331.3 m/s for air at 0 degrees Celsius),
k = 2πf

c is the wave number, ρ is the air density (typically 1.29 kg/m3 for air at 0
degrees Celsius and at sea level), and ∇φ and ∇P are the gradients of phase and
pressure magnitude. Note that in this equation, space and time dependence is given
implicitely through p.

6.1 Velocity and Energy Vector according to Gerzon

Gerzon described how sound velocity and sound intensity both contribute to hu-
man auditory localization [Ger92]. He introduced the concepts of velocity vector
and energy vector15 as localization descriptors in periphonic soundfields. Gerzon
considered the soundfield in the listening spot created by a superposition of plane
wavefronts. For such a situation, he defined the velocity vector and the energy
vector as [Dan00, pp.24, 61]

~Vgerz =

∑
i

ai (~r) ~ui (~r)∑
i

ai (~r)
= rV · ~uV

~Egerz =

∑
i
|ai (~r)|2 ~ui (~r)∑
i
|ai (~r)|2

= rE · ~uE

where the unit vector ~ui is the direction of the i-th plane wavefront relative
to the listening spot ~r, and the complex amplitude ai describes its amplitude and
phase. The unit vectors ~uV , ~uE refer to the perceived direction in the soundfield.
The according perception will be maximized for amplitudes rV , rE at their maxi-
mum value of one. Gerzon applied the velocity and the energy vector to evaluate
the localization in a central listening spot ~r = 0 of an array of loudspeakers emitting
plane wavefronts by assumption. For ~r = 0, the velocity vector describes the local-
ization of low frequencies (< 700 Hz according to Gerzon), and the energy vector
is associated with high frequencies (> 700 Hz). For example, if a high-frequency
sound source is to be synthesized in a direction ~usrc, we will try to optimize our
playback system towards ~uE = ~usrc and rE → 1 in the sweet spot. Daniel has
pointed out that the energy vector can also be applied to low frequency localization
in the case of off-center listening positions [Dan00, p.76]. Thus, the energy vector
is particularly interesting regarding the evaluation of large listening areas like in
multi-user virtual environments.

6.2 Generalized Velocity Vector

While Gerzon’s velocity vector based on the special case of superponed plane wave-
fronts, Daniel has generalized his concept to arbitrary soundfields [DRP99, p.3].
Also, he uses the velocity vector as a global soundfield descriptor rather than ex-
clusively for a central listening spot. Poletti has used this complex velocity vector
~V at position ~r in the form [Pol00, p.1174]

~V (~r) = ρc
~v (~r)
p (~r)

(3)

15[Son03, p.20] has noted that although Gerzon uses the term energy vector, it is actually related to
the sound intensity.
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~v (~r) and p (~r) are sound velocity and sound pressure at position ~r. ~V is a complex
vector. Its real and imaginary parts describe different aspects of localization:

~Ω (~r) = Re
(
~V (~r)

)
= rV · ~uV

~Φ (~r) = Im
(
~V (~r)

)
= rΦ · ~uΦ

where |~uV | = 1 and |~uΦ| = 1. Just as in equation (3), ~Ω describes the perceived
direction. ~Φ is often refered to in the literature as phasiness. It is associated with
image broadening and becomes large in areas where destructive interference among
the wavefronts from different sound sources occurs [Pol00, p.1174].

For the special case of a complex monochromatic soundfield, we can derive
~v (~r) and p (~r) using equations (1) and (2), yielding the velocity vector for com-
plex monochromatic fields [Pol00, p.1174]:

~Vm =
1
k

(
∇φ + j

∇P

P

)
(4)

Note that the phase gradient ∇φ is known to point in the direction of wave
propagation, supporting our earlier statement according to which the real part of
the velocity vector describes the perceived direction.

6.3 Active and Reactive Sound Intensity

As we have seen from Gerzon’s energy vector (chapter 6.1), the development of
sound intensity in a soundfield is an interesting criterion regarding its localization
properties. Poletti has pointed out that it is desirable to define a time-invariant
intensity quantity in order to avoid averaging operations. This is possible by re-
striction to complex monochromatic fields as described by equations (1) and (2).
Poletti thus introduced the complex intensity for monochromatic fields as [Pol00,
p.1175]

~IC =
P 2

2kρc

(
∇φ− j

∇P

P

)
=

P 2

2ρc
~V ∗

m

where ~V ∗
m is the complex conjugate of the velocity vector for monochromatic

fields from equation (4). Using the real parts of pressure and velocity, Poletti
derives from this the real intensity ~IR (which is not the real part of the complex
intensity) as

~IR =
P 2

ρω

(
∇φ cos2 (ωt− φ)− ∇P

2P
sin (2 (ωt− φ))

)
We are interested in the real and imaginary parts of the real intensity, given as

~Ia = Re
(
~IR

)
=

P 2

2kρc
∇φ cos2 (ωt− φ)

~Ir = Im
(
~IR

)
= − P

2kρc
∇P sin (2 (ωt− φ))

The active intensity is proportional to the gradient of the phase of the soundfield
and thus points in the direction of wave propagation. Its average describes the
average flow of sound energy. The reactive intensity - being proportional to the
gradient of the pressure magnitude - is normal to surfaces of constant pressure. Its
time average is zero. [Pol00, p.1175]
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6.4 Complex u Velocity

An alternative criterion for describing the perceived direction in periphonic sound-
fields is the flux of sound energy. Poletti presented the complex u velocity as an
according soundfield indicator. As in the case of the complex intensity (see chapter
6.3), he restricts its use to complex monochromatic soundfields in order to receive a
time-invariant quantity. Poletti derives the complex u velocity ~uc as [Pol00, p.1176]

~uc = c ·
~V ∗

m

1
2

(
1 +

∥∥∥~Vm

∥∥∥2
) (5)

Again, the real and imaginary parts of ~uc describe different aspects of auditory
localization:

~va = Re (~uc) = c ·
1
k∇φ

1
2

(
1 +

∥∥∥~Vm

∥∥∥2
)

~vr = Im (~uc) = c ·
1
k
∇P
P

1
2

(
1 +

∥∥∥~Vm

∥∥∥2
)

The real part has the same direction as the active intensity (see chapter 6.3)
and is thus refered to as active velocity. It is not equivalent to the speed of the
wavefronts (phase velocity cp), which is cp = c k

|∇φ| = c

|Re(~Vm)| . The imaginary part

of the complex u velocity is also called reactive velocity. It is not associated with
sound energy transport, since its time average is zero. [Pol00, p.1176]
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Part II

History of Periphonic Sound
Spatialization
Since the electroacoustic techniques have made it possible to separate the recording
and playback of sounds in terms of time and space, our attention has focused on
the spatial qualities of sound as being an implicit part of our auditory experience.
Composers have started to understand space as a parameter available for compo-
sition, and music performance is moving away from the the 19th century idea of
a stage-centered experience towards immersive audiovisual environments in virtual
and augmented realities. It has often been pointed out, that there are several exam-
ples of ’spatial music’ - i.e. music in which space is considered an important factor
in composition and performance - prior to the electroacoustic era [Mal03b], [R+96,
p.452]. However, the invention of the loudspeaker as a device separating sounds
from their physical sources surely has contributed to new aesthetics regarding the
role of space in music. Two major approaches to electroacoustic music have emerged
from this aesthetical thinking:

• The loudspeaker as an instrument
One approach is to see the loudspeaker as a powerful new instrument, capable
of reproducing more different sounds than any other one available, but still
being an instrument with its own body and characteristics. The French loud-
speaker orchestras of the 1970s are examples for this kind of attitude towards
electroacoustic music. Among them are the Gmebaphone (Groupe de Musique
Experimentale de Bourges, France 1973) and the Acousmonium (Groupe de
Recherches Musicales Paris, France 1974; see figure 8). The creators of these
systems have considered the diversities of different loudspeaker models and
irregular speaker layouts to be essential for the development of an art of sound
spatialization. For example, the Acousmonium contained eighty speakers of
different sizes placed across a stage at varying heights and distances. Their
placement was based on their range, their power, their quality, and their di-
rectional characteristics [EMFa]. The BEAST (Birmingham ElectroAcoustic
Sound Theatre) is also often mentioned in this context. It has been developed
by Jonty Harrison and others at the University of Birmingham, UK in the
mid-1980s as a thirty-channel concert system for playing electronic music in a
concert hall [EMFb].

• The invisible loudspeaker
The second approach bases on a ’dematerialization’ of the loudspeakers, merely
abusing them as a means of creating phantom sound sources and (re)synthesized
wavefields. Playback systems designed following this concept typically use
more symmetrical layouts of loudspeakers with identical characteristics. Gen-
erally, this is the suitable approach regarding sound spatialization in virtual
environments, which considerably depend on the successfull hiding of the tech-
nology involved in their creation and usually call for a permanent sound spa-
tialization system that can be used for various applications of both, artistic
and scientific nature.

In this chapter, we will give an overview of the evolution from the first steps of
spatial audio reproduction to the present day. We will discuss different techniques
which have been and partly still are used in sound spatialization. Two examples of
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Figure 8: The Acousmonium at the Groupe de Recherches Musicales [R+96, p.454]

multi-user virtual environments providing capabilities for periphonic audio repro-
duction will be presented as well: Stockhausen’s spherical auditorium at the world
fair 1970 in Osaka as a historical example, and the CUBE at the Institute of Elec-
tronic Music and Acoustics at the University of Music and Dramatic Arts Graz,
Austria as a more recent example.

7 Stereo

The first important breakthrough in the history of spatial electroacoustic music was
the development of stereophony or - to be more precise - the invention of phantom
sound sources created by pairs of loudspeakers. Although stereo has been developed
independently in the USA and in the UK, the work of Alan Dower Blumlein can
be pointed out. His patent from 1931 [Blu31] describes the stereophonic recording
technique today refered to as the Blumlein Pair.16 Since then, a variety of stereo-
phonic recording techniques has been developed, which base either exclusively on
amplitude (XY microphone technique, Blumlein pair) or phase differences (AB
technique) between the microphones, or on a mixture of both (ORTF technique).
Blumlein’s work also included efforts of separately decoding the level and phase
differences picked up by a stereo microphone to create phantom images on both the
horizontal and vertical axis of a 2D loudspeaker array [Blu31]17. It is also inter-
esting to note, that the Blumlein pair as well as the M/S stereophonic microphone
technique anticipated basic concepts of Ambisonic, a technique of periphonic audio
reproduction extensively described in chapters 9 and 15.

16I.e. two coincident figure-of-eight microphones at a right angle with their symmetrical axis pointing
towards the center direction.

17This design focused on movie theaters, with the loudspeaker array being hidden behind the projection
screen.
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The standard stereophonic loudspeaker layout consists of two speakers capable
of reproducing the full audible frequency range and forming an equilateral triangle
with the sweet spot in the horizontal plane. The loudspeakers are thus located
at ±30 degrees from the listener’s perspective, and their membranes typically face
the sweet spot. Besides feeding the loudspeakers with the signals of a stereophonic
recording, it is possible to synthesize phantom sound sources at any position between
the two speakers. This process - which is refered to as panning - can be realized
by feeding both loudspeakers with the same monophonic signal, either at different
amplitudes, or with a small delay between them. In the fist case, the sound event
will be ’dragged’ towards the direction of the loudspeaker which is playing at a
higher amplitude. In the second case, the sound event will appear closer to the
loudspeaker which emits its wavefront earlier. These effects can be explained by the
concept of interaural level and time differences, described in chapter 1. Due to its
technical simplicity, panning by the means of amplitude differences has become far
more popular. The stereophonic law of sines (Bauer, Clark, Dutton, Vanderlyn) is
often used to derive the gains of the left and right loudspeaker for synthesizing a
phantom source at a certain position:

sin θ

sin θ0
=

gL − gR

gL + gR

θ0 is half the angle between the two loudspeaker with 0◦ < θ0 < 90◦, θ is the
desired angle of the phantom source with −θ0 ≤ θ ≤ +θ0, and gL, gR are the gains
of the left and right loudspeaker with gL, gR ∈ [0, 1]. However, this equation is only
valid if the listener’s head is exactly facing the symmetrical axis between the two
loudspeakers. The tangent law (Bennett et al., Makita, Leakey, Bernfeld) is also
correct for slight rotations of the listener’s head [Bos01]:

tan θ

tan θ0
=

gL − gR

gL + gR
(6)

Since both laws only describe the relation between the gain factors of the left
and right speaker, a second equation is required to actually resolve the gain factors
[Pul01b, p.12]:

P

√
gP
L + gP

R = 1 (7)

Typically, P is chosen with P = 1 to keep the amplitude of a virtual sound
source at a constant level for all possible positions, or with P = 2 to keep the sound
energy constant.18 [Pul01b, p.13] has pointed out that the first choice is often made
in anechoic listening rooms, while the second approach is prefered in rooms with
more extensive reflections.

Different panning laws have been proposed by John Chowning and others [Pul01a,
p.13], [R+96, pp.459-460]. The obvious drawbacks of the stereo system regarding
periphonic sound spatialization are given by the small area of accurate audio repro-
duction (sweet spot) and the limitation to frontal sound source reproduction.

18Note that this does not refer to the techniques of amplitude and intensity panning, which are described
in chapter 13!
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8 Quadrophony, Octophony

In the 1970s, experiments have been made to extend the principles of stereo to
quadrophonic layouts with four loudspeakers arranged in a rectangle. These sys-
tems suffered from the tradeoff between poor frontal versus poor lateral images: if
the speakers are arranged in a square, the angle between the front speakers is 90 de-
grees, as opposed to the 60 degrees of a standard stereo layout, resulting in a ’hole in
the middle’ for frontal images. Trying to avoid this problem by approaching a more
rectangular layout will at the same time decrease the quality of the lateral images.
Also, the ear’s lateral resolution is much worse than its frontal resolution, which
furhter increased the problem. There has been a variety of quadrophonic audio for-
mats (JVC CD4, CBS SQ, Sansui SQ, Nippon Columbia UD4, etc.), none of which
was able to define a broad industry standard. Mostly, these systems were designed to
be compatible with the stereo format, so they were used to reproduce quadrophonic
recordings as well as to enhance the spatial quality of stereo recordings. To stay
compatible with stereo recording media, the four channels of quadrophonic record-
ings were often encoded onto two channels using frequency modulation19 [Zmö02,
p.13]. In order to achieve the full bandwidth for all four signals, frequencies as high
as 50 kHz were stored on vinyl, as in the case of the CD-4 format. Unfortunately,
the high-frequency content was subject to wear, decreasing the spatial effect of often
played quadrophonic records.

To escape the horizontal plane, quadrophonic systems sometimes had their
speakers arranged in four corners of a rectangular parallelepiped (e.g. left bottom,
right top for the front speakers and left top, right bottom for the rear speakers)
[R+96, p.456]. Obviously, such systems do not allow for independent control of az-
imuth and elevation of a sound source. To overcome the drawbacks of quadrophony,
octophonic layouts with eight loudspeakers have been studied to increase the qual-
ity of phantom images in the horizontal plane (circular layouts) or to allow for true
with-height reproduction (cubic layouts).

9 First-Order Ambisonic (B-Format)

The Ambisonic system, developed by Michael Gerzon from the University of Ox-
ford, UK, was commercially even less successfull than quadrophony, but the theory it
bases on had a lasting impact on periphonic sound reproduction. Gerzon’s approach
was the first which explicitely focused on the reproduction of entire soundfields
rather than the creation of isolated phantom sound sources - a step which makes
the introduction of full periphony a natural thing to do.20 In its most basic version,
the Ambisonic system allows for full periphony by the means of four loudspeakers
arranged in a tetrahedron. If the reproduction quality of such a system is of course
limited, its capabilities are still remarkable compared to the struggles of quadro-
phonic systems regarding horizontal-only reproduction with the same amount of
loudspeakers. Even the current 5.1 standard - which uses even more loudspeakers -
does neither support elevated sound sources nor arbitrary source positioning in the
horizontal plane.

19For a description of the according encoding and decoding matrix operations used by different manu-
facturers, see [Mit]

20Gerzon’s article With-Heigth Sound Reproduction [Ger73] literally took this step out of the horizontal
plane.
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The Ambisonic approach allows for recordings of natural soundfields by the
means of one omnidirectional microphone (feeding the so-called W channel) and
three figure-of-eight microphones in the directions of the x-, y-, and z-axis (feeding
the X, Y, and Z channel).21 This can also be interpreted as a threedimensional ex-
tension of the M/S microphone technique: the W channel carries the omnidirectional
information, whereas the X, Y, and Z channels carry the directional information of
the recorded soundfield. Together, the first-order Ambisonic channels W, X, Y, and
Z are usually refered to as the B Format. Since the polar patterns of omnidirectional
and figure-of-eight microphones can be described in a mathematical rather simple
form, the Ambisonic approach can also be used to synthesize soundfields created
by an arbitrary number of sound sources in different directions. The Ambisonic
channels can then be derived as22

W =
k∑

i=1

si
1√
2

(8)

X =
k∑

i=1

si cos θi cos φi (9)

Y =
k∑

i=1

si sin θi cos φi (10)

Z =
k∑

i=1

si sinφi (11)

Here, si is the unencoded mono signal of the i-th sound source, and the azimuth
θi and the elvation φi specify its direction. The number of sound sources is given
by k. As can be seen from the equations, the sound sources are encoded by mul-
tiplication with simple sine and cosine terms and are then summed up onto the
Ambisonic channels. Note that this summation can require a attenuation of the
encoded channels in order to avoid clipping. The reason for the 1√

2
weighting of the

W channel is explained by David Malham:

”The 0.707 multiplier on W is present as a result of engineering con-
siderations related to getting a more even distribution of signal levels
within the four channels. This is particularly relevant when taking live
sound from a Soundfield microphone or with synthesised soundfields con-
taining many sources.” [Mal03a, p.46]

Since the Z channel only depends on the elevation but not on the azimuth, it
can be neglected in the case of horizontal-only loudspeaker layouts, reducing the
number of required Ambisonic channels to three. Gerzon has pointed out that this
is the prefered approach for feeding quadrophonic speaker layouts in the horizontal
plane [Ger92, Ger74].

21Ideally, the microphones have to be positioned in the same spot. A solution to this problem has
been introduced in the Soundfield microphone, which arranges four cardioid microphone capsules in a
tetrahedron and superimposes their polar patterns as required to create the described characteristics.
The distances between the microphones are compensated by filters [Dan00, p.103].

22Note that the original B-format proposed by Gerzon featured an additional multiplication by
√

2 on
all channels [Dan00, p.101].
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The four Ambisonic channels have to be decoded in order to obtain the required
driving signals for the loudspeakers. In the decoding process, each loudspeaker
receives a weighted sum of all channels, with the weighting factors depending on its
own position. A basic decoding equation for the j-th loudspeaker can be expressed
as

pj =
1
L

(
W

1√
2

+ X cos θj cos φj + Y sin θj cos φj + Z sinφj

)
where pj is the driving signal for the j-th loudspeaker and (θj , φj) describe its

position. The number of loudspeakers L must be at least four (the number of Am-
bisonic channels) to decode all available directional information. However, it is
possible to introduce more speakers than that. Ideally, they form a regular layout,
e.g. a tetrahedron for four available speakers, or a cube in the case of eight speak-
ers. In the case of horizontal-only layouts, the loudspeakers should be distributed
at equal angles along a circle around the listener.23

The separation of the encoding (or recording) and decoding processes is the ma-
jor advantage of the Ambisonic approach. First, because the exact properties of
the loudspeaker layout do not have to be known at encoding time, which makes
for flexible portability of the encoded material. Second, the Ambisonic encoding
format is a powerful representation of three dimensional soundfields, allowing for
straightforward manipulation of their spatial characteristics. Soundfield operations
like rotation, mirroring and dominance (a zoom-like operation) can be implemented
in a very efficient way and will be further described in chapter 15.3. In the 1990s,
the Ambisonic approach has been extended to higher orders, introducing better lo-
calization quality (due to better soundfield approximation) as well as an extension
of the sweet spot to a sweet area, at the cost of a higher number of encoded channels
and required loudspeakers. This illustrates the scalability of Ambisonic represen-
tations, with its upper limit only determined by the available hardware (number
of loudspeakers, CPU power). Higher Order Ambisonic (HOA) will be extensively
described in chapter 15.

10 Dolby Standards, 5.1

Several techniques have been developed as extensions to the stereophonic layout,
especially in the context of sound system design in movie theaters. The Dolby
company has defined many according standards, often in combination with specific
hardware. Dolby Surround and Dolby Pro Logic have been precedessors to the
currently popular Dolby Digital standard. Dolby Digital uses a loudspeaker layout
usually refered to as the 5.1 setup, which has become an industry standard itself,
being used for reproduction of other formats as well. It consists of a classical
60-degree stereo pair of loudspeakers, a front center loudspeaker, a left and right
surround speaker at ±110 degrees plus an additional subwoofer. Extended formats
are available for 7.1 or 10.2 layouts, mostly found in movie theaters. [Son03] has
pointed out that all these techniques aim at functionally recreating an acoustical
environment rather than at a global soundfield recreation: they restrict themselves
to the reproduction of an extended frontal stereo image, adding surround channels
and subwoofers for ambience and low-frequency sound effects. This is adequate for

23Thus, a standard 5.1 layout is not the right choice for an Ambisonic speaker layout. Nevertheless,
this layout has often been chosen for evaluating the qualities of the Ambisonic representation in general.
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the dialogue-based sound design of many movies and for stage-centered situations
like live recordings of classical and popular music. However, the 5.1 format does
not allow for circular movements in the horizontal plane, and none of the mentioned
techniques supports sound sources at arbitrary elevation angles. Thus, they are not
suitable for periphonic sound spatialization in multi-user virtual environments.

11 Current Research

With the increasing computational power which has become available in the 1990s
for digital signal processing applications, it has eventually become possible to realize
large scale systems capable of rendering true periphonic sound spatialization in
realtime. According techniques have been extended and improved. Among the
most important are Vector Base Panning, a technique developed by Ville Pulkki at
the Helsinki University of Technology, and Higher Order Ambisonic, an extension of
the Ambisonic approach (see chapter 9) developed by several researchers around the
world. These techniques will be described in chapter III. It will be shown that Vector
Base Panning is a three dimensional generalization of the stereo panning law, and
that Higher Order Ambisonic is actually a special case of holophony, the acoustical
equivalent to holography, which bases on the idea of global soundfield reconstruction
by the means of large loudspeaker arrays. Holophony also forms the theoretical basis
for Wave Field Synthesis, a technique for soundfield reconstruction in the horizontal
plane. We will also discuss the possibility of extending this technique to periphonic
applications.

12 Examples of Periphonic Sound Spatializa-

tion Systems

To complete this chapter, we will present two examples of periphonic sound spa-
tialization systems in multi-user virtual environments. The spherical auditorium
designed by Karlheinz Stockhausen for the World Fair 1970 in Osaka, Japan will be
presented due to its obvious relation to the concept of the AlloSphere, presented in
chapter 19.1. As a more recent example, we will present the CUBE at the Institute
of Electronic Music and Acoustics (University of Music and Dramatic Arts Graz,
Austria).

12.1 The Spherical Auditorium at the World Fair 1970
in Osaka

The spherical auditorium designed by Karlheinz Stockhausen for the 1970 world
fair at Osaka, Japan serves as an early example of a fully periphonic sound spatial-
ization system. Stockhausen’s original design featured eight rings of loudspeaker
with eight loudspeakers each, including two manually operated ’rotation mills’ for
continuous sound rotation by the means of sliding contacts. An acoustically and
visually transparent listening platform was planned to be located at the height of
the sphere’s equator. In the course of the project, the design has been scaled down
to seven loudspeaker rings with seven speakers each, plus an additional subwoofer.
Also, only one of the two rotation mills has been implemented. The listening plat-
form was located at a height of three meters below the equator, which Stockhausen
regarded suboptimal [Sto71, p.153]. Three loudspeaker rings and the subwoofer
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Figure 9: Ground plan and sectional view of the Osaka auditorium [Sto71, p.166]

were located below the listener platform, with the subwoofer and the lowest two
rings arranged concentrically on the floor (see figure 9). The other four loudspeaker
rings were mounted in the upper hemisphere. The loudspeakers were provided by
the Altec company, the amplifiers by Klein & Hummel. An eight-track recorder of
the Telefunken company (model M10A) was used for audio signal playback, and the
sound spatialization was realized on a custom built mixing console. The musical
concept originally consisted of a new composition by Stockhausen with the title
’Hinab - Hinauf’, including a light concept by Otto Piene. This proposal was later
rejected by the world fair committee. The new concept, which did not any more
include the visualization part, featured music by several German classical composers
as well as a total of four hours of Stockhausen’s music per day. From March 14th
to September 15th 1970, about a million people visited the auditorium. [Sto71, pp.
153-187]

12.2 The IEM CUBE

A more recent example of a multi-user virtual environment is the CUBE at the In-
stitute of Electronic Music and Acoustics (IEM) of the University of Music and Dra-
matic Arts at Graz, Austria. The CUBE (Computer-unterstützte Beschallungseinheit,
i.e. ’computer assisted audio reproduction unit’) serves as an electroacoustical lab-
oratory and medium-sized concert hall. Its core audio reproduction system consists
of a hemispherical arrangement of 24 loudspeakers (Tannoy System 1200 loudspeak-
ers with Thomann TA-500 amps) and two subwoofers. An eight-by-six matrix of 48
loudspeakers (JBL Control 1) - refered to as ’the Sky’ - is mounted on the ceiling
and can be adressed over 24 separate channels for extended spatial effects. An eight
channel array of Klipsch loudspeakers serves as an alternative PA system, especially
for the reproduction of music from the historical repertoire of electroacoustic music.
Visual content can be presented on a projection screen. A separate machine room
hosts the amplifiers, converters, patchbays, servers and other machinery. [Zmö]
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Figure 10: The Osaka auditorium from inside and outside [Der]

The 24 channel core system is arranged in three loudspeaker rings with twelve,
eight, and four speakers from the bottom to the top. The loudspeakers are posi-
tioned in a way that allows for reproduction of the standard multichannel audio
formats (stereo, quadrophony, 5.1). A derivation of the loudspeaker positions can
be found in the appendix of [Son03]. The standard engine for periphonic sound spa-
tialization is a fourth order Ambisonic system implemented in Pure Data [Puc96].
A 3D sound mixer, which has been designed and implemented by Thomas Musil,
Johannes M. Zmölnig and Winfried Ritsch, includes a graphical frontend, 3D re-
verberation for far distance coding and a simulation of the Doppler effect by the
means of variable delay lines. Alternatively, audio signals can be spatialized using
a discrete input-output matrix with individually adjustable gains [RMZH05]. In-
formal latency measurements on this system have yielded results as low as 5 ms at
a blocksize of 64 samples24 using an OSS audio driver written by Winfried Ritsch.
The spatialization engine runs on an off-the-shelf PC under the Debian GNU/Linux
operating system. The graphical user interface and the digital signal processing en-
gine have been separated as two independent tasks communicating over the TCP/IP
protocol. This allows the operating system to grant realtime priority to the signal
processing engine exclusively. Two additional machines serve as alternative play-
back devices for the source signals, one running Debian GNU/Linux and the other
one using the Windows operating system.

The CUBE, which was opened in 2000, is used in research and development as
well as for artistic productions. It hosts the Open CUBE concert series, featuring
regular concerts with artists from the international electroacoustic music scene. Its
connection to the main production studio of the institute and its acoustical proper-
ties allow to use it as a recording room. It has been used in pre- and postproduction
of contemporary music theater by composers Peter Ablinger, Bernhard Lang, Olga
Neuwirth and others. The scientific applications of the CUBE include acoustical
measurements, listening tests, sonification of scientific data and prototyping of pe-
riphonic sound spatialization engines.

24At a sampling rate of 44.1 kHz, 64 samples equal about 1.45 ms. Considering a total of three buffers,
one introduced by the Pure Data application and two by the input and output handling of the driver,
the total latency adds up to 3 · 1.45ms = 4.35ms, roughly corresponding to the 5 ms measured.
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Figure 11: The IEM CUBE

Figure 12: The graphical frontend of the 3D Sound Mixer in the IEM CUBE [RMZH05]
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Part III

Theory of Periphonic Soundfield
Reproduction
In the 1990s, several techniques for the reproduction of periphonic soundfields have
been described or extended. Among them are Vector Base Panning, holophony,
and Higher Order Ambisonic. We will give an introduction into each of them in the
course of chapter III, including options of encoding not only the direction but also
the distance of sound sources. The evaluation of the advantages and disadvantages
of different spatialization techniques calls for subjective means of measuring the
soundfield reproduction accuracy. Suitable approaches will be discussed in chapter
17. Chapter 16 is dedicated to the encoding of sound object properties, like radiation
characteristics, surface shape and size, in order to allow for a richer auditory expe-
rience in virtual environments. And in chapter 18, different strategies for the design
of periphonic loudspeaker layouts are presented, including a new, hybrid approach
suitable for various spatialization techniques.

13 Vector Base Panning

Vector Base Panning (VBP) has been introduced by Ville Pulkki [Pul97] as an
extension of stereophonic techniques. It is a sound-source oriented approach in
the sense that it aims at the creation of phantom sound sources rather than at
global soundfield reconstruction as in the case of holophony (chapter 14) or Higher
Order Ambisonics (chapter 15). In Vector Base Panning, a 2D loudspeaker array
is treated as an arrangement of subsequent stereo pairs, which allows for extending
stereophonic panning techniques to the entire horizontal plane. For example, a
standard 5.1 setup can be interpreted as a conglomeration of five stereo pairs of
loudspeakers, each speaker forming a pair with both, his left and right neighbor. If
a sound source is to be placed at an arbitrary position in the layout, we first have
to find the right stereo pair, which is defined by the two loudspeakers enclosing
the virtual source. Standard stereophonic panning laws (see chapter 7) are then
applied to those two speakers. Extending this approach to triples rather than pairs
of loudspeakers, 3D Vector Base Panning can be formulated as a means of periphonic
sound spatialization. In this chapter, we will discuss the 3D case, from which 2D
VBAP can be easily derived as well.

13.1 Panning within a Single Loudspeaker Base

In Vector Base Panning, the positions of the loudspeakers in each loudspeaker triple
(or pair in the 2D case) are formulated as a vector base. The position ~s of a virtual
sound source can then be defined as a linear combination of the loudspeaker vectors
of the according triple:

~s =
D∑

i=1

gi ·~li

D ∈ [2, 3] refers to the two cases of 2D and 3D Vector Base Panning, gi is the gain
of the i-th loudspeaker in the triple and ~li is its position in cartesian coordinates.
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We can rewrite this equation in a matrix representation:

~g = ~sT · L−1 (12)

The (intermediate) gain factors of the loudspeakers are given by ~g, and L is a
matrix of row vectors ~li representing the loudspeaker positions. For the 2D case,
equation (12) is equivalent to the stereophonic tangent panning law (eq. 6) [Pul97,
pp.465-466]. For the 3D case, equation (12) can also be written as

[g1 g2 g3] = [sx sy sz]

 l1x l1y l1z

l2x l2y l2z

l3x l3y l3z


−1

The gain factors have to be scaled down in order to satisfy a condition like in
equation (7), which can be generalized to

P

√√√√ D∑
i=1

gP
i = 1

[Pul97] has suggested to apply constant power panning (P = 2). The final gain
factors for the loudspeakers in a triple are thus given as

~gV BAP = ~g√
D∑

i=1

g2
i

(13)

It has been pointed out that this calculation of the loudspeaker gains leads to a
reconstruction of the velocity vector (see chapters 6.1 and 6.2), which is known to
describe the percepted direction of low frequency soundwaves (< 700 Hz). Pernaux
et al. have thus suggested Vector Base Intensity Panning (VBIP) as an alternative
to optimize the localization of frequencies > 700Hz by resembling the energy vector
[PBJ98]. The intermediate gain factors are calculated in the same way as for Vector
Base Amplitude Panning (VBAP) (eq. (12)). However, the normalization of the
gain factors is replaced by:

~gV BIP =
√√√√ ~g

D∑
i=1

gi

(14)

It is possible to combine both approaches, using separate panning functions in
two filtered frequency subbands, in order to optimize sound source reproduction in
the entire frequency range.

13.2 Periphonic Panning

In the general case of fully periphonic sound spatialization, the loudspeaker layout
needs to be divided once into non-overlapping triangles in a way that will optimize
the homogeneity of localization, i.e. equal triangle sizes and avoiding very narrow
triangles. An according algorithm has been presented in [PL98]. For panning a
sound source to a certain direction, one needs to first find the triangle enclosing
that direction. This can be done by first calculating the gain factors of all loud-
speaker triples: the right loudspeaker base is the only one which yields positive gain
factors for all three loudspeakers [Pul97, p.459], which are then applied to the triple.
All other loudspeakers are silent. Movements of sound sources are realized by in-
terpolating the gain factors of subsequent source positions sampled at the available
control rate.
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13.3 Source Spread (MDAP)

We have seen that for a single virtual sound source encoded by the means of 3D Vec-
tor Base Panning, a maximum of three loudspeakers is playing at a time. However,
if the position of the source is identical with the position of a loudspeaker, only that
loudspeaker will contribute to the reproduction of the source, like it is the case for
hard-left or hard-right panned sources in stereo. For source positions on the con-
necting edge of two loudspeakers, only those two speakers will be active. For source
positions at the center of a triangle, all three loudspeakers of that triple will play at
equal volumes. It has turned out that these properties of Vector Base Panning make
the spread of the virtual source appear incoherent: virtual sources close to a loud-
speaker tend to ’collaps’ into a point-like source at the speaker’s position, whereas
virtual sources close to the center of a loudspeaker triple appear bigger. Pulkki has
presented Multiple Direction Amplitude Panning (MDAP) as an approach to avoid
this problem [Pul99]. In MDAP, a sound source is panned to multiple directions
close to the desired direction of the source, avoiding situations where less than three
loudspeakers are active at a time. Adjustable parameters of this technique are the
number of panning directions and the spread angle, which Pulkki defines as the
maximum angle between two panning directions. Pulkki assumes that the ’average’
of those multiple directions will be perceived as the direction of the source. This as-
sumption implies that the virtual source quality will not be degraded if all panning
directions are located in the same loudspeaker set, and that only source positions
identical with the position of a loudspeaker or located on the connecting edge of
two loudspeakers are affected, which makes for a more homogeneous localization
quality of the virtual source. MDAP can be regarded an interesting technique for
additional encoding of the size of a sound object, contributing to a more diverse
sound spatialization experience (see also the paragraph on sound source properties
in chapter 5).

13.4 Critique

Vector Base Panning is a very simple and efficient way of achieving periphonic sound
spatialization. It is very flexible regarding the loudspeaker layout : a homogeneous
loudspeaker distribution will provide more homogeneous localization quality, but ir-
regularities in the layout will only locally affect the reproduction, due to the angular
limitation of active loudspeakers. Daniel has pointed out that this limitation also
gives a relative good stability of localization at off-center listening positions [Dan00,
p.94], since a sound source can generally not be ’dragged’ towards the loudspeakers
that are closer to the listener like in holophonic techniques (Wave Field Synthesis,
Ambisonics, etc.), where all loudspeakers are active at each moment.

However, Vector Base Panning suffers from certain drawbacks as well: Since
VBP bases on resynthesizing interaural differences (see chapter 1), there are prob-
lems regarding panning sources in the median plane, where no interaural differences
occur. Pulkki has conducted listening tests regarding the localization of virtual
sources created in the median plane by the means of Vector Base Panning and has
found that the source position is largely perceived individually [Pul01a]. It has been
pointed out in chapter 2 that we rely on the spectral content of an audio signal to
evaluate its elevation. Thus, it would be necessary to interpolate the spectra rather
than the gain factors for panning in the median plane.

The distance of a sound source can not be reproduced by VBP. Generally, the
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virtual sources appear to be moving on the surface of the loudspeaker layout. Out-
side sources (with a radius bigger than the radius of the loudspeaker array) can be
simulated by adding artificial reverberation. However, it is not possible to reproduce
sound sources within the loudspeaker layout, like in the case of holophony (chapter
14) or Higher Order Ambisonics (chapter 15).

To store VBP synthesized soundfields, the source signals and their spatial posi-
tions either have to be stored separately, or the loudspeaker driving signals them-
selves have to be stored. This makes for less portability compared to Ambisonic
representations, which allow for encoding the spatial information of a soundfield
into standard audio signals, without any knowledge about the loudspeaker layout
used for later reproduction. The same observation yields that recordings of natural
soundfields cannot be achieved with Vector Base Panning either.

14 Holophony

Holophony has been described as the acoustical equivalent to holography [Jes73].
It aims at a global reconstruction of soundfields by the means of large loudspeaker
arrays rather than at a local reproduction of phantom sources. Source-based al-
gorithms like Vector Base Panning regard a single loudspeaker at the position of
a virtual source as the optimum means to reproduce that source. Sound source
positions not coincident with the position of a loudspeaker are reproduced as phan-
tom sources by panning between several loudspeakers. However, this is generally
regarded as degrading the quality of the reproduced source, and thus the number
of active loudspeakers is kept at a minimum. Holophonic techniques, on the other
hand, base on the reconstruction of an entire soundfield by the means of a loud-
speaker array. Here, the loudspeakers are merely expolited as a means to reproduce
the field according to a mathematical description given by the Kirchhoff-Hemholtz
integral (chapter 14.1). This has the effect, that generally all loudspeakers are con-
tributing to the reproduction of a single virtual source. This technique allows for a
significant extension of the area of accurate soundfield reproduction, which is partic-
ularly relevant in multi-user virtual environments. The mathematical background
of holophony will be discussed in this chapter. In the last years, the according
theory has been greatly extended and simplified towards horizontal-only holophonic
soundfield reconstruction - a technique which has become known as Wave Field
Synthesis. However, we are more interested in the holophonic theory with regards
to three-dimensional implementations.

14.1 Theoretical Background

The Huygens Principle, formulated by Christian Huygens as early as 1690, states
that each point of a wavefront may be regarded as the origin of a secondary spherical
wavefront (see figure 13). Fresnel has completed this principle in 1818 by stating
that the original (or: primary) wavefront can either be regarded as being emitted
by primary sources, or also as being the superposition of the secondary wavefronts
[SH00b, p.6]. It is therefore possible to replace the primary source(s) - e.g. one
or more musical instruments - by a continous distribution of secondary sources -
e.g. an infinitely dense loudspeaker array. Note that the situation in the second
picture of figure 13 can also be inversed, so that the loudspeakers face inwards and
reproduce the field due to sources outside of the array [DNM03, p.3].
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Figure 13: The Huygens principle [Hub02, p.12]

The mathematical description of the Huygens-Fresnel Principle is given by the
Kirchhoff-Helmholtz Integral (KHI, eq. (15)). The KHI is derived from the wave
equation and from Green’s integral theorem. It states that for a volume V free
of field sources, knowledge about the pressure and its gradient on the surface S
enclosing V is sufficient to derive the field pressure within the entire volume V
[SH01]:

p (~rR, ω) = 1
4π

∮
S

[ p (~rS) · ∇S G (~rR|~rS)−G (~rR|~rS) · ∇S p (~rS) ]~n · dS (15)

for rR ∈ V and rS ∈ S. G denotes Green’s function, given as

G (~rR|~rS) =
e−jk|~rR−~rS |

|~rR − ~rS |

Figure 14: Geometry of the Kirchhoff-Helmholtz integral

~rR denotes a point in the source-free volume V enclosed by the surface S on
which the points ~rS are distributed. ~n is the vector normal to the surface S, and
∇S is the Nabla operator with respect to the surface S. According to the KHI,
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the sound pressure field within a given volume V caused by sound sources out-
side of V can be reproduced by two continuous distributions of secondary dipole25

and monopole sources on the enclosing surface S. The dipole source are driven
by the pressure signals p (~rS , ω), and the monopole sources are driven by the pres-
sure gradient signals δ

δ~np (~rS , ω). Note that while the soundfield is reconstructed
inside V , it becomes zero outside of V . The validity of the Kirchhoff-Helmholtz
integral is limited to free-field situations. It can be understood as a generalization
of the Huygens-Fresnel principle, since it assumes complex driving signals, while
the Huygens-Fresnel principle only considers the magnitude, but not the phase of
the signals. This has the effect that the distribution of secondary sources in the
Kirchhoff-Helmholtz integral is arbitrary, but the Huygens-Fresnel principle requires
the secondary sources to be distributed along the wavefront, which is a surface of
equal phase [DNM03, p.2]. Holophonic soundfield recording is possible by using mi-
crophone arrays ideally identical with the loudspeaker positions in later soundfield
reproduction. It has also been shown that soundfield interpolation can be applied
to compensate for varying positions of microphones and loudspeakers. Holophonic
recording techniques are also relevant regarding Higher Order Ambisonic Systems,
due to the mathematical equivalency of the two approaches, which will be discussed
in chapter 15.

14.2 Discretization of the Loudspeaker Array

The realization of the secondary source distribution by the means of a loudspeaker
array requires a transition from a continuous to a discrete distribution due to the fi-
nite loudspeaker size and limitations regarding hardware and CPU. This discretiza-
tion can be interpreted as spatially sampling the soundfield. The spacing of the
loudspeakers determines the maximum frequency which can generally be repro-
duced without the introduction of artefacts due to spatial aliasing, an effect which
has an analogy in temporal sound sampling, i.e. aliasing effects due to violations
of the Nyquist theorem. The upper frequency border is refered to as the spatial
aliasing frequency, given as [Sta97, p.73]

fsp =
c

2 ·∆x · sin αmax

where c is the speed of sound, δx is the distance between the loudspeakers, and
αmax is the maximum angle of incidence of the wavefront relative to the loudspeaker
array. For example, the spatial aliasing frequency for a system with a distance of 10
cm between the loudspeakers can be as low as fsp = 1.7kHz, which is clearly within
the range of human perception. However, it has been pointed out that the human
ear seems to be quite insensitive to spatial aliasing in the frequency range above
1.5 kHz [BSK04, p.3]. Although the perception of spatial aliasing artefacts still
requires further examination, they can generally be described as sound coloration
effects [Sta97, p.131], [DNM03, p.15]. In Wave Field Synthesis, the OPSI method
(Optimised Phantom Source Imaging) combines holophonic reproduction of the low-
frequency range on a woofer array with high-frequency phantom sources reproduced
on a tweeter array [Wit02].

25Note that the axes of the dipoles need to coincide with the normal vector ~n [Sta97, p.15].
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14.3 Restriction to Monopole Sources

Another drawback of the Kirchhoff-Helmholtz integral regarding implementations
by the means of loudspeaker arrays is the requirement of speakers with monopole
and dipole characteristics. It seems desirable to find a solution which requires
loudspeakers of only one kind, ideally restricting itself to monopole characteristics,
which are more common than dipoles. An according simplification of the Kirchhoff-
Helmholtz integral (KHI, chapter 14.1) is possible, since the choice of the Green’s
function in the KHI (eq. 15) is not unique. Thus, it is possible to find Green’s
functions such that [Sta97, p.16]

∇S G · ~n = 0

or

G = 0

However, the first case yields a rather complex description of G, and for G = 0,
the description of ∇S G · ~n becomes complicated [Sta97, p.16]. In Wave-Field Syn-
thesis [Ber88]- a holophonic technique restricted to the horizontal plane - these
descriptions are simplified by degenerating the closed surface S to an infinite plane
surface, dividing the space into two halfs representing the domain of the sources
and the domain of the receiver. An according derivation yields the two Rayleigh
integrals, which describe how to reconstruct a wave field in the receiver domain by
the means of a continuous infinite planar distribution of either monopole or dipole
sources. For the Rayleigh integrals, S represents a perfectly reflecting surface, and
thus they do not yield a null value for the soundfield in the source domain, as op-
posed to the KHI [Sta97, p.18]. 2D versions of the KHI and the Rayleigh integrals
can then be derived, which replace the planar distribution of secondary sources with
a distribution of line sources perpendicular to the horizontal plane (2D KHI and
Rayleigh integrals, [Sta97, p.18-25]). These can again be replaced with a line array
of secondary point sources in the horizontal plane (21

2D KHI and Rayleigh integrals,
[Sta97, ch.3]). The spatial truncation of this infinite array and its discretization al-
lows for an implementation by the means of loudspeakers. Bent loudspeaker arrays
can be used by interpreting them as piecewise linear arrays [Sta97, pp.104-108].
Circular array are used at the France Telecom R&D Labs [DNM03, p.4] and at the
Institut für Rundfunktechnik at Munich, Germany [Rei02, p.37].

Fully periphonic implementations of the KHI are still in a rather early stage of
research. Besides the mathematical difficulties of finding suitable Green’s functions
in order to restrict a periphonic system to one type of loudspeakers, the significant
computational requirements of KHI implementations have been one of the major
motivations for a restriction to the horizontal plane so far. However, it is expected
that periphonic solutions will be available in the next years, since they currently are
subject to wide international research. In the design of large-scale virtual environ-
ments like the AlloSphere (chapter 19.1), a possible periphonic KHI implementation
has to be carefully considered, since its requirements regarding the number of loud-
speakers and transmission channels is very different than in the case of Vector Base
Panning (chapter 13) or Higher Order Ambisonics, a technique related to holophony
(chapter 15).
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14.4 Reconstruction of Enclosed Sources

We have seen that the Kirchhoff-Helmholtz integral (chapter 14.1) describes the re-
construction of a soundfield by the means of secondary sources within a volume free
of sound sources. Thus, implementations of the KHI by the means of loudspeaker
arrays allow for reproducing the distance of sound sources, but only if the source
is located outside of the loudspeaker array. However, it is possible to create the
illusion of enclosed sources by inverting the phase of the loudspeaker signals, which
has the effect that the wavefront is focused at the position of the enclosed source.
Note that the phase inversion is equivalent to temporally reversing the wavefront
propagation: the wave actually propagates from the loudspeakers towards the inside
source [DNM03, p.4], which differs from the natural case. Thus, this method suffers
from the inversion of interaural time differences (see chapter 1), which so become
contradictory to the correctly synthesized interaural level differences [DNM03, p.15].

Figure 15: Reconstruction of an enclosed sound source [Boo01, p.4]

15 Higher Order Ambisonic

Higher Order Ambisonics (HOA) is an extension of the Ambisonic approach pre-
sented in chapter 9. It bases on the decomposition of a soundfield into a series
of spherical harmonic functions. This series can be truncated at arbitrary orders.
Higher orders result in a larger sweet area26 and an extended upper frequency border
of accurate soundfield reproduction, but also require more loudspeakers, channels
for transimission and storage, and CPU. The resulting scalability is one of the major
advantages of the HOA approach. As we have seen in chapter 9, the Ambisonic do-
main allows for efficient operations on the encoded soundfield (rotation etc.), which
is also true for higher order representations.27 We have also discussed the indepen-
dence of the encoding and decoding stage in Ambisonic representations, resulting in
portability of the encoded material, since no knowledge of the loudspeaker layout is
required at encoding time. HOA is a self-compatible format: higher order encoded

26An according formula for the size of the sweet area depending on the system order has been presented
in [NE99, p.448].

27Like the frequency domain is the prefered environment for operations on a signal’s spectral content,
the spatial properties of a soundfield represented in the Ambisonic domain are directly accessible.
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material can be decoded to lower order reproduction systems, and vice versa.28

HOA can be regarded a holophonic approach, although it is not directly derived
from the Kirchhoff-Helmholtz Integral (KHI, see chapter 14.1). However, both ap-
proaches provide an exact solution to the sound wave equation and can therefore be
regarded as mathematically equivalent under certain assumptions [NE98, pp.2-3],
[NE99, pp.442-443], [DNM03, p.11]. HOA can be described as a sweet-spot oriented
low-frequency soundfield approximation: accurate reproduction of low frequencies
is given over a large area, while with increasing frequency, the solution of the wave
equation converges towards the center of the loudspeaker array [DNM03]. Thus,
HOA offers an accurate reproduction of high frequencies at least in the center of
the field, as opposed to holophonic approaches derived from the KHI, which suffer
from spatial aliasing artefacts that can be globally perceived as sound colorations
[DNM03, pp.14-15]. The Higher Order Ambisonic representation is not subject to
spatial aliasing, since the theoretical distance of the microphones in an Ambisonic
microphone arrays is zero (chapter 9). Since only a limited number of microphones
can be positioned coincidently, the design of higher order microphones faces prac-
tical difficulties. Thanks to the holophonic nature of HOA, holophonic recording
techniques (circular or spherical microphone arrays) can be used for Higher Order
Ambisonic recordings [Pol00]29, unfortunately introducing spatial aliasing artefacts
also in recorded HOA soundfields.

15.1 Derivation of the Ambisonic Representation

The Ambisonic representation bases on solving the wave equation for the central
listening spot ~r = 0 under the assumption of sound sources and loudspeakers emit-
ting plane wavefronts. A plane wavefront is a wavefront with zero curvature. Its
amplitude does not decay with distance, since its sound energy does not have to
spread over an increasing surface as in the case of a spherical wavefront, which de-
creases with 1/r. Note that this means that a plane wavefront does not carry any
information about the distance of its source. From an isolated viewpoint - allowing
us to evaluate the curvature but not the spatial envelope of a wavefront - a spherical
wavefront can be regarded as plane at far distances from its source.

In the case of sound sources, the plane wavefront asumption does not impose a
general restriction on us, since any soundfield can be interpreted as a superposition
of plane waves [Son03, p.30]. Regarding the wavefronts emitted by the loudspeak-
ers, these can be assumed to be plane for great loudspeaker distances. The plane
wave assumptions together with the sweet spot restriction offer a remarkable sim-
plification of the wave equation’s solution, allowing for efficient implementations.
However, they also remove any information about the distance of a sound source,
which can thus not be encoded in the standard Higher Order Ambisonic format. In
chapter 15.6 we will discuss an extended Ambisonic format capable of encoding the
source distance as well.

We will now give a short description of the derivation of the Ambisonic encoding
functions. More detailed derivations can be found in [Dan00], [Son03], [Zmö02],

28Of course, it is always the respective lower order which determines the accuracy of the decoded
soundfield.

29Further information on Higher Order Ambisonic microphones can be found in [Dan00, pp.201-204],
[DM03], and [Son03, p.87].
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[Bam95]. The wave equation in a linear, lossless medium is given in the temporal
domain as [Dan00, p.19](

∆− 1
c2

δ2

δt2

)
φ (~r, t) = −q (~r, t)

where c is the speed of sound, ∆ is the Laplace operator in spherical coordinates,
φ (~r, t) is the velcoity potential, and −q (~r, t) is the volume flow rate. For the special
case of monochromatic fields (see chapter 6), this simplifies to the time-invariant
Helmholtz equation [Dan00, p.20](

∆ + k2
)

φ (~r, ω) = −q (~r, ω)

with the wave number k = 2πf/c. If we limit our observations to an area free of
sound sources and assume free-field conditions (no reflections, diffractions, etc.), the
term q becomes zero, yielding the homogeneous Helmholtz equation [Dan00, p.21](

∆ + k2
)

φ (~r, ω) = 0

By separation of variables, we can find a solution of the wave equation decom-
posing the soundfield into a spherical Fourier-Bessel series [Dan00, p.149]

p (~r) =
∞∑

m=0

(2m + 1) jmjm (kr)
∑

0≤n≤m,σ=±1

Bσ
mnY σ

mn (θr, φr) (16)

where jm (kr) are the spherical Bessel functions and Y σ
mn are the spherical har-

monic functions.30 Since the spherical harmonics form a set of orthogonal base
vectors, they can be used to describe any function on the surface of a sphere. The
components Bσ

mn will be discussed later. If we now consider a plane wavefront from
direction θ, φ, transporting a signal s measured in the sweet spot ~r = 0, the pres-
sure it causes at the position ~r of the soundfield can be described by a similar series
[Dan00, p.150]:

pθ,φ (~r) = s ·
∞∑

m=0

(2m + 1) jm
∑

0≤n≤m,σ=±1

Y σ
mn (θs, φs) Y σ

mn (θr, φr) jm (kr)(17)

15.1.1 Derivation of the Encoding Process

By comparing equations (16) and (17) we can derive the terms Bσ
mn as [Dan00,

p.150]

Bσ
mn = Y σ

mn (θ, φ) · s (18)

Equation (18) states that the directional information of a plane wavefront from
direction θ, φ can be encoded to a set of signals Bσ

mn by multiplying the signal s with
the value of the respective spherical harmonic function Y σ

mn in the direction θ, φ.
Since this describes exactly the Ambisonic encoding process of a spatialized audio
signal, the signals Bσ

mn are refered to as the Ambisonic channels. Due to practical
limitations regarding computational power and storage, we have to truncate the

30A function with arguments azimuth θ and elevation φ is refered to as spherical, since its function
value is defined on the surface of a sphere.
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infinite series from equation (17) at an order M , which we call the Ambisonic order.

Let’s take a closer look at the spherical harmonic functions Y σ
mn: for each order m

of the series, 0 ≤ n ≤ m different spherical harmonic functions exist for both values
of the superscript σ = ±1. Since the functions Y −1

m0 are zero everywhere and for any
m, they can be ignored, leaving us with n = 2m + 1 spherical harmonics for each
order m. A 3D Ambisonic system of order M combines all spherical harmonics of
orders 0 ≤ m ≤ M , yielding the total number of Ambisonic channels N as [Zmö02,
p.27]

N = (M + 1)2 (19)

For example, the first-order B-format is given by the zeroth order function plus
the three functions of first order (equation (8)). The spherical harmonic functions
themselves consist of the associated Legendre functions31 Pmn and various sine and
cosine terms [Dan00, p.149]

Y σ
mn (θ, φ) = Nmn · Pmn (sinφ)

{
cos (nθ) for σ = 1
sin (nθ) for σ = −1

Nmn denotes a normalization term, available in different flavors. A popular
version is the Schmidt semi-normalization, given as [Dan00, p.303]

Nmn =

√
εn

(m− n)!
(m + n)!

ε0 = 1 and εn = 2 for n ≥ 1 (20)

For convenience, we will now rewrite equation (18) by combining all N Ambisonic
channels in compact vector representation. For k sound sources, the Ambisonic
encoding equation is then given as

~B =
k∑

i=1

~Y (θi, φi) · si (21)

As equation(21) shows, the encoded soundfields of several sources can simply be
superponed. Regarding the order of the Ambisonic channels in the rows of column
vector ~B, we will implicitely use Daniel’s pattern for (σ

mn) throughout this thesis
[Dan00](

1
00

)
;
(

1
11

)
,
(
−1
11

)
,
(

1
10

)
;
(

1
22

)
,
(
−1
22

)
,
(

1
21

)
,
(
−1
21

)
,
(

1
20

)
; · · · ,

(
−1
M1

)
,
(

1
M0

)
Each element of ~B represents an Ambisonic channel of the encoded soundfield.

15.1.2 Derivation of the Decoding Process

Our task is now to find a set of loudspeaker signals which can be superponed to
exactly reproduce the encoded soundfield in the sweet spot of the reproduction
system. In order to express this in an equation system, we use a representation
of the loudspeaker signals equivalent to the encoded soundfield, i.e. a spherical
harmonic decomposition of a plane wavefront (eq. 17), depending on the position of

31The associated Legendre functions themselves are derived from the Legendre polynomials (see [Dan00,
p.303]).
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the respective loudspeaker. Equivalency between the encoded soundfield of a single
source and the resynthesized soundfield is given if [Zmö02, p.41]

Y σ
mn (θ, φ) · s ≡

L∑
j=1

Y σ
mn (θj , φj) · pj

where pj is the signal of the j-th loudspeaker at direction θj , φj . From this and
equation (21), we can derive the Ambisonic re-encoding equation in compact matrix
form as [Dan00, p.158]

~B = C · ~p (22)

~p is a column vector with entries representing the loudspeaker signals. C is ref-
ered to as the re-encoding matrix, containing the re-encoded loudspeaker directions
θj , φj .32 The rows of C represent the N spherical harmonic components, and its
columns represent the L loudspeakers of the reproduction array [Zmö02, p.41].

C =


Y 1

00 (θ1, φ1) Y 1
00 (θ2, φ2) · · · Y 1

00 (θj , φj) · · · Y 1
00 (θL, φL)

Y 1
11 (θ1, φ1) Y 1

11 (θ2, φ2) · · · Y 1
11 (θj , φj) · · · Y 1

11 (θL, φL)
Y −1

11 (θ1, φ1) Y −1
11 (θ2, φ2) · · · Y −1

11 (θj , φj) · · · Y −1
11 (θL, φL)

...
...

. . .
...

. . .
...

Y 1
M0 (θ1, φ1) Y 1

M0 (θ2, φ2) · · · Y 1
M0 (θj , φj) · · · Y 1

M0 (θL, φL)


From equation (22), the loudspeaker driving signals can be derived by inversion

of the matrix C, yielding the Ambisonic decoding equation [Zmö02, p.41]

~p = C−1 · ~B = D · ~B (23)

where the inverted C matrix is also refered to as the decoding matrix D. We
will discuss the derivation of the decoding matrix extensively in chapter 15.4. D
has L rows and N columns. To guarantee that the entire directional information
encoded in the soundfield will be restored, the equation system has to satisfy the
relation [Zmö02, p.42]33

L ≥ N (24)

which means that there should be at least as many loudspeakers in our array
as there are Ambisonic channels, i.e. L ≥ (M + 1)2 for a 3D system. Daniel has
mentioned that although it has been shown that the smallest average reconstruc-
tion error is given for a relation L = N , reproduction systems with large listening
areas will benefit from additional loudspeakers such that L > N , since listeners
at off-center positions are less likely to approach an isolated loudspeaker which
then dominates their auditory localization. [Dan00, pp.113,179]. From equations
(24) and 19, we can see that the number of available loudspeakers determines the
maximum reproducable Ambisonic order M . As we have noted, the accuracy of
soundfield reproduction increases with the order of a system. The error introduced
due to the truncation at M can be described by the complex normalized wavefront
mismatch error [VL87] or the normalized truncation error [WA01].

32Note that C is time-invariant, since it is an abstraction of the (static) loudspeaker array.
33Note that in [Zmö02], N denotes the number of speakers and L the number of Ambisonic channels.

Different conventions used in the literature are also compared in the appendix B.2.
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15.1.3 Equivalent Panning Functions

The Ambisonic encoding and decoding process can also be described by the means
of equivalent panning functions, which can be used equivalently to spatialize a sound
source onto a loudspeaker array. This is of interest regarding interpretation of Am-
bisonic systems: the polar diagram of an equivalent panning function describes the
required directivity pattern that a microphone feeding the respective loudspeaker
would need to have. For a basic 3D encoding/decoding system, the equivalent
panning function is given as [DNM03, p.7]

G (κ) =
1
N

M∑
m=0

(2m + 1) gmPm (cos (κ))

where κ is the angle between the directions of the loudspeaker and the virtual
source.

15.2 Ambisonic Encoding Functions

Several modificated encoding conventions have been presented in the literature.
Daniel distinguishes the following flavors for 3D encoding function flavors [Dan00,
pp.156]:

• SN3D: semi-normalization 3D

• N3D: full normalization 3D

• MaxN: max normalization

• FuMa: Furse-Malham set

The SN3D encoding functions are the spherical harmonic functions with semi-
normalization as applied in equation (20). Since they can be generically defined
for arbitrary orders, Daniel suggests to use them as the reference encoding conven-
tion [Dan00, p.157]. The N3D convention is of interest regarding the evaluation
of loudspeaker layouts in Ambisonic soundfield reproduction (see chapter 18). The
MaxN convention features weighting factors of the spherical harmonics which en-
sure that the maximum absolute value of each function is 1, which is of relevance
regarding digital signal representations [Mal03a, p.65]. The FuMa set is equivalent
to the MaxN convention, except for an additional 1/

√
2 weighting factor for the

zeroth order channel, following a B-format tradition (see chapter 9).34 Conversion
factors among different encoding conventions are presented in [Dan00, pp.156-157]
and [Dan03, p.13]. In table 1, the SN3D encoding functions are presented up to
third order. They are also shown in figure 16. The abbreviations for the third
order channel (O, L, M, etc.) (which [Dan00] does not provide) follow a convention
applied in [Mal03a].35

It can be seen from figure 16, that for each order, the two functions m = n
only depend on the azimuth, but not on the elevation, which makes it possible to
separate horizontal and vertical Ambisonic channels. This allows for an efficient
implementation of horizontal-only Ambisonic systems, based on the cylindrical har-
monic functions, presented here in their semi-normalized form:

34In [Dan00], the Furse-Malham set is only defined for orders M ≤ 2. In [Mal03a, p.65], David Malham
has suggested to follow the MaxN convention for higher orders of the FuMa set.

35Note that for third order [Zmö02] uses the same abbreviations, but for different channels. Various
conventions used in the literature are compared in the appendix B.2.
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order B σ
mn Y σ(SN3D)

mn (θ, φ)

0 W 1
00 1

X 1
11 cos θ cos φ

1 Y −1
11 cos θ cos φ

Z 1
10 sin φ

U 1
22

√
3

2
cos (2θ) cos2 φ

V −1
22

√
3

2
sin (2θ) cos2 φ

2 S 1
21

√
3

2
cos θ sin (2φ)

T −1
21

√
3

2
sin θ sin (2φ)

R 1
20

3 sin2 φ−1
2

P 1
33

√
5
8
cos (3θ) cos3 φ

Q −1
33

√
5
8
sin (3θ) cos3 φ

N 1
32

√
15
2

cos (2θ) sin φ cos2 φ

3 O −1
32

√
15
2

sin (2θ) sin φ cos2 φ

L 1
31

√
3
8
cos θ cos φ

(
5 sin2 φ− 1

)
M −1

31

√
3
8
sin θ cos φ

(
5 sin2 φ− 1

)
K 1

30
1
2
sin φ

(
5 sin2 φ− 3

)
Table 1: Higher Order Ambisonic SN3D encoding functions [Dan00, p.151]

Y 1(SN2D)
m (θ) = cos (mθ)

Y
−1(SN2D)
m>0 (θ) = sin (mθ)

Note that the SN2D encoding functions differ from their SN3D counterparts not
only by neglecting the elevation φ, but also in different weightings of the higher
order channels. Conversion factors from 3D to 2D representations can be found
for both, the full normalized and semi-normalized encoding convention in [Dan03,
p.13]. In a horizontal-only system, the number of Ambisonic channels N for an
order M is given as

N2D = 2M + 1

representing the W channel plus the two additional channels for each order
m ≥ 1. This separation of horizontal and vertical channels also allows for the
implementation of hybrid representations, typically used in optimizing the number
of channels in a HOA system by encoding the horizontal parts of the soundfield
to a higher order than its vertical parts, taking into account the higher spatial
resolution of the ear in the horizontal plane (see chapter I). The definition of
hybrid order encoding functions is not trivial, due to the different appearances of
2D and 3D encoding functions. Encoding functions for a ’3rd+1st’ representation
have been described in [Zmö02, pp.33,39]. Daniel discusses hybrid representations
in [Dan00, pp.154] and describes an example of ’2nd+1st’ decoding of uniformly
N3D encoded material in [Dan00, pp.199-201]. A disadvantage of hybrid order
systems is that they do not allow for soundfield rotation about the x and y axis,
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Figure 16: Spherical harmonic functions up to third order

due to the interdependence of horizontal and vertical Ambisonic channels in the tilt
and tumble matrices (see chapter 15.3.1). Note that the term mixed order systems
refers to a different technique describing the simultaneous reproduction of multiple
Ambisonic soundfields encoded at different orders on one loudspeaker array [Dan00,
pp.281-282].

15.3 Soundfield Operations

Similar to the frequency domain, which allows for straightforward operations on
the spectral content of a signal, the Ambisonic domain is an ideal representation
regarding operations on the spatial properties of a soundfield. From a mathematical
point of view, an operation on an Ambisonic encoded soundfield ~B is achieved my
multiplication with a matrix T, representing the desired soundfield transformation:

~B′ = T · ~B (25)

where ~B is the column vector representing the N Ambisonic channels, and T is
a square matrix with N rows and columns. The appearance of T determines the
soundfield operation. If it is a diagonal matrix, it represents a non-interdependent
operation on the Ambisonic channels, like the mirroring operation described in chap-
ter 15.3.3. For other transformations, like soundfield rotation (chapter 15.3.1), the
Ambisonic channels depend on each other. Generally, the elements in T represent
simple gain factors. More complex soundfield transformations, where the elements
of T represent filters, delays, etc., might have interesting physical analogies or sim-
ply be of creative interest. Subsequent soundfield operations can be applied by
operations ~B′ = T1 ·T2 · ~B.

15.3.1 Soundfield Rotation

The most popular operation in the Ambisonic domain is the rotation of entire sound-
fields, which turns out to be comparably easy to implement. A common application
of this is found in headphone-based systems where the loudspeaker signals of a vir-
tual Ambisonic system are encoded into a stereo signal by the means of head-related
transfer functions (HRTFs): In combination with a head tracking device, soundfield
rotation then allows for head rotations relative to the soundfield [Son03, p.122].
Rotation matrices can be defined for rotation about the x axis (tilt or roll), the
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y axis (tumble or pitch), the z axis (rotate or yaw), or any combination of these,
allowing for arbitrary rotation axes. There is a generic definition of matrices for
rotation around the z axis. This is due to the symmetry of the spherical harmonic
functions with regards to the horizontal plane, causing the channel interdependence
to be limited to channels pairs Y 1

mλ, Y −1
mλ with λ = 1, 2, ...,m − 1 for all orders m.

For the SN3D encoding convention, the matrix elements of each pair m = n for
σ = ±1 are [Dan00, p. 166].

Z±1
mλ (γ) =

(
cos(λγ) − sin(λγ)
sin(λγ) cos(λγ)

)

where γ is the rotation angle. The signal Y 1
m0 is invariant to z axis rotation,

resulting in a matrix element of 1. All other elements of the matrix are zero.
For example, the z rotation matrix for a second order SN3D encoded Ambisonic
soundfield using our standard channel ordering convention (see chapter 15.1.1) is

ZM=2 (γ) =



1 0 0 0 0 0 0 0 0
0 cos γ − sin γ 0 0 0 0 0 0
0 sin γ cos γ 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 cos 2γ − sin 2γ 0 0 0
0 0 0 0 sin 2γ cos 2γ 0 0 0
0 0 0 0 0 0 cos γ − sin γ 0
0 0 0 0 0 0 sin γ cos γ 0
0 0 0 0 0 0 0 0 1


Note that the z rotation matrix for the FuMa encoding convention looks exactly

the same, since identical FuMa weightings are applied on the channel pairs Y 1
mλ, Y −1

mλ

and cancel each other out during the operation.

The tilt and tumble operations are somewhat more complex. The according
matrices for orders up to M = 2 can be found quite easily, but for higher orders,
the task becomes non-trivial. Tilt, tumble (and rotation) matrices up to third order
are presented in [Zmö02, p.36] for the FuMa encoding convention. A description of
research on higher-order matrices in other scientific fields is given in [Mal03a, p.67].
Also, the tilt and tumble operations cannot be applied to hybrid order encoded
material (see chapter 15.2).

Tilt, tumble, and rotation matrices can be combined in a rotation matrix R in
order to define an arbitrary rotation axis [Zmö02, p.35]:

~B′ = R (α, β, γ) · ~B = [X (α) ·Y (β) · Z (γ)] · ~B

Since the order in which the matrices are multiplied matters, other combinations
can be used (e.g. Z ·X · Y ).

15.3.2 Dominance (Zoom) and Focus

The dominance operation is used to make sounds in the front direction louder, and
reduce the gain of rear sounds. It is worth pointing out that this is an operation
in the Ambisonic domain, independent from the loudspeaker layout. Although
also known as zoom, there is no direct analogy to an optical zoom lense, since the
angular spread of sounds in the zoom direction is reduced and that of sounds in the
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opposite direction is increased [Mal03a, p.115]. Daniel refers to the operation as
’distortion de la perspective’ [Dan00, p.166]. For an Ambisonic order M = 1, the
dominance operation is implemented by the means of a Lorentzian transformation,
known from the theory of relativity [Mal03a, p.50]. Two equivalent versions of the
according matrix have been described [Dan00, p.166]:

L(SN3D)
λ =


λ+λ−1

2
λ−λ−1

2 0 0
λ−λ−1

2
λ+λ−1

2 0 0
0 0 1 0
0 0 0 1


where λ =∈ [0 .. ∞], and

L(SN3D)
µ =


1 µ 0 0
µ 1 0 0
0 0

√
1− µ2 0

0 0 0
√

1− µ2


where µ =∈ [−1.. + 1].

Daniel has noted that the dominance function results in a directional distortion:
a sound originally coming from the front θ = 0, φ = 0 will be transformed to a
position θ′, φ = 0 with

θ′ = arccos
µ + cos θ

1 + µ cos θ

For higher orders M > 1, this operation cannot be realized without distorting
the plane wave characteristics. Different concepts have been discussed but not
implemented yet [Mal03a, p.68], [Dan00, p.166]. The focus operation is a special
case of dominance with µ = 1. For this case, Daniel has described a possible
extension to higher orders [Dan00, p.167].

15.3.3 Mirroring, W-Panning

In this chapter, we will discuss soundfield operations with non-interdependent Am-
bisonic channels, i.e. representing simple weightings of the Ambisonic channel gains.
In this case, the transformation matrix becomes a diagonal matrix W

W =


g1
00 0 0 · · · 0
0 g1

11 0 · · · 0
0 0 g−1

11 · · · 0

· · · · · · · · · . . . 0
0 0 0 0 g1

M0


where −1 < gσ

mn < +1 represents the gain factors. This matrix is used in the
process of W-panning to control the apparent size of a sound source, similar to the
spread control in Vector Base Panning (see chapter 13). The apparent spread of the
source will increase when the ratio of the omnidirectional W channel is increased
compared to the other channels, resulting in the extreme case of an interior effect:
when only the W channel is playing and all other channels are muted, the same sig-
nal appears from all directions, giving an effect of being ’inside’ the sound source.
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A derivation of suitable panning functions is given in [Men02].

A special case of the matrix W is applied in soundfield mirroring :

M =


+1 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0

· · · · · · · · · . . . 0
0 0 0 0 −1


with g1

00 = +1 and gσ
mn = −1 for m 6= 0. This operation has the effect that all

sound sources will appear in positions diametrically opposite of their original ones.
This is due to the symmetry of the spherical harmonic functions. As can be seen
from figure 16, the value of a spherical harmonic function between a given position
and its diametrically opposite position only varies by sign, but not by value, except
for the W channel, which is constantly one everywhere. In first order systems,
selected axes can be mirrored by adjusting the gain of either the X, Y or Z channel:
for example, multiplying the gain factor of only the X channel will move all sounds
at left front positions to the left rear [Mal03a, p.49].

15.4 Decoding Methods

We have already noted in chapter 15.1.2 that in order to decode an Ambisonic
soundfield to a loudspeaker array, we need to invert the C matrix, which contains
the re-encoded loudspeaker positions. However, a matrix can only be inverted if it
is square. For C, this is only the case if the number of loudspeakers L (number of
columns in C) matches the number of Ambisonic channels N (number of rows). We
will discuss a pseudoinverse approach, which does not face this limitation. However,
it introduces different problems, leading us to alternative decoding methods refered
to as projection and regularization.

15.4.1 Pseudoinverse

A general approach to inverting non-square matrices (L 6= N) is given by the pseu-
doinverse. The pseudoinverse is defined as [BK]

pinv (C) = CT ·
(
C ·CT

)−1

for L ≥ N , and as

pinv (C) =
(
CT ·C

)−1
·CT

for L < N and full rank of C.
where CT is the transposed C matrix, and both, C ·CT and CT ·C are always

square matrices that can be inverted. The pseudoinversion of the re-encoding matrix
yields the decoding matrix, which is given as

D = pinv (C)

The quality of the pseudoinverse depends on the condition number of the C ma-
trix, i.e. the regularity of the loudspeaker layout (see chapter 18.1.2). For instance,
the direction of a sound source decoded with the pseudoinverse only matches the
direction of the energy vector (chapter 6.1) if L > N and if the loudspeaker array
satisfies certain criteria regarding its regularity [Dan00, p.159]. Extended irregular-
ities in the layout result in instabilities of the decoding matrix.
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15.4.2 Projection

Daniel has shown that for loudspeaker layouts which are regular in the Ambisonic
sense (chapter 18.1.2) and if the N3D encoding convention is applied, the pseudoin-
verse simplifies to [Dan00, p.179]

pinv (C) =
1
L
·CT

However, it is common practice to use a decoding matrix

D =
1
L
·CT

also for non-regular layouts, which can be mathematically interpreted as a pro-
jection of the Ambisonic channels. The advantage of this technique is that the
resulting decoding matrix D is generally more stable than if derived as the pseu-
doinverse of C. However, directional distortions and problems regarding the energy
balance of a spatialized sound source are the drawbacks of this approach [Dan00,
p.192].

15.4.3 Regularization

The technique of deriving the C matrix of a virtual regular loudspeaker layout,
although the actual layout is irregular (see chapter 18.1.2), is refered to as regu-
larization of a layout. Daniel has pointed out that while this technique preserves
the energy balance of spatialized sound sources, directional distortions can occur as
well [Dan00, p.191].

15.5 Decoder Flavors

We have already seen that in Ambisonic systems, all loudspeakers contribute to the
reproduction of a virtual source in a specific direction. In theory, the signals from
loudspeakers in directions other than the one of the source cancel each other out in
the sweet spot. However, diffraction effects due to the presence of the listener’s head
disturb this destructive interference, which causes the signals of loudspeakers in the
opposite direction of the sound source to be perceived as independent sources. This
has led to a modification of the basic decoder, originally suggested for horizontal-
only systems by David Malham [Mal99] and extended to periphonic systems by
Daniel [Dan00]. It is refered to as the in-phase decoder, which avoids contributions
from opposite loudspeakers for the price of an increased spread of the sound source
(see figure 17). Other modifications have been suggested, which can generally be
described as a multiplication of the decoding matrix D with a diagonal matrix Γ.
The elements in Γ represent additional weighting factors for the spherical harmonic
components of the loudspeaker signals, depending on their respective order m.

D = D · Γ (26)

where

Γ = Diag


g0 ...

2m+1︷ ︸︸ ︷
gm ... ... gm ...

2M+1︷ ︸︸ ︷
gM ... gM

T
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Figure 17: Equivalent panning functions of 3D basic, max rE and in-phase decoders for
orders one to four [Dan00, p.160]

• The basic decoder represents the unmodified decoding matrix (i.e. Γ = IN,
where IN is the N-by-N unity matrix).

• It has already been noted that the in-phase decoder avoids contributions from
loudspeakers in the direction opposite of the source. This is particularly rel-
evant for off-center listening positions, where the danger is given that the
direction of the closest loudspeaker is erroneously perceived as the source’s
direction. Thus, the in-phase decoder is regarded as suitable for systems
with large listening areas, like multi-user virtual environments. The addi-
tional sound source spread can be compensated by increasing the Ambisonic
order M [Son03, p.46]. The in-phase decoder can be applied to non-regular
layouts if the decoder matrix D has been derived by the method of projection
(chapter 15.4.2) [Dan00, p.192].

• The max rE decoder represents a compromise between the basic and the in-
phase decoder. Daniel has noted that this decoding flavor can also be applied
to semiregular layouts (see chapter 18.1.2) [Dan00, p.188].

• Window-applied decoding has been described as a generalization of the decoder
modification process [Son03, pp.43,133]. It bases on the observation that the
modification matrix Γ is equivalent to the application of a windowing function
on the equivalent panning functions (chapter 15.1.3), allowing for the typical
tradeoffs known from FIR filter design (main lobe width vs. side lobe attenu-
ation, etc.). The parameters of Γ can thus be derived by an according window
design procedure.

A derivation of the matrix elements gM for the in-phase and max rE decoder is
given in [Dan00, pp.184-185], including the factors for 2D and 3D decoders, as well
as for both, amplitude and energy preserving decoders. Daniel has also described
how useful application of different decoder flavors depends on the listening position
and on the reproduced frequency [Dan00, p.160]: while the basic decoder gives good
results in the central listening spot and for low frequency areas, the in-phase decoder
is the right choice for high-frequency reproduction at off-center listening positions.
The max rE decoder’s useful range is located between these two extremes (see figure
18. In [Dan00, p.175], transition frequencies between basic and max rE decoding
for an off-center position are presented for both, 2D and 3D systems of orders from
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Figure 18: Prefered listening areas and frequency ranges for various decoders flavors
[Dan00, p.160]

one to five. Daniel also notes that no frequencies for the transition from max rE to
in-phase decoding have been determined yet [Dan00, p.160].

15.6 Source Distance Encoding (NFC-HOA)

We have already noted that the reconstruction of the distance of a sound source is
an essential feature of periphonic sound spatialization systems. However, due to the
plane wave assumption used in the derivation of the Ambisonic approach, no dis-
tance information is included in the Higher Order Ambisonic encoding format, since
a plane wave does not decay with distance. Like in Vector Base Panning (chapter
13), it is possible to simulate distance cues by adding artificial reverberation. An
interesting approach within the Ambisonic domain has been discussed in [Zmö02,
p.87-88]. Here, the four zeroth and first order signals (W,X,Y,Z) are extracted
from a Higher Order Ambisonic soundfield and decoded to a virtual loudspeaker
tetrahedron. The decoded signals are then reverberated and encoded back into the
Ambisonic domain, where they are added again to the higher order soundfield. A
dynamical weighted addition can be implemented in order to receive a ’distance
panpot’. The resulting soundfield is decoded to the physical loudspeaker layout.
This method allows for controlling the direction of the diffuse reverberation, while
avoiding the impression of clearly localizable reverberation ’sources’ by limiting the
according Ambisonic order to one. However, this approach does only support ’out-
side’ sources with a radius r greater than the loudspeaker radius R.

Two different methods have been described in the literature which are capable
of reproducing ’inside’ sources r < R using Higher Order Ambisonic representa-
tions. For horizontal-only systems, Sontacchi and Höldrich have presented a hybrid
method of Wave Field Synthesis and Higher Order Ambisonic [SH02a]. In the first
stage of this process, the gain factors of a virtual loudspeaker array36 are calculated
by Wave Field Synthesis (or an equivalent least mean squares approach) for each
sound source, considering its radius, but neglecting its direction. In the second
stage, each signal feeding a virtual loudspeaker is Ambisonic encoded according to
the loudspeaker’s direction, resulting in one Ambisonic soundfield for each distance-

36The radius of the virtual loudspeakers should correspond to the average radius of the real loudspeaker
array [SH02b]. Their number and spacing are regarded design parameters of the system
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weighted source. Each source can be then be spatialized to its direction θ, φ by
the means of soundfield rotation (chapter 15.3.1). The Ambisonic soundfields of all
sources are then superponed, and the resulting field is subject to soundfield opera-
tions, storage and decoding like any other Ambisonic encoded material. Thanks to
the Wave Field Synthesis engine, ’inside’ sources (r < R) can be encoded (chapter
14.4), while the final Ambisonic representation guarantees a lower number of chan-
nels for transmission and storage. Any other spatialization algorithm can be chosen
to encode the direction of the sources, but in Ambisonics, the required soundfield
rotations are easy to achieve. A periphonic version of this distance coding algo-
rithm could be implemented by replacing the Wave Field Synthesis engine with a
3D implementation of the Kirchhoff-Helmholtz integral (see chapter 14).

The second approach, presented by Daniel, works entirely within the Ambisonic
domain [Dan03]. Its theory bases on the compensation of artefacts introduced by
the plane wave assumption used in deriving the Ambisonic encoding format (see
chapter 15.1.1). The signals emitted by most real sound sources and loudspeakers
can be modelled much more accurately as spherical wavefronts, and the Ambisonic
format can also be derived by a decomposition of a spherical rather than a plane
wavefront. Daniel has shown [Dan03, p.3] that this changes the Ambisonic encoding
equation (see eq. 21) to

Bσ
mn = F (r/c)

m (ω) · Y σ
mn (θ, φ) · s

where ω = 2πf . Compared to the original encoding format, transfer functions
F

(r/c)
m are introduced for the respective order m of each spherical harmonic compo-

nent, where r/c represents the delay due the source distance r and the finite speed
of sound c. These functions show that the finite sound source distance results in a
bass boost effect which increases with the order of the spherical harmonic compo-
nents. For higher orders, these functions become unstable, i.e. their bass boost is
infinite. This shows that the standard Higher Order Ambisonic encoding format is
physically unable to represent a finite source distance.

On the decoding side, the differences between spherical and plane wavefront
propagation yields that the finite distance of the loudspeakers results in a bass boost
effect [Dan03, p.5]. It has already been suggested by Gerzon to compensate for this
bass boost effect at decoding time [Ger92, p.52] by adjusting the decoding matrix
with a set of filters [Dan03, p.5]:

~p = D · Γ
(

1

F
(R/c)
m (ω)

)
· ~B (27)

where Γ is a diagonal matrix with elements representing filters depending on
the loudspeaker distance R. Fortunately, these inverse filters are stable. Note that
this operation is equivalent to a filtering operation on the Ambisonic channels prior
to decoding. The near-field compensation of the loudspeaker signals can thus also
be applied at encoding time. Daniel has observed that at the same time, the finite
distance of the sound sources can be considered as well, since the combination of
both functions F

(r/c)
m (finite source distance) and F

(R/c)
m (finite speaker distance)

results in a set of distance coding filters [Dan03, p.5]:

Hm
NFC(r/c,R/c) (ω) =

F
(r/c)
m (ω)

F
(R/c)
m (ω)
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Figure 19: Distance coding filters Hm
NFC(r/c,R/c) [Dan03, p.6]

Figure (19) shows two examples of distance coding filters Hm
NFC(r/c,R/c) for

Ambisonic orders one through eight: one for a source outside the loudspeaker array,
and one for an inside source. These filters, which are stable also for high orders, can
be used to define a new Ambisonic encoding format called Near-Field Compensated
Higher Order Ambisonic (NFC-HOA) [Dan03]:

Bσ
mn

NFC(R/c) = Hm
NFC(r/c,R/c) (ω) · Y σ

mn (θ, φ) · s

These encoding functions now include the distance of the virtual source r as well
as the loudspeaker radius R. The required knowledge of the loudspeaker radius at
encoding time is the drawback of these functions. However, Daniel has shown how
the transfer functions Hm

NFC can also be used to adapt an NFC-HOA encoded
soundfield to a different loudspeaker radius R′ than was assumed at encoding time
[Dan03, p.7]:

Bσ
mn

NFC(R′/c) = Hm
NFC(R/c,R′/c)Bσ

mn
NFC(R′/c)

Regarding the reconstruction of inside sources (r < R), Daniel has pointed out
that NFC-HOA can be understood as an extrapolation of the soundfield from the
sweet spot to the source radius r. Since no temporal reversed wavefront propaga-
tion is applied as in Wave Field Synthesis, the problem of inverted interaural time
differences (see chapter 14.4) does not occur. [DNM03, p.13].

As can be seen from figure (19), the gains of the NFC filters are finite but still
considerably high for large Ambisonic orders, introducing noise in practical filter
implementations. Daniel has also described the equalization functions necessary
to convert HOA signals recorded by microphone arrays to the NFC-HOA format
[DNM03, p.10], which require even higher gain factors, revealing the increased effort
required to extrapolate the soundfield from the radius of the microphone array Rmic

to the loudspeaker radius R (e.g. 120 dB for a fourth order component at 100 Hz
with Rmic = 5cm and R = 1m!). Addressing this problem by choosing a greater
Rmic on the other hand increases the problem of spatial aliasing. Daniel has also
derived equivalent panning functions (chapter 15.1.3) for the NFC-HOA format in
[DNM03, p.9].
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15.7 Room Reflection Cancellation

We have already noted that the Ambionic approach assumes that the sound wave
propagation happens under free field conditions (chapter 15.1). This means that
room reflections will disturb the restored Ambisonic soundfield. In hemispherical
arrangements like the IEM CUBE (chapter 12.2), reflections from the floor are
particularly critical. Several approaches have been described for room reflection
cancellation in periphonic sound spatialization systems by the means of destructive
interference. A technique described in [Son03, pp.86-104] can be efficiently imple-
mented as a modification of the Ambisonic decoding process. The method bases on
an offline recording of each loudspeaker’s directional impulse response by the means
of an Ambisonic recording technique (like the Soundfield microphone for first order
representations), yielding a set of L impulse responses, each encoded to N Am-
bisonic channels. From these signals, it is possible to build a set of compensation
signals which are used to create wavefronts destructively interfering with the room
reflections.

The impulse response of the j-th loudspeaker can be modelled as

hj (i) = δ (t− t0) +
∞∑

k=1

ak · δj,k (t− tj)

The first term represents the direct wavefront of the loudspeaker, and the sum-
mation term describes the disturbing reflections. By capturing the loudspeakers’
impulse responses with an Ambisonic recording technique, we reveive them in form
of N Ambisonic encoded channels. From these signals, the term describing the di-
rect wavefront is removed, since we want to exclude it from our cancellation efforts.
The remaining signal is multiplied by −1, representing a 180 degree phase shift in
order to achieve the required destructive interference. For each loudspeaker, the
result of this operation is then convolved with the actual loudspeaker signal, yield-
ing a set of Ambisonic encoded compensation signals ~Bcomp. Decoding these signals
and adding them to our original Ambisonic decoding equation (eq. (23)) yields

~p = D · ~B + D · ~Bcomp

This is equivalent to the following representation, which uses the ⊗ symbol to
denote convolution

~p = D ·
(
F⊗ ~B

)
(28)

Here, F is a N-by-N matrix of filters

F =



δ (t) +
L∑

j=1
g1
00j

Y 1
00comp

L∑
j=1

g1
11j

Y 1
00comp

· · ·
L∑

j=1
g1
M0j

Y 1
00comp

L∑
j=1

g1
00j

Y 1
11comp

δ (t) +
L∑

j=1
g1
11j

Y 1
11comp

· · ·
L∑

j=1
g1
M0j

Y 1
11comp

· · · · · · · · · · · ·
L∑

j=1
g1
00j

Y 1
M0comp

L∑
j=1

g1
11j

Y 1
M0comp

· · · δ (t) +
L∑

j=1
g1
M0j

Y 1
M0comp


where Y σ

mncomp
are the Ambisonic encoded compensation signals in ~Bcomp and

gσ
mnj

is the gain factor of the according Ambisonic channel feeding the j-th loud-
speaker, as derived from the decoding matrix D. The number of required filters is
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N2 and thus only depends on the number of Ambisonic channels but not on the
number of loudspeakers, which is an important advantage of this method. For pe-
riphonic Ambisonic representations, we receive the required number of filters from
equation (19) with N2 = (M + 1)4. A more detailed derivation of the process can
be found in [SH00a]. It has to be pointed out that this method only gives good
results in the low-frequency area (up to about 500 Hz), due to the offline record-
ing process, which might happen under very different acoustical circumstances than
later soundfield reproduction (empty room vs. room with listeners, differences in
temperature, etc.) [Son03, pp.89].

16 Sound Object Encoding (O-Format)

It has been noted in chapter 5 that the properties of a sound source regarding
size, orientation in the soundfield and radiation characteristics are rarely taken into
account in periphonic sound spatialization. Since their successfull reproduction can
greatly increase the richness of the acoustical experience in a virtual environment, we
will discuss an approach presented by Dylan Menzies [Men02] in this chapter, which
is refered to as O-format. Menzies’ original approach features direction-dependent
encoding of a sound source’s gain factor. David Malham has extended this approach
to include frequency dependent radiation characteristics. He has also presented a
method to encode the surface shape and size of a sound object [Mal01]. Although
the O-format has been developed within an Ambisonic context - the same spherical
harmonic functions are used in sound object encoding - the encoding/decoding
process of an O-format sound source is carried out prior to its directional encoding,
allowing this approach to be used also with other spatialization techniques. Menzies
and Malham have described their approaches as first order representations, noting
the possibility of higher order extension. We have generalized the O-format encoding
and decoding equations for application at arbitrary orders and will present them in
this chapter.

16.1 Frequency-Invariant Radiation Pattern

It has been noted in chapter 15 that any function on a sphere can be described by a
series of the so-called spherical harmonic functions. Thus, the direction-dependent
gain factor of a sound source37 can also be represented this way, resulting in an O-
format encoding process identical to the one of an Ambisonic soundfield. However,
rather than converging in a central listening point, the signal now spreads outwards
from a point-like sound source. Menzies speaks of ”turning the [B-format] signal
inside-out” [Men02] in this context, refering to the interesting approach of re-using
an Ambisonic encoded soundfield as an O-format sound source.

The encoding of a mono sound source signal to an O-format representation is
identical to the Ambisonic encoding process (eq.(21)), which means that an available
Ambisonic encoder can simply be re-used for O-format encoding. The sound object
encoding equation for encoding k audio signals si to one sound object is given as

~O =
k∑

i=1

~Y (ϑi, ϕi) · si (29)

37We call this the frequency-invariant radiation pattern, since it does not include directional depen-
dencies of the signal’s spectral content - an effect which can be captured or synthesized by techniques
discussed in chapters 16.3 and 16.4.
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The result of this operation is a vector ~O of length NO = (MO + 1)2 (see eq.
(19)) for the 3D case, where MO represents the order at which the sound object is
encoded. The signals in ~O are the spherical harmonic components of the wavefront
emitted by the sound object into the direction ϑ, ϕ, assuming a coordinate system
with axes in the same directions as the soundfield’s coordinate system, but with the
origin at the position of the sound object. Once encoded to the sound object domain,
it is possible to apply the same transformations to an O-Format encoded signal as
the ones that have been described for Ambisonic encoded soundfields in chapter
15.3 (rotations, mirroring, etc.). This happens in the same manner as described
in equation (25), i.e. by multiplication of the encoded signal vector with a matrix
representing the sound object operation TO:

~O′ = TO · ~O (30)

For example, the sound object can be rotated by the means of the rotation matri-
ces described in chapter 15.3.1, which allows to specify the orientation of the object
in the soundfield. Other operations like mirroring or W-panning of an O-format
encoded sound object can be used to dynamically change its radiation pattern.

After the desired operations have been applied to the object, it is decoded back
to a standard audio signal before being embedded into the soundfield by the means
of a prefered spatialization technique (e.g. Vector Base Panning, Ambisonic, etc.).
The signal emitted by a sound object into a specific direction ϑ, ϕ is given as the
sum of the respective values of the spherical harmonic O-format components. The
only direction ϑ, ϕ which is of interest for us is the direction of the sweet spot
(as seen from the object), which depends on the position θ, φ of the object in the
soundfield:38 For example, if the sound object is located ’in front’, e.g. at position
θ = 0, φ = 0, the sweet spot is - from the object’s point of view - located in the
direction ϑ = 180◦, ϕ = 0◦. This observation can be generalized, yielding that the
relevant sound emission direction ϑ, ϕ of the sound object is always exactly the
’mirrored’ direction of θ, φ. In this context, it is possible to exploit the symmetry
of the spherical harmonic functions like in the case of mirroring soundfields (see
chapter 15.3.3) by simply multiplying each spherical harmonic component (except
the W channel, which is 1 everywhere) with a factor of −1 in order ro receive its
value in the opposite direction. For an O-format encoded sound object at position
θ, φ of the soundfield, the sound object decoding equation39 is therefore given as

sO = ~DO (ϑ, ϕ) · ~O′ (31)

where ~DO is the sound object decoding vector of lenght NO:

~DO = ~Y (ϑ, ϕ) =
[
+Y 1

00 (θ, φ) − Y 1
11 (θ, φ) − Y −1

11 (θ, φ) ... − Y 1
M0 (θ, φ)

]T
The multiplication in equation (31) represents a dot product. Thus, the result

is a scalar, representing the signal emitted by an object at position θ, φ into the
direction of the central listening spot. The decoding order can also be chosen lower
than NO by choosing a shorter vector ~M and ignoring the additional channels of

38Alois Sontacchi has noted in a private discussion that the other directions of sound propagation are
of interest for synthesizing room reflections.

39Our equation (31) is a higher-order generalization of equation (11) in [Men02]
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the O-format.40

The decoded sound object signal sO can be treated like a regular (non O-format
encoded) sound source signal. For example, it can be encoded into an Ambisonic
soundfield using equation (21). Since the entire O-format encoding/decoding pro-
cess is carried out before spatializing the sound object, the order MO at which
the object is encoded is completely independent from the Ambisonic order M of
the soundfield, allowing for a tradeoff between sound object and soundfield ac-
curacy [Mal01, p.56]. The same observation yields that any other spatialization
technique can be used for the directional encoding of a decoded O-format sound
source [Men02].

It is useful to assume a situation where the relative orientation of a sound object
to the listener remains constant as the object moves in the soundfield (e.g. the voice
of a person constantly facing the listener as she/he walks around the listening spot).
This can easily be achieved by a simplification of the sound object decoding matrix
~DO:

~DO = ~Y (0, 0) =
[
Y 1

00 (0, 0) Y 1
11 (0, 0) Y −1

11 (0, 0) Y 1
10 (0, 0) ... Y 1

M0 (0, 0)
]T

16.2 Surface Shape and Object Size

So far, we have considered point-like sound objects. David Malham has suggested
a techniqe for encoding the surface shape of a sound object. The signals emitted
by various points of the object’s surface will interfere in the listening spot, resulting
in a filtering process of the signal picked up by the listener, which depends on the
relative orientation of the surface shape to the listener. It is important to note that
this effect is a result of the surface shape, not of frequency-variant radiation patterns
(see chapter 16.4) - it also occurs if an identical signal is emitted homogeneously
from all points on the object’s surface. The effect can be described by the impulse
response of a sound object, i.e. the signal measured at the listening spot when the
object is sending out an impulse. Thus, to add surface shape information to an
audio signal s, we have to find its impulse response hO and convolve it with the s,
so that

sshape = hO (θ, φ)⊗ s (32)

where sshape represents the surface-shape encoded sound signal. Note that s can
either denote a plain audio signal or also a signal which has already been encoded
and decoded so that it includes frequency-invariant radiation characteristics (chap-
ter 16.1). In the latter case, the orientation of the frequency-invariant radiation
pattern (encoded in the original O-format) and the orientation of the surface shape
(encoded by the impulse response) can be varied independently - i.e. one can dy-
namically change the radiation pattern of an object without moving the object itself.

It is possible to model the surface shape as a combination of spherical harmon-
ics, and then derive hO from it. However, for reasons of efficiency Malham has

40However, this is only relevant as an analogy to Ambisonic soundfield encoding. In practice, the
multiplication with ~M represents a low-cost operation, and unlike the maximum decoding order of an
Ambisonic soundfield, which depends on the number of available speakers, there are no such inherent
limitations in the case of sound object decoding.
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suggested to use a set of spherical harmonic impulse response components [Mal01,
p.55], which represent the far field responses of objects with shapes resembling those
of the spherical harmonic functions (figure 16). For example, figures 20 and 21 show
zeroth and first order impulse responses. Their length is determined by the size of
the object, and the amplitude of each peak is determined by the size of the radiating
area at the respective distance. Note that neither the 1/r law of sound pressure
amplitude decay nor effects due to varying off-axis distances of the radiating points
are applied yet. For this reason, Malham uses the term non-distance weighted im-
pulse response (ndw response) in this context.

Figure 20: Zeroth order impulse response [Mal01, p.55]

Figure 21: First order impulse response [Mal01, p.55]

The spherical harmonic decomposition of the surface shape is given as a matrix
Oshape with rows representing the spherical harmonic components and columns



16 SOUND OBJECT ENCODING (O-FORMAT) 63

representing the time samples of the ndw-responses. The usual transformation like
rotation, etc. can be applied to the surface shape before the total ndw-response
hO,ndw is derived as a weighted sum of its spherical harmonic components

hO,ndw = ~DO (ϑ, ϕ) ·Oshape

where ~DO denotes the decoding vector known from equation (31). The result
hO,ndw represents the non-distance weighted impulse response of the object with the
given relative orientation to the listener and is further modified in order to account
for the effects due to on- and off-axis distances:

• For objects with significant extension on the axis connecting it and the listener,
the amplitude decay along the axis has to be compensated. Although the peaks
of the impulse response represent amplitudes (1/r law) rather than intensities
(1/r2 law), Malham has suggested to weight each impulse in hO with a factor
( TS/TC)2, where TS is the time of appearance of the first component in the
impulse response, and TC that of the current component [Mal01, p.56].

• In the case of objects with significant off-axis extension, the extra delay due
to the off-axis distance has to be compensated. This is particularly important
for near field sources, for which the off-axis distance is relevant compared to
the distance of the object to the listener. The compensation can be achieved
by warping the time axis. [Mal01, p.56]

From the resulting impulse response hO, the sound signal sshape can be derived
by convolution (eq. 32). sshape includes the surface shape information of the sound
object and can be spatialized using a prefered spatialization technique (e.g. Am-
bisonic, VBAP, etc.). David Malham has also described how the sound object size
can be dynamically varied by changing the resampling rate of the spherical har-
monic impulse response set, since changing the size of a sound object only affects
the length, but not the general shape of the impulse responses [Mal01, p.56].

16.3 Natural Sound Objects

David Malham has presented two methods to determine the impulse response of a
natural sound object:

• The surface shape of an object can be measured and used to derive its non-
distance weighted impulse response (equivalent to hO from equation (31)). The
measurement can be done using an inwards facing microphone array around
the object or laser scanning techniques. In order to be able to apply the typical
sound object operations (rotation etc.) before decoding, the object has to be
re-encoded into its spherical harmonic components by the means of a Fourier
analysis. [Mal01, p.56-57]

• The impulse response of the object can also be measured directly. This has
to be done in the far field in order to receive a non-distance weighted impulse
response. The measurement has to be repeated over an appropriate grid in
order to derive the spherical harmonic components of the impulse response.
Here, the frequency-dependent radiation pattern of the sound source (chapter
16.4) is captured as well. [Mal01, p.57]
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16.4 Frequency-Variant Radiation Pattern

We have already shown how the original O-format allows for encoding the spherical
gain function of a point-like sound object (chapter 16.1). However, for most sources
in natural sound sources, it is not only the loudness of the emitted signal that
varies with direction, but also its spectral content. Robert Höldrich has noted in a
private discussion that frequency-variant radiation characteristics could be encoded
by application of a filter bank on the source signal, followed by separate sound
object encoding of the resulting frequency subbands according to Menzies’ original
O-format proposal. The superposition of the resulting O-format representations
then yields the encoded sound object. David Malham has presented a different
approach: Since filters can be described by their impulse response, he has suggested
to use a set of spherical harmonic impulse responses like the one used to describe
the surface shape (chapter 16.2) of the object. A combination of both sets would be
equivalent to directly measured impulse responses described in chapter 16.3. [Mal01,
p.57]

17 Evaluation of Synthesized Soundfields

In chapter 6, different criteria for evaluating the localization in periphonic sound-
fields have been discussed, with a focus on monochromatic fields synthesized from
spherical or plane wavefronts. In the last chapters, we have also discussed the math-
ematical descriptions of different sound spatialization algorithms. With this knowl-
edge, we can now simulate the reconstruction of a ’natural’ soundfield through a
spatialization algorithm of our choice. By applying our localization criteria to both,
the original and the resynthesized soundfield, and comparing the differences, we
have now a tool to evaluate the quality of a periphonic sound spatialization sys-
tem. In chapter 21 we will also present a Matlab library as an according practical
implementation.

17.1 Integrated Wavefront Error (D-Error)

Bamford has introduced the integrated wavefront error or D-error as a means to
compare the reconstruction of a soundfield with its original [Bam95, p.19]. Al-
though he has developed this criterion to evaluate Ambisonic systems, the D-error
can also be applied to soundfields reconstructed by other spatialization techniques.
The D-error, which originally was applied to horizontal-only systems, bases on the
integration of the local difference between the original (reference) pressure field Sref

and the reconstructed pressure field Ssynth over the circumference of a circle. By in-
tegrating over the surface of a sphere, it can be generalized to periphonic situations
[Son03, p.45]. For those cases, the D-error is defined as

D3D =
1∣∣∣4πP 2

ref

∣∣∣
2π∫

θ=0

+π/2∫
φ=−π/2

|pref (~r)− psynth (~r)| · dθ · dφ

Due to the normalization term in front of the integral, the error becomes 1 for
an absent field Ssynth. Sontacchi has suggested to consider the D-error as a function
of k~r, i.e. as a function of frequency41 and r (distance from the sweet spot) for
systems with large listening areas [Son03, p.45].

41k = 2πf/c is the wave number.
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17.2 Sound Pressure Errors

The squared sound pressure error has been used as a descriptor of soundfield re-
construction by [Pol00] and [Son03]. It is defined as the squared difference of the
original and the reconstructed sound pressure field.

∆p2 = [pref (~r)− psynth (~r)]2

The sound pressure amplitude error is defined as the absolute value of the dif-
ference between the original and the reconstructed complex sound pressure field

|∆p| = |pref (~r)− psynth (~r)|

17.3 Direction Deviation

Sontacchi has used the direction deviation of two vector fields describing the per-
ceived direction in a soundfield (e.g. the real part of the complex velocity vec-
tor or the active velocity; see chapter 6) to evaluate the reconstruction quality of
horizontal-only sound reproduction systems [Son03]. The direction deviation is a
scalar field which represents the angle between the directions of the original and the
reconstructed soundfield. A 3D version of the direction deviation using the active
velocity as a direction indicator can be specified as

δ (~r) = arccos
~vref

a (~r) · ~vsynth
a (~r)∣∣∣~vref

a (~r)
∣∣∣ · ∣∣∣~vsynth

a (~r)
∣∣∣

where the term in the numerator denotes a dot product. It remains to evaluate
how the direction deviation coresponds with human perception.

18 Loudspeaker Layout Design

The process of designing a suitable loudspeaker layout for a periphonic sound spa-
tialization system is not a trivial task. Often, like in the case of the AlloSphere
(chapter 19.1), the system has to support multiple spatialization algorithms rather
than restricting itself to a single technique. However, different spatialization algo-
rithms have different requirements regarding the loudspeaker layout, which need to
be considered in the course of the design process. Other criteria, like the spatial
resolution of the human ear (see chapter I) and architectural restrictions play an im-
portant role in the design process. In this chapter, we will first adress these criteria
and then present different strategies for finding suitable layouts. Although these are
all based on sphere approximations, we will show how they can be adopted to situ-
ations in which loudspeaker mounting on a spherical surface enclosing the listening
area is not possible. They can also be used to derive hemi-spherical layouts, which
are often used in periphonic sound spatialization (see [Dan00, p.193] and chapter
12.2). Finally, we will present a new loudspeaker layout design strategy, which is a
hybrid approach of the methods discussed.

18.1 Design Criteria

18.1.1 Vector Base Panning Layouts

For implementation of a Vector Base Panning system, a triangulation of the surface
defined by the loudspeaker layout has to be performed (see chapter 13). To achieve a
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homogeneous localization quality, the shape and size of the different triangles should
not differ from each other too much. Rather than first defining a loudspeaker layout
which is then triangulated, we might find suitable layouts defined as structures of
vertices (loudspeaker positions) and facets (loudspeaker triangles, or also squares,
which can always be interpreted as two triangles) from the theory of geodesic spheres
(chapter 18.3), keeping the differences between the triangles at a minimum. Best
results are given if the loudspeakers are placed at equal distances from the sweet
spot. The number of loudspeakers is only determined by the available hardware
(loudspeakers, CPU, bandwidth, disk space).

18.1.2 Higher Order Ambisonic Layouts

In Higher Order Ambisonic systems, the regularity of the loudspeaker layout plays
a more important role than in the case of Vector Base Panning. Although the ho-
mogeneity of localization in a VBP system will also benefit from a regular layout,
irregularities affect it only locally (for sources in the according directions). Since
in Ambisonic systems generally all loudspeakers contribute to the reproduction of a
sound source, irregularities in the layout globally affect the soundfield reconstruc-
tion. Daniel has given definitions regarding regularity of a loudspeaker layout in
the Ambisonic sense in [Dan00]. A loudspeaker layout is refered to as regular, if it
preserves orthonormality. This can be examined using the N3D encoding to check
whether [Dan00, p.176]

1
N
·C ·CT = IN (33)

holds for the given loudspeaker layout. N is the number of Ambisonic channels,
CT is the transposed Ambisonic re-encoding matrix from chapter 15.1, and IN is
the N-by-N unity matrix. Equation (33) depends on the Ambisonic order M , but
not on the order of rows (loudspeakers) and columns (Ambisonic channels) in C,
nor on the orientation of the loudspeaker layout in the coordinate system. Also note
that layouts which are regular for an order M are always regular for all lower orders
as well, and that regularity of a layout implies that the L ≥ N criterion (eq. 24)
is fullfilled. Daniel further defines the class of semi-regular layouts, which preserve
orthogonality [Dan00, p.176].

1
N
·C ·CT = Diag (µN )

where Diag (µN ) is a diagonal matrix with µN = [µ1 µ2 ... µN ]T . Again, this
relation only holds for the N3D encoding convention.

Sontacchi has suggested to use the condition number of the re-encoding matrix
C to evaluate the regularity of an Ambisonic loudspeaker layout [Son03, p.39].
The condition number is defined as the ratio of the largest singular value of a
matrix to the smallest. It is used in mathematics to evaluate the accuracy of matrix
inversion, with a value near 1 indicating a well-conditioned matrix. In Higher Order
Ambisonic systems, we can use the condition number as a criterion regarding the
quality of a decoding matrix D derived as the pseudoinverse of C (chapter 15.4).
The condition number offers the advantage of returning a representative value rather
than a mere classification of the loudspeaker layout. However, it depends not only
on the Ambisonic order, but also on the sorting of the rows in columns in C, which
represent the Ambisonic channels and loudspeakers. Thus, it should be used as an
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indicator rather than as a definite loudspeaker layout evaluation criterion. Also, the
ratio of the singular values might hide some irregularities. While for horizontal-only
systems, regularity in the Ambisonic sense can be simply achieved by loudspeakers
arranged in a regular polygon (i.e. at equal angles along a circle), the number of
regular layouts reduces dramatically in the 3D case. Daniel has noted that only five
layouts fullfill the regularity criterion defined in equation (33), which are known as
the Platonic solids, discussed in chapter 18.2.1. However, these provide 20 vertices
at the most and regularity in the Ambisonic sense for a maximum order of M = 2.
Daniel has thus suggested to look for quasi-regular layouts for higher orders using
the method of geodesic spheres. It will be shown in chapters 18.3 and 22.1 that
this technique is indeed suitable for the design of well-conditioned Higher Order
Ambisonic loudspeaker layouts.

18.1.3 Homogeneity vs. Psychoacoustics

While regularity in the loudspeaker distribution is required to make for a homoge-
neous localization in periphonic sound spatialization systems, we can also optimize
such a system according to psychoacoustical criteria. As we have seen in chapter
I, the spatial resolution of the human ear greatly varies with the direction of an
incoming sound event. This suggests to define a varying loudspeaker density which
increases in areas of good auditory resolution (front direction) and decreases in areas
of poor localization (rear direction, elevated sources). For periphonic loudspeaker
systems, it is not obvious how to achieve this. We will discuss an according method
in chapter 18.6. But : Ambisonics, VBAP not so sensitive. However, it has to be
kept in mind that psychoacoustical layout optimization can be critical regarding
Ambisonic soundfield reconstruction, since it can negatively affect the regularity of
a loudspeaker layout (chapter 18.1.2). Vector Base Panning (chapter 13) systems,
where the active loudspeakers are always located in a small angular region, are less
affected.

18.1.4 Horizontal Plane

A number of reasons speak for paying special attention to the horizontal plane in
a periphonic sound spatialization system. We have already noted in the last chap-
ter that areas of good auditory resolution (which the horizontal plane is) can be
equipped with more loudspeakers for psychoacoustical layout optimization. Many
standard multichannel formats (see chapter II) are restricted to the horizontal plane,
as is (2D) Wave Field Synthesis. Even for a fully periphonic spatialization system
it makes sense to provide possibilities for an application of these techniques. We
have also noted that 3D Vector Base Panning systems give best results in the hori-
zontal plane, since they base on the reproduction of interaural differences (chapter
13.4). All these reasons speak for introducing a loudspeaker ring in the horizontal
plane, which we refer to as the equator of a loudspeaker layout. For example, the
dodecahedron does not provide an equator, whereas the octahedron does (see figure
22). Also, hemispherical layouts can be more easily derived from spherical layouts
with loudspeakers in the horizontal plane. An example for this is the IEM CUBE
(chapter 12.2).

18.1.5 Architecture

The real-world design of a virtual environment is usually not exclusively devoted
to the loudspeaker positions, leaving us in the uncomfortable situation of not being
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able to position our speakers where we would like to see them. Reasons for this
might be given by the architecture of the reproduction space and/or problems of
loudspeaker accessibility and maintainance. The resulting restrictions can involve
deviations from the prefered angle as well as the radius of loudspeakers. We will
speak of forbidden areas where loudspeakers cannot be mounted, and consider a
loudspeaker radius function to define the radius of a loudspeaker as a function of its
direction in the layout.

18.2 Polyhedra

Generally, it is possible to approximate a spherical surface by the means of various
polyhedra, which can be classified according to the properties of their vertices, faces,
and edges [Wike]

• A polyhedron is convex if the line segment joining any two points of the poly-
hedron is contained in the polyhedron or its interior.

• A polyhedron is vertex-uniform if all vertices are the same, in the sense that
for any two vertices there exists a symmetry of the polyhedron mapping the
first isometrically onto the second.

• A polyhedron is edge-uniform if this symmetry is also given for its edges, and
face-uniform if given for its faces.

• A polyhedron is regular if it is vertex-uniform, edge-uniform and face-uniform.
This implies that every face is a regular polygon and all faces have the same
shape.

• A polyhedron is quasi-regular if it is vertex-uniform and edge-uniform, and
every face is a regular polygon.

• A polyhedron is semi-regular if it is vertex-uniform and every face is a reg-
ular polygon. The convex ones consist of the prisms and antiprisms and the
Archimedean solids (chapter 18.2.2).

• A polyhedron is uniform if it is vertex-uniform and every face is a regular
polygon, i.e. it is regular, quasi-regular, or semi-regular, but not necessarily
convex.

Note that the definitions regarding regularity and semi-regularity do not match
the according definitions provided by Daniel to evaluate the regularity of an Am-
bisonic loudspeaker system (see chapter ). For example, the dodecahedron (chapter
18.2.1) is regular according to the above definition, but it is not regular in the Am-
bisonic sense for an Ambisonic order of M = 3, although it does provides enough
loudspeakers for a third order system according to the L ≥ N criterion (eq. (24)).

An interesting property of polyhedra is the Euler characteristic, which relates
the number of edges E, vertices V , and faces F of a simply connected polyhedron:

V − E + F = 2

In this chapter, we will present different polyhedra with interesting properties
regarding loudspeaker distribution in periphonic sound spatialization systems. Since
we are primarily interested in playouts approximating a spherical surface, we will
only consider convex polyhedra, starting with the five regular convex polyhedra,
which are also called the Platonic solids, and moving on to some convex semi-regular
(the Archimedian solids) and face-regular polyhedra (the Johnson solids).
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Figure 22: The Platonic solids: tetrahedron, hexahedron, octahedron, dodecahedron,
icosahedron [Wikd]

18.2.1 Platonic Solids

There are only nine polyhedra which are regular by the definition given above. The
five convex ones are also known as the Platonic solids. These are the tetrahedron,
the hexahedron (i.e. the cube), the octahedron, the dodecahedron, and the icosahe-
dron. They are shown in figure 22, and their properties are summarized in table
18.2.1.

Polyhedron Vertices Facets Facet Shape Equator

tetrahedron 4 4 triangular no
hexahedron (cube) 8 6 square no
octahedron 6 8 triangular yes
dodecahedron 20 12 pentagonal no
icosahedron 12 20 triangular yes

Table 2: The five Platonic solids

The tetrahedron, the hexahedron, and the cube are regular in the Ambisonic
sense (chapter 18.1.2 only for first order. The icosahedron is regular also for second
order [Dan00, p.177]. Note that although the dodecahedron provides enough loud-
speakers to fullfill the L ≥ N criterion for third order (see chapter 15.1.2), it is only
Ambisonic regular for first and second order.

Obviously, the Platonic solids offer only a very limited amount of vertices with
a maximum of 20 vertices in the case of the dodecahedron. For a periphonic sound-
spatialization system in a large-scale virtual environment, this does not satisfy our
requirements. Also, only the octahedron and the icosahedron provide a ring of
loudspeakers in the horizontal plane. We will discuss possible extensions of these
arrangements by the method of geodesic spheres in chapter 18.3.

18.2.2 Archimedian and Catalan Solids

By excluding the infinite set of prisms and antiprisms - which are no sphere ap-
proximations - from the class of convex semi-regular polyhedra, we receive the 13
Archimedian solids [Wika]. Five of them are truncated versions of the Platonic
solids.42 Probably the most famous Archimedian solid is the truncated icosahedron,
better known as the Bucky ball and as the shape of a soccer ball (see figure 23).
Two other Archimedian solids are convex quasi-regular polyhedra, i.e. they have

42Truncation of a polyhedron refers to the process of ’chopping off’ its corners.
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Figure 23: The truncated icosahedron (or Bucky ball) [Wika]

Figure 24: Some Archimedian solids: cuboctahedron, icosidodecahedron, rhombicuboc-
tahedron, snub hexahedron, truncated octahedron[Wika]

the additional property of being edge-uniform. These are the cuboctahedron, con-
sisting of triangles and squares, and the icosidodecahedron, built from triangles and
pentagons. They are shown with three other Archimedian solids in figure 24. The
remaining Archimedian solids differ from each other too much regarding the shape
and size of their faces to seem interesting as periphonic loudspeaker layouts.

The duals of the Archimidean solids are the Catalan solids, also known as canon-
ical polyhedra [Wikb]. We show four of them in figure 25, which seem to have
interesting properties regarding application in periphonic loudspeaker layouts.

18.2.3 Johnson Solids

In 1966, Norman Johnson published a list of 92 convex, non-uniform, and face-
regular polyhedra, which are generally refered to as the Johnson solids. In 1969,
Victor Zalgaller proved that Johnson’s list was complete [Wikc]. Although most
of the Johnson solids are no sphere approximations, some of them have interesting
properties, like the elongated square gyrobicupola. Others might serve as a good
basis for the design of hemispherical layouts, like the gyroelongated pentagonal cupola
(figure 26).

Figure 25: Some Catalan solids: The pentakis dodecahedron, tetrakis hexahedron, dis-
dyakis dodecahedron, and pentagonal icositetrahedron [Wikb]
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Figure 26: Two Johnson solids: The elongated square gyrobicupola and the gyroelongated
pentagonal cupola [Wikc]

Figure 27: Building a geodesic sphere from an icosahedron

18.3 Geodesic Spheres

In chapter 18.2.1 we have seen, that mathematical regularity of a polyhedron un-
fortunately translates to a rather low number of vertices. Arrangements with more
vertices can be found among the semi-regular and other classes of polyhedra. How-
ever, the number of loudspeakers in these arrangements is still pre-determined by
the solid itself. A way to introduce a higher number of vertices (i.e. loudspeak-
ers) while retaining the advantages regarding the regularity of the Platonic solids
is given by the method of geodesic spheres. This method is used in architecture to
distribute stress on ’geodesics’, i.e. large circles around a spherical structure. Usu-
ally, it is described as the tessellation of the faces of a Platonic solid. This process
creates new vertices which are then ’pushed out’ to the radius of the polyhedron’s
circumscribed sphere. The faces are re-arranged as well in order to include the new
vertices. This process can be repeated in an iterative way. Figure 27 shows the
process of building a geodesic sphere from an icosahedron. The first picture shows
the original icosahedron, being triangulated in the second picture. The third picture
shows the triangulated icosahedron with the new vertices pushed out to its circum-
sphere. Repeated application of the process of pictures 1 and 2 on the polyhedron
from picture 3 gives the resulting geodesic sphere in picture 4. Note that also for
the maximum Ambisonic order which can be reproduced on this layout according
to the L ≥ N criterion (eq. 24), the condition number of its re-encoding matrix
(chapter 18.1.2) remains remarkably low with cond (C) = 1.74.

Since we aim at a choice of the total number of vertices (i.e. loudspeakers) as
arbitrary as possible, we will generalize the concept of geodesic spheres, so it can be
applied to other structures than the Platonic solids as well. For this purpose, we can
define the following tessellation rules for differently shaped faces of a polyhedron:

• Triangles can either be midpoint-triangulated or triangulated at an arbitrary
’frequency’.

• Rectangles can be midpoint-triangulated or rectangulated at an arbitrary ’fre-
quency’
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Figure 28: A triangle, its midpoint-triangulation, and two triangulations at different
frequencies

Figure 29: A rectangle, its midpoint-triangulation, and two rectangulations at different
frequencies

• Polygons with more than four vertices (pentagons, hexagons, etc.) can only
be midpoint-triangulated

We use the term midpoint-triangulation to describe the process of adding a new
vertex in the center of an arbitrary polygon and connecting it to each of the existing
vertices in the polygon, resulting in a number of new facets which is equal to the
number of vertices in the original polygon. Midpoint-triangulations of a triangle,
a rectangle, and a pentagon are shown in the second picture of figures 28, 29, and
30. Another tessellation strategy bases on the subdivision of a polygon’s edges,
resulting in a triangulation of triangles or a rectangulation of rectangles. Examples
are shown in the last two pictures of figures 28 and 28. The tessellation frequencies
f > 2 refers to the number of subsections in one edge. Additionally, we use f = 0
to denote the original polygon, and f = 1 to denote its midpoint-triangulation.

The presented tessellation strategies can be also applied to non-regular polygons,
which allows us to build geodesic structures from non-uniform polyhedra as well.
Another source of flexibility in the process of designing a geodesic sphere is given
through independently specifying the tessellation behaviour of each face shape in
each iteration. For example we could consider a polyhedron built from triangles,
squares, and pentagons: In a first step, we decide to midpoint-triangulate every
triangle, rectangulate every square at a frequency f = 2, and not subdivide the
pentagons at all. In a second step we do not tessellate the triangles and midpoint-
triangulate the squares and pentagons, leaving us with a structure consisting of
triangles exclusively.

However, increased flexibility is traded off for growing irregularities in the re-

Figure 30: A pentagon and its midpoint-triangulation
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sulting layout. The amount of irregularity is determined by the choice of the initial
polyhedron43, and the frequencies of the applied tessellations. The process of ’push-
ing out’ the new vertices to the circumsphere of the polyhedron results in a variation
regarding the length of the polyhedron’s edges (which again affects the size of the
faces). Since the number of different lengths is given by the tessellation frequency44,
high frequencies and mixed frequencies are to be avoided in order to keep the intro-
duced irregularity at a minimum.

We have noted a special interest in periphonic layouts with loudspeaker equators
(chapter 18.1.4). It is interesting to note that the method of geodesic spheres can
affect this property of an arrangement in a positive way: For instance, any tessel-
lation of the tetrahedron, icosahedron, or hexahedron at an even frequency (f = 2,
f = 4, etc.) will result in a structure with a ring of vertices in the horizontal plane.
As an example, consider figure 27.

Daniel has also mentioned two interesting examples of geodesic spheres built
from Platonic solids [Dan00, p.177]: The compound of an icosahedron and a dodec-
ahedron can also be interpreted as a f = 2 triangulation of either of the two. The
same holds for the compound of octahedron and cube.

18.4 Minimal Energy Configurations

We have seen in the last chapter that although the method of geodesic spheres can
be somewhat generalized towards a more arbitrary choice of the number of loud-
speakers in a periphonic layout, this freedom has to be traded off for the regularity
of the resulting layout. To overcome this disadvantage, it is possible to employ a
different strategy from the field of physics. The resulting sphere approximations are
refered to as minimal energy configurations. The process is initialized by randomly
distributing an arbitrary number of electrons on the surface of a sphere. The elec-
trons have only two degrees of freedom, i.e. they may only move on the sphere.
Due to the repulsion forces the electrons exercise on each other, they will distribute
themselves over the sphere until they find a natural equilibrum of minimal potential
energy.

In nature, the repulsion forces among two electrons are proportional to their
squared distance. However, this factor can be chosen differently in a computer
simulation of the process, which can be easily implemented as a nested for loop,
in which the forces of each electron onto each other electron are calculated, and
the results are superponed. After all electrons have been moved to their new po-
sitions, they are brought back to the radius of the sphere while retaining their
directions. The entire procedure can be applied ieratively until the configuration
fullfills the specified requirements regarding homogeneity. The advantage of this
method is complete freedom regarding the number of electrons/loudspeakers. How-
ever, minimal energy configurations usually lack any symmetry, also regarding the
horizontal plane, i.e. they do not provide an ’equator’ of loudspeakers (see chapter
18.1.4). Figure 31 demonstrates the process of electrons distributing on a sphere.
The re-encoding matrix of the resulting layout after 200 iterations features a condi-

43Note that even the Platonic solids are of varying quality as initial layouts for geodesic spheres. For
example, a tetrahedron generally produces greater irregularities than an icosahedron [Bou].

44For example f = 2 tessellation of a Platonic solid results in two different edge lengths, whereas this
number increases to three in the case of f = 3 tessellation.
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Figure 31: The result of a minimal energy configuration algorithm with 30 loudspeakers
after 0, 10, 30 , 80, and 200 iterations

tion number (chapter 18.1.2) as low as cond (C) = 1.94 for fourth order Ambisonic
soundfield reproduction, which is the maximum order of the layout according to the
L ≥ N criterion (eq. 24).

18.5 Loudspeaker Array Calibration

We have discussed possible restrictions regarding the loudspeaker positions due to
the architectural environment of a periphonic sound spatialization system (chapter
18.1.5. These can also result in deviations of the loudspeaker radii. Generally, the
actual radius will vary as a function of direction. Within reasonable limits, it is
possible to compensate for such irregularities by the means of calibrating the gains
and delays of the loudspeakers. Assuming the j-th loudspeaker in our layout, its
gain factor gj and delay Tj can be calculated as:

gj =
Rj

Rmax

Tj =
Rmax −Rj

c

where Rmax is the radius of the loudspeaker at the greatest distance, and c is
the speed of sound. The first equation is derived from the 1/r law, resulting in
lower gains for closer loudspeakers. The second equation compensates for the finite
speed of sound by delaying the signals coming from closer loudspeakers. The gain
and delay factors are normalized to the speaker with the maximum radius, i.e. the
gain of that speaker is one and its delay is zero. By the means of layout calibration,
the gain and phase factors of a wavefront can be restored such that they resemble
those of a sound source moving at a distance Rmax. However, the curvature of
the wavefront cannot be restored, which causes problems when NFC-HOA distance
coding is applied (chapter 15.6). If the differences of the loudspeaker radii are within
reasonable limits, the average loudspeaker distance can be used in the NFC-HOA
encoding process, which is given as

R =

L∑
j=1

Rj

L
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where L is the number of loudspeakers in the layout.

18.6 Towards a Hybrid Loudspeaker Layout Design Strat-
egy

So far, we have focused our efforts on different methods for homogeneous distribu-
tion of loudspeakers over the surface of a sphere. We have seen how to use more
exotic polyhedra or geodesic extensions in order to trade some of this homogeneity
off for more freedom regarding the number of loudspeakers in a layout. We have
also discussed what to expect from these methods regarding the horizontal plane,
and how to compensate for slight irregularities of the loudspeaker radii. However,
none of the approaches mentioned so far offers the possibility of varying loudspeaker
densities for psychoacoustical layout optimization (see chapter 18.1.3). Ideally, we
would like to be able to specify a spherical loudspeaker density function, which re-
sembles the spatial resolution of the human ear as a function of direction. The task
is to define an intuitive method which can be applied to arbitrary layouts, rather
than empirically adopting a given arrangement.

It is suggested to use the electron charge in the minimal energy configuration
algorithm as a handle to the loudspeaker density. Defining the charge of an electron
as a function of its position on the sphere45 will result in varying repulsion forces
among the electrons: Higher forces will occur in areas where the charge of electrons
is high, resulting in a low loudspeaker density, whereas more loudspeakers will be
found in low-charge areas with weak repulsion. The spherical electron charge func-
tion can be derived by simple inversion of the loudspeaker density function. The
definition of a loudspeaker density function can be significantly simplified using su-
perpositions of weighted spherical harmonic functions, which are also used in the
Higher Order Ambisonic spatialization technique (chapter 15) and sound object en-
coding (chapter 16).

Note that if the electron charge is a function of direction, the initial positions
of the electrons cannot be chosen randomly any more: for example, in a situation
with all electrons being initially placed in areas with very high loudspeaker density,
the electrons would remain in those areas forever. It is thus important to use an
initial layout in which the electrons are already to some degree homogeneously dis-
tributed. This results in a separation of the loudspeaker layout design process into
two subsequent parts dedicated to different tasks: first, an initial layout is designed
according to the homogeneity criterion, which is then psychoacoustically refined in
the second stage (see figure 32). The initial layout can be generated by the means
of any method discussed so far, i.e. as a polyhedron, its geodesic extension, or a
minimal energy configuration (with constant loudspeaker density). However, we
suggest to use a polyhedron-based approach in order to integrate the advantages of
those layouts (symmetry, loudspeaker equator). It can be seen from table 3, that the
advantages and disadvantages of minimal energy vs. polyhedron-based approaches
contemplate each other very well. Geodesic extension can be used to keep the re-
strictions regarding the number of loudspeakers at a minimum.

Due to the use of a minimal energy configuration stage for psychoacoustical lay-
out refinement, we have to be prepared to give up any symmetries in the initial

45A concept unknown to nature, but very convenient for our purposes.
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Figure 32: Loudspeaker layout design strategy

Criterion Polyhedra, Geodesic Spheres Minimal Energy Configs

number of loudspeakers limited, quality tradeoff arbitrary
loudspeaker density no obvious handle handle via electron charge
equator easy to achieve generally not given
symmetry yes generally not given
forced positions not obvious to achieve via ’locked’ speakers
forbidden areas not controllable [via low speaker density]

Table 3: Polyhedron-based vs. minimal energy strategies

layout, including the horizontal plane, i.e. a loudspeaker equator in the original lay-
out. Enforcing specific loudspeaker positions (forced positions) - be it on the equator
or elsewhere - can be achieved by ’locking’ certain loudspeakers in the refinement
process: A locked loudspeaker can be simulated as an electron which exercises re-
pulsion forces on the other electrons, but is immune to the forces exercised on itself
and therefore remains in its initial position.

Deviations of the loudspeaker radii due to architectural circumstances (see chap-
ter 18.1.5) can be considered in the psychoacoustical refinement loop by including
a loudspeaker radius function which defines the actual radius of a loudspeaker as a
function of the direction in which it is mounted. Rather than mapping the loud-
speakers to the surface of a sphere after each iteration (as done in the ’regular’
minimal energy algorithm), they are mapped to the surface specified by this func-
tion. Alternatively, it is also possible to first assume a spherical distribution in the
refinement process and map the loudspeakers to their respective radii afterwards.
Like a loudspeaker density function, the radius function can be defined as a su-
perposition of weighted spherical harmonic functions. The required gain and delay
factors for layout calibration (see chapter 18.5) can be calculated as a side product
of the mapping procedure.

We have also discussed the possibility of areas which do not allow for mounting
loudspeakers (forbidden areas, chapter 18.1.5). Loudspeakers in those areas can to
some degree be avoided by assigning low values of loudspeaker density to forbidden
areas in the refinement stage. If the values are chosen too low, however, this will
result in an unstable behaviour of the configuration during the refinement stage. A
more straightforward approach is to manually move loudspeakers which have ended
up in forbidden areas after the refinement process. If the total number of loudspeak-
ers is flexible, they can also be deleted. Since this affects the properties regarding the
homogeneity of the layout, additional minimal energy refinement might be required
after such operations. It is expected that the best results will be achieved through
a combination of a suitable loudspeaker density function and manually moving or
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deleting loudspeakers, depending on the circumstances regarding the number and
size of the forbidden areas and the required number of loudspeakers. Using the
ideas proposed in this chapter, an extended loudspeaker layout design strategy can
be defined, which is described in figure 33.

Note that the introduction of a non-constant loudspeaker density disturbs the
convergence of the minimal energy algorithm towards a natural equilibrum: the
result of the such extended algorithm actually does not represent a minimal energy
configuration in the physical sense any more. With increasing inhomogeneity of
the loudspeaker density, stability of the configuration becomes harder to achieve,
i.e. also after a high number of iterations, the configuration is still subject to
significant changes. The introduction of ’locked’ loudspeakers radius functions has
the same effect. Thus, the freedom of psychoacoustical layout optimization and
the consideration of architectural circumstances has to some degree be traded off
for ease of implementation. Nevertheless, we believe that the presented method
represents a useful approach to the design of periphonic loudspeaker layouts, which
will be demonstrated at the example of the AlloSphere in chapter 22.
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Figure 33: Extended loudspeaker layout design strategy
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Part IV

Practical Contributions
In this chapter, we will discuss practical contributions to the AlloSphere project at
the Media Arts and Technology Program of the University of California at Santa
Barbara (UCSB), which has provided the background of this thesis. We will give an
introduction into the AlloSphere project itself, as well as into the CREATE Signal
Library (CSL, ’Sizzle’), a C++ framework for digital sound synthesis developed at
UCSB’s Center for Research in Electronic Art Technology [PR03]. Then we will
discuss a set of Higher Order Ambisonic classes for CSL, which has been devel-
oped together with Graham Wakefield and Jorge Castellanos in 2005 and has been
integrated in the farmework. Also, a Matlab library for the design of periphonic
loudspeaker layouts will be presented, which has been developed by the author in
a project related to this thesis. Eventually, we will demonstrate the application of
this library by developing a scenario of a periphonic sound spatialization system for
the AlloSphere.

19 Project Background

19.1 The AlloSphere

The AlloSphere is a joint project of the California Nanosystems Institute (CNSI)
and the graduate program in Media Arts and Technology (MAT) at the University
of California at Santa Barbara (UCSB). It is designed as an immersive virtual envi-
ronment for multiple users, and is currently being constructed as part of an CNSI
building at the UCSB campus. The completion of the building, which is already a
part of the final instrument, is scheduled for spring 2006. It will be a three-story
cubic anechoic chamber with extensive sound absorption treatment (4-foot foam
wedges on almost all inner surfaces), containing a built-in spherical screen with a
diameter of approximately 10 meters. The screen consists of perforated aluminum,
designed to be optically opaque but acoustically transparent. A bridge suspended
in the center of the two hemispheres accomodates about ten to twenty people. Once
this construction is completed, the visual, sonic, and interactive components of the
system will be integrated in the system, which will eventually represent one of the
largest immersive instruments in the world. Fifteen high-resolution video projectors
mounted around the seam between the two hemispheres will provide 3D projection
of visual data on the entire surface of the sphere. An array of hundred loudspeak-
ers or more will be suspended behind the projection screen, hung from the steel
infrastructure of the building. This will allow for truly periphonic sound spatializa-
tion, including sounds from the lower hemisphere. The projection equipment will
be driven over gigabit ethernet LAN by custom-built software running on a server
farm. Interactive control of the data projection will be achieved by the means of
various sensing and tracking techniques, like microphone arrays, camera tracking,
mechanical and magnetic input tracking. [MAT05]

The following laboratories at UCSB will be involved in using the AlloSphere as
a large-scale immersive instrument for their research:

• Center for Research in Electronic Art Technology (CREATE)

• Four Eyes Lab
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• Networking and Multimedia Systems Laboratory

• VivoNets Lab

• Interactive/Algorithmic Visualization Research Lab

• Center for Bio-Image Informatics

• Research Center for Virtual Environments and Behavior

• Spatial Thinking Lab

• Vision and Image Understanding Laboratory

• National Center for Geographic Information and Analysis

• Nanoelectronics and Circuits Research Group

The research carried out by these institutions will include a wide range of sci-
entific fields. Immersive audio systems are studied at the CREATE, including pe-
riphonic sound spatialization and sound synthesis technologies (JoAnn Kuchera-
Morin, Curtis Roads, Xavier Amatriain, Stephen Travis Pope). The Four Eyes Lab
will focus on immersive visual systems, contributing research on high-resolution
video projection and holography (Tobias Hollerer). Sensor and camera tracking
systems for gesture recognition and interpretation are developed by Edward Chang
and the Four Eyes Lab (Mathew Turk, Tobias Hollerer). The Networking and Mul-
timedia Systems Laboratory (Kevin Almeroth), the VivoNets Lab (Jerry Gibson)
and other researchers (Steven E. Butner, Forrest Brewer) are concerned with system
design and integrated software/hardware research. The Center for Bio-Image Infor-
matics, B.S. Manjunath, and Edward Chang are interested in using the AlloSphere
as an advanced interface for their research on multidimensional knowledge discovery.
Kaustav Banerjee and the Nanoelectronics and Circuits Research Group will carry
out simulations in the AlloSphere for the analysis of complex structures and systems
like cells, circuits, or the Internet. Human perception, behaviour and cognition is a
research area of the Spatial Thinking Lab (Mary Hegarty), the Research Center for
Virtual Environments and Behavior (James J. Blascovich), and the Vision and Im-
age Understanding Laboratory (Miguel Eckestein). This also includes Jack Loomis’
research on spatial hearing. The National Center for Geographic Information and
Analysis (Keith Clarke, Michael Goodchild, Jim Frew, Dan Montello) will benefit
from the AlloSphere as a tool for cartographic display and information visualization,
for example ’inside-out’ displaying of global data (e.g. earthquake activity) as tools
for collective decision-making. Several researchers will use the AlloSphere for artis-
tic scientific data visualization and auralization. This includes George Legrady’s re-
search at the Interactive/Algorithmic Visualization Research Lab, Marcos Novak’s
work on visual architecture, the mixed media works by JoAnn Kuchera-Morin’s ,
Curtis Roads and his research on microsound, web visualization software by Lisa
Jevbratt, and Marko Peljhan’s work on non-linear and non-hierarchical data dis-
play and usage. Altogether, the AlloSphere will serve as a research environment for
some sixty students of the master and PhD programs in Media Arts and Technology,
along with approximately thirty professors and post-doctoral researchers at MAT
and its partner departments. [MAT05]

19.2 Audio in the AlloSphere

This thesis project is dedicated to periphonic sound spatialization in multi-user
virtual environments like the AlloSphere. We have presented the theoretical foun-
dations of spatial hearing (chapter I) as well as historical aspects of sound spatializa-
tion (chapter II). An overview of suitable algorithms which allow for reconstruction
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Figure 34: AlloSphere [MAT]

of periphonic soundfields has been given in chapter III. Since these have different
requirements regarding the loudspeaker array, we have discussed various techniques
of generating periphonic loudspeaker layouts (chapter 18), culminating in a new
hybrid approach presented in chapter 18.6. Regarding its application for the de-
sign of the AlloSphere’s sound spatialization engine, this strategy allows for taking
into account the actual shape of the AlloSphere (radius as a function of direction)
and its architectural environment (forbidden areas and forced positions for loud-
speaker distribution). It allows for psychoacoustical optimization of the directional
loudspeaker density and for a special focus on sound reproduction in the horizontal
plane, allowing for co-existing 3D/2D systems like a 3D Higher Order Ambisonic
and a 2D Wave Field Synthesis engine.

Several other aspects of the sound spatialization engine design in the AlloSphere
have not been addressed within this project: In particular, we have not addressed
the room acoustics of the AlloSphere. According decisions regarding shape and
acoustical treatment have been made long before the start of this project. Severe
problems regarding sound focusing in the center of the AlloSphere due to its spher-
ical shape are expected. These worries are grounded on experience with curved
surfaces in sound spatialization at the Institute of Electronic Music and Acoustics,
Graz, Austria. The metal bridge in the center of the AlloSphere will be critical
regarding reflections and shielding of sounds from the lower hemisphere. It will also
remain to evaluate how the noise created by the video projectors can be kept at
a minimum within the listening area. The hardware implementation of the Allo-
Sphere’s sound spatialization engine was not a subject of this thesis either. The
main challenge in this context will be the implementation of a distributed comput-
ing system carrying out the processing of the source signals and their spatialization.
The audio input section design will require the development of microphone arrays
and specifications regarding microphone preamps and analog-to-digital converters.
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Figure 35: The AlloSphere building [MAT]

The transmission and distribution of audio signals in the AlloSphere involves the
design of a gigabit ehternet LAN, a central mixing unit and decisions regarding
patchbays and wiring. The audio output section requires decisions regarding the
number of loudspeakers and the specification of loudspeaker models used. Stephen
Travis Pope has proposed the use of electrostatic loudspeaker panels (ESLs) in
the AlloSphere [Pop05], which have the advantage of low weight, facilitating loud-
speaker maintainance. However, they require voltages in the kV range and their
lower frequency border is as high as 200 Hz to 450 Hz, depending on the size of the
panel. A system built from these speakers will require additional mid-woofers and
sub-woofers, possibly distributed at lower densities than the high-frequency-range
ESLs. It is not obvious how to generate loudspeaker driving signals for such a hy-
brid system by the sound spatialization techniques presented in this thesis. Stephen
Travis Pope has suggested to address the loudspeakers over custom-built interface
boxes, each carrying the required gigabit ethernet interface, the digital-to-analog
converter, power amplifier, and step-up transformer [Pop05]. Also, this thesis was
not concerned with the interactive control of spatialized sounds in the AlloSphere
by the means of human interface devices and graphical user interfaces.

The following chapters will be dedicated to two software packages developed
in the course of this thesis project: Higher Order Ambisonic classes have been
developed for the CSL framework (CREATE Signal Library, [PR03]; see also chapter
19.3) with Graham Wakefield and Jorge Castellanos (chapter 20). Together with
Doug McCoy’s VBAP classes [McC05], they will allow for the implementation of
various periphonic sound spatialization engines in the AlloSphere. Doug McCoy’s
work also included a hardware interface based on a 3D motion tracking system
combined and a data glove, which allows the user to ’grab’ sounds with their hand,
and ’release’ them again to different modes of movement (orbit, bouncing, resting).
The second software package is the 3LD, the Library for Loudspeaker Layout Design,
which has been implemented by the author of this thesis as a set of Matlab functions
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Figure 36: AlloSphere environment and interior construction (fall 2005) [MAT]

for the generation and evaluation of periphonic loudspeaker layouts (chapter 21).
An application of this library is demonstrated in the final chapter of this thesis,
in which we derive a hypothetical scenario of a sound spatialization system for the
AlloSphere (chapter 22).

19.3 The CREATE Signal Library (CSL)

The CREATE Signal Library (CSL, pronounced ’Sizzle’) [PR03] is a cross-platform
software framework for sound synthesis and digital signal processing. It is imple-
mented as a C++ class library and was initially written by Stephen Travis Pope
as the CREATE Oscillator (CO) in 1998. In 2002, CSL was rewritten by students
of the graduate program in Media Arts and Technology at the University of Cal-
ifornia at Santa Barbara. In Spring 2003, the framework has been revised again,
mainly by Chandrasekhar Ramakrishnan (CSL 3). In the last months of 2005, an-
other revision of the program has been carried out by Stephen Travis Pope, Xavier
Amatriain, Jorge Castellanos, Graham Wakefield, Lance Putnam, Ryan Avery, and
others (CSL 4). The new sources are already available, but not all of the classes
have been ported to the current version yet. CSL runs on Linux, Unix (Solaris,
Iris, OpenBSD) and MacOSX. Windows is supported, although some features (ab-
stractions for network and thread) are missing. CSL is an open source project - the
sources can be downloaded at http://create.ucsb.edu/CSL.

Similar to Jsyn, CLM, STK, CLAM and Cmix, CSL is a class library in a
general-purpose programming language (C++), rather than a stand-alone ’sound
compiler’. It is a low level synthesis and processing engine, but does not provide
its own music-specific programming language, such as the Music-N languages or
SuperCollider. CSL programs are written as the main function of a C++ program,
which is linked with the CSL library, and use hardware abstraction classes for I/O
ports, network interfaces and thread APIs. It is designed from the ground up to
be used in distributed systems, with several CSL programs running as servers on a
local-area network, streaming audio and control signals between them. [PR03]

A CSL program sets up a DSP graph, following the dataflow concept known
from other sound synthesis software. The root object of the graph - for example a
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spatializer - is connected to the output, represented by a direct audio output API
(PortAudio, CoreAudio), a socket-based network protocol (UDP, TCP/IP), a sound
file (using libsndfile), or a MIDI output (PortMIDI). Signal processing in the DSP
graph is done in sample blocks and follows a pull principle, i.e. the root object
requests a buffer of samples from its inputs using the nextBuffer method, which
is then passed on upwards the DSP graph. Once the DSP graph is worked off and
the root object receives its requested buffer, the nextBuffer method proccesses it
(for example spatializes an incoming audio signal) and passes it on to the output.
Different subgraphs can run at different block sizes and sample rates, and a DSP
graph can be distributed to several machines in a local-area network. [PR03]. The
source code of CSL is organized in the following directories:

• CRAM: hosts the CREATE Realtime Applications Manager.

• Instruments: includes FM-, soundfile- and white noise-instruments.

• IO: hosts the hardware abstraction classes for audio, MIDI, soundfile, and
network input and output.

• Kernel: contains the core classes of CSL, which will be further described
below.

• OSC: includes the sources of the CNMAT Open Sound Control library.

• Processors: provides binary signal operations, filters, reverberators, etc.

• Sensors: includes classes to address human interface devices (P5 data glove,
EBeam whiteboard, Flock of Birds magnetic tracker, etc.)

• Sources: contains CSL’s unit generators, like oscillators, noise sources, en-
velopes, physical models, a wave shaper, a granulator, etc..

• Spatializers: provides classes for sound spatialization by the means of Higher
Order Ambisonics, Vector Base Amplitude Panning, an Auralizer, and several
panners.

• Tests: contains examples of CSL programs (i.e. main functions) for testing
and demonstration of the CSL classes.

• Utilities: hosts a block resizer and other utility functions.

The classes which represent the top level of the framewok’s inheritance hierarchy
are located in the ’Kernel’ folder. The following four of them represent CSL’s core
classes:

• Buffer represents a multi-channel audio sample buffer, which is passed around
between unit generators and I/O objects.

• BufferCMap is a sample buffer used for multichannel processing.

• Port represents signal and control inputs and outputs.

• UnitGenerator is an object which fills a buffer with samples. This is CSL’s
central DSP abstraction.

Note that in CSL 3, it was the FrameStream class which was responsible for
filling the audio buffers with samples. In CSL 4, this functionality has been inte-
grated in the UnitGenerator class, and FrameStream has been removed. However,
the Higher Order Ambisonic classes presented in chapter 20 have not been ported
to CSL 4 yet, so in their constructors presented in chapter 20, you will still find
references to the FrameStream class. A class new to CSL 4 is Port, which is an
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abstraction of a unit generator’s inputs and outputs for audio and control signals.

Besides these core classes, the CSL kernel also provides several mix-in classes.
For example, the Effect class (which was called Processor in CSL 3) represents
a UnitGenerator which operates on an input port, like a filter or panner. Other
subclasses can be used to add multiplicative and additive inputs (Scalable) or
frequency inputs (Phased) to unit generators. Additional kernel classes include a
multiplexer (Joiner) and demultiplexer (Splitter) and an abstraction of the I/O
driver (IO).
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20 Higher Order Ambisonic Classes for CSL

Together with MAT students Jorge Castellanos and Graham Wakefield, several
classes for building Higher Order Ambisonic systems within the CSL framework
(chapter 19.3) have been developed. These classes allow for the implementation of
Ambisonic systems with the following characteristics:

• Up to third Ambisonic order

• Encoding functions using the Furse-Malham set (see chapter 15.2)

• Soundfield rotation about all three axes x, y, and z

• Decoding by the means of projection or pseudoinverse (see chapter 15.4)

• Basic, max rE and in-phase decoder flavors (see chapter 15.5)

The Higher Order Ambisonic classes have been incorporated into the CSL frame-
work - in the distribution they can be found in /CSL/Spatializers/Ambisonic.
However, at the point of writing, they have not yet been ported to the new version
(CSL 4). The constructors and the code example presented in this chapter are still
based on CSL 3. Thus, they still refer to the FrameStream class, which has been
abandoned in CSL 4 (chapter 19.3).

20.1 The HOA AmbisonicFramestream Class

HOA_AmbisonicFramestream represents the superclass from which most other Higher
Order Ambisonic classes inherit. Generally, any class which requires Ambisonic en-
coded material at its input and/or output represents an Ambisonic framestream,
which knows about its order and the number of channels it carries. The motivation
of introducing this class was that in hybrid order systems (see chapter 15.2), the
order of the input cannot be guessed any more from the number of channels. Thus,
an Ambisonic framestream (e.g. a decoder) needs to be able to ask its input (e.g.
an encoder) about the order it provides. However, it has to be pointed out that
although we have included them into our considerations regarding the design of our
classes, hybrid orders are currently not supported in the right way. It is possible
for each Ambisonic framestream to separately specify a horizontal and a vertical
order, but the same 3D encoding equations are applied in the encoding process of
vertical as well as horizontal Ambisonic channels. This problem will be addressed
when the classes are ported to CSL 4 (expected for spring 2006). In the meantime,
it is recommended not to use the constructors of the HOA classes which allow for
separate specification of horizontal and vertical order, but to to restrict oneself to
global Ambisonic order definition using the according constructors which will also
be presented in the following chapters.

20.2 The HOA Encoder Class

The HOA_Encoder class inherits from HOA_AmbisonicFramestream. It allows for
encoding mono audio signals to Higher Order Ambisonic soundfields of up to third
order. A typical constructor of the class is

HOA_Encoder(FrameStream &input, unsigned int order = 1,
double azimuth = 0.f, double elevation = 0.f);
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As can be seen from the constructor, the encoder defaults to encoding a sound
source to the zero (i.e. front) position at first order. Note that the actual encoding
functions are hosted by the HOA_Utilities class. The sound source azimuth and
elevation can be set using the following methods:

void setAzimuth(double azimuth);
void setElevation(double elevation);

Note that once the HOA_xxx classes have been ported to the new version 4 of
CSL, the audio input will be a UnitGenerator rather than a FrameStream, and the
azimuth and elevation values will be represented by instances of the Port class (see
chapter 19.3).

20.3 The HOA Mixer Class

This class, which also inherits from HOA_AmbisonicFramestream, is used to mix
Ambisonic framestreams - for example superponing several encoded sound sources
to a single Ambisonic soundfield. Our original design intended to provide the
HOA_Encoder class with a framestream with multiple channels representing the audio
signals intended for encoding. Two additional framestreams with the same amount
of channels were supposed to provide the azimuth and elevation information of the
sound sources. In order to mix several mono audio signals into one multichan-
nel framestream, we wrote a class named Glue, which did not work as intended,
due to reasons outside of the scope of our project. Our temporary solution to the
problem was to encode each sound source separately using its own instance of the
HOA_Encoder class, and eventually mix them together by the means of HOA_Mixer.
The problems we encountered have been considered in the current re-design of CSL,
and thus a more sophisticated solution can be expected once the HOA classes are
ported to CSL 4. A typical constructor of the HOA_Mixer class is

HOA_Mixer(FrameStream &input, unsigned maxInputs = 64);

and new inputs can be added to the mixer using the method

bool addInput(FrameStream &input);

20.4 The HOA Rotator Class

The HOA_Rotator class inherits from HOA_AmbisonicFramestream as well. It is
capable of rotating Ambisonic-encoded soundfields around any combination of the
three x (tilt), y (tumble) and z (rotate) axes. Note that inside the class, the op-
erations are always executed in the same order, which is first tilt, then tumble,
and eventually rotation. You will have to provide the three angles accordingly in
order to obtain your desired final rotation axis. Some standard constructors of the
HOA_Rotator class are

HOA_Rotator(FrameStream &input);
HOA_Rotator(FrameStream &input, unsigned order);

The first constructor uses the order of the encoded input material. The second
constructor can be used to override this parameter and rotate the soundfield at a
lower order than given by the input. This makes sense whenever you know that later
you are going to decode the soundfield at a lower Ambisonic order than is provided
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by the encoded material, for example because there are not enough loudspeakers
to fullfill the L ≥ N criterion (eq. (24)). In such situations, CPU resources can
be saved by not rotating Ambisonic channels which will never be decoded. The
rotation angles can be set by the following methods:

void setTilt(float input);
void setTumble(float input);
void setRotate(float input);

20.5 The HOA SpeakerLayout Class

The HOA_SpeakerLayout class allows for reading and writing text files containing
the loudspeaker position information. It does not represent an HOA_AmbisonicFramestream
nor does it inherit from any other CSL class, since it only includes a parser which
processes the loudspeaker position information so it can be used by the decoder
class (chapter 20.6) for setting up the re-encoding matrix of the loudspeaker layout.
The loudspeaker positions can be specified in either spherical (azimuth, elevation,
radius) or cartesian (x, y, z) coordinates, and angles can be specified in degrees or
radians. This is achieved by adding an according keyword (SPHERICAL-DEGREES, or
SPHERICAL-RADIANS, or CARTESIAN) in the header of the text file. Note that the
radius information of the loudspeakers is included, keeping future system extensions
towards distance coding by the means of the NFC-HOA format (chapter 15.6) in
mind. An example for a text file which can be read by the HOA_SpeakerLayout
class is

/ An Octahedron Loudspeaker Layout
SPHERICAL-DEGREES
/azimuth elevation radius

45 0 1 / left front speaker
135 0 1 / left rear speaker
-135 0 1 / right rear speaker
-45 0 1 / right front speaker

0 90 1 / top speaker
0 -90 1 / bottom speaker

Everything right of a ’/’ is interpreted as a comment. Some typical constructors of
the class are

HOA_SpeakerLayout();
HOA_SpeakerLayout(char *filePath);

In the second constructor, the path to the text file containing the loudspeaker
position information is passed as an input argument. If this path is not specified
as in the case of the first constructor, the class defaults to a loudspeaker layout
used in the laboratory of UCSB’s Graduate Program in Media Arts and Technol-
ogy, which consists a ring of eight loudspeakers in the horizontal plane, a ring of
four loudspeakers on the floor, a ring of four loudspeakers on the ceiling, a central
loudspeaker on the ceiling, and a subwoofer.

20.6 The HOA Decoder Class

This class inherits from HOA_AmbisonicFramestream and decodes Ambisonic sound-
fields encoded by the HOA_Encoder class to the loudspeaker layout specified by the
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HOA_SpeakerLayout class. The decoding method can be specified to either use
projection of the Ambisonic channels onto the loudspeaker layout (chapter 15.4.2)
or to derive the pseudoinverse of the re-encoding matrix (chapter 15.4.1). The de-
coder flavors specified in chapter 15.5 have also been implemented, i.e. a basic
decoder as well as an in-phase decoder and a max-rE decoder. To build the re-
encoding matrix of the loudspeaker array, the HOA_Decoder class uses the function
fumaEncodingWeights in HOA_Utilities, which is also employed by HOA_Encoder
for virtual sound source encoding. This avoids unnecessary code duplication. Con-
structors of the decoder class can look like

HOA_Decoder(FrameStream &input,
HOA_DecoderMethod method = HOA_PSEUDOINVERSE,
HOA_DecoderFlavour flavour = HOA_BASIC);

or

HOA_Decoder(FrameStream &input, unsigned order,
HOA_SpeakerLayout &spkLayout,
HOA_DecoderMethod method = HOA_PSEUDOINVERSE,
HOA_DecoderFlavour flavour = HOA_BASIC);

In the first case, the decoder defaults to the standard loudspeaker layout provided
by HOA_SpeakerLayout (chapter 20.5). It can also be seen that by default the
decoder uses the pseudoinverse decoding method and a basic decoder flavor. The
order at which the decoder operates is given as the minimum of

• the order of the encoded input material,

• the order specified in the constructor,

• the maximum order which can be realized on the given loudspeaker layout so
that L >= N (eq. (24)).

20.7 The HOA Utility Class

The HOA_Utility class serves as a container for several functions which are shared
by multiple Higher Order Ambisonic classes or represent low-level functions not
included in the class which uses them in order to keep the code concise. Examples
of functions in HOA_Utility are

unsigned int orderToChannels(const ambisonicOrder order);

void SingularValueDecomposition(sample** a, int m, int n,
sample* w, sample** v);

void fumaEncodingWeights(sample *weights, const ambisonicOrder &order,
sample &azimuth, sample &elevation);

The first function is an implementation of equation 19, which is used to derive
the number of Ambisonic channels from the order of a 3D system. The second
function is used in the derivation of the pseudoinverse of the re-encoding matrix
by the HOA_Decoder class (chapter 20.6). The third function hosts the Ambisonic
encoding equations (table 1), which are used by the encoder class for encoding the
sound sources, and by the decoder class for re-encoding the loudspeaker positions.
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20.8 Code Example

int main (...) {

... ... ...

gIO = new PAIO(...);

... ... ...

// Encode first source at third order to the zero (i.e. front) direction
HOA_Encoder source1(signal1, 3, 0.0, 0.0);

// Encode decond source at third order to 90 degrees left, 45 degrees up
HOA_Encoder source2(signal2, 3, CSL_PI/2.0, CSL_PI/4.0);

// Mix both sources to a single Ambisonic soundfield
HOA_Mixer ambiMix(source1);
ambiMix.addInput(source2);

// Rotate the Ambisonic soundfield about the z axis
HOA_Rotator rotator(ambiMix);
rotator.setRotate(2.f);

// Get the (default) loudspeaker layout information
HOA_SpeakerLayout speakerlayout;

// Decode the Ambisonic soundfield at second order using projection.
// The decoder flavor will default to ’basic’.
HOA_Decoder decoder(rotator, 2, speakerlayout, HOA_PROJECTION);

// Set the root of the DSP graph and start the audio driver
gIO->set_root(decoder);
gIO->open();
gIO->start();

... ... ...

}

20.9 Future Work

The design of the CSL sound spatialization classes (VBAP, HOA_xxx classes, etc.)
is expected be somewhat generalized in the new version 4 of CSL, so that various
spatializers share a common format representing the spatial position information
of virtual sound sources and loudspeakers. This could include Pulkki’s loudspeaker
layout triangulation algorithm implemented by Doug McCoy in his CSL Vector Base
Panning classes [McC05] and loudspeaker array calibration as described in chapter
18.5. Regarding possible extensions of the HOA_xxx classes, it is recommended to
focus on the following issues:

• The extension to even higher orders M > 3 is the most important issue regard-
ing implementations in the AlloSphere. A decision has to be made whether
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this extension will be implemented by the means of hardcoded encoding func-
tions, or if the Ambisonic encoding functions are generated on-the-fly, using
their generic definition. Note that a generic definition of higher-order rotation
matrices is only possible for rotation about the z axis, but not for the tilt and
tumble operations.

• Hybrid order representations (chapter 15.2) have been considered but not yet
implemented in the right way, which could be done in a future version of the
Higher Order Ambisonic CSL classes.

• Various encoding conventions (N3D, SN3D, FuMa, etc.) should be supported.
An Ambisonic framestream will have to include information about the conven-
tion according to which it was encoded as a member variable, so that classes
operating on the encoded material (rotators, decoders) can adopt themselves
accordingly. For example, the tilt and tumble matrices vary for different en-
coding conventions, and an Ambisonic decoder has to apply the same (re-
)encoding convention which has also been used in the source encoding process.

• New soundfield operation classes could be added, providing capabilities for
mirroring, W-Panning, dominance, etc. See chapter 15.3 for background in-
formation. More experimental operations in the Ambisonic domain could be
implemented by the means of existing CSL classes (filters, delays, etc.).

• Sound source distance coding by the means of the NFC-HOA format (chapter
15.6) should be included. This would require an additional encoder class,
applying filter operations on the Ambisonic channels. This might be achieved
by the means of existing CSL filter classes. Note that no additional rotation
and decoding classes have to be written to handle NFC-HOA encoded material.

• Sound Object encoding in its simplest form (chapter 16.1) is already possi-
ble by re-using the HOA_Encoder class accordingly. However, the encoding of
surface shapes and frequency-variant radiation patterns requires spherical har-
monic impulse responses (chapter 16.2), which would have to be additionally
implemented.

• The decoder class could be extended towards a very generic design: Note
that the max-rE and in-phase weighting factors can be defined generically for
arbitrary orders. A more sophisticated design would allow for window-applied
decoding rather than a mere choice between the extremes of basic, max-rE

or in-phase decoding. Such an extension would involve the design of a user
interface, similar to the ones known from FIR filter design software.

• Room reflection cancellation (chapter 15.7) is an interesting issue, yet it faces
practical difficulties in the high-frequency range. Regarding its application in
the AlloSphere, an evaluation of the necessity for a room reflection cancellation
engine should be considered after the building is finished and its acoustical
properties are known in detail. Since the required impulse responses of the
loudspeakers are always restricted to a specific playback situation, it has to be
doubted that a wide range of users will benefit from a CSL implementation of
Ambisonic room reflection cancellation.
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21 3LD: Library for Loudspeaker Layout De-

sign

The 3LD (’Trip-L-D’ ) Library for Loudspeaker Layout Design has been imple-
mented by the author of this thesis in the course of a project related to this thesis.
It provides functions for generating periphonic loudspeaker layouts and evaluating
them in combination with different sound spatialization algorithms. The library is
available at http://iem.at. In this chapter, we will give a short description of
the 3LD functions and and their useful combination. Note that the source code is
well documented, and that typing help <functionname> in Matlab will return a
description of the functionality and the input and output arguments of any 3LD
function. Some demos are included in the package as well. All functions use the
cartesian and spherical coordinate systems known from this thesis (figure 1) as well
as from native Matlab functions like sph2cart.

21.1 Core Functions

The two functions presented in this chapter have been implemented as useful ex-
tensions to native Matlab functions, with a range of possible applications clearly
exceeding the field of periphonic loudspeaker layout generation.

21.1.1 spharmonic

This function uses Matlab’s native legendre to derive the spherical harmonics at the
given azimuth and elevation angles. For the specified order, all spherical harmonics
are calculated. Note that legendre uses the term ’degree’ and the subscript ’n’ for
what we refer to in this thesis as ’order’ and denote with the subscript ’m’. On the
other hand, our subscript ’n’ is replaced by ’m’ and refered to as ’order’ in legendre.
Since spharmonic represents a direct extension to this native Matlab function, it
uses the same naming convention. However, in 3LD’s Ambisonic encoding/decoding
functions (chapter 21.3), the naming conventions known from this thesis (chapter
15.1) have been applied, since these are common to Ambisonic literature. Also, the
order of the spherical harmonic functions in the rows of the spharmonic output array
represents a logical extension of the convention applied in legendre, which differs
from the channel order used in this thesis (chapter 15.1.1). In 3LD’s Ambisonic
functions, it is possible to choose among both conventions. spharmonic provides
the same normalization options as legendre, which are ’unnorm’, ’sch’, and ’norm’.
Note that ’sch’ is identical to the SN3D Ambisonic encoding convention (chapter
15.1.1), but ’norm’ seems to be not identical to the N3D encoding convention.

21.1.2 ezspherical

This function is a spherical extension of the native Matlab function ezpolar. ezspherical
plots spherical functions defined as function handles with two arguments represent-
ing azimuth and elevation. For example, the handle to a spherical harmonic func-
tion Y 1

11 can be expressed in Matlab as X = @(az,elev) cos(az).*cos(elev).
The command X(pi,pi/2) then returns the value of that function in the direc-
tion θ = π, φ = π/2. ezspherical(X) allows for direct plotting of the function
handle rather than first calculating the function values for the points of a grid.
ezspherical(X) creates such a grid internally - its resolution can be specified as
an optional input argument.
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21.2 Loudspeaker Layout Generation and Modification

3LD provides functions for generating periphonic loudspeaker layouts by the means
of various techniques discussed in chapter 18. All of them use an indentical layout
representation format: the coordinates of the loudspeakers are returned as L-by-3
arrays, containing the x,y,z coordinates of the L loudspeakers. Some of the functions
also provide tessellation of the surface defined by the loudspeakers, which is then
represented by an F -by-P array of F facets. P is the maximum number of vertices
in a facet of the polyhedron, e.g. P = 3 in the case of a triangulated solid like
the octahedron (chapter 18.2.1). Polyhedra combining facets of different shape (like
the bucky ball from figure 23) are supported by filling up the according rows of the
faces matrix with NaNs.46 Note that faces are always oriented counterclockwise as
seen from the center of the polyhedron. Functions which provide both, coordinates
and tessellation of a polyhedron return a structure with fields vertices and faces,
representing the two arrays. This structure can be plotted directly using the native
Matlab function patch.

21.2.1 platonicsolid

This funtion returns a vertices/faces structure of either one of the five Platonic
solids (see chapter 18.2.1). The radius of the solid can be specified as an optional
input argument. For example, to plot an icosahedron with a radius r = 3, type

p = platonicsolid(’ico’,3);
plot3LD(p);

21.2.2 bucky2

This function returns the vertices and faces of a truncated icosahedron, also known
as bucky ball (see chapter 18.2.2). It uses the internal Matlab function bucky, which
returns the coordinates of the vertices and an adjacency matrix defining the edges of
the polyhedron. bucky2 uses the first as an output argument, whereas the adjacency
matrix is replaced by a matrix representing the faces. The radius of the polyhedron
can be passed as an input argument and will default to one if not specified.

21.2.3 geosphere

The geosphere function is capable of tessellating an arbitrary polyhedron. It is an
implementation of the generalized approach to building geodesic spheres which we
have presented in chapter 18.3. Sphere approximations can be built from Platonic
solids, like in the function call

p = geosphere(’oct’,2,1);
plot3LD(p);

Note that you can plot the output of this function directly using 3LD’s plot3LD
(chapter 21.5.4) or Matlab’s patch, which is true for the following examples as well.
You can also define an existing polyhedron as the first input argument of geosphere,
like in

b = bucky2;
p = geosphere(b,1,1);
plot3LD(p);

46In Matlab, ’NaN’ stands for ’not a number’.
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The second input argument of geosphere specifies the frequency f of the geodesic
sphere (see chapter 18.3). For f = 1, the faces are midpoint-triangulated, whereas
for f > 1, they are tessellated at the frequency f if possible,47 and midpoint-
triangulated otherwise. The frequency can also be specified as a row vector in order
to execute multiple iterations of the tessellation process at different frequencies, like
in

p = geosphere(’oct’,[2 3]);
plot3LD(p);

Note that in this example, we have not provided a third input argument, which
represents the radius of the geodesic sphere. This has the effect that the polyhe-
dron is tessellated, but the new vertices are not pushed out to the radius. The
frequency input argument can also be extended to a matrix, with columns repre-
senting different tessellation frequencies for different facet shapes of a polyhedron.
In the following example, we first build a bucky ball, replace one of its faces by a
triangle and a rectangle, and then pass the resulting polyhedron to geosphere:

p = bucky2;
p.faces(1,:) = [];
p.faces(end+1:end+2,:) = [3 5 4 NaN NaN NaN ; 3 2 1 5 NaN NaN];
p = geosphere(p,[2 0; 3 1; 1 4; 7 1]);
plot3LD(p); view(111,83), zoom(2)

The frequency matrix can be read as follows: the first column represents the
tessellation frequency for triangular faces, the second row for rectangles, the third
for pentagons, and so on. Thus, in the first iterations, triangles are triangulated at
f = 2, rectangles are rectangulated at f = 3, pentagons are midpoint-triangulated
(f = 0), and hexagons are midpoint-triangulated as well (f 6= 0), since there is
no other option for them (see chapter 18.3). In the second iteration, triangles, are
ignored, rectangles are midpoint-triangulated, and the entries for pentagons and
hexagons are without any effect, since there are no more left. For the radius input
argument, you can also specify a handle to a spherical function. Its first argument
will be interpreted as the azimuth, and its second function as the elvation.

radius = @(az,elev) abs(cos(az) .* cos(elev)) + 2;
p = geosphere(’oct’,[2 2 2],radius);
plot3LD(p);

Note that spherical function handles can be easily designed using handlespharm
(chapter 21.5.2) and ezspherical (chapter 21.1.2).

21.2.4 minenergyconf

minenergyconf returns the vertices of a minimal energy configuration (see chap-
ter 18.4). Configurations can be built for an arbitrary number of electrons and
iterations, like in

v = minenergyconf(20,2);
plot3(v(:,1),v(:,2),v(:,3),’o’); grid on;

47I.e. if the facet is a triangle or rectangle; see chapter 18.3)
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for 20 electrons and 2 iterations. You can also plot the output by first trian-
gulating the configuration with Tianli Yu’s TriangulateSpherePoints48 and then
plotting the output with 3LD’s plot3LD:

p.vertices = minenergyconf(20,10);
p.faces = TriangulateSpherePoints(p.vertices);
plot3LD(p);

The returned polyhedron should remind you more and more of a sphere as you
apply additional iterations. To refine an existing polyhedron, like the one returned
from the last example, try:

q.vertices = minenergyconf(p.vertices,50);
q.faces = TriangulateSpherePoints(p.vertices);
plot3LD(q);

which is here refined for another 50 iterations. Non-homogeneous electron distri-
butions can be defined with an additional input argument, representing a handle to
a spherical electron density function. Similarly, the radius of the configuration can
be specified as a handle to a spherical function simply as a scalar as in geosphere
(chapter 21.2.3). Note that inhomogeneous electron densities and radii will directly
affect the stability of the configuration as described in chapter 18.4. Also, you have
to keep in mind that TriangulateSpherePoints can only tessellate the surface of
a unit sphere and will thus be confused whenever the radius of all vertices is not
constant one. Density and radius functions can be generated using the 3LD func-
tions handlespharm and ezspherical. Selected electrons can be locked to their
initial positions in the refinement process by adding another input argument which
is a vector representing the status of each electron (0 for unlocked, 6= 0 for locked
electrons). The power of the repulsion forces p (1/dp) can be specified with an-
other input argument and defaults to p = 2 if not specified. Consider the following
example:

% Build the initial layout
p = geosphere(’ico’,[2],1);

% Lock the loudspeakers on the equator
lock = zeros(size(p.vertices,1),1);
[az,elev] = cart3sph(p.vertices);
lock(elev == 0) = 1;

% Define the electron density function and plot it
density = @(az,elev) abs(sin(elev)) + 0.1;
plot3LD(density);

% Plot the initial loudspeaker layout
h = plot3LD(p,lock);view(0,0); view(125,30)

% Refine the layout and plot each iteration

48This function is available at http://www.mathworks.com/matlabcentral/fileexchange/
loadFile.do?objectId=5964&objectType=file. It triangulates any configuration of vertices on
the unit sphere. However, it cannot be applied to other surfaces, which has to be kept in mind when
using 3LD’s minimal energy algorithm with a radius function which is not constant one everywhere.
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for i=1:60
p.vertices = minenergyconf(p.vertices,1,density,[],lock);
set(h,’Vertices’,p.vertices);
drawnow;

end

The plot clearly shows that in the refinement process, the vertices move away
from the equator towards the north and south pole, as would have been expected
from the plot of the electron density function. To increase the stability, the electrons
at the equator have been locked before the refinement process. Try running the same
example without locking the equator loudspeakers, which destroys the symetry of
the layout. Note that in order to plot the entire process, the single iterations of
the refinement process have been processed in a for loop. For increased efficiency,
and if no plotting of the process itself is required, this loop can be omitted and all
iterations be calculated at once.

21.2.5 rotate xyz

This function can be used to rotate a polyhedron about either of the x, y, and z axes.
Note that this actually uses rotation matrices of first order, which are also applied
in Ambisonic soundfield rotation (chapter 15.3.1). Input arguments are a V-by-3
array representing the vertex coordinates of a polyhedron, and the desired axis and
angle of the rotation. An arbitrary rotation axis can be realized by subsequent
application of this function with different axes. The function returns the rotated
vertices array. For example to rotate an octahedron 45 degrees around the x axis,
type

p = platonicsolid(’oct’);
p.vertices = rotate_xyz(p.vertices,’x’,pi/4);

21.2.6 map to surface

This function maps the vertices of a polyhedron to a given surface while retaining
their directions. Spherical surfaces can be specified as scalars representing their
radius, while more complex surfaces have to be defined as handles to a spherical
function of azimuth and elevation. Such functions can be conveniently generated
using 3LD’s handlespharm (chapter 21.5.2) and ezspherical (chapter 21.1.2). For
example, to map the vertices of a dodecahedron to a non-spherical surface, try and
ezspherical.

p = platonicsolid(’dodec’);
radius = handlespharm(’abs(Y(1,0)) + 1’);
p.vertices = map_to_surface(p.vertices,radius);
plot3LD(p);

A fancier example is

p = geosphere(’ico’,[2,2],1);
radius = handlespharm(’abs(3*Y(7,-5))+1’);
p.vertices = map_to_surface(p.vertices,radius);
plot3LD(p);
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21.3 Loudspeaker Driving Signal Calculation

3LD provides function for simulating Vector Base Panning and Higher Order Am-
bisonic systems. Note that these do not actually process any audio signals, but
calculate the loudspeaker gains required to reproduce a number of sound sources
at the requested positions. Together with the soundfield rendering functions pre-
sented in chapter 21.4, they can be used to simulate an original soundfield and its
reconstruction by a Vector Base Panning or Higher Order Ambisonic system.

21.3.1 amb3d encoder

This function calculates the gain factors of the Ambisonic channel for an arbitrary
number of virtual sound sources in a periphonic soundfield. Required input argu-
ments are the Ambisonic order and the azimuth and elevation angles of the sound
sources. Different gain factors can be applied to the sound sources. Additionally, it
is possible to specify whether the sources are fed by the same audio signal, in which
case their Ambisonic channel gain factors are superponed. Another input argument
allows to specify how the Ambisonic channels are sorted in the output array to either
match the convention used in spharmonic (chapter 21.1.2), or the one used in this
thesis (chapter 15.1.1). If not specified, the first is assumed. Note that the SN3D
encoding convention is applied (chapter 15.2). The following example returns the
Ambisonic channel gains of two sound sources in front and on top of the listening
position, encoded at third order.

source_position = [0 0;0 pi/2];
source_gain = [1 0.5];
B = amb3d_encoder(3,source_position,source_gain)

Note that the output B is a structure with fields ’gain’, representing the Am-
bisonic channel gains, and ’sort’, specifying how the channels are sorted (in this
case as in spharmonic). The decoder requires this information for re-encoding the
position information of the loudspeaker array. The rows in ’gain’ represent the
Ambisonic channels, and the columns the different sound sources.

21.3.2 amb3d decoder

This function derives the loudspeaker gain factors for a periphonic Ambisonic sys-
tem from the Ambisonic channel gains as calculated with amb3d_encoder (chapter
21.3.1). Additionally, the azimuth and elevation angles of the loudspeakers have to
be specified. Another input argument represents the Ambisonic order at which the
decoder operates. If not specified, the order of the encoded input is used. Naturally,
the decoder’s order can only degrade but not increase the order of the encoded in-
put. The decoding method (projection or pseudoinverse, see chapter 15.4) and the
flavor of the decoder (basic or in-phase, see chapter 15.5) can be specified as well.
For the calculation of the loudspeaker layout’s re-encoding matrix (chapter 15.1.2),
this function re-uses the amb3d_encoder function. To get the re-encoding right, the
decoder needs to know how the Ambisonic channels are sorted in the field ’gain’
of its input structure, an information which is obtained from the field ’sort’. To
decode the output of the example from the last chapter to an icosahedron at second
order, type

p = platonicsolid(’ico’);
[az elev] = cart3sph(p.vertices);
g = amb3d_decoder(B,[az elev],2,’pseudoinverse’,’inphase’)
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The rows in the output array g represent the loudspeakers, and the columns the
different sound sources.

21.3.3 amb3d regularity

To evaluate the regularity of a loudspeaker layout regarding Ambisonic sound spa-
tialization (see chapter 18.1.2), this function can be used to determine the condition
number of the re-encoding matrix of a given loudspeaker layout. Another return
argument specifies whether the layout is regular, semi-regular or irregular as defined
by Daniel. For example to find out that a dodecahedron is regular for second order
Ambisonics, type

p = platonicsolid(’dodec’);
[az elev] = cart3sph(p.vertices);
amb3d_regularity(2,[az elev])

21.3.4 vbp

This function calculates the loudspeaker gain factors of a 2D or 3D Vector Base
Panning System (chapter 13) for an arbitrary number of virtual sound sources. The
azimuth and elevation angles of the sources and loudspeakers are required input
arguments, as well as a definition of the loudspeaker pairs (2D) or triples (3D).
Note that in the latter case, the faces field of an output structure provided by
platonicsolid or geosphere can be used if the faces of the according polyhedron
are triangular. As in the case of the amb3d_encoder function (chapter 21.3.1), it
is possible to specify whether the sources are fed by the same signal, i.e. whether
the loudspeaker gains due to different sources can be superponed. Varying gain
factors can be applied to the sound sources as well. Another input argument allows
for a choice between Vector Base Amplitude and Vector Base Intensity Panning.
The following example demonstrates how to receive the loudspeaker gains of two
sound sources in front and below the listener for an intensity panning system with
an octahedron loudspeaker layout.

source_position = [0 0;0 -pi/2];
p = platonicsolid(’oct’);
[az elev] = cart3sph(p.vertices);
are_identical = 1;
g = vbp(source_position,[az elev],p.faces,’vbip’,[],are_identical)

The rows in the output array g represent the loudspeakers, and the columns
the different sound sources. In this case, there is only one column, since the source
signals are identical and their loudspeaker gains have thus been superponed.

21.3.5 calibrate layout

This function returns the gain and delay calibration values of a loudspeaker layout
required to compensate for differing radii of the loudspeakers in the array (see
chapter 18.5). To get the calibration values of a tetrahedron layout in which one
loudspeaker has been pushed away from the sweet spot, try

p = platonicsolid(’tetra’,1);
p.vertices(1,:) = [0.8, 0.8, 0.8];
p.vertices
[g,t] = calibrate_layout(p.vertices)
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where g represents the calibration gains and t represents the time delays in
seconds for the four loudspeakers in the layout.

21.4 Soundfield Rendering and Evaluation

21.4.1 soundfielder

With the soundfielder function, soundfields in air created by multiple monochro-
matic sound sources with either plane or spherical wavefront propagation character-
istics can be rendered. The positions of the sources and sinks (i.e. the ’measuring
points’) of the soundfield have to be specified as well as the frequencies and radiation
types (plane or spherical) of the sources. The direction of wavefront propagation
(outgoing or incoming) can be specified separately for each source. Soundfields can
also be rendered for multiple points in time by a single function call and at arbitrary
temperatures (default: 273.15 Kelvin = 0 degrees Celsius). Generally, the sound-
fields created by all specified sources are superponed, but they can also be returned
separately if desired. The four output fields of the function represent:

• the complex sound pressure (eq. (1))

• the complex sound velocity (eq. (2))

• the complex velocity vector (eq. (3))

• the complex ~u velocity (eq. (5))

The following example shows the wavefront propagation of a Hanning-weighted
impulse built from several monochromatic sources:

% Number of pics in the animation
num_pics = 20;

% Specify sound source position and radiation pattern
src_position = [2 0 0];
type = ’spherical’;

% Define frequencies of Hanning-weighted impulse partials
center_freq = 100; upper_freq = 500;
freq = [center_freq:center_freq:upper_freq];
num_sources = length(freq);

% Define gains of Hanning-weighted impulse partials
window = hanning(2 * length(center_freq:center_freq:upper_freq));
gain = window( ceil(length(window)/2)+1 : length(window) );

% Use same source position for all impulse partials
src_position = repmat(src_position,num_sources,1);

% Specify sink positions (here in the x/y plane)
x = -1:0.05:1; y = -1:0.05:1; z = 0;

% Define time points for rendering
time = 0 : 1/(center_freq*num_pics) : 1/center_freq - 1/(center_freq*num_pics);

% Render the sound pressure field
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pressure = soundfielder(src_position,freq,type,x,y,z,time,gain);

% Plot the wavefront propagation
for i = 1:num_pics

surf(x,y,real(pressure(:,:,i))),
shading interp, colormap gray, view(0,90), grid off,
axis([-1 1 -1 1 -1 1 -1 1]), axis square
animation = getframe;

end

The next example shows how to use soundfielder together with vbp to resyn-
thesize this soundfield by the means of Vector Base Amplitude Panning on a tetra-
hedron loudspeaker layout. The loudspeakers are assumed to emit spherical wave-
fronts.

% Get sound source direction
[src_az, src_elev] = cart3sph(src_position);

% Define loudspeaker layout properties
spk = platonicsolid(’tetra’,2);
[spk_az, spk_elev] = cart3sph(spk.vertices);
spk_type = ’spherical’;

% Derive VBP loudspeaker gains
spk_gain = vbp([src_az, src_elev],[spk_az, spk_elev],spk.faces,’vbap’,gain);

% Each loudspeaker contributes to the reconstruction of each partial, so we
% accordingly replicate our frequency matrix
num_speakers = size(spk_gain,1);
freq_rep = repmat(freq,num_speakers,1);
freq_rep = freq_rep(:);

% Superpone the num_speakers*num_sources soundfields
pressure_vbp = soundfielder(repmat(spk.vertices,num_sources,1),...
freq_rep,spk_type,x,y,z,time,spk_gain(:),1);

% Plot the reconstructed wavefront propagation
for k = 1:num_pics

surf(x,y,real(pressure_vbp(:,:,k))),
shading interp, colormap gray, view(0,90), grid off,
axis([-1 1 -1 1 -1 1 -1 1]), axis square
animation = getframe;

end

Try to use an octahedron instead of the tetrahedron layout to see how the recon-
struction drastically improves due to the fact that a loudspeaker is located directly
at the position of the virtual source.

21.4.2 direction deviation, pressure errors

The function pressure_errors calculates the squared sound pressure error and
the sound pressure amplitude error (see chapter 17.2) of a reconstructed sound
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pressure field with regards to a reference field. The first output argument of the
soundfielder function (chapter 21.4.1) can be used to derive the input arguments
of this function. The output arrays represent the sound pressure errors at each point
of the field.

The function direction_deviation calculates the direction deviation (see chap-
ter 17.3) among two complex soundfields, using input arrays denoting the direction
of the two soundfields, like their velocity vectors or their active velocities as calcu-
lated by the soundfielder function (chapter 21.4.1). The output array represents
the direction deviation at each point of the two soundfields in radians.

21.5 Helper Functions

The 3LD library also provides several helper functions to facilitate the process of
periphonic loudspeaker layout generation.

21.5.1 solospharm

This function can be used to evaluate a single spherical harmonic function Y σ
mn

rather than calculating all spherical harmonics of a given order m, as in the case
of spharmonic (chapter 21.1.1). For example, solospharm(3,-2,pi,0) returns
Y σ

mn (θ, φ) = Y −1
32 (π, 0). The first argument of the function is the m subscript, the

second argument is the product nσ.49 Multiple functions can be obtained by using
vectors for the second argument, as in solospharm(3,-2:0,0,0). An additional
input argument can be used to specify the normalization of the spherical harmonic
function. solospharm is useful in all situations in which isolated spherical harmonics
are used, e.g. in designing loudspeaker density or radius functions (chapter 18.6)
and plotting them. However, the function is inefficient, since it calls spharmonic
internally, and simply dismisses the spherical harmonics not required. This is due
to the fact that spharmonic uses Matlab’s native legendre, which does not return
isolated functions either. Rather than rewriting legendre accordingly, it has been
decided to accept an inefficiency in a helper function. The more critical application
of spherical harmonics regarding efficiency is the encoding of Ambisonic soundfields
(chapter 21.3.1), where we always require all functions of a given order anyway.

21.5.2 handlespharm

This function returns handles to combinations of spherical harmonic functions,
which are specified as Y in the input string of the function. For example

Y = handlespharm(’2*Y(1,-1) + abs(Y(6,5)) - 1’)
ezspherical(Y); view(150,15);

returns a handle to a function 2 · Y −1
11 ·

∣∣∣Y +1
65

∣∣∣ − 1. The first argument of the
Y expressions is the m subscript, the second argument is the product nσ. Inter-
nally, handlespharm translates the input string into function calls of solospharm
and native Matlab functions like abs. Schmidt-seminormalization is applied to the
spherical harmonic functions. The output of this function can be plotted directly
using ezspherical. Together, these two functions can be used for straightforward
design of loudspeaker density and radius functions (see chapter 18.6), which can then
be applied to the loudspeaker layout design process using the functions geosphere

49Note that Matlab’s legendre uses the subscripts the other way around.
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(chapter 21.2.3) and minenergyconf (chapter 21.2.4). However, due to the inef-
ficiency inherent to the function solospharm (chapter 21.5.1), the such designed
functions should be hardcoded in the actual refinement process.

21.5.3 cart3sph, sph3cart, deg2rad, rad2deg

These functions work in exactly the same way as Matlab’s native functions cart2sph,
sph2cart, i.e. they convert among cartesian and spherical coordinates. However,
the input argument to 3LD’s cart3sph and the output argument of sph3cart are
single N-by-3 array containing the x, y, z components of N points. This differs
from Matlab’s functions, which require three separate arrays. Thus, cart3sph and
sph3cart are convenient for direct conversion from and to cartesian coordinates,
for example to derive the loudspeaker directions required by vbp (chapter 21.3.4)
from a vertices matrix returned by platonicsolid (chapter 21.2.1). Another ap-
plication is the editing of loudspeaker radii, demonstrated here at the example of
an octahedron layout:

p = platonicsolid(’oct’);
p.vertices
[az,elev,r] = cart3sph(p.vertices);
r = 3.14;
p.vertices = sph3cart(az,elev,r);
p.vertices

The functions rad2deg, deg2rad can be used to convert an angle array of ar-
bitrary size from radians to degrees and vice versa. For example, to get the loud-
speaker directions from the example before in degrees, type

az = rad2deg(az), elev = rad2deg(elev)

21.5.4 plot3LD

This is 3LD’s plotter function. It can be used to plot loudspeaker layouts given
as vertices/faces structures, as returned by functions platonicsolid, geosphere
and bucky2, and handles to spherical functions, as provided by handlespharm. The
function knows which plotting routine to apply from the appearance of its input
argument. For layouts, Matlab’s patch is used, and 3LD’s ezspherical (which
uses Matlab’s surf) for spherical functions. Loudspeaker layout plots include the
indices of the loudspeakers, which appear black for unlocked and red for locked
speakers if their lock status is provided as an additional input argument. Other
optimizations regarding the appearance of the plots are included as well. Several
application examples of plot3LD have been given throughout this chapter.
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22 AlloSphere Scenario

In this final chapter of the thesis, we will briefly develop a scenario for a periphonic
sound spatialization engine in the AlloSphere. This will serve as an example for a
useful application of the 3LD Library for Loudspeaker Layout Design (chapter 21),
following the extended loudspeaker layout design strategy presented in chapter 18.6.
However, it has to be pointed out that the actual design phase for the AlloSphere
loudspeaker layout will have to involve much more extensive and detailed simulations
than we can provide here. Nevertheless, the presented layout can serve as a useful
starting point for such a process.

22.1 Loudspeaker Layout

Regarding the amount of loudspeakers in the AlloSphere, numbers between 80 and
512 have been discussed. For our hypothetical scenario, we have aimed at a layout of
approximately 300 loudspeakers. Following our proposals from chapter 18.6, we have
decided to first find an initial layout with homogeneous loudspeaker distribution,
and to psychoacoustically refine this layout in a second step. The high number of
required loudspeakers suggests to use a geodesic sphere (chapter 18.3) as the initial
layout. The Platonic solids (chapter 18.2.1) serve as a good starting point for the
design of geodesic spheres regarding regularity. Thus, various tessellations of the
five Platonic solids have been experimented with, resulting in five different layouts
with approximately 300 loudspeakers, which are described in table 4. In this table,
we list the initial Platonic solid which the geodesic sphere has been built from, the
frequencies of the iteratively applied tessellations, the number of loudspeakers in
the resulting layout, and the condition number of its Ambisonic re-encoding matrix
(chapter 18.1.2) for an Ambisonic order of M = 14, which can be decoded by all
five layouts so that the L ≥ N criterion is fullfilled (eq. 24).

Initial Polyhedron Frequencies Loudspeakers Condition Number
Icosahedron 2, 3 362 1.27
Octahedron 3, 3 326 2.25

Cube 2, 2, 2 386 3.60
Dodecahedron 1, 3 272 1.80
Dodecahedron 1, 2, 2 482 1.28

Table 4: Various initial layouts for an AlloSphere scenario

Note that all of the geodesic spheres provide a remarkably low condition number,
which confirms that this approach is suitable for the design of Higher Order Am-
bisonic loudspeaker layouts. We have decided to choose the geodesic sphere built
from the icosahedron as the initial layout, since it provides the lowest condition
number as well as advantageous properties regarding loudspeaker distribution in
the horizontal plane. With 362 loudspeakers (and 720 triangular facets), Ambisonic
systems up to 18th order can be implemented on this system according to the L ≥ N
criterion (eq. 24). After a rotation of the layout according to our requirements, it
has been refined with a minimal energy algorithm using the following loudspeaker
density function:

d (θ, φ) =
1

3 + |sinφ|
+ |cos θ · cos φ|



22 ALLOSPHERE SCENARIO 104

Figure 37: Loudspeaker density function in the AlloSphere scenario

The function is plotted in figure 37. Its first term resembles the higher resolution
of the human ear in the horizontal plane, while the second term has been added in
order to account for the architectural circumstances of the AlloSphere: the maxi-
mum density is given in the front and back directions of the AlloSphere, i.e. in the
direction of the positive and negative x axis. It decreases with the absolute value
of the elevation, but also towards the seam between the front and back hemisphere,
which is a critical area for loudspeaker mounting and also not a prefered viewing
direction, since the video projectors will be mounted in this area.

A more precise design of the density function could include an additional top-
bottom asymmetry, so that lower loudspeaker densities are given in the lower hemi-
sphere, resembling the spatial resolution of the human ear in more detail. However,
it is recommended not to introduce a front-back asymmetry, since the AlloSphere
provides two equally important directions (positive and negative x direction) rather
than a ’front’ and ’back’ direction. The density function, which was designed us-
ing 3LD’s handlespharm and ezspherical (chapter 21), has been defined as a
hardcoded function handle in the actual simulation, in order not to degrade the
performance due to the inefficiency of handlespharm (chapter 21.5.2).

The layout has been refined in 100 iterations using 3LD’s minenergyconf (chap-
ter 21.2.4). Note that in order not to degrade the stability of the refinement process,
the loudspeaker positions have been mapped to the actual radius of the AlloSphere
after rather than during the refinement process (chapter 18.6). The radius of the
AlloSphere as a function of direction is given as (see appendix 34 for a derivation)

r (θ, φ) =
2.44 |cos θ cos φ|+

√
5.95 (cos2 θ cos2 φ− 1) + 95.26

2

No loudspeakers have been locked during the refinement process, but the loud-
speakers initially located in the horizontal plane have been set back to zero elevation
afterwards. Note that the ear plane in the AllosSphere is actually located somewhat
above the equator, which would have to be considered in an extended simulation.

The refined and radius mapped loudspeaker layout is shown in figure 38. The
results of the refinement process can be clearly seen in the side view, but especially
in the top view of the layout, which reveals a minimum of the loudspeaker density
in those areas. In a more sophisticated AlloSphere model, the density in the area
of the seam between the two hemispheres will propbably have to be additionally
decreased. For instance, the layout still features an unfortunate loudspeaker in the
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entrance area to the bridge. In figure 39, the condition numbers of the initial layout
and the final layout are plotted as functions of the Ambisonic order. It can be
seen that for the refined layout, the Ambisonic re-encoding matrix remains quite
well-conditioned also for higher orders. For M = 18, which is the maximum order
of the layout according to the L ≥ N criterion, the condition number becomes
considerably higher (greater than 10k) for both, the initial and the final layout.50.
Although the different ranges of the y axis in the plots have to be pointed out, the
layout refinement obviously does not dramatically degrade the quality of the layout
regarding Ambisonic soundfield reproduction. Note however, that the condition
number is a criterion which knows nothing about the radii of the loudspeakers, i.e.
the irregularites introduced by the process of radius mapping are not represented.

22.2 Soundfield Simulations

A soundfield reconstruction simulation has been carried out on the refined loud-
speaker layout presented in the last chapter, using different spatialization tech-
niques. As a source signal, we have chosen a hanning-weighted impulse with a base
frequency of 200 Hz and a top frequency of 1400 Hz.51 Spherical wavefront propaga-
tion has been assumed for the source, and its position has been chosen with θ = 57◦

and φ = 29◦. Note that no loudspeaker is located at this position. The loudspeakers
in the triple responsible for the Vector Base Panning reconstruction of a source at
this position are located at θ1 = 61.3◦, φ1 = 26.9◦; θ2 = 48.6◦, φ2 = 25.8◦, and
θ3 = 51.3◦, φ3 = 36.2◦. The loudspeaker density in the area of the source position
is comparably low.

Besides a simulation of the original soundfield produced by this source, we have
considered a virtual source reproduction by the means of a Vector Base (Amplitude)
Panning system and two Higher Order Ambisonic engines, one at sixth, and one at
seventeenth order. For both Ambisonic systems, a basic decoder (chapter 15.5) has
been used, with a decoder matrix derived by the projection method (chapter 15.4).
Both Ambisonic soundfields have been decoded to all loudspeakers of the layout.
The loudspeaker gains derived from the spatialization engines have been calibrated
according to the procedure described in chapter 18.5 in order to compensate for the
varying loudspeaker distances. Therefore, virtual sources are assumed to move on
the surface of the layout’s circumscribed sphere. For the AlloSphere, this yields a
virtual source radius of r = 6.1 m. It has been assumed in the simulation that the
loudspeakers emit spherical wavefronts.

The results of the simulation are shown in figures 40 to 42. The real parts of
the original and the reconstructed complex sound pressure fields are shown in figure
40. Figure 41 shows the sound pressure amplitude errors of the synthesized fields,
and figure 42 their squared sound pressure errors (chapter 17.2). The plotted area
resembles the dimensions of the bridge in the center of the AlloSphere (top view),
minus one meter at the left and right ends, i.e in the area of the entrances. Note
that all three spatialization engines provide accurate soundfield reproduction in the
center of the listening area, and how the sweet area increases with the order of an

50The according value is not plotted in figure 39.
51A Hanning-weighted impulse consists of several monochromatic sources with linearly spaced frequen-

cies (200 Hz, 400 Hz, 600 Hz, etc.) and amplitudes weighted with the right half of a hanning window,
i.e. decaying for increasing frequency. See chapter 21.4.1 for an example of a Hanning-weighted impulse
built in Matlab.
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Ambisonic system. The wavefronts of the three active loudspeakers in the VBP
reproduction can be clearly distinguished in the top left corner of the VBP plot in
figure 40. In the same figure, the plot of the sixth order Ambisonic system reveals
that Ambisonic uses more loudspeakers than Vector Base Panning in the reproduc-
tion of a static source.

Additional informal simulations have yielded that the pseudoinverse Ambisonic
decoding method seems to provide less accurate soundfield reproduction for high
Ambisonic orders (e.g. 17) than the projection method, which can be interpreted
as a result of the irregularities introduced by the geodesic extension and psychoa-
coustical refinement of the initial icosahedron layout. Also, the effects of layout
calibration, i.e. artefacts in the reproduction of the wavefront curvature, have been
observed.

22.3 Conclusion

It has been shown in this chapter that the 3LD Library for Loudspeaker Layout
Design (chapter 21) can be usefully applied in the design of a periphonic sound
spatialization engine for the AlloSphere. However, the scenario developed in the
course of this chapter can only serve as a starting point for more detailed simula-
tions. The question of how many loudspeaker are actually required for appropriate
soundfield reproduction in the AlloSphere must be answered. Different loudspeaker
layouts need to be evaluated and compared. Various Ambisonic systems should
be evaluated in order to determine the required system order as well as a suitable
decoding method and a prefered decoder flavor. Vector Base Amplitude and Inten-
sity Panning systems have to be simulated with regards to their application in the
AlloSphere, possibly combined in a hybrid system for optimizing soundfield recon-
struction over the entire frequency range. Also, different 3D holophonic approaches
could be tested, which is particularly relevant regarding the required number of loud-
speakers. More sophisticated loudspeaker density functions can be defined, which
consider the properties of spatial hearing and the architectural circumstances of the
AlloSphere in more detail. The theory and the practical contributions presented in
this thesis should facilitate both, the design as well as the use of the AlloSphere’s
periphonic sound spatialization system.
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Figure 38: Loudspeaker layout in the AlloSphere scenario: front, side, and top view
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Figure 39: Condition numbers of the initial and final loudspeaker layout
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Figure 40: AlloSphere scenario: original and reconstructed soundfields
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Figure 41: AlloSphere scenario: sound pressure amplitude errors of the reconstructed
fields
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Figure 42: AlloSphere scenario: squared sound pressure errors of the reconstructed fields
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Figure 43: Geometry of the AlloSphere

Part V

Appendix

A AlloSphere Geometry

In this chapter, we will derive the most important geometrical properties of the
AlloSphere, i.e. its radius as a function of direction, its circumference in the hori-
zontal plane, and the size of its surface. The radius R of the two hemispheres and
the width D between their centers have been assumed with

R = 16 ft = 4.88 m
D = 8 ft = 2.44 m

Note that the distance D is not exactly identical with the width of the bridge
in the center of the AlloSphere, which is approximately 7 feet.
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A.1 Radius of the AlloSphere

In the area of the centered bridge in the AlloSphere, the curvature of the two hemi-
spheres actually continues, and the radius of the AlloSphere can thus be described
as in figure 43. Will Wolcott has contributed the following derivation of the Allo-
Sphere’s radius as a funtion of azimuth and elevation:

A simple pythagorean equation yields

R2 =
(
|x| − D

2

)2

+ y2 + z2

By converting from cartesian to spherical coordinates we get

R2 =
(
|r cos θ cos φ| − D

2

)2

+ r2 sin2 θ cos2 φ + r2 sin2 φ

R2 = r2 cos2 θ cos2 φ− rD |cos θ cos φ|+ D2

4
+ r2 sin2 θ cos2 φ + r2 sin2 φ

R2 = r2 cos2 φ
(
cos2 θ + sin2 θ

)
− rD |cos θ cos φ|+ D2

4
+ r2 sin2 φ

R2 = r2 cos2 φ− rD |cos θ cos φ|+ D2

4
+ r2 sin2 φ

R2 = r2
(
cos2 φ + sin2 φ

)
− rD |cos θ cos φ|+ D2

4

r2 − rD |cos θ cos φ|+ D2 − 4R2

4
= 0

Solving this quadratic equation gives us

r (θ, φ) =
D |cos θ cos φ| ±

√
D2 (cos2 θ cos2 φ− 1) + 4R2

2

Only the positive square root term guarantees to give positive and thus useful
results. The radius of the AlloSphere as a function of azimuth and elevation is thus
given as

r (θ, φ) = D|cos θ cos φ|+
√

D2(cos2 θ cos2 φ−1)+4R2

2 (34)

It is interesting to note that the term cos θ cos φ happens to be a spherical har-
monic function of first order. Thus, we can also express the function as

r (θ, φ) =
D
∣∣Y 1

11

∣∣+√
D2

[(
Y 1

11

)2 − 1
]
+ 4R2

2
(35)

It is interesting to have a look at the maximum and minimum values of r (θ, φ):

rmax =r (0, 0) = R + D/2= 6.10 m

rmin =r

(
±π

2
, φ

)
=
√

4R2 −D2

2
= 4.73 m
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Figure 44: Equator length of the AlloSphere

A.2 Circumference in the Horizontal Plane

Considering the symmetry of the AlloSphere in the x/y plane, we base the deriva-
tion of its circumference in the horizontal plane on an integration over the front
half of the AlloSphere. For the scope of this calculation, we will move the origin
of our coordinate system from the center of the AlloSphere (as in figure 43) the
center of its front hemisphere (as in figure 44). Limiting our integration to the front
hemisphere and doubling the result will result in the desired value.

The arc length of a curve is given in polar coordinates by

carc =
β∫

α

√
r2 + (r′)2 · dθ

where r′ is the first derivative of r. For a circle, r = const. ⇒ r′ = 0, we get

carc =
β∫

α

√
r2 · dθ =

β∫
α

r · dθ = r (β − α)

The limits of our integration (see figure 44) are given as α = −ξ and β = +ξ. It is
easy to prove that ξ is

ξ = π − arctan
(

2R

D

)
= 104.04◦

Thus

carc = 2 r ξ = 2r

[
π − arctan

(
2R

D

)]
Also, we know that in our case

r = R
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Figure 45: Surface of the AlloSphere

and that we have to double our result to get the full equator length of the AlloSphere

c = 2 · carc

c = 4R
[
π − arctan

(
2R
D

)]
(36)

c = 35.44 m

A.3 Surface of the AlloSphere

It is possible to derive the size of the AlloSphere’s surface by revoluting its cir-
cumference in the horizontal plane about the x axis. Again, it is easier to consider
only the front hemisphere and double the result. Also, the origin of our coordinate
system will again be assumed in the center of the front hemisphere (figure 45).

The general formula for a surface of revolution is given as

Arev = 2π

b∫
a

f (x)
√

1 + [f ′ (x)]2 · dx

Our function f (x) is given implicitly by the function of a circle

x2 + y2 − r2 = 0

We use implicit differentiation

dx2

dx
+

dy2

dx
− dr2

dx
= 0

2x + 2y
dy

dx
= 0

dy

dx
= −x

y
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and obtain

Arev = 2π

b∫
a

y

√
1 +

x2

y2
· dx = 2π

b∫
a

√
y2 + x2 · dx = 2π

b∫
a

r · dx = 2πr (b− a)

The limits of our integration (see figure 45) are given as

b = R

a = −D/2

Also, we know that in our case

r = R

and that we have to double our result to get the full surface of the AlloSphere

A = 2 ·Arev

Thus, the surface of the AlloSphere A equals

A = 4πR (R + D/2) (37)

A = 374.08 m2

B Conventions used in the Literature

This chapter compares different conventions and abbreviations used in literature on
sound spatialization (and in the Matlab software package) to describe coordinate
systems and Ambisonic representations. The tables in this chapter are intended to
facilitate further research in the field of periphonic sound spatialization.

B.1 Coordinate System Conventions

In table 5, we present different conventions used for spherical and cartesian coordi-
nate systems, which determine the appearance of the Ambisonic encoding functions
and rotation matrices in different literature. In this table, the last row (’elev. dir.’)
refers to the direction of increasing elevation, e.g. xy → +z if the elevation is zero
in the horizontal plane and increases towards the positive z axis. In [Bam95], only
2D systems have been considered.

this doc. [Dan00] [Mal03a] [Son03] [Zmö02] [Bam95] Matlab

orientation left left left right left left left
azimuth θ θ θ θ ϕ φ θ
elevation φ δ φ φ ϑ — φ
elev. dir. xy → +z xy → +z xy → +z +z → xy xy → +z — xy → +z

Table 5: Coordinate system conventions in spatial audio literature
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B.2 Ambisonic Conventions

In table 6, different Ambisonic notations are summarized (Ambisonic order, number
of Ambisonic channels and loudspeakers, etc.). The subscripts and superscripts refer
to the Y σ

mn notation of the spherical harmonic functions used in this thesis. Note
that in one exceptional case, [Son03, pp.38-39] uses N to denote the number of
loudspeakers rather than the number of Ambisonic channels. In table 7, different
conventions for sorting and abbreviating the Ambisonic channels up to third order
are presented. The channel sorting convention used by each author is represented
by the order of the rows in the table. Each entry lists the channel abbreviation and
the spherical harmonic function which is actually refered to by the abbreviation.
The abbreviations used for each channel by the specific author is listed as well as
the spherical harmonic it ctually refers to, where the Y σ

mn notation used in this
thesis serves as a reference. Daniel does not use any abbreviations for the third
order channels. Malham’s third order abbreviations have been used in this thesis
while staying coherent with Daniel’s channel sorting convention, which lists the
two horizontal channels first for each order. [Mal03a] and [Zmö02] use the same
abbreviations for the third order channels (and the same order L, M, N, O, P, Q),
but actually refer to different third order spherical harmonics with them.

this doc. [Dan00] [Mal03a] [Son03] [Zmö02] [Bam95] Matlab

Amb. order M M — M M m —
Amb. ch. N K — N L — —
speakers L N — L N N —

1st subscript m m m n m m n
2nd subscript n n n m η — m
superscript σ σ ς σ σ — —

Table 6: Ambisonic conventions in spatial audio literature

C Platonic Solids

In tables 8 through 12, the cartesian coordinates of the five Platonic solids are
presented. These are the unit solids, i.e. their vertices are located on the unit
sphere and thus have a radius of R = 1. In these tables, we use χ to denote the
golden mean with

χ =
√

5 + 1
2

We also use the abbreviations

τ =
χ√

1 + χ2

ζ =
1√

1 + χ2
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this document [Dan00] [Mal03a] [Zmö02]

W = Y σ
mn = Y 1

00

X = Y 1
11

Y = Y −1
11

Z = Y 1
10

U = Y 1
22 R = Y 1

20

V = Y −1
22 S = Y 1

21

S = Y 1
21 T = Y −1

21

T = Y −1
21 U = Y 1

22

R = Y 1
20 V = Y −1

22

P = Y 1
33 Y 1

33 K = Y 1
30

Q = Y −1
33 Y −1

33 L = Y 1
31 L = Y −1

31

N = Y 1
32 Y 1

32 M = Y −1
31 M = Y 1

31

O = Y −1
32 Y −1

32 N = Y 1
32 N = Y −1

32

L = Y 1
31 Y 1

31 O = Y −1
32 O = Y 1

32

M = Y −1
31 Y −1

31 P = Y 1
33 P = Y −1

33

K = Y 1
30 Y 1

30 Q = Y −1
33 Q = Y 1

33

Table 7: Ambisonic channel conventions in spatial audio literature
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3

−
√

3
3

+
√

3
3

−
√

3
3

−
√

3
3

Table 8: The coordinates of the unit tetrahedron

x y z

+
√

3
3

+
√

3
3

+
√

3
3

+
√

3
3

+
√

3
3

−
√

3
3

+
√

3
3

−
√

3
3

+
√

3
3

+
√

3
3

−
√

3
3

−
√

3
3

−
√

3
3

+
√

3
3

+
√

3
3

−
√

3
3

+
√

3
3

−
√

3
3

−
√

3
3

−
√

3
3

+
√

3
3

−
√

3
3

−
√

3
3

−
√

3
3

Table 9: The coordinates of the unit hexahedron
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x y z

+1 0 0
−1 0 0
0 +1 0
0 −1 0
0 0 +1
0 0 −1

Table 10: The coordinates of the unit octahedron

x y z

0 + 1
χ

−χ

+1 +1 −1
+ 1

χ
+χ 0

−1 +1 −1
− 1

χ
+χ 0

−χ 0 −1 1
χ

−1 +1 +1
−χ 0 + 1

χ

−1 −1 +1
0 − 1

χ
+χ

+ 1
χ

−χ 0

+1 −1 +1
+χ 0 + 1

χ

+1 −1 −1
+χ 0 − 1

χ

− 1
χ

−χ 0

0 − 1
χ

−χ

−1 −1 −1
+1 +1 +1
0 + 1

χ
+χ

Table 11: The coordinates of the unit dodecahedron
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x y z

+τ +ζ 0
−τ +ζ 0
−τ −ζ 0
+τ −ζ 0
+ζ 0 +τ
+ζ 0 −τ
−ζ 0 −τ
−ζ 0 +τ
0 +τ +ζ
0 −τ +ζ
0 −τ −ζ
0 +τ −ζ

Table 12: The coordinates of the unit icosahedron
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[Bla74] Jens Blauert. Räumliches Hören. S. Hirzel Verlag Stuttgart, first edition,
1974.

[Blu31] Alan Dower Blumlein. British patent specification 394325. http://
www.doramusic.com/patents/394325.htm, 1931. Online; retrieved in
April 2005.

[Boo01] Marinus M. Boone. Acoustic rendering with wave field synthesis. In
Proceedings of the ACM Siggraph and Eurographics Campfire: Acoustic
Rendering for Virtual Environments, Snowbird, Utah, 2001.

[Bos01] Xie Bosun. Signal mixing for a 5.1-channel surround sound system -
analysis and experiment. In AES Journal, volume 49, no.4, pages 263–
274. Audio Engineering Society, 2001.

[Bou] Paul Bourke. Sphere generation. http://astronomy.swin.edu.au/

~pbourke/modelling/sphere/. Online; retrieved in February 2006.

[BR99] Douglas. S. Brungart and William M. Rabinowitz. Auditory localization
of nearby sources - head-related transfer functions. In ASA Journal,
volume 106, pages 1465–1479. Acoustical Society of America, 1999.

[BSK04] Herbert Buchner, Sascha Spors, and Walter Kellermann. Full-duplex
systems for sound field recording and auralization based on Wave Field
Synthesis. In Covention Papers of the 116th Convention of the Audio
Engineering Society, Berlin, Germany, 2004.
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[DM03] Jérôme Daniel and Sébastien Moreau. Theory and design refinement of
Higher Order Ambisonic microphones - Experiments with a 4th order
prototype. In Proceedings of the 23rd International Conference of the
Audio Engineering Society, Copenhagen, Denmark, 2003.
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