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Kurzfassung

Kopfhörer mit aktiver Geräuschunterdrückung reduzieren den Umgebungs-

lärm, indem sie diesen Umgebungslärm aufnehmen und gegenphasig wieder

abspielen. Dadurch löschen sich der Umgebungslärm und der abgespielte

’Antilärm’ im Kopfhörer (und damit direkt am Ohreingang der Benutzerin)

aus. Diese Dissertation beschreibt sowohl für die vorwärts- als auch für die

rückwärtsgekoppelte Geräuschunterdrückung neue Ansätze und geht dabei

auch besonders auf Variabilitäten in der Kopfhörerakusik ein, die sich aus

der Dichtheit der Tragesituation ergeben.

Für die Vorwärtskopplung wird ein adaptiver Ansatz vorgestellt, der

auf einer Linearkombination von parallelen IIR-Filtern basiert. Der große

Vorteil dieses Ansatzes ist, dass er relativ leicht mit analogen Filtern umge-

setzt werden kann. Zudem werdenMöglichkeiten aufgezeigt, wie die Dichtheit

der Tragesituation auf effiziente und robuste Weise überprüft werden kann.

Dabei werden die Vorteile der Digitaltechnik ausgenutzt, die eine Analyse

der aufgenommen Mikrofonsignale in Echtzeit erlauben.

Neben den erhöhten Kosten ergeben sich aus der Digitaltechnik aller-

dings auch Latenzprobleme. Für Kopfhörer mit rückgekoppelter Geräusch-

unterdrückung wird deshalb ein Prädiktionsfilter vorgeschlagen, um die er-

höhte Latenz zu kompensieren. Auch für die Rückkopplung wird eine Meth-

ode entwickelt, wie Änderungen der Tragesituation detektiert werden können.

Zum Schluss wird noch ein Verfahren zur Beurteilung der Geräusch-

unterdrückung vorgestellt, das sich an subjektiven Eindrücken von Benutzerin-

nen orientiert.

v



vi



Abstract

Headphones with active noise control (ANC) cancel ambient noise by play-

ing back destructively interfering ’anti’-noise. This thesis describes new ap-

proaches for feedforward as well as feedback ANC and treats the variability

in the acoustics of headphones which results from differently tight wearing

situations.

For feedforward ANC headphones, a new adaptive approach is presented

that is based on a linear combination of parallel IIR filters. This approach

is powerful because it allows for an analogue implementation. Besides, it is

shown how the tightness of the headphones can be detected online by means

of digital signal analysis.

Digital technology always suffers from the increased latency due to signal

conversions. This is especially problematic in feedback ANC because the

increased latency can lead to instability. A prediction filter is thus suggested

to compensate for this latency. Additionally, a method for detecting changes

in the wearing situation is developed for feedback ANC, too.

Finally, a procedure for the assessment of ANC headphones is derived

over a regression analysis with subjective user ratings.
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Preamble

In the last five years, I have been working at the Institute of Electronic

Music and Acoustics for the K-projects Advanced Audio Processing (AAP)

and Acoustic Sensing and Design (ASD). Both projects have been funded

in context of the Competence Centres for Excellent Technologies (COMET)

and are conducted by the Austrian Research Promotion Agency (FFG).

Within the projects, I have been working on Active Noise Cancelling (ANC)

headphones and I have developed an analogue prototype as well as digital

adaptive prototypes on floating- and fix point processors. Moreover, my

approach of adaptively combining analogue filters has been patented by our

industrial partner AKG Acoustics GmbH. Beyond my work for the men-

tioned projects, I dealt with remaining unsolved topics in the area of ANC

headphones.

The novel outcomes of my work have already been published in pro-

ceedings and journals and as a patent. All articles will be accessible via

the IEEE Xplore Digital Library. This thesis is a compilation of my main

publications. The main publications are:

� M. Guldenschuh, A. Sontacchi, R. Höldrich, ’Headphones for active

noise suppression’, Patent EP 2 677 765 A1, US 20 130 343 557, 12

25, 2013

The idea for a basis transform of direction dependent ANC filters was

originally formulated in the proposal of the AAP research project by

A. Sontacchi and R. Höldrich. The idea to solve the direction depen-

dent adaptation via parallel IIR filters and the Least Mean Square

algorithm is my contribution and led to the referenced patent which

I wrote together with a lawyer of the Patent attorneys Barger Piso &

Partner. My contribution for the patent is 70%.
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The content of the patent is also going to be published in the following

scientific paper:

M. Guldenschuh, ’Least-Mean-Square Weighted Parallel IIR Filters

in Active-Noise-Control Headphones’, accepted for publication in the

proceedings of EUSIPCO 2014, Sept. 2014, Lisbon

The article is entirely written by me and all related scientific work was

done by me.

� M. Guldenschuh, ’Secondary-Path Models in Adaptive-Noise-Control

Headphones’, 3rd International Conference on Systems and Control,

pp. 653-658, 29.-31- Oct. 2013, Algiers

All scientific work was entirely done by me.

� M. Guldenschuh, R. Höldrich, ’Prediction Filter Design for Active

Noise Cancellation Headphones’, IET Signal Processing, Vol. 7/6,

pp. 497-504, Aug. 2013

Prof. Höldrich supported me with various ideas and suggestions on

signal prediction and proofread the article. I did the literature review

and the measurements, and I implemented and evaluated the predic-

tion filter and wrote the article. My contribution to this work is 90%.

� M. Guldenschuh, R. de Callafon, ’Detection of Secondary-Path Irreg-

ularities in Active Noise Control Headphones’ IEEE Transactions on

Audio, Speech, and Language Processing, Vol. 22, Nr. 7, pp. 1148-

1157, July 2014

Prof. de Callafon was my supervisor during my research stay at the

University of California, San Diego. He supported me with discussions

and ideas. Literature review, measurements, implementation and eval-

uation was done by me, and the article was entirely written by me.

My contribution to this work is 90%.

� M. Guldenschuh, A. Sontacchi, M. Perkmann, M. Opitz, ’Assessment

of Active Noise Cancelling Headphones’, 2012 International Confer-

ence on Consumer Electronics - Berlin, pp. 299-303, 3.-5. Sept. 2012

This work was part of the AAP research project. M. Perkmann and M.

Opitz were with the research and development group of AKG Acous-

tics GmbH. AKG did the laboratory measurements. I reviewed the
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literature, conducted the listening test and did the statistical analysis.

A. Sontacchi supported me with ideas and discussions. The article was

entirely written by me and my contribution to this work is 70%. The

article was awarded as best paper of the conference.
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Chapter 1

Introduction

Sound can be positive or negative in the double sense. Firstly, it is a fast

change of pressure that propagates through a medium, whereas the pres-

sure alternates between positive and negative values - meaning pushing and

pulling the particles of the medium, respectively. Secondly, sound can be

perceived as very useful (e.g. for communication) or very pleasant (e.g. as

a nice piece of music) - thus as positive, but it can also be perceived as

annoying, disturbing and negative when we talk of sound as noise.

This work uses the firstly mentioned (physical) dualism of sound to re-

duce the negative aspect of the latter (and psychological) dualism. It deals

with headphones with Active-Noise-Cancellation (ANC).

Portable communication devices and music players allow users to com-

municate and enjoy music wherever they want. However in many environ-

ments, ambient noise might be so loud that it masks the music or commu-

nication signal and/or forces the user to harmfully loud playback volumes.

Headphones with closed ear-cups already show a good passive attenuation

of high-frequency ambient noise, but there is hardly any attenuation of the

low-frequency noise as can be seen in Fig. 1.1.
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Figure 1.1: Passive attenuation of a closed ear cup. The blue boxes with
their black whiskers show the distribution of passive attenuation for differ-
ent directions of incident noise in 3rd octave bands. 50 % of all measured
attenuations are within the blue boxes and the median passive attenuation
is marked as red bar. The passive attenuation of the measured ear cup can
be approximated by a cascade of two first order low pass filters with cut off
frequencies at 500 Hz and 1000 Hz, respectively.

Headphones with Active-Noise-Cancellation fill this gap and reduce the

low-frequency noise by playing back ’anti-noise’ that destructively interferes

with the ambient noise. The ’anti-noise’ has the same magnitude as the

penetrated noise but an opposite sign. The headphones thus produce pos-

itive directed sound pressure when the penetrated noise causes a negative

sound pressure and vice versa. The superposition of both sound pressures

eliminate each other. The principle of destructive superposition is shown in

Fig. 1.2.

Since the 1950s, ANC-headphones have been produced for pilots because,

in cockpits, clear communication is very important, but noise levels are very

high. In the last decade, ANC-headphones also spread on the consumer

market. Most of the currently available products use analogue circuitry

because analogue circuits are less energy-consuming and less expensive than

digital hardware. However, digital signal processing allows for more freedom

2
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Figure 1.2: Principle of Active-Noise-Cancellation in a headphone. The
headphone reproduces the penetrated sound wave, but with an opposite sign.
As a consequence, both waves eliminate each other at the entrance of the
ear. For illustration purpose, the sound waves are displayed as transversal
waves, although in reality they are longitudinal waves, which means that
the direction of pressure-change is the same as the propagation direction.

in designing and controlling ANC systems.

ANC technology can not only be divided into analogue and digital but

also into feedforward and feedback control structures. Feedforward means

that a reference noise from outside the headphones is fed forward to the

loudspeakers as anti-noise. The structure is depicted in Fig. 1.3.

Figure 1.3: Feedforward ANC-headphones. A reference microphone outside
the ear cup senses the ambient noise and feeds it forward through the con-
troller W to the loudspeaker. The controller W passes through the inverted
low frequencies of the sensed noise.

Feedback means that the residual noise (i.e. the superposition between

the penetrated noise and the anti-noise) inside the headphones is fed back

3



CHAPTER 1. INTRODUCTION

to the loudspeakers as in Fig. 1.4.

Figure 1.4: Feedback ANC-headphones. An error microphone inside the ear
cup senses the residual error and feeds it back over the controller W to the
loudspeaker.

While the term Active-Noise-Cancellation is mostly used for commercial

products, the abbreviation ANC is mainly read as Active-Noise-Control in

the scientific community. Both, feedforward and feedback controllers can be

realized with analogue or digital circuits, forming the combinatory matrix

of Fig. 1.5 that shortly lists the adavantages and disadvantages of each

method.

Feedforward and feedback controllers will be reviewed in more detail in

the following. A novel feedforward controller is presented in chapter 2 and a

novel approach to design a feedback controller is presented in chapter 4. It

is furthermore shown that adaptive controllers are very sensitive to changes

in the acoustics of the headphones. Unfortunately, such changes unavoid-

ably occur when the user lifts or presses against the headphones. Therefore

several methods to detect and react on such changes are suggested for feed-

forward controllers in chapter 3 and for feedback controllers in chapter 5,

respectively.

Although various different ANC headphones are commercially available
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Figure 1.5: ANC can either be divided into analogue and digital technology
or feedforward and feedback control.

by now, their performance assessment is still a difficult task. In appendix A,

the difficulties of assessment are explained in more detail and a procedure

for a reliable assessment is suggested.

1.1 Feedforward ANC

The block diagram of a feedforward ANC headphone is shown in Fig. 1.6.

On the one hand, the ambient noise x penetrates the headphone and reaches

the ear of the user as primary noise d via the primary path P1(jω). On the

other hand, a reference of the noise is sensed outside the headphone (via

transfer path P2(jω)). The sensed reference noise is fed forward through

the controller W (jω). The controller output is played back as secondary

anti-noise y via the loudspeaker of the headphone which - in this context - is

called the secondary path S(jω). Inside the ear cup the penetrated primary

noise d and the secondary anti-noise y superpose and result in the residual

noise or residual ANC error e.

5
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+
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x
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e

xref

d
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Figure 1.6: Feedforward ANC: The noise x penetrates the headphone via
transfer path P1 and reaches the (external) reference microphone via P2. The
microphone signal is fed forward through the controllerW and is played back
over the loudspeaker of the headphone (via the transfer path S). Inside the
headphone the penetrated noise d and the played back anti-noise superpose
and result in the residual noise (or residual error) e.

The primary path is often subsumed as P (jω) = P1(jω)
P2(jω)

which simplifies

the block diagram to Fig. 1.7.

+
-

x

W

S

P
ed

y

Figure 1.7: Feedforward ANC with P = P1
P2

The performance of an ANC system can be expressed by the sensitivity

function

T (jω) =
E(jω)

D(jω)
(1.1)

that relates the residual error to the primary noise in the frequency domain.

For feedforward ANC the sensitivity function (with omitted dependency on

jω) can be written as

T =
XP −XWS

XP
= 1−W

S

P
(1.2)

If the secondary noise y closely approximates the primary noise d, the

6
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destructive superposition yields a small residual error e. This is the case

if W (jω) approximates the primary path P (jω) and compensates the sec-

ondary path S(jω). The ideal controller would thus be Wopt(jω) = P (jω)
S(jω)

as can also be deduced from eq. (1.2).

Both, the primary path P (jω) and the secondary path S(jω) are transfer

functions to a yet unspecified target point inside the ear cup. This target

point will be the position of ideal ANC. On the one hand, ANC is more

effective the closer the target point is to the ear drum. On the other hand,

the group delay of S(jω) increases the further the target point is from the

loudspeaker; and the relation Wopt(jω) =
P (jω)
S(jω) only remains causal, if the

group delay of P (jω) is larger than the group delay of S(jω) for all ω.

Form Fig. 1.8 it is clear that P (jω) itself can also become acausal e.g. if

the noise incides from opposite of the external microphone as indicated by

the red lines. Thus, a causal relationWopt(jω) =
P (jω)
S(jω) is not always possible

and it is advisable to choose the target point close to the loudspeaker to

prevent further acausality of Wopt(jω).

P1

P2

microphone at target point
P2

P1

Figure 1.8: If the noise comes from the side of the external microphone, the
group delay of P1 is larger than the group delay of P2 and the primary path
P = P1

P2
is causal. If the noise comes from the opposite side, the group delay

of P1 is shorter than the one of P2 and P is acausal.

Besides, ANC is desired in the low frequency band below 1000 Hz, where

wavelengths and consequently also the zones of destructive superposition

are large. Destructive superposition is possible as long as the phase error

7
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between noise and anti-noise stays below 60° which corresponds to one sixth

of the wavelength. At 1000 Hz, a sixth of the wavelength still has 6 cm which

is much larger than the length of the ear canal which has approximately 2.5

cm. The proximity of the target point to the ear drum is thus not relevant.

More important is the invertibility of S(jω). In [Gan et al., 2005], the

influence of different target points on S(jω) is investigated. The authors

show that a target point close to the intertragic notch of the pinna results

in a flat frequency response of S(jω) which is easy to invert.

In this work, on-ear prototype headphones have been used which are

equipped with internal microphones close to the intertragic notch and with

external microphones in the centre of the disc-shaped ear-cups. Fig. 1.9

shows measurements of the groupdelay of P (jω) and S(jω) of these proto-

type headphones. The group delay of P (jω) is firstly determined for noise

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Frequency / Hz

D
e
la

y
 /
 m

s

 

 
P lateral
P opposite
S

Figure 1.9: Group delay of P and S dependent on the direction of incident
noise. If the noise comes from the direction of the external microphone
(lateral), the group delay of P is larger than the group delay of S above 200

Hz. In this frequency range Wopt(jω) =
P (jω)
S(jω) is causal. If the noise comes

from the opposite direction, the group delay of P is shorter and Wopt(jω)
would be acausal in a broader frequency range.

coming from the side of the external microphone. As expected, the group

delay is positive in this case. Secondly, the group delay of P (jω) is deter-

8
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mined for noise from the opposite side. It can be seen that the group delay

is still positive, although the internal microphone is about 1 cm closer to the

noise source than the external microphone. The group delay is still positive

because the noise experiences a phase shift when it enters the barrier of the

ear cup; an effect that is also observed in [Rafaely and Jones, 2002]. Nev-

ertheless, Wopt(jω) is acausal up to 400 Hz when the noise comes from the

opposite direction, because the group delay of S(jω) is larger than the one

of P (jω). For the low frequencies below 140 Hz, Wopt(jω) is even acausal

if the noise comes from the side of the external microphone because of the

large group delay of S(jω).

The acausality of Wopt(jω) does not necessarily make noise cancellation

impossible. Some noise cancellation is still possible for stationary noises as

long as the phase lag that results from the negative group delay is smaller

than 60°. In Fig. 1.9 e.g., the group delay difference ∆g between S(jω) and

the lateral P (jω) at f = 100 Hz is around 0.55 ms, which corresponds to a

phase lag of only 360◦
∆g

τ
= 20◦, where τ is the period length at 100 Hz.

Fig. 1.9 illustrates that Wopt(jω) depends on the direction of incident

noise. The fitting of the headphones however also influences P (jω) as well

as S(jω). If the headphones sit tight, they show good passive attenuation

and cause a phase lag when the noise enters the headphones. For the sound

reproduction, tight headphones are like a pressure chamber that allows for

a strong reproduction of the low frequencies (via S(jω)) and a short group

delay. If the headphones sit loose, the passive attenuation is worse and there

is less phase lag when the noise enters the headphone as can be seen in Fig.

1.10 and Fig. 1.11.

For the sound reproduction, loose headphones mean that low frequency

sound can radiate outside and consequently less sound pressure level (SPL)

9
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Figure 1.10: Magnitude response of P dependent on the fitting of the head-
phones. Loose sitting headphones deteriorate the passive attenuation.
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Figure 1.11: Group delay of P and S dependent on the fitting of the head-
phones. The group delay of P decreases and the one of S increases if
the headphones sit loosely. The consequences are that Wopt(jω) becomes
acausal in a broader frequency range.

remains at the target point inside the ear cup. Thus an amplitude drop-off

at low frequencies can be observed in the secondary path S(jω), cf. Fig.

1.12.

Loose headphones thus have negative consequences on ANC in several

aspects:

� The passive attenuation decreases.

� The temporal anticipation of the external microphone in relation to

10



CHAPTER 1. INTRODUCTION

10
2

10
3

−20

−10

0

10

20

Frequency/Hz

M
a

g
n

it
u

d
e

/d
B

 

 

tight

leaky

Figure 1.12: Magnitude response of S dependent on the fitting of the head-
phones. Due to the headphone amplifier, the magnitude of the secondary
path is 20 dB above the reference voltage. For leaky sitting headphones, the
magnitude drops off at low frequencies.

the interior of the ear cups decreases.

� The group delay of the secondary path increases which makes its tem-

poral behaviour harder to invert.

� The low frequencies of S(jω) drop off which makes its magnitude re-

sponse harder to invert.

For the measurements, headphones with an external and internal micro-

phone were worn by a test subject, while a broad band measurement signal

was played back from the front of the subject in a distance of approximately

1 m. The subject was asked to once put on the headphones properly tight

and an other time loosely.

Figs. 1.9 to 1.12 are worst case examples that illustrate the dependency

of Wopt(jω) on the direction of incident noise and on the fitting of the

headphones. The influences of the sound direction and the fitting of the

headphones are evaluated more thoroughly in chapter 2. However, it is

already clear that a static filter W (jω) as controller can only yield limited

11
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ANC because

� a real-life filter cannot be acausal

� a static control filter cannot be optimal for all directions of incident

sound and all fittings of the headphones.

Adaptive feedforward ANC

As shown in the previous section, the optimal feedforward controllerWopt(jω)

turns out to be acausal for some P (jω) and S(jω). A broadband realization

of Wopt(jω) is not possible in these cases. However, it can still be possible

to realize Wopt(jω) in a small bandwidth. E.g. for a static periodic primary

noise x, the secondary noise only needs to have the opposite phase but it

can be delayed by any integer multiple of the period.

From the above considerations, we can conclude that an adaptive con-

troller has two main advantages over the static one:

1. It can adapt to a (causal approximation) ofWopt(jω) for any direction

of incident sound and any fitting of the headphones.

2. It can consider the bandwidth of the excitation signal and approximate

Wopt(jω) only in the bandwidth where it is currently needed.

In addition to the reference signal (i.e. the noise outside the headphones),

an adaptive controller requires a second signal from behind the plant P (jω)

(i.e. inside the headphones). Thus a second microphone inside the ear cups

is necessary as shown in Fig. 1.13.

An adaptive controller consists of two stages: Firstly an adaptive filter

and secondly an adaptation algorithm that changes the transfer function of

the filter. The typical realization of an adaptive filter is a digital transversal

filter because of two important aspects:

12
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Figure 1.13: The adaptive controller requires a reference signal of the noise
and an error signal from inside the headphones.

1. A transversal filter of sufficient length can approximate the impulse

response of any W (jω) = P (jω)
S(jω) as long as the energy of the impulse

response is fading out in finite time and as long asW (jω) is sufficiently

bandlimited within fs
2 , where fs is the sampling frequency.

2. Stability: The output of such a finite impulse response (FIR) filter is

bounded as long as the filter coefficients are bounded.

Fig. 1.14 shows the block diagram of a digital adaptive ANC system.

The most popular algorithm to adapt the filter coefficients is the least

mean square (LMS) because it is easy to implement and requires little com-

putational cost [Haykin, 2001]. The LMS algorithm requires an error signal

e and the reference x that caused the error. The details of the LMS will be

reviewed in the beginning of chapter 2, but it can already be seen that the

secondary path delays the anti-noise. Consequently, the error e[n] at time

index n corresponds to a reference noise sample x[n+m] from m time steps

ago (where m is the total delay in the secondary branch in discrete time

13
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e
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Figure 1.14: The common adaptive controller consists of an FIR filter W
whose coefficients are adapted with the fxLMS algorithm.

steps). Hence, x is delayed and filtered with a model Ŝ(jω) of the secondary

path in order to realign the reference with the error signal. The adaptation

is therefore called filtered x LMS (fxLMS).

The digital to analogue converters (DACs) and analogue to digital con-

verters (ADCs) introduce a further delay in the secondary path and the error

branch. Under the assumption that DAC and ADC cause the same latency

Tc, the anti-noise is additionally delayed by 2Tc. Usually the latency of the

converters is subsumed in S(jω) and Ŝ(jω), respectively The additional de-

lay in the fxLMS branch (the one that can be subsumed in Ŝ(jω)) limits the

convergence time of the adaptive filter, but it does not necessarily degrade

the noise cancelling performance. However, the additional delay in the sec-

ondary branch (which can be subsumed in S(jω)) reduces the bandwidth

for ANC or requires noise prediction if the noise is bandlimitted enough.

The latency is a severe problem in common audio CODECs (integrated

ADC and DAC). They introduce a large latency because of their linear phase

anti-aliasing and reconstruction filters. These CODECS have a talkthrough

latency of at least 720 µs which impedes broadband ANC. For this reason,

we developed a digital ANC prototype with high speed data converters and

14
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minimum phase anti-aliasing filters, that reduce the talkthrough latency to

20 µs [Teschinegg, 2012]. This digital hardware allows broadband ANC up

to 2000 Hz as can be seen in Fig. 1.15.
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Figure 1.15: Measured primary noise spectrum D(ω) of a diffuse aeroplane
noise and the error spectrum E(ω) after ANC with the digital prototype
system.

Another strategy of adaptive ANC that completely avoids the latency of

digital hardware is presented in chapter 2.

1.2 Feedback ANC

The block diagram of feedback ANC is shown in Fig. 1.16.

+
-

x

W

S

P
ed

y

Figure 1.16: Feedback ANC

The residual error E(jω) in this structure can be formulated (with omit-
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ted dependency on jω) as

E = D − EWS =
D

1 +WS
. (1.3)

Thus the sensitivity function follow directly to

T (jω) =
1

1 +W (jω)S(jω)
. (1.4)

From the above two equations, it is clear that the error becomes small

if the denominator of eq. (1.3) or (1.4) is large. The controller W (jω) thus

needs to amplify the sensed error signal. However, this amplification must

not be unconstrained. Fig. 1.16 shows the block diagram of a negative

feedback. Due to the negative feedback, the anti-noise y interferes destruc-

tively with the primary noise d. However, if the phase of the open loop

W (jω)S(jω) turns 180°, the feedback causes a constructive superposition,

instead. The feedback would then run unstable if the error signal is not

sufficiently damped at this frequency.

A phase shift of 180° occurs at the frequency where half the wavelength

equals the group delay of the open loop. For a distance dS = 1 cm between

the loudspeaker membrane and the error microphone and a speed of sound

of c = 344 ms, the group delay τg = dS
c

is at least 30 µs. Thus 180° phase

shift would occure at 17.2 kHz latest. In Fig. 1.9 and 1.11, we have seen

that the actual group delay of a real electroacoustic system is actually much

larger. Our prototype headphones e.g. have the 180° phase shift at 4000 Hz

as can be seen in Fig. 1.17.

Thus the controller needs to be a filter that amplifies the low frequencies

with little phase shift and attenuates the high frequencies where the phase

has turned 180°. Several methods have been proposed to design such a
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Figure 1.17: Phase response of a headphone’s secondary path under regular
tight wearing conditions.

controller [Laroche, 2007,Yu and Hu, 2001, Zhang et al., 2013,Francis and

Zames, 1984,Doyle et al., 1989], but the resulting frequency responses tend

to be very complex such that they cannot be realized by analogue filters

with reasonable order. During my thesis, an analogue feedback controller

has been developed, too, and a shelving filter turned out to be the most

practical solution. It amplifies the low and attenuates the high frequencies

with a phase lag of maximally 90°. It therefore yields good ANC results and

it is comparatively easy to tune. The measured result can be seen in Fig.

1.18.
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(a) Primary noise spectrumD(ω) and error
spectrum E(ω) after ANC
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Figure 1.18: Measured performance of the analogue feedback prototype for
aeroplane noise: Noise spectra (a) and the corresponding sensitivity (b)
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Digital filters are better suited to realize complex frequency responses,

but the additional group delay of digital systems counteracts these benefits.

Chapter 4 deals with digital feedback ANC and proposes a prediction filter

design to compensate the latency.

1.3 Outline of the Thesis

Chapter 2 reviews the LMS algorithm and its convergence properties and

suggests a parallel adaptive linear combiner (ALC) instead of the common

adaptive transversal filter. The ALC consists of three parallel static filters

whose outputs are scaled with an adaptive gain before they are added up.

The combination of the three filters has to approximate all the variations

in P (jω) and S(jω) which are dependent on the direction of sound and the

fitting of the headphones.

The main variations in P (jω) and S(jω) are assessed via preliminary

measurements and a principal component analysis of the measured transfer

functions is used to derive the three prototype filters. These prototype filters

can be modelled as IIR filter which saves computational power compared to

FIR filters.

It is shown that the parallel IIR filters yield the same results as the

adaptive transversal filter with fewer update weights. Chapter 2 is based

on the article: M. Guldenschuh, ’Least-Mean-Square Weighted Parallel IIR

Filters for Active Noise Control Headphones’, accepted for publication in

the proceedings of EUSIPCO 2014, Sept. 2014, Lisbon; and the method

which is presented in this chapter is based on the patent: M. Guldenschuh

et al., ’Headphones for active noise suppression’, Patent EP 2 677 765 A1,

US 20 130 343 557, 12 25, 2013
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Chapter 3 treats the dependency of adaptive feedforward ANC on the

accuracy of the secondary-path model Ŝ(jω). The secondary-path model

can be derived over an initial measurement, but it is shown that changes in

the wearing situation of the headphones severely change the secondary-path,

too. Therefore it has been suggested in literature to do a online secondary-

path estimation by constantly playing back broadband noise. Since this is

very counterproductive for ANC headphones, chapter 3 suggests two robust

methods for online secondary-path estimation that work without disturbing

measurement noise.

In the first method, the noise cancelling performance is observed in real-

time by comparing the signal powers of x and e. Good noise cancellation is

only possible if the headphones sit tight. Poor noise cancellation indicates a

leaky wearing situation and consequently the secondary-path model has to

be changed accordingly.

The second method uses an infrasonic measurement signal. The infra-

sonic signal is not disturbing for the user but very suitable for detecting the

changes in S(jω) that occur when the headphones are lifted. A comparison

with approaches from literature prove the advantages and robustness of the

presented methods. Chapter 3 is based on the following article: M. Gulden-

schuh, ’Secondary-Path Models in Adaptive-Noise-Control Headphones’, 3rd

International Conference on Systems and Control, pp. 653-658, 29.-31- Oct.

2013, Algiers

Chapter 4 deals with the latency problem in feedback ANC. Adaptive

systems try to compensate the latency by predicting the noise signal. Pre-

diction is possible if the noise signal is bandlimited, and in feedback ANC

the noise is naturally bandlimited due to the passive attenuation of the ear
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cups. Since this bandlimitation is consistent over time, it is suggested to

implement a static predictor instead of an adaptive filter in order to reduce

the computational complexity.

It is shown that this static predictor yields the same performance as

adaptive methods and is more robust against changes in the secondary path.

Chapter 4 is based on the following article: M. Guldenschuh, R. Höldrich,

’Prediction Filter Design for Active Noise Cancellation Headphones’, IET

Signal Processing, Vol. 7/6, pp. 497-504, 2013

Chapter 5 treats the dependency of adaptive feedback ANC on the ac-

curacy of the secondary path model. In adaptive feedback ANC, the model

Ŝ(jω) is required two times. Firstly, to generate an internal model of the

reference and secondly for the fxLMS adaptation. This makes feedback ANC

especially sensitive to changes in S(jω). It is shown that common changes

in the wearing situation, like lifting the headphones, can drive the feedback

unstable if no measures are taken. Chapter 5 proposes two measures to

tackle this problem.

Firstly, a leaky version of the fxLMS is used to avoid divergence of the

adaptive filter. Secondly, it is shown that the low frequenciy region of S(jω)

drops off if the headphones are lifted. The adaptive filter W (jω) tries to

compensate this drop-off by amplifying the low frequencies. Thus, changes

in S(jω) can be detected by the low frequency behaviour of W (jω). It is

further shown that it is sufficient to observe the DC-gain of W (jω) which is

beneficial because the DC-gain can easily be obtained by summing up the

filter coefficients. The constraint on the DC-gain is compared with other sta-

bility constraints from literature and it is shown that it yields equal if not

better results with less computational complexity. Chapter 5 is based on the
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following article: M. Guldenschuh, R. de Callafon, ’Detection of Secondary-

Path Irregularities in Active Noise Control Headphones’ IEEE Transactions

on Audio, Speech, and Language Processing, Vol. 22, No. 7, pp 1148-1157,

2014

The chapter ’General Conclusion’ summarizes the essentials of each chap-

ter and forms links between the individual contributions; and in the end,

appendix A presents a procedure to assess ANC headphones. Usually, ANC

headphones are put on some kind of artificial ear or mannequin that contains

a measurement microphone in place of the ear drum. Measurement noise is

played back from outside and the noise reduction is evaluated by compar-

ing the measured noise with and without ANC. It is revealed that different

artificial ears lead to different ANC results and that even the ranking of dif-

ferent headphones is not consistent over different artificial ears. Therefore,

subjective user ratings are collected and these ratings are regressed with the

measurement results. Finally, a objective measurement procedures is devel-

oped that reflects the user ratings. Appendix A is based on the following

article: M. Guldenschuh et al., ’Assessment of Active Noise Cancelling Head-

phones’, 2012 International Conference on Consumer Electronics - Berlin,

pp. 299-303, 3.-5. Sept. 2012
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Chapter 2

Adaptive Linear Combiner

for feedforward ANC

Headphones

based on:

Markus Guldenschuh ’Least-Mean-Square Weighted Parallel IIR Filters in

Active-Noise-Control Headphones’, accepted for the Proceedings of

EUSIPCO 2014, Lisbon;

and

M. Guldenschuh et al., ’Headphones for active noise suppression’, Patent

EP 2 677 765 A1, US 20 130 343 557, 12 25, 2013

As mentioned in the introduction, a static feedforward controller can only

yield optimal ANC for limited directions of sound and for one defined fitting

of the headphones. If the controller is designed as an adaptive filter, these

limitations are overcome, but the implementation of an adaptive filter is

more complex and costly. In this chapter, it is shown that the adaptive
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combination of three static filters yields equally good results as a common

fully adaptive filter, and it requires less adaptation effort.

The common adaptive filter is an FIR filter. FIR filters have the advan-

tage of producing a bounded output if the input is bounded (i.e. they are

BIBO stable), but they need considerably more filter coefficients to yield sim-

ilar transfer functions as IIR filters. Also, FIR filters can only approximate

pole-zero systems with additional zeros, while IIR filters are able to exactly

reproduce these systems. However besides stability issues, IIR adaption via

the LMS algorithm might not converge to the Minimum Mean Square Error

(MMSE) or it might result in biased coefficients [Shynk, 1989]. Therefore it

has been proposed to keep the poles fixed and adapt the zeros only [Bank,

2008,Carusone and Johns, 2003,Williamson and Zimmermann, 1996,Kaelin

et al., 1993, Zeng and de Callafon, 2003, Karjalainen and Paatero, 2006].

The pole locations are suggested to be chosen according to preliminary of-

fline measurements of the system.

In the case of ANC headphones, the primary path P (jω) and the secondary-

path S(jω) have to be measured for different directions of incident sound

and different fittings of the headphones. Since not only the pole but also

the zero locations are readily known from such measurements, this chapter

proposes to determine the relevant zero-pole combinations via a principal

component analysis (PCA) and to implement the resulting fixed IIR filters

in parallel as adaptive linear combiner (ALC) like in Fig. 2.1.

The ALC weights the filter output with the scalar coefficients w1...3 and

the superposition of the weighted outputs are played back as anti-noise.

The coefficients can be updated via the fxLMS algorithm, equivalently to

the common adaptive filter. The performance of the parallel IIR filters

is compared with a common adaptive transversal-filter and an adaptive-
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Figure 2.1: Adaptive noise control with three parallel filters, an adaptive
linear combiner and fxLMS update.

zeros/fixed-pole system. Although the fixed pole approaches have hardly

gained any consideration, they show equally good results as the popular

transversal filter, but have better convergence properties and require fewer

adaptation weights. This is especially beneficial if an analogue implemen-

tation of the IIR filters and the LMS algorithm is desired. Analogue im-

plementations are faster and less energy consuming, but they suffer from

wrong weight updates due to DC offsets in analogue active circuits [Johns

et al., 1991,Shoval et al., 1995]. Fewer adaptive weights therefore mean less

effort to handle the DC offset. Our idea of implementing an adaptive linear

combiner with parallel analogue filters has been patented in [Guldenschuh

et al., 2013b]. Although this chapter deals with discrete time IIR filters,

it implies the methodology of the patent and can be read as instruction to

derive appropriate analogue filters, too.
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2.1 Review of the Least Mean Squares (LMS) adap-

tation

2.1.1 Method of Steepest Descent

The LMS algorithm as practical case of the method of steepest descent is

well described in [Widrow et al., 1976,Kuo et al., 1996,Snyder and Hansen,

1990,Haykin, 2001,Widrow et al., 1975,Burgess, 1981,Nelson et al., 1993,

Kuo and Morgan, 1999]. In the following the most important properties of

the algorithm are reviewed.

The method of steepest descent and the LMS respectively are used to

find the minimum of a multidimensional convex cost function. In the case of

ANC, a convex cost function J is given by the expected squared adaptation-

error J(w) = E{e2} which depends on the weight vector w. The weight

vector can either contain the coefficients of a common adaptive FIR filter

or the output weights of the parallel filters as in Fig. 2.1. With a neglected

secondary-path, the cost function reads as

J(w) = E{|d −wTu|2} = E{d2} − 2wTE{ud} +wTE{uuT}w, (2.1)

where u is the vector of inputs to the adaptive weights. In case of the

parallel structure of Fig. 2.1, u contains the outputs of the L parallel filters

at time instance n: u = [u1[n], u2[n], . . . , uL[n]]
T. In the case of the common

adaptive transversal filter, u contains the last L reference noise samples: u =

[x[1], x[2], . . . , x[L]]T. The influence of the secondary path will be treated in

the following in section 2.1.2.

With the cross-correlation vector p = E{ud} and the auto-correlation
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matrix R = E{uuT} and with σ2d = E{d2}, the cost function reads as

J(w) = σ2d − 2wTp+wTRw. (2.2)

The method of steepest descent finds the minimum of J(w) by iteratively

changing the weight vector w according to the negative gradient ∇ of the

cost function.

w[n+ 1] = w[n]− µ∇, (2.3)

where µ is the step size that controls the speed of convergence.

The gradient is the deviation of eq. (2.2) and is given as

∇ =
∂J(w)

∂wT
= −2p+ 2Rw. (2.4)

The auto-correlation matrix is symmetric and can be decomposed into R =

QΛQ−1, where Q is a unitary matrix of eigenvectors and Λ is a diagonal

matrix of eigenvalues λl.

To asses the convergence properties, it is useful to define a misalignment

vector v[n] = w[n] − wopt with the optimal solution of the weight vector

wopt. By rotating the misalignment vector to the principal axis of the mul-

tidimensional cost function v′ = Q−1v, a decoupled system of equations is

yielded

v′l[n+ 1] = (1− 2µλl)v
′
l[n], (2.5)

for l = 1 . . . L. With the initial value v′l[0], eq. (2.5) can be written as a

geometric sequence

v′l[n] = (1− 2µλl)
nv′l[0]. (2.6)

This allows deducing the convergence behaviour. The method of steepest
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descent converges if 0 < µ < 1
λmax

and it converges fastest if µ = 1
2λmax

,

where λmax is the largest eigenvalue of R [Kuo et al., 1996, Snyder and

Hansen, 1990,Haykin, 2001].

The geometric sequence can be described by the exponential function

(1− 2µλl) = e
(−1

τl
)
, (2.7)

where τl is the convergence time along the lth principal axis of the cost

function. With a linear estimation of the exponential function, the over all

convergence time τ lies between [Haykin, 2001]

1

2µλmax
≤ τ ≤ 1

2µλmin
. (2.8)

Since the step size is ought to be set to µ = 1
2λmax

, the largest possible

convergence time is determined by the ratio between the largest and the

smallest eigenvalue, i.e. the condition number of R.

2.1.2 Least Mean Square Algorithm (LMS)

The LMS uses the method of steepest descent, but since p andR are difficult

to obtain, the LMS utilises the estimated gradient

∇ = −2e[n]u[n],

which leads to the following update

w[n+ 1] = w[n] + 2µe[n]u[n]. (2.9)

In many text books (e.g. [Haykin, 2001]), the scalar factor 2 is subsumed in

the step size µ.
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In acoustical systems, the anti-noise y is delayed by the secondary-path

S(jω) (i.e. the transfer function from the loudspeaker to the error micro-

phone, including ADC and DAC in digital systems). Thus, the noise x has

to be filtered with a model Ŝ(jω) of the secondary-path in order to apply

the same delay to the reference input of the LMS, cf. [Kuo and Morgan,

1999]. This algorithm is therefore called filtered-x-LMS (fxLMS) and its

update reads as

w[n+ 1] = w[n] + 2µe[n]x′[n], (2.10)

where x′ is the filtered input vector.

In the case of the common transversal adaptive filter, x′T = ŝTX, where

ŝ is the N taps long impulse response of the secondary-path estimate and

X is a matrix of reference noise samples, i.e.:

x′T =

[

ŝ[1] ŝ[2] . . . ŝ[N ]

]























x[n] x[n−1] . . . x[n−L+1]

x[n+1] x[n]
. . . x[n−L+2]

...
. . .

. . .
...

x[n+N−1] x[n+N−2] . . . x[n+N−L]























. (2.11)

If we take the convolution matrix Ŝ of the secondary-path estimate in-

stead of the impulse vector ŝ, we yield a convolution matrix of the filtered
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input X′ = ŜX, i.e.:

X′ =








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
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0 . . . 0 ŝ[1]
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ŝ[1] ŝ[2]
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.

. .
. ...

0 ŝ[1] . .
.

ŝ[N−1]

ŝ[1] ŝ[2] . .
.

ŝ[N ]

ŝ[2] ŝ[3] . .
.

0

... . .
.

. .
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ŝ[N−1] ŝ[N ] . .
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ŝ[N ] 0 . . . 0
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











































x[n] x[n−1] . . . x[n−L+1]

x[n+1] x[n]
. . . x[n−L+2]

...
. . .

. . .
...

x[n+N−1] x[n+N−2] . . . x[n+N−L]























.

(2.12)

This convolution matrix is required to compute the input auto-correlation

matrix R = X′TX′.

In the case of the parallel adaptive linear combiner, the reference noise

is additionally filtered with the filters Hl(jω) yielding X′ = H
T
ŜX, where

the columns of H are the impulse responses of the filters Hl(jω),

X′ =























h1[1] h1[2] . . . h1[2N−1]

h2[1] h2[2] . . . h2[2N−1]

... . . . . . .
...

hL[1] hL[2] . . . hL[2N−1]























ŜX. (2.13)

The secondary path model Ŝ(jω) and the filers Hl(jω) respectively influ-

ence the convergence behaviour because they influence the auto-correlation

matrix R = X′TX′ and its eigenvalues.

Furthermore, the group delay of S(jω) impedes an immediate update and

decreases the maximum allowable step-size µmax by the factor sin[(π/(2(2∆+
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1))] where ∆ is the group delay in samples [Snyder and Hansen, 1990]. Addi-

tionally, µmax is reduced by modelling errors of Ŝ(jω), and phase modelling

errors larger than 90° could even lead to divergence of the adaptation pro-

cess [Snyder and Hansen, 1990,Lopes and Piedade, 2004,Snyder and Hansen,

1994].

In cases of large phase errors, the divergence can be prevented by pe-

nalizing the norm of the adaptive filter. The cost function then reads as

J(w) = E{e2 + γ(wTw)} yielding the update algorithm

w[n+ 1] = (1− µγ)w[n] + 2µex′, (2.14)

where γ is a trade-off factor between the constraint on w (and thus stability)

and the minimum mean square error (MMSE) which will be increased by

the suboptimal w.

2.2 Primary and Secondary Path Variations

The optimum feedforward controller has to approximate the primary path

P (jω) and compensate for the secondary-path S(jω). In the frequency

domain, its transfer function therefore reads as K(jω) = P (jω)
S(jω) . It is advan-

tageous to have an adaptive filter because both paths, P (jω) and S(jω),

may change during the usage of the ANC headphones.

� The primary path P (jω) is the sound pressure relation between the

internal microphone and the external microphone whereas both sensors

are excited by incident noise. Firstly, this pressure relation depends on

the passive attenuation of the earcups and therefore on the tightness

of the wearing situation. Secondly, the phase relation the outer and

inner microphone signal depends on the direction of incident sound.
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� The secondary-path S(jω) is the transfer function from the loud-

speaker to the error microphone inside the earcup and includes the

group delay of AD and DA conversion in digital applications as in Fig.

1.14. This transfer function again depends on the tightness of the

headphones. In the tight case, the earcup is like a pressure chamber

that allows reproducing enough low frequency sound pressure to get

a flat magnitude response of S(jω). In the leaky case, the low fre-

quency sound power radiates outside and consequently it is diminishes

inside the headphones. The consequence is a magnitude drop-off at

low frequencies of S(jω).

It has to be assumed that the direction of incident sound changes per-

manently while wearing ANC headphones. Be it because the noise source

moves (e.g. traffic noise), or be it because the user turns the head. And also

changes in the tightness of the headphones may occur if the headphones are

shifted or slightly lifted - especially if non-circumaural headphones are used.

2.2.1 Plant Measurements

P (jω) and S(jω) are measured for all these main potential variations. The

headphones were put on a mannequin which was placed on a turntable in the

centre of a circular vertical loudspeaker array as in Fig. 2.2. The turntable

turns in 30° steps and the 14 loudspeakers are spaced in 12.5°. Hence, P (jω)

was measured for 168 different directions.

The 168 measurements were performed once for tight sitting headphones

and once for leaky sitting headphones. For the latter, the headphones were

shifted back such that a leak of approximately 2 mm in diameter was pro-

voked between the earcups and the intertragic notch of the mannequin’s ear.

The secondary path S(jω) was measured by playing back the measurement
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Figure 2.2: Setup to measure P (jω) and S(jω) for different directions of
incident sound and differently tight sitting headphones. The loudspeakers
are arranged on a vertical arc with radius 1.5 m and spaced every 12.5° from
-75° to 87.5°. The headphones are in the centre of the arrangement. They
are put on a mannequin which stands on a turntable. The turntable turns
12 times 30°.

signal via the headphones and the results are shown in Fig. 2.3. As men-

tioned earlier, a magnitude drop-off can be observed at low frequencies if

the headphones are worn in a leaky manner.

The maximum phase difference between the outer and inner microphones

occurs when the sound comes from the side as in Fig. 1.8. Disregarding

the phase shift due to the physical barrier, the maximum phase difference

can be approximated as ∆φ = 2π d
λ
, where d is the distance between the

microphones and λ is the wave length. Consequently, the maximum phase

difference between two opposite lateral sounds yields 4π d
λ
.

Phase mismatches between the anti-noise y and the penetrated noise d

larger than +/-60° lead to constructive instead of destructive interference.

Direction independent ANC is therefore only possible as long as 2π
3 > 4π d

λ
;
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Figure 2.3: (a) Magnitude and (b) phase response of S(jω) for tight and
leaky positioned headphones: In the leaky case, a magnitude drop-off at low
frequencies can be observed.

or in terms of the frequency

f <
c

6d
, (2.15)

where c is the speed of sound of 344m/s. For a distance d of approximately

2.5 cm, 2300 Hz can thus be considered as cut-off frequency for broadband

ANC.

Fig. 2.4 shows the measured magnitude and phase variation of P (jω) in

the horizontal plane. It can be seen that 60° phase deviation from the mean

are actually reached at approx. 2600 Hz.

In the median plane, the phase difference between the inner and outer

microphone is always the same. Thus hardly any variation of P (jω) is

expected. Fig. 2.5 shows these variation for tight and leaky sitting head-

phones. As expected, there is hardly any variation if the headphones sit

tight. However, it can be seen that leaks between the headphones and the

ears have a considerable influence on P (jω).

In total, we have 336 measurements of Kη,i(jω) =
Pη(jω)
Si(jω)

for η = 1 . . . 168

and i = 1, 2. For the sake of simplicity, the indices η, i will be subsumed as

m = 1 . . . 336.
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Figure 2.4: Deviation of (a) the magnitude and (b) the phase from the
average primary path for tight sitting headphones over 12 azimuth angles
(from 0° to 330°) evaluated at 0° elevation. At approx. 2600 Hz the maxi-
mum phase deviation reaches 60° which marks the maximum bandwidth of
direction independent ANC.
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Figure 2.5: Standard deviation of the magnitude (a) and phase (b) of P (jω)
over 14 different elevation angles and 0° azimuth.

In the next step, the standard deviation of all Km(jω) is examined. Fig.

2.6 shows the spatial measurement points that result form the measurement

setup described in Fig. 2.2. It can be seen that the poles of the spherical

measurement grid are sampled much denser than the equator. Therefore,

each measurement point is weighted by its surrounding spherical surface in

order to yield a comparable set of data. This is equivalent to weighting the

sampling points according to their elevation angle ϑ with cos(ϑ).
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Figure 2.6: The junctions of the spherical grid indicate the different mea-
surement positions which result form the setup that is described in Fig.
2.2.

Fig. 2.7 shows the standard deviation of the weighted Km(jω) . Between
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Figure 2.7: Weighted standard deviation of (a) magnitude and (b) phase of
K(jω) over all measurements.

200 Hz and 1000 Hz neither the magnitude nor the phase varies a lot. In this

frequency band, robust ANC would be possible with one static filter only.

However, for the frequencies below 200 Hz and above 1000 Hz, an adaptive

filter is required to yield robust ANC performance.

Since we already know (the main) required filter variations, we do not
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need a fully adaptive filter. The problem is much more: Is there a set of

filters Hl(jω) that can model all 168 × 2 transfer-functions Km(jω) in the

form of the ALC in Fig. 2.1. A solution can be obtained by means of a

Principal Component Analysis (PCA).

2.3 Extraction of Prototype Filters for the Adap-

tive Linear Combiner

2.3.1 Principal Component Analysis of the Required ANC

Filters

The PCA changes the basis of a coordinate system with the goal to reduce

the redundancy of dimensions for a given set of data [Jackson, 1991]. Its

first principal component is the new coordinate in which the data has the

largest variance. The second principal component is orthogonal to the first

and covers the largest remaining variance of the data, and so forth.

Our set of data consists of the transfer functions Km(jω) =
Pη(jω)
Si(jω)

which

can be gathered column-wise into the matrix K. The secondary-path in

the denominator is the transfer-function from the loudspeaker to the error

microphone inside the earcup, and it is not minimum phase. Thus its inverse

is acausal. The same applies to P (jω) for those directions where the sound

hits the error microphone earlier than the reference microphone. Since the

acausal parts cannot be cancelled by the ALC, only the causal parts of

Km(jω) are considered in K.

In addition, it is the goal to obtain real-valued gain factors wl. Therefore,

the used data set has to be real valued, too. With Km(k) being the discrete

Fourier transform of the transfer functions for the frequency bins k = 1 . . . N

There are two ways to achieve a real valued matrix K.
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1. Km(k) can be transformed into the time domain. Then, matrix K

contains the impulse responses of Km(k) in its columns.

2. Km(k) has to be split into real and imaginary parts. The columns of

K are then concatenated as

[ℜ{[Km(0),Km(1),Km(2), . . . ,Km(N/2)]} ,

ℑ{[Km(0),Km(1),Km(2), . . . ,Km(N/2)]}]T

The PCA transforms K into a new matrix

H = QT
kK (2.16)

where the columns ofQk are the eigenvectors ofK
TK which again have been

weighted with the corresponding spherical surface segment. The weighted

eigenvalues λl are proportional to the variance that is explained by the

principal component.

Fig. 2.8 shows the amount of explained variations for the time domain

and the frequency domain PCA. There is hardly any difference between

both approaches but it can be seen that the amount of explained variation

increases with the number of principal components.

The impulse response h1 (i.e. the vector of H corresponding to the

largest eigenvalue) already models 89% of all required impulse responses

with a scalable gain only, and four impulse responses would already model

over 95%. The required transfer-functions Km(jω) are thus all very similar.

The resulting impulse responses hl could directly be implemented as FIR

filters in the ALC. However, an IIR representation of the impulse responses

is beneficial in order to reduce computational burden of the prototype filters.
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Figure 2.8: Explained variation of the PCA functions.

2.3.2 IIR Filter Design

The outputs of the parallel filters are superposed with the real valued weights

wl to yield an approximation K̃(jω) of the actual plant K(jω) = P (jω)
S(jω)

K̃m(jω) = w1(m)H1(jω) +w2(m)H2(jω) . . . + wL(m)HL(jω). (2.17)

If the filters Hl(jω) shall be modelled as IIR filters, the plant approxi-

mation K̃(jω) reads as

K̃m(jω) = w1(m)
B1(jω)

A1(jω)
+ w2(m)

B2(jω)

A2(jω)
. . . + wL(m)

BL(jω)

AL(jω)
. (2.18)

where the numerator and denominator frequency responses can be written

as polynomials of order O in dependency of the z-transform variable

Bl(z)

A(z)
=
b0,l + b1,lz

−1 . . .+ bO,lz
−O

1 + a1,lz−1 . . . + aO,lz−O
(2.19)

The weights wl(m) as well as the coefficients a
O,l and b

O,l (with O =

0 . . .O) have to be chosen in order to minimize the squared residual ANC

error e2(k,m) (i.e. the modelling error of K̃) over all k = 1 . . . N frequency
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bins and all m = 1 . . .M measurements:

min
∑

k

∑

m

e2 = min
∑

k

∑

m

∣

∣

∣K(k)m − K̃m(k, b
O ,l, aO ,l, wm,l)

∣

∣

∣

2
. (2.20)

Due to the denominator coefficients a
O ,l, this minimization can only

be solved by nonlinear optimization, e.g. by the Gauss-Newton algorithm

[Dennis and Schnabel, 1996].

Gauss-Newton Algorithm

The basic Newton optimization algorithm finds the minimum of a function

f(θ) in an iterative procedure and has the following update rule for multi-

dimensional problems:

θ(n+ 1) = θ −H
−1

∇f(θ), (2.21)

where ∇ is the gradient and H is the Hessian matrix of second order deriva-

tives.

The Gauss-Newton algorithm neglects the second order derivatives and

can only be applied to squared and summed function values f2(θ). The

Gauss-Newton algorithm approximates the Hessian matrix over the Jaco-

bian matrix J as 2JHJ, where the elements of J are Ji,j = ∂fi(θ)
∂θj

, and the

superscript H denotes complex conjugate transposition. The gradient follows

to ∇ = JHf(θ).

We have f = e(k,m) and the error is considered for M different mea-

surements and for N frequency bins. The error can be written into a vec-

tor e = [e(1, 1), . . . , e(k,m), . . . , e(N,M)]T which yields the squared and

summed cost function f2(θ) = e
H
e. Our vector θ consists of the variables

a
O,l, bO ,l and wl(m) and since we only allow real valued weights and coeffi-
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cients, our update of the Gauss-Newton algorithm with step-size parameter

ν reads as

θ(n+ 1) = θ(n)− νℜ{(JHJ)−1}ℜ{JHe}. (2.22)

In order to account for the frequency dependent sensitivity of the human

ear, the error is weighted using an A-weighting curve and with a logarithmic

frequency spacing. The latter weights the frequency bins k such that every

octave band yields equal power. This can be achieved by weighting the

signal power with 1/k. For the unsquared error, the weight follows to 1/
√
k.

Fig. 2.9 shows the combined A and 1/
√
k weighting.
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Figure 2.9: A-weighting curve together with an 1/
√
k weighting.

It can be seen that these weights put a lot of emphasis on frequency

band around 200 Hz. Since the plant K(jω) has low-pass character, the

absolute error puts a lot of emphasis on this frequency band, too. Therefore,

it is suggested to take the relative error erel =
K(k)m−K̃m(k)

|K(k)m| instead. The

frequency dependent weights and the direction dependent weights cos(ϑ)

are subsumed in the weight variable ψ(k,m). Thus, we are looking for the

minimum of

e2(k,m) =

∣

∣

∣

∣

∣

ψ(k,m)

(

Km(k)− K̃m(k)

|Km(k)|

)∣

∣

∣

∣

∣

2

(2.23)
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The entries of the Jacobian matrix in the z domain follow to

∂e(k,m)

∂wl(m)
= ψ(k,m)

−Hl(z)

Km(z)
(2.24)

∂e(k,m)

∂b
O ,l

= ψ(k,m)
−wl(m)z−O

Al(z)Km(z)
(2.25)

∂e(k,m)

∂a
O,l

= ψ(k,m)
wl(m)z−OHl(z)

Al(z)Km(z)
(2.26)

Our cost function e2(k,m) is not convex, therefore it is not guaranteed

that the Gauss-Newton algorithm finds the global minimum. Thus, it is

required to start the minimization with an initial θ(0) which is close to the

global minimum. The PCA outputs are the ideal transfer functions. An IIR

model of these transfer functions and the resulting weights wl(m) are thus a

good initialization vector for the Gauss-Newton iterations. The numerator

and denominator polynomials of the PCA frequency responses can be de-

termined via the Steiglitz-McBride algorithm [Steiglitz and Mcbride, 1965]

by iteratively solving

min
∑

k

∣

∣

∣

∣

Hl(k)−
Bl(k)

Al(k)

∣

∣

∣

∣

2

. (2.27)

The Gauss-Newton algorithm requires a predefined number L of filters

and a predefined filter order O. It is apparent that a larger number of

filters and a larger filter order will yield better results, but for the sake of

low complexity, few filters with low order are desired. Still, it is unclear if

e.g. two fourth order filters or four second order filters yield better results.

Therefore the Gauss-Newton algorithm was run for various filter numbers

and various filter orders. The variation of Km(jω) which is explained by the

different combinations is shown in Fig. 2.10a
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Figure 2.10: (a) Explained variation of the IIR filters in percent. (b) Con-
dition number of HTH: Three 3rd order filters yield a condition number of
1.125. Four such filter would already lead to an increased condition number
of 78.

The three adaptively combinable 3rd order filters yield better results than

two 4th order filters or five 2nd order filters, respectively.

In addition, the resulting three 3rd order filters are almost orthogonal

which increases the convergence speed of the LMS adaption [Johns et al.,

1989, Erdol and Basbug, 1996, Widrow and Walach, 1984, Narayan et al.,

1983]. Fig. 2.10b shows the condition number of HTH as indication of their

orthogonality for different orders and different numbers of used filters. Three

3rd order filters yield a low condition, while the 2nd order filters already lead

to an increased condition number if more than two filters are used.

The pole-zero plot of the three chosen filters is shown in Fig. 2.11, and

the frequency responses are shown in Fig. 2.12.

2.4 Analysis of the ANC Performance

2.4.1 Systems for Comparison

The ALC of Fig. 2.1 with the fixed parallel filters is implemented with a

sampling frequency of 11025 Hz and will be compared with the common
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Figure 2.11: Zero and pole locations of the three IIR filters.
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Figure 2.12: (a) Magnitude and (b) phase response of the three chosen IIR
filters.

transversal adaptive filter and with a system that has fixed poles but adap-

tive zeros as in [Bank, 2008,Williamson and Zimmermann, 1996].

The fixed parallel third order filters require three multiply and accumu-

late operations (MACs) for the numerator polynomial, four MACs for the

denominator (including the output weighting by wl) and three MACs for the

weight updates. In total, the three parallel IIR filters thus require 24 MACs.

This system is compared with a fixed-pole/adaptive-zero system and with a

conventional adaptive filter of similar complexity as compared in Table 2.1.
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3 IIRs 8 fixed poles adapt. FIR
denom. 9 8 -
num. 12 9 12
weight update 3 9 12

total MACs 24 26 24

Table 2.1: Required MAC operations for the compared systems.

The fixed poles for the adaptive-zeros system should be the dominant

poles of K. The Steiglitz-McBride algorithm derives a pole- (and/or zero)

model of a single impulse response by iteratively minimizing the output

error [Steiglitz and Mcbride, 1965]. The same approach is used to derive

eight dominant poles of the data set, but the cost function is defined as

the sum over all modelling errors for each variation in K as in [Williamson

and Zimmermann, 1996]. This results in four conjugate complex pole pairs

as shown in Fig. 2.13. The frequency responses of the four pole pairs are

shown in Fig. 2.14.
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Figure 2.13: Pole locations of the fixed-pole system.

The fxLMS requires a model Ŝ of the secondary-path to filter the ref-

erence input x. Ŝ should be close to the tight secondary-path Stight since

this is the regular use case. Stight has a flat magnitude response and can be

modelled with a scaled and delayed impulse.
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Figure 2.14: (a) Magnitude and (b) phase response of the fixed poles.

Fig. 2.15 shows the impulse response stight of the tight secondary-path

and the scaled impulse ŝ, and Fig. 2.16 compares the frequency response of

Ŝ with the frequency response of the tight and leaky S, respectively.
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Figure 2.15: Impulse response stight[n] and ŝ[n] at the sampling frequency
of 11025 Hz.

The chosen model Ŝ can be implemented on a DSP with the cost of

only one additional buffer entry and Fig. 2.17 shows that the phase error

stays below 90° in almost the complete bandwidth. Only for narrowband

excitation below 20 Hz, stability issues would arise that would need to be

treated with the leaky fxLMS.
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Figure 2.16: (a) Magnitude and (b) phase response of S(jω) for tight and
leaky positioned headphones together with the model Ŝ(jω)
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Figure 2.17: Maximum phase error between S(jω) and Ŝ(jω)

2.4.2 Theoretical Results

To derive the theoretically maximum performance, we take wopt for every

possible realization of Kl because it allows us to examine the effects of the

convergence in the next step.

The noise-cancelling error of our parallel IIR filter can be estimated

as the difference between the measured variations K and the adaptively

combined IIRs.

E = K−HWopt, (2.28)

where H holds the three IIRs and Wopt is the matrix of the three optimum

adaptive weights times 336 measured variations of K(jω). The optimal
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weights can be derived by minimizing

|K−HWopt|2 (2.29)

with the least-squares solution

Wopt = (HTH)−1HTK. (2.30)

Equally, impulse responses of the fixed poles can be gathered to a matrix

Hfxp as in [Bank, 2008] and the respective zeros can be estimated like the

weight matrix Wopt in eq. (2.30).

The optimal solution of the transversal FIR are the first 12 samples of

the impulse responses in K that can be seen in Fig. 2.18a. At a sampling

frequency of 11025 Hz, the 12 samples correspond to 1.1 ms. Fig. 2.18b

shows that more than 96% of the impulse energy has passed after 1.1 ms or

12 samples, respectively.
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Figure 2.18: Impulses responses wl (a) and percentage of the mean passed
impulse-energy over time (b) with a sampling frequency of 11025 Hz.

With the above considerations, the noise-reduction of the three systems

can readily be estimated. The residual error is set in relation to the pene-
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trated noise d and it is express it in dB as

edB(m) = 10 log

∑

n em[n]2
∑

n dm[n]2
, (2.31)

Fig. 2.19 shows the distribution of edB over all m = 336 variations of

K(jω). It can be seen that there is hardly any difference in the optimum

performance of the three systems.
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Figure 2.19: Estimated amount of active-noise-cancellation in box plots.
The boxes include for 50% of the variations in edB and the whiskers show
the distribution of all 336 variations. The bars in the middle of the boxes
denote the median residual error.

The second performance criteria for adaptive noise control is the con-

vergence speed that is bounded by the condition number of R. Table 2.2

compares the condition number of the three systems for white and pink

noise.

3 IIRs 8 fixed poles adapt. FIR
cond. white noise 4 421 1
cond. pink noise 18 7 900 54

λmax pink noise 189 5 000 723

Table 2.2: Condition number and λmax of the input correlation-matrix R.

For a fully white input, the transversal FIR yields a condition number of

1, while the three 3rd order IIR filters yield a condition number of 4. In the
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case of pink noise, which is a more realistic approximation of environmental

noises, the three parallel IIRs already yield a smaller condition number than

the adaptive FIR, which shows that they are more robust to colourations in

the ambient noise.

The fixed-pole/adaptive-zero system yields the largest condition num-

ber for both noises. Thus, it is possible that this system only converges

very slowly. The actual performance and convergence speed however are

evaluated through experiments in the following section.

2.4.3 Experimental Results

In the experiments described in this section, noise was played back from

all directions mentioned in section 2.2.1 with tight and leaky sitting head-

phones. The primary path P (jω) and the corresponding S(jω) varied every

0.5 seconds and the weights w were updated by the fxLMS. In the theo-

retical considerations, we assumed the convergence to wopt. This time, the

imperfect estimate Ŝ and the fast changes of the plant K(jω) are expected

to deteriorate the results.

In real-life applications, a predefined µ would be normalized by the input

noise energy because it is infeasible to constantly calculate the maximum

eigenvalue ofR. However, for the experiments, we precalculate λmax in order

to compare the experimental with the theoretical results. The experiments

were done for pink filtered noise, and the corresponding λmax are given in

Table 2.2.

In the first experiment, pink noise was used to evaluate the speed of

convergence. Therefore, the weights w are reset to zero before every change

of P (jω) and S(jω). Fig. 2.20 shows the median edB over the time. The

convergence speed is similar for all three systems. Above all, it can be seen
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that the fixed-pole system does not converge as slowly as it could have been

expected due to the large condition number. This shows that the condition

number of R only indicates an upper bound for the convergence time, but

that the actual convergence time τ lies below this boundary as stated in eq.

(2.8).
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Figure 2.20: Learning curves of the fxLMS adaptation for pink noise: The
median residual error converges to the same value for all three compared
systems.

In the second experiment, P (jω) and S(jω) still vary every 0.5 s, but

this time the weights w are not reset to zero. The first few seconds of the

simulations are shown in Fig. 2.21. The results over all 336 changes in
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Figure 2.21: Residual error over time.
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P (jω) and S(jω) are shown in the box plot of Fig. 2.22. As expected, the

noise reduction is deteriorated compared to the theoretical considerations.

However, the three parallel IIR filters show the best performance in the

experimental evaluation. The median noise reduction is 1 dB better than

for the fixed-pole system and 2 dB better than for the transversal FIR filter.
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Figure 2.22: Boxplot of the residual errors for pink input noise.

The transversal FIR filter shows good performance in the low frequency

band but only with the cost of amplifying the high frequency band. The

advantage of the three IIR filters is that they all show low-pass behaviour

and consequently they cannot boost the high frequency band as strongly as

the FIR filter does. Fig. 2.23 shows that the three IIR filters yield ANC up

to 2000 Hz in median, where the other two systems already start to amplify

the noise.

At 2500 Hz, the three IIR filters only show a marginal median ampli-

fication of 2 dB, while the FIR filter amplifies the noise by 10 dB. The

amplification results from the large phase error of Ŝ(jω) in this frequency

bin, cf. Fig. 2.17. This phase error can result in wrong fxLMS updates

and requires additional measures like reducing the step size or introducing
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Figure 2.23: Median residual error over frequency for pink noise.

a leakage factor γ as in eq. (2.14). The influence of the leaky fxLMS will be

treated in more detail in chapter 5.

The poor performance in the very low frequency band that can be seen

in the sensitivity diagrams of Fig. 2.23 results from the large group delay of

S(jω) and is similar for all three systems.

2.5 Conclusion

In this chapter, different adaptive systems for ANC headphones are investi-

gated. Typically, adaptive transversal FIR filters are used in ANC because

they have little stability issues, but it is shown that fixed-pole filters with

adapted zeros and full parallel IIR filters with adaptive output gains are

equally if not more suitable because the plant variations of the headphones

can be accessed via preliminary measurements. The contributions of this

chapter are:

� The investigation of the plant variation with consideration of differ-

ent noise directions and different acoustic properties of the secondary-

path.

� The deduction of parallel IIR prototype based on the aforementioned
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measurements.

� The comparison of the common adaptive transversal FIR filter with

a fixed-pole/adaptive-zero system and the adaptive linear combiner of

parallel IIR filters.

Restricted to a similar computation power, the three systems perform

equally well. However, it is shown that the parallel IIR filters are more robust

in real life conditions although only three adaptive weights are used. The

method is applied to ANC headphones where the plant can be described

by rather short impulse responses. The benefit of our approach is even

more valuable for applications where longer impulse responses have to be

equalized. In ANC headphones, the advantage of little adaptation effort

becomes especially important if an analogue realization of adaptive ANC

headphones is planned because the weights are easily biased by the DC

offset of analogue active circuits [Johns et al., 1991,Shoval et al., 1995].
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Chapter 3

Secondary-Path Models in

Adaptive Feedforward Noise

Control Headphones

based on: M. Guldenschuh, ’Secondary-Path Models in

Adaptive-Noise-Control Headphones’, 3rd International Conference on

Systems and Control, pp. 653-658, 29.-31- Oct. 2013, Algiers

In the previous chapters, it has been shown that the secondary path of

ANC headphones has a non-negligible phase delay. As a consequence, the

reference signal and the error signal are out of phase which impedes the

correct filter update of the LMS. The solution is filtering the reference signal

with a model of the secondary path, which is then called the filtered-x-LMS

(FxLMS) [Widrow et al., 1981, Burgess, 1981]. Analyses of the FxLMS

[Snyder and Hansen, 1994,Lopes and Piedade, 2004] show that the algorithm

is robust against errors in the secondary path model as long as the phase

error stays below 90°. However, the secondary-path phase of tight sitting
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headphones differs from lifted headphones by more than 90° as will be shown

in section 3.2. Thus, the FxLMS could diverge, if the headphones are lifted.

There are four main approaches to tackle the problem of changing sec-

ondary paths in FxLMS applications, but they all have severe drawbacks

and/or limitations.

� An additional analogue feedback controller does not only change the

magnitude but also the phase of the sensitivity function. With a pre-

liminary measurement of a worst case S(jω) (whose phase differs by

more than 90° to the nominal S(jω)) the feedback controller can be

designed to reduce the phase change in the sensitivity function with

constraint optimization techniques. The sensitivity function of the

additional feedback loop can then be regarded as stabilized secondary

path for the fxLMS algorithm [Song et al., 2005]. However, this ap-

proach increases the hardware complexity and the controller design is

non-trivial.

� Online secondary-path estimation as in [Zhang et al., 2001, Jin and

Zhang, 2009, Gan et al., 2005, Akhtar et al., 2006, Liu et al., 2010]

aims to track changes in the secondary-path. However these meth-

ods fail in large and sudden changes, and/or they inject white noise

into the headphones which is counter-productive for a noise-cancelling

application.

� Constraints or penalties on the norm of the adaptive-filter prevent

the filter from diverging completely [Zhang et al., 2003, Kinney and

Callafon, 2009, Cartes et al., 2002, Kamenetsky and Widrow, Nov].

However, they do not avoid wrong filter updates.

� Keeping the norm of the secondary-path model smaller than the ac-
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tual secondary path increases the robustness of the FxLMS stabil-

ity [Ardekani and Abdulla, 2012]. However, manipulating the norm

only does not prevent divergence if the phase error exceeds 90°.

We present three solutions that are simple to implement, do not require

white noise injection and yield noise-control with robust stability and a

correct filter-update by the FxLMS algorithm. All approaches are based on

secondary-path measurements under different conditions reaching from very

tight to completely loose headphones.

In the first method (solution A), a secondary-path model is designed

whose phase does not differ more than 70° from all measured secondary-

paths. As an alternative approach to improve the tracking behaviour of

the adaptive filter, two models of the secondary-path are implemented; one

for the regular tight headphones and one for the lifted headphones. The

contribution of the two models to the FxLMS is weighted according to the

actual secondary-path, which is either detected via the level-ratio between

the error and the reference input (in solution B) or via an infrasound test

signal (in solution C ). The results are compared with the system of [Zhang

et al., 2003], because it combines two of the previously mentioned approaches

from literature. The results proof that our solutions are superior to the

existing approaches with respect to ANC-headphones.

3.1 Review of the Filtered x Least Mean Square

Fig. 3.1 shows the block diagram of feedforward ANC with the FxLMS. The

normalized fxLMS reads as

w(n+ 1) = w(n) + µ
e(n)x′(n)

x′T(n)x′(n)
, (3.1)
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where x
′(n) is a vector of the latest N filtered input samples [x′(n), x′(n−

1), ..., x′(n−N + 1)] as in Fig. 3.1.

+
-

x

W S

P
e

LMSŜ
x′

d

y

Figure 3.1: Block diagram of feedforward ANC with the FxLMS filter up-
date.

The LMS-input x′ is filtered with Ŝ which introduces the same phase

delay to the reference signal as the real secondary-path S to the anti-noise

signal. This shall ensure that the error sample e(n) is well-correlated with

the reference sample that actually caused this error. Only this time-aligned

correlation is a correct gradient for the LMS update.

If Ŝ deviates from S, the correlation between the filtered reference x′ and

the error e deviates from the real gradient. For small deviations, the gradient

is slightly wrong, but the LMS will still converge. For large deviation, (i.e.

for phase differences > 90◦), the gradient points into a completely wrong

direction and the LMS diverges.

3.2 Secondary-Path Measurements

Under laboratory conditions, the secondary-path of adaptive ANC head-

phones can easily be determined since those headphones already have an

internal error-microphone. Thus, S is determined by playing back an ap-

propriate broadband signal (e.g. a swept cosine) via the headphones and

measuring the response at the internal microphone. The measurements can

be done on test subjects, but also on mannequin heads or on other suitable
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artificial ears.

As stated above, small mismatches of the secondary-path model Ŝ do

not matter much in the FxLMS [Kuo and Morgan, 1999]. However, fast

and violent changes, e.g. when the headphones are suddenly lifted, can

drive the adaptive filter unstable. We therefore extended the secondary-path

measurements of our prototype-headphones to four very different conditions:

1. The headphones sit tightly on the ears.

2. A tube with approx. 1 mm radius is inserted between the artificial ear

and the cushion of the headphones.

3. Two such leaks are introduced between the artificial ear and the head-

phones.

4. The headphones are completely loose.
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Figure 3.2: Frequency response of the secondary-path for a tight, leaky and
completely loose headphone. The increased leakage leads to a magnitude
drop-off at low frequencies.

Fig. 3.2 shows the magnitude and phase responses of the measurements.

Due to the headphone amplifier the magnitude level lies at 20 dB above the

reference voltage, but it can be seen that an increased leakage leads to a

magnitude drop-off at low frequencies and to a positive phase shift.
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The secondary path under tight conditions is assumed to be the regular

use case. The phase error from the tight secondary path to the leaky and

loose secondary-paths is shown in Fig. 3.3.
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Figure 3.3: Phase error between the tight and the leaky/loose secondary
paths.

The error slightly exceeds 90° around 150 Hz for the secondary path with

two inserted leaks. For the completely loose secondary path, this phase-error

tolerance is violated above 400 Hz. As a consequence, the FxLMS would

diverge when the headphones are suddenly lifted.

Approaches with online secondary-path estimation try to track changes

in S, but are too slow if S changes abruptly. Therefore, a wrong filter update

cannot be avoided, and only a restriction on the growth of W prevents in-

stabilities. In the following, we present three solutions to prevent divergence

of the FxLMS without restricting the filter-update.

3.3 Robust Secondary-Path Models

3.3.1 Secondary-Path Model Design from Phase Information

The easiest way to prevent divergence of the FxLMS is to omit the online

estimation and to implement a secondary-path model whose phase differs

less than 90° from all measured scenarios. This is possible, since the maxi-
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mum difference between the phase of the measured secondary-paths is always

smaller than 180° within the relevant frequency range as can be seen from

Figs. 3.2 and 3.3.

However, it is still favourable if Ŝ resembles the tight secondary-path

for this is the regular use case of ANC-headphones. Therefore, we choose

a phase response φ
Ŝ
(ω) that minimizes the phase deviation to the tight

secondary-path φStight
(ω) in a least square sense and keeps a phase difference

of less than 70° to all measured secondary paths. This can be derived by

constrained convex-optimization as

min
∣

∣

∣φŜ − φStight

∣

∣

∣

2

subject to

φ
Ŝ
(k) − φSmax(k) < 70◦

φ
Ŝ
(k) − φSmin

(k) < 70◦,

where φSmax(k) and φSmin
(k) are the maximum and minimum value of all

measured phase responses per frequency bin k.

From the phase response φ
Ŝ
(k), a causal FIR sequence ŝ(n) is derived

over a fixed-point iteration as in [Hayes et al., 1980]. In this approach, an

initial ŝ(n) is computed over an inverse Discrete Fourier Transform (DFT)

from
∣

∣

∣Ŝ0(k)
∣

∣

∣ ejφŜ
(k) where

∣

∣

∣Ŝ0(k)
∣

∣

∣ is an initial guess of the magnitude of Ŝ,

e.g. the magnitude of the tight secondary-path measure. In an iterative

process, the second half of the time domain sequence ŝ(n) is forced to zeros

to assure its causality. Then, the magnitude of the DFT of ŝ(n) is taken as

new initial guess for
∣

∣

∣Ŝ0(k)
∣

∣

∣.

The magnitude and phase of the converged Ŝ is shown in Fig. 3.4, and
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the phase error from φ
Ŝ
to the four measured secondary-paths is depicted in

Fig. 3.5. As forced in the constrained convex optimization, the phase error

stays below 70° in the whole bandwidth.
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Figure 3.4: Frequency response of the measured secondary-paths and the
chosen secondary-path model Ŝ.
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Figure 3.5: Phase error between Ŝ and the measured secondary-paths. The
phase error to all measured scenarios stays below 70°.

Ŝ is close to the tight secondary-path, but it deviates by 45° at 1000

Hz and by approximately 7 dB between 30 Hz and 1000 Hz. Thus in the

beginning of the FxLMS adaption (when the headphones sit regularly tight),

the correlation between x
′ and e will not be as strong as when the secondary

path is perfectly modelled. As a consequence, there is less gain on the

coefficient update and the FxLMS will be slower in tracking changes in P .

A comparison of the temporal behaviour will follow in section 3.4.
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3.3.2 Two Secondary-Path Models with Noise-Cancelling Anal-

ysis

To improve the tracking performance of the FxLMS, two secondary-path

models can be implemented in parallel: Ŝ1 for the regular tight use-case

and Ŝ2 for the lifted headphones. The latter is derived over a fixed-point

iteration (as in section 3.3.1) of the mean phase between the secondary-

path measure with 2 inserted leaks and the one with the completely loose

headphones. Its frequency response is shown in Fig. 3.6.
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Ŝ1 (tight)

1 leak
2 leaks
open

Ŝ2
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Figure 3.6: Frequency response of the measured secondary-paths and the
chosen secondary-path models Ŝ1 and Ŝ2.

Depending on the use-case, the contribution of each secondary-path

model Ŝi to the FxLMS is weighted with an adaptive gain gi as in Fig.

3.7. The use-case itself can be identified by comparing the residual-error

power Pe with the input power Px.

Fig. 3.8 shows the relation Pe

Px
for frequencies below 500 Hz. The relation

is obtained from a FxLMS-simulation with white noise input, a 2nd order

passive-attenuation P (with a cut-off frequency at 500 Hz), a step size of

µ = 0.002 and a sampling frequency of fs = 44.1 kHz. The simulation is

done for the two extreme cases of the tight headphones and the completely

loose headphones, each with the models Ŝ1 and Ŝ2 respectively.
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Figure 3.7: Parallel implementation of two secondary-path models. Ŝ1 is for
the regular tight use case and Ŝ2 is for the lifted headphone.
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Figure 3.8: Relation between the residual-error power Pe and the input
power Px below 500 Hz. The relation results from FxLMS simulations with
different secondary paths and one of the two suggested models which are
indicated in the brackets.

In the leaky case, hardly any noise-cancellation is possible, even with

the good fitting model Ŝ2 because the headphones cannot reproduce enough

low-frequency power, as shown in Fig. 3.2. With the wrong model Ŝ1, the

FxLMS diverges after 0.4 seconds. This is the worst case; for any other

measured S, the FxLMS would diverge slower or not at all. In the tight

case, the FxLMS also converges with the wrong model and yields noise-

cancellation of 10 dB after 0.3 s. Thus, the current secondary-path can be
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detected at latest after 0.3 s.

If the relation Pe

Px
is below -10 dB (which corresponds to the factor 0.1),

noise cancellation is very pronounced which means that the headphones sit

very tight. Consequently, weight g1 should be close to 1 and g2 close to 0.

On the other hand, if Pe

Px
> −2 dB (factor 0.6), the headphones sit leaky,

and we want g2 to be close to 1 and g1 close to 0. Hence, a heuristic model

for the calculation of the weights g1 and g2 yields

g1(n) = 1− g2(n)

g2(n) =
Pe

Px
(n)− 0.1

0.6− 0.1

subject to the restriction of the weights to the interval [0,1]. If the weights

should lie outside this interval they are rounded to 0 or 1 respectively.

The relation between Pe and Px can also be used to detect divergence

of the FxLMS when Pe > Px. The power Px (and accordingly Pe) itself are

calculated over a leaky integral as

Px(n) = αPx(n − 1) + (1− α)x̃2(n), (3.2)

where x̃ is the low-pass filtered input and α is the leakage factor.

The weighted combination of both secondary-path models results in a

time-varying filter

Ŝ(n) = g1(n)Ŝ1 + g2(n)Ŝ2 (3.3)

Since the phase difference between Ŝ1 and Ŝ2 is below 90°, the superposition

of the two models yields a magnitude- and phase-interpolation between Ŝ1

and Ŝ2.

The filter W is initialized with a low-pass FIR. Therefore, a reasonable
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first estimate of the anti-noise is generated from the beginning of the us-

age. Consequently, also the relation between Pe and Px is valid from the

beginning of the usage. However, the noise cancelling analysis is only valid

if there is a low-frequency noise excitation below 300 Hz. This is mostly the

case when ANC-headphones are used, e.g. in aeroplanes, in traffic-noise and

also in speech-noise, but there might be situations where a user is exposed

to high frequency disturbances only. In the following, we present an iden-

tification of the secondary-path for ambient noise with little low-frequency

content.

3.3.3 Two Secondary-Path Models and Infrasound Secondary-

Path Identification

In literature, a complete identification of the secondary-path is done with

the injection of white noise [Zhang et al., 2001,Jin and Zhang, 2009,Akhtar

et al., 2006, Liu et al., 2010]. However, from Fig. 3.2 it is clear that it is

only necessary to identify the low-frequency response to be able to distin-

guish between the regular tight and the lifted use-case. In fact, it suffices

to identify the magnitude at a single low frequency only. We propose to

measure the secondary-path with an infra-sound that cannot be heard by

humans e.g. with a 18 Hz tone.

The infrasound test-tone is injected into the headphones as in Fig. 3.9.

Then the error signal e (which consists of the residual noise and the injected

test-tone) is correlated with a delayed version of the original test-tone. The

delay corresponds to the group delay of the tight secondary-path at 18 Hz

such that the two signals are in phase if S = Stight. Thus, the correlation

gain reaches its maximum when the headphones are worn regularly tight.
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Figure 3.9: A 18 Hz tone detects whether the headphones are regularly tight
or lifted and loose.

The correlation gain ξ is calculated over a leaky integral as

ξ̃(n) = βξ̃(n− 1) + (1− β)e(n)v′(n)
γ

Px

where v′ is the delayed version of the test-tone, β is the leakage factor, and

γ is a constant gain.

The signal-to-noise-ratio (SNR) of the correlation suffers from the resid-

ual ambient noise. The SNR can either be increased by the integration time

or by the level of v within the error e. We have to set the level of v to 15 dB

above the level of the input noise because the test-tone already has a long

periodicity and the application requires a fast detection of changes in the

secondary path. Therefore the input noise x is filtered with a second order

low pass at 50 Hz and the power of the filtered input x̃ (calculated as in eq.

(3.2)) schedules the level of v to approximately +15 dB.

This solution is only applied if the low-frequency excitation is below

40 dBSPL
1. Thus, the playback-level of the test-tone reaches maximally

1dBSPL has a reference Sound Pressure Level (SPL) of 20µPa.
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75 dBSPL which is not harmful for human ears. Since it is an infrasound

frequency, it cannot be heard by the users and it does not deteriorate the

FxLMS because the test-tone periodicity is about 38 times longer than our

adaptive-filter length.

The correlation-gains for the four measured secondary-paths are shown

in Fig. 3.10. They are normalized by the maximum possible correlation-gain

which occurs for the tight sitting headphone. In the leaky cases, ξ varies

around 0. The filter weights are therefore defined as

g1(n) = ξ[0,1](n)

g2(n) = 1− g1(n)

where ξ[0,1] is the normalized correlation gain with the negative values set

to 0.
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Figure 3.10: Correlation gain over time for the 4 measured secondary-paths.
If the headphones sit tight, the 18 Hz tone is played back loud enough and
yields a large correlation gain. In the other cases, especially for the very
leaky and the loose headphones, the 18 Hz tone is hardly played back. This
is why the correlation gain approaches 0. The tight and the leaky cases can
easily be distinguished after about 0.2 seconds.
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3.4 Results

To evaluate the proposed approaches, simulations were performed. We are

interested in the FxLMS behaviour when the phase of the secondary path

changes more than 90°. Therefore, the secondary-path is changed every

second according to the following sequence: Stight → S2leaks → Stight →

Sloose → Stight. The passive attenuation P is modelled again by a second-

order low-pass at 500 Hz.

First, the noise-cancelling performance is evaluated for white-noise input.

Since this input has enough low-frequency components, the noise-cancelling-

analysis is used to detect whether the headphones sit regularly tight or not.

The ANC performance is compared for 4 systems:

� An ANC system with a static secondary-path model

� Zhang’s method

� Our approach A (whose secondary-path model Sφ provokes maximally

70° phase-error)

� Our approach B (with the noise-cancelling analysis)

The results are shown in Fig. 3.11. The static system operates with the

tight secondary-path model Ŝ1. As a consequence it increases the noise when

the secondary-path changes to S2leaks and it diverges completely when it

changes to Sloose. Zhang’s method keeps the FxLMS stable, but it shows no

noise-cancellation at all for the leaky and loose headphones. Our approach

A (with Sφ) yields a better result when the headphones are leaky or loose

because it still appropriately updates the filter coefficients. However, it

performs worse under tight wearing conditions because it does not track

changes in the input as fast as Zhang’s method due to the secondary-path
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Figure 3.11: ANC-performance for white noise input. Negative dB values
denote active noise cancellation whereas positive values mean that the noise
inside the headphones is being amplified.

mismatch. Our approach B finally, combines the robust stability for the loose

headphones with the good performance under tight wearing conditions.

For the second comparison, the primary noise input consists of white

noise that is filtered with a second-order high-pass at 600 Hz cut-off fre-

quency. This input signal lacks low-frequency components and therefore

the infrasound test-tone is used to detect changes in S instead of the noise-

cancelling analysis.

Fig. 3.12 shows the ANC results. Again, the FxLMS without secondary-

path considerations diverges and our approach A keeps the FxLMS stable.

For this input signal, Zhang’s constraint on the coefficient-update impedes

optimal noise-cancellation even when the headphones sit regularly tight.

Our approach C, with the infrasound-test tone however, yields optimal ANC

again.

The third comparison is done for a narrow-band input. White noise has

been filtered with a second-order peak filter at a centre-frequency at 800
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Figure 3.12: ANC-performance for high-pass filtered white noise. This time,
the approach with the infrasound-test tone yields the best results. Again,
the FxLMS can be kept stable with Ŝφ.

Hz. Again the infrasound test-tone is used since there is no low-frequency

excitation in the input signal.
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Figure 3.13: ANC-performance for a narrowband input. Here, the (non-
adaptive) model Ŝφ already yields optimal ANC. The approach with the 2
models and the infrasound secondary-path detection does not bring further
improvements. Zhang’s constraint on the coefficient-update impedes optimal
ANC for this narrowband excitation.
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Fig. 3.13 shows that approach C does not bring further improvement

over approach A this time. For this more deterministic signal, the slower

tracking-behaviour due to the imperfect secondary-path model Ŝφ does not

have a negative influence as long as P does not change drastically. However,

Zhang’s constraint on the coefficient-update is even more problematic for

this narrow-band input. It prevents the FxLMS from diverging, but our

approaches yield up to 10 dB more ANC.

3.5 Conclusion

The FxLMS is a very efficient algorithm for ANC-headphones that relies on

the knowledge of the secondary-path. It has been shown that the secondary-

path differs considerably between loose and tight headphones. As a conse-

quence, the FxLMS drives unstable if the headphones are suddenly lifted.

Three methods are proposed to overcome this problem. First, a stabilizing

secondary-path model can be derived from the measurements of the tight

and loose headphones. This secondary-path model does not only prevent

the FxLMS from diverging; it also shows optimal performance for narrow-

band excitation and almost optimal performance for white noise input. The

performance for broadband and high pass excitations is further improved

by implementing two secondary-path models in parallel. One for the reg-

ular tight use-case and another for the lifted headphones. The models are

weighted according to the current use-case. Two different methods demon-

strate how the current use-case can be detected.

If the headphones are loose, they cannot produce enough low-frequency

power for the anti-noise signal and noise cancellation fails. Thus one ap-

proach compares the input power with the residual-error power to detect

whether noise has been cancelled or not and deduces whether the head-

72



CHAPTER 3. SECONDARY-PATH MODEL IN FEEDFORWARD ANC

phones sit tight or not. If there is not enough low-frequency excitation for

a reliable comparison, an infrasound test-tone is played-back to determine

the low-frequency response of the secondary-path. The infrasound test-tone

cannot be heard by the user, but it suffices to reliably detect whether the

headphones sit tight or not. The presented methods are easy to implement

and very cost efficient. Additionally, simulations show that these methods

are superior to existing approaches in literature.
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Chapter 4

Prediction Filter Design for

Feedback ANC Headphones

based on: M. Guldenschuh, R. Höldrich, ’Prediction Filter Design for

Active Noise Cancellation Headphones’, IET Signal Processing, Vol. 7/6,

pp. 497-504, 2013

As already mentioned, digital signal processing allows for more flexibility in

filter design than analogue technology, but the latency of conventional audio

converters severely limits the ANC performance [Snyder and Hansen, 1990].

Chapter 2 showed a way how to maintain the power of adaptive feedforward

ANC with a reduced adaptation effort that allows for an analogue imple-

mentation. This chapter presents an alternative for a digital feedack ANC

systems: Due to the latency of the converters, the adaptive filter has to pre-

dict the noise to compensate for the delay. In the feedback ANC approach,

the prediction is based on noise that actually entered the headphone. This

has two advantages. Firstly, ANC is independent from the direction of in-

cident noise and also works in diffuse sound-fields [Zangi, 1993,Rafaely and
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Jones, 2002]. And secondly, the higher frequencies of the entered noise are

damped by the ear cup. This low-pass characteristic is advantageous when

it comes to signal prediction [Jain and Ranganath, 1981].

In literature, prediction is mostly done by different kinds of the least

mean squares (LMS) algorithm [Kuo et al., 2006,Gan et al., 2005,Kannan

et al., 2011] or by iterated one-step-ahead predictions [Oppenheim et al.,

1994]. Both algorithms are based on sequential updates of the prediction

filter and account for changes in the noise-signal characteristics. However

since most environmental noises, such as traffic noises, are broadband, the

signal characteristic of the penetrating noise mainly depends on the assumed

constant damping of the ear cups.

Therefore in this chapter, a prediction filter is designed that is only

based on this passive damping characteristic. The proposed filter does not

require run-time coefficient updates which makes its application simple and

economical, and still it yields better and more robust ANC results than the

adaptive methods.

The structure of digital feedback ANC is reviewed in the following sec-

tion and the prediction filter design is outlined in section 4.2 and 4.3. Section

4.4 shows simulation and measurement results and compares the proposed

prediction with LMS and iterated one-step-ahead predictions before the con-

clusion and an outlook are given in the last section.

4.1 Feedback ANC with Internal Model Controller

Headphones with feedback ANC, as depicted in Fig.4.1, only require one

microphone inside each ear cup. This microphone measures the residual

error signal e(t) which is the superposition of the entered noise d(t) and the

played-back anti noise y(t).
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Figure 4.1: Digital feedback ANC: An estimate of the noise inside the ear
cup d̂(n) is used as input for the prediction unit. The inverted output is
played back to cancel the entered noise d(t).

Due to the analogue/digital converters (ADC and DAC) and the group

delay of the secondary path S(s), there is a delay in the feedback loop; a

delay which considerably limits the bandwidth of the active noise control.

To increase the bandwidth, this delay has to be compensated by predicting

future samples of d.

Since d is not directly available, an estimate d̂ is obtained by subtracting

an estimate ŷ of the played-back anti-noise from the sensed residual error,

d̂ = e − ŷ. The estimate ŷ itself is obtained by feeding the output of the

prediction unit through a model Ŝ(z) of the secondary path and delaying the

signal according to the latency of the converters. Because of the internally

generated disturbance signal d̂, this feedback controller is called an internal

model controller (IMC). For a detailed description of IMCs, we refer to

[Morari and Zafiriou, 1989].
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4.2 Noise Signal Prediction

The prediction unit builds a weighted sum of the available past samples of

d̂ to predict a future noise sample d′,

d′(n+DDAC) =
L−1
∑

i=0

wid̂(n− i), (4.1)

where L is the prediction order, wi are the coefficients of the linear prediction

filter, and D
DAC

is the delay of the DAC in samples that has to be predicted.

Assuming that a correct estimate of d is given, d̂(n) equals d(n−D
ADC

),

where D
ADC

is the delay of the ADC in samples. With this assumption, the

prediction follows to

d′(n+D
DAC

) =
L−1
∑

i=0

wid(n−D
ADC

− i). (4.2)

Thus the current predicted sample d′(n) reads as

d′(n) =
L−1
∑

i=0

wid(n −D
ADC

−D
DAC

− i), (4.3)

and with the total delay D = D
ADC

+D
DAC

d′(n) =
L−1
∑

i=0

wid(n−D− i). (4.4)

This sum of products can be written as vector operation

d′(n) = w
T
d(n −D), (4.5)

where w is the vector of filter coefficients, and d(n − D) is a signal vector

starting from D samples in the past d(n − D) = [d(n − D), d(n − D −
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1), . . . , d(n −D− L+ 1)]T.

The predicted noise samples are played back by the loudspeakers of the

headphones which means that they are convolved with the impulse response

of the secondary-path. The convolution operation can be written with the

L×M large convolution matrix S. By using the commutative properties of

cascaded linear and time invariant filters, we apply S directly to the input

samples of the predictor and yield the ANC output y

y = w
TSd = w

T
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, (4.6)

where si are the coefficients of the N taps long impulse response of S. The

ANC error follows to

e(n) = d(n)−w
TSd(n−D), (4.7)

The minimum of the expected squared error leads to the well known

Wiener filter [Haykin, 2001], the optimal prediction solution,

wopt = (SRdS
T)−1Sr, (4.8)
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where Rd is the autocorrelation matrix of the latest available noise samples

Rd =
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and r is a vector of autocorrelation elements starting from lag D
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
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The matrix inversion in eq. (4.8) can be avoided with the Levinson-

Durbin algorithm [Vaidyanathan, 2007], but only if D = 1. The resulting

one-step-ahead predictor can still be used for a delay of D samples when

the linear prediction of eq. (4.2) is iterated D times. However, since the

prediction filter is stable, the recursive one-step-ahead prediction converges

to zero. Thus, the filter outputs have to be amplified to get a reasonable

multi-sample prediction.

To avoid this problem, gradient search algorithms are often used for

prediction problems with more than one sample delay. The normalized

filtered x LMS (fxLMS) e.g. use the noise estimate and the error signal to

recursively calculate the (multi-sample) prediction filter

w(n+ 1) = w(n) + µ
e(n)Ŝd̂

d̂Td̂
. (4.9)

Fig. 4.2 shows the block diagram of the feedback ANC system with an
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adaptive filter and the fxLMS update.
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Figure 4.2: Digital feedback ANC with an adaptive filter w and fxLMS
update.

The steady update of the filter is unnecessary if the main noise charac-

teristic always stays the same. And in our ANC application, this is the case

because the high frequencies of the outside noise x (as in Fig. 4.1 and 4.2)

will always be damped by the physical barrier P (s) of the ear cup. This

passive attenuation can be written as a convolution operation

d = Px,

where P is a convolution matrix of a low-pass impulse response that sim-

ulates the passive attenuation. With this, the autocorrelation matrix Rd

follows to

Rd = PT
RxP. (4.10)

Assuming that x is white noise, its autocorrelation matrix Rx reduces to an

identity matrix and Rd solely depends on P. Thus for white noise x, the
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calculation of the optimal prediction filter (eq.(4.8)) simplifies to

wopt = (SPTPST)−1Sp, (4.11)

where p is a vector of autocorrelation elements of the low-pass impulse

response starting from time lag D.

In section 4.4, it will be shown that this simplified prediction filter also

works for non-white noises, especially if the noises are broadband and their

spectral characteristic is still shaped by the passive attenuation P .

The big advantage of eq. (4.11) is that it allows for an a priori filter

design where no real-time calculation of the filter coefficients is needed. All

required data (S(ω) and P (ω)) can be measured and designed in advance.

Furthermore, we do not need to rely on an autocorrelation matrix Rx which

will never be obtained exactly in real life applications. The prediction filter

that follows from this a priori calculation can be used as a fixed prediction

filter in the ANC headphones.

4.3 Filter Design for Prototype Headphones

4.3.1 Passive Attenuation of the Headphones

The proposed non-adaptive prediction filter (eq.(4.11)) depends mainly on

the passive attenuation of the headphones. The passive attenuation itself

however slightly depends on the tightness of the wearing situation and the

direction of incident noise. The measurement results of the passive attenu-

ation are already presented in chapter 2. The median passive attenuation

over all measurements increases approximately with 6 dB per octave above

500 Hz and 12 dB per octave above 1000 Hz. This corresponds to a simple

cascade of two first order filters with cut off frequencies at 500 Hz and 1000
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Hz, respectively as can be seen in Fig. 4.3. This cascade could be used

for the design of the prediction filter. In order to achieve a more accurate

prediction, we propose to design a minimum phase filter from the median

values of the passive attenuation. The impulse response of this minimum

phase filter is then used for the prediction filter design.

80 160 315 630 1250 2500
−40

−30

−20

−10

0

d
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Amplitude distribution

 

 

low−pass cascade

Figure 4.3: Variation of the passive attenuation in third octave bands for
different users, different leakage situations, and different directions of inci-
dent sound. The boxes include 50% of the measured attenuations and the
whiskers show the distribution of all measurements. The bars in the middle
of the boxes denote the median values of the measured attenuations. The
passive attenuation can be approximated by a cascade of two first order
filters.

After these a-priori measurements in laboratory conditions, no further

online measurements of P are necessary for the design of the prediction filter.

The deviations of the real measured attenuation from the used median value

and their influence onto the ANC performance are examined in section 4.4.

4.3.2 Secondary Path

The feedback ANC system of Fig. 4.1 predicts the penetrated noise such

that it interferes destructively. However the anti-noise is played back and

modified by the secondary path S (i.e. the loudspeaker) of the headphones.
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For a perfect noise cancellation, this secondary path would be needed to

be compensated. The compensation of S is also indicated in eq.(4.11) by

the pseudoinverse of the convolution matrix (SST)−1S. However, since the

loudspeaker response S involves a delay, its inverse is acausal. A perfect

compensation of S is thus impossible. Two steps can nevertheless be under-

taken to approximately compensate for the secondary path:

1. The group delay of S can be estimated and this group delay can be

considered in the prediction filter design as additional time lag D̂ for

vector p in eq.(4.11).

2. The amplitude of S can be compensated with a single gain factor 1
g
.

The prediction filter is thus calculated as

wopt =
1

g
(PTP)−1p, (4.12)

where g is a mean amplitude value of S, and p is a vector of the low-pass

autocorrelation elements starting from time lag D + D̂.

Chapter 3 presented measurements of the secondary-path for four pro-

voked and very different leaky wearing situations. This time, we would like

to know the average secondary-path under regular real-life usage conditions.

Therefore, four persons were asked to put on the headphones normally for

measuring the secondary path. We added a measurement on a mannequin

which gives us a a total of ten measurements for the left and the right ear.

Fig. 4.4 shows the group delay variation of S for these measurements.

The group delay is not constant over the frequencies, but the prediction

filter design demands one fix time lag D̂. We therefore take the delay of the

main pulse in the impulse response of S as fix time lag. This delay is about

100 µs as can be seen in Fig. 4.5.
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Figure 4.4: Variation of the group delay of S, for 4 users and a dummy head.
Again, the boxes include 50% of the measured delays and the whiskers show
the distribution over all 10 measurements. The group delay increases largely
below 100 Hz.
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Figure 4.5: Impulse responses of S for 4 users and a dummy head in regular
wearing situations. The main pulses appear after about 100 µs.

Fig. 4.6 shows the amplitude variation of the secondary path for the

four test subjects and the dummy head. We propose to take the mean value

of the amplitudes between 200 and 600 Hz (i.e. 15 dB) as compensation

factor g because firstly this is the frequency band where we desire good

ANC and secondly the amplitudes in this band are very consistent for all
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Figure 4.6: Variation of S in third octave bands, for 4 users and a dummy
head. The amplitudes are roughly constant and do hardly vary above 100 Hz
while there are large differences between the users and a general high-pass
characteristic below 100 Hz.

test subjects. On the other hand, this means that frequencies below 100 Hz

will not always be cancelled in the best possible way since their amplitude

is lower than these 15 dB.

For the prediction filter design, we take the scalar value g = 15 dB that

we derived from the laboratory measurements. However, an exact model of

S is still required for the internal model controller in order to get a correct

estimate of the penetrated noise d̂. Therefore, it is crucial for the ANC

system that a good model Ŝ is acquired. While the passive attenuation P

was only measured once for all different use cases, the impulse response of Ŝ

has to be measured for every user because it may vary from the laboratory

measurement [Guldenschuh et al., 2012].

Since the headphones are used for ANC, the secondary path is usually

measured in very noisy conditions. We need at least 10 dB signal to noise ra-

tio (SNR) for the measurement because the secondary path S has a dynamic

of about 10 dB as can be seen in Fig. 4.6. Therefore,

� we firstly measure a sample of the penetrated noise and apply an A
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weighting filter to get an estimate of the dBA level.

� Secondly, we use a measurement signal with roughly the same spectral

characteristic as the penetrated noise, i.e. the low-pass characteristic

from Fig. 4.3.

� And thirdly, we play back the measurement signal with the dBA level

of the noise and increase the SNR to 10 dB by extending or repeating

the measurement signal ten times.

Ŝ is the discrete Fourier transform (DFT ) of the measurement response

yS divided by the DFT of the measurement signal xS (Ŝ = DFT (yS)
DFT (xS)

).

We propose a sequence of pink noise (which is filtered with the aforemen-

tioned low-pass filter) as measurement signal because it is unobtrusive and

might even not be noticed within the broadband noise from outside. How-

ever any broadband signal like sine sweeps or maximum length sequences

(MLS) will suffice this purpose [Weinzierl et al., 2009,Farina, 2007,Rife and

Vanderkooy, 1987,Xiang and Schroeder, 2003]. In any case, the unextended

measurement signal needs to be at least 50 ms long in order to be able to

measure frequencies down to 20 Hz. With the extension/repetition of the

measurement signal the whole procedure lasts a little bit longer than one

second; after this time, ANC can be started.

In literature, complex methods for online secondary path identification

are proposed [Zhang et al., 2003,Akhtar et al., 2006,Gan et al., 2005,Kuo

et al., 2006, Liu et al., 2010, Gholami-Boroujeny and Eshghi, 2010]. They

track changes in the secondary path during the active noise cancellation, but

the more advanced methods are only suitable for feedforward ANC. Also

the method of online noise-cancelling analysis that is proposed in chapter

3 is only suitable for feedforward ANC. The method of the injected infra-
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sound signal is also possible in feedback ANC headphones and it is pre-

sented in [Guldenschuh et al., 2013a], but it is limited to noises with little

frequency content below 20 Hz. Another method to track the constitution of

the secondary-path is presented in the following chapter. In this chapter, the

focus stays on the prediction filter and we only consider the initially mea-

sured secondary-path. The consequences of changes in the secondary path

onto our ANC system is neverthelessss examined in the following section.

4.4 Simulation and Measurement Results

The following simulations are based on measurement data from our proto-

type headphones. We have a total latency of approximately 190 µs, including

the loudspeaker response of the headphone and the converter latency. This

corresponds to D̂+D = 8 samples at 48 kHz sampling frequency. If not

indicated differently, we use a 0.05 seconds long impulse response for S and

a 11 ms long version of the same impulse response for Ŝ.

4.4.1 Investigation on the Spectral Characteristic of the Noise

The 8-samples fixed prediction filter is compared with adaptive methods like

LMS and iterated one-step linear prediction. Although the fixed prediction

filter is derived under the assumption of white input noise, this comparison

is now done for noises with non-white spectral characteristics:

� Static and broadband aeroplane noise.

� Time varying narrow band noise of an accelerating engine.

The filters of the adaptive as well as of the fixed predictor all have a length of

32 samples and the step size of the normalized LMS algorithm is set to 0.003

if not indicated differently. This step size is a factor 6 below the maximum
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stable value for the given inputs and it yields a convergence after less than

20 ms as can be seen in Fig. 4.7. For the following comparison, only the

steady state error after convergence is considered.
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Figure 4.7: Learning curve of the LMS algorithm for the broadband aero-
plane noise. The curve shows the power of the residual error related to the
power of the noise signal d over time in dB.

Fig. 4.8 shows the spectrum of the aeroplane noise and the spectra of the

residual noises after ANC. Our fixed prediction filter yields slightly better

results than the iterated one-step prediction filter and - at the same time -

consumes far less processing power. The LMS performs slightly better than

the two prediction filters between 150 and 300 Hz, and it produces a smaller

error above 2000 Hz. However, it therefore only cancels noise up to 600 Hz,

which makes it less favourable compared to the fixed prediction filter.

Denote that the LMS filter converges to theH2 optimal Wiener filter and

that the fixed prediction filter can only reach a larger bandwidth because

it allows more error in the upper frequency band. In [Rafaely and Elliott,

1999], a constraint on the noise enhancement in the upper frequencies is

suggested for ANC in a headrest. In the case of headphones however, the

error in the upper frequency bands has a negligible SPL because of the

pronounced passive attenuation.
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Figure 4.8: Spectra of the aeroplane noise d that entered the headphones
and the residual noises after ANC with the proposed prediction filter, an
LMS filter and after iterated 1-step ahead prediction. The 1-step and the
fixed prediction filters yield ANC up to 1.5 kHz, while the LMS only cancels
noise up to 600 Hz. The deteriorated ANC of all methods below 80 Hz
results from the long group delay of the loudspeaker in the low frequency
band.

The excitation noise of the previous simulation was broadband. Thus

the penetrated noise d was above all coloured by the passive attenuation

P . We could therefore expect a good result of the proposed fixed prediction

filter. In the next simulation, we use the noise of an accelerating engine

which is narrow band and time varying.

Fig. 4.9 shows that the LMS algorithm has advantages here, but only if

the step size is increased to µ = 0.01. However, this step size is only possible

if a very accurate model Ŝ is implemented. It bears the risk of driving the

LMS algorithm unstable for wrong estimates of S as can be seen in the

following section. A solution could be an adaptable step size as suggested

in [Akhtar et al., 2006]. In either case, the proposed fixed prediction filter

yields a much larger ANC bandwidth up to 1.5 kHz again.

90



CHAPTER 4. PREDICTION FILTER DESIGN FOR FEEDBACK ANC

10
2

10
3

30

40

50

60

70

Frequency / Hz

S
P

L
 /
 d

B

 

 

noise

fix. pred. filter

LMS µ = 0.003

LMS µ = 0.01

Figure 4.9: Engine noise d that entered the headphone and the residual
noises after ANC. Again, the fixed prediction filter yields ANC in a larger
band width than the LMS algorithm. However, if the step size µ is increased
to 0.01, the LMS performs better at the spectral peak around 120 Hz.

4.4.2 Investigation on Variations in the Secondary Path and

the Passive Attenuation

In the previous simulations, we showed that the proposed fixed prediction

filter yields the largest ANC bandwidth independently of the spectral char-

acteristic of the noise. Here, we investigate the influence of variations in

S and P on the ANC performance. We investigate the influences of these

transfer functions separately although in reality they might be coupled. For

example, a leaky wearing situation might deteriorate the passive attenuation

and, at the same time, weaken the reproduction of low frequencies in the

secondary path.

First, we compare the ANC of the proposed prediction filter for two

different passive attenuations. The frequency responses of these attenuations

are shown in Fig. 4.10.

In the simulation, the secondary path stays unchanged and the excitation

signal is pink noise. Although one measured passive attenuation is much
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Figure 4.10: Two different frequency responses of the passive attenuation.
The solid one was measured under tight wearing conditions. Therefore, the
passive attenuation already starts at 400 Hz. The dashed frequency response
does hardly attenuate up to 1 kHz. It was measured under a leaky condition.

poorer than the other, the difference of the ANC in third octave bands from

20 Hz to 4000 Hz stays below 0.5 dB. Thus the exact knowledge of P is not

necessary for the prediction filter design.

Next, we investigate the influence of a wrong secondary path estimate

on the noise prediction. Again, in reality a change in S will not only affect

the prediction but the whole feedback ANC system, where a model of S is

also needed to estimate the penetrated noise d̂. However, we will investigate

the influences separately to gain a deeper insight in the ANC system.

Fig. 4.11 shows the frequency response of the used S and Ŝ. While

Ŝ has a very flat frequency response, S has a strong drop off below 200

Hz. On the one hand, this means that the given gain correction 1
g
will not

hold for those frequencies, and we have to expect a poor performance at low

frequencies. On the other hand, our prediction filter does not depend on

the exact frequency response of S and is thus robust against changes. The

fxLMS algorithm however needs a good estimate Ŝ for its coefficient update

as indicated in eq.(4.9).
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Figure 4.11: Real and estimated secondary path. They differ considerably,
especially below 200 Hz.

Fig. 4.12 shows that the fxLMS with a step size of µ = 0.003 diverges,

while the fixed prediction filter still yields an ANC of more than 10 dB

between 100 and 200 Hz.
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Figure 4.12: Pink noise d and the residual noises after ANC with a wrong
estimate of S in the prediction unit. The fxLMS algorithm which depends
on an accurate model of S diverges, while the proposed prediction filter still
yields a good ANC performance.

Finally, we consider the full consequences when S and P change after the

initial identification process. Thus, in this simulation also the estimation
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of d̂ via the feedback branch through Ŝ is affected. The feedback ANC

system with the fxLMS algorithm runs unstable before one second. With
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Figure 4.13: Pink noise d and the residual noises after ANC with a wrong
estimate of S also in the feedback branch Ŝ which estimates d̂. While the
fxLMS runs unstable within 1 second. The proposed prediction filter still
yields good results above 100 Hz, but increases the error considerably below
100 Hz.

the transfer functions from Fig. 4.11, the ANC system with the proposed

prediction filter still yields a stable feedback, but it produces an error of more

than 10 dB around 80 Hz as can be seen in Fig. 4.13. In general, it has to

be said that - without further constraints - stability cannot be guaranteed

for all deviations from the initially measured secondary path. However, a

robust IMC design that accounts for uncertainties in the secondary path

model can be found in [Rafaely and Elliott, 1999] and [Kinney et al., 2008].

4.4.3 Measurement Result

Finally, we implemented the feedback ANC system on a digital signal pro-

cessor (DSP) in order to compare the proposed fixed prediction filter with

the LMS algorithm under real conditions. In the implementation, we use a 6

ms impulse response of Ŝ instead of the 11 ms impulse response. The shorter
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impulse response saves computational power, especially for the fxLMS which

needs two convolutions with Ŝ: One for the update of its coefficients and a

second one to get the estimate d̂ of the penetrated noise (which is generally

needed in the feedback ANC with an internal model controller.)

As excitation signal, we used pink noise. Fig. 4.14 shows the results of

the measurement.

10
2

10
3

50

55

60

65

70

75

80

85

Frequency/Hz

S
P

L
 /

 d
B

 

 
noise s

fix pred. filter

LMS

Figure 4.14: Pink noise d and the residual noises after ANC. The proposed
prediction filter yields a much better ANC than the fxLMS algorithm be-
tween 200 and 1500 Hz with the cost of producing more error above 1500 Hz.
Below 50 Hz, the loudspeakers do not produce enough SPL and additionally,
the large group delay of S in these frequencies disables a better ANC.

The proposed prediction filter yields ANC up to over 1000 Hz while the

fxLMS algorithm only cancels noise up to 400 Hz. As already shown in the

simulations, the fxLMS algorithm is much more sensitive to uncertainties

in the secondary-path estimate. Also, the adaptive algorithms are more

sensitive to sensor noise, which is why the use of a Kalman filter is proposed

in [Oppenheim et al., 1994]. Our prediction filter is very robust against

sensor noise and inaccurate estimates of S and, at the same time, much

more economical and efficient than the adaptive methods. It only produces

a larger error in the high frequency band, which can be accepted since the
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passive attenuation at these frequencies is already very good.

4.5 Conclusion and Outlook

This chapter presented a new predictive solution for one of the main prob-

lems in digital feedback ANC headphones: The unavoidable delay of the

secondary path and the AD/DA conversion. It has been shown that a main

part of the noise characteristic is determined by the passive attenuation due

to the ear cups. With this information, we design an a priori prediction

filter that does not need any real-time coefficient updates and is therefore

very economical. To the knowledge of the author, this elegant prediction

solution, elaborated by [Jain and Ranganath, 1981, Jain & Ranganath],

has never been suggested for feedback ANC applications. Simulations show

that this filter reaches equal - if not better - results than adaptive predic-

tion methods like the LMS or an iterated one-step-ahead linear prediction.

At the same time, it is more stable against changes in the acoustics of the

headphone. For a prototype system, we could show that the feedback ANC

system can be kept very simple without any adaptation, but for a com-

mercial product some kind of online secondary path estimation or stability

check will be necessary. The proposed prediction filter might also be used

in hybrid ANC systems as proposed in [Song et al., 2005,Rafaely and Jones,

2002,Schumacher et al., 2011], where it is expected to lead to improved ANC

results, too.
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Chapter 5

Detection of Secondary-Path

Irregularities in Feedback

Active Noise Control

Headphones

based on: M. Guldenschuh, R. de Callafon, ’Detection of Secondary-Path

Irregularities in Active Noise Control Headphones’ IEEE Transactions on

Audio, Speech, and Languate Processing, Vol.22, No. 7, pp: 1148-1157,

2014

The last chapter showed a practical design procedure for digital feedback

ANC. It has been shown that the proposed fixed prediction filter is more

robust against changes in the secondary-path than other methods, but it

does not contain a detailed treatment of stability. This chapter puts more

emphasis on robust stability and proposes a method to detect changes in

the secondary-path. Although it has been shown that the adaptive predictor

97



CHAPTER 5. SECONDARY-PATH DETECTION IN FEEDBACK ANC

has hardly any advantages over the fixed prediction filter, this chapter uses

an adaptive predictor because it allows monitoring the secondary path.

Fig. 5.1 shows a typical realization of a digital feedback ANC-system

(compare [Kuo and Morgan, 1999]). It uses a model Ŝ(jω) of the secondary-

path (including ADC and DAC) to estimate the primary noise d(n). This

internal model controller (IMC) allows designing the filter W (jω) as feed-

forward controller [Morari and Zafiriou, 1989] and therefore as Least-Mean-

Square (LMS) adaptive filter. An adaptive filter is beneficial when facing

noises with changing spectral characteristics, and the LMS is a cost efficient

adaptive algorithm [Haykin, 2001].

+

+

d̂
S

Ŝ

d

-
e

Ŝ LMS

W

Figure 5.1: Feedback ANC with an internal model controller: The internal
model Ŝ(jω) of the secondary-path is used to derive an estimate d̂(n) of the
noise. Besides, it is required to filter the input of the LMS adaptation. The
AD- and DA converters are subsumed in S and Ŝ, respectively.

The performance and stability of an IMC feedback ANC-system depends

on the accuracy of the secondary-path model Ŝ(jω). An initial nominal

model can easily be determined off-line by injecting an appropriate broad-

band signal (e.g. a swept cosine) into the headphones and measuring the

system response with the microphones inside the ear-cups. The secondary-

path S(jω) however changes considerably once the headphones are lifted or
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pulled away completely as is shown in chapter 3. The deviation of S(jω)

from the nominal model Ŝ(jω) can then drive the system unstable.

In [Song et al., 2005], it is shown that an additional analogue feedback-

controller can reduce the influence of changing S(jω) onto the error sig-

nal, but the analogue controller design is non-trivial and stability cannot

be assured in general. Consequently, the controller has either to incorpo-

rate an uncertainty about the secondary-path model [Rafaely and Elliott,

1999,Rafaely and Elliott, 2000,Kinney et al., 2008] or an on-line secondary-

path estimation has to be implemented that tracks changes in S(jω) [Gan

et al., 2005,Akhtar et al., 2006,Zhang et al., 2003]. The first method suffers

from a loss of performance under optimal conditions and/or requires real-

time Fourier transforms to check the uncertainty constraints; and the latter

method fails when there are large and sudden changes in the secondary-path,

and it requires the injection of a broadband noise into the headphones which

is counter-productive for a noise-cancelling application. Chapter 3 used an

infrasound signal to detect changes in S in feedforward ANC headphones.

In [Guldenschuh et al., 2013a], it has been shown that the infrasound mea-

surement can be used for feedback ANC, too, but only if there is little low

frequency excitation in the ambient noise.

In this chapter, a simple and efficient method is introduced to iden-

tify changes in the secondary-path without the need of injecting additional

noise into the headphones and without the need of real-time Fourier trans-

forms. In particular, it is shown that lifting and pulling away the headphones

mainly affects the low frequency region of S(jω) and that the adaptive filter

W (jω) which tries to invert S(jω) can be used to detect those low frequency

changes. Once this irregularity in S(jω) is detected, the LMS adaptation

is interrupted and the filter temporarily changes to a stable default-setting.
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This way, instabilities are avoided even during sudden and large changes in

S(jω).

In the given adaptive feedback-ANC-system, two stability issues arise:

(i) Stability of adaptation and (ii) stability of the feedback loop. First,

the theoretical conditions for both issues are discussed separately in section

5.1 and 5.2. Then experimental data from prototype headphones are pre-

sented in section 5.3. With the experimental data, the adaptation stability

is reviewed in section 5.4 and the feedback stability in section 5.5. Finally,

experimental results of our algorithm are compared with existing approaches

from literature in section 5.6.

5.1 Theoretical Considerations for the Stability of

Adaptation

The sensitivity function T (jω) (i.e. the transfer function from the input

noise D(jω) to the residual error E(jω)) of the feedback system in Fig. 5.1

reads as (with omitted dependency on jω)

T =
E

D
=

1

1 + S W

1−ŜW

=
1−WŜ

1−W (Ŝ − S)
. (5.1)

In the case of S = Ŝ, the denominator of T is equal to unity and the filterW

becomes W = Ŝ−1 = S−1 in order to minimize |T |. However, the inverse of

S in general will not exist since S will not have minimum phase. Thus, the

filter W can only try to compensate for the phase delay and the dynamics

of S e.g. in an H2 or H∞ optimal sense. The accuracy of the compensation

depends on the bandwidth in which S shall be compensated. It is easier to

compensate for the phase delay and the magnitude at a single frequency than
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over a broad bandwidth. Thus, the optimal filter W depends on the current

spectral characteristic of the input noise d. It is therefore advantageous to

implement an adaptive filter W that yields the compensation in the band

where it is currently needed. Note that the adaptive filter tries to do a

system identification of the inverse secondary-path. This fact will be used

later to detect changes in the secondary-path.

Stability of LMS Adaptation

The convergence properties of the LMS have already been treated in chapter

2. For this chapter, it is only important to recall that phase errors between

S and Ŝ larger than 90° can lead to the divergence of the adaptive filter;

and that only a penalty on the filter gain can keep the FxLMS stable in

these cases. The penalty is introduce in the cost function of the LMS as

J(w) = E{e2 + γ(wTw)} and it leads to the leaky FxLMS algorithm whose

normalized version reads as

w(n+ 1) = (1− µγ)w(n) + µ
e(n)Ŝd̂(n)

d̂T(n)d̂(n)
, (5.2)

where Ŝ is the convolution matrix of the secondary-path model and d̂(n) is

a vector of the latest L estimated noise input-samples as in Fig. 5.1. The

leaky LMS prevents divergence and avoids large filter gains in general which

can be important in real life conditions [Kuo and Morgan, 1999] as will also

be shown in section 5.4.2.
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5.2 Theoretical Considerations for Feedback Sta-

bility

5.2.1 Constraint on the Real Part of the Open Loop

The stability of the feedback loop depends on the poles of the sensitivity

function T in eq. (5.1) that all have to lie within the unit circle in the z-

plane. Since we can assume stable plants, stability is ensured if and only if

the open loop transfer function L = WS

1−WŜ
does not encircle the point (-1,0)

in the z-plane [Morari and Zafiriou, 1989]. Visually, it is easy to check if the

Nyquist contour of L encircles the point (-1,0), but analytically and even

numerically it is less so. One sufficient, yet not necessary, condition would

be to force L to lie on the right hand side of (-1,0). This can be checked

analytically, because it means that the real part of L is constrained to

ℜ
{

WSi

1−WŜ

}

> −1. (5.3)

Without real-time information about the secondary-path, every possible

variation Si(jω) has to be tested in condition (5.3). This makes the condition

only suitable if it is known that the secondary-path can only vary between a

few distinct realizations. Even for one realization of S(jω), condition (5.3)

is computationally quite demanding. The more variations in S(jω) that are

possible, the more processor intensive becomes checking the condition.

5.2.2 Constraint on the Norm of WU

A less processor intensive constraint results from regarding the deviation

of the nominal model from the real secondary-path as additive uncertainty

U(ω) = |Ŝ(jω)−Si(jω)|. We are now interested in the maximum uncertainty
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Umax(ω) over all possible variations Si(jω). Umax(ω) can be regarded as

radius around every frequency point ω of the Nyquist contour of Ŝ(jω).

Thus, all Si(jω) have to lie within this band of radii. The uncertainty

radius around the frequency points of the open loop follows to

r(jω) =

∣

∣

∣

∣

∣

W (jω)Umax(jω)

1−W (jω)Ŝ(jω)

∣

∣

∣

∣

∣

. (5.4)

L̂(ω)

Lmax(ω)

ω2

ω1

ω1

ω2

r(ω2)

r(ω1)

ℑ

ℜ

(-1,0)

Figure 5.2: Graphical derivation of the stability condition: The nominal
open-loop L̂ is displayed together with Lmax the open loop with the largest
uncertainty. No open-loop with a smaller uncertainty can encircle the point
(-1,0) if the distance of L̂(jω) from (-1,0) is larger than r(jω).

From Fig. 5.2 it is clear that no open loop (for any Si) can encircle the

point (-1,0) if the distance of the nominal open loop L̂ from (-1,0) is larger

than r. Mathematically expressed, this means

∣

∣

∣

∣

∣

1 +
WŜ

1−WŜ

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

WUmax

1−WŜ

∣

∣

∣

∣

. (5.5)

The condition can be simplified to

1 > |WUmax| (5.6)
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which yields the practical constraint for IMC [Morari and Zafiriou, 1989]

|W ( jω)| < 1

Umax(ω)
. (5.7)

This would be a necessary and sufficient condition if the circles of uncer-

tainty would be fully covered by different realizations of S. However, it is a

rather conservative constraint if there are only a few distinct secondary-path

realizations in the band of uncertainty.

In each case, it only requires the frequency domain representation of

W (jω) and is far less computationally demanding than constraint (5.3).

Still, it is advisable to implement the frequency-domain LMS. The resulting

filter W (jω) can be transformed into the time-domain to avoid the latency

of block-processing in the anti-noise path as in [Morgan and Thi, 1995,Park

et al., 2001]. In the following, we show a constraint that allows implementing

the FxLMS completely in the time-domain.

5.2.3 Constraint on Single Frequency Bins of |WU |

The poles of a system are its resonances and they can be recognized by

peaks in the magnitude response. The closer a pole (or a complex conjugate

pole-pair, respectively) approaches the unit circle, the sharper the resonance

becomes until it can be heard as ringing. As long as the pole stays inside

the unit circle, the ringing will eventually die out, but as soon as the pole

crosses the unit circle, the system looses its stability.

It is thus very likely that the instability is caused by a distinct pole or

pole-pair at a distinct frequency. If the resonance frequencies that most

likely turn into unstable poles are known, it can be sufficient to check con-

straint (5.7) only at the corresponding frequency bins.
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For a single frequency bin k, the squared constraint (5.7) reads as

∣

∣

∣

∣

∣

1

L

L
∑

l=1

wle
2πj k

L
l

∣

∣

∣

∣

∣

2

<
1

U2
max(k)

(5.8)

where wl are the coefficients of the L taps long filter w. The exponential

Fourier Kernel can be separated into cosine and sine operations and the

squared constraint avoids computing the root. This decomposition yields a

real numbered expression

(

1

L

L
∑

l=1

wl cos

(

2π
k

L
l

)

)2

+

(

1

L

L
∑

l=1

wl sin

(

2π
k

L
l

)

)2

(5.9)

on the left hand side of inequality (5.8) that has a complexity of only O(N).

Constraint (5.7), for comparison, has a complexity of at least O(N log2N)

because it requires a complete Fourier transform of w(l).

5.2.4 Measures to Preserve Feedback Stability

We know that feedback stability cannot be guaranteed if one of the above

conditions is violated. In [Rafaely and Elliott, 1999] and [Rafaely and Elliott,

2000] it is shown, that constraint (5.7) can be directly incorporated in the

controller design, and in [Kinney et al., 2008], the same constraint is checked

before each filter update. We choose the latter approach, since it can be

applied to any of the above introduced constraints.

If one of the above constraints is violated, W must not be updated. In-

stead, it makes sense to change W to a stable default filter because if S

deviates from Ŝ, the FxLMS update is not reliable anymore. From equation

(5.7), we know that the default filter W̃ yields stability if its absolute value

is smaller than the inverse of the maximum uncertainty. The easiest imple-

mentation of such a time-domain default filter is a scaled Kronecker impulse
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δ(l):

w̃l =
δ(l)

max(Umax(ω)) + ǫ
, (5.10)

where l is the index of filter coefficients and ǫ is a small quantity that ensures

the inequality of (5.7).

In order to prevent time variances during the filter process, w should not

change abruptly, but converge smoothly to the scaled impulse. Therefore

the difference ∆w = w̃ −w(n) between the coefficients of the default filter

w̃ and the current filter w(n) is used as update. If the difference-vector

is normalized and scaled by the step-size parameter µ, the update yields a

similar effective step-size as the normalized FxLMS

w(m+ 1) = w(m) + µ
∆w

∆T
w∆w

, (5.11)

where m = n . . . n +M with M = round
(

∆
T
w∆w

µ

)

. The time index m of

the interim update thus starts with the recent sample n and the update is

repeated M times until w(m) = w̃. The difference vector ∆w stays the

same during the whole interim update which results in a linear fade to w̃.

After the given number of repetitions, the NFxLMS is applied again.

Apart from possible short breaks, the NFxLMS is thus constantly running

also if S constantly deviates form Ŝ. In that case, the filter starts growing

again and it eventually violates one of the constraints again. It thus will

constantly grow and scale back to the stable impulse.

5.3 Responses of Prototype Headphones

It has been shown that both, the stability of the LMS adaptation and the

feedback stability, depend on the deviation of S from Ŝ. Therefore, the
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following sections take a closer look at the variations of the secondary-path

once again and review both stability issues with the experimental data.

In chapter 2, secondary-path measurements were presented that cover

the extreme cases of completely loose and very tight headphones as well as

two further secondary-paths variations between these cases. Fig. 5.3 shows

once again the bode plots of the measurements.
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Figure 5.3: (a) Magnitude- and (b) phase response of the secondary-path for
tight, leaky and completely loose headphones. The increased leakage leads
above all to a magnitude drop-off at low frequencies.

The tight wearing situation is the regular use-case; consequently the

secondary-path measure under tight condition will be the nominal model Ŝ.

This however implies that there is a large uncertainty on this model if the

headphones are lifted as shown in Fig. 5.4.

The maximum uncertainty Umax(ω) is the one of the three uncertainties

that has the largest magnitude at the given ω. As can be seen in Fig. 5.4,

Umax(ω) is mostly determined by the secondary-path of the completely loose

(open) headphones. However, below 1000 Hz, the uncertainty of S with two

inserted leaks is equally large and even slightly larger around 300 Hz.

In [Wang et al., 2013], the convergence of a narrowband adaptive feed-

back system is investigated. A constraint on the step size µ is deduced to
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Figure 5.4: (a) Magnitude of the additive uncertainty U(ω) = |Ŝ(jω) −
Si(jω)| and (b) phase error | arg Ŝ(jω)−arg Si(jω)| of differently positioned
headphones.

keep the system stable, even under imperfect nominal models. The influ-

ence of the secondary-path deviations is then examined separately for the

FxLMS convergence and for the feedback stability in order to gain a better

understanding of the system properties. We will adopt this methodology

and treat the FxLMS stability in the following section and the feedback sta-

bility in section 5.5, where we will again apply the Nyquist criterion because

it is suitable for broadband analysis, too.

5.4 Experimental Considerations for the Stability

of Adaptation

5.4.1 Robustness Against Phase Mismatch

In Fig. 5.4b, it can be seen that the phase error between the nominal

secondary-path model Ŝ and the secondary-path of the open headphones

is exceeding 90° around 1300 Hz. The usual FxLMS algorithm would thus

diverge if the headphones were lifted, as it is also shown in [Wang et al.,
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2013]. It is therefore necessary to implement the leaky FxLMS as described

in section 5.1.

The leakage factor γ, which is a trade-off between stability and excess

error, has to be determined empirically. We thus simulate the normalized

leaky FxLMS with the given measurement data in three test set-ups:

1. A narrowband excitation around 1300 Hz with the secondary-path of

the open headphones Sopen. This is the set-up with the largest phase

error, as already mentioned.

2. A broadband excitation with Sopen.

3. A broadband excitation with the secondary-path of the headphones

with two leaks S2 because it also slightly exceeds the phase error of

90°.

The broadband excitation is white noise that is filtered with a cascade

of two first order low-pass filters with 500 Hz and 1000 Hz cut-off frequency,

respectively. This low-pass cascade simulates the passive attenuation of the

headphones as was shown in chapter 4 and yields 33 dB attenuation at 3500

Hz. Since we do not expect more than 30 dB of noise cancellation, aliasing

components below -33 dB do not influence the ANC. Thus, no further anti-

aliasing filter is required if the sampling frequency fs is above 7000 Hz.

We choose fs = 7350 Hz because it is one sixth of 44.1 kHz, which is a

common sampling frequency in audio technology. We set the filter length

to L = 6 taps and choose the step size according to the largest eigenvalue

of the input autocorrelation matrix as µ = 1
2λmax

which yields the fastest

convergence [Kuo and Morgan, 1999].

We test the leaky NFxLMS in open loop condition in order to decouple

the convergence of the filter from the possible feedback instability as in
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[Wang et al., 2013], and find that γ = 0.005 is the smallest leakage factor that

yields a stable update. Fig. 5.5 shows the related error as edB = 10 log ē2[n]
d̄2[n]

,

where ē2[n] and d̄2[n] are smoothed by a moving average over the error and

the input signal, respectively.
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Figure 5.5: The related residual error edB for 3 worst case scenarios: A
narrowband excitation at 1300 Hz for Sopen, and a broadband excitation for
Sopen and S2. The excitation at 1300 Hz causes an error which lies 1.4 dB
over the excitation level, but the adaption stays stable in all three cases.

In the broadband cases, the filter even yields a small noise reduction. In

the narrowband case, the filter causes an amplification of the input noise of

1.4 dB which on the one hand proves that the NFxLMS does not converge

to the optimal solution anymore, but on the other hand the simulation also

shows that the filter coefficients stay bounded because of the leakage factor

γ.

5.4.2 Robustness Against Excessive Amplification

The robustness against phase errors in Ŝ is not the only advantage of the

leaky LMS. It also makes the system more robust against sensor noise and

non-linearities in S that might occur at loud playback volumes.

Fig. 5.6 compares the converged filter of the previous leaky-NFxLMS

simulation with the optimum filter Wopt that yields the minimum mean
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square error (MMSE). Since there is hardly any high-frequency excitation,

the filterWopt can boost these high frequencies without significantly increas-

ing the error.
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Figure 5.6: The filterW tries to match the inverse of S. Without constraints
(MMSE), it has the freedom to heavily boost the high frequencies since
there is no noise excitation in this band (due to the passive attenuation of
the headphones). (For convenience, the SPL of the excitation d is scaled
to approx. 18 dB.) The leaky LMS (with γ = 0.005) minimizes the filter’s
energy which leads to a desirable roll-off at high frequencies.

The boost of the high frequencies is detrimental to performance in a real

life condition, where e.g. sensor noise or estimation errors of d̂ would be

strongly amplified. The leaky NFxLMS solution on the other hand prevents

the filter from excessively amplifying the high frequencies. It matches the

inverse of S less accurately and has a larger excess error below 4000 Hz, but

it still yields more than 10 dB ANC between 100 and 500 Hz as can be seen

in Fig. 5.7.
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Figure 5.7: Sensitivity function of the NFxLMS for S = Ŝ with and with-
out leakage factor. Without leakage factor, the NFxLMS converges to the
MMSE but it produces a large gain on the high frequencies. With leakage
factor, the sensitivity function rolls off at high frequencies but it does not
yield the optimum performance below 4000 Hz.

5.5 Experimental Considerations for Feedback Sta-

bility

5.5.1 High Frequency Uncertainty

A large uncertainty at high frequencies is inherit in most physical systems

since small changes in the plant already lead to large phase differences at

high frequencies. In our case, this uncertainty is especially critical around

3000 Hz because the adaptive filter amplifies this frequency band as it was

shown in the previous simulation in Fig. 5.6 and 5.7.

It amplifies the middle and high frequency band because the raising slop

in W causes a negative group delay which is required to compensate for the

delay in the secondary path. The adaptive filter is ’allowed’ to amplify the

high frequencies because there is hardly any noise excitation in this band,

and consequently, the amplification has little influence on the error power.

The amplification can be penalized if the error is weighted stronger at

high frequencies. With the weighting filter H(jω), the cost function of the
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ANC system reads as

J(w) = E{eTHTHe}, (5.12)

where e is a N taps long vector of error samples and H is the convolution

matrix

H =














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

, (5.13)

with hi being the coefficients of the M taps long impulse response of the

weighting filter H(jω).

With a neglected secondary path, the cost function can also be written

as

J(w) = E
{(

dT −wTD̂
)

HTH
(

d− D̂w
)}

, (5.14)

where D̂ is a matrix of estimated input samples

D̂ =























d̂[n] d̂[n−1] . . . d̂[n−L+1]

d̂[n+1] d̂[n]
. . . d̂[n−L+2]

...
. . .

. . .
...

d̂[n+N−1] d̂[n+N−2] . . . d̂[n+N−L]























. (5.15)
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This leads to the update

w[n+ 1] = w[n] + µD̂[n]HTHe[n], (5.16)

and by using the convolution operator * instead of the convolution matrix,

the normalized FxLMS follows to

w[n+ 1] = w[n] + µ
(h ∗ e[n])

(

ŝ ∗ h ∗ d̂[n]
)

d̂T[n]d̂[n]
, (5.17)

where ŝ and h are the impulse responses of Ŝ and H, respectively.

The block diagram of the new update is shown in Fig. 5.8. The filters

H can be seen as whitening filters for the band limited signals d̂ and e.

+

+

d̂
S

Ŝ

d

-
e

HŜ LMS

W

H

Figure 5.8: Block diagram of the adaptive feedback system with an addi-
tional filter H that penalizes the high frequency error.

A complete whitening however would be counterproductive because a

band limitation is necessary for the required signal prediction. It is therefore

advisable to use a high shelf filter. Fig. 5.9 compares three different shelving

filters with corner frequencies at 2000 Hz, 3000 Hz and 4000 Hz, respectively,

and shows the consequences onto the adaptive filter gain.
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Figure 5.9: (a) Magnitude response of the shelving filter H for three differ-
ent corner frequencies. (b) Magnitude response of the converged filter W
dependent on the used shelving filter.

A shelving filter at 2000 Hz penalizes the frequency band around 2000

Hz very strongly. The shelving filter at 4000 Hz on the other hand has too

little influence onto this frequency band. Fig. 5.9b shows that the shelving

filter at 3000 Hz is the most suitable to penalize the error signal.

The alternative to penalizing the error in the upper frequency band is

to directly penalize the filter gain in this band. The N taps of w can be

weighted with the magnitude response of the high shelf filter H(jω) by the

convolution operation Hw. The cost function with the frequency dependent

penalty term then reads as

J(w) = E{e2 + γ(wTHTHw)}. (5.18)

The frequency dependent penalty on the filter norm results in a frequency

dependent leaky FxLMS

w[n+ 1] =
(

I− µγHTH
)

w[n] + µ
e[n]Ŝd̂[n]

d̂T[n]d̂[n]
, (5.19)

where I is the identity matrix.
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Fig. 5.10 shows the magnitude response of the converged filters W for

the frequency dependent leaky FxLMS with the three shelving filters from

Fig. 5.9a. The shelving filter at 2000 Hz yields the most suitable penalty

for the adaptive filter gain.
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Figure 5.10: Magnitude response of W for the frequency dependent leaky
FxLMS dependent on the shelving filters from Fig. 5.9a.

The shelving filter H(jω) results in a frequency dependent leakage (I−

µγHTH) that depends on the step size µ and on the trade-off factor γ. Fig.

5.11 shows this frequency dependent leakage that results from the shelving

filter at 2000 Hz with γ = 0.0005, and compares it with a trade-off factor

that is twice as large and half as large, respectively.

Fig. 5.12 compares the ANC results for the two different approaches:

(i) The frequency dependent penalty on the error and (ii) the frequency

dependent penalty on the filter gain. It can be seen that both approaches

yield a very similar performance.

Both, the frequency dependent leaky LMS (with an empirically derived

γ) and the additional shelving filters on e and d̂ successfully reduce the filter

gain above 2000 Hz, but the large uncertainties for the lifted headphones are

still a problem and they require further constraints on the adaptive filter W

that will be treated in the following section.
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Figure 5.11: The high-shelf penalty on the filter gain results in a frequency
dependent leakage on w that has a low shelf characteristic. The resulting
leakage does not only depend on the original shelving filter H but also on
the parameters γ and µ.
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Figure 5.12: Sensitivity function for the FxLMS with an additional shelving
filter at 3000 Hz and for the frequency dependent leaky FxLMS with a
shelving filter at 2000 Hz.

5.5.2 Low Frequency Uncertainty

The measurements from Fig. 5.3 cover the main variations of the secondary-

path. Although this set of assessed secondary-paths Sa is very representa-

tive, it has to be assumed that there are secondary-path realizations Si with

magnitude and phase responses somewhere between the ones of Sa. It can

furthermore not be guaranteed that the (yet unknown) secondary-paths Si
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yield stable feedback just because the set Sa does. The constraint on the

real part of the open loop (eq. (5.3)) is therefore not suitable for ANC

headphones.

On the other hand, the measurements show that the maximum uncer-

tainty is well described by secondary-paths of the loose and very leaky head-

phones. The constraint |W | < 1
Umax

can thus be considered as being robust.

However, it is a rather conservative constraint, too. Fig. 5.13 e.g. shows an

exemplary case where the feedback would be stable but the inequality of eq.

(5.6) is violated.
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Figure 5.13: Nyquist contour of the open loop L2 (with the secondary path
of two leaks S2) for a filter realization with the experimental data together
with the nominal open loop L̂.

The figure shows the Nyquist contour of the open loop L2 (with the

secondary-path of two leaks S2) for a filter realization with the experimental

data together with the nominal open loop L̂. Both Nyquist contours are

entirely on the right hand side of point (-1,0). Thus, the feedback is stable

and the condition on the real part of L (eq. (5.3)) is satisfied, too. However,

the radius of uncertainty is larger than the distance of L̂ from (-1,0) which

means that the condition using Umax (eq. (5.6)) does not hold andW would
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be unnecessarily constrained. Nevertheless, for the sake of robust stability,

we use the more conservative constraint to handle the remaining uncertainty

in the lower frequencies. Moreover, we will show that a constraint on single

frequency bins as in (5.8) is sufficient to preserve stability, too.

As stated above, the stability of the feedback loop depends on the de-

nominator of the sensitivity function

T =
1−WŜ

1−W (Ŝ − S)
.

As long as S = Ŝ, the feedback is stable and W converges to S−1. For

narrowband excitations, W converges to the ideal inverse of S in the corre-

sponding frequency bin. For broadband excitations, W converges to a causal

approximation of S−1.

Fig. 5.14 illustrates the scenario when S changes from the tight secondary-

path Stight (which equals Ŝ) to the secondary-path with one leak S1. It shows

the magnitude of
∣

∣

∣W (Ŝ − S1)
∣

∣

∣ and first, it is assumed that W is still an ap-

proximation of S−1
tight. We distinguish between the ideal inverse of Stight for

narrowband analysis and the causal inverse for broadband analysis. The

causal version has been derived over the frequency dependent leaky FxLMS

algorithm.

When the headphones are lifted, the feedback initially stays stable be-

cause
∣

∣

∣W (Ŝ − S1)
∣

∣

∣ < 1, but the product is close to 1 below 300 Hz. Hence,

this is the frequency band where a pole outside the unit circle is most likely.

This is especially true in the second step whenW adapts to the inverse of S1

because W has to amplify these low frequencies. In this case,
∣

∣

∣W (Ŝ − S1)
∣

∣

∣

exceeds unity gain below 300 Hz.

Since
∣

∣

∣W (Ŝ − S1)
∣

∣

∣ < 1 is violated in the low frequency band first, it is
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Figure 5.14: Product of the adaptive filter times the additive uncertainty

for the secondary path with one leak
∣

∣

∣W (Ŝ − S1)
∣

∣

∣: The filter W needs to

invert S. The blue lines show the case where W is still the inverse of Stight
(thus before it has reacted to the new secondary-path S1). The green lines
show the case whereW finally changed to the inverse of S1. For narrowband
analysis,W is the ideal inverse of S; for the broadband analysis,W is derived
over the frequency dependent leaky FxLMS.

proposed to only check the low frequencies of WUmax. It is thus sufficient

to determine W (k) at the frequency bins k below 300 Hz instead of doing a

full Fourier-transform.

The frequency resolution ofW determines how many frequency bins need

to be evaluated. W has to approximate the inverse of S up to 1200 Hz, and

under regular tight conditions, S has hardly any spectral variation in this

band. A short filter with a low frequency resolution is therefore sufficient

for feedback ANC (compare [Oppenheim et al., 1994]). If the bin spacing

of the filter is larger than 300 Hz, the changes of W below 300 Hz will

above all become noticeable in the DC-bin. This is very beneficial because

the constraint on the DC-gain of W does not need the decomposition into

cosine and sine as in (5.9). It can easily be formulated in the time-domain

as
∣

∣

∣

∣

∣

∑

l

wl

∣

∣

∣

∣

∣

<
1

Umax,0
, (5.20)
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where Umax,0 is the maximum uncertainty below 300 Hz. Consequently,

the entire check for robust stability only requires L multiply-accumulate

operations per filter update.

In Fig. 5.4, it can be seen that Umax,0 is at 17.3 dB. Once the DC-

gain exceeds the given threshold, the adaptive filter is changed to the stable

default filter w̃ as in eq. (5.11). With a headroom of ǫ = 2.7 dB, the default

filter is scaled to an impulse of -20 dB according to eq. (5.10).

5.6 Experimental Results

5.6.1 Summary of the Algorithm

The whole adaptive feedback-ANC algorithm with DC-constraint can be

summarized as follows:

1. Update the coefficients ofW via the freqency dependent leaky NFxLMS

algorithm as in eq. (5.19).

2. Check if |∑iwi| < 1
Umax,0

. If no:

� Calculate the gradient which leads to the stable default filter

∆w = w̃ −w(n).

� For the next M =
∣

∣

∣

∆T
w∆w

µ

∣

∣

∣ samples update the coefficients as

w(m+ 1) = w(m) + ∆w

M
.

� After M iterations continue the leaky NFxLMS update (jump to

step 1).

The development of the algorithm is based on responses of prototype

headphones, but all steps are motivated by physical reasons that apply to

all headphones of similar design.
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1. Small changes in S will always lead to phase deviations in the upper

frequency band. Restricting the ANC with an additional high-shelf

or with the frequency dependent leaky FxLMS is thus always a good

measure to increase the robustness of ANC headphones.

2. A leak between the ear-cups and the ears mainly changes the low

frequency response of the secondary-path. Thus, there will always be

a large uncertainty at low frequencies that demands a constraint on

W . The constraint on the norm of W is always applicable, and the

constraint on single frequency bins ofW and especially on the DC gain

is suitable for a low frequency resolution of W . In general, W does

not have to equalize a lot, since a flat frequency response is desired for

high-fidelity headphones. Therefore, a low frequency resolution of W

and thus a short filter length is generally suitable.

3. The maximum uncertainty that is required to scale the default filter

can easily be assessed with preliminary measurements as described in

sec. 5.3.

5.6.2 Evaluation of the Algorithm

In the above analysis and deduction of the time-domain constraint, it is

assumed that W converges to S−1, but does not exceed the magnitude of

S−1. This is most likely because the leaky FxLMS penalizes the norm ofW .

An extensive numerical analysis is still necessary to prove the robustness of

the time-domain constraint. The numerical analysis has to be done through

simulations of the adaptive feedback system because firstly the adaptive

filter depends on the input signal, and secondly the temporal behaviour of

W is important. It has to be examined whetherW always exceeds constraint

122



CHAPTER 5. SECONDARY-PATH DETECTION IN FEEDBACK ANC

(5.20) before the feedback loop starts ringing.

The analysis is performed for various input noises:

� Sinusoidal excitation at 50 Hz and in 100 Hz steps from 100 Hz to

1400 Hz.

� Narrowband excitation with white noise passed through a 2nd order

peak filter with a quality factor of Q = 8 and centre frequencies as

before.

� Broad band excitation with white noise.

� Broad band excitation with pink noise.

Each of the excitation signals is filtered with the low-pass characteristic of

the passive attenuation. The simulations are not only done for changes from

Stight to S1, but also with

� an initial worst-case S and for

� a sudden change from Stight to the worst case S.

The worst case S is the one with the largest uncertainty in the corresponding

frequency band, cf. Fig. 5.4. Thus, the worst case S below 1000 Hz is the

secondary-path with two inserted leaks, and above 1000 Hz, it is the open

secondary-path. The leaky NFxLMS is run with simulated white sensor

noise of -60 dB relative to the excitation level and with the same µ and γ

as in section 5.4. With a sampling frequency of 7350 Hz, we choose a 6 taps

long filter which results in a sufficient frequency resolution of 1200 Hz per

bin.

We calculate the energy of the input noise Ed(n) and the error-energy

123



CHAPTER 5. SECONDARY-PATH DETECTION IN FEEDBACK ANC

Ee(n) over the last M samples as

Ed(n) =
n
∑

m=n−M

d(m)2

Ee(n) =
n
∑

m=n−M

e(m)2.

(5.21)

The integration timeM should be approximately as long as one period of the

lowest frequency under consideration, and it is therefore chosen as M = 167

samples which corresponds to one period of a 50 Hz tone. The start of

ringing is detected when all of the three properties are true:

1. Ee grows such that Ee(n) > Ee(n−M),

2. Ee(n) is larger than twice Ed(n) (i.e. Ee(n) > 2Ed(n)), and

3. Ee grows twice as fast as Ed, i.e. Ee(n) − Ee(n −M) > 2(Ed(n) −

Ed(n−M))

Every time the three properties are detected, W (n) is marked as unstable.

In contrast, if

1. Ee decreases such that Ee(n) < Ee(n −M), and

2. Ee(n) is smaller than Ed(n),

W is marked as stable. The condition Ee(n) < Ee(n−M) is not necessary to

indicate proper ANC, but we are interested in instances whereW is changing

and these instances are most probable when ANC is improving.

Fig. 5.15 shows the DC-gain distribution of all filters which are marked

as stable and unstable respectively. The DC-gain of the filters which are

recorded before ringing always exceeds 1
Umax,0

= −17.3 dB. Also the filters

which improve ANC exceed this threshold in some cases. Thus it occurs
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Figure 5.15: DC-gain distribution of W under stable condition and before
instabilities occurred. The boxes include 50% of the registered DC-gains
and the whiskers show the whole distribution. The bars in the middle of
the boxes denote the median value and the notches indicate the confidence
interval. The DC-gain of W always exceeds -17.3 dB before instability oc-
curred.

that the adaptive filter is switched to w̃, although the system would have

been stable. However, it is more important to see that the constraint on the

DC-gain is a robust constraint to keep the feedback stable. A further test of

the algorithm with additional experimental data is applied in the following.

5.6.3 Performance Comparison

The experimental data for the development and evaluation of the algorithm

is gathered by measurements on a mannequin. In this section, we test the

algorithm with experimental data from real persons and we compare the

performance with existing approaches from the literature. As stated in

the introduction, there are two main strategies to handle secondary-path

uncertainties.

Consideration of uncertainty

The adaptive filter is bounded by the inverse of Umax as in constraint (5.7).

In [Rafaely and Elliott, 1999], this constraint is included in the controller

design, but the controller is non-adaptive. In [Kinney et al., 2008], an adap-
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tive filter is used and constraint (5.7) is checked before each filter update. If

the constraint is violated, the filter is not updated. In [Rafaely and Elliott,

2000], the constraint is included in the cost function of the LMS as

J(W(k)) = E

{

e2 + σmax

[

|W (k)|2 − 1

U2
max(k)

, 0

]}

, (5.22)

where the value of max
[

|W (k)|2 − 1
U(k)2max

, 0
]

is zero if constraint (5.7) holds.

If it does not hold, the adaptive filter is scaled back by a factor that depends

on the weight σ. Rafaely uses the frequency domain LMS. Therefore the

adaptive filter can easily be scaled back in the frequency bin where the

constraint is violated without affecting the other bins of W . Therefore, this

approach can be considered as the most elaborated and it will be used for

the following comparison.

Online secondary-path estimation

The second strategy is to obtain a permanent estimate of the current state

of S. The most robust approach is to inject an auxiliary signal into the

headphones in order to identify the secondary-path [Akhtar et al., 2006,

Zhang et al., 2001]. In [Gan et al., 2005], the music playback is used as

auxiliary signal, but it only works for slowly changing secondary-paths. Even

approaches that inject white noise fail when there are fast and large changes

in S. The most advanced method is presented in [Zhang et al., 2003]. It

comprises three measures: (i) A third adaptive filter reduces the disturbance

of the noise cancelling error onto the secondary-path adaptation. (ii) The

auxiliary noise is scaled in dependence of the convergence status in order to

keep the play-back volume as low as possible. (iii) A hard constraint on the

norm of the adaptive controller prevents divergence, even for sudden large
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changes in S. The method is proposed for feedforward ANC where it avoids

the divergence of W for the most part. We will include it in the following

comparison to investigate if it is extendible to feedback ANC.

Denote that measure (iii) of Zhang’s approach actually falls into the first

category, too. The threshold for the norm constraint and the parameter σ

in Rafaely’s approach are determined empirically by tuning them in order to

minimize error amplifications. Our approach falls into the first category, too,

but we build on the finding that constraint (5.7) is violated around DC, while

all other solutions from strategy 1) analyse the full bandwidth from 0 Hz to

fs
2 . The benefit of our approach is that no real-time Fourier transform and

no auxiliary noise is needed. The drawback is that the frequency resolution

has to be very low. The approaches of Rafaely and Zhang do not have this

restriction. For their approaches, we choose a frequency resolution that is

two times as fine as ours to demonstrate the limitations of our controller.

Thus, we set their filter length to L = 12 taps, while ours has only 6 taps.

The longer filter means a slower convergence (cf. [Kuo and Morgan, 1999]

and eq.(5.2)), but the comparison will show that the increased resolution

outweighs the slightly slower convergence.

To obtain real-life experimental data, we asked two test subjects to put

on the headphones in differently tight, leaky and lifted positions. For the

tight measurements, the subjects were also asked to press the headphones to

the ears. For all headphone-positions, we measured the secondary-path with

a sine sweep yielding 16 different measurements shown in Fig. 5.16. The

measurements indicate again that leaks between the ears and the headphones

mainly affect the low frequency region.

In all following evaluations, we apply the same measures:

� Every 0.5 s, the measured secondary-paths are replaced by each other
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Figure 5.16: Magnitude response of the secondary-paths measured on two
persons with differently positioned headphones.

in a way that tight and leaky fittings alternate.

� As (initial) secondary-path model, we still use Ŝ which we derived

from the tight measurement on the dummy head.

� The excitation signals are filtered with a low-pass filter cascade that

approximates the passive attenuation of the headphones as in section

5.6.2.

� The high frequency uncertainty is reduced by the frequency dependent

leaky FxLMS.

First, pink noise and narrowband noise around 100 Hz were chosen as excita-

tion signals because they lead to instabilities if the normalized leaky FxLMS

is run without further constraints (cf. Fig. 5.17).

Fig. 5.18 compares the performance of our algorithm (labelled with dc)

with the approaches of Rafaely and Zhang for the same conditions. The

performance of all three systems is limited because of the fast and violent

changes in S. However, it can be seen that our approach preserves sta-

bility for the real-life experimental data, too. Consequently, also Rafaely’s

approach has to preserve stability because it utilizes the same constraint
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Figure 5.17: The relative residual error edB over 8 seconds of a normalized
leaky FxLMS for pink and narrowband noise around 100 Hz: The secondary-
path changes abruptly every 0.5 seconds which leads to a relative error of
+10 dB and more in the first 4 seconds and to complete instability after-
wards.

only extended to the full bandwidth. Furthermore, it is demonstrated that

Zhang’s method can be extended to feedback ANC, where it preserves sta-

bility, too. However, the performance for broadband noise is deteriorated

due to the additionally injected noise and the hard constraint on the norm

of W (cf. Fig. 5.18a).

On the other side, the performance of our system is slightly degraded for

the low-frequency narrowband noise. There are two reasons for this:

1. As stated in section 5.1, the adaptive filter aims to compensate the

phase delay and dynamics of S in the frequency band of the excitation

d. As long as the DC-constraint is violated, the adaptive filter is

scaled back to an impulse w̃. The impulse is a suitable broadband

compensation for S, but it is a suboptimal narrowband compensation.

Fig. 5.19a compares the noise spectrum with the error spectra over

the eight seconds of the experiment in third octave bands. Our system

yields only 1 dB of noise reduction in average while Rafaely’s and

Zhang’s approach still yield a reduction of 4-6 dB.
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Figure 5.18: edB for (a) broadband noise and (b) narrowband noise around
100 Hz: The conditions are the same as in Fig. 5.17, but this time, our DC
constraint as well as the constraints by Rafaely and Zhang are applied.

2. The filter length is very short. Fig. 5.19b shows the same comparison

for a time frame where S is close to Ŝ (from 1.5 s to 2 s in Fig.

5.18b). Our approach yields 2 dB less noise reduction than Rafaely’s,

although the filter has not been scaled back to an impulse during this

time. Thus, the 2 dB difference occurs because a six taps long filter

has been used in our approach, while a longer filter is used in Rafaely’s

method.
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Figure 5.19: Comparison of the narrowband noise power with the error
power in third octave bands (a) over the complete 8 seconds (b) during the
time where S is close to Ŝ
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Figure 5.20: Error spectra comparison of our time-domain (TD) approach
(6 taps) with Rafaely’s approach (12 taps) and our time-domain approach
with 12 taps.

Fig. 5.20 indicates that our approach would yield the same noise reduc-

tion if a 12 taps long filter would be applied. However, with the increased

frequency resolution of the 12 taps long filter, the sinc-shaped low pass of

the DC bin decays to approx. -4 dB at 300 Hz. In order to be sure to detect

all low frequency changes in W , it might therefore be necessary to extend

the frequency analysis to the 600 Hz bin as in eq. (5.8) and (5.9). Instead of

12 multiply and accumulate operations (MACs) to calculate the DC-gain,

the frequency analysis would then require additionally 2 × 12 MACS for
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the cosine and sine component at 600 Hz and another 2 × 12 MACS for the

square operations yielding 60 MACs in total. Therefore, the 6 taps long fil-

ter is preferred since it still yields 14 dB of narrowband noise reduction if the

headphones sit regularly tight. The reduced complexity of the shorter filter

might outweigh the small loss of performance in most consumer applications.
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Figure 5.21: Comparison of the broadband noise power with the error power
in third octave bands (a) over the complete 8 seconds (b) during the time
where S is close to Ŝ

In the broadband case, our approach (with 6 taps) yields the same results

as Rafaely’s over all secondary-paths as can be seen in Fig. 5.21. However,

the latter is computationally far more demanding. Rafaely suggests imple-

menting a frequency-domain LMS with a time-domain adaptive filter. For a

filter length of 12 taps, a 24 point FFT of the buffered d and e, and a 24 point

IFFT for w is required to avoid circular convolution effects [Rafaely and El-

liott, 2000,Shynk, 1992]. With a computational complexity of O(N log2N)

per complex-numbered FFT, 2 × 24 log2 24 real-numbered MACs are re-

quired. With two FFTs and one IFFT, at least 661 MACs are required

per filter update, while our approach only requires 6 MACs. Even with a

filter length of 6 taps, the frequency-domain LMS would require 130 MACs

with hardly any advantage over our approach. Zhang’s approach can be
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implemented in the time-domain, too, but it yields 3-5 dB less noise reduc-

tion than Rafaely’s and our approach depending on the positioning of the

headphones.

To summarize the comparison:

� All approaches under comparison preserve stability of the adaptive

feedback system, even after large and sudden changes in S.

� Zhang’s and our method can be directly implemented in the time-

domain, but Zhang’s approach requires three LMS updates, while ours

requires only one. Zhang’s approach, which does not have a restriction

on the frequency resolution, performs slightly better for narrowband

excitation, but our approach is clearly superior for broadband excita-

tion.

� Rafaely’s approach yields a narrowband noise reduction that is 2-5 dB

better than ours and a broadband noise reduction that is comparable

to ours. But his approach requires three Fourier transforms per filter

update, while ours only requires a single summation for the stability

constraint.

� With a 12 taps long filter, our approach performs as well as Rafaely’s

and Zhang’s also for narrowband excitation. However, a 6 taps long

filter is good enough for broadband excitation (cf. Fig. 5.21).

Table 5.1 compares the computational complexity of our time domain

approach with the frequency domain LMS. Even with the 12 taps long fil-

ter, the time domain DC approach requires less MACs than the frequency

domain LMS with 6 taps.

Thus, the main contribution of this work is to show that stability of
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6 taps 12 taps
(time domain) DC approach 6 60
frequency domain LMS 130 661

Table 5.1: Required MAC operations for the compared systems.

feedback ANC-headphones can be preserved with a computationally very

economical constraint that hardly influences the performance.

5.7 Conclusion

Adaptive feedback-ANC is a very powerful solution for headphones applica-

tions, but, as with all feedback systems, it suffers from the risk of instabili-

ties. This chapter presented an algorithm that avoids these instabilities and

preserves the benefits of adaptive feedback ANC.

In particular, it has been examined how the secondary-path changes

when the headphones are lifted and how these changes affect the stability

of the NFxLMS adaption and the feedback loop. It has been proposed to

use the leaky NFxLMS to overcome the first stability issue and it has been

shown that the leaky NFxLMS keeps the adaption stable even during large

changes in the secondary-path.

To overcome the feedback stability issue, an algorithm has been devel-

opped that detects changes in the secondary-path. We use the fact that the

adaptive filter increases its low-frequency gain if the headphones are lifted.

It has been shown that this low-frequency amplification is independent from

the excitation-noise characteristic and that it is sufficient to check the fil-

ter’s DC-gain to identify lifted headphones. Once the lifting is identified,

the adaptive filter is gradually changed to a stable default filter from which

the leaky NFxLMS adaption starts again.
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The algorithm has been tested for various use cases and it has been shown

that it yields robust ANC when the headphones sit regularly tight and still

preserves stability if the headphones are suddenly lifted. The performance is

compared with approaches from literature and the presented approach yields

the same ANC results with less computational complexity. The algorithm

is based on experimental data of prototype headphones, but all determining

factors have physical reason which give the algorithm a general validity.
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Chapter 6

General Conclusion

This thesis discusses new approaches for feedforward as well as for feedback

ANC headphones. The two main problems that are addressed are the latency

in the secondary branch of ANC systems and the variations in the secondary

path due to different fittings of the headphones.

Feedforward ANC headphones are powerful if adaptive filters are used

because they allow reacting on changes in the sound field as well as on

changes in the acoustics of the headphones. Adaptive filters can easily be

implemented as digital transversal filters that are updated by the LMS al-

gorithm. However, the conversion into the digital and back into the ana-

logue domain is time consuming which deteriorates the ANC performance.

Although analogue implementations of adaptive filters are theoretically pos-

sible [Velosoa and Nascimentob, 2005, Johns et al., 1991], their implemen-

tation is tricky because of the DC-bias in active analogue circuits [Johns

et al., 1991, Shoval et al., 1995]. The effort to handle these offset increases

with the number of updated filter coefficients. This makes an analogue im-

plementation of transversal filters rather unsuitable because they generally

require much more coefficients to model a given impulse response than IIR
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filters.

In chapter 2 of this thesis, it is therefore suggested to use a set of par-

allel IIR filters and only adapt the gain of each filter output as an adap-

tive linear combiner (ALC). It is shown that three parallel IIR filters yield

equally good results as a 12 taps long transversal filter at 11025 Hz sam-

pling frequency. The ALC of the parallel IIR filters converges faster than the

adaptive transversal filter and requires only three instead of twelve updates

which clearly reduces the effort to handle the DC-bias.

The linear combination of the three IIR filters has to approximate all

possible transfer functions P (jω)
S(jω) where P (jω) is the primary and S(jω) is

the secondary path. The main variations in P (jω) result form different

directions of the sound field and the main variations in S(jω) result from

differently tight fittings of the headphones. All these main variations are

determined by preliminary measurements. A principal component analysis

and the Gauss-Newton algorithm are then used to extract three IIR filters

whose combination best explains the variations in P (jω)
S(jω) .

In [Carusone and Johns, 2003], it is shown that it is advantageous to use

analogue filters, but a digital fxLMS update. This strategy can be employed

to our approach, too. On the one hand, the three parallel IIRs can be

implemented as analogue filters to avoid additional latency. On the other

hand digital signal processing can be used for the fxLMS update where the

latency only affects the speed of convergence. The benefit of digital signal

processing it that it allows easily storing and analysing signals. The fxLMS

e.g. requires a model of the secondary path that can be derived online with

digital signal processing.

Chapter 3 intensifies the consideration on online secondary path detec-

tion. It presents two complementary methods that are more robust than the
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online secondary path estimations which have been presented in literature

so far. The first method analyses and compares the spectral density of the

reference signal and the error signal. If the headphones sit regularly tight,

ANC headphones are able to attenuate the low frequencies of the ambient

noise by 10 dB. If the comparison detects less ANC, it means that sound

power of the anti-noise radiates outside and that the headphones do not sit

regularly tight. Then the secondary path model can be changed accordingly.

However, this method only works properly if there is enough low frequency

content in the ambient noise.

The second method can be used if there is hardly any low frequency noise,

but some narrowband excitation. In this case the tightness of the secondary

path can be identified with an infrasonic measurement. The infrasound

signal is played back by the loudspeakers of the headphones and if it can

be detected by the error microphone inside the ear-cups it means that the

headphones sit regularly tight. If the infrasound test signal is not sensed by

the error microphone it again means that sound power radiates outside and

that the headphones do not sit regularly tight.

Chapter 4 treats the problem of the latency for feedback ANC head-

phones. If the ambient noise arrives at the error microphone earlier than

the anti-noise, the ANC system needs to predict the ambient noise. Predic-

tion is possible if the noise signal is band limited. It is therefore suggested

to use the feedback structure because the noise which is sensed by the error

microphone is naturally band limited due to the passive attenuation of the

ear cups. For broadband ambient noise, the spectral characteristic of the

penetrated noise is thus determined by the low-pass characteristic of the pas-

sive attenuation. Chapter 4 shows how a prediction filter can be designed

based on this low pass characteristic. It is further shown that this static
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prediction filter yields as good results as adaptive predictors for common

ambient noises like aeroplane and engine noises, and that it is more robust

against changes in the secondary path.

Chapter 5 on the other hand shows that an adaptive filter can be used

to detect changes in the secondary path. As already mentioned, the low-

frequency sound power of the headphones gets lost if the headphones do not

sit regularly tight. It is shown that the adaptive filter tries to compensate

this effect by amplifying the low frequencies and it is further demonstrated

that it is sufficient to observe the DC gain of the adaptive filter to detect

leaky secondary paths. The DC gain equals the sum of the filter coefficients

and can therefore be evaluated very easily on a DSP. It is shown that this

approach of detecting changes in the secondary path is as robust as common

approaches from literature, and, at the same time, it is much less processor

intensive. If a leaky secondary path is detected, the adaptive filter is changed

to a stable default filter. In chapter 5, a scaled impulse is suggested as default

filter, but it might be advantageous to use a prediction filter as in chapter

4.

Equally, the method to detect changes of S(jω) in feedforward head-

phones which has been presented in chapter 3 can be applied to the adaptive

linear combiner of parallel IIR filters (cf. chapter 2). It combines the effi-

cient and (if analogue) quasi delayless parallel filters with a robustly stable

fxLMS update. Thus, combinations of the presented feedforward approaches

of chapter 2 and 3, as well as the feedback approaches of chapter 4 and 5

have a lot of potential for future work.

Furthermore, the work on the frequency dependent leaky LMS can be

intensified. It has been shown that the frequency dependent leakage depends

on the weighting filter and on the product of µγ. In chapter 5, the weighing
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filter H was chosen to be a high shelf and γ has been derived empirically.

In future work, an algorithmic approach should be developed to obtain the

ideal weighting filter and to calculate the optimal γ online. Besides the

frequency dependent leakage, also a tap dependent leakage could be useful.

A larger leakage could for example be used for the later taps similar to

a tapering window. This could be advantageous for the adaptive filter of

chapter 5 where the short filter sharply cuts the ideal impulse response and

causes side lobes in the frequency response of W .

The adaptive ANC filters as well as the fixed prediction filter have been

tested on hardware with low latency. This hardware is self assembled and

consists of a digital signal processor (DSP) and high speed data convert-

ers with a potential sampling frequency of over 500 kHz. Both, DSP and

converters are assembled on evaluation boards outside of the headphones.

This hardware set-up has been suitable to demonstrate the functionality of

digital ANC, but it is far too big sized for being embedded into the ear cups

of the headphones. This thesis and others (especially [Foudhaili, 2008]) have

demonstrated the benefits of digital broadband ANC, but hardware that is

suitable for commercial products still needs to be developed. Such hardware

has to satisfy small size, low energy consumption and low costs.

Since these requirements are hard to fulfil, most commercial products

still rely on analogue hardware. And although ANC headphones are al-

ready well established on the consumer market, their assessment is still a

difficult task. The following appendix A deals with this problem. It is shown

that different measurement systems, like artificial ears and mannequins, pro-

voke differently leaky positioning, and as a consequence, they lead to dif-

ferent ANC results. It is further shown that even the ranking of different

ANC headphones differs depending on the measurement systems. There-
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fore, we conducted listening test and compare the subjective ratings with

the measurement results of 4 different systems. Finally, a regression of the

measurements is developed that robustly represents the user ratings. This

result now allows for an easy and inexpensive comparison and assessment of

ANC headphones disrespect of their method, be it feedforward or feedback,

digital or analogue.
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Appendix A

Assessment of Active Noise

Cancelling Headphones

based on: M. Guldenschuh et al., ’Assessment of Active Noise Cancelling

Headphones’, 2012 International Conference on Consumer Electronics -

Berlin, pp. 299-303, 3.-5. Sept. 2012

In the last decades, a lot of research on ANC headphones has been con-

ducted [Bartels, 1991,Kuo and Morgan, 1999, Song et al., 2005]. Initially,

ANC headphones were developed for air traffic professionals, but during the

last few years they also spread on the consumer market. Although various

different ANC headphones are commercially available by now, their perfor-

mance assessment is still a difficult task. This counts for consumer-test and

certification centres as well as for manufacturers themselves.

For ANC assessment, headphones are either put on ear simulators that

contain a microphone which measures the residual noise inside the earcup

or on real persons who have probe microphones inserted in their ear canal

[Lancaster and Casali, 2004]. One problem of ANC assessment is that the
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noise reduction strongly depends on the tightness of the wearing situation.

Headphones sit differently tight on different ear simulators and therefore lead

to different ANC results, and also probe microphones influence the wearing

situation.

The question is thus, which measurement results are closest to the ANC

performance in real life situations.

In this appendix, user ratings of five different ANC headphones are anal-

ysed and the ratings are compared with the measured noise reduction on four

different ear simulators (including one measurement with probe microphones

on a real person). This way, we can identify which measurement procedure

on which simulator correlates strongest with the user ratings.

The following section describes the influence of leaky wearing situations

on the ANC performance, section A.2 outlines the measurement procedures

and the listening test and in section A.3 the regression of the measurements

with the user ratings is derived.

A.1 Leakage Influence on ANC headphones

ANC headphones cancel noise that enters the headphone (via the so called

primary path) with anti noise that is played back by the secondary path.

(See also Fig. A.1.) The secondary path depends on the loudspeaker char-

acteristics and on the acoustic impedance which is determined by the cavity

between the headphone and the ear drum. While the loudspeaker character-

istics are deterministic and approximately constant, the acoustic impedance

depends on the tightness of the headphone and might vary from user to user.

Fig. A.2 shows the changes in the secondary path when small leaks of

1mm radius and 15mm length are introduced in an initially tight sitting
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loudspeaker

ear cup

secondary path

primary path

Figure A.1: Ambient noise penetrates the earcup of the headphone via the
primary path and the loudspeakers plays back the ’anti’ noise via the sec-
ondary path.
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Figure A.2: Magnitude response and group delay of the transfer function
from the loudspeaker to the ear canal (i.e. the secondary path) for three
differently tight wearing situations: With increased leakage, the sound pres-
sure level is diminished and the group delay is increased especially at low
frequencies.

headphone. With increased leakage, the sound pressure level (SPL) declines

and the group delay increases at low frequencies. Both consequences are

disadvantageous for ANC. In leaky wearing situations, the headphone does

not produce enough low frequency SPL to cancel the penetrating noise, and
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the low frequency anti-noise will arrive too late because of the increased

group delay.

Previous work [Snyder and Hansen, 1990,Lopes and Piedade, 2004] inves-

tigated the influence of the secondary path delay on the least mean squares

(LMS) algorithm (which is often proposed for digital ANC applications),

but not on the performance of analogue ANC headphones. Fig. A.3 shows

that the leaks degrade the ANC performance by 10 dB.
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Figure A.3: Comparison of the ANC performance for a tight and leaky ANC
headphone. The dB values of the residual noise are related to the penetrated
noise without ANC. Under a tight wearing condition the ANC headphone
reduces low frequency noise about 20 dB. With two leaks, the ANC amount
is degraded to 10 dB.

A.2 Experimental Setup

A.2.1 Objective Measurements

Since ANC headphones do not sit equally tight on all ear simulators, different

such simulators lead to different ANC measurement results. We measured

the frequency response of the residual noise after ANC for five different

headphones on the following four ear simulators:

1. A head and shoulder simulator with an abstract model of the outer
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ear and microphones at the end of the ear canal. (Fig. A.4a)

2. A company specific acoustic measurement coupler similar to an artifi-

cial ear according to IEC 603181 without extra leakage.

3. A head and torso simulator with a detailed model of the outer ear and

microphones at the end of the ear canal. (Fig. A.4b)

4. Probe microphones that are inserted 3 mm into the ear canals of a real

person. (Fig. A.4c)

(a) A head and shoulder
simulator with an abstract
model of the outer ear and
microphones at the end of the
ear canal.

(b) A head and torso
simulator with a de-
tailed model of the
outer ear and micro-
phones at the end of
the ear canal.

(c) Probe micro-
phone inserted 3 mm
into the ear canals of
a test subject.

Figure A.4: Measurement tools.

In an semi-anechoic chamber, a loudspeaker played back a sine sweep

from a distance of approx. 1m to the ear simulator. For each ear sim-

ulator, a reference measurement without ANC headphone is made. The

noise reduction is determined by the relation between the measured residual

noise when an ANC headphone is put on and the reference measurement

without headphone. For each headphone, the noise reduction was measured

1International Electrotechnical Commission norm:
http://webstore.iec.ch/webstore/webstore.nsf/artnum/043309!opendocument
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for 36 horizontal directions of incident sound. Fig. A.5 shows the median

broadband power over all measurement directions per headphone and ear

simulator.
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Figure A.5: Median active noise reduction over all measurement directions
for all 5 headphones (HPs) on each of the 4 ear simulators. Ear simulators 1
and 2 measure lower SPLs than simulator 3 and 4. Furthermore, the ranking
of the headphones changes per ear simulator. Headphone number 5 (HP 5)
for example is ranked third best on ear simulator 1, best on simulator 2,
second worst on simulator 3, and worst on simulator 4.

The measured attenuation for one and the same headphone can differ

more than 15 dB on two different ear simulators. Even more problematic

is that the ranking of the five headphones differs from ear simulator to ear

simulator.

A.2.2 Subjective Evaluation

To answer the question, which measurement correlates most with user per-

ception, we performed a listening test with 26 subjects (20 male and 6

female) and the five headphones under investigation. The subjects are all

related to acoustics and sound engineering, either as students or as profes-

sionals. In a blind testing, the subjects were asked to rate the five head-

phones against each other on a scale which was labelled from ’very strong

noise reduction’ to ’very low noise reduction’. Three noises that represent
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distinct sound characteristic and typical situations for ANC were played

back from a 5.1 surround system:

� Aeroplane noise (broadband noise)

� Train noise (impulse noise)

� Speech noise (narrow-band noise)

A multifractional analysis of variances (ANOVA) of the subjects’ answers

however indicates that neither the sex of the subjects nor the type of noise

has influence on the rating.

Fig. A.6 shows the distribution of the user ratings for each of the five

headphones. As a comparison, Fig. A.7 shows the median broadband mea-

surement results per headphone. It can be seen that the broadband mea-
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Figure A.6: Distribution of 26 user ratings about the noise reduction of
each of the 5 headphones measured before. The boxes include 50% of the
answers and the whiskers show the distribution of all 26 answers except for
the outliers which are marked as crosses. The bars in the middle of the
boxes denote the median values of the user’ answers.

surement results match the subjective answers only partly. The idea is

therefore to find a regression of measurement parameters that better repro-

duces the subjective answers.
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Figure A.7: Median broadband measurement result of the 5 headphones on
the 4 ear simulators. A comparison to Fig. A.6 shows that none of the
ear simulators delivers the same headphone ranking as the median subject’s
answers.

A.3 Regression between user ratings and measure-

ment procedures

We determine which measurement procedure comes closest to the subjective

perception by regressing the user ratings and the measurement results of

each of the four ear simulators. The regression is done for different frequency

bands, different measurement directions and psychoacoustically motivated

measures like loudness. In detail, for each of the 4 ear simulators, the

measurement signals are divided into

� 5 post-processing strategies

– Logarithm of the measured signal power in 4 frequency bands:

* Broadband: 20 - 20000 Hz

* Low band: 20 - 100 Hz

* Mid band 1: 100 - 700 Hz

* Mid band 2: 700 - 3000 Hz

– Loudness of the measured broadband signal in sone, calculated

according to [Zwicker, 1990],
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� and 6 median values over

– all measurement directions

– frontal measurement directions: -40° to 40°

– left lateral measurement directions: 50° to 130°

– dorsal measurement directions: 140° to 220°

– right lateral measurement directions: -50° to -130°

– measurement directions from surround positions: 0°, +/-30°, +/-

110°,

whereas the measurement variations for one headphone cover approx-

imately 28% of the variations between different headphones.

In total, this leads to J = 4× 5× 6 = 120 regression variables x1...J . In

a linear regression, the target yk,i (e.g. user judgement k about headphone

number i) is expressed as a weighted sum of these regression variables x1...J,i

yk,i = α0 + α1x1,i + α2x2,i + · · ·+ αJxJ,i, (A.1)

where the weights α0...J are called regression coefficients. With i = 1 . . . 5

headphones and the answers of k = 1 . . . 26 test subjects, eq. (A.1) can be

replicated to a system of 5× 26 equations which has to be solved for α0...J .

Finally, the objective measures of xj and the weights αj are used to derive a

judgement prediction ỹ about an arbitrary headphone analogue to eq. (A.1).

The difference between the prediction ỹ and the known judgement y is called

prediction- or regression error e.

This error is used to define two important quality measures for regres-

sions. The first is the coefficient of determination R2 which indicates how
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good the regression result fits the target. It relates the sum of the squared

regression errors to the sum of squared target values

R2 = 1−
∑

k,i e
2
i,k

∑

k,i y
2
i,k

. (A.2)

The second is Cook’s Distance D which indicates whether a regression

can be generalised to new test samples (e.g. new, yet unknown headphones)

or not. This general validity is tested by omitting the data ym and xj,m

of headphone number m in the system of equations in eq. (A.1). Cook’s

distance D then relates the sum of squared differences between the predic-

tion ỹ of the full regression and the prediction ỹ(m) of the regression where

headphone m was omitted to the sum of squared regression errors

Dm =

∑

k,i(ỹk,i − ỹk,i,(m))
2

∑

k,i e
2
i,k

. (A.3)

A regression is considered to be robust and generalizable if D < 1.

We expect different regression variables to be reliable and hope that

summing up those reliable variables will lead to a stronger correlation with

the subjective answers, but the problem of a linear regression is that it

also allows negative weights α. Instead of summing up the most reliable

candidates, unreliable candidates are subtracted from each another. For the

evaluated headphones, this leads to a very good fit of the user answers (i.e.

a large R2), but for any new headphone the regression is not reliable (i.e D

is very large).

We therefore correlated each of the 120 regression variables separately

with the user ratings and identified four variables with R2 > 0.7. The first

is the loudness calculated from frontal measurement results on ear simulator

1. Its maximum Cook’s distance is D = 0.3, which makes it a very robust
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regression variable. The other three variables are all related to the logarithm

of the signal power between 100 and 700 Hz. We choose ear simulator 2 as

a representative and robust candidate, as it’s D = 0.4.

Both obtained post-processing strategies are very meaningful with re-

spect to ANC. The bandwidth from 100 Hz to 700 Hz is where the active

part of noise reduction happens and the calculated loudness corresponds to

broadband human perception of SPLs.

Fig. A.8 compares the regression results of the two presented variables

with the distribution of the user ratings. The chosen regression variables

match the subjective answers clearly better than the simple broadband mea-

sures of Fig. A.7.
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Figure A.8: Distribution of the user ratings and the regression based on the
the loudness measured on simulator 1 and on the logarithm of the band-
limited signal power measured on simulator 2.

Finally, we also identified the ear simulators with the strongest user

correlation for the low band below 100 Hz and the mid band 2 between 700

and 3000 Hz. In the low band, ear simulator 4 has a R2 of 0.46 and in the

mid band 2 ear simulator 2 has R2 = 0.58.

If one now wants to do a combined regression of variables in all different

frequency bands and the sone value as broadband measure, the 4 presented
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variables can be weighted according to their coefficients of determination

R2. Fig. A.9 shows the weighted combination of these 4 variables. As it can

be seen, the combined regression delivers a very good reproduction of the

user’s headphone ranking. Its R2 has increased to 76%. This is very much

considering that the variations of the users’ ratings per headphone already

cover 10% to 25% of the judgement variations between all five headphones.

Still, it is a robust approach because it is a constructive superposition of 4

reliable single-variable regressions.
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Figure A.9: Distribution of the user ratings and the regression with 4 com-
bined regression variables covering the broadband measure in sone as well
as the logarithm of the signal power in 3 different frequency bands. The
coefficient of determination is increased to R2 = 0.76.

A.4 Conclusion

ANC headphones can either be assessed via test persons (e.g through user

ratings in a listening test or by audiometry) or by measurements on an

ear simulator. The first method requires a sufficiently large number of test

persons to get statistically significant results which makes the assessment

costly and time consuming. Measurements on ear simulators consume far

less resources, but we showed that different such ear simulators lead to
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different measured attenuation which makes it doubtful if the drawn results

are reliable.

The problem is that headphones sit differently tight on different ear

simulators, and that the ANC performance strongly depends on the tightness

of the wearing situation. The question is thus which measurement result is

most trustful. Not necessarily the tightest one, because also on users, the

headphones won’t sit perfectly tight.

To find a more solid answer, we correlated the measured attenuation of

five ANC headphones on four different ear simulators with user ratings of

a blind listening test. A regression between the measured attenuation and

the user ratings shall predict the user perception of other ANC headphones

with similar mechanical characteristics. This way, standard measurement

procedures can be used to get inexpensive and fast answers about the ANC

performance. We determine single measurement procedures with strong

correlation to user ratings and show how their combination leads to a simple

and reliable assessment of different ANC headphones.
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