
lac.linuxaudio.org/2013

May 9 .–12. 2013 / Graz

Institute of Electronic Music and Acoustics (IEM)

University of Music and Performing Arts Graz

Proceedings

Linux Audio Conference 2013

Published by

Institute of Electronic Music and Acoustics,
University for Music and Performing Arts Graz, Austria
May 2013
Editors: IOhannes m zmölnig and Peter Plessas
All copyrights remain with the authors
http://lac.linuxaudio.org/2013

ISBN 978-3-902949-00-4

Credits

Logo Design LAC 2013: Renatn Oblak
Cover Design: Fränk Zimmer
Layout: Frank Neumann, Katharina Vogt
Typesetting: LATEX and pdfLaTeX

Thanks to:

Martin Monperrus for his webpage "Creating proceedings from PDF files"

Printed in Austria

Welcome to the LAC2013 in Graz!

For eleven wonderful years the Linux Audio Conference has been one of the main events
on the schedule of many developers and users of free/libre/open source software (FLOSS)
in the field of music and multimedia.

It started with the “LAD booth” at the Linuxtag in Karlsruhe, and gradually became LAC
(actually the Linux Audio Developers Meeting), a real-world meeting of audio develop-
ers who would otherwise only meet via Internet. Finally, it has turned into a full-blown
conference that attracts people from a variety of locations and disciplines. With its all-
encompassing commitment to open systems, LAC is known as one of the most diverse
annual events in human history (at the very least).

The Institute of Electronic Music and Acoustics (IEM) at the University of Music and
Performing Arts in Graz has a long history of using and teaching Linux and FLOSS au-
dio applications for scientific research and works of art. After having benefitted for so
many years, we felt like having to give something back to the community by bringing
the conference to Graz.

When attending LAC 2009 in Parma, one of us was approached by LAC veteran Frank
Neumann, who suggested us to host the conference at some point in the future. We
were very thrilled, but it took another three years (and LAC crossing the Atlantic ocean
for the first time in its history in 2012) until we finally felt confident to host such a great
event.

The eleventh edition of the Linux Audio Conference features twenty-four paper presen-
tations, twelve workshops, twenty-nine concerts and six installations. Like in recent
years, all submitted papers have undergone a peer-review process, with each paper be-
ing reviewed by at least two independent experts, giving valuable feedback to the au-
thors. The amount of papers submitted this year has been bitter sweet: due to the sheer
amount of submissions we could only accept a fraction of them.

We hope that the variety in scientific, technical and artistic presentations, together with
the efforts of the Graz community members, creates a wonderful event for everyone.

Have a wonderful time in Graz!

Peter Plessas & IOhannes m zmölnig

i

Conference Organization

Florian Hollerweger
IOhannes m zmölnig
Peter Plessas
Robin Gareus

Conference Team
Christian Pointner
Clara Hollomey
David Pirrò
Dominik Schmidt-Philipp
Frank Neumann
Fränk Zimmer
Georg Holzmann
Katharina Vogt
Josef Schauer
Ludwig Mohr
Margarethe Maierhofer-Lischka
Marian Weger
Martin Schitter
maru
Martin Rumori
Matthias Kronlachner
Peter Venus
Renatn Oblak
Reni Hofmüller
Stefan Warum
Thomas Musil
Visda Goudarzi
Winfried Ritsch
Ypatios Grigoriadis

ii

Thanks to...
Alois Sontacchi
Brigitte Bergner
Djamil Vardag
Franz Zotter
Flo Stöffelmayr
Garfield
Georgios Marentakis
Jörn Nettingsmeier
Markus Guldenschuh
Robert Höldrich
Sieglinde Roth
Thomas Mayr
Tom – Café Erde
Uli Gladisch

...and to everyone else who helped in numerous places after the editorial deadline of
this publication.

iii

iv

Paper Review Committee
Frank Neumann Intel GmbH, Germany (Chair)
Albert Gräf Johannes Gutenberg University Mainz, Germany
Dave Phillips linux-sound.org, United States
Fernando Lopez-Lezcano CCRMA, United States
Florian Hollerweger Austria
Fons Adriaensen Casa della Musica, Parma, Italy
Franz Zotter Institute of Electronic Music and Acoustics Graz, Austria
Georgios Marentakis Institute of Electronic Music and Acoustics Graz, Austria
Götz Dipper ZKM | Institut für Musik und Akustik, Germany
IOhannes m zmölnig Institute of Electronic Music and Acoustics Graz, Austria
John ffitch United Kingdom
Jörn Nettingsmeier freelancer, Germany
Marc Groenewegen HKU, Netherlands
Marije Baalman nescivi / STEIM, Netherlands
Martin Rumori Institute of Electronic Music and Acoustics Graz, Austria
Peter Plessas Institute of Electronic Music and Acoustics Graz, Austria
Robin Gareus linuxaudio.org, University Paris 8, France
Victor Lazzarini NUIM, Ireland
Yann Orlarey Grame, France

Music Jury
Florian Hollerweger (Chair)
David Pirrò
IOhannes m zmölnig
Margarethe Maierhofer-Lischka
Martin Rumori
Peter Venus
Ypatios Grigoriadis

v

vi

Table of Contents

• netpd - a Collaborative Realtime Networked Music Making Environment
written in Pure Data 1
Roman Haefeli

• Byzantium in Bing: Live Virtual Acoustics Employing Free Software 9
Fernando Lopez-Lezcano, Travis Skare, Michael J. Wilson, Jonathan S. Abel

• Combining granular synthesis with frequency modulation 15
Kim Ervik, Øyvind Brandtsegg

• SuperCollider IDE: A Dedicated Integrated Development Environment
for SuperCollider 21
Jakob Leben, Tim Blechmann

• An Approach to Live Algorithmic Composition using Conductive 29
Renick Bell

• MorphOSC- A Toolkit for Building Sound Control GUIs with Preset
Interpolation in the Processing Development Environment 37
Liam O’Sullivan

• Design of an audio oscilloscope application 43
Fons Adriaensen

• Ambisonics plug-in suite for production and performance usage 49
Matthias Kronlachner

• The Rationale behind Rationale: Designing a Sequencer for Unlimited
Just Intonation 55
Chuckk Hubbard

• Chino - a framework for scripted meta-applications 61
David Adler

• Csound6: old code renewed 69
John ffitch, Victor Lazzarini, Steven Yi

• Linux AVB Stack Workshop for LAC2013, IEM Graz 77
Christoph Kuhr

• Live music programming in Haskell 81
Henning Thielemann

• ipyclam, empowering CLAM with Python 89
David García-Garzón, Xavier Serra-Román

• Music for Programmers (MFP): A Dataflow Patching Language 97
Bill Gribble

• A Pure Data toolkit for real-time synthesis of ATS spectral data 105
Oscar Pablo Di Liscia

vii

• Multi-Channel Noise/Echo Reduction in PulseAudio on Embedded Linux 111
Karl Freiberger, Stefan Huber, Peter Meerwald

• Lyapunov Space of Coupled FM Oscillators 119
Claude Heiland-Allen

• Production and Application of Room Impulse Responses for Multichannel
Setups using FLOSS Tools 125
Florian Hollerweger, Martin Rumori

• Pitch-class Set design in SuperCollider 133
Lucas Samaruga, Oscar Pablo Di Liscia

• Experiments with dynamic convolution techniques in live performance 139
Øyvind Brandtsegg, Sigurd Saue

• Creating LV2 Plugins with Faust 145
Albert Gräf

• Towards a live-electronic setup with a sensor-reed saxophone and Csound 153
Alex Hofmann, Alexander Mayer, Werner Goebl

• MOD - An LV2 host and processor at your feet 157
Gianfranco Ceccolini, Leonardo Germani, Bruno Gola

viii

ix

x

netpd - a Collaborative Realtime Networked Music Making
Environment written in Pure Data

Roman HAEFELI
Media Artist

Zürich,
Switzerland

roman.haefeli@gmail.com
http://www.netpd.org

Abstract
This paper presents netpd, a framework intended for
making music collaboratively and in real-time writ-
ten in Pure Data (Pd)[1]. Users join by connect-
ing to a central server in order to have a session
together (not much unlike a jam session in Jazz mu-
sic) and load self-written or pre-existing instruments
(Pd patches) to play with. The framework maintains
state synchronicity between clients at any given time
by exchanging control messages over the server. The
protocol in use is fully based on OSC[2].

netpd does not address the transmission of au-
dio data, thus it is primarily used for synthesized
/ generated sound, but might be useful in other ar-
eas where state synchronicity is a goal (networked
games, graphics, etc.).

Keywords
Pure Data, Network, Music, Real-time, OSC

1 Introduction

Early experiments with transmitting control
messages over a network for making music
started in 2004 when an early version of netpd
was developped. While first drafts of in-
struments were an interleaved blend of DSP
parts, message control and state synchroniza-
tion parts, it became clear soon that a design
which clearly separates those parts would allow
the creation of a framework that gives the de-
signer of an instrument a high degree of freedom
while keeping the complexity of state synchro-
nization under hood. Crucial to the netpd ex-
perience are two distinct layers:

1. The netpd core framework (in this paper
simply called framework), which consists
of a server, a client application, and a set
of abstractions1 (netpd-abstractions) which
are used to create netpd-instruments.

2. The netpd-instruments: Pd-patches cre-
ated by netpd users which are loaded in the

1abstractions are modules written in Pure Data that
can be instantiated in a patch.

client application and played during a ses-
sion.

This paper primarly addresses the design of
the framework, which aims to provide the tools
to enable skilled2 users to design their own in-
struments to be used and shared with netpd.
It is important to understand that the pre-
sented framework has no notion of music and
is only the basis for user-designed instruments
and that those instruments make up the netpd
experience. It becomes apparent that collabo-
ration happens on the level of playing together,
but also on the level of designing and sharing
patches.

2 Basic design

Users load netpd’s client application chat.pd in
Pd (or Pd-extended, for that matter) which es-
tablishes a connection to a central server. The
server acts as a message relay between clients:
it forwards incoming messages from clients to
any or all other clients.

Server

Client 1 Client 2 Client 3

Figure 1: Client-server model

A session starts as soon as a user loads an
instrument - which itself is a Pd patch with cer-
tain netpd specific properties - into the client.
The clients keep the list of of loaded instru-
ments synchronized among each other at any
time. As necessary, clients even transfer the in-
struments (the .pd-files) to their peers in order

2knowing how to create Pd patches is sufficient to be
able to create netpd-instruments

1

to ensure synchronicity . Any user may load
more instruments into their client and these ap-
pear immediately (or after the time of transfer)
in all clients.

Client 1

instrB

User 1 loads instrA

Client 2

instrA

User 2 loads instrB

instrB

instrA

Figure 2: Instrument synchronization

Users play the instruments by manipulating
their GUIs. Also the instruments keep their
state synchronized among clients. Any change
is immediately reflected on all clients. All users
can play on all loaded instruments. Also, every
user immediately experiences the manipulations
of its peers. Although the generated sound is
rendered on every client separately, the result is
the same everywhere.

Client 1

instrA

freq 440

vol 0.8

Client 2

instrA

freq 440

vol 0.8
0.8

440

User 1 sets freq to 440 User 2 sets vol to 0.8

Figure 3: State synchronization

3 The framework

Let me divide the requirements of above sce-
nario into three main tasks which will be cov-
ered separately in this document.
Obviously, the clients need a way to com-

municate with each other. A message protocol
is defined, which the whole communication be-
tween clients (and between client and server) is
based on.
Another task of the framework is to share in-

struments between clients and to make sure that
at any given time the set of loaded instrument is
synchronized among connected clients. In that

respect, netpd acts as a peer-to-peer file sharing
tool for Pd patches.
State synchronization among instances of

netpd-instruments is a further goal of the frame-
work. Similar to the sharing of instruments
described above, state synchronicity must be
maintained at any given time. Unfortunately,
state synchronization does not automatically
work for arbitrary patches. The use of netpd-
abstractions facilitates the creation of state-
synchronized instruments.

3.1 The message protocol

It was decided to make the communication of
the framework fully based on the OSC protocol,
mainly because of its flexibility and its wide ac-
ceptance in music and related fields. OSC is ag-
nostic of the underlying transport layer. netpd’s
requirements for reliability left TCP as the pre-
ferred transport protocol. netpd adheres to the
version 1.1 of the OSC specification[3] which
specifies SLIP[4] as a framing mechanism for
stream-oriented protocols (such as TCP). Fig-
ure 4 shows how the protocols are stacked.

netpd
OSC
SLIP
TCP

Figure 4: protocol stack

3.1.1 Receiver ID

The sole purpose of the server is to relay mes-
sages between clients. Clients may send mes-
sages either to all or to specific clients. This is
achieved by defining the first field of the OSC
address as the receiver ID. Table 1 shows the
complete list of valid receiver IDs:

ID Receiver

/b broadcast (all clients)
/s server (not forwarded)
/l local (not sent to server)
/[ID] client with given ID

Table 1: List of valid receivers

The /l address is used in a similar way to lo-
calhost in networking: /l-messages are looped
back by the client. All other messages are sent
to the server. The server checks the first field of

2

an incoming messages and forwards it accord-
ingly. It disregards any message with an invalid
receiver ID.
/b-messages are forwarded to all connected

clients, even to the one the message originated
from.
/s-messages are read by the server and al-

low the client to request certain data such as
its client ID.
Any message whose first field is an integer

number between 0 and 999’999 is forwarded to
client with the given ID if it exists. Otherwise
the message is disregarded. The server does not
strip the receiver ID field when forwarding a
message, instead it replaces it by the ID of the
sender. This allows the receiving client to know
the origin of the message.
For instance, the server receives the following

message from the client 3:

/6/megasynth/voice1/freq 8000

The server replaces the receiver ID by the sender
ID and forwards the message to the client 6:

/3/megasynth/voice1/freq 8000

3.1.2 Server methods

Only the first field of the incoming message is
relevant to the server, except if the first field
is /s. The second field of a /s-message is the
namespace for optional server modules. At the
time of writing none exist, so only /server is
currently used. The third field specifies the type
of data the client requests. Only a minimal set
of client requests is supported:

/s/server Data

/socket socket number (client ID)
/ip IP address of the client
/num of clients number of clients
/protocol version protocol version

Table 2: List of supported server methods

The server responds to such messages only to
the requesting client. Client requests may con-
sist only of the OSC address, whereas the server
appends the requested data to the message. A
typical client request and the according server
response looks like:

/s/server/protocol_version
/s/server/protocol_version 2 0

3.1.3 Interoperability

Since OSC is a standardized protocol, other ap-
plications (Pd based or not) may be used to par-
ticipate in a netpd session as long as the mess-
sages adhere to above definitions. Similarly, it
is thinkable to intercept netpd traffic in order
to control hardware, for instance. Altough the
protocol as well as the server were designed with
the presented framework in mind, those might
be used solely for the purpose of sending mes-
sages between an arbitrary number of nodes in
applications totally different from netpd. Modu-
larity was one of the key aspects when rewriting
the framwork, which should make it easy to take
out and use only those parts of interest.
NOTE: so called OSC-Bundles are not sup-

ported by netpd and yet it is not clear if and
how support for them can be added.

3.2 The client

Figure 5: chat user interface

A user participates by opening the netpd-
client’s main patch called chat.pd in Pure Data.
This patch immediately establishes a connec-
tion to the server and presents a user interface
for chatting with other users. Being able to
communicate (with words) is crucial for estab-
lishing a session. Before sending anything else
though, chat checks the protocol version of the
server and requests its own client ID. It also
shows who is participating in the current ses-
sion.
At this point the user does not yet take part

in the ongoing session, but they might do so
by launching unpatch (by clicking the unpatch
button in chat).
Unpatch is the management interface for

loading and closing netpd-instruments. As soon
as it is launched, it automatically synchronizes
with its peers and loads all netpd-instruments

3

Figure 6: unpatch user interface

that are part of the running session. netpd-
instruments that are not yet present locally are
requested and transferred from the peers before
loading. Once all instruments are loaded and
synced, the user is able to control all instru-
ments used in the session.

3.2.1 netpd meta tags

How does unpatch know which patches (instru-
ments) need to be transferred? What happens
when two users have different versions of the
same instrument? What if a patch has depen-
dencies, because it uses abstractions? netpd
uses meta tags to define some properties of an
instrument. A valid meta tag section in an in-
strument is mandatory, otherwise unpatch re-
fuses to load the instrument. If present, those
tags are read and parsed before the instrument
is actually loaded. The netpd meta tags are or-
ganized hierarchically in subpatches and mes-
sage boxes. The subpatches act as namespaces,
whereas message boxes contain properties and
optionally one or more values for those prop-
erties. A subpatch [pd abslist] that contains
a messagebox [synthvoice(is equivalent to a
messagebox containing [abslist synthvoice(. In
terms of implementation, subpatches may use
any depth of nesting. However, netpd uses one
at most.

pd NETPD 2 0 declares the section of the netpd
meta tags. This subpatch may be placed
anywhere in the instrument patch, however
it is advised to put it into the main (top-
most) canvas for readability. ’NETPD’ is a
reserved name and must not be used for any
other subpatches in an instrument. The
’2 0’ part is optional and specifies the ver-

sion of the meta tag definition. unpatch as-
sumes the most current version if not spec-
ified.

version 0 3 1 is mandatory and specifies
the version of an instrument. The ver-
sion must consist of three integer num-
bers. netpd does not define the way
they are used. When comparing two
differing versions, it is only relevant for
unpatch which is higher, whereas the
first number is the most significant.

pd abslist is optional and defines the de-
pendencies. It contains references to
abstractions used by the instrument.

synthvoice is the name of the ab-
straction and refers to a file
netpd/abs/synthvoice.pd.

singleton is optional and defines a single-
ton instrument. Such an instrument
may be only loaded once. Loading fur-
ther instances of such an instrument is
denied by unpatch.

Both instruments (patches) and their depen-
cencies (abstractions) must contain a meta tags
section. The meta tag ’singleton’ only applies
to instruments, since abstractions are never
loaded directly by unpatch (they are instanti-
ated within instruments). Dependencies are re-
solved recursively which allows to group several
abstraction into a meta abstraction that holds
nothing more but a meta tag section that refer-
ences many abstractions (like meta packages in
Debian).
Before unpatch loads an instrument, all its

dependencies and child dependencies must be
resolved. Instruments can only depend on ab-
stractions, but not on other instruments, since
instruments are only loaded by user interaction
and never automatically. Because instruments
and their abstractions are treated in distinct
ways, they are saved in separate directories:
netpd/patches for instruments and netpd/abs
for abstractions. Only instruments that reside
in netpd/patches can be loaded with unpatch.

3.2.2 Instrument synchronization

When a client loads an instrument, it notifies all
other clients about the name of the instrument,
its version, its dependencies and their version.
Its peers check the list and issue a request to
the initiating client for any item they do not
have at all or whose version number is smaller.

4

If they find their local version of an item to be
higher, they notify the initiating client about
it and the user who loaded the instrument will
be presented an according message (”found ver-
sion 1.3.5 of abstraction ’synthvoice’ on client
7”). Such a version mismatch is not resolved
automatically in order to protect the user from
loading a version different from the one they had
in mind. The user may still decide to resolve the
situation by reloading unpatch. In this case his
client requests the intrument and its dependen-
cies from a peer and the more up-to-date remote
version will overwrite the local one.

When a client joins an already running ses-
sion, it tries to find a peer in a ’synced’ state.
If there is any, it requests the list of currently
loaded instruments and dependencies (with cor-
responding versions) from it. As soon as all in-
struments are loaded successfully, it marks it-
self as ’synced’. From this moment it will also
advertise itself as ’synced’ to new clients and
answer instrument list requests. In case a client
does not get a response to the initial request -
because it is the first in the session - it sets itself
to ’synced’ after a timeout.

3.3 State synchronization

netpd thinks of instruments as containers of a
variety of different data sets and data types that
define the state of the instrument and may be
modified at any time. Those data sets may be
a number (changed by slider movements, for in-
stance), a table of numbers, a list of strings, a
string, a multi-dimensional number array, etc.

A user plays an instrument by modifying
those data sets which in turn control the param-
eters of the instrument. netpd provides a hand-
ful of abstractions (a.k.a netpd-abstractions)
that each cover a specific data set. Such an
abstraction automatically keeps the content of
a data set of a certain instrument synchronized
among all clients, no matter which user is ma-
nipulating it. Depending on the network la-
tency and the amount of data the synchroniza-
tion might happen in near real-time.

All netpd-abstractions provide an input for
manipulating data and an output for passing
those modifications to the instrument. In the
simplest case the modification and the data
is equivalent. For instance, a user interaction
changes a number that is sent to the abstrac-
tion, the abstraction stores the number and
broadcasts it to all clients and finally outputs it
to the instrument. Another example of a data

set is a table of numbers that may be used for a
table-lookup oscillator. A modification of such
table can be the change of a value at a certain
position, but also a change of a whole section of
the table. Changing the size of the table may
represent an other valid form of manipulation.
The netpd-abstraction responsible for synchro-
nizing tables broadcasts those modifications to
all clients. When received, the modifications
are applied to the table and output to the in-
strument. In the case of table-lookup oscillator
the instrument may not need the output as it is
reading the table constantly. In other cases it
might be crucial to know what exactly has been
changed.
If all variable parameters of an instrument are

synchronized with above techniques, the gen-
erated sound (or whatever the instrument out-
puts) is identical for every client.

3.3.1 Namespaces

In order to allow many instances of an in-
strument simultaneously, each instrument is as-
signed a unique ID (an integer number) at load-
ing time. Unpatch does not load instruments
as stand-alone patches, but instantiates them
as abstractions and gives the ID as argument.
This allows an instrument to operate in its
own namespace when exchanging messages with
other clients. Those namespaces are used in
OSC message by putting the instrument ID into
the second field of the OSC address and the
instrument name into the third field. Techni-
cally the instrument name is not necessary, but
it makes OSC messages more human-readable.
netpd-abstractions used within instruments op-
erate in a child namespace of the instrument
namespace.

receiver ID
| instrument ID
| | instrument name
| | | netpd abstraction name
| | | |
/b/7/megasynth/lookup 12 0.7 0.8

Figure 7: OSC namespaces in netpd

Namespaces with more depth might be used
if appropriate. A typical use case is to
group many netpd-abstractions into another
abstraction. This way a netpd-ified (state-
synchronized) module is created that can be in-
stantiated many times in an instrument, with
different arguments for different namespaces.

5

3.3.2 netpd-abstractions

As explained in the previous section, several
kinds of netpd-abstractions manage different
kind of data sets. In order to ensure state
synchronicity of instruments among clients -
even if new clients join a session - each instru-
ment must contain a special netpd-abstraction
[netpd head] that manages state initialization
and state transfers between clients. It is kind
of the master of all other netpd-abstractions in
the instrument. Those do not send their data
to the network directly, but to [netpd head]
which prepends the appropriate namespace of
the instrument before forwarding it to the net-
work. [netpd head] also may request all netpd-
abstractions to dump their current state when
necessary.

At instrument loading time it initializes the
instrument by requesting a dump which it for-
wards to /l (the local client [itself]). It does so
in order to transfer the internal default values of
all netpd-abstractions to the instrument. Then
it tries to find a remote peer in ’synced’ state. If
such a peer is around, it prompts it to send back
the current state of the instrument. This sets all
netpd-abstractions of the local instrument to the
current state. The same mechanism as the in-
strument list synchronization of unpatch is used
here.

To sum it up, an instrument needs one
[netpd head] and any number of other netpd-
abstractions:

netpd_head $1 megasynth is responsible for the
state management of the instrument. The
variable $1 is replaced by the instrument
ID given by unpatch. The second argument
represent the instrument name.

netpd_f $1 volume 0.7 synchronizes a single num-
ber. Additionally, it reads the value from a
GUI object (slider, number box, radio but-
ton, etc.) whose receive and send names
are set to ’$1-volume’ and automatically
updates the GUI object on state changes.
The third argument ’0.7’ is optional and
sets the init value.

netpd_t $1 waveform 256 synchronizes a table
named ’$1-waveform’. The third argument
sets the table size. Although it could have
been designed to hold the table internally,
an external table allows the use of a graph-
ical array in the GUI of the instrument.

netpd_r $1 something is a simple receiver for con-
tent in the given namespace. This comes
in handy when a certain data set is needed
in different locations of the instrument.

netpd_s $1 something is the counterpart of
[netpd r]: It sends any kind of data under
given namespace. It is only used in special
cases, as it doesn’t have any state and thus
can’t be used for state synchronization.

netpd_a $1 anything a is container for an any-
thing message (a message with an arbitrary
number of elements).

Currently there aren’t more netpd-
abstractions, though one could easily think
of more data types to be synchronized. Pure
Data provides only very few data types na-
tively, so covering those in netpd would require
additional external libraries. More netpd-
abstractions might be added in future versions
of netpd (for instance, for the ’matrix’ type as
defined by the ’iemmatrix’ library).

4 Conclusions

Although all aspects netpd addresses seem to
work flawlessly, the overall experience is not free
of issues. A major culprit are audio drop outs
caused by certain tasks like loading new instru-
ments. Some causes for audio drop outs cannot
be addressed by netpd as they are intrinsic to
Pd’s design. Others have been addressed by em-
ploying threaded externals. Also there are ways
to work around certain causes, for instance by
loading all instruments beforehand.
In past years, netpd enabled the creation of

a community of ever varying members from
around the globe. Some sessions were spanning
three continents. Quite a few users wrote in-
struments and some more used to play with it.
A huge pile of music3 from recorded sessions
grew over the years. While technically not ma-
tured, there used to be a lot of activity. Af-
ter it got more quiet around netpd, I decided
to rewrite the framework from scratch, since
some design flaws became more apparent. In
the meantime, Pure Data and many libraries
evolved to a higer degree of maturity, which
made the rewrite presented in this paper possi-
ble at all. Many instruments have been ported
from the old framework and some new ones have
been written. netpd has been ”tinkered in the

3http://www.netpd.org/Listen

6

quiet” since and no community has been grown
again. A few sessions with media art students
revealed that there aren’t any show stoppers
with the framework and some people may be
intrigued by playing with it. It’s now time to
spread the word again, which is one reason for
the desire to present it at LAC 2013.

5 Acknowledgements

The companions from the early days of netpd
- Enrique Erne, Moritz Wettstein, Syntax the
Nerd - deserve credit for contributing their
thoughts about design in uncountable discus-
sions and for writing many instruments. Also,
I would like to thank the authors of the exter-
nal libraries that are the most crucial for netpd
and without them the realization wouldn’t have
been possible: the ’osc’ and ’slip’ libraries writ-
ten by Martin Peach and the ’iemnet’ network-
ing library written by Martin Peach and IO-
hannes Zmölnig. Both authors showed a great
willingness to add features useful for netpd and
to fix issues in their libraries. Collectively, I
thank all people who helped realizing sessions
on radio broadcasts, at concerts or other spe-
cial occasions.

References

[1] Miller Puckette. Pure Data. http://
puredata.info.

[2] Open Sound Control. http://
opensoundcontrol.org/.

[3] Adrian Freed and Andy Schmeder. Features
and future of open sound control version 1.1
for nime. In NIME, 2009.

[4] J. Romkey. A Nonstandard For Transmis-
sion Of IP Datagrams Over Serial Lines:
SLIP. Technical Report RFC 1055, IETF,
Network Working Group, 1988.

7

8

Byzantium in Bing: Live Virtual Acoustics Employing Free
Software

Fernando Lopez-Lezcano, Travis Skare, Michael J. Wilson, Jonathan S. Abel

CCRMA (Center for Computer Research in Music and Acoustics),

Stanford University

{nando|travissk|mwilson|abel}@ccrma.stanford.edu

Abstract

A Linux-based system for live auralization is
described, and its use in recreating the reverberant
acoustics of Hagia Sophia, Istanbul, for a
Byzantine chant concert in the recently
inaugurated Bing Concert Hall is detailed. The
system employed 24 QSC full range loudspeakers
and six subwoofers strategically placed about the
hall, and used Countryman B2D hypercardioid
microphones affixed to the singers' heads to
provide dry, individual vocal signals. The vocals
were processed by a custom-built Linux-based
computer running Ardour2, jconvolver, jack, jack-
mamba, SuperCollider and Ambisonics plugins
and decoders among other free software to
generate loudspeaker signals that, when imprinted
with the acoustics of Bing, provided the wet
portion of the Hagia Sophia simulation.

Keywords

impulse response, virtual acoustics, Ambisonics,
auralization

1 Introduction

Acoustics are important to the experience of
music: Singing in a large, stone cathedral evokes a
much different response than the same singing in a
small, wood frame recital hall. Acoustics are also
important to the performance of music:
Reverberation time can affect tempo, and room
modes can influence pitch. Quite often, music
written for a particular space works best when
performed and experienced in that space.

As part of the "Icons of Sound" project, we are
exploring the acoustics of Hagia Sophia, Istanbul,
a nearly 1500-year-old World Heritage Site with
marble floors and walls, 56-meter high dome and a
reverberation time of over 10 seconds [1]. Hagia
Sophia is presently a museum, and singing in the
museum is not permitted. To better understand the
aural experience of Hagia Sophia, we have

attempted to synthesize the sound of Byzantine
chant performed in Hagia Sophia.

Previous Icons of Sound acoustics and
auralization work includes processing balloon
pops recorded in Hagia Sophia into impulse
responses of the space [2,3], and producing
auralizations of Byzantine chant in a virtual Hagia
Sophia [4]. The auralizations were accomplished
by recording chant performed using headset
microphones, so as to have separate dry tracks for
each of the performer's vocals. While chanting,
the microphone signals were processed using the
estimated Hagia Sophia impulse responses, and
played for the chanters over headphones to
provide in real time a virtual sense of the
performance space, while allowing dry vocal
signals to be recorded. In post production, the
recorded dry tracks were processed according to
the estimated Hagia Sophia impulse responses to
produce performance recordings in a simulated
Hagia Sophia.

In this work, we describe a Linux-based system
for live performance of Byzantine chant [10] in
Stanford University's new Bing Concert Hall,
modified to take on the acoustics of Hagia Sophia.
Unlike virtual acoustic systems such as installed at
McGill's CIRMMT [5], or LARES [6], any virtual
acoustic system used at Bing must be able to be
installed or removed within a few hours. For our
Icons of Sound project, the system must also be
able to handle the long reverberation times of
Hagia Sophia.

The approach we take is to place two dozen
loudspeakers in the hall, hanging many of them
from the rigging points in the ceiling. Directional
headset microphones are used to capture dry vocal
signals, which are processed in a Linux machine
to produce the needed acoustic enhancement.

9

This paper is organized as follows: Section 2
describes the Listening Room and outdoor systems
developed for synthesizing Hagia Sophia acoustics
and listening at CCRMA. Sections 3 and 4 present
the hardware and software components of the live
virtual acoustics system used in Bing Concert Hall.

2 CCRMA-based systems

The auralization system used in the Bing
Concert Hall performance was the result of a
design and testing process lasting more than three
years. The process included selecting and
procuring the loudspeakers themselves, developing
methods for diffusion and writing, testing and
running the associated hardware and software. The
real-time system was recently completed, and has
been successfully used in concert several times.

The first public performance of one of the Icons
of Sound auralizations was the Prokeimenon mix
which was performed in the second night of the
2011 Transitions concerts [4]. This short piece was
recorded in our small recital hall called the Stage
by members of the Cappella Romana early music
vocal group using the process briefly described
above: headset microphones captured dry vocals
which were convolved with Hagia Sophia impulse
responses and fed back to the performers via
headphones. In a post-production process,
auralizations were created using an off-line
convolution process to produce reverberated tracks
for an Ardour session. The original mixing was
done in our 3D Listening Room using its built in
Ambisonics decoder and 22.4 loudspeaker
configuration. The final mix was diffused outdoors
using our (at the time) 16.4 system with height and
a combination of 2D and 3D Ambisonics decoders.

During the second night of the 2012 edition of
Transitions [7] we did the first test of a live
performance in the virtual Hagia Sophia simulation
for two chanters, John Kocolas and Konstantine
Salmas. Two issues were being addressed, first,
with critical help from Aaron Heller and Eric
Benjamin [8], an expanded 24.4 diffusion system
was implemented using the 3D outdoor diffusion
system with proper Ambisonics decoding.
Second, we found that Countryman B6 headset
microphones could provide sufficient voice signal-
to-reverberation ratios that the very wet acoustics
of Hagia Sophia could be simulated without
feedback. The concert was successful and proved
the feasibility of using the system in a concert
situation.

In December 2012 we had the opportunity to do
a more complete test of the whole diffusion
system in the framework of a two-day complete
technical rehearsal in the Bing Concert Hall. It
was the first time we had access to the Hall, and
we installed a complete rigging of our 24.4 system
in a full 3D dome.

We had not tested the system in an enclosed
environment, and needed to verify that we could
achieve the wet signal energy of Hagia Sophia
without feedback. Using a group of seven
Byzantine chanters from the choir of Holy Cross
Church in Belmont, we were able to produce the
needed levels of reverberation without feedback,
provided head-mounted microphones were used.

3 Speakers and rigging

The final speaker array for the concert was
comprised of 24 QSC HPR122i main speakers and
6 QSC HPR181 subwoofers. 10 main speakers
were arranged around the upper terrace. The hall
has a terraced design with the audience seated at
different levels and surrounding the stage [18].

Because of the terraced design, regretfully some
of the audience would be necessarily close to a

Rehearsal, chanters from the Holy Cross Church

Transitions 2012 outdoor concert setup

10

speaker and that is a real problem. To try to
minimize that problem we kept an earlier
arrangement of speakers mounted in equipment
catwalks that are located between some of the
"sails" of the concert hall. So we had, at “ear”
level, two front speakers on stands, four speakers
on each side of the Hall that were elevated (in the
lower catwalks) and four more speakers in the
sides and back on stands. This was a compromise
between ideal location of speakers and trying to
not get them to be too close to audience members.

The speakers rigged from the ceiling were
roughly arranged in two “rings”, a medium height
one comprised of 10 speakers and a high ring of
four speakers. The placement of the speakers was
restricted by the spacing and availability of rigging
points so it is not an exactly regular arrangement.

Aaron Heller and Eric Benjamin used their
decoder design software to create an Ambisonics
decoder tuned to the speaker arrangement we had
in the Hall.

4 Signal routing

This section describes in some detail the signal
routing of the whole diffusion setup.

4.1 Microphones

For the singers we used 15 Countryman B2D
hypercardioid 2 mm diameter microphones with

Sure wireless transmitters. Each singer had a
microphone taped to his forehead. The wireless
signals were picked up by antennas in the Hall
which were connected to two racks of 8 wireless
receivers each, located in the Amp/Patch Room to
the side of the hall. From there they were patched
into the hall's main Yamaha SL5 mixer which was
used for level control and signal equalization. The
16 signals were then routed out of a dual ADAT
link card into our sound diffusion workstation.

4.2 The workstation

Our workstation is a custom built no-fan
workstation [11] currently equipped with a 6
core / 12 thread i7-3930K processor, 64G of
RAM, an SSD system disk and a two disk
mirrored RAID array for big audio and video files.

For this performance the computer had an RME
RayDAT PCI Express audio interface which was
slaved to the Yamaha digital mixer through Word
Clock and received the microphone signals
through two ADAT links coming from the
Yamaha mixer. Jack 1.9.9 was used as the main
audio connection and distribution system, and it
was running during the performance at 256x2 and
48KHz. The preferred setting of 128x2 was
actually not rock solid during tests so it was
discarded, although it would have probably
worked. The nature of the system being simulated
did not require ultra low latency from the system
(see below for the complex setup used). The
computer was running Fedora 17 plus Planet
CCRMA [21] and the Planet CCRMA RT patched
kernel for best performace.

4.3 Signal processing

All signal processing in the computer was done
with Open Source and Free Software tools. An
Ardour2 [13] session plus 4 instances of
jconvolver [14] created the routing and main
spatialization component of the Hagia Sophia
virtual acoustics recreation running a total of 48
16-second-long convolutions.

Each of the 16 microphone signals has a pre-
fader send to three jconvolver inputs. Inputs 1-4
are handled by the first jconvolver instance, 5-8
by the second, etc. 48 Ardour2 bus tracks each
receive one mono jconvolver output. Each has a
post-fader Ambisonics 3,3 panner insert to
position the sound and output to the master bus.
Virtual reverb sources were positioned manually
via the Ambisonics 3,3 panner plugin GUI inside
Ardour [19]. Additionally, a small amount of
direct signal is mixed in via post-fader

11

Ambisonics 3,3 panner plugins on the microphone
input tracks. The project contains mix and edit
groups for the dry (16) and wet (48) signals for
ease of experimentation and mixing.

The resulting 16 channels of the 3rd order
Ambisonics mix are then routed through Jack to
the sound synthesis server of SuperCollider [16]
(we were using the Supernova server running with
6 threads of parallelism, that corresponded to the 6
real cores of the machine).

SuperCollider received the Ambisonics signals
and splits them into main speaker and subwoofer
feeds using LR4 software crossover networks [9].
Those are sent out to two instances of
Ambdec[15]. The first one decodes the main
speaker feeds for our 24 QSC speaker dome, and
uses coefficients calculated thanks to the help of
Aaron Heller and Eric Benjamin decoder and
optimization software [8]. The second decoder
receives the subwoofer Ambisonics signals and
decodes them with a standard hexagon decoder.

The output signals from the Ambdec decoders
go back into SuperCollider, where a different set
of SuperCollider instruments further process them
to equalize all speaker and subwoofer feeds for
delay and loudness (distances to all speakers and
loudness are measured when the system is
calibrated). At this point the signals for the 24
main speakers and 6 subwoofers are ready to be
sent to the physical speakers.

4.4 Outputs

The workstation, which is located in the main
mixing position of the Hall, is connected through a
single ethernet cable to a Mamba AudioStreamer
box that is located in the Amp Room. 30 of its 32
outputs are patched directly into the lines that are
connected to each speaker or subwoofer.

The outputs of SuperCollider are connected to
the inputs of jack-mamba[12], a small jack client
that translates jack frames into UDP packets that
the AudioStreamer box can understand.

All of this running in realtime and providing a
virtual Hagia Sophia auralization environment for
the 15 singers of the Cappella Romana [17] vocal
ensemble.

4.5 Control

A simple BCF2000 USB fader controller is
connected to the workstation and three faders were
programmed to control the 16 channel master

Ardour bus (for overall level control), the
DryGroup in Ardour which controls the level of
the dry spatialized signal being fed to the main
mix and the WetGroup which directly controls the
outputs of all 48 convolvers. Those three faders
were used live during the performance to control
the gain of dry and wet signals and overall
loudness of the virtual hall. Fernando was
controlling the mix during the performance.

The microphone signals were separately
controlled using the Yamaha mixer by Doyuen
Ko, a member of Wieslaw Woszczyk's team that
was doing the recording of the performance.

5 Conclusions

Cappella Romana's February 1, 2013,
performance of Byzantine chant in a virtual Hagia
Sophia demonstrated that the Linux-based virtual
acoustics system described here can be used for
real-time auralization. All of the hardware
components used were off-the-shelf and relatively
inexpensive, and all of the software was based on
Open Source Free Software projects.

The concert performance garnered positive
reviews for the immersive, transporting
soundscape [20]. The performers also had a good
experience, reporting that, unlike other

Signal and control routing

12

performances involving artificial reverberation, the
virtual Hagia Sophia created in the Bing Concert
Hall "responded in a very natural way," and felt
like a "real space," "holding its pitch" and allowing
control over the harmonic content of the ison
(drone).

6 Acknowledgements

This work would not have been possible without
the help and encouragement of many individuals:
Chris Chafe (CCRMA's Director), Bissera
Pentcheva (who, with Jonathan Abel, leads Icons
of Sound, http://iconsofsound.stanford.edu), Jenny
Billfield (former director of Stanford Live), Aaron
Heller for the timely delivery of optimized
Ambisonics decoder coefficients, Sasha Leitman,
Carr Wilkerson and Jay Kadis at CCRMA and
especially to Alexander Lingas, Mark Powell and
Cappella Romana, and Fr. Salmas and the
Byzantine chanters from the choir of Holy Cross
Church in Belmont, CA. This research was
supported in part by the Stanford Presidential Fund
for Innovation in the Humanities, granted for
“Icons of Sound: Architectural Psychoacoustics in
Byzantium”, and the Stanford Arts Initiave
(formerly Stanford Institute for Creativity and the
Arts, SiCa). We also want to thank Countryman
Associates for donating the B2D Directional
Lavalier microphones used for the concert and
recording sessions. Finally, we greatfully
acknowledge Christine and Reece Duca, whose
generous support made possible the concert and
recording sessions described here.

References

[1] Bissera V. Pentcheva, "Icons of Sound: Hagia
Sophia and the Byzantine Choros," Chapter 2 in
"The Sensual Icon: Space, Ritual, and the Senses
in Byzantium," Penn State Press, 2010.

[2] Jonathan S. Abel, Nicholas J. Bryan, Patty P.
Huang, Miriam Kolar, Bissera V. Pentcheva,

"Estimating Room Impulse Responses from
Recorded Balloon Pops," Convention Paper
8171, presented at the 129th Convention of the
Audio Engineering Society, San Francisco,
November 2010.

[3] Jonathan S. Abel, Nicholas J. Bryan, "Methods
for Extending Room Impulse Responses
Beyond Their Noise Floor," Convention Paper
8167, presented at the 129th Convention of the
Audio Engineering Society, San Francisco,
November 2010.

[4] Jonathan S. Abel, Bissera V. Pentcheva,
Miriam R. Kolar, Mike J. Wilson, Nicholas J.
Bryan, Patty P. Huang, Fernando Lopez-
Lezcano and Cappella Romana, "Prokeimenon
for the Feast of St. Basil (12th century)," from
the concert "Transitions 2011, Night 1:
Acousmatic Soundscapes under the stars,"
Center for Computer Research in Music and
Acoustics, Stanford University, September 28,
2011.

[5] CIRMMT, Centre for Interdisciplinary
Research in Music Media and Technology,
http://www.cirmmt.mcgill.ca/

[6] David Griesinger, "Improving Room
Acoustics Through Time-Variant Synthetic
Reverberation," in Proc. AES 90th Convention,
February 19–22, 1991.

[7] Jonathan S. Abel, Bissera V. Pentcheva,
Miriam R. Kolar, Mike J. Wilson, Nicholas J.
Bryan, Patty P. Huang, Fernando Lopez-
Lezcano, John Kocolas and Konstantine Salmas,
"Trisagion, Setting IX," from the concert
"Transitions 2012, Night 2: Soundscapes under
the stars," Center for Computer Research in
Music and Acoustics, Stanford University,
September, 2012.

[8] Aaron Heller, Eric Benjamin, Richard Lee, “A
Toolkit for the Design of Ambisonic Decoders”,
Proceedings of LAC2012

[9] Linkwitz–Riley crossovers:

“http://en.wikipedia.org/wiki/Linkwitz
%E2%80%93Riley_filter”

[10] Cappella Romana Concert:

Cappella Romana concert, February 1st, 2013

13

“From Constantinople to California”, Stanford
Live, Bing Concert Hall.

http://live.stanford.edu/event.php?code=CAP1

[11] Fernando Lopez-Lezcano, “The Quest for
Noiseless Computers”, Proceedings of LAC2009

[12] Fernando Lopez-Lezcano, “From Jack to
UDP packets to sound and back”, Proceedings of
LAC2012

[13] Ardour2

http://ardour.org

[14] Jconvolver

http://kokkinizita.linuxaudio.org/linuxaudio/

[15] Ambdec

http://kokkinizita.linuxaudio.org/linuxaudio/

[16] SuperCollider

http://supercollider.sourceforge.net/

[17] Cappella Romana,

 “http://www.cappellaromana.org/”

[18] Bing Concert Hall at Stanford

“http://binghall.stanford.edu/about/”

[19] Amb-plugins,

http://kokkinizita.linuxaudio.org/linuxaudio/

[20] Jason Victor Serinus, “Cappella Romana:
Time Travel to Constantinople,” in San
Francisco Cassical Voice, February 2, 2013,
http://www.sfcv.org/reviews/stanford-
live/cappella-romana-time-travel-to-
constantinople

[21] Planet CCRMA software package collection,

https://ccrma.stanford.edu/planetccrma/software/

14

Combining granular synthesis with frequency modulation.

Kim ERVIK

Department of music

University of Science and Technology

Norway

kimer@stud.ntnu.no

Øyvind BRANDSEGG

Department of music

University of Science and Technology

Norway

oyvind.brandsegg@ntnu.no

Abstract
Both granular synthesis and frequency
modulation are well-established synthesis
techniques that are very flexible. This paper
will investigate different ways of combining
the two techniques. It will describe the rules
of spectra that emerge when combining,
compare it to similar synthesis techniques and
suggest some aesthetic perspectives on the
matter.

Keywords

Granular synthesis, frequency modulation,
partikkel, csound, sound synthesis

Fig 1:Grain Pitch modulation

1 Introduction

1.1 Method

Working on this subject, We´ve been using
csound for implementing and generating sound,
and reviewing graphical analysis of the sounds
generated. We have been working systematic
trying to find similarities and differences between
regular FM, granular synthesis (GS), and FM in
GS. For the purpose of this project, we have been
using sinusoidal grains.

1.2 Granular synthesis

The idea of granular synthesis can be traced
back to Gabor’s theory of acoustical quantum in
1947 [7]. Thinking of sound as particles as a
philosophical and a musical point of view can be
very interesting, and has led to the development of
granular synthesis, or particle synthesis. Granular
synthesis means synthesizing sound based on
adding thousands of sonically grains into larger

acoustical events. Sound as particles has been
used in applications like independent time and
pitch scaling, formant modification, analog synth
modeling, clouds of sound, granular delays and
reverbs, etc [3]. Examples of granular synthesis
parameters are density, grain pitch, grain duration,
grain envelope, the global arrangement of the
grains, and of course the content of the grains
(which can be a synthetic waveform or sampled
sound). Granular synthesis gives the musician vast
expressive possibilities [10].

1.3 FM synthesis

Frequency modulation has been a known
method of coding audio into radio signal since the
beginning of commercial radio. In 1964 that John
Chowning discovered the implication of
frequency modulation of audio working on
synthesis of brass instrument at Stanford [2]. He
discovered that modulating the frequency resulted
in sideband emerging from the carrier frequency.
Yamaha later implemented the technique in the
hugely successful DX7.

If we consider FM synthesis using sinusoidal
carrier and modulation oscillator, the spectral
components present in a FM sound can be
mathematically stated as in figure 2.

f
n
= f

c
±nf

m

Fig 2:The spectral components present in a FM
sound where n is an integer, fc is the carrier
frequency and fm is the modulation frequency.

The intensity of the sidebands can be calculated
with Bessel functions. When a sideband passes 0
Hz or the nyquist frequency, it is mirrored and 180
degrees phase shifted. The modulation frequency
is usually a product of a modulation ratio and the
carrier frequency, while the modulation amplitude
is the product of a modulation index and the
carrier frequency, which sets the sidebands in a
constant relation to the carrier frequency [9].

FM in GS is earlier mentioned in Jones and
Parks (1988) as a method to increase the range of

15

possibilities available to the composer or
researcher using granular synthesis [8].

2 Combining the two techniques

2.1 FM of GS parameters

In granular synthesis the pitch interpretation of
the sound is dependent on the grain rate. If the
grain rate is within the audible range, the pitch is
given by the grain rate1. If the grain rate is sub
audio, the pitch of the source waveform within the
grain defines the pitch of the generated sound. We
can do both FM of the grain rate, and FM of the
pitch within the grain. We´ve looked at different
variants and investigated the differences in
spectrum.

The grain pitch affects the spectrum of a GS
tone with high grain rate. When the grain rate is
low the spectrum might be affected by the grain
rate. So there are two parameters that oppose each
other. But seen as one, the two parameters
controlling pitch and timbre are grain rate and
grain pitch, and that’s why we have tried to
modulate the two.

If we look at regular FM synthesis, the
perceived pitch is dependent on the modulation
ratio. If the FM ratio is 0.5 the pitch is interpret as
one octave below the carrier. The distance between
the frequency components of the spectrum is an
important part of determining the perceived pitch.
If a tone is generated with FM ratio at 7/8, the
timbre will be inharmonic resulting in a diffuse
fundamental pitch. As shown above in both FM
and GS we have many different factors
contributing to the perceived pitch.

To sum up we have two different ways of
combining FM with GS:

- Frequency modulation of the pitch within the
grain

- Frequency modulation of the grain rate

3 Frequency modulation of the pitch within
the grain

Grain pitch modulation is easily done in csound
using the partikkel opcode [1]. The particle opcode
has an a-rate input that alters the pitch of the grain,
implemented as phase modulation, directly

1With some exceptions. For instance if the phase or
the reading position of the grain source is modulated,
the pitch may be defined by the pitch of the content in
the grains. Another exception is if the grain stream is
asynchronous. Then the result will be noisy dependent
on the random range of the grain distribution.

modifying the reading position of the source
waveform. This input can be fed with any audio
signal, for our experiments, we have used a sine
wave signal. A modulation oscillator can be set up
as in regular FM synthesis using the parameters
FM ratio and FM index, although the calculation
of modulation index is done somewhat differently
than in regular FM [4].

Fig 3: Grain pitch FM

3.1 Grain pitch modulation with modulation
frequencies below 30 Hz

If we modulate the frequency at a rate below 30
Hz in a regular FM synthesis setup, the result is
vibrato. The same thing happens in grain pitch
modulation with grain rates below 30 Hz. With
high grain rates the situation is somewhat
different, as the grain pitch will affect the timbre.
This means that a modulation frequency below 30
Hz applied to grain pitch modulation using high
grain rates will lead to periodic spectral sweeps
similar to filter sweeps.

There is an interesting transition area (approx.
20 – 50 Hz) both for grain rate and modulation
frequency. In this area we move from a pitch
perception defined by the grain pitch to the grain
rate, similarly we move from vibrato to FM. We
also note significant interaction between these
parameters (grain rate and modulation frequency),
so the situation is somewhat complex. Further
exploration of this area might prove fruitful.

3.2 Grain pitch modulation with modulation
frequencies above 30 hz compared to
regular FM synthesis.

Since the grain rate constitutes the perceived
pitch at high grain rates, it might be convenient to
calculate the modulation frequency as a relation
between the grain rate and the modulation ratio.
Calculating modulation frequency based on a
fixed pitch within the grain gives rather arbitrary
spectrum. But with modulation frequency

16

calculated based on the grain rate, a constant
relation between the fundamental pitch and the
timbre is obtained.

The spectral behavior in grain pitch modulation
is similar to regular FM. It might be relevant to
compare grain pitch modulation with regular FM
using a non-sinusoidal carrier wave. In that
example all the harmonics get sidebands, resulting
in very dense spectra’s. The same thing happens in
grain pitch modulation. There are three major
differences in the spectral behavior. First of all the
FM index is behaving differently. In grain pitch
modulation the strength of the sidebands is weaker
than those in regular FM.

Secondly simple FM ratios behave differently.
The spectra of a regular FM tone will only contain
even harmonics if the modulation ratio is two. But
in grain pitch modulation with integer FM ratios,
for instance 2, the sidebands line up with every
other harmonics of the grain rate resulting in both
odd and even harmonics (se figure 4). This is not
the case though with complex FM ratios. FM ratio
at for instance 0,5 will cause the sidebands from
the frequency modulation to line up between the
harmonics of the grain rate resulting in a drop in
the perceived pitch (se figure 4). In some cases
complex FM ratios might give inharmonic spectra,
although the spectral behavior is different than in
regular FM because of the dominant harmonics of
the grain rate, which are still present.

Fig 4: Grain rate at 300 Hz, grain pitch at 300 Hz.
Shows the difference between grain rates at 3 and
at 0,5.

The third difference is that in grain pitch
modulation sidebands will also emerge from a sub
harmonic tone at 0 hz, which is a sub harmonic
from the grain rate in the GS. It is not audible, but
the sideband might be. This results in a much fatter
tone than in regular FM.

To understand the effect of the grain pitch that
are modulated, we must look at FOF synthesis, a

variant of particle synthesis. FOF synthesis is a
formant synthesis where the grain rate gives the
fundamental pitch and the grain controls formant
frequency. The shape of the formant is given by
the grain shape and duration. The same thing
happens in grain pitch modulation, only with a
much wider peak in the spectrum. It’s so wide that
it’s perhaps not correct to call it a formant. This
enables us to shift the spectral energy of the FM
synthesis upwards.

If one uses Gaussian grain envelope and the
grains don’t overlap, the result is similar to
amplitude modulation. One very important
difference is that the phase of the wave inside the
grains are resetting for each grain. That’s means
that if the grain frequency is not in an integer
ration to the grain size, the wave cycles inside the
grains will be cut short, resulting in a spectrum
with a lot more components than in the case of
integer ratios. So for cleaner sound one need the
grain frequency to be an integer of the grain size,
which limits the number of available grain
frequencies. The way to solve this is to use two
grain streams, each containing grain pitches at
integer ratio to the grain rate, and then crossfade
between them.

3.3 Similarities and differences between
grain pitch modulation and regular
granular synthesis using FM synthesized
sound as wave source.

It might be useful to compare grain pitch
modulation with regular granular synthesis using
an FM synthesized sound as source for the grains.
The major difference is the continuity of the phase
in the FM synthesized source wave, whereas the
phase will be reset for each new grain when doing
FM on the pitch within the grain. In other
respects, grain pitch modulation is comparable to
combining FM with AM.

4 Frequency modulation of the grain rate

Since the perceived pitch is given by the grain
rate with grain rates above 30 hz, its interesting to
experiment with modulation of the grain rate,
using a regular sine modulator. The modulation
frequency can be calculated the same way as in
grain pitch modulation. When the grain rate is
modulated, it should be updated at audio rate.
Ideally the grain rate and the modulation wave
should be an a-rate variable. This is possible with
the partikkel opcode [5].

17

4.1 Grain rate modulation with modulation
frequencies below 30 hz

If we use modulation frequency below 30 hz we
will get vibrato, just like in grain pitch modulation
with low grain rates. But also here there are some
interesting transition areas to explore in both grain
rate and modulation frequency.

Fig 5: Grain rate modulation

4.2 Grain rate modulation with modulation
frequencies above 30 hz compared to
grain pitch modulation

This implementation gives similar spectral
behavior as grain pitch modulation, except when
the modulation index is above 1. The way we
have used modulation index here, we have
calculated it with a reference to the grain rate. In
this respect, the modulation index is a measure of
grain displacement within 1/grain rate seconds. If
the modulation index exceeds one, the modulation
wave leads to a negative grain rate. This allows
extra grains to be generated, as the grain rate is
mirrored around 0 Hz. This leads to an alteration
of the perceived pitch.

Just as in grain pitch modulation, we already
have harmonics from the granular synthesis before
we start modulating the grain rate. This results in a
perceived pitch that never can be higher than the
fundamental of the grain rate. But in grain rate
modulation the timbre don’t get brighter with
integer FM ratios above 1. This can be explained
by looking at the grain rate as a sampling
frequency. The modulation can only occur within
the sampling frequency. According to the nyquist
sampling theorem the highest frequency
representable is ½ the sample rate. So the timbre of
a tone with FM ratio at 0.4 is the same as the
timbre of a tone with FM ratio at 0.6.

Of course even though the relation of the
harmonics are similar in the two variants, the

differences in the strength of the content result in
sounds that have different tonal quality. That goes
for grain pitch modulation versus regular FM
synthesis as well.

5 Grain rate and grain pitch modulation

The two techniques described above can also be
combined. This can be seen as two modulators in
parallel. If one use grain pitch modulation ratio at
½ and grain rate modulation ratio at 1/3 one get a
perceived pitch equivalent to modulation ratio at
1/6 [6]. Of course there are some differences in
the strength of the sidebands leading to slightly
different sounding timbres.

6 Other considerations

Because of incomplete wave cycles inside the
grains, the spectra stretch further up in the
frequency range than in regular FM. This results
in a lot of aliasing. A suggested solution to this
distortion is to use higher sample rates, or to
implement the suggested solution containing two
grain generators described earlier in this paper.

6.1 What Granular synthesis brings to FM

FM synthesis is a very flexible synthesis
technique with a wide range of different sounding
spectra. It has defined an entire decade of
contemporary music via its widespread
commercial use in Yamaha synthesizers. When
combined with granular synthesis there are new
unheard sounds and possibilities. Now you can
create a Chowning brass sound, with overlapping
grains, or with steeper grain envelopes. It is
possible to make bells with grains panned in all
directions and much more. Thinking of the sound
as particles instead of as waves results in new
ideas and alters the way we are creativ.

6.2 What FM brings to granular synthesis

To get a synth inside your granular engine
enables us even more control compared to using a
prerecorded sample as source inside the grains.
One very interesting thing is the shift of the
spectra when the carrier pitch within the grain is
altered. For instance, for making new aggressive
bass sounds one could control the center pitch
inside the grain with an ADSR envelope. One
could also make edgy sweep pads with a LFO on
the center frequency.

7 Conclusion

We have investigated two different ways to
combine FM synthesis with granular synthesis,
compared them, and presented our results. The

18

two are grain rate modulation and grain pitch
modulation. They behave similar to regular FM,
but there are some differences in the strength of
the sidebands, and in the spectra due to harmonics
from the grain rate. We have also suggested some
aesthetic perspectives on the combination of the
two techniques.

8 Acknowledgements

Thanks to Sigurd Saue and Victor Lazzarini for
help resolving technical issues.

9 Bibliography

[1] Brandtsegg, Ø. Saue, S. and Johansen, T.
(2011) Particle synthesis, a unified model for
granular synthesis. Linux Audio Conference
2011.
http://lac.linuxaudio.org/2011/papers/39.pdf

[2] Chowning, John M. (1973) The synthesis of
complex audio spectra by means of frequency
modulation. Journal of the audio engineer
Society 21.

[3] Ervik, K. Brandsegg, Ø. (2011) Creating
reverb effects using granular synthesis. Csound
Conference 2011.

[4] Ervik, Kim csound exsample nr1:
FM_Grain_Pitch.csd

http://folk.ntnu.no/kimer/LAC2013/FM_Grain_Pit
ch.csd

http://folk.ntnu.no/kimer/LAC2013/PartikkelArgs.i
nc

[5] Ervik, Kim csound exsample nr2:
FM_Grain_Rate.csd

http://folk.ntnu.no/kimer/LAC2013/FM_Grain_Ra
te.csd

http://folk.ntnu.no/kimer/LAC2013/PartikkelArgs.i
nc

[6] Ervik, Kim csound exsample nr3:
FM_Grain_Rate_and_Pitch.csd

http://folk.ntnu.no/kimer/LAC2013/FM_Grain_Ra
te_and_Pitch.csd

http://folk.ntnu.no/kimer/LAC2013/PartikkelArgs.i
nc

[7] Gabor, Dennis (1947) Acoustical quanta and
the theory of hearing. Nature 159

[8] Jones, D. Parks, T (1988) Generation and
Combination of grains for music synthesis.
Computer Music Journal, Vol 12, no 2.

[9] Manning, Peter (2004) Electronic and
computer music. Oxford University Press, New
York.

[10] Roads, Curtis (2001) Microsound. MIT Press,
Cambridge, Massachusetts.

19

20

SuperCollider IDE: A Dedicated Integrated Development
Environment for SuperCollider

Jakob Leben
Koper, Slovenia

jakob.leben@gmail.com

Tim Blechmann
Vienna, Austria
tim@klingt.org

Abstract

SuperCollider IDE is a new cross-platform inte-
grated development environment for SuperCollider.
It unifies user experience across platforms and
brings improvements and new features in compar-
ison with previous coding environments, making
SuperCollider easier to begin with for new users, eas-
ier to teach for teachers, and more efficient to work
with for experienced users. We present an overview
and evaluation of its features, and explain motiva-
tions from the point of view of user experience.

Keywords

SuperCollider, cross-platform, edit, code, GUI

1 Introduction

SuperCollider [McCartney, 2002] is a computer
music system that was originally developed by
James McCartney in the 1990s for Mac OS
and has been ported to Linux and eventu-
ally Windows after it was open sourced in the
early 2000s. It is a modular system based
on an object oriented programming language
(sclang) and a separate audio synthesis server
(scsynth)1.

1.1 History of SuperCollider and its
Coding Environments

SuperCollider is heavily influenced by Smalltalk
and was originally using a similar program-
ming model: it strongly coupled the interpreter
with the development environment. This in-
tegrated programming environment, commonly
referred to as SC.app was developed specifi-
cally for Mac OS and therefore was not portable
to other platforms. Nevertheless, it has been
preserved and evolved throughout the develop-
ment of SuperCollider to date, and is still in
very wide use.
When porting SuperCollider to Linux, Ste-

fan Kersten implemented scel, a SuperCollider

1A multiprocessor-aware alternative to scsynth is su-
pernova [Blechmann, 2011]

editor mode for Emacs [Kersten and Baalman,
2011], which had been the most feature-rich so-
lution for a long time, as it not only supported
syntax highlighting, but also some introspec-
tion, a limited form of method call assistance
and support for the old HTML-based help sys-
tem.
At the moment, two other editor extensions

are part of the official SuperCollider distribu-
tion: scvim (for vim) and sced (for gedit). Be-
fore developing the SuperCollider IDE, one of
the authors of this paper also developed an ex-
tension for Kate (scate).
Apart from that, there have been other cod-

ing environments, either incomplete or not
maintained anymore: scfront (a Tcl/Tk based
editor), qcollider (a Qt-based editor) and ex-
tensions for the squeak Smalltalk environment,
the TextMate editor, Eclipse and probably oth-
ers [Kersten and Baalman, 2011]. A python-
based editor called PsyCollider [Fraunberger,
2011] had first been distributed with the Win-
dows port of SuperCollider, but later removed
from distribution, as the code was unmain-
tained, unstable and made obsolete when gedit
and sced were ported to Windows.

1.2 Motivation for the New IDE

The negative aspects of the situation prior to
SuperCollider IDE may be summarized as fol-
lows:

• The user experience vastly differs among
the different programming environments.

• No existing environment is working out of
the box on every supported operating sys-
tem.

• Some environments (e.g. scvim or scel) are
based on editors that are not very accessi-
ble for beginners.

The lack of a single cross-platform coding en-
vironment is a disadvantage (particularly for ed-

21

ucation of new users), because it renders impos-
sible the exchange of experience among people
who are forced to use different environments ac-
cording to what is available for their operating
system. Moreover, each programming environ-
ment has to be maintained separately, and long-
term maintenance turned out to be a problem.
The scarce development resources are spread
among different projects instead of focused on
a single system.
In late 2011 the authors therefore decided to

start the development of a new IDE dedicated
to SuperCollider (not merely an extension of a
general-purpose code editor). The goal was to
address all of the above issues by ensuring a uni-
fied user experience across all supported plat-
forms and making the IDE both easy to use for
beginners and powerful enough so that experi-
enced users would not feel the need to switch to
an advanced editor like Emacs.
The choice of Qt as the underlying GUI

framework for the IDE came naturally, as one of
the authors had previously reimplemented the
GUI programming classes of the SuperCollider
language itself using Qt, which turned out to be
quite a success.

2 Overview of the new IDE

2.1 System Architecture

Since an IDE demands a tight integration with
the target programming language, the question
was raised immediately whether the new IDE
should be coupled with the language interpreter
into one process, as is the case in SC.app, or
rather a separate process, as in existing editor
extensions.
Consideration of benefits and drawbacks of

the two options brought decision in favor of
separating the IDE from the interpreter: the
most important benefit of this strategy is that
the decoupling allows the IDE to survive po-
tential crashes of the interpreter, and maintain
responsiveness and control in case running some
SuperCollider code locks up in an infinite loop.
The major drawback of decoupling is in-

creased effort for inter-process communication
(IPC) with the interpreter. However, scel has
proved that a powerful set of features may be
built on top of IPC, and hence this did not out-
weight the benefits of decoupling.

2.2 Graphical Interface

Thanks to the Qt GUI framework, the appear-
ance and behavior of the GUI is largely equal

across supported platforms. Figure 1 shows the
default appearance on Ubuntu.
The IDE has a single-window design - it fea-

tures a single code editing widget at the center
of the main window. Tabs are used to switch
between multiple open documents. The editor
widget can also be split horizontally and ver-
tically to show more than one document at a
time.
Below the code editor, there is an area where

various tool panels are displayed on request via
keyboard shortcuts:

• Find/Replace: a standard tool for finding
and replacing text in the current document,
supporting regular expressions and backref-
erences in replacement

• Go-To-Line: a standard tool to quickly
jump to a line in the current document, by
line number

• Command Line: a tool for one-line
SuperCollider expressions to be evaluated,
featuring history

Along the edges of the main window, there are
dock areas, where other dockable widgets may be
placed:

• Integrated help browser

• Document browser

• Language interpreter output panel

These widgets can be easily drag-and-
dropped to different locations in the dock ar-
eas, either side-by-side, or stacked on top of each
other (with tabs appearing to switch among the
stacked widgets). They can also be undocked
and moved out of the main window (e.g. to
place them on a second screen etc.), or simply
hidden.
The status bar on the bottom of the main

window is used to show the state of the language
interpreter and the default synthesis server.
The server status box is a compact alternative
to the SuperCollider server window, showing
status information like CPU utilization, num-
ber of running synths, groups, synthdefs etc.

3 Interaction

Our guidelines in interaction design were to
minimize the amount of constantly visible con-
trols, so as not to clutter the GUI, but to make
the most used functionality quickly accessible
via keyboard shortcuts, and advanced features

22

Figure 1: SuperCollider IDE on Ubuntu

easily discoverable via the main menu and con-
text menus - i.e. menus that pop up when right-
clicking (or Ctrl-clicking) on a GUI element and
offer a choice of actions relevant for that ele-
ment. To combine accessibility and discover-
ability the following rule is applied: as much
functionality as possible is in the main menu,
and each item in any menu may be assigned a
shortcut.

We distribute the IDE with a large set of de-
fault shortcuts that cover most frequently used
functionality by both SuperCollider beginners
and experts, and try to adhere to shortcuts in
other coding environments.

3.1 System Control

The language interpreter is started automat-
ically with the IDE. Nonetheless, it can be
stopped and restarted at will via the main menu
or shortcuts, which is useful if code gets stuck
in an infinite loop, or the interpreter simply
crashes and stops by itself.

The audio server, on the other hand, is
not started automatically, but can be quickly
started using a shortcut or the main menu. The
menu includes other audio-related actions: to
dump the node tree, show sound level meters
and the like. All these actions may also be ac-
cessed via the context menu associated with the
audio server status box (see section 2.2 about
the status bar).

3.2 Code Evaluation

Code evaluation is, naturally, the most valuable
functionality of a SuperCollider coding environ-
ment, and making it as practical as immagin-
able is of highest importance.

All existing coding environments support
evaluating a line of code using a keyboard short-
cut without the need to select the line. More-
over, since SuperCollider code is often evalu-
ated in groups of lines, there is typically support
for enclosing such groups in parenthesis, then
double-clicking one of the parenthesis to select
the contents in order to evaluate them. Such
groups of lines are commonly called regions.

Like scel has done previously, SuperCollider
IDE goes a step further by automatically de-
tecting the region enclosing the text cursor, so
it can be evaluated with a shortcut without the
need to select it. The evaluation behavior is in-
telligent: it will evaluate either the selection (if
any), or the current region (if any), or the cur-
rent line - where current means ‘at the position
of the cursor’.

Due to automatic region detection, large por-
tions of code may be evaluated without se-
lection. However, without any visual indica-
tion, this could easily create confusion and un-
certainty as to what code has been evaluated.
Hence, another very useful feature has been im-
plemented: evaluated code is highlighted, and
then the highlighting gradually fades away. An

23

additional benefit of highlighting is in demon-
stration scenarios: not only the demonstrator,
but the audience as well knows exactly what
code is evaluated, and when.

4 Code Editing

It is our goal for SuperCollider IDE to imple-
ment code-editing assistance on the level of sup-
port that general-purpose IDEs offer for most
widely used programming languages. Namely,
we consider the crucial features: syntax high-
lighting, automatic indentation, automatic code
completion and method call assistance.

4.1 Syntax Highlighting

Existing SuperCollider editor extensions typi-
cally reuse generic support of their host editors
for on-the-fly syntax highlighting. SC.app, al-
beit the oldest and most widely used environ-
ment, only updates highlighting on explicit re-
quest via the user interface.
Syntax highlighting in SuperCollider IDE has

been implemented to update on-the-fly, and
in a very efficient manner to never interfere
with code typing. Attention was paid to
strictly match the lexical rules obeyed by the
SuperCollider language compiler. As a result,
we have most efficient and correct syntax high-
lighting for SuperCollider language to-date.

4.2 Automatic Indentation

The IDE automatically indents code while typ-
ing, trying to mimic the most common ways
people would indent code by hand. Automatic
indentation may also be invoked explicitly for a
selection of lines.
Automatic indentation is done on the basis

of opening and closing brackets. When a line
break is entered, the new line is indented by
one level if the previous line contains any open-
ing brackets that are not matched with a closing
bracket on the same line. Whenever a closing
bracket is typed on a subsequent line, a previous
line containing the matching opening bracket is
searched for, and if the matching brackets are
the first and the last ones on their lines, respec-
tively, the current line is made to match inden-
tation of the line above. For example:

(
p = Pseq([

Pbind(
\degree, Pwhite(0,5,5),
\dur, 0.1

),

Pbind(\degree, Pseq([6,7]))
], inf)
)

As shown above, regions (see section 3.2) do
not contribute to indentation, as is common in
SuperCollider code.
One current issue with automatic indentation

remains to be addressed: indentation of line
continuations. It is common to have one ex-
pression extend over several lines; in this case,
it is typically desired to increase indentation on
all but the first line. For example:

In.kr(4, 2)
.lag(0.3)
.linexp(0, 1, 10, 1000)

This is currently not implemented yet; a so-
lution will require enhanced grammatical anal-
ysis.

4.3 Automatic Completion

Automatic code completion (autocompletion)
consists of offering the user a selection of possi-
ble continuations of text being typed, based on
context.

Figure 2: Autocompletion in SuperCollider IDE

As a weakly-typed programming language,
SuperCollider poses limitations on the possibil-
ities of autocompletion, compared to strongly-
typed languages (e.g. C, C++). Namely, it is
not always possible to infer the type of a vari-
able identifier, and hence the set of its meth-
ods. We have worked in SuperCollider IDE
towards offering completion as far as possible
within these limitations.
Autocompletion is offered in the following

cases:

• Class names:

Sin<...>

Since class names exclusively begin with
an uppercase letter, it is straightfoward to
complete them from the set of all classes.

24

• Method names following class names:

Array.<...>

They are completed from the set of class
methods of the readily-available class.

• Method names following literals and built-
ins

123.<...>

topEnvironment.<...>

They are completed from the set of instance
methods of the class inferred from the lit-
eral or the built-in.

• Method names following a variable name:

func.<...>

The class is not inferred, so the method is
completed from the set of all methods of all
classes.

Completion of methods of known classes
starts immediately when the dot ‘.’ is typed.
One exception to this is the case of methods of
Integer literals: it only begins after 1 character
has been typed, or else redundant completion
would be triggered on a dot in a Float literal,
which proved to be a rather annoying experi-
ence.
In other cases the list of candidates may be

quite large (the set of all classes, or all methods
of all classes), hence completion only starts after
3 characters have been typed.
Although the current code base would

easily support completion of built-ins (e.g.
topEnvironment) and method names in func-
tional notation (e.g. min(1,2)) we have decided
to avoid that. The reason is that, formally,
those cases would compete with other cases for
which we currently do not offer completion: e.g.
variable names in scope. It has been argued by
one of the authors that autocompletion options
may be understood (especially by novices) as
the set of all and the only allowed options in
a specific context, and hence misleading when
incomplete.
The completion menu is hidden if the cur-

rently typed text matches one of the options ex-
actly. In that case, the user’s intention has likely
been met, so the menu would only present an
obstacle to changing activity: evaluating code,
moving to another position in code, etc. How-
ever, this has been a point of debate, as it would
be possible to automatically detect the change
of activity and close the menu.
Although different aspects of usability often

demand trade-offs, we will continue to refine the

behavior so as to maximize usefulness and intu-
itivity of autocompletion.
As already noted, there is potential to im-

prove the domain of autocompletion to include:

• Variables in scope:

var abcdef; abc<...>

• Inferring class of Array and Event literals:

[1,2,3].<...>

(freq: 321).<...>

• Inferring class of variables by assignment

x = [1,2,3]; x.<...>

4.4 Method Call Assistance

Method call assistance involves displaying a list
of argument names and their default values,
to aid entering expressions for arguments in a
method call.

Figure 3: Method call assistance in
SuperCollider IDE

It is implemented both for receiver notation
as well as functional notation. In functional no-
tation, an argument is prepended to denote the
receiver of the message.
The assistance is invoked when a relevant

opening bracket ‘(’ is typed, or a comma ‘,’ is
typed to separate arguments, and additionally
with a keyboard shortcut when the text cursor
is anywhere within the brackets surrounding the
arguments.
This assistance is subject to the same lim-

itations as autocompletion, due to a weakly-
typed language: to disambiguate the method,
its owner class must be known. However, we
have found a pragmatic solution: where the
class can not be inferred, we let the user pick
a class via a pop-up menu.
Hence, the following examples will offer assis-

tance directly:
SinOsc.ar(

123.forBy(

...while the following will first display a list of
classes that implement the method, then offer
method call assistance once a class is selected:
min(

x.play(

[1,2,3].inject(

25

There is one special case in SuperCollider lan-
guage where the method name is not explicit,
namely an opening bracket immediately follow-
ing a class name:
Synth(

In this case, the class method ‘new’ is implied,
and SuperCollider IDE takes this into account
and offers appropriate assistance.
Once the assistance is invoked, the name

of the current argument being typed is high-
lighted, which is of great help when the num-
ber of arguments is large, or the expression for
an argument is very long. Moreover, one can
quickly insert and cycle through available argu-
ment names with a press of the Tab key, in order
to realize argument addressing by name, as in:
SinOsc.ar(456, add: 1, mul:

Once assistance has been activated for a
particular method call, it remains active in
the background while assistance for a nested
method call is being performed: when the user
finishes typing the inner call, assistance is au-
tomatically displayed for the outer call again.
This is especially useful in case assistance is
based on explicit class selection (as explained
above) - the selection is remembered during
nested assistances so that method disambigua-
tion does not need to be repeated.
As can be seen from examples above, this

assistance would also benefit from increased
ability to automatically infer classes from text.
Nevertheless, the described solution via explicit
class selection will remain to be useful where the
intended method is absolutely ambiguous.

4.5 Editing Shortcuts

Akin to powerful general-purpose development
environments, SuperCollider IDE provides a set
of actions that help navigate and edit code and
can be assigned arbitrary keyboard shortcuts.
Cursor movement actions include:

• Jump to next or previous empty line

• Jump to next or previous bracket

• Jumping to next or previous region

Editing actions include:

• Move current line up or down

• Copy current line up or down

• Comment or uncomment current line or se-
lection

The comment/uncomment action intelli-
gently uses either the single-line or the multi-
line comment syntax, whichever is more appro-
priate for the current selection.

5 Class Library Navigation

Within the SuperCollider community, the bor-
der between system developers and users has
always been quite fuzzy. Furthermore, writ-
ing musical code often involves development of
classes for purposes of a specific musical task
and for personal class libraries. Jumping from
code that uses a class to code that implements
it is hence a frequent need.
The SuperCollider language interpreter has

since the beginning featured introspection into
where each class and method is implemented,
and referenced within the class library. Ex-
isting development environments have already
harnessed these capabilities to offer navigation
between usage and definition via GUI.
SuperCollider IDE attempts to exploit these

capabilities in most practical ways. Handy
shortcuts will pop up a dialog that lists all meth-
ods whose name matches the text under cursor,
or all methods of the class under cursor. Press-
ing Return on an entry will open the file at po-
sition where the selected method or class is im-
plemented. The same dialog contains a search
field which can be used to search for any class
or method. An equivalent dialog is implemented
also for class and method references: the listing
contains all methods that contain references to
another class or method.
The shortcuts and menu actions that bring

up these dialogs work just as well in the code
editor, as in any other GUI element that may
contain code: the command line, the post win-
dow, and the help browser. Moreover, invoking
help-related shortcuts within these dialogs will
navigate the help browser to the help page re-
lated to the class or method selected in the di-
alog. Help and class library navigation are thus
very efficiently linked.

6 Help

Recently, the traditional HTML-based help sys-
tem has been superseded by SCDoc, authored
by Jonatan Liljedahl, where help documents are
written in a markup language developed specif-
ically for this purpose and rendered to HTML
on demand. SCDoc also monitors the filesys-
tem for changes and updates its internal index
of available documents at runtime. The benefits

26

are:

• Content is separate from style; consistent
style can easily be applied to all documen-
tation.

• Content may potentially be rendered to
other formats than HTML, by implement-
ing different rendering components.

• Due to on-demand rendering and filesystem
monitoring, documentation served through
the system is always up-to-date with re-
spect to installed documents.

Interaction with SCDoc’s on-demand ren-
dering has previously only been implemented
within the SuperCollider language, using its in-
ternal GUI capabilities. The SuperCollider IDE
is the first code editing environment to integrate
the new help system into its own GUI. There are
two major benefits:

• Tighter integration with all the GUI com-
ponents.

• The last displayed document and the en-
tire browsing history is preserved across
class library recompilations and interpreter
restarts.

The help browser comes in form of a dockable
widget (see section 2.2). When the user requests
help using a related shortcut or menu action,
on-demand rendering is performed via the SC-
Doc system, and the resulting HTML document
is displayed in the help browser.
The help system is tightly connected to many

GUI components: the help shortcut will recall a
relevant help document for the text under cur-
sor, when it is invoked within the code editor,
the command line, the post window, the help
browser itself, or - as noted above - for the se-
lected entry in the class and method implemen-
tation and reference dialogs. Example code in
help documents may also be evaluated. Another
benefit of integration with the IDE is that the
shortcut for evaluation is identical to the one in
the code editor, even when customized by the
user. Moreover, the same shortcuts as in other
GUI components may be used for class library
lookup (see section 5).

7 Sessions

A session is a snapshot of currently open doc-
uments and arrangement of GUI components
that may be restored after the IDE is restarted.

The IDE allows saving a number of different ses-
sions and quickly switching between them, mak-
ing it easy to store and recall the environment
for different tasks.

8 Configuration

Many aspects of SuperCollider IDE can be cus-
tomized, including:

• behavior of automatic indentation and code
evaluation

• colors of the editor component and syntax
highlighting

• keyboard shortcuts

The IDE also makes easy configuration of the
SuperCollider language interpreter. Class li-
brary directories to include and exclude from
compilation can be configured via the GUI, re-
moving the need to hand-edit the interpreter’s
configuration file. There is also a handy menu
action to open the SuperCollider startup file.

9 Conclusions and Ideas for Future
Development

SuperCollider IDE has successfully reached the
fundamental goal of providing a cross-platform
SuperCollider coding environment. Not only
has it integrated the individual strengths of pre-
vious coding environments, but it has brought
important improvements on its own. Immediate
benefits arise from a unified experience across
Linux, Mac OS X and Windows. Further-
more, sophisticated user interface design and
advanced coding assistance make it both easy
to use by novices and a powerful tool for expe-
rienced users and developers. In consequence, it
makes SuperCollider as a whole more accessible,
eases its education and exchange of knowledge,
as well as focuses future development work.
As described above, possibilities for improve-

ments have been detected especially at auto-
matic code indentation (4.2) and completion
(4.3), and method call assistance (4.4), and are
simply a matter of further work. Aside from
that, there are many ideas for future develop-
ment:

SCDoc Editing Support
Among the highest priority goals is support

for syntax highlighting and editing assistance
for the SCDoc markup language. This would
be a very welcome aid in writing SuperCollider
documentation, and might entice conversion of
remaining old HTML-based documentation to

27

the SCDoc format (there is a lot of unconverted
documents in various Quarks).

Scripting IDE Behavior
The standard SuperCollider class library in-

cludes the Document class which is used as a
generic programming interface to various cod-
ing environments. It allows for controlling the
open documents and manipulating with their
contents. SuperCollider IDE does not support
this interface yet, but the support for it is of
high priority, including its potential extension.

Code Snippets
An alternative code editing mode could in-

troduce code snippets as individual interactive
components. This would be an alternative for
the current concept of regions (3.2). The snip-
pets would be separated at the level of graphical
interface, instead of code syntax, which could
allow for instance to move them freely around a
“desk”-like area, hide and show them individu-
ally, and to evaluate their contents with a single
click.

Visual SynthDef and Pattern Composi-
tion
For some tasks it would be welcome to be

able to compose SynthDefs and Patterns in a
visual way, akin to visual programming lan-
guages like PureData, Max, etc. Various dif-
fuse efforts in this direction exist, mostly us-
ing the SuperCollider language itself. Most
elaborate effort is probably by Jonatan Lil-
jedahl in his ongoing development of algoSCore
- a SuperCollider-based successor to AlgoScore
[Liljedahl, 2011], which includes graphical com-
position of SuperCollider Patterns and Syn-
thDefs. We consider potential integration of
work in this field into SuperCollider IDE as a
great benefit.

Integration of User-Created GUI
GUI creation by users would also benefit from

a visual composition approach, as opposed to
writing SuperCollider code. Moreover, it would
be very practical if user-created GUIs could be
integrated into the IDE’s own GUI, as docklets
(2.2) or similar.

10 Acknowledgements

The authors would like to thank the vibrant
community of SuperCollider developers and
users for critical evaluation of SuperCollider
IDE and many useful insights. With such a
productive feedback and intensive involvement
in shaping ideas, even two lone developers never

feel lonely in their efforts. SuperCollider IDE is
much better because of you!

References

Tim Blechmann. 2011. Supernova - A
scalable parallel audio synthesis server for
SuperCollider. In Proceedings of the Interna-
tional Computer Music Conference.

Christopher Fraunberger. 2011.
SuperCollider on Windows. In Scott Wilson,
David Cottle, and Nick Collins, editors, The
SuperCollider Book. MIT Press.

Stefan Kersten and Marije A.J. Baal-
man. 2011. “Collision with the Penguin”:
SuperCollider on Linux. In Scott Wilson,
David Cottle, and Nick Collins, editors, The
SuperCollider Book. MIT Press.

Jonatan Liljedahl. 2011. Algoscore. http:
//kymatica.com/Software/AlgoScore.

James McCartney. 2002. Rethinking the
Computer Music Language: SuperCollider.
Computer Music Journal, 26(4):61–68.

28

An Approach to Live Algorithmic Composition using Conductive

Renick BELL
Tama Art University
2-1723 Yarimizu

Hachioji, Tokyo 192-0394
Japan

renick@gmail.com

Abstract

Algorithmic composition can be done as a live per-
formance using live coding tools. An example ap-
proach to such performances is described. Using
the Conductive library for the Haskell programming
language in conjunction with some external tools,
samples are triggered according to interonset inter-
val patterns generated at a variety of densities. Au-
tomatic movement through those density levels is
accomplished through a specialized data structure,
which is also used to time-vary other parameter val-
ues. The performer manages the state of the above
items, and finally audio is output through effects.

Keywords

algorithmic composition, live coding, Haskell

1 introduction

This paper describes an approach to performing
extended sets of live algorithmic composition. It
was the author’s goal to perform generative mu-
sic live with the computer was an active partner
of the user. Rather than prepare data and al-
gorithms completely in advance, it was desired
that those algorithms or at least their param-
eters could be adjusted as the music is being
performed.

To carry out such performances, a live cod-
ing interface was chosen for its flexibility, its
light-weight character, its compatibility with a
tiling window manager, and its ability to em-
ploy a user interface that was already very fa-
miliar: the vim text editor and the command
line. Some further discussion on the reasons for
choosing this approach have been described in a
previous paper, which led to the development of
a Haskell library called Conductive to provide
some basic components for doing such perfor-
mances in conjunction with some external tools
(Bell 2011). Those tools alone had been deter-
mined insufficient for extended performances,
however. In order to fully realize such perfor-
mances, additional modules were developed.

Before explaining this system of tools, the
paper first briefly explains live coding. Tools
used in conjunction with this system are listed.
A brief review of Conductive core concepts is
followed by a description of additional mod-
ules developed for handling event density, time-
varying values, a sampling synthesizer, and mu-
table data. The paper concludes with a discus-
sion of the results of this approach and some
proposed future research directions.

2 live coding

According to TOPLAP, an organization for the
promotion of live coding, live coding practice
begins in the 80s. The 90s appear dry, while
the 21st century starts with the band Slub in
what TOPLAP calls the “projection era” and
continues to the present in which an increas-
ing variety of live coding systems are available
and used in performances (McLean and Others
2010). Now live coding conferences take place
(unknown 2013) and it is scheduled to be the
theme of an upcoming issue of Computer Music
Journal (McLean 2012).

Live coding enables a more abstract ma-
nipulation of a representation of music than
physical gestures used for playing instruments.
It is also thought to be more convenient in
many regards than windows-icon-mouse-pointer
(WIMP) software (Bell 2011).

From another perspective, it takes the po-
tential of algorithmic composition and turns
it into a live performance rather than a
write/compile/run loop from traditional soft-
ware development or electronic music compo-
sition. Seen this way, it can be thought of as an
extension of algorithmic composition practices
that could extend back as far as Ptolemy’s mu-
sic theory (Maurer 1999), and certainly as far
back as music dice games such as Mozart’s Dice
Music (Hedges 1978). More modern examples
of algorithmic composition practice include the
twelve-tone music of Schoenberg (Schoenberg

29

1999), work by Caplin and Prinz followed by
Hiller and Issacson (Ariza 2011), the aleatoric
music of Cage and Stockhausen (Kostelanetz
2002)(Paul 1997), Xenakis’s stochastic music
(Xenakis 2001), and the generative sequences
made in Max on Autechre’s Confield (Tingen
2004).
One of the drawbacks of live coding is the

hard mental operations that it requires. For
a more complete discussion of the usability is-
sues involved in live coding, see Blackwell and
Collins (Blackwell and Collins 2005). Another
factor is the potentially slow text manipulation
that live coding requires (Sorensen and Brown
2007).
The system described below is intended to ad-

dress some of these difficulties.

3 system and related tools

This section first explains what tools developed
by other authors are used when performing. It
then reviews some core concepts of Conductive,
and finally it describes the newly-developed as-
pects of Conductive.

3.1 tools developed by other authors

In order to use this system, there are some pre-
requisites.
The first of those is a Haskell programming

environment. The Glasgow Haskell Compiler,
which contains an interpreter (GHCi) that al-
lows the interactive evaluation of source code
(SL Peyton Jones et al. 1993), is used by the
performer to call functions from the Conductive
library. The process of writing source code and
sending it to GHCi is made more usable with
vim (a text editor) (Moolenaar 2008), tmux
(a terminal multiplexer)(Marriott and others
2013), and a vim plugin called tslime that allows
text to be sent from the editor to the interpreter
through tmux (Coutinho 2010).
As Conductive does not directly handle sound

synthesis, a method for synthesizing sound is
necessary. This paper describes the use of the
scsynth component of the SuperCollider pack-
age (McCartney 2010). At present, synthesis
events are programmed in Haskell and employ
Rohan Drape’s hsc3 Haskell library for commu-
nicating with scsynth (Drape 2009). A sam-
pler (described below) uses samples that have
been generally recorded and edited using Ar-
dour (Davis 2006), and they have largely origi-
nated from hardware synths. All of the samples
are individual sounds, from single-shot percus-

sion sounds to bass samples. Most are wav files
under 300 K.
Finally, in order to achieve a solid sound

closer to that of commercial releases or broad-
casts, the output of scsynth is processed through
Calf plugins hosted by the Calf stand-alone host
(Foltman et al. 2007). An EQ is followed
by a multiband compressor and then a limiter,
whose output is directed to the soundcard. Out-
put is also directed to JAAA for monitoring
(Adriaensen 2004). Patchage is used for ease of
routing (Robillard 2011). Recording of perfor-
mances is done with either Ardour (in the case
of audio) or gtk-recordmydesktop (in the case
of video) (Varouhakis and Nordholts 2008).

Figure 1: signal flow

3.2 summary of Conductive concepts

A system called Conductive is used, which is
a set of modules for the Haskell programming
language handling concurrent processes with a
music-oriented interface.
Some basic concepts for using Conductive in-

clude the notion of Players, action functions,
interonset interval (IOI) functions, and Tem-
poClocks. These concepts are explained in more
detail in a paper from 2011 (Bell 2011), but a
short summary is included here.
Players are representations of concurrent pro-

cesses that perform actions separated by peri-

30

ods of time called interonset intervals (IOIs). A
Player runs its specified actions and then waits
for an IOI determined by its specified IOI func-
tion. This loop is instantiated by employing the
“play” function with a Player as an argument.

Actions functions define what is done by a
Player. These actions could include triggering
a synthesis event or modifying the general sys-
tem state. The only limitation is their type sig-
nature, since Haskell is a statically-typed lan-
guage. This means that the types of arguments
to an action function are fixed, and they must
return the unit type in the IO monad, or “IO
()”. Currently, a sampler action is used pre-
dominantly.

IOI functions define how long to wait between
actions. Any methods available to the program-
mer could be used to generate those times, from
simply returning a value, such as one second, ev-
ery time, to table lookup of values, to the calcu-
lation of values based on complex mathematical
formulae.

One minor change from the 0.2 system of 2011
is that IOI functions now take additional argu-
ments and return the beat of the next event
rather than the IOI value directly. The play
function uses that value in conjunction with a
TempoClock to actually determine how long to
wait before running the next action.

4 new modules for Conductive

This section explains the new modules for Con-
ductive: density, TimespanMaps, and Muta-
bleMaps.

4.1 IOI values and density

Previously, IOI functions used hand-written IOI
patterns or patterns which were determined
mostly at random. A more sophisticated ap-
proach was sought that would require less man-
ual intervention during a performance.

The sequence of IOI values determines the
rhythm of a sequence of events. Rather than
enter sequences by hand, they are generated al-
gorithmically. The IOI patterns are looping or-
dered lists of IOI values in terms of beats, whole
or fractional.

Pattern generation is based on a performer-
selected core unit used to generate potential
IOI values. Selection of a core unit, in con-
junction with the length of the pattern, largely
determines the metrical feel of the pattern. A
list of scalars is determined by the performer,
from which a function randomly selects a user-
specified number of scalars.

The user specifies a number of subphrases
to generate and the length of those phrases in
terms of number of scalars to use, from which
the final phrase will be constructed. Those sub-
phrases are generated to the specified length
by randomly choosing the specified number of
scalars from the subset selected above and mul-
tiplying them by the core unit.

Finally, a user-specified number of subphrases
are chosen at random from the resulting list
by the algorithmic composition function. The
user determines the length of the final phrase in
terms of beats. If the length of the concatenated
subphrases does not equal the specified length,
the final IOI value is padded. If the length ex-
ceeds the specified length, the final IOI value is
truncated.

An example of those steps follows. Items are
determined by the user are followed with a “u”:

• core unit (u): 0.25
• potential scalars (u): 1, 2, 3, 4, 5, 6, 7, 8
• number of scalars to be selected (u): 5
• selected scalars: 1, 2, 3, 4, 6
• potential IOIs: 0.25, 0.5, 0.75, 1.0, 1.5
• number of subphrases (u): 2
• subphrase length (u): 3
• selected subphrase scalars: 1, 3, 2; 4, 1, 6
• initial subphrases: 0.25, 0.75, 0.5; 2, 0.25,
2.5

• phrase length in terms of subphrases (u): 3
• initial randomly determined phrase: 0.25,
0.75, 0.5, 0.25, 0.75, 0.5, 2, 0.25, 2.5

• total phrase length: 7.75
• phrase length in terms of beats (u): 8
• final phrase: 0.25, 0.75, 0.5, 0.25, 0.75, 0.5,
2, 0.25, 2.75

Given a particular IOI pattern, a series of re-
lated patterns (both denser and less dense) is
generated. It is built out to maximum and min-
imum density. This means making a list of IOI
patterns ordered in terms of density. When re-
ducing density, an item from the pattern is cho-
sen at random and combined with a neighbor-
ing value to yield a similar pattern of reduced
density. This process is repeated until the IOI
pattern contains only a single item. When in-
creasing density, an item is chosen at random
and replaced with two items: an item of lesser
value from the list of potential IOIs and the dif-
ference between the original IOI value and the
lesser value. This is repeated until all of the
items in the pattern are the smallest of the po-

31

tential IOIs. By sandwiching the original IOI
pattern between the less-dense and denser pat-
terns, a table is generated.

Here is a continuation of the previous exam-
ple:

• potential IOIs: 0.25, 0.5, 0.75, 1.0, 1.5
• input phrase: 0.25, 0.75, 0.5, 0.25, 0.75,
0.5, 2, 0.25, 2.75

• one level decrease in density: 0.25, 0.75,
0.75, 0.75, 0.5, 2, 0.25, 2.75

• second decrease in density: 0.25, 0.75, 1.5,
0.5, 2, 0.25, 2.75

• minimum density phrase: 8
• one level increase in density: 0.25, 0.5, 0.25,
0.5, 0.25, 0.75, 0.5, 2, 0.25, 2.75

• second increase in density: 0.25, 0.5, 0.25,
0.5, 0.25, 0.75, 0.5, 2, 0.25, 0.75, 2

• maximum density phrase: 0.25, 0.25, 0.25,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,
0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25,
0.25, 0.25, 0.25, 0.25, 0.25

Based on a user-specified density value, a par-
ticular IOI pattern is chosen from the table.
The user queries the table with a value between
0 and 1, and a linear conversion to a list index
is done. The value returned is the IOI pattern
at that index.

Density values can vary with time. One
method for doing so is employing a Timespan-
Map, which is described below.

4.2 TimespanMaps

TimespanMaps are maps or dictionaries with in-
tervals as keys to any kind of value and a speci-
fied total length for the whole TimespanMap. In
the case of IOI pattern tables described above,
the values are either density values (for deter-
mining which IOI pattern to use) or an IOI value
to be selected from a particular IOI pattern.

A time in beats is passed to the dictionary.
The interval that time falls in is determined to
be the key, and the corresponding value for that
interval is returned.

TimespanMaps can be used for any param-
eter, not just the ones described above. For
example, in this system it also used for deter-
mining the amplitude and pitch of a particular
triggering of a sample, as well as which sample
to trigger.

The rate of change in a TimespanMap is up
to the user and can change within the map. The

number of items in a TimespanMap is limited
only by memory or performance constraints.
The range of time covered by a particular key
can be as large or small as the user determines to
be appropriate and is limited only by the Dou-
ble data type in the Haskell language (double-
precision floating point number).

A sample TimespanMap with a time length
of four might look like this:

• length: 4
• 0: “a”
• 2: “b”
• 2.5: “c”

When passed a time of 0, the TimespanMap
returns “a”. With 0.5, “a” is also returned.
With a time of 2.25, “b” would be returned,
and with a time of 3.5, “c”. If passed a time of
4, the list loops and “a” is returned.

Figure 2 shows the relationship between IOI
patterns and density tables. It includes one
TimespanMap mapping intervals to density val-
ues. Missing from the illustration (in order to
keep it less cluttered) is the fact that the IOI
patterns themselves are TimespanMaps from in-
tervals to IOI values. The figure shows the
calculation of the next IOI value of a running
Player from beat 16 to beat 24. The exam-
ple does not show the complete contents of the
density map in order to save space, but actually
generating a density map provides the full range
of IOI patterns.

Convenience functions for TimespanMaps
with random key values and interpolated
TimespanMaps (in which fixed-length steps are
linearly interpolated from a set of points in
time) are provided in the library.

In addition to using TimespanMaps with IOI
values and in density maps, they have been
used for samples. Previously, one Player was
assigned to each sample. In order to use 70
samples, it was necessary to instantiate 70 play-
ers. Managing 70 Players was challenging, so
the sampler was rewritten to employ a Times-
panMap. Subsets of sample sets are chosen at
random and one is assigned for each interval in
the map. When the sampler is triggered, the
sample is chosen according to the current beat.
By doing so, the number of Players needed was
reduced by roughly a factor of 10.

4.3 mutable state

Several stateful parameters have now been de-
scribed, and that state is stored in mutable data

32

Figure 2: an example showing the relationship between IOI patterns, density tables, and Times-
panMaps, based on the example from section 4.1

structures appropriately called MutableMaps.
They are maps containing keys and their corre-
sponding values, often a string key and a Times-
panMap as the returned value or a mapping of
string to string. These maps are stored in a con-
tainer. Previously, some stateful containers had
been used (MVar), but it was suspected that
the concurrent operations were not functioning
properly in all cases. This was replaced with
a TVar, which employs software transactional
memory (STM) in order to safely carry out con-
current processes. A full discussion of STM can
be found in Jones (2007).

Much of a performance consists of adjusting
this state by changing values or adding new key-
value pairs. The MutableMap data structure is
intended to make doing so easier, with conve-
nience functions for adding, deleting, or swap-
ping values, as well as changing keys.

Because this is live coding, it is easy to write
functions to execute multiple simultaneous state
changes. Once such functions have been de-
fined, they can be used with a single keyword:
the function name.

5 performance method

This section explains how the system above
is used to perform. It is divided into two
parts: preparation necessary before a perfor-
mance, and what occurs during a performance.

5.1 pre-performance preparation

An initiation module is prepared before per-
forming. This module imports the various Con-
ductive modules as well as other modules that
are useful during performance, such as those
in the Data.Map module or list utilities in
Data.List. This module also provides functions
for the initialization of the mutable state to be
used, such as synthesis parameters and refer-
ences to which sets of synthesis parameters each
Player is to use. It also contains the definitions
of actions to be used by those Players.

Immediately before the performance, neces-
sary applications must be launched: JACK,
Patchage, scsynth, calfjackhost, JAAA, ghci,
and vim. The necessary routing must be set
up between these applications, including manu-
ally routing audio in Patchage and setting vim
to send to ghci.

The Conductive modules are loaded in GHCi
as well as the previously prepared initialization
routines. Preparation of scsynth is done, and
samples are loaded into scsynth. For the sam-
pler to be effective for an extended performance,
it is necessary to prepare enough samples.

IOI patterns are generated along with their
corresponding density tables. TimespanMaps
are created to vary the density values used for
selecting IOI patterns. Players are specified,
along with their initial action and IOI functions.
The density patterns and IOI patterns are as-
signed to Players, which use the current beat to

33

determine a density and thus an IOI value to be
used between instances of triggering a sample.
The sample that is triggered is also determined
by a TimespanMap.

5.2 during a performance

When the data has been prepared, Players are
started according to user’s intentions for the
performance. As the Players are running, the
state is manipulated by the user to vary the per-
formance. This includes changing synthesis pa-
rameters or other system parameters. New pat-
terns can be generated by the performer running
the algorithmic composition routine described
above. New density maps can be generated and
assigned to Players. New samples can also be
loaded. During the performance, Players can
be stopped, restarted, or additional Players can
be added and similarly manipulated. It is also
possible to define new action functions or IOI
functions during a performance. All Players are
stopped when the performance has reached an
end.

Figure 3: performance flowchart

6 conclusion

This section evaluates the results of using the
system described above. It then describes some
directions for future research.

6.1 evaluation of results

The approach above makes it possible to per-
form for extended periods of time, mostly lim-
ited by the amount of samples that have been
prepared in advance. It is also necessary to use
different sets of parameters when generating IOI
patterns, such as differing numbers of scalars,
differing core unit sizes, and so on.

It is challenging to keep a mental model of
the parts described above during a performance,
even though what has been described is mainly
concerned with the timing of events and not
timbre. This suggests that adding the complexi-
ties of generating different timbres through syn-
thesis during performance will be burdensome.
Part of this burden can be overcome through
more practice with the system, but it seems that
there is still a higher-level of abstraction to be
achieved for optimal usage.

By using TimespanMaps with the sampler, it
was possible to reduce the number of players for
70+ samples from 70 Players to between four
and eight Players triggering hundreds of sam-
ples. This arrangement was found to be much
more manageable and sonically-attractive than
the previous one. It was very difficult previ-
ously to look at the list of Players and see which
ones were playing and which ones were not. It
also made changing the arrangement very hard,
as Player-related functions often required long
lists of Players. The current arrangement still
uses lists of Players at times, but the lists are
much shorter, rarely containing more than three
or four Players.

The lack of continuous timbral modification
through effects is a sore spot. A moving tim-
bre can make the sound much more lively, but
this is possible to a limited degree in the sys-
tem above because of the design of the current
sampler. Varying the sample of a particular
Player does change the timbre, but sometimes a
change which unfolds in a discernible direction
over time can be a more effective compositional
device. This has only been achieved in the cur-
rent version for the sample pitch and amplitude.

In the system described above, parameters for
synthesis are initiation-rate values. That means
that the timbre of a particular event does not
change over time other than what is contained
in the original sample.

Changing from MVars to TVars with STM is
thought to have solved some mysterious runtime
misbehavior.

Current methods for organizing the text data
or source code used during a performance are
poor. As a result, the text in the text editor
quickly becomes messy in the course of a perfor-
mance. That makes it harder to stay in control
of the performance or to run previously-defined
functions at the most ideal times. Maximum
effectiveness of use of the editor environment
probably has not yet been achieved. Editor us-

34

age skills or tools to aid in this are probably
needed.

6.2 future directions

Many things for this system can be developed.
Those possibilities include the following ideas.

Further refinements of the abstractions de-
scribed above can be done. That includes using
value-lists rather than single values as core units
in the IOI pattern generation process. More in-
telligent ways of generating the various densities
of those patterns can be imagined.

Methods for generating IOI patterns with a
greater sense of relationship is desired. While
the patterns generated above are related in
terms of density and rerunning a pattern gen-
eration function with the same parameters can
yield similar patterns, there must be more so-
phisticated ways to generate sets of related pat-
terns. More investigation into music theory and
the algorithmic composition techniques of oth-
ers is needed. Such research should be included
in future versions of the pattern-generation
functions.

Several chance operations are involved in this
approach. It would be desirable to try weighted
probabilities or other deterministic means as
substitutes for those chance operations.

An increased use of pitched synths can be
included. This will make it easier to achieve
the timbral variation desired as well as expand
the focus from its time-based focus at the mo-
ment to more involvement with the frequency
domain. An efficient, easy-to-use method of
synthesis that can also provide a wide range of
timbres is being sought. Samples are musically
effective but take a lot of time to prepare and
remove a level of spontaneity that is desired.

Algorithmic control of effects at various
stages would be nice. This means writing those
effects and the corresponding action functions.

Player processes which alter other running
Player processes should be experimented with,
such as Players that stop and start other play-
ers. Another possibility to try in the near future
is Players which change between sample sets.

Visualization methods for system state
should be undertaken.

A convenience function for concatenating
TimespanMaps is also desired.

Better methods for managing the code used
in a performance should be sought.

7 acknowledgements

Thanks to Henning Thielemann and the review-
ers for useful suggestions on the contents of this
paper. Thanks also goes to Akihiro Kubota and
Yoshiharu Hamada for research support.

8 bibliography

Adriaensen, Fons. 2004. “Kokkini Zita - Linux
Audio.” http://kokkinizita.linuxaudio.
org/linuxaudio/.

Ariza, Christopher. 2011. “Two pioneering
projects from the early history of computer-
aided algorithmic composition.” Computer Mu-
sic Journal 35 (3): 40–56.

Bell, Renick. 2011. “An Interface for Real-
time Music Using Interpreted Haskell.” In Pro-
ceedings of LAC 2011.

Blackwell, Alan, and Nick Collins. 2005.
“The Programming Language as a Musical In-
strument.” In Proceedings of PPIG05. Univer-
sity of Sussex.

Coutinho, C. 2010. “tslime.” http:
//www.vim.org/scripts/script.php?
script_id=3023.

Davis, Paul. 2006. “Ardour.” http://
ardour.org.

Drape, Rohan. 2009. Haskell supercollider, a
tutorial.

Foltman, Krzysztof, Markus Schmidt, Chris-
tian Holschuh, and Thor Johansen. 2007.
“Home @ Calf Studio Gear - Audio Plugins.”
http://calf.sourceforge.net/.

Hedges, Stephen A. 1978. “Dice music in the
eighteenth century.” Music & Letters 59 (2):
180–187.

Jones, SL Peyton, Cordy Hall, Kevin Ham-
mond, Will Partain, and Philip Wadler. 1993.
“The Glasgow Haskell compiler: a technical
overview.” In Proc. UK Joint Framework for
Information Technology (JFIT) Technical Con-
ference. Vol. 93.

Jones, Simon Peyton. 2007. “Beautiful con-
currency.” Beautiful Code: Leading Program-
mers Explain How They Think : 385–406.

Kostelanetz, Ric. 2002. Conversing with
Cage. Routledge.

Marriott, Nicholas, and others. 2013.
“tmux.” http://tmux.sourceforge.net/.

Maurer, John. 1999. “A Brief History of
Algorithmic Composition.” https://ccrma.
stanford.edu/~blackrse/algorithm.html.

McCartney, J. 2010. “SuperCollider Docu-
mentation.” http://www.audiosynth.com.

35

McLean, Alex. 2012. “Computer Music
Journal special issue on Live Coding \textbar
TOPLAP.” http://toplap.org/cmj/.

McLean, Alex, and Others. 2010. TOPLAP
website. http://www.toplap.org/index.php/
Main_Page.

Moolenaar, Bram. 2008. “The Vim Editor.”
http://www.vim.org.

Paul, David. 1997. “Karlheinz Stockhausen.”
interview, Seconds Magazine 44.

Robillard, David. 2011. “Patchage.” http:
//drobilla.net/software/patchage/.

Schoenberg, Arnold. 1999. Fundamentals of
Musical Composition. Ed. Gerald Strang and
Leonard Stein. Faber & Faber.

Sorensen, A., and A. R. Brown. 2007. “aa-
cell in Practice: An approach to musical live
coding.” In Proceedings of the International
Computer Music Conference.

Tingen, Paul. 2004. “Autechre, recording
electronica.” Sound on Sound 19 (6): 96–102.

Varouhakis, John, and Martin Nordholts.
2008. recordMyDesktop Version 0.3. 7.3.

Xenakis, Iannis. 2001. Formalized Music:
Thought and Mathematics in Composition. 2nd
ed.. Pendragon Pr.

unknown. 2013. “live.code.festival 2013 –
Call for Participation.” http://imwi.hfm.eu/
livecode/call/.

36

MorphOSC- A Toolkit for Building Sound Control GUIs with Preset

Interpolation in the Processing Development Environment

Liam O'SULLIVAN

Electronic & Electrical Engineering, Trinity College Dublin

Dublin 2, Ireland

lmosulli@tcd.ie

https://github.com/LiamOSullivan/MorphOSC

Abstract

MorphOSC is a new toolkit for building graphical

user interfaces for the control of sound using

morphing between parameter presets. It uses the

multidimensional interpolation space paradigm

seen in some other systems, but hitherto

unavailable as open-source software in the form

presented here. The software is delivered as a class

library for the Processing Development

Environment and is cross-platform for desktop

computers and Android mobile devices.

This paper positions the new library within the

context of similar software, introduces the main

features of the initial code release and details

future work on the project.

Keywords

Toolkit, Processing Development Environment,

Open Sound Control, User Interface, Preset

Interpolation.

1 Introduction

The control of complex, dynamic sound

typically involves manipulation of a large number

of parameters. Complex mappings that link one-

or-more input controls to one-or-more outputs

have been seen to be more effective for the

provision of engaging, expressive play than simple

one-to-one mappings [6]. One approach to the

control of multiple parameters in real time is the

use of a multidimensional space superimposed on

a two-dimensional graphical controller [10].

Particular settings for an ordered collection of

parameters can be associated with anchor points

on the controller surface and the movement of a

cursor provides an interpolated output value for

each parameter. The usefulness of such an

approach for the provision of musical control has

been noted previously in the above examples;

although independent control over each output is

compromised, an intuitive and 'playable' space is

provided. This two-input to many-output (two-to-

many) mapping can be well-suited for live

performance or the exploration of timbre spaces

generated when the interpolated output is sent to a

synthesiser.

Although several systems provide a graphical

user interface (GUI) to some implementation of

such a scheme, they are usually tied to a particular

application, are commercial products or are not

portable to multiple platforms. To address this, a

new code library is presented that facilitates rapid

prototyping of interfaces utilising preset

morphing- MorphOSC.

Section 2 of this paper briefly describes similar

work in the form of existing GUIs that allow

complex mappings through interpolated parameter

spaces. The design goals for the new tool are then

identified as a reaction to what is currently

available. Some background to one method of

parameter morphing is provided in section 3.

Section 4 outlines the current library

implementation, identifying key features of the

software in its current state. Future areas of

development are discussed in section 5 and final

conclusions are made.

2 Similar work

Several software systems exist that facilitate the

exploration of multidimensional parameter

spaces. While some of these are sophisticated

systems offering extensive functionality, it will be

shown that a gap exists for the approach being

outlined here due to the limitations described in

each case. Previous work by the author describes

a number of more general mapping interfaces [12]

and will not be repeated in this paper, but salient

examples of more general software controllers

and specific interpolating interfaces are now

presented.

37

2.1 Interpolating interfaces

The provision of effective control of computer

music systems via preset interpolation has

historically been of interest. As far back as the late

1970s, researchers at the Inaís Groupe de

Recherches Musicales provided such functionality

in the GUI component of the SYTER system [5].

Today, the real-time processing capability of

desktop computers and even mobile devices means

that interfaces can be implemented as components

of a larger software system. The Max/MSP

programming environment [9] is a popular

example and provides many data-manipulation

tools; a recent implementation of an interpolating

controller for this environment is the nodes object.

This allows many inputs to be weighted and

combined to a single output based on the positions

of overlapping circular graphical nodes. Similarly,

the IRCAM MnM mapping toolbox, (part of the

FTM external object library [3]) allows the user to

build patches with existing Max/MSP GUI

elements. For instance, an example patch allows

the specification of two-to-many mappings using a

two-dimensional controller and a set of linear

sliders. The system can associate points on the

controller with particular slider arrangements and

value settings; moving between points provides a

smooth morph between the sliders' states.

The MetaSurface is an interface for

interpolating between parameter ‘snapshots’ for

two-to-many mappings [1] and an example

implementation is included with the AudioMulch

software [2]. Still more recently, one project [8]

provides a preset-interpolation interface for the

SuperCollider environment [18], designed for use

with a bespoke physical controller.

The above examples are part of more fully-

featured programs rather than standalone

controllers and/or are commercial products. They

cannot be used with Android mobile devices. The

ability to include subsets of output parameters in

the interpolation space is provided in some cases,

typically via check-boxes or a set-up dialogue.

However, an interface which uses the drag-and-

drop metaphor to manipulate parameter sets would

provide a more interactive experience. The use of

a multi-layered GUI approach would also allow

more complex mapping relationships to be built

and refined.

2.2 Standalone interfaces for Open Sound

Control

Software controllers already exist for mobile

and touch-screen devices that can output messages

over a network formatted using the Open Sound

Control (OSC) standard [11]. From simple

applications like andOSC [12] to more

sophisticated tools such as the popular TouchOSC

[15], these offer real-time control of musical

applications and exploit the multi-touch capability

of contemporary phones and tablets (as well as

additional sensor input from accelerometers etc.).

Although functionality-limited free versions are

available, they are not open source. Neither do

they provide an interpolation surface, meaning

this must be implemented on a networked

computer if required. This separates the mapping

configuration from the interface, inhibiting

engagement and obstructing work-flow A more

unified interface would facilitate greater

exploration of the parameter space and dynamic

mapping during performance.

2.3 Processing Development Environment

The Processing Development Environment

(PDE) is an open-source initiative that attempts to

make it easier for artists, designers and novice

programmers to implement computer-based

projects. It uses a streamlined form of the Java

programming language and has evolved to

become a very popular tool for creatives. Code

libraries provide additional functionality such as

enhanced interactivity and sound generation.

One such contributed library is the recent

JunctionBox toolkit [4], which can provide

interaction capability beyond the use of traditional

controller widgets. Code 'sketches' written in

Processing can include this library's functionality

to produce OSC messages triggered by common

mouse-based or multi-touch interactions (e.g.

scaling, rotation etc.). As the PDE now supports

rapid Android application prototyping1, this

allows easier implementation of novel OSC

controllers for mobile devices. However, as the

focus is on the generation of messages based on

common spatial manipulations of graphical

objects, it does not particularly address the

production of more complex GUIs including

preset-interpolation surfaces. Nevertheless, the

library serves as a useful template for the

provision of such functionality through a code

library for the PDE.

2.4 Project goals

The design goals which emerge from the initial

motivations for the project and subsequent

consideration of similar work are as follows:

1 As of version 2.0 beta 7, March 2013.

38

• Freely available, open source, cross-

platform compatible toolkit for rapid

prototyping of preset-interpolation

interfaces.

• Interaction design exploiting familiar

metaphors for intuitive configuration of

the parameter interpolation space (e.g.

drag-and-drop, layering).

• OSC-formatted output.

3 Interpolation methods

A full discussion of the various methods available

for interpolation between a set of scattered data

points is beyond the scope of this paper and the

reader is directed to an overview from the field of

cartography [7]. However, the techniques used in

some examples of similar interfaces are

summarised in table 1.

Software Method

SuperCollider

PresetInterpolator

Intersecting

N-Spheres

Max/MSP

nodes

Inverse Distance

Weighting

AudioMulch/

MetaSurface

Natural

Neighbour

Table 1: Interpolation methods used in some

existing GUIs for musical control.

The need for real-time performance and the

suitability of the software for mobile platforms

prioritises the use of computationally inexpensive

interpolation techniques. For the initial toolkit

release, the method of Inverse Distance Weighting

(IDW) was preferred.

3.1 Inverse-Distance Weighting

IDW is commonly called Shepard's Method

following an early documentation of the technique

[17]. In essence, it can assign values to unknown

points by calculating a weighted average of the

values at scattered sample points. The normalised

distances from the interpolation point to the

known values, dn, are used to scale the values of

each parameter at these points, pni, in an inverse

relationship. The results are then averaged,

meaning points further away have less effect on

the interpolated value of a particular parameter . A

general expression for the operation is therefore:

modification to the technique uses the square of

the distance involved and may be more suited to

the control of musical parameters, due to the non-

linear nature of certain aspects of human

perception and experience of the real world (e.g.

inverse-square law attenuation of sound with

distance). IDW considers all points on the

surface, but may also be modified to only

consider the nearest points and reduce the

computation required for interpolating the output.

Figure 1 shows an interactive Processing sketch

that outputs a set of interpolated values for a

three-dimensional parameter space mapped to a

two-dimensional controller surface2. This

illustrates how parameters at the interpolation

point (i.e. the output) are calculated from their

ordered counterparts at the 'known' sample points

(i.e. the anchor points).

Figure 1: Inverse Distance Weighting used to

interpolate values for the parameters at a point P

from a set of scattered sample points a, b, c and d.

The normalised values for the weights (inverse

distances) are shown along the vector lines and

three parameter values are placed at each point.

4 Implementation

The current toolkit was programmed in Java

and is available as a library for the PDE. This

includes example interfaces which can be loaded

into the environment and modified, or exported to

be run as standalone applications across multiple

platforms (OSX, Windows, Linux, Android).

The toolkit builds on the functionality of other

contributed libraries for Processing to allow easy

2 The Processing code for this example is avaliable at:
https://github.com/LiamOSullivan

39

Figure 2: Overview of the core library classes (rectangular boxes) of the MorphOSC toolkit.

integration into the work-flow of developers and

to keep the code base to a minimum. The library is

design to make use of the popular ControlP5 [15]

library for the provision of on-screen control

widgets, while the OSC subsystem uses the oscP5

library [16] to format output appropriately.

Settings for the constructed GUIs can be stored

and recalled using a preset file, formatted with

extensible mark-up language (XML) for ease of

portability.

Class Description

MorphOSC Base class, manages

interaction space.

Parser Parses subset of

widget fields.

MorphLayer Interactive GUI

element. Container for

(i), (ii), (iii).

(i)

MorphAnchor

Holds a set of

parameter values.

(ii)

MorphPoint

An interpolation

point.

(iii)

MorphParameter

Parameter value

parsed from widget.

OSCAgent Formats outgoing

messages.

Table 2: Core classes of the MorphOSC library.

The core classes that implement the MorphOSC

library are listed in table 2. Figure 2 outlines their

inter-relationships.

4.1 Usage

The library employs the conventions common to

contributed libraries for the PDE, as shown in the

example code of table 3. The base class for the

library is instantiated in the usual way, by passing

a reference to the parent PApplet (the

encapsulating class for a Processing program).

This effectively creates an interaction area at

runtime with the same dimensions as the parent.

Widgets are defined using the ControlP5 library

to implement the interface design in the usual

way. Any widgets which are to be included for

morphing are then added to the MorphOSC

instance using the add() method. This sends the

element to the Parser class; a subset of the

controller properties are extracted and a

MorphParameter instance for each added

controller is returned.

MorphOSC morph = new MorphOSC(this);

ControlP5 cp5 = new ControlP5(this);

Slider s = cp5.addSlider();

morph.add(s);

Table 3: Example Processing code. MorphOSC

and ControlP5 base classes are instantiated. A

slider is created and added to the MorphOSC

object.

All other public classes are modified at runtime

through interaction with the GUI.

4.2 Interaction Design

Manipulation of MorphOSC elements through the

interaction area depends on the current mode of

the interface, which can be in Edit Mode or

Performance Mode.

40

Figure 3: An example GUI created in Processing with MorphOSC and ControlP5. In the unlocked Edit

Mode, GUI elements may be modified but interpolation output may still be auditioned in real time.

MorphLayer number 3 is in focus and the various widgets for system settings are visible on the right

hand side of the screen.

4.2.1 Edit mode

When unlocked in Edit Mode, MorphOSC

elements may be created, modified and destroyed.

For example, a MorphLayer can be instantiated

with an event (e.g. a mouse click or a double

finger-tap) in free space on the interaction area.

Layers may subsequently be moved/ resized and

overlapping is possible. Any widgets which have

an associated MorphParameter are indicated in the

GUI with a unique colour. A MorphAnchor may

be added to a layer by using a drag-and-drop

action from the numerical value attached to the

corresponding widget. This adds the associated

MorphParameter to the layer and initialises the

MorphAnchor value for that parameter to the

current widget value. Additional parameters may

be added to existing anchors or anchors may have

their values overwritten by subsequent drag-and-

drop actions. Anchors may be moved about their

layer to reconfigure the underlying interpolation

space; finer control may be attained by moving

anchors further apart, for example.

Edit mode produces interpolated values for

parameters by dragging (with mouse or touch) in

free space. This allows the user to audition

parameter interpolation in real-time as they are

manipulating them, but is not meant to provide a

full performance mode.

4.2.2 Performance mode

When in the locked performance mode,

MorphLayers, MorphAnchors and other

instantiated classes cannot be modified other than

through the specification of MorphPoints to

generate interpolated parameter values.

Interaction with the MorphLayers produces

interpolated values for their associated

MorphParameters based on the arrangement of

MorphAnchors within them. MorphPoints

interpolate values from all layers behind them.

This means that subsets of parameters can be

associated with different layers and spatial

positions, providing a lot of flexibility in design

of the control space.

Performance mode contains the option to hide

all ControlP5 GUI elements so that the whole

space is available for gestural input.

5 Conclusion and future work

This paper introduced a new toolkit to aid in the

rapid development of GUIs utilising preset

interpolation for the control of sound over OSC.

A short review of similar work identified the need

41

for a code library for the popular Processing

environment, in order to allow cross-platform

interface development. Following a brief

discussion of a suitable interpolation method, the

new toolkit- MorphOSC- was then introduced and

key features were outlined.

The software is currently in beta version and

there is much work to be done to produce a

release candidate. A full evaluation of the system

is required to assess stability and performance.

Use of the system in a workshop setting is

proposed to evaluate usability and performance is

to be tested 'in the wild'.

The current system implements a simple

averaging interpolation scheme through IDW, but

as this can have some limitations (e.g.

computation time proportional to the number of

anchor points) other methods will be examined. It

is envisaged that the toolkit will serve as a test bed

for evaluating the effectiveness of various

interpolation methods for the provision of real-

time control of musical output.

This work forms part of a larger project which

attempts to leverage the benefits of two-

dimensional interfaces for musical control. The

multi-layer paradigm is seen as a strong metaphor

for the provision of intuitive interactions not

currently supported in existing software.

Acknowledgements

Thanks to Andreas Schlegel for both the oscP5

and controlP5 libraries. The author appreciates the

comments of the reviewers and the beta-testers for

their invaluable feedback.

References

[1] Bencina, R. The Metasurface – Applying

Natural Neighbour Interpolation to Two-to-

Many Mapping. Proceedings of the 2005

Conference on New Interfaces for Musical

Expression (NIME’05) (Vancouver, BC,

Canada, May 26-28, 2005), 101-104.

[2] Bencina, R., AudioMulch interactive music

studio. http://www.audiomulch.com/

[3] FTM & Co., IRCAM. http://ftm.ircam.fr/

[4] Fyfe, L., Tindale, A. and Carpendale, S.

JunctionBox for Android: An Interaction Toolkit

for Android-based Mobile Devices. Proceedings

of the Linux Audio Conference (LAC2012),

(CCRMA, Stanford University, CA, USA. April

12-15, 2012).

[5] Geslin, Y., Digital Sound and Music

Transformation Environments: A Twenty-year

Experiment at the Groupe de Recherches

Musicales. Journal of New Music Research

31(2): 99–107, 2002.

[6] Hunt, A. and Kirk, R., Mapping Strategies

for Musical Performance. Trends in Gestural

Control of Music, M. Wanderley and M.

Battier, Editors, 2000.

[7] Lam, N., Spatial Interpolation Methods: A

Review. The American Cartographer. 10(2):

129-149, 1983.

[8] Marier, M., Designing Mappings for

Musical Interfaces Using Preset Interpolation.

Proceedings of the Conference on New

Interfaces for Musical Expression (NIME '12),

(May 21 – 23, 2012, University of Michigan,

Ann Arbor).

[9] Max/MSP environment from Cycling 74.

http://cycling74.com/products/max/

[10] Momeni, A., Wessel, D., Characterizing and

controlling musical material intuitively with

geometric models. Proceedings of the 2003

conference on New Interfaces for Musical

Expression (NIME '03) (2003, National

University of Singapore, Singapore), 54-62.

[11] Open Sound Control.

http://www.opensoundcontrol.org

[12] O’Sullivan, L., Furlong, D., and Boland, F.

Introducing CrossMapper: Another Tool for

Mapping Musical Control Parameters.

Proceedings of the Conference on New

Interfaces for Musical Expression (NIME '12),

(May 21 – 23, 2012, University of Michigan,

Ann Arbor).

[13] Primevision andOSC Android application.

https://play.google.com/store/apps/details?

id=cc.primevision.andosc&hl=en

[14] Processing Development Environment.

http://www.processing.org

[15] Schlegel, A., Sojamo ControlP5 Library for

Processing.

http://www.sojamo.de/libraries/controlP5/

[16] Schlegel, A., Sojamo OscP5 Library for

Processing.

http://www.sojamo.de/libraries/oscP5/

[17] Shepard, D., A two-dimensional

interpolation function for irregularly-spaced

data. Proceedings of the 1968 23rd ACM

national conference, 517–524.

[18] SuperCollider. supercollider.sourceforge.net

[19] TouchOSC.

http://hexler.net/software/touchosc

42

Design of an audio oscilloscope application

Fons ADRIAENSEN,

Casa della Musica,
Pzle. San Francesco 1,
43000 Parma (PR),

Italy,
fons@linuxaudio.org

Abstract

This paper documents some aspects of the design
of zita-scope, an Audio Oscilloscope application for
the GNU/Linux system. It is designed to permit
accurate display and measurements on audio wave-
forms captured from any source via the Jack audio
server. Topics covered include performance require-
ments, an analysis of some problems that need to
be considered, and an overview of the implemention
structure. The software will be available at the time
this paper is presented at the 2013 Linux Audio Con-
ference in Graz.

Keywords

linux, oscilloscope, audio measurement, time-
domain, jack

1 Introduction

The oscilloscope has for a long time been a stan-
dard instrument for any engineer developing au-
dio equipment, and in fact for almost everyone
’doing electronics’. In the all-digital era its im-
portance in an audio related context may have
declined a bit, except for debugging digital au-
dio hardware. Fact is that many measurements
on audio systems are better performed using
spectral analysis or dedicated tools, but in some
cases the ability to view the time-domain wave-
form and perform measurements on it remains
essential.
Very few Linux applications for this use seem

to exist. There are various ’scrolling scopes’
which will display a waveform in real time,
but don’t permit any form of measurement.
Some graphical synthesis environments include
a ’scope’ module or object, but these scopes are
little more than a toy. They allow the user to
see that a waveform is indeed a sine or a square
wave, or to get an idea of the waveform enve-
lope, but there it ends.
The only more ambitious application found

by the author at the time of writing was some-
thing called xoscope [1]. After some patching it
compiled, but it takes its inputs from /dev/dsp,

Figure 1: A sampled sine wave

EsounD or some esoteric hardware only, doesn’t
know about ALSA or Jack, and the user inter-
face really looks very dated. Probably its devel-
opment has stopped years ago.
Reasons for this state of affairs are clear

enough: ’technical’ applications (as opposed to
those meant for creating music) are a minority
interest, and actually creating a usable software
scope isn’t as simple as it seems — there is a lot
more involved than just ’plotting the samples’.

2 Requirements

Displaying samples is what any serious oscillo-
scope application must not do. If a signal con-
tains any significant energy above say 1/10 of
the sample rate, the sample values provide a
very bad or at least a quite unintuitive visual
representation of the actual waveform. See for
example Fig.1. After some training one may
be able to recognise this as a 14 kHz sine wave
sampled at 48 kHz, but in general it’s near im-
possible to obtain any meaningful information
from such a display.

Assuming a scope will be used to perform
measurements and not just as a visual gadget,

43

t

trigger

display range

AD B

C

t
d

Figure 2: Trigger and display range

the following should be considered essential:

• An accurate and stable display of the ana-
log waveform corresponding to a stream of
samples.

• A wide range of calibrated display ranges
and resolutions in both the time and am-
plitude domains.

• At least two and preferably more simultan-
uous channels.

• A flexible and accurate system allowing the
user to capture particular events in an au-
dio signal.

• The ability to store a signal and examine
it at all available gain and time resolution
settings.

• Calibrated markers to aid accurate mea-
surement.

• Responsive user controls, e.g. changing dis-
play parameters should produce an almost
immediate result.

And less essential but nice to have:

• Facilities to perform more complex mea-
surements, e.g. the RMS value of a range,
spectrum, etc.

• Remote control, allowing the applicatin to
be configured by and report to automated
test systems or scripts.

• ’Reasonable’ CPU and other resource us-
age.

3 Problem analysis

3.1 Triggering

While a scope can be used in free running mode,
in most cases a triggered display is essential.
The principle is illustrated in Fig.2. The user

will select a trigger condition, for example a pos-
itive going zero crossing. The start of the dis-
played range will then be at a fixed offset td
from that point, selected by the user. In many
cases the trigger point will be the start of the
displayed range (case A in the figure), but even
most analog scopes offer a delayed trigger option
(case B), with a delay that can be much longer
than the displayed range. A digital scope can
easily store the signal, and allow to display part
of the signal before the trigger (cases C and D).
This is very useful when the trigger condition
is the consequence of something that happened
before and which the user wants to investigate.

Triggering can be continuous or single shot.
In the first case, if a trigger has been found, and
as soon as enough signal has been captured to
fill the display and all of it is processed, the sys-
tem can start looking for the next trigger and
the cycle repeats. This could result in a very
high update frequency (if the display range is
short and close to the trigger) which would just
lead to an excessively high CPU load without
improving the visual result. In such cases look-
ing for the next trigger should be delayed by 50
milliseconds or so.
In the single shot mode, signal capturing will

stop at some point after the displayed range,
allowing the user to examine all of the stored
signal. In that case, the position of the trigger
point in the stored buffer becomes a parame-
ter that should be controllable by the user —
this determines how much he/she will be able
to scroll forward or back from the initial dis-
play range.

The usual trigger condition is the signal cross-
ing a given value in a specified direction, up or
down. This point needs to be determined with
high accuracy. Consider the following condi-
tions: we are looking in continuous trigger mode
at some high frequency waveform, with a dis-
play range of 50 microseconds (one period at 20
kHz). Assume the display is 1000 pixels wide.
Then each pixel corresponds to 0.05 microsec-
ond, and if we want a stable display the jitter on
the trigger position must be at least ten times
smaller than that value, say 5 nanoseconds or
around 1/4000 of a sample at a sample rate of
48 kHz. Simple linear or even cubic interpola-
tion on the original samples won’t be sufficient
to achieve this .

The solution used in zita-scope is to first up-
sample the signal selected as the trigger source
by a factor of 5. This means that even in the

44

worst case — a sine wave near half the sample
frequency — in each half cycle there will always
be samples covering the range of -0.95 to 0.95
times the amplitude, and triggering within that
range will be reliable. Assume the trigger level
is V with the signal going up. We scan the inter-
polated waveform for two consecutive samples
v0 and v1 such that v0 ≤ V ≤ v1. When these
are found, the signal is locally upsampled by a
factor of 25, and we search for v0, v1, v2 and v3
such that v1 ≤ V ≤ v2. Given these we can find
the best fitting parabola f(x) = ax2 + bx + c
with f(0) = v1 and f(1) = v2. Solving the
quadratic equation then provides the exact lo-
cation of the trigger point, with a worst case
error of around 1/100000 of a sample at the
original sample rate. The calculations are quite
simple but require some attention to cover spe-
cial cases, e.g. the quadratic coefficient could
be near zero. Four points rather than three are
used to provide an estimate of the quadratic
term at the center of the interval [v1, v2].

Another option, usually not available on ana-
log scopes, is to trigger on the first positive or
negative peak exceeding a given value. This can
be done using a similar method, in this case
searching e.g. for three samples v0, v1, v2 with
v0 < v1 > v2, and then solving the derivative of
the quadratic equation.

The first release of zita-scope can have up to
four displayed channels, and each of those can
be the trigger source. Also a separate trigger
input is provided. This can be used in the way
described above, or it can be put in ’digital’
mode, meaning that the trigger position will be
the first sample crossing a given value, e.g. an
impulse provided by some external software.

Another option is the manual trigger mode.
Clicking a button in the GUI generates a single
sample pulse on a trigger output, and the trigger
point is exactly one period later (looping the
pulse back to the digital trigger input would give
the same result). This can be used to measure
e,g, the impulse response of a filter.

Some other modes could be useful, for exam-
ple triggering on a MIDI note-on event delivered
via Jack-midi, for example to test the latency
of a soft synth, or on Jack transport reaching
a preset value. These could be built-in, or pro-
vided by a separate app connected to the exter-
nal trigger input.

3.2 Waveform display

As already illustrated by Fig.1, displaying the
waveform corresponding to a sampled signal in-
volves more than just plotting the sample val-
ues. A digital audio scope could have a horizon-
tal scale ranging from a second per grid division
down to a microsecond, a range of one to a mil-
lion. In all cases the user wants to see a more
or less accurate representation of the waveform.
For an analog scope this is no problem as both
the signal and the display device have ’infinite’
resolution. For a digital scope we need to con-
sider that the waveform is sampled and the dis-
play consists of discrete pixels.
The first question is which graphics library

will be used. On Linux, the choice is between
the basic X11 drawing routines and Cairo [2].
GUI toolsets offering a ’canvas’ object will also
use one of these. X11 graphics are defined en-
tirely in terms of pixels. Cairo offers subpixel
coordinates and anti-aliased line drawing. This
provides a much better visual quality, but not a
higher resolution.
On recent multi-core hardware there is really

no reason for not using Cairo or something sim-
ilar. The situation is different if somewhat older
systems are considered, e.g. a single core 2 GHz
Pentium 4. On such hardware, when drawing
four waveforms 20 times per second on a full
screen window, using Cairo can easily take the
CPU power to its limits.
The solution adopted in zita-scope is to pro-

vide both. By default Cairo will be used in all
cases, but there is an option to use X11 when
the display is updated at a high frequency, au-
tomatically switching to Cairo in all other cases.

Assume the display is showing one or a few
cycles of a sine wave, so each cycle has a nontriv-
ial width on the screen. An accurate display of
say 1000 by 1000 pixels requires something like
70 points per cycle in that case. This ensures
that the extreme values shown are no less than
0.999 times the real peaks (i.e. less than half a
pixel error), and the waveform doesn’t look like
a series of connected straight lines. Since the
frequency could be near half the sample rate,
this would require upsampling by a factor of at
least 35.
A brute-force technique would be to always

upsample by a factor of at least 35 and plot all
the points. But this would be very inefficient in
almost all cases. Consider a display that is 100
ms wide — this would mean 168000 points after
resampling, and most of the effort spent com-

45

puting and displaying them would be wasted as
the display doesn’t have the resolution required
to show all that detail. Clearly some better idea
is needed.

To get a grip on the issues involved we will
use the following parameters:

• Fsig : the original signal sample frequency,
e.g. 48 kHz.

• Fpix : the pixel frequency. For example if
we have 1 millisecond per division and a
division is 100 pixels, then Fpix is 100 kHz.

• Fres : the sample frequency after upsam-
pling.

Zita-scope uses two different algorithms and
display routines, depending on some of those
parameters.

If Fpix/Fsig ≥ 35, we compute one sample
per k pixels on the x-axis, with k integer. These
points are then plotted as a sequence of straight
lines. This provides the best that can be done
when using X11 (unless we would implement
some ad-hoc anti-aliasing scheme), and Cairo
will show a smooth anti-aliased line. In this
case we have:

k = ⌊Fpix/(35× Fsig)⌋

Fres = Fpix/k

In practice the value of k is limited to some
small value (currently 5, so there will be at least
one point every 5 pixels) to avoid having too
long straight lines.

In the other case, if Fpix/Fsig < 35, each x-
axis pixel is assumed to represent a range of
time, and we compute the minimum and maxi-
mum values the signal will take within that in-
terval. The resulting data are then plotted as a
series of vertical lines, one for each x-axis pixel.
For X11 this is again more or less the best we
can do. But this scheme doesn’t work well when
using Cairo if the signal doesn’t contain signif-
icant high (relative to Fpix) frequency energy,
and the resulting plot is reduced to a line in-
stead of being a broader band of pixels. The re-
sult isn’t much better than for X11 as we have in
effect disabled Cairo’s anti-aliasing capabilities.
This situation arises if the waveform is mono-
tonic within each time interval represented by
a single pixel. Fortunately there is an simple
solution, which is illustrated in Fig. 3.
In the right half of (a) we have a waveform

that can be assumed to be representable by a

(a) (b)

Figure 3: Connecting segments

Figure 4: Visual effect of connecting segments

smooth line. In this case we can replace the ver-
tical segments by connected lines just by mov-
ing the x-coordinates by half a pixel, and split-
ting the vertical segment at an extreme into two
lines, as shown in (b). This only requires the
original x,min,max data, and results in a dra-
matic improvement in display quality, as illus-
trated by Fig.4.

To compute the min,max pairs the display
algorithm upsamples the original data by a fac-
tor of at least 6, and such that we have a sam-
ple on every border between two adjacent pixels
— this ensures that there will be no gaps be-
tween segments. The extreme values can then
be found using inverse quadratic interpolation.
This is essentially the same algorithm used to
trigger on a peak, except that the function value
is computed instead of the argument, and con-
siderably less precision is required.

46

In this case we have

k = ⌈6× Fsig/Fpix⌉

Fres = k × Fpix

The table below shows the resulting display
parameters as a function of the horizontal res-
olution, for Fsig = 48 kHz, and 100 pixels per
division. The SPP value is the number of sam-
ples (after upsampling) per horizontal pixel.

T/Div Fres/Fsig SPP
1 s 6.000000 2880/1

0.5 s 6.000000 1440/1
0.2 s 6.000000 576/1
0.1 s 6.000000 288/1

50 ms 6.000000 144/1
20 ms 6.041667 58/1
10 ms 6.041667 29/1
5 ms 6.250000 15/1
2 ms 6.250000 6/1
1 ms 6.250000 3/1

500 us 8.333333 2/1
200 us 10.416667 1/1
100 us 20.833333 1/1
50 us 41.666667 1/1
20 us 52.083333 1/1
10 us 52.083333 1/2
5 us 41.666667 1/5
2 us 104.166667 1/5
1 us 208.333333 1/5

In this example the switch between the two
algorithms discussed above occurs between 100
and 50 usecs per division.
Note that in both these cases one sample

per pixel is computed, but in a different way.
For the first algorithm the single sample cor-
responds to the center of an horizontal pixel.
For the second it is positioned on the border
between pixels.
To obtain this exact alignment of the upsam-

pled signal to the pixel grid we must initialise
the phase of the polyphase filter used by the re-
sampling algorithm to the required value. The
current release of zita-resampler includes sup-
port for this.

4 Software structure

4.1 Data flow

Figure 5 shows the main elements of the im-
plementation. Almost no work is done in the
Jack callback, it just copies the input signals to

a lock-free buffer. Apart from that it contains
some code to support the manual trigger mode.
All the rest is done in a non real-time context,
so zita-scope will impose only a very light load
on the Jack processing graph.

The lock-free buffer is around 1.5 seconds
long. In single-trigger mode input is discarded
until the user enables the next trigger, but the
lock-free buffer it is used to store the last second
of input. This ensures that this data is always
available at the next trigger (which may be a
manual one).
The trigger logic determines which part of

the input is copied to the capture buffer. In
continuous mode this will be little more than
the displayed range — if the user changes the
trigger position w.r.t. to the display range this
is taken into account on the next trigger. In
single-trigger mode the capture buffer can store
up to a few seconds of data, allowing the user to
examine any part of it. To allow triggering on a
wide range of signal levels the input gains set in
the GUI are taken into account by the trigger
algorithms, but the signals written to the cap-
ture buffer are always the original ones without
any gain applied.
The following step implements one of the two

algorithms presented in the previous section, de-
pending on the selected display range. These
computations are performed when the contents
of the capture buffer are updated by the trigger
logic, or ’on demand’ when the user changes the
time axis parameters.
The plotting routines finally display the data

on the screen. Any gain and vertical offset se-
lected by the user are only taken into account
at this point, so changing the these parameters
does not require recomputing the display buffer
data.
Some logic and state machinery is required

to coordinate all of this. For example, in single
trigger mode the display must be redrawn im-
mediately if the user changes any parameters,
while in continuous mode it could be better to
wait until the capture buffer is updated.

4.2 Display markers

To perform accurate measurements zita-scope
offers various types of on-screen markers, shown
as vertical or horizontal dotted lines on the dis-
play. Their absolute and relative positions are
also shown in numerical form. These numerical
values are always computed from the original
signal stored in the capture buffer, not from the

47

jack ports

lock-free buffer

capture buffer

display buffer

display

plotting routines

markers

jack_process()

upsampling

min/max

time
trigger

markers

gain

gain

time

offset

trigger logic and

processing

Figure 5: Processing flow

display data, and are not modified by any gain
or offset settings.
Time axis markers can be positioned manu-

ally, or snap to a zero crossing or a peak, using
the same algorithms as for triggering. Ampli-
tude axis markers can be set manually, or they
can follow the time axis ones on a selected chan-
nel, or snap to exact peak values. More complex
measurements (RMS levels, spectrum,. . .) may
be implemented in future releases of the appli-
cation.

4.3 Additional facilities

Zita-scope offers some additional convenience
functions:

• Storing and recalling the complete state
of the instrument, including the capture
buffer. The data is stored as a regular CAF
audio file with the instrument settings in a
dedicated GUID chunk.

• Creating a PNG file of the current dis-
play. For images to be included in printed
documents the display background can be
changed to white.

5 Acknowledgements

The author has contemplated writing an oscillo-
scope app for years, but kept postponing it until
some Linux audio users got impatient and ’in-
creased the pressure’. Without them zita-scope
probably wouldn’t exist.
Writing this application in the relatively short

time it finally took was possible only because
of the existence of some excellent and well-
documented software taking care of some as-
pects, in particular Jack and Cairo.
A sincere thanks also to the (near future)

beta-testers who will without doubt provide in-
valuable feedback and suggestions for improve-
ments.

References

[1] T. Witham and B. Baccala, “Xoscope
for Linux.” http://Xoscope.sourceforge.
net/, 2009. [Accessed 27/1/2013].

[2] K. Packard et al., “Cairo.” http:
//www.cairographics.org/. [Accessed
27/1/2013].

48

Ambisonics plug-in suite for production and performance usage

Matthias KRONLACHNER
Institute of Electronic Music and Acoustics, Graz (student)

M.K. Čiurlionio g. 5-15
LT - 03104 Vilnius

m.kronlachner@gmail.com

Abstract

Ambisonics is a technique for the spatialization of
sound sources within a circular or spherical loud-
speaker arrangement. This paper presents a suite of
Ambisonics processors, compatible with most stan-
dard DAW1 plug-in formats on Linux, Mac OS X
and Windows. Some considerations about usabil-
ity did result in features of the user interface and
automation possibilities, not available in other sur-
round panning plug-ins. The encoder plug-in may be
connected to a central program for visualisation and
remote control purposes, displaying the current posi-
tion and audio level of every single track in the DAW.
To enable monitoring of Ambisonics content without
an extensive loudspeaker setup, binaural decoders
for headphone playback have been implemented.

Keywords

Ambisonics, Plug-ins, Digital Audio Workstations,
Binaural, Ardour

1 Introduction

It turns out to be difficult finding platform inde-
pendent audio plug-ins for encoding and decod-
ing Ambisonics. Following section should give a
brief overview of still maintained plug-ins.
Fons Adriaensen’s AMB-plugins2 offer en-

coders and rotators (yaw axis only) until 3rd

order. LADSPA can be used with the DAW Ar-
dour under Linux and Mac OS X. There is no
Windows host supporting LADSPA. For decod-
ing Ambisonics signals into loudspeaker feeds,
Adriaensen’s Jack client application AmbDec
[Adriaensen, 2005] is often used.
Bruce Wiggins offers his WigWare3 plug-ins

in VST format for Windows and MacOS X.
These processors include 2D and 3D encoders
until 3rd order as well as 1st order decoders for
several fixed loudspeaker arrangements.
Daniel Courville’s4 Audio Unit (Mac OS X

1Digital Audio Workstation
2http://kokkinizita.linuxaudio.org
3http://www.brucewiggins.co.uk
4http://www.radio.uqam.ca/ambisonic/

only) plug-in suite offers 3D encoders for 1st and
2nd order as well as 2D encoders for 5th order.

For the plug-ins created in this work,
the C++ cross-platform programming library
JUCE5 [Storer, 2012] has been used to develop
audio plug-ins compatible to most DAWs on
Linux, Mac OS X and Windows. JUCE is be-
ing developed and maintained by Julian Storer,
who used it as the base of the DAW Track-
tion. JUCE is released under the GNU Public
Licence. A commercial license may be acquired
for closed source projects. It is possible to build
JUCE audio processors as LADSPA, VST, AU,
RTAS and AAX plug-ins or as Jack standalone
applications. LV2 (LADSPA version 2) support
currently has to be added manually from the
separate project DISTRHO6 [Coelho and Ro-
drigues, 2012].

Ambisonics suffers from different existing
standards concerning channel order and normal-
ization. To overcome this problem, a conver-
sion tool is included in the plug-in suite. En-
coders, rotators and decoders from the authors
suite are designed for the ACN channel order
and SN3D normalization, proposed by [Nach-
bar et al., 2011]. Conversion between standards
of the input and/or output format can be done
by the conversion plug-in.

Apart from platform compatibility, some con-
siderations about usability did result in features
of the user interface, not available in other sur-
round panning plug-ins. Continuously rotat-
ing a sound source results in a discontinuity of
the angular representation between −180◦ and
+180◦. This jump is also reflected when draw-
ing automation curves resulting in a mismatch
between the visual representation and auditory
perceived movement of a sound source. A solu-
tion allowing to define absolute starting points
and angular velocities for relative movements is

5http://www.rawmaterialsoftware.com
6http://distrho.sourceforge.net

49

proposed.
For headphone monitoring several binaural

decoders have been implemented simulating the
Ambisonics half sphere of the medium sized
IEM Cube with 24 speakers and the concert
hall Mumuth7 with 29 speakers in a elliptical
stretched half sphere.
For visualization and external control pur-

poses, a bidirectional Open Sound Control
(OSC) communication layer has been imple-
mented in the encoder plug-in. An external pro-
gram is able to display the current position and
audio level of every track in the DAW. The visu-
alization program may also take control over the
sources. This can be very useful in performance
situations while having a multitrack playback
coming from the DAW and a central display to
control the position of the individual tracks.
Currently no audio plug-in format can handle

dynamic input/output channel counts. There-
fore all plug-ins may be compiled for fixed Am-
bisonics orders.

Rotation Decoder
EncoderMono sound

source

Head Tracking

Loudspeaker

configuration

L L N

Loudspeaker

signals

Independent from Loudspeaker configuration

Encoder

azimuth,

elevation,

size

Mono sound

source

M… Ambisonics Order
L… Number of Ambisonics Channels
N… Number of Loudspeakers

Ambisonics

microphone
MicEnc

Binaural
filter

Headphone

signals

Loudspeaker-

head

impulse responses

left

right

Ambisonics

B-Format Converter

calibration

channel order/scaling

Converter
L' alternative

output

format

Figure 1: Ambisonics production and playback
chain

2 Encoder

The encoder plug-in distributes a mono source
signal into Ambisonics channels (derived from
spherical harmonic functions), according to az-
imuth and elevation settings, representing the
coordinates on a spherical surface. An addi-
tional parameter called size [0, 1] may be used
to adjust the spatial directivity. Adjusting the
size parameter from zero towards one results in
a scaling of the higher order components. For
a size setting of 1, all Ambisonics channels will
be zero except the 0th order (also known as W
channel), resulting in an equally distributed sig-
nal over all loudspeakers.

7http://www.kug.ac.at/en/
studies-further-education/studies/
infrastructure/the-mumuth.html

2.1 Automation parameters

Most current DAWs are limited to represent au-
tomation parameters between 0.0 and 1.0 along
a time line. Panning plug-ins usually map this
range for azimuth and elevation between −180◦

and +180◦. A full circle rotation results in
a mismatch between the visual representation
(Fig. 2) of the automation curve and the per-
ceived continuous rotation of the source. Ad-
ditionally the plug-in host may interpolate be-
tween a jump from 1.0 to 0.0, resulting in a very
fast audible jump.

Figure 2: Automation curve for full circle rota-
tion using Ardour and AMB plug-ins

To overcome this problem, automation pa-
rameters (Fig. 3) have been added for setting
start points (SetAzimuth, SetAzimuthRel) and
angular velocities (tgl-rot-azimuth). The maxi-
mum speed of the angular velocity may be ad-
justed between 0 and 360deg/sec by an addi-
tional parameter (max-speed). This guarantees
a wide range of adjustment and at the same time
accuracy for the rotation speed.

Figure 3: Encoder automation parameters

2.2 Remote control and visualization

Keeping track of all sound source positions
within a DAW may be a difficult task for the
mixing engineer. To allow a better overview

50

and control of the spatial scenery, a coopera-
tive visualization and control unit has been im-
plemented. All encoder plug-ins are equipped
with a bidirectional OSC layer (Fig. 4), send-
ing and receiving control and status parameters.
Currently a functional prototype has been im-
plemented in Pd/GEM (Fig. 5) displaying all
tracks (encoders) on a sphere, including visual-
ization of their audio levels. Currently the audio
level is represented by the variable length of the
cylinder representing a source signal. This con-
cept may be extended to a more sophisticated
implementation.

Encoder

Encoder

Encoder

central
Visualization

and
Remote Control

azimuth, elevation,

size, audio level

...

individual OSC/UDP connection from visualization to encoders

azimuth, elevation, size

digital audio workstation

OSC/UDP

Figure 4: Encoder OSC communication with re-
mote visualization and control

Figure 5: Visualization and remote control of
several encoders with Pd/GEM

3 Rotator

The rotation plug-in (Fig. 6) may be used to
manipulate the orientation in the Ambisonics
domain, as described in [Musil et al., 2003].
An optimized way to calculate rotation matri-
ces can be found in [Rumori, 2009]. Therefore
yaw, pitch and roll can be adjusted by ±180◦.
This is very useful for the incorporation of head

movements during binaural playback. The ro-
tation plug-in listens to an adjustable UDP port
for incoming OSC messages. This allows to by-
pass host automation and controlling the rota-
tion directly from the head tracking software
(Sec. 4.1).

Figure 6: Ambisonics Rotator

4 Binaural decoder

The binaural decoder computes virtual loud-
speaker feeds as a linear combination of the Am-
bisonics signals according to a given decoding
matrix. These virtual loudspeaker signals are
convolved with their individual stereo impulse
responses, modeling the transfer path from the
loudspeaker position to the left and right ear of
the listener (Fig. 1).

4.1 Head tracking

Head tracking is a significant feature for virtual
reality scenes and headphone playback. Small
head movements change the relative position of
a sound source in aspect to the listeners ears,
making localization more easy and removing
ambiguity.

The KinectTM sensor as add-on for the gam-
ing console XBox 360TM by Microsoft offers a
low budget depth sensor. [Fanelli et al., 2011]
developed a software to gather head orienta-
tion angles and the head position relative to the
Kinect sensor (Fig. 7). The author extended
this head pose estimation software about send-
ing OSC data to the Ambisonics rotator plug-
in8. The Ambisonics sound field has to be ro-
tated in opposite direction to keep the sound
source positions fixed and suppress the rotation
with the listeners head.

8http://github.com/kronihias/
head-pose-estimation

51

Figure 7: Head pose estimation

4.2 Matrices and virtual venues

To allow monitoring in various virtual scenes,
different decoding matrices and sets of
loudspeaker-to-head impulse responses were
used.

4.2.1 Reduced decoder (3rd order 3D)

This binaural decoder uses specific symmetry
relations between the HRTFs and decoder ma-
trices to achieve a reduced set of head releated
impulse responses, directly applicable on the
Ambisonics Signals without computing virtual
loudspeaker signals[Musil et al., 2007]. This ap-
proach reduces the numbers of convolutions and
therefore the CPU load. The algorithm is im-
plemented in the iem bin ambi library for Pure
data.

4.2.2 IEM Cube and Mumuth decoder
(4th and 5th order 3D)

The 120m2 IEM Cube (Fig. 8) serves as the
main lab of the Institute of Electronic Music
and Acoustics Graz. 24 Tannoy coaxial speak-
ers are mounted in a hemispherical arrangement
consisting of three rings (12 - 8 - 4). During the
years of Ambisonics research at the IEM, sev-
eral different approaches for finding an optimal
decoder matrix have been taken [Zotter et al.,
2012; Sontacchi, 2003]. The IEM Cube binaural
decoder implemented in the authors Ambison-
ics plug-in allows to switch between the different
available decoder matrices.
The Mumuth (Fig. 9) was opened in 2009

as multi purpose venue for the University of
Music and Performing Arts Graz. It houses
the 600m2 György Ligeti concert hall. The 33
Kling&Freitag CA 1001 SP loudspeakers (29 are
used for the half sphere, 4 more speakers are lo-
cated in the corners) may be arranged by a spe-
cial motor controlled mounting, resulting in a

versatile loudspeaker setup that can be changed
within a minute. The Mumuth binaural decoder
uses the Ambisonics decoder matrix and loud-
speaker setting for the IEM Demosuite [Plessas
and Zmölnig, 2012] by Thomas Musil.

The impulse responses of the IEM Cube
and the Mumuth were recorded by Martin Ru-
mori and David Pirrò as part of the artistic
research project The Choreography of Sound
(CoS) [Eckel et al., 2012].

Figure 8: IEM Cube

Figure 9: Mumuth

5 Ambisonics converter

Since the beginning of Ambisonics in the 1970s
and the extension to Higher Order Ambisonics,
several different approaches for arranging and
normalizing the spherical harmonic components
have been taken. A good summary may be
found in [Nachbar et al., 2011] and [Chapman et
al., 2009]. All plug-ins in this suite are operating
with the ACN channel order and SN3D normal-
ization, proposed in [Nachbar et al., 2011]. The
Ambisonics converter plug-in allows to inter-
change the normalization schemes SN3D, N3D,
Furse-Malham and the channel order schemes
ACN, SID and Furse-Malham. Thus, it is pos-
sible to incorporate various standards into the
production chain.

52

Figure 10: Converter plug-in

6 Summary

This paper presented an Ambisonics proces-
sor suite, usable in production or live perfor-
mance. The JUCE framework proved to be a
stable solution for developing cross platform au-
dio plug-ins and standalone applications. By
the time of writing this paper, no Mixed-Order
systems have been implemented. Mixed-Order
Ambisonics uses different orders for the horizon-
tal and the vertical part of the sound field. It
is planned to incorporate this into the converter
plug-in.

7 Acknowledgements

The author would like to thankWinfried Ritsch,
who advised the roots of this work as bachelor
thesis. Many people from IEM supported this
work by contributing with their valuable expe-
rience in talks, software and decoder matrices.
Namely Peter Plessas, IOhannes Zmölnig, Franz
Zotter and Thomas Musil. Special thanks also
to Martin Rumori for providing the author with
the impulse responses of the Cube and Mumuth.
Last but not least thanks to Fons Adriaensen for
his great work on Ambisonics software.

References

Fons Adriaensen. 2005. AmbDec - Jack Am-
bisonics Decoder for Linux und Mac OS X.

Michael Chapman, Winfried Ritsch,
Thomas Musil, IOhannes Zmölnig, Hannes
Pomberger, Franz Zotter, and Alois Son-
tacchi. 2009. A Standard for Interchange
of Ambisonic Signal Sets. Ambisonics
Symposium 2009, Graz.

Filipe Coelho and Antonio Rodrigues. 2012.
DISTRHO, Cross-Platform Audio Plugins.

Gerhard Eckel, Martin Rumori, David Pirrò,
and Ramón González-Arroyo. 2012. A Frame-

work for the Choreography of Sound. Pro-
ceedings of the International Computermusic
Conference 2012, Ljubljana.

G. Fanelli, T. Weise, J. Gall, and L. Van
Gool. 2011. Real Time Head Pose Estima-
tion from Consumer Depth Cameras. In 33rd
Annual Symposium of the German Associa-
tion for Pattern Recognition (DAGM’11).

Thomas Musil, Johannes Zmölnig, Markus
Noisternig, Alois Sontacchi, and Robert
Höldrich. 2003. AMBISONIC 3D-
Beschallungssystem 5.Ordnung für PD.
IEM Report 15/03.

Thomas Musil, Alois Sontacchi, Markus
Noisternig, and Robert Höldrich. 2007.
Binaural-Ambisonic 4.Ordnung 3D-
Raumsimulationsmodell mit ortsvarianten
Quellen und Hörerin bzw. Hörer für PD.
IEM Report 38/07.

Christian Nachbar, Franz Zotter, Etienne
Deleflie, and Alois Sontacchi. 2011. AMBIX -
A suggested Ambisonics Format. Ambisonics
Symposium 2011, Lexington.

Peter Plessas and IOhannes Zmölnig. 2012.
The IEM Demosuite, a large-scale jukebox for
the MUMUTH concert venue. Proceedings of
the Linux Audio Conference 2011.

Martin Rumori. 2009. Girafe a versatile
ambisonics and binaural system. Ambisonics
Symposium 2009, Graz.

Alois Sontacchi. 2003. Dreidimensionale
Schallfeldreproduktion für Lautsprecher- und
Kopfhöreranwendungen. Ph.D. thesis, Graz,
Austria.

Julian Storer. 2012. JUCE (Jules’ Utility
Class Extensions).

F. Zotter, H. Pomberger, and M. Noisternig.
2012. Energy-Preserving Ambisonic Decod-
ing. Acta Acustica united with Acustica,
98(1):37–47.

53

54

The Rationale behind Rationale:
Designing a Sequencer for Unlimited Just Intonation

Chuckk HUBBARD

badmuthahubbard.com

Bucharest, Romania

chuckk.hubbard@gmail.com

Abstract

This article presents some of the considerations that
went into determining how the Rationale Just
Intonation sequencer should work. Various special
problems that came about because of the number
and nature of usable tones are discussed, as well as
reasons for eschewing other existing notation
systems. Programming specifics are ignored in
favor of questions of interface design.

Keywords

Rationale, Just Intonation, xenharmonic, microtonal,
composition

1 Introduction

Among the many things made vastly simpler by
computers is the generation of tones of very precise
arbitrary frequency. That should mean that
composing in xenharmonic1 tunings, i.e., unusual
tunings, is now a piece of cake. It is, if the
composer knows exactly what tones should be
sounded and when, which is to say, if the piece has
already been composed, away from the computer.
Otherwise, there are text-based scores to edit
manually and then process (e.g. traditional Csound
score format, Scala's sequence file format2), or there
are sets of predetermined possible tones that can be
chosen from (e.g. most retunable soft or hard synths
triggered by MIDI). Most existing options use one
of these two methods to bridge the gap between the
composer's creativity and the computer's power, i.e.,
to input notes.

1 While the term 'microtonal' would be more
immediately clear to many people, it has become
irksome to most enthusiasts, since much of the music
composed in xenharmonic tunings doesn't use
microtones (smaller than semitones) at all. They
sometimes occur in Just Intonation, but the music can
hardly be defined by this element; the large uncommon
intervals are just as important.

2 Scala's sequence file format: http://www.huygens-
fokker.org/scala/seq_format.html

There's nothing wrong with composing using
text files; it can and does produce brilliant results.
Still, it can only be a good thing for there to be
more options, and for many people, seeing and
dragging notes is more intuitive. As for sets of
predetermined possible tones, there is theoretically
no limit to the number of tones that could occur in
Just Intonation, but the relationships between them
are very important, so having too many of them
available at once is almost as bewildering as
having too few. You could set up a software
synthesizer with thousands of tones per octave, but
this would make it harder, not easier, to intuitively
choose the right tone.

Just Intonation is a method of musical tuning
whereby all frequencies have whole-number ratios3

with all of the others. The simplest such ratio,
which is the only one unchanged in the majority of
tuning systems, is a ratio of 2 to 1, commonly
called an octave. A tone with a frequency of 300
Hertz will sound an octave higher than a tone with
150 Hertz. A ratio of 3:2 is what we call a perfect
fifth, e.g. a tone of 300 Hertz compared to a tone
of 200. A ratio of 5:4 is a major third, but in 12-
tone equal temperament, this interval is already
noticeably detuned. Three tones in the ratio 4:5:6
will sound as a major triad, e.g., C E G.

Simple music using these tunings will probably
not sound especially groundbreaking to most
Western listeners. We have a strong innate
tendency to sing simple harmonies and melodies in
Just Intonation, even when struggling to sing in
tempered tunings. But, a few hundred years ago,
some composers began to crave more harmonic
freedom to change keys quickly, without going out
of tune, and using a small number of total notes-
around the time of the advent of the keyboard.
This last requirement excluded Just Intonation.
Three successive major thirds in Just Intonation
would go from 5:4 (C-E) to (5x5):(4x4) (C-G#) to

3 I.e., the ratio of any positive integer to any other
positive integer.

55

(5x5x5):(4x4x4) (C-??4), that is, 125:64. An octave
is 2:1, or 128:64, and no one wants to build
accordions with separate keys for 128:64 and
125:64 and all of the possibilities in between. It was
simpler to alter that 5:4 ratio so that applying it
three times would give exactly an octave. By
adjusting some of the intervals, the number of
possibilities was deliberately limited for practicality.

Rationale5 is a flexible sequencer for composing
in extended Just Intonation, first released in 2008. It
is free, licensed under GPL v.3, and depends on the
Python interpreter, the Python Tkinter toolkit
(included by default with the Python interpreter),
and the Csound API for Python. It is theoretically
cross-platform, but has only been tested extensively
on Linux. The idea with Rationale was to have a
graphical score on which notes can be placed that
have certain frequency ratios to other notes, but
that, at any time, the composer may wish to
modulate, permanently or temporarily, or simply to
see the relations between any arbitrary set of notes,
not always including the starting tonic. The ratios of
3:2, 5:4, 6:5, and 7:4 are all options in most JI
systems, but if one wants to make that 7:4 into the
tonic of a new harmony, it may be necessary to
include ratios like 49:32 (7:4 x 7:8), 63:32 (7:4 x
9:8), and so on. With experience, the meanings of
those ratios become more obvious too, but there are
no limits; some composers may be fine with using a
ratio like (7^5):(2^5*3*5^3), i.e., 16807:12000, but
again, more options is a good thing, and some
composers will prefer something more intuitive.

Ben Johnston's system of accidentals, among
others, is one way of making this more intuitive. No
written ratios are needed. He starts with a diatonic
C major scale and uses various symbols to notate

specific adjustments. He uses the standard ♭ and ♯

familiar to most musicians, as well as + and -, ↑ and
↓, and small superscript numbers 7, 13, 17, and
further prime numbers with their upside-down
counterparts, to specify these adjustments next to
standard notes on a staff.6 He has composed
extraordinary music this way, as have many others,
but to understand the scores takes serious study;
rows of accidentals may be placed in front of any
one note to show how it is related to other notes
with almost as many accidentals. It is perfectly
usable, but I was looking for something else.

Harry Partch wrote that, “It is quite conceivable
that an instrument could be built that would be

4 This would be 41 cents below C, or 41/100ths of a
semitone.

5 Rationale : rationale.sourceforge.net

6 http://en.wikipedia.org/wiki/Just_intonation#Staff_n
otation

capable of an automatic change of pitch
throughout its entire range, up or down by any
reasonable interval, and if Just Intonation can
surmount the many hazards and problems ... the
problem of transposition may be considered minor,
one for which a solution will inevitably be
found.”[1] He didn't seem to devote much energy
to inventing such a retunable instrument,
preferring tuned reeds, fixed-length strings and
stuck percussion. If I had lived at a time when
computers didn't exist or were very expensive, I
probably wouldn't have tried to create such an
instrument either. But that comment of his seems
very compelling at a time when GUI programming
is as advanced as it is today.

My decision to create a Just Intonation
sequencer with automatic tonality changes,
without accidentals and with an undetermined
number of tones led me to a series of unusual
decisions during the creation of Rationale.

2 Automatic tonality changes

By “automatic tonality changes”, I actually
mean redrawing existing notes with different
reference points, but the same frequencies. The
notes on the screen do not move, but the ratios
change and the horizontal reference lines slide to
new positions. In traditional theory, this could be
compared to transposing by, perhaps, a diminished
second: same sound, different note names. This is
useful for several reasons. A composer may want
to modulate (multiply) repeatedly during a piece,
and, as mentioned, if you modulate e.g. by a major
third three times, you arrive at 125:128, not 2:1.
With Rationale, I wanted to be able to always be
looking at small-number intervals. This
“modulation” could also be very temporary, just
for some short phrase to be repeated at different
frequencies before returning to a broader theme-
something that is a piece of cake in traditional
notation.

There is a kind of secondary mouse cursor used
in Rationale for placing notes. As the mouse
moves, it cycles through a set of ratios, and a click
places a note at the appropriate height. In the

Figure 1: Before, during and after a tonality change.

The two forms on the left in each frame are entered

notes and the one on the right is the hover.

56

documentation, this cursor is referred to as the
hover. The hover has another important purpose,
which is to select the ratio that will become 1:1 (the
tonic, representing a 1:1 frequency ratio with the
reference frequency) after a tonality change. The
tonality change is accomplished by hitting 'T' on the
keyboard when the hover is at the desired ratio. All
existing notes' ratios change and the hover's ratio
becomes 1:1, wherever it is. Afterwards, the hover
can be moved to a new ratio and another tonality
change performed, again and again. This idea was
evidently subconsciously inspired by exposure to
the concept of movable do.7 You can always return
to the original 1:1, which is by default middle C.

2.1 Tonality regions

The problem that arises when jumping arbitrarily
from do to do is that the earlier notes entered with
simple ratios often show more and more complex
ratios as do changes. The computer doesn't care,
but the composer should be able to see the simple
relationships in different “keys” easily; not all notes
need to change. The solution was tonality regions.
Holding down 'R' and typing a number will switch
the hover to that region; future tonality changes will
only affect notes in that region. Every note shows its
region next to a small letter 'r'. This region symbol
can be assigned different colors and shades to be
more visibly distinct.

3 Decisions influenced by the number of

tones

Many decisions were influenced by the need to
differentiate between a large number of tones within
a small space. As mentioned, others have added
more variations of accidentals to traditional
notation. In turning away from accidentals,

7 Where, upon modulating to a new key, the tonic of
the new key is treated as do in solfeggio, rather than
saying, for instance, that you have modulated to re.

Rationale cannot fit an octave into one inch, with
five lines and four spaces. Even with the ratio for
each note displayed by the note, the resolution of
the screen would force some ratios to be skipped
while moving the hover.

3.1 Universal staff

It is extremely unwieldy to show each
instrument on a separate staff when each
instrument requires a large amount of screen
space. The concept of a staff is thus almost
completely absent from Rationale. Horizontal
guide lines are present but are all one octave apart.
There is one extra horizontal guideline that always
remains at middle C while the rest move according
to the current position of 1:1. All of the
instruments are represented in the same area and
frequency is vertically absolute, i.e., a vertically
higher note always has a higher frequency
(although what that frequency actually means
depends on the design of the instrument). In very
simple songs, this causes no problems, but in more
involved compositions, notes from different
instruments are hopelessly mixed around each
other, even superimposed over each other. The
benefits of a universal staff are that one can see
everything that is happening and it is really quite
intuitive; the instruments are not isolated from
each other. And, of course, there is room to
visually differentiate between hundreds of possible
frequencies. I didn't invent the idea; some of
Stockhausen's famous scores, e.g., represent sound
the same way, albeit without printed frequency
ratios. Rationale has several features intended to
resolve various problems presented by this
universal score.

3.1.1 Shortcut for switching instruments

In typical sequencers, the instrument being
entered depends on which staff the mouse
approaches. That's impossible with only one staff,
so the next most efficient way is to switch
instruments with a keyboard shortcut. That
shortcut is to hold Shift while typing a number.
Rationale can easily provide over 1,000
instruments.

3.1.2 Different colors for instruments

The most obvious need with a universal staff is
simply to see which instrument a note belongs to.
Each instrument starts medium gray, and colors
can be assigned to them arbitrarily. Typically,
various instruments are all assigned sharply
contrasting colors, but it is up to the composer.
The structure of a piece can be easily visible with
such a setup. So instead of different instruments'

Figure 2: Three different regions with the region

dialog. The entered notes sound exactly the same.

57

notes looking the same but being in different places,
they are all in the same place and look different.

3.1.3 Independent horizontal and vertical zoom

Rationale also uses proportional notation,
meaning the duration of a note is represented by its
physical length, but this was more a matter of
simplicity than a major decision. Still, with notes
arbitrarily close to each other, it was necessary to
be able to manually change the vertical scale
without affecting the horizontal, and vice versa.
Horizontal zoom is changed with -/+, zooming in
and out respectively, and with Backspace, which
resets the zoom to default. Vertical zoom is
controlled the same way but while holding the Shift
key. Such separate zoom control is surprisingly
useful. It amounts to more control over how you see
your music.

3.1.4 Mutually exclusive horizontal and

vertical note dragging

Rationale snaps notes to a customizable rhythmic
grid, but the vertical grid, representing frequency, is
normally much finer: at times, a movement of one
pixel changes a note's ratio.8 It would be easy to
accidentally change frequency when trying to
change time. For this reason, clicking on a note in
EDIT mode only allows it to be dragged vertically.
Holding the Shift key and dragging the note only

8 The horizontal rhythmic grid is, as mentioned,
customizable, and quantization could be set to 1/9999 of
a quarter note, for example, so it could be made finer
than the vertical frequency grid if desired.

moves it horizontally. This allows broad mouse
gestures for moving notes drastically without
changing their ratios, or without changing their
times. Large groups of notes can be moved this
way.

3.1.5 Hiding / showing specific instruments

Sometimes zooming in isn't enough to make all
the notes clearly visible. It wasn't until I had
worked with a fully functional Rationale for a
while that I realized that two or more instruments
might have to play the same frequency at the same
time, and that, with the then-current incarnation of
the program, which instrument's note ended up
visible (and editable) was arbitrary. Being able to
instantly hide all notes from any instrument
seemed the best solution available. This is
achieved by holding the Alt key and typing the
number of the instrument. If an instrument is
hidden when selecting a broad area, its notes are
not selected. However, if previously selected notes
are hidden, they remain selected and are still
affected by any operations performed while they
are hidden. The Alt key + the instrument number
will show that instrument again, and Alt + 'S' will
show all instruments. The only other way I could
think of to manage superimposed notes of different
instruments would have been with a three-
dimensional score, which is beyond my
programming abilities.

3.2 Notebanks

It was mentioned in the introduction that
Rationale is an alternative to using accidentals,
but also an alternative to finite, predetermined sets
of tones. Part of the escape from predetermined
sets is in the arbitrary tonality changes, and part of
it is in notebanks. The default set of frequency
ratios through which the hover will cycle has 57
possibilities in an octave, but this can be
customized easily, and separate banks of ratios
can also be remembered and switched between.
This also allows, for instance, having higher
prime-limit ratios set aside for when needed, or
simply dividing a set of ratios into multiple smaller
sets. For example, One's default notebank could
include ratios like 1:1, 9:8, 5:4, 3:2 and 7:4, and a
separate notebank could have higher harmonics
like 17:16, 19:16 and so on. This is one way to
have less notes available at any moment, allowing
one to zoom out more vertically. Regardless, the
idea is that there is no predetermined set of
possible tones. The only limit is that the ratios
must use only positive integers.

Holding the Control key and typing 'B' will open
the notebank dialog. From there, notes can be

Figure 3: The universal staff, zoomed out both

horizontally and vertically to show structure

58

traded in and out of the chosen notebank, and more
notebanks can be created. It is possible to specify
here arbitrary whole-number ratios. When finished,
it is possible to switch between active notebanks by
holding 'B' and typing a number. The hover will
then cycle through the ratios listed in the active
notebank until it changes again.

Rationale maintains a list of mouse positions for
the ratios in the notebank. If several ratios are very
close to each other, Rationale will try to make them
each fit somehow, in the sense that the mouse
should not skip any of them as long as there are as
many pixels within an octave as there are ratios in
the active notebank. If you have 40 pixels in an
octave and 20 ratios, but all very close to each
other, the hover shows them farther apart than they
really are so they can all be accessed, but entered
notes will appear at the correct height.

4 Output options

Rationale has no ambitions of becoming an audio
processing tool. The Csound engine is used for all
audio and all timing. What to do with the note data
once it is composed is basically left to the user,
although it can be sent out in several forms.

The output dialog appears upon pressing 'O'. The
first tab displayed is for loading or typing a Csound
csd file. There is an option to automatically reload
this file every time playback starts, which creates
the possibility of looping a segment and editing the
csd file in a text editor in the meantime.9 A new tab
is created in this dialog every time a new instrument
is created. Each instrument's tab has the possibility
to add numerous outputs, which can be Csound

9 The mechanism of looping, like many others, is
fairly standard among sequencers, and so not addressed
in this paper.

instruments, Soundfont programs, or OSC
commands.10 Any time an instrument is called, it
will send messages to all outputs listed on its tab,
unless they are muted. It is possible to create
outputs for different combinations of Rationale
instruments to Csound instruments, and to
selectively mute them, in order to quickly switch
parts between instruments.

Most of the elements of these outputs are
standard for sequencers, with one exception:
Csound and OSC outputs have message boxes to
construct the messages to be sent with each note.
Csound outputs by default send the time and
duration of the note first, and after that any aspect
of the note may be added in any order. Things like
the instrument number, numerator, denominator,
or region can be sent with each note. There may
also be arbitrary fields, entered as a1, a2, a3, etc.
These arbitrary fields can be assigned per note by
right-clicking on the score. This allows fine
control of Csound's many complex forms of
synthesis. Granular synthesis, for example, needs
much more information than the time, length,
frequency and loudness of each note. The ability to
draw automations for these values is a goal, but a
distant one. OSC outputs have similar custom
message-building, while Soundfont output has the
usual Soundfont options.

5 Conclusion

One driving goal behind Rationale was to make
the composition process in extended Just

10 Unfortunately, MIDI output has proven too
complicated so far. Many composers have asked about
it, and it would open up many possibilities for sound
production, but so far it has not materialized.

Figure 5: A Csound output, a Soundfont output and

an OSC output.

Figure 4: The notebank dialog. If an arbitrary ratio

is typed, there is an option to add just that ratio and

an option to add that ratio and its inverse. All ratios

will be adjusted to be between 1:1 and 2:1

59

Intonation as intuitive as possible, in the hopes that
more composers, who may not have initially been
curious, would be drawn to experiment with the
tuning system. The kinds of gestures they use in
their other works or on their own instruments should
be relatively simple to achieve in Rationale. This
paper should have made the decisions involved in
creating that environment a little clearer.

Using Rationale involves many other features, but
most of them are more or less standard. This paper
addresses mainly features that resulted specifically
from the demands of composing in unlimited Just
Intonation, namely the large number of tones and
the inclusion of all instruments on one staff.
Selecting notes, copy/paste, saving, undo/redo,
transport, meter and tempo changes, note loudness,
looping, audio options and the four basic modes
(ADD, EDIT, DELETE and SCRUB) are all
present but are not specific to this scope. They are
documented in the Rationale help file.

6 Acknowledgements

Many thanks to all of the Csound developers, and
in particular Victor Lazzarini, John ffitch, Oeyvind
Brandtsegg, Rory Walsh, Michael Gogins and
Steven Yi. All have explained things to me and/or
fixed things for me over the course of several years,
asking nothing in return. Thanks also go out to the
xenharmonic community, including Dr. John
Chalmers, Aaron Krister Johnson, Carl Lumma,
Toby Twining and many others.

I must also thank my wife Irina for her love and
support and for not throwing my computer in front
of a subway train while I was programming
Rationale.

References

[1] H. Partch. 1974. Genesis of a Music. Da
Capo Press, New York, New York.

60

Chino – a framework for scripted meta-applications

David ADLER
david.jo.adler@gmail.com

Abstract

Chino is presented, a framework for creating meta-
applications from Linux audio and Midi tools. It
provides command line options to create or open ses-
sions, a runtime user interface for adding, restarting
or removing applications and a hand-editable file for-
mat to which sessions are saved. Graphviz is used
to optionally display the layout of a session.

Chino itself is a Bash script that just provides
generic functionality, users can create presets to im-
plement what is desired for their use cases. Presets
are prototypes for sessions, multiple sessions can be
derived from a preset.

A preset is made up of a number of applications,
each defined as a program together with its usage.
For every application, the preset contains required
application files and a library file that, via variables
and functions, defines how the program is to be
started and interconnected. Defining applications
together with their connections results in dependen-
cies, which are tied via user-defined port-groups.

In this paper, we will explain the architecture of
Chino and take a look at some implications and lim-
itations of this session management model.

Keywords

Linux audio, Bash, session management

1 Introduction

Chino1 is yet another approach to session man-
agement for Linux audio. It is geared towards
applications using the Jack Audio Connection
Kit (Jack) for audio and either Jack or the Alsa
Sequencer for Midi.

The modularity of UNIX/Linux software is
proverbial and usually well received. In the
realm of Linux audio, however, this apprecia-
tion hat its limits, as manually restoring modu-
lar sessions quickly becomes prohibitively com-
plex. Consequently, users often complain about

1The application, online documentation and an ex-
ample preset are available from http://www.chino.
tuxfamily.org.

the lack of a comprehensive session management
system.2

Regardless of complaints, some progress
is taking place. Jack Session, the
LADCCA/LASH/LADISH lineage and the
Non Session Manager are currently coexisting3

and the number of applications supporting one
or more of them is steadily increasing.
Those session managers are capable of stor-

ing and restoring an arbitrary setup, as long as
the applications involved are supported in some
way. A Chino session, in contrast, is restricted
to a limited number of setups prepared by the
user via presets. No support for a protocol by
applications is required, any application capa-
ble of restoring a previous state by command
line options and/or file loading can be used.
Once a preset is prepared, usage is dead sim-

ple. No manual connection making is involved
and all files belonging to a session are automat-
ically placed in an ordered manner below one
base directory.
In section 2 we will go through some underly-

ing concepts, followed by a description in sec-
tion 3 of how they are implemented. Those
two sections together explain the architecture
of Chino; providing useful knowledge for creat-
ing custom presets. While we can create ses-
sions based on an existing preset without such
a level of understanding, restricting oneself in
that way neglects one of the main features of
Chino, which is customisability. In section 4,
eventually, we will take a look at some of the
implications and limitations of the presented de-
sign.

2In February 2013, Dave Phillips started a thread
on the Linux Audio Developer (LAD) mailing list with
the subject line “So what do you think sucks about
Linux audio?” that pretty much confirms existence
of those complaints. https://lists.linuxaudio.org/
mailarchive/lad/2013/2/5/196481

3Dave Phillips’ article “A brief survey of Linux audio
session managers” from January 2013 on LWN.net gives
a good overview. https://lwn.net/Articles/533594/

61

2 Concepts

This section covers a number of concepts un-
derlying the design of Chino, without going too
much into detail. Having these concepts in mind
will aid us in understanding the subsequent sec-
tion covering implementation.

2.1 Sessions

While Chino does manage sessions, the term
session management is somewhat misleading.
As stated in the introduction, Chino lacks the
ability to just save and restore any setup involv-
ing supported applications. Sessions in Chino
might be better described as “instances of a
meta-application” or as “patch files” to which
the meta-application saves its state.

2.2 Presets

A Preset defines the meta-application of which
the sessions are instances. Chino, the core
script, only provides generic functionality.
Whenever running a session, it needs to be
pointed to a preset. Figure 1 shows the rela-
tions between Chino, presets and sessions.

Chino

preset 1 preset 2

session A session B session C

the meta-application

"patch files" of the

meta-application

Figure 1: A preset—together with Chino—can
be viewed as a meta-application. Sessions de-
rived from that preset then are the “patch files”
saved by the meta-application.

It is up to the user to create one or more
presets in order to cover desired use cases, a de-
fault preset is provided as an example or start-
ing point.4

2.3 Applications

A preset defines a set of applications. An
application—in Chino—consists of three things:

1. the actual program used (like amSynth or
Pure Data);

4The default preset is documented on http://chino.
tuxfamily.org/preset.html.

2. application files belonging to the program
(patch files, configuration files and the like,
if any);

3. an application library, a text file in Bash
syntax defining how the program is to be
started and interconnected.

While the programs—of course—are installed to
the operating system, application files and ap-
plication libraries are part of the preset.
One program can serve as several appli-

cations. We could define two applications
amssynth and amsfilter, both using the pro-
gram AlsaModularSynth—in one case as a syn-
thesiser and in the other case as a filter.
Henceforth, we will use that distinction

between the terms program and application
throughout this document.

2.4 Methods

Applications are grouped into methods, cate-
gories for applications that can be handled in
similar ways. Methods are defined in method
libraries that are also part of the preset.
Two method types are hard-coded into Chino:

unique methods and channel methods (see fig-
ure 2).

unique

misc

...

channel

instr

effect

...

yosh

ams

...

reverb

...

ardour

seq24

...

hard-coded

(in Chino)

user-defined

(via preset)

method types methods applications

Figure 2: Method types, methods and applica-
tions.

• For unique methods, application names
are assigned to a consecutively filled array
of variable length. Entries must be unique,
thus the name.

62

• For channel methods, application names
are assigned to indices of a fixed-sized ar-
ray, where indices may be left empty. Ap-
plications need not occur uniquely within
a channel method. An obvious use case
(though not the only one possible) is us-
ing the index to connect an application to
a certain audio or Midi channel, thus the
name.

Introducing that extra layer of methods has
two main advantages. First, methods simplify
adding support for applications to a preset, as it
is often the method library that does most of the
work. Secondly, having channel methods allows
for some desirable flexibility in arrangement of
the connection graph.

2.5 Templates

In addition to pointing to a preset, we may op-
tionally point to a template session. Any ses-
sion derived from that same preset can serve as
a template. To illustrate this, figure 3 shows a
version of figure 1, modified to include a session
that points to a template.

Chino

preset 1 preset 2

session A

session B

session C

template preset

Figure 3: session B uses preset 1 as a preset
and session A as a template.

2.6 Inheritance. . .

2.6.1 . . . of application files

On running a session, missing application files
are copied from the template or preset, in that
order of precedence.

2.6.2 . . . of libraries

Libraries are sourced from the local session, the
template or the preset, in that order of prece-
dence.
Per default, application libraries will remain

with the preset. Unlike application files, they

will not get copied to the local session.
For custom application behavior on a per-

session base, an option exists to “localise” a li-
brary. For making a session self-contained, an
option exists to localise all used libraries. Self-
contained sessions point to themselves as a pre-
set.
Libraries local to the template, however,

will get localised automatically; to not disrupt
matching pairs of application files and applica-
tion libraries for future child sessions.

2.7 Session hierarchy

Since applications are defined together with
their connections, they may depend on other ap-
plications providing for certain ports to connect
to. This leads to a hierarchical session layout, a
dependency tree.
Ports provided by the sound card and Midi

hardware (those devices are made applications
as well) will usually form the root of the hier-
archy. More layers can then be added to form
a virtual studio to the user’s liking. A mixer
might for instance form the layer on top of
the hardware ports, instruments and effects can
then be connected to the mixer.
Applications do not depend on other appli-

cations, they rather depend on or provide for
user defined port-groups. A port-group is just
a name for a set of port-variables to which the
real Jack/Alsa port names are assigned.
That way, applications providing for the same

port-group can be exchanged without breaking
the session. We could define two applications
seq24 and nonseq both providing for a port-
group SEQ; then either can be used as a se-
quencer without making any further changes to
the session.
Just as applications, methods may also de-

pend on and and provide for port-groups. In
the context of dependencies, we will sometimes
use the term nodes when referring to anything
that can depend or provide, i.e. either methods
or applications.
Dependencies are handled separately for au-

dio and Midi, so the place of a node in the de-
pendency tree is defined by four lists of port-
groups: audio depends, Midi depends, audio
provides and Midi provides. Collectively, we
will refer to them as anchors. We can make de-
pends optional by prefixing them with a colon,
this just suppresses the warnings otherwise dis-
played for unsatisfied depends.
Figure 4 shows the way a node is represented

63

in the session graph (or dependency graph) that
Chino displays using the Graphviz software, fig-
ure 5 shows the graph of a small session.

<audio provides> <Midi provides>

<node ID>

<audio depends> <Midi depends>

Figure 4: Representation of a node and its an-
chors in the dependency graph. Solid lines rep-
resent audio dependencies, dashed lines repre-
sent Midi dependencies.

STEREO -

uqhw_stereo

- -

MIXER REC EFFBUS -

uqms_ardour

STEREO :CC

- CC

uqhw_nano

- -

SYNTH SYNTH

ch_synth

MIXER :REC :SEQ :MDR

- -

001-chsy_yoshimi

- -

- -

003-chsy_ams

- -

Figure 5: A session graph. Three unique
method applications are started: uqhw stereo
(a stereo sound card), uqhw nano (a Midi con-
troller) and uqms ardour. The channel method
ch synth has anchors, so it gets its own node
in the graph and its applications chsy yoshimi
and chsy ams drawn inside a cluster.

3 Implementation

Chino is written in the Bash scripting language.
This section goes into some detail on how it is
implemented.

3.1 Names

Rather strict rules exist regarding names of ses-
sions, methods, applications and port-groups.
The rules are ruthlessly enforced, as those
names are part of file paths, variables or func-
tions. Allowing special characters would just
not work and would be potentially harmful.

• Session names may only consist of letters,
numbers and underscores.

• port-group names may only consist of let-
ters and numbers. They must be unique
within each connection type (audio and
Midi).

• Method names may only consist of let-
ters and numbers. The first two charac-
ters of a method name must be unique
within each method type, those charac-
ters make up the method acronym (con-
sequently, method names must be at least
two characters long). Method IDs are the
method names prefixed with uq for unique
methods and ch for channel methods.

• Application names may only contain let-
ters and numbers, names must be unique
within their method. Application IDs
are the application names prefixed with
uq<method acronym> for unique meth-
ods and ch<method acronym> for channel
methods.

Given that nomenclature, all method IDs and
application IDs will be unique strings within the
set of all methods and applications.

3.2 The session directory tree

To facilitate automated copying of application
files on creating or expanding a session, we must
make sure the directories and files of a preset are
named according to some rules.5

When running a session, its directory tree will
automatically get filled and supplemented with
files from the preset or template. At that point,
thus, we don’t need to meticulously follow nam-
ing rules anymore—Chino does it for us.
The base directory of a preset or session holds

one subdirectory <application ID> for every
application. For presets, that is one for every
implemented application; for sessions, that is
one for every application that is or ever was part

5Naming rules are comprehensively covered in the
online documentation. http://chino.tuxfamily.org/
documentation.html#file

64

of the session (obsolete files do not get deleted
by Chino, as they might not be obsolete from
a user’s perspective). Those application subdi-
rectories hold the application files; applications
not needing files do not get such a directory.
The base directory of a session also holds the

session definition file <session name>.sdef to
which Chino saves the session.

3.3 Libraries

A libs directory, below the base directory of a
preset, contains all libraries.
A file libs/<session name>-listlib is the

“root-library” of a preset. It holds arrays of
allowed methods and applications and sets the
initial array sizes for channel methods.
Methods and applications listed in listlib

are each defined in their own library file, method
libraries or application libraries respectively.

3.3.1 Variables in libraries

Via variables, all libraries define anchors of the
node they represent.
Method libraries additionally have a variable

that allows to give them a custom option in the
rutime user interface. In the default preset, the
ch dssi method uses that feature to let users
split the configuration of ghostess into the the
parts belonging to the single DSSI plugins.
As shown in the example below, application

libraries additionally have variables defining a
number of properties: whether the application
comes with application files; whether a function
is required for adapting application files to their
new names after copying; what Midi system to
use and whether to disconnect autoconnected
ports.

FILE_uqms_seq24=’true’
MOVE_uqms_seq24=’’

APRO_uqms_seq24=’’
ADEP_uqms_seq24=’’
MPRO_uqms_seq24=’SEQ’
MDEP_uqms_seq24=’:KBD :CC’

MIDI_uqms_seq24=’alsa’
AUTO_uqms_seq24=’’

3.3.2 Functions in libraries

Via functions, methods and applications accom-
plish the rest of the work; like a solid-state Bash
session script ripped into pieces, those pieces
then being called on demand by Chino.
Method libraries must provide a number of

mandatory functions; requirements for applica-
tion libraries are largely determined by their
method.

If an application or a method has any anchors
defined, this triggers the requirement for addi-
tional functions to be present. Details on those
functions will follow in sections 3.6.3 and 3.6.4.

3.4 Steps

To illustrate what steps are about, it is useful
to picture the “lifecycle” of an application (not
in terms of code development but in terms of
running the application).
When manually running an application, the

single steps to be accomplished will be some-
thing along the line of:

• starting the program;

• establishing audio connections;

• establishing Midi connections;

• making music (the “tweak-and-save loop”);

• quitting the program.

The attempt to adapt those steps to match the
requirements of Chino led to the following list
of steps:

• assign for assigning an application to an
array and sourcing application libraries;

• check for checking whether an application
file is present, if applicable;

• list for displaying a summary to the user;

• copy for copying and renaming the appli-
cation file if the above check was negative;

• start for starting the program, includes
assignment of port-variables;

• acn for establishing audio connections us-
ing the assigned port-variables;

• mcn for establishing midi connections using
the assigned port-variables;

• the “tweak-and-save loop”(not a step);

• unassign for unassigning and killing an ap-
plication when removed using the runtime
user interface, or kill for killing an appli-
cation on quitting the session.

For each of those steps, a method li-
brary must provide a so-called step function
s <method ID> <step name>(). Chino simply
calls the appropriate step function from the
method library whenever a step needs to be
done for one of the applications belonging to
that method.

65

3.5 Tasks

A task is just a series of steps that accomplishes
something useful.
Tasks may be vertical, calling a number of

steps for one application, e.g. for adding an ap-
plication to a session or for restarting an appli-
cation (see table 1).

step a1 a2 a3 a4

assign s2

check s3

list s4

copy s5

start s6

acn s7

mcn s8

unassign s1

kill

Table 1: Illustration of a vertical task. An ap-
plication a3 is restarted in a session consisting
of applications a1 to a4. The task runs steps s1
to s8.

Tasks may be horizontal, calling one step for
all applications, e.g. for re-establishing all audio
connections (see table 2).

step a1 a2 a3 a4

assign

check

list

copy

start

acn s1 s2 s3 s4

mcn

unassign

kill

Table 2: Illustration of a horizontal task. Au-
dio connections are re-established for all appli-
cations a1 to a4. The task runs steps s1 to s4.

Tasks may be both horizontal and vertical,
e.g. for opening a session (see table 3).
Tasks are part of Chino, so users won’t be

bothered with them. The appropriate tasks get
called whenever a session is opened or closed
or when applications are added, restarted or re-
moved.

3.6 Helper functions

Helper functions, prefixed with h , exist for ev-
ery step except unassign. Helper functions are
never called by Chino itself, they are just tools

step a1 a2 a3 a4

assign s1 s2 s3 s4

check s5 s6 s7 s8

list s9 s10 s11 s12

copy s13 s14 s15 s16

start s17 s18 s19 s20

acn s21 s22 s23 s24

mcn s25 s26 s27 s28

unassign

kill

Table 3: Illustration of a task that is both hori-
zontal and vertical. A session consisting of four
applications a1 - a4 is opened. The task runs
steps s1 to s28.

available to accomplish steps in standardised
ways; to be called from the step functions in-
side the method libraries.
The design of Chino attempts to find a rea-

sonable balance between being as generic as pos-
sible and making implementation of presets as
simple as possible. The combination of methods
and helper functions serves that goal.
In most cases, using helper functions is desir-

able, resulting in a method doing barely more
than calling the appropriate helper functions
with appropriate arguments inside its step func-
tions, as seen in the following example.

s_ch_synth_copy()
{

declare -ri chan=$1
h_copy ch_synth $chan

}

Nevertheless, it is also desirable to have the
freedom of not using helper functions or using
them in non-standard ways, to adapt to non-
standard use cases. Three of the methods imple-
mented in the default preset are non-standard
in that sense:

• the unique method hw, for hardware de-
vices, neither using h copy nor h start()
as those are not applicable to hardware;

• the channel method dssi, which uses one
instance of ghostess to harbour all DSSI
plugins assigned as applications to its chan-
nels;

• the channel method senv (from synthesis
environments) for instruments capable of
multi-channel audio and Midi, in which
the program is started just once for all in-
stances of the same application.

66

A few helper functions deserve a closer look,
since they implement essential functionality
within Chino.

3.6.1 h assign

h assign() sources libraries, thereby imple-
menting the inheritance rules for application li-
braries described in section 2.6.2.

3.6.2 h copy

h copy() copies application files, thereby im-
plementing the inheritance rules for application
files described in section 2.6.1. Application files
may be single files or directories containing files.

3.6.3 h start

h start() starts the program and calls the
appropriate assignment functions from the
method libraries and application libraries.
In the assignment functions, we assign real

Jack/Alsa port names to the appropriate port-
variables, a prerequisite for later having the con-
nection graph established.
For both anchor types—audio and Midi—

a respective assignment function is required
whenever the node has any anchors of that type.
To illustrate how h start() works, let us

look at a case where it gets called for an applica-
tion that has audio anchors, thereby triggering
the necessity for Jack audio port assignment.

1. a snapshot of audio ports is taken via
jack lsp;

2. an <application ID> start() function
gets called from the application library,
starting the program;

3. After the new ports have appeared, another
snapshot of audio ports is taken.

4. Two newline separated lists—of new Jack
audio input and output port names—are
retrieved from a diff of the two snapshots;

5. The appropriate assignment function from
the application library is called with the
two lists as arguments.

Accordingly, new Jack-Midi and Alsa-Midi
ports are retrieved and passed to the functions
for assignment.
In the case of programs with many ports—

like a mixer with inputs, outputs, sends and
returns—it is helpful to make up a suitable
naming scheme for ports within the application,
then using tools like grep or sed for variable as-
signment.

3.6.4 h acn and h mcn

h acn() and h mcn() call one connect-function
for each depend of the method and one for each
depend of the application.
In those connect-functions, we must establish

connections using the port-variables assigned
during the start step.
Two functions are available to aid in estab-

lishing connections:

• msaudioconnect() for mono/stereo-
agnostic audio connections.

• ajmidiconnect() for Alsa/Jack-agnostic
Midi connections. Whenever required,
Chino will launch a2jmidid to facilitate
translation.

Both functions require certain suffixes being
part of the port-variable names, documented in
detail in the comments inside the libraries of
the dummy preset that comes with Chino for
documentation purposes.
If a depend is unsatisfied—i.e. either not

provided or ambiguously provided—no attempt
will be made to establish connections.
Connect-functions are not exclusively called

during the acn and mcn steps. The tasks for
adding or restarting applications will, after hav-
ing completed all steps, call connect-functions
for all nodes depending on newly provided port-
groups. That way the connection graph is kept
sane regardless of application launch order.

3.7 User interface

The user interface consists of the configuration
file, command line options and arguments, the
hand-editable session definition file and a run-
time user interface.
To give an examplary session definition file,

here is what a file defining the session shown in
figure 5 would look like.

NAME=graph
PRESET=/path/to/preset:preset_name
UQMETHS=hw msc
uq_hw=stereo nano
uq_msc=ardour
CHMETHS=synth
ch_synth-CH-001=yoshimi
ch_synth-CH-003=ams

Via command line, new sessions can be cre-
ated and existing ones can be opened. For con-
venience, some more options exist: for writing
a prototype session definition file and for creat-
ing new libraries by using existing methods or
applications as a template.

67

Whenever running a session, its base direc-
tory must be the present working directory. For
creating a new session, at least a session name
must be given.

$ chino -n name_of_session

To open an existing session, we point Chino
to the session definition file.

$ chino -o name_of_session.sdef

Once a session is running, the runtime user
interface offers keybindings to add, remove or
restart applications, to re-establish connections,
to localise libraries, to check dependencies, to
display the dependency graph and to save the
session state. The latter will only save the cur-
rent setup, state of the involved applications
needs to be manually saved to the appropriate
application files.

4 Conclusions

4.1 Field of application

Due to said differences, Chino does not so much
compete with the other session managers. Being
a command line tool that requires some editing
of Bash scripts for customisation, it will cer-
tainly not fulfil the desire of many users for a
comprehensive session manager with a graphi-
cal user interface.
Chino just attempts to fill a niche in the

ecosystem of session managers by embracing
modularity and customisability. One of its
strong points is the use of presets and templates,
although other session managers also offer fea-
tures in that direction.
Not being able to store any setup clearly is a

disadvantage, though one that is somewhat mit-
igated once the following assumptions are made:

• Any one user will only use a small subset
of all possible setups;

• The user will use that subset repeatedly.

Admittedly, those assumptions do not apply
to someone in the phase of exploring the variety
of Linux audio applications. For someone who is
comfortable with Bash and knows which set of
applications to use for what purpose, however,
Chino might be a convenient tool.

4.2 Session portability

Sessions turn out to be somewhat portable.
Limitations that come to mind are:

1. the session must either be self-contained or
its preset must be present on the host sys-
tem;

2. we might run into incompatibility-issues
when versions of programs are mismatch-
ing;

3. hardware requirements of the sessions, like
audio channel counts, must be met;

4. depending on the programs used, matching
sample rates might be required;

5. hardware applications might need to be
adapted to Jack/Alsa port names of the
host system;

6. program behaviour might differ due to local
configuration files.

While points (1) to (4) are mere facts, point
(5) can be resolved by agreeing on a naming
scheme for port-groups the hardware applica-
tions provide for, host systems can then use
their own hardware applications.
Point (6) can be mitigated if applications

make use of as many command line flags as pos-
sible, to override local settings. If the program
allows to specify a configuration file on the com-
mand line, we can include one as part of the
application.

4.3 Known issues

Due to the fairly small user base (consisting of
just the author himself), this list is most likely
incomplete.

• Establishing connections takes rather long
for large sessions.

• It takes time and care to build a preset
(though once that is accomplished, Chino
doesn’t get in the way anymore).

• It’s a crude hack still in development.

Given the last point, Chino actually runs sur-
prisingly well.

5 Acknowledgements

Sincere thanks go to all Linux (audio) develop-
ers, collectively constituting the giant’s shoul-
ders upon which this little script resides.
Thanks go also to the entire Linux audio com-

munity. Especially the mailing lists have pro-
vided some highly educational reading matter
over the years.

68

Csound6: old code renewed

John FITCH and Victor LAZZARINI and Steven YI
Department of Music

National University of Ireland
Maynooth,
Ireland,

{jpff@codemist.co.uk, victor.lazzarini@nuim.ie, stevenyi@gmail.com}

Abstract

This paper describes the current status of the de-
velopment of a new major version of Csound. We
begin by introducing the software and its historical
significance. We then detail the important aspects
of Csound 5 and the motivation for version 6. Fol-
lowing, this we discuss the changes to the software
that have already been implemented. The final sec-
tion explores the expected developments prior to the
first release and the planned additions that will be
coming on stream in later updates of the system.

Keywords

Music Programming Languages, Sound Synthesis,
Audio Signal Processing

1 Introduction

In March 2012, a decision was taken to move
the development of Csound from version 5 to
a new major version, 6. This meant that most
of the major changes and improvements to the
software would cease to be made in Csound
5, and while new versions would be released,
these will consist mainly of bug fixes and mi-
nor changes (possibly including new opcodes).
Moving to a new version allowed developers to
rethink key aspects of the system, without the
requirement of keeping ABI or API compatibil-
ity with earlier iterations. The only restriction,
which is a fundamental one for Csound, is to
provide backwards language compatibility, en-
suring that music composed with the software
will continue to be preserved.
This paper describes the motivation for the

changes, current state of development and
prospective plans for the system.

1.1 Short History of Csound

1.1.1 Early History

Csound has had a long history of development,
which can be traced back to Barry Vercoe’s
MUSIC 360[Vercoe, 1973] package for computer
music, which was itself a variant of Max Math-
ews’ and Joan Miller’s MUSIC IV[Mathews and

Miller, 1964]. Following the introduction of
the PDP-11 minicomputer, a modified version
of the software appeared as MUSIC 11[Vercoe,
1981]. Later, with the availability of C (and
UNIX), this program was re-written in that lan-
guage as Csound[Boulanger, 2000], allowing a
simpler cycle of development and portability, in
comparison to its predecessor.
The system, in its first released version, em-

bodied a largely successful attempt at provid-
ing a cross-platform program for sound syn-
thesis and signal processing. Csound was then
adopted by a large development community in
the mid 90s, after being translated into the
ANSI C standard by John ffitch in the early
half of the decade. In the early 2000s, the final
releases of version 4 attempted to retrofit an ap-
plication programming interface (API), so that
the system could be used as a library.

1.1.2 Csound 5

The need for the further development of the
Csound API, as well as other innovations,
prompted a code freeze and a complete overhaul
of the system into version 5[ffitch, 2005]. Much
of this development included updating 1970s
programming practices by applying more mod-
ern standards. One of the major aims was to
make the code reentrant, so that its use as a li-
brary could be made more robust. In 2006, ver-
sion 5.00 was released. The developments em-
bodied by this and subsequent releases allowed
a varied use of the software, with a number of
third-party projects benefitting from them.

1.2 Csound operation in a nutshell

As a MUSIC-N language, Csound incorporates
a compiler for instruments. During perfor-
mance, these can be activated (instantiated) by
various means, the traditional one being the
standard numeric score. In Csound 5, compi-
lation can only be done once per performance
run, so new instruments cannot be added to
an already running engine (for this performance

69

needs to be interrupted so the compilation can
take place).
The steps involved in the compiler can be

divided into two: parsing, and compilation
proper. The first creates an abstract syntax tree
(AST) representing the instruments. The com-
pilation then creates data structures in memory
that correspond to the AST. When an instru-
ment is instantiated, an init-pass loop is per-
formed, executing all the once-off operations for
that instance. This is then inserted in a list of
active instruments, and its performance code is
executed sequentially, processing vectors (audio
signals), scalars (control signals) or frames of
spectral data. The list orders instruments by
ascending number, so higher-order ones will al-
ways be executed last. All of the key aspects of
Csound operation are exposed by the API.

2 Motivation

In the six years since its release, Csound 5 con-
tinued to develop in many ways, mostly in re-
sponse to user needs, as well as providing fur-
ther processing capabilities in the form of new
opcodes. After a long gestation, early in 2012,
the new flex-bison parser was completed and
added as a standard option. This was the final
major step of development for Csound, where
the last big chunk of 1970s code, the old ad-
hoc parser, was replaced by a modern, main-
tainable, and extendable parser. Following the
2011 Csound Conference in Hannover, it was
clear that there were a number of user requests
that would be more easily achievable with a re-
think of the system. Such suggestions included:

• the capacity of new orchestra code,
ie. instruments and user-defined opcodes
(UDOs), to be added to a running instance
of the engine

• additions to the orchestra language, for in-
stance, generic arrays

• rationalisation of the API to allow further
features in frontends

• loadable binary formats, API construction
of instruments

• further development of parallelism

• facilities for live coding

The time was ripe for major changes to be
made. User suggestions prompted developers to
begin an internal cleanup of code, the removal

of older components (such as the old parser),
and a reorganisation of the API. It was also an
opportunity to code-walk, and with that find
inconsistencies and bugs that would normally
be hidden. In particular, changes related to re-
peated loading and compilation of new instru-
ments would require (and indeed force) a wel-
come separation of language and synthesis en-
gine, which is well underway at present.

3 Developments to date

3.1 Build System and Tests

In Csound 5, the official build system is SCons1.
Over time, a CMake-based2 build was intro-
duced and used for local developer use, as well
as later for Debian packaging and iOS builds.
In Csound 6, the official build system is now
the CMake-based build. Moving to CMake in-
troduced some hurdles and changes in workflow,
but it also brought with it generation of build
system files, such as Makefiles, XCode projects,
and Eclipse projects. This solved a problem of
IDE-based projects for building Csound becom-
ing out of sync with changes in the SConstruct
file for SCons, as well as brought more ways
for developers to approach building and working
with Csound code, particularly through IDE’s.
Using the CTest feature in CMake, unit and

functional tests have been added to Csound 6’s
codebase. CTest is the test running utility used
to execute the individual C-code tests. In ad-
dition, CUnit3 is employed to create the indi-
vidual tests and test-suites within the test code
files. In addition to C-code testing, the suite
of CSD’s used for application/integration test-
ing continues to grow, and a new set of Python
tests has also been added for testing API usage
from a host language.

3.2 Code reorganisation

The Csound code base is passing through a sig-
nificant reorganisation. Firstly, parts of it that
are now obsolete, such as the old parser, have
been removed. Some opcodes with special li-
censing conditions that have been deemed not
to be conducive to further development have
been completely rewritten (also with some ef-
ficiency and generality improvements). The
CSOUND struct has been rationalised and re-
organised, with many modifications due to the
various changes outlined in the next sections.

1http://www.scons.org
2http://www.cmake.org
3http://cunit.sourceforge.net

70

Finally, the public API is going through a re-
design process (details of which are discussed
below).

3.3 Type system

The Csound Orchestra language uses strongly
typed variables and enforces these at compile-
time. This type information is used to deter-
mine the size of memory to allocate for a vari-
able as well as for specifying the in- and out-
arg types for opcodes. The system of types
used prior to Csound 6 was hard-coded into the
parser and compiler. Adding new types would
require adding code in many places.
In Csound 6, a generic type system was imple-

mented as well as tracking of variable names to
types. The new system provides a mechanism
to create and handle types, such that new types
can be easily added to the language. The sys-
tem also helps clarify how types are used during
compilation. Another feature is that variable
definitions and types were previously discarded
after compile-time; in Csound 6, this informa-
tion is kept after compilation. This allows the
possibility of inspecting variables found in in-
struments or in the global memory space.

3.4 Generic Arrays

In Csound 5, a ‘t’ type was added that provided
a user-definable length, single-dimension array
of floating-point numbers. In Csound 6, with
the introduction of the generic type system, the
code for t-types was extended to allow creation
of homogenous, multi-dimensional arrays of any
type. Additionally, the argument list specifica-
tion for opcodes was extended to allow denoting
arrays as arguments.

3.5 On-the-fly Compilation

The steps necessary for the replacement or ad-
dition of new instruments or UDOs to a running
Csound engine, or, more concisely, on-the-fly
compilation, started to be taken in the latter
versions of Csound 5. It was, of course, sine-
qua-non to have a properly structured parser,
which we did in 5.17. Also, as a side-effect
from the Csound for Android project, compila-
tion from text files was replaced by a new core
(memory) file subsystem, so now strings con-
taining Csound code could be presented directly
to the parser.
The first step in Csound 6 was

made by breaking down the mono-
lithic API call to compile Csound
(csoundCompile()) into csoundParseOrc()

and csoundCompileTree(), as well as by the
addition of a general csoundStart() function
to get the engine going. The parsing function
creates an abstract syntax tree (AST) from a
string containing Csound code. The compi-
lation function then creates the internal data
structures that the AST represents, ready for
engine instantiation(see figure 1).

Figure 1: Csound compilation and engineState.

These modifications provided the infrastruc-
ture for changes in the code to allow repeated
compilation. For this, we have abstracted the
data objects relating to instrument definition
into an engineState structure. On first com-
pilation, Csound creates its global instrument
0, which is made up of the header statements,
global variables declared outside instruments
and their initialisation. It then proceeds to com-
pile any other instruments defined in the orches-
tra (including UDOs, which are a special kind of
instrument). On any subsequent compilations,
instruments other than 0 are added to a newly-
created engineState. After compilation, the new
engineState is merged into the current one be-

71

longing to the running Csound object.
Instrument definitions with the same name

or number will replace previously existing ones,
but any instances of the old definitions that are
active are not touched. New instances will use
the new definition, and replaced instruments get
added to a deadpool for future memory recov-
ery (which will happen once all old instances
are deallocated). A similar process applies to
UDOs.
Currently, no built-in thread-safety mecha-

nisms have been placed in the API, so hosts are
left to make sure compilation calls are not made
concurrently to audio processing calls. How-
ever, it is envisaged that the final API will pro-
vide functions with built-in thread safe as well
as ordinary calls.

3.6 Sample-level accuracy

Csound has always allowed sample-level accu-
racy, a feature present since its MUSIC 11 in-
carnation. However, a performance penalty was
incurred, since the requirement for this was to
set the size of the processing block (ksmps) to 1
sample. Code can become very inefficient, since
there is a single call of an opcode performance
function for each sample of output and this is
in conflict with caching.
In Csound 6, an alternative sample accuracy

method has been introduced. This involves set-
ting an offset into the processing block, which
will round the start time of an event to a sin-
gle sample. Similarly, event durations are also
made to be sample accurate, as the last it-
eration of each processing loop is limited to
the correct number of samples (see figure 2).
This option is provided with the non-default
--sample-accurate flag, to preserve backward
compatibility.
Tied events4 are not subject to sample accu-

rate processing as they involve state reuse and
are, in its current form, incompatible with the
mechanism. Real-time events are also not af-
fect by the process, as event sensing works on a
ksmps-to-ksmps basis. Events scheduled to at
least one control-cycle ahead can be made to be
sample accurate through this mechanism.
The changes needed for this mechanism to

work were significant. Each opcode had to be
modified to take account of the offset and end

4In Csound, it is possible to have instrument in-
stances that take up a previously-used memory space,
which allows the ‘tieing’ of events, in analogy to slurs in
instrumental music

position. The scheduler had to be altered so
the start of all events was truncated, instead of
rounded, to ksmps boundaries, and the calcula-
tion of event duration had to be modified. The
offset and end position had to be properly de-
fined for each event, as well as set and reset at
specific times for each instrument instance.

3.7 Realtime priority mode

Csound has been a realtime audio synthesis en-
gine since 1990. However, it was never pro-
vided with strict realtime-safe behaviour, even
though in practice, it has been used success-
fully in many realtime applications. Given the
multiple applications of Csound, it makes sense
to provide separate operation modes for its en-
gine. In Csound 6, we introduce the realtime
priority mode, set by the --realtime option,
which aims to provide better support for real-
time safety, with complete asynchronous file ac-
cess and a separate thread for unit generator
initialisation.

3.7.1 Asynchronous file access

For Csound 6, a new lock-free mechanism has
been introduced and some key opcodes have
been modified to use it when operating in re-
altime. It uses a circular buffer, employing
an interface which had been already present
in Csound (used previously only for lock-free
realtime audio). It shares the common file
IO structure adopted throughout Csound, with
a similar, but dedicated interface. For spe-
cific file reading/writing requirements, though,
as required for instance by diskin, diskin2 or
pvsfwrite, the general interface is not suitable.
For this case, special opcode-level asynchronous
code has been designed.

3.7.2 Unit generator initialisation

Another important modification of the engine in
realtime priority mode is the spawning of a sep-
arate thread that is responsible for running all
of the unit generator initialisation code. This is
more commonly known as the ‘init-pass’, which
is separate from synthesis performance (‘perf-
pass’). In this mode, when an instrument is
instantiated, the init-pass code is immediately
run in a separate thread. Once this is done,
an instrument is allowed to perform. What this
does is to prevent any interruption in the syn-
thesis performance due to non-realtime-safe op-
erations in the initialisation code (memory allo-
cation, file opening, etc.). A side-effect of this is
that in some situations, an instrument may be
prevented to start performing straight away, as

72

Cycle n

Start in cycle Early end

Cycle 1 Cycle 2 Cycle 3

silent silent

Figure 2: Sample accurate scheme.

the initialisation has not been done. However,
this is balanced with the gains in uninterrupted
performance.

3.8 Multicore operation

In 2009 an experimental system for using mul-
tiple cores for parallel rendering of instruments
was written [Wilson, 2009], and this was later
incorporated in the standard Csound [ffitch,
2009]. While the design was generally seman-
tically correct it only delivered a performance
gains in the case of low control rate and compu-
tationally heavy unit generators. Profiling the
code showed that the overheads in creating and
consuming the directed acyclic graph (DAG) of
dependencies, and especially in memory alloca-
tion activity.

For Csound 6 we are developing a different
approach, that while maintaining the semantic
analysis only needs to rebuild the DAG when a
score event starts or stops, and in use does not
call for changes in the structure. The clue is in
the use of watch-lists as found in SAT-solvers
[Brown and Purdom Jr, 1982; ?]. For each task
we only need to watch for the completion of one
of the dependencies; when a task finishes it can
release any task that is waiting for it, and for
which all other precursors have already finished.
This strategy is also possible with no locking
of critical sections, and can use atomic swap
primitives instead.

At the same time some simplification of
the semantics-gathering has been achieved.
This scheme preserves the order-semantics that
Csound has always had, but offers efficient util-
isation of multiple cores with threads with-
out user intervention beyond saying how many
threads to use for the performance stage. Ini-
tial measurements (see table 3.8) are very en-
couraging, in most cases providing significant
speed-up. We are continuing to work on possi-
ble optimisations.

4 Further work

4.1 Pre-release prospective
development (i.e. the “todo list”)

The final feature set of Csound 6 is still not
finalised. There are a number of possible en-
hancements that we are considering; some grow
from the changes we have described above, and
some are long-standing desires.
The introduction of separate compilation and

replaceable instruments naturally suggests that
we could add a fast loadable format for instru-
ments, building on for example LISP FASL for-
mats, and API and opcode access to loading.
It remains to be seen if the source version is
sufficiently fast, and whether we can solve the
semantic issues that arise, such as f-table inde-
pendence. What is needed is to document the
abstract syntax tree that the parser produces,
and thus allow advocates of alternative orches-
tra languages to provide them.
A restriction in Csound than has long been

an irritation is the limit of one string in a score
statement. Previous work in this area has at-
tempted to allow up to four strings, but this is
both limiting and still buggy. The radical solu-
tion would be to introduce a flex/bison parser
for the score language and take the opportunity
for rethinking the score area. A small start has
been made, but the need to support users and
the amount of effort needed here has relegated
this work to a later release. Until then a simpler
scheme will have to be tried for the interim.
The Csound suite of software include a num-

ber of analysis programs, most dating from an
early time, and written without regard of float-
ing point formats or byte order. From time to
time this has caused problems. The task here
is to redefine these formats to indicate at least
their formats, or even to make the readers ca-
pable of format transformations. This needs to
be done at some stage and this break seems like
a good moment.
With the introduction of on-the-fly compila-

tion one can consider that a user might main-

73

-j CloudStrata Xanadu Trapped...
ksmps=500 (sr=96000) ksmps=10 ksmps=100 ksmps=10 ksmps=100 ksmps=1000

1 1 1 1 1 1 1
2 0.54 0.57 0.55 0.75 0.79 0.78
3 0.39 0.40 0.40 0.66 0.76 0.73
4 0.32 0.39 0.33 0.61 0.72 0.70

Table 1: Relative performance with multiple threads in three existing Csound code examples, -j
indicates the number of threads used.

tain a long-running Csound binary and use it
for different tasks at different times. This sug-
gests that the current command-line options or
API equivalents may need to change at some
time after the initialisation. Some changes may
be easy, but some may require re-engineering of
parts of the engine. We have not yet realised
to use-changes that the compilation change will
engender.
The new API still needs to be refined. In

response to what has been discussed above,
we plan, for instance, to expose the configura-
tion parameters in some form (currently held
in the OPARMS data structure). At the mo-
ment, there is a simple provision for setting sep-
arately specific configuration items in the API
(as flags). This is to be substituted by a more
flexible form, via the exposing of the OPARMS
or an OPARMS-like struct to API users.
A number of other changes are planned, some

of which are already present in an early form.
For instance, the various stages of parsing, com-
pilation, and engine start are now exposed in
the provisional API (as detailed for instance in
3.4). There is a plan to provide built-in thread-
safety, so some functions can be used directly in
a multi-threading environment without further
synchronisation or resource protection. The
software bus, which now exists in three forms,
will be unified to a single mechanism.

4.2 Future developments

A number of ideas have also been put forward,
which will be tackled in due course. These in-
clude for instance:

• support for alternative orchestra languages
(through access to the parse tree format or
some sort of intermediary representation)

• further language features (e.g. namespaces,
functions with more than one argument,
tuples)

• a system for streaming linear predictive

coding processing (in similar fashion to
PVOC)

• decoupling of widget opcodes from FLTK
dependency (and exposure through API)

• input / output buffer reorganisation (out-
put buffers added to instruments)

5 Conclusions

In this paper, we have sought to examine the
current development status of Csound 6, as
well as the motivations for the fundamental re-
engineering of the code that has been under-
way. We hope to have demonstrated how the
technology embodied in this software package
has been renovated continuously in response to
developments in Computer Science and Music.
Our aim is to continue to support a variety of
styles of computer music composition and per-
formance, as well as the various ways in which
Csound can be used for application develop-
ment. It is also important to note, for read-
ers, that the re-engineering of Csound is taking
place quite publicly in the Csound 6 git reposi-
tory on Sourceforge (git://git.code.sf.net/
p/csound/csound6-git). Anyone is welcome
to check out and examine our struggles with
computer technology and the solutions we are
putting forward in this paper.

6 Acknowledgements

Our thanks go to the Csound community for
their indulgence, suggestions and support. In
addition Martin Brain introduced the idea of
watch-lists and co-developed the detailed per-
formance algorithm. We also acknowledge the
implicit support from Sourceforge hosting

References

Richard J. Boulanger, editor. 2000. The
Csound Book: Tutorials in Software Synthe-
sis and Sound Design. MIT Press, February.

74

Cynthia A. Brown and Paul Walton Purdom
Jr. 1982. An Empirical Comparison of Back-
tracking Algorithms. IEEE Trans. Pattern
Anal. Mach. Intell., 4(3).

John ffitch. 2005. The Design of Csound5. In
LAC2005, pages 37–41, Karlsruhe, Germany,
April. Zentrum für Kunst und Medientech-
nologie.

John ffitch. 2009. Parallel Execution of
Csound. In Proceedings of ICMC 2009, Mon-
treal. ICMA.

M. Mathews and J. E. Miller. 1964. MUSIC
IV Programmer’s Manual. Bell Telephone
Labs.

B. Vercoe. 1973. Reference manual for the
MUSIC 360 language for digital sound syn-
thesis. Studio for Experimental Music, MIT.

B. Vercoe. 1981. MUSIC 11 Reference Man-
ual. Studio for Experimental Music, MIT.

Christopher Wilson. 2009. Csound Paral-
lelism. Technical Report CSBU-2009-07, De-
partment of Computer Science, University of
Bath.

75

76

Linux AVB Stack Workshop for LAC2013, IEM Graz

Christoph Kuhr
Freelance Audio Engineer and Digital Audio Developer

Bonnstr 430
50321 Bruehl,
Germany,

christoph.kuhr@web.de

Abstract

This workshop and discussion panel is intended
to get a working concept for an IEEE 802.1AVB
(Audio Video Bridging) Linux stack. AVB is an
audio and video (AV) network streaming infrastruc-
ture, designed to provide realtime transmission and
admission control of AV streams on the DLL/MAC
layer (OSI layer 2). To enable Linux computers to
stream AV using an AVB infrastructure, an Linux
AVB stack is required.

Keywords

AV networking, ALSA driver, realtime communica-
tion

1 Introduction

Audio Video Bridging (IEEE 802.1AVB) is
a promising and evolving industry standard
using Ethernet networks.
It would be desireable to record or playback
AVB Streams with a DAW, as well as stream-
ing Ambisonic signals to many AVB capable
loudspeakers. These are not the only possible
scenarios for connecting a Linux computer
to an AVB network, but those are of broad
concern in the Linux Audio community.
Until now, there is no open source attempt for
an Linux AVB stack. This document lines out
a concept for the development of such a stack.

2 AVB - The Standards

2.1 General Precision Timing Protocol
(gPTP)

The standard IEEE 802.1AS [1] defines a
more restricted profile of the IEEE 1588-2008
standard and describes the mechanisms used to
maintain a domain with consistent timing and
synchronization.
To achieve consistent timing and synchroniza-
tion, the clock is organized in a hierarchical
tree structure. This tree sturucture has a single

root element, the GrandMasterClock. The root
element is connected to the port of an AVB
capable switch. This port is a clock slave port
and triggers the clocks of the other switch
ports. Any other switch port, triggerd by a
clock slave port, is then called clock master
port. The clock master ports again triggers
either the connected end station or the next
AVB switch.
Any AVB participant has to implement the
Best Masterclock Algorithm (BMCA) and
announce its’ own clock. The BMCA is used
to determine, whether the announced clock has
better properties then the participant’s own
clock. If so, the participant switches its’ clock
role to slave and listens to the better remote
clock.

2.2 Multiple Stream Registration
Protocol (MSRP [2])

In order to guarantee a glitch-free transmission
first the network resources for the Stream
have to be reserved throughout the entire
path between AVB talker and listener. The
responsibility for the resource reservation is
up to both sides, the talker and the listener.
The talker tries to announce the stream’s
requirements and the listener acknowledges
them. This process is done in any AVB switch
in the transmission path.
The actual process of announcing and acknowl-
edging is described in chapter 10 of IEEE
802.1ak [3]

2.3 Forwarding and Queueing of
Time-sensitive Streams (FQTSS)

The second factor in guaranteeing a glitch-free
transmission is forwarding and queueing in any
AVB participant.
FQTSS [4] is defined as a superset of the
Leaky-Bucket algorithm, extended by a credit

77

based queueing upon the StreamId of any
incoming stream. Without a StreamId, traffic
will be handeled as non-AVB and therefore has
a lower priority, hence less credits. However,
any frame is forwarded before it is timed out.

2.4 Transport Protocol for
Time-Sensitve Streams (AVTP)

The standard IEEE 1722 describes a pair of
layer two protocols, first the Audio Video
Transport Protocol (AVTP [5, ch 5]) is a
transport format for transmitting IEC 61883-6
(AMDTP [6]) AV data and secondly the MAC
Address Acquisition Protocol (MAAP [5, An-
nex B]), which reserves the multicast addresses
for the stream.
IEEE 1722 frames contain amongst other
information the unique 64-Bit StreamID as well
as the 32-Bit presentation time. The StreamID
is used by MSRP and FQTSS, while the
presentation time is only used by FQTSS, to
determine the latest point in time to transmit
the frame.

2.5 Audio/Video Device Discovery,
Enumeration, Connection
Management & Control Protocol
for AVTP devices (AVDECC)

The standard IEEE 1722.1 [7] describes a set
of layer two protocols. Any AVB end station
has to implement an AVDECC Entity Model
(AEM [7, ch 7]), which contains information
about the configuration.
This information is used by the three protocols
AVDECC Discovery Protocol (ADP [7, ch 6]),
AVDECC Connection Management Protocol
(ACMP [7, ch 8]) and AVDECC Enumeration
and Control Protocol (AECP [7, ch 9]). The
protocol ADP implements routines to announce
the availability of an end station to an AVB
domain. ACMP manages the connection of
certain streams by using MSRP. AVB end
points implementing a AVDECC controller can
be controlled with the AECP protocol.

3 Requirements

3.1 Hardware Requirements

To enable AVB on a Linux computer, it has to
provide firstly an AVB capable NIC, including a
gPTP timestamping and a hardware 802.1Qav
queueing.
Secondly, it has to provide a soundcard with

the possibility of fine tuning the sampling rate,
like the RME HDSP 9652 or the M-Audio
Delta1010 / Audiophile96 soundcards.

3.2 Software Requirements

The first thing required is a NIC kernel driver,
which implements the SO TIMESTAMPING
API and is supported by the new PHC interface.

The interface to the AVB stack simply is
an IEEE 1722.1 AVDECC Controller, which
provides the possibility to control any aspect of
the AVB stack.
The connection management is done by the
MRP kernel module.
To maintain the newly introduced MAC
multicast address spaces, a 1722 MAAP imple-
mentation is required.

To provide the presentation time to the
AVB talkers, it has to be derived from a gPTP
server. The gPTP server also participates
in the BMCA, synchronizes with the gPTP
Domain and fine tunes the sampling rate of the
soundcard.
AVB listeners need to play audio samples at
the correct time. Since all AVB talkers on the
network have their own sampling clock and
only one sampling clock can be provided on the
local computer without multiple PLL hardware
instances, sample rate conversion has to be
used to align the AVB listeners audio samples
to the local sampling clock.

The audio samples need to be de- / encapsu-
lated in AMDTP packets, into AVTP packets,
into 1722 Frames and vice versa.

4 Brainstorming

4.1 Linux AVB Stack

Figure 1: Connection Management, Configura-
tion and Control

78

Figure 2: Timing and Synchronization

Figure 3: Audio and Network Transport

And. . . ?

4.2 Work already Done

4.2.1 PTP Hardware Clock (PHC)

With the kernel 2.6.30, a new timestamping
API was introduced. The PHC requires
the underlying network driver to use the
SO TIMESTAMPING API and triggers the
POSIX Clock API. Thus the whole operating
system is synced to the same clock.
For a list of yet supported hardware, have a
look at section four of the following link:
http://lwn.net/Articles/406978/

Further reading at:
http://lwn.net/Articles/315941/
http://sourceforge.net/p/ptpd/patches/30/
http://kerneltrap.org/mailarchive/linux-
netdev/2010/4/27/6275689/thread

4.2.2 PTPd2 - PTP daemon V2 by
Alan Bartky

PTPd2 is a software implementation of the end
station procedures of gPTP. It uses the POSIX

API to run the synchronization routines and
the BMCA.

http://code.google.com/p/ptpv2d/

4.2.3 MSRP - Multiple Stream
Registration Protocol by Philip
Foulkes

A running Linux kernel module MRP.ko is
available.

http://code.google.com/p/kmrp/
http://code.google.com/p/kmsrp/
http://code.google.com/p/kmmrp/
http://code.google.com/p/kmvrp/

4.2.4 AVDECC-pdu - AVDECC by Jeff
Koftinoff (MeyerSound)

AVDECC-pdu is a C library maintained by
Jeff Koftinoff and is an implementation of the
AVDECC standard for end stations.

https://github.com/jdkoftinoff/avdecc-pdu

4.2.5 HDSP9652, IEC1712/1724
Kernel Modules

Since the patch alsa-driver-1.0.14rc3, the
HDSP driver has the possibility to fine tune
the sample rate.

http://www.spinics.net/lists/alsa-
devel/msg06237.html

4.2.6 libraw1394 and libiec61883

Modifications to libraw1394/libiec61883
(Firewire AMDTP library) or similar IEC
61883-6 libraries

git://git.user.in-berlin.de/s5r6/libraw1394.git
git://git.user.in-berlin.de/s5r6/libiec61883.git

4.3 Work to be Done

4.3.1 AVB Stack

The AVB stack has to be incorporated, so
that it can be used by any ALSA application.
All components mentioned above have to be
modifed and interconnected.
This concept lacks the possibility for deriving
multiple AVB listener instances’ media clocks
from a PLL, due to major difficulties in gener-
ating a software PLL with minimum jitter. A
compromize is to do a sample rate conversion.

79

This feature would be very useful for using
Jack with AVB.

And. . . ?

4.3.2 Work Group

Are there people, who are interested in forming
a working group for the development of an
AVB stack?

I have opened a Git Repository under the
address:
git://github.com/voodoosound/linux avb stack.git

5 Conclusions

The system components that are required to
implement an AVB stack are mostly available.
A library to provide any IEEE 1722 function-
ality has to be developed.

At the moment not many AVB capable
NICs and PHC supporting driver modules
are available. Also a little problematic, is the
use of the MRP kernel module, since it is
not a mainline module and therefor has to be
installed in addition. Any other component
runs in user space.

However these conclusions, as well as the
Requirements and Brainstorm section are open
for discussion.
The results of the discussion, along with this
paper will be available in the Git repository.

6 Acknowledgements

Many thanks go to the carneval season for writ-
ing time on the road. Further, my tomcat for
decorating this paper with typos and my wife
for correcting them.

References

[1] IEEE, IEEE Std P802.1AS/D7.6 - Draft
Standard for Local and Metropolitan Area
Networks Timing and Synchronization for
Time- Sensitive Applications in Bridged
Local Area Networks, 11/11/2010.

[2] IEEE, IEEE Std P802.1Qat/D6.1 - Draft
Standard for Local and Metropolitan Area
Networks Virtual Bridged Local Area Net-
works - Amendment 34: Stream Reserva-
tion Protocol (SRP), 09/04/2010.

[3] IEEE, IEEE Std 802.1ak-2007 IEEE Stan-
dard for Local and metropolitan area net-
works Virtual Bridged Local Area Networks
Amendment 7: Multiple Registration Pro-
tocol, 06/22/2007.

[4] IEEE, IEEE Std P802.1Qav-2009 - IEEE
Standard for Local and metropolitan area
networks Virtual Bridged Local Area Net-
works Amendment 12: Forwarding and
Queuing Enhancements for Time-Sensitive
Streams, 01/05/2010 .

[5] IEEE, IEEE P1722/D2.5 - Draft Standard
for Layer 2 Transport Protocol for Time
Sensitive Applications in a Bridged Local
Area Network, 09/2010.

[6] 1394 Trade Association, Audio and
Music Data Transmission Protocol 2.0,
08/21/2001.

[7] IEEE, IEEE P1722.1/D20 - Draft Stan-
dard for Device Discovery, Connection
Management and Control Protocol for
IEEE 1722 Based Devices, 06/2012.

80

Live music programming in Haskell

Henning Thielemann
Pfännerhöhe 42,
06110 Halle,
Germany,

lac@henning-thielemann.de

Abstract
We aim for composing algorithmic music in an inter-
active way with multiple participants. To this end
we have developed an interpreter for a sub-language
of the non-strict functional programming language
Haskell that allows the modification of a program
during its execution. Our system can be used both
for musical live-coding and for demonstration and
education of functional programming.

Keywords
Live coding, MIDI, Functional programming,
Haskell

1 Introduction

It is our goal to compose music by algorithms.
We do not want to represent music as a sequence
of somehow unrelated notes as it is done on a
note sheet. Instead we want to describe mu-
sical structure. For example, we do not want
to explicitly list the notes of an accompaniment
but instead we want to express the accompa-
niment by a general pattern and a sequence of
harmonies. A composer who wants to draw a
sequence of arbitrary notes might serve as an-
other example. The composer does not want to
generate the random melody note by note but
instead he wants to express the idea of random-
ness. Following such a general phrase like “ran-
domness” the interpreter would be free to play
a different but still random sequence of notes.
The programmer shall be free to choose the

degree of structuring. For instance, it should
be possible to compose a melody manually, ac-
company it using a note pattern following a se-
quence of user defined harmonies and complete
it with a fully automatic rhythm.
With a lot of abstraction from the actual mu-

sic it becomes more difficult to predict the ef-
fect of the programming on the musical result.
If you are composing music that is not strictly
structured by bars and voices then it becomes
more difficult to listen to a certain time inter-
val or a selection of voices for testing purposes.

Also, the classical edit-compile-run loop hinders
creative experiments. Even if the music pro-
gram can be compiled and restarted quickly, you
must terminate the running program and thus
the playing music and you must start the mu-
sic from the beginning. Especially if you play
together with other musicians this is unaccept-
able.
In our approach to music programming we

use a purely functional non-strict1 program-
ming language [Hughes, 1989], that is almost a
subset of Haskell 98 [Peyton Jones and others,
1998]. Our contributions to live music coding
are concepts and a running system offering the
following:

• algorithmic music composition where the
program can be altered while the music is
playing (Section 2.1),

• simultaneous contributions of multiple pro-
grammers to one song led by a conductor
(Section 2.2).

2 Functional live programming

2.1 Live coding

We want to generate music as a list of MIDI
events [MMA, 1996], that is events like “key
pressed”, “key released”, “switched instru-
ment”, “knob turned” and wait instructions. A
tone with pitch C-5, a duration of 100 millisec-
onds and an average force shall be written as:

main =
[Event (On c5 normalVelocity)
, Wait 100
, Event (Off c5 normalVelocity)
] ;

c5 = 60 ;
normalVelocity = 64 ;
.

1All terms set in italics are explained in the glossary
on page 7. In the PDF they are also hyperlinks.

81

Using the list concatenation “++” we can al-
ready express a simple melody.

main =
note qn c ++ note qn d ++
note qn e ++ note qn f ++
note hn g ++ note hn g ;

note duration pitch =
[Event (On pitch normalVelocity)
, Wait duration
, Event (Off pitch normalVelocity)
] ;

qn = 200 ; -- quarter note
hn = 2*qn ; -- half note

c = 60 ;
d = 62 ;
e = 64 ;
f = 65 ;
g = 67 ;
normalVelocity = 64 ;

We can repeat this melody infinitely by starting
it again when we reach the end of the melody.

main =
note qn c ++ note qn d ++
note qn e ++ note qn f ++
note hn g ++ note hn g ++ main ;

Please note, that this is not a plain recursion,
but a so called co-recursion. If we define the
list main this way it is infinitely long but if we
expand function applications only when neces-
sary then we can evaluate it element by ele-
ment. Thanks to this evaluation strategy (in
a sense lazy evaluation without sharing) we can
describe music as pure list of events. The music
program does not need, and currently cannot,
call any statements for interaction with the real
world. Only the interpreter sends MIDI mes-
sages to other devices.
In a traditional interactive interpreter like the

GHCi2 we would certainly play the music this
way:

Prelude> playMidi main .

If we would like to modify the melody we would
have to terminate it and restart the modified
melody. In contrast to this we want to alter the
melody while the original melody remains play-
ing and we want to smoothly lead over from the

2Glasgow Haskell Compiler in interactive mode

old melody to the new one. In other words:
The current state of the interpreter consists of
the program and the state of the interpretation.
We want to switch the program, but we want
to keep the state of interpretation. This means
that the interpreter state must be stored in a
way such that it stays sensible even after a pro-
gram switch.
We solve this problem as follows: The in-

terpreter treats the program as a set of term
rewriting rules, and executing a program means
to apply rewrite rules repeatedly until the start
term main is expanded far enough that the root
of the operator tree is a terminal symbol (here
a constructor). For the musical application the
interpreter additionally tests whether the root
operator is a list constructor, and if it is the
constructor for the non-empty list then it com-
pletely expands the leading element and checks
whether it is a MIDI event. The partially ex-
panded term forms the state of the interpreter.
For instance, while the next to last note of the
loop from above is playing, that is, after the in-
terpreter has sent its NoteOn event, the current
interpreter state would look like:

Wait 200 :
(Event (Off g normalVelocity) :

(note hn g ++ main))
.

The interpreter will rewrite the current ex-
pression as little as possible, such that the next
MIDI event can be determined. On the one
hand this allows us to process a formally infi-
nite list like main, and on the other hand you
can still observe the structure of the remaining
song. E.g. the final call to main is still part of
the current term. If we now change the defi-
nition of main then the modified definition will
be used when main is expanded next time. This
way we can alter the melody within the loop,
for instance to:

main =
note qn c ++ note qn d ++
note qn e ++ note qn f ++
note qn g ++ note qn e ++
note hn g ++ main ;

.

But we can also modify it to

main =
note qn c ++ note qn d ++
note qn e ++ note qn f ++
note hn g ++ note hn g ++ loopA ;

82

in order to continue the melody with another
one called loopA after another repetition of the
main loop.
We want to summarise that the meaning of

an expression can change during the execution
of a program. That is, we give up a fundamen-
tal feature of functional programming, namely
referential transparency.
We could implement the original loop using

the standard list function cycle

main =
cycle

(note qn c ++ note qn d ++
note qn e ++ note qn f ++
note hn g ++ note hn g) ;

and if cycle is defined by

cycle xs = xs ++ cycle xs ;

then this would be eventually expanded to

(note qn c ++ note qn d ++
note qn e ++ note qn f ++
note hn g ++ note hn g)

++
cycle

(note qn c ++ note qn d ++
note qn e ++ note qn f ++
note hn g ++ note hn g) ;

.

Using this definition we could leave the loop
only by changing the definition of cycle. But
such a change would affect all calls of cycle in
the current term. Further, in a rigorous mod-
ule system without import cycles it would be
impossible to access functions of the main mod-
ule from within the standard module List that
defines the cycle function. But this would be
necessary in order to not only leave the cycle
loop but to continue the program in the main
module.
From this example we learn that a man-

ually programmed loop in the form of
main = ... ++ main has advantages over a
loop function from the standard library, because
the manual loop provides a position where we
can insert new code later.
Additionally to the serial composition of mu-

sical events we need the parallel composition for
the simultaneous playback of melodies, rhythms
and so on. At the level of MIDI commands this
means that the commands of two lists must be
interleaved in the proper way. For details we re-
fer the reader to the implementation of “=:=”.

2.1.1 User interface

The graphical user interface is displayed in Fig-
ure 1. In the upper left part the user enters
the program code. Using a keyboard short-cut
he can check the program code and transfer it
to the buffer of the interpreter. The executed
program is shown in the upper right part. In
this part the interpreter highlights the function
calls that had to be expanded in order to rewrite
the previous interpreter term into the current
one. This allows the user to trace the melody
visually. The current term of the interpreter is
presented in the lower part of the window. The
texts in the figure are essentially the ones from
our introductory example.

Figure 1: The running interpreter

Our system can be run in three modes: “real
time”, “slow motion” and “single step”. The
real-time mode plays the music as required by
the note durations. In contrast to that the other
two modes ignore the wait instructions and in-
sert a pause after every element of the MIDI
event list. These two modes are intended for
studies and debugging. You may also use them
in education if you want to explain how an inter-
preter of a non-strict functional language works
in principle.
We implemented the interpreter in Haskell us-

ing the Glasgow Haskell Compiler GHC [Pey-
ton Jones and others, 2012], and we employ
WxWidgets [Smart et al., 2011] for the graph-
ical user interface. Our interpreted language
supports pattern matching, a set of predefined
infix operators, higher order functions, and par-
tial function application. For the sake of a sim-

83

ple implementation we deviate from Haskell 98
in various respects: Our language is dynam-
ically and weakly typed: It knows “integer”,
“text” and “constructor”. The parser does not
pay attention to layout thus you have to termi-
nate every declaration with a semicolon. Several
other syntactic features of Haskell 98 are ne-
glected, including list comprehensions, operator
sections, do notation, “let” and “case” notation,
and custom infix operators. I/O operations are
not supported as well.

2.2 Distributed coding

Our system should allow the audience to con-
tribute to a performance or the students to con-
tribute to a lecture by editing program code.
The typical setup is that the speaker projects
the graphical interface of the sequencer at the
wall, the audience can listen to music through
loud speakers, and the participants can ac-
cess the computer of the performer via their
browsers and wireless network.

Our functional language provides a simple
module system. This helps the performer to
divide a song into sections or tracks and to put
every part in a dedicated module. Then he can
assign a module to each participant. This is
still not a function of the program, but must be
negotiated through other means. For instance
the conductor might point to people in the au-
dience. Additionally the performer can insert a
marker comment that starts the range of text
that participants can edit. The leading non-
editable region will usually contain the module
name, the list of exported identifiers, the list of
import statements, and basic definitions. This
way the performer can enforce an interface for
every module.

A participant can load a module into his web
browser. The participant sees an HTML page
showing the non-editable header part as plain
text and the editable region as an editable text
field. (cf. Figure 2) After editing the lower part
of module he can submit the modified content
to the server. The server replaces the text below
the marker comment with the submitted text.
Subsequently the new module content is checked
syntactically and on success it is loaded into the
interpreter buffer. In case of syntax errors in
the new code the submitted code remains in the
editor field. The performer can inspect it there
and can make suggestions for fixes.

Generally it will not be possible to start com-
position with many people from scratch. How-

Figure 2: Accessing a module via HTTP

ever, the performer can prepare a session by
defining a set of modules and filling them with
basic definitions. For instance he can provide a
function that converts a list of zeros and ones
into a rhythm, or a list of integers into a chord
pattern or a bass line. By providing a meter
and a sequence of harmonies he can assert that
the parts contributed by the participants fit to-
gether loosely. In this application the performer
no longer plays the role of the composer but the
role of a conductor.

2.3 Timing

For a good listening experience we need precise
timing for sending MIDI messages. A naive ap-
proach would be to send the messages as we
compute them. I.e. in every step we would de-
termine the next element in the list of MIDI
events. If it is a wait instruction then we
would wait for the desired duration and if it
is a MIDI event then we would send it immedi-
ately. However this leads to audible inaccuracies
due to processor load caused by term rewriting,
garbage collection and GUI updates.
We are using the ALSA sequencer interface

for sending MIDI messages. It allows us to send
a MIDI message with a precise but future time
stamp. However we still want that the music im-
mediately starts if we start the interpreter and
that the music immediately stops if we stop it
and that we can also continue a paused song
immediately. We achieve all these constraints
the following way: We define a latency, say d
milliseconds. The interpreter will always com-

84

pute as many events in advance until the com-
puted time stamps are d milliseconds ahead of
current time. This means that the interpreter
will compute a lot without waiting when it is
started. It will not immediately send a MIDI
message because it needs to compute it first.
This introduces a delay, sometimes audible, but
we cannot do it faster. When the user pauses
the interpreter, we halt the timer of our outgo-
ing ALSA queue. This means that the delivery
of messages is immediately stopped, but there
are still messages for the next d milliseconds in
the queue. If the interpreter is continued these
messages will be send at their scheduled time
stamps. If the interpreter is stopped we sim-
ply increase the time of the ALSA queue by d
milliseconds in order to force ALSA to send all
remaining messages.

3 Related work

Algorithmic composition has a long tradition.
The musical dice games by Mozart and the Il-
liac Suite [Hiller and Isaacson, 1959] might serve
as two popular examples here. Further on, the
Haskore project (now Euterpea) [Hudak et al.,
1996] provides a method for music program-
ming in Haskell. It also lets you control syn-
thesisers via MIDI and it supports the gener-
ation of audio files via CSound, SuperCollider
or pure Haskell audio signal synthesis. Like our
approach, Haskore relies upon lazy evaluation
which allows for an elegant definition of formally
big or even infinite songs while its interpretation
actually consumes only a small amount of mem-
ory. However, the creative composition process
is made more difficult by the fact that you can
listen to a change to a song only after terminat-
ing the old song and starting the new one. In a
sense, our system is an interactive variation of
Haskore.
So-called functional reactive programming is

a very popular approach for programming of
animations, robot controls, graphical user in-
terfaces and MIDI processing in Haskell [El-
liott and Hudak, 1997]. Functional reactive pro-
gramming mimics working with a time ordered
infinite list of events. But working with ac-
tual lazy lists leads to fundamental problems in
real-time processing, e.g. if a stream of events
is divided first but merged again later. This
is a problem that is solved by functional reac-
tive programming libraries. The advantage of
functional reactive MIDI processing compared
to our approach is that it allows the processing

of event input in realtime. The disadvantage is
that usually you cannot alter a functional reac-
tive program during execution.

Erlang is another functional (but not purely
functional) programming language that accepts
changes to a program while the program is run-
ning [Armstrong, 1997]. Erlang applies eager
evaluation. That is, in Erlang you could not de-
scribe a sequence of MIDI commands by a lazy
list of constructors. Instead you would need
iterators or similar tools. You can insert new
program code into a running Erlang program-
ming in two ways: Either the running program
runs functions (e.g. lambda expressions) that
it receives via messages or you replace an Er-
lang module by a new one. If you upload a new
Erlang module then the old version is kept in
the interpreter in order to continue the running
program. Only calls from outside the module
jump into the code of the new module, but by
qualification you can also simulate an external
call from within the replaced module. That is,
like in our approach, you need dedicated points
(external calls or calls of functions received via
messages) where you can later insert new code.

Summarised, our approach for changing run-
ning programs is very similar to “Hot Code
loading” in Erlang. However, the non-strict
evaluation of our interpreter implies that con-
siderable parts of the program are contained in
the current term. These are not affected imme-
diately by a change to the program. This way
we do not need to hold two versions of a module
in memory for a smooth transition from old to
new program code. In a sense, Erlang’s external
calls play the role of our top-level functions.

Musical live coding, i.e. the programming
of a music generating program, while the mu-
sic is playing, was in the beginning restricted
to special purpose languages like SuperCol-
lider/SCLang [McCartney, 1996] and ChucK
[Wang and Cook, 2004] and their implementa-
tions. With respect to program control these
languages adhere to the imperative program-
ming paradigm and with respect to the type
system they are object oriented languages. The
main idea in these languages for creating musi-
cal patterns is constructing and altering objects
at runtime, where the objects are responsible for
sending commands to a server for music gener-
ation.

Also in our approach the sound generation
runs parallelly to the interpreter and it is con-
trolled by (MIDI) commands. However, in our

85

approach we do not program how to change
some runtime objects but instead we modify the
program directly.
In the meantime also Haskell libraries for live

coding are available, like Tidal ([McLean and
Wiggins, 2010]) and Conductive ([Bell, 2011]).
They achieve interactivity by running com-
mands from the interactive Haskell interpreter
GHCi. They are similar to SCLang and ChucK
in the sense that they maintain and manipulate
(Haskell) objects at runtime, that in turn con-
trol SuperCollider or other software processors.

4 Conclusions and future work

Our presented technique demonstrates a new
method for musical live coding. Maybe it can
also be transferred to the maintenance of other
long-running functional programs. However, we
have shown that the user of the live-sequencer
must prepare certain points for later code inser-
tion. Additionally our system must be reluctant
with automatic optimisations of programs since
an optimisation could remove such an insertion
point. If you modify a running program then
functions are no longer referentially transpar-
ent ; that is, we give up a fundamental feature
of functional programming.

Type system A static type checker would
considerably reduce the danger that a running
program must be aborted due to an ill-typed or
inconsistent change to the program. The type
checker would not only have to test whether the
complete program is type correct after a mod-
ule update. Additionally it has to test whether
the current interpreter term is still type correct
with respect to the modified program.
A type checker is even more important for dis-

tributed composition. The conductor of a multi-
user programming session could declare type
signatures in the non-editable part of a mod-
ule and let the participants implement the cor-
responding functions. The type checker would
assert that participants could only send modifi-
cations that fit the rest of the song.

Evaluation strategy Currently our inter-
preter is very simple. The state of the
interpreter is a term that is a pure tree.
This representation does not allow for shar-
ing. E.g. if f is defined by f x = x:x:[]
then the call f (2+3) will be expanded to
(2+3) : (2+3) : []. However, when the first
list element is evaluated to 5, the second ele-
ment will not be evaluated. I.e. we obtain
5 : (2+3) : [] and not 5 : 5 : []. Since

the term is a tree and not a general graph we
do not need a custom garbage collector. In-
stead we can rely upon the garbage collector of
the GHC runtime system that runs our inter-
preter. If a sub-term is no longer needed it will
be removed from the operator tree and sooner
or later it will be detected and de-allocated by
the GHC garbage collector.
Even a simple co-recursive definition like that

of the sequence of Fibonacci numbers

main = fix fibs
fibs x = 0 : 1 : zipWith (+) x (tail x)
fix f = f (fix f)

leads to an unbounded growth of term size with
our evaluation strategy. In the future we want
to add more strategies like the graph reduction
using the STG machine [Peyton Jones, 1992].
This would solve the above and other problems.
The operator tree of the current term would be
replaced by an operator graph. The application
of function definitions and thus the possibility
of live modifications of a definition would re-
main. However, in our application there is the
danger that program modification may have dif-
ferent effects depending on the evaluation strat-
egy. On the one hand, the sharing of variable
values at different places in the current term
would limit the memory consumption in the Fi-
bonacci sequence defined above, on the other
hand it could make it impossible to respect a
modification of the called function.
Our single step mode would allow the demon-

stration and comparison of evaluation strategies
in education.
Currently we do not know, whether and how

we could embed our system, including live pro-
gram modifications, into an existing language
like Haskell. This would simplify the study of
the interdependence between program modifi-
cations, optimisations and evaluation strategies
and would provide many syntactic and typing
features for free.
For this purpose we cannot use an interactive

Haskell interpreter like GHCi directly:

• GHCi does not let us access or even modify
a running program and its internal repre-
sentation is optimized for execution and it
is not prepared for changes to the running
program.

• GHCi does not allow to observe execution
of the program, and thus we could not high-
light active parts in our program view.

86

• GHCi does not store the current interpreter
state in a human readable way that we can
show in our display of the current term.

Nonetheless, we can imagine that it is possible
to write an embedded domain specific language.
That is, we would provide functions that allow
to program Haskell expressions that only gen-
erate an intermediate representation that can
then be interpreted by a custom interpreter.

Highlighting We have another interesting
open problem: How can we highlight program
parts according to the music? Of course, we
would like to highlight the currently played
note. Currently we achieve this by highlighting
all symbols that were reduced since the previous
pause. However if a slow melody is played paral-
lelly to a fast sequence of controller changes this
means that the notes of the melody are high-
lighted only for a short time, namely the time
period between controller changes. Instead we
would expect that the highlighting of one part
of music does not interfere with the highlighting
of another part of the music.
We can express this property formally: Let

the serial composition operator ++ and the par-
allel composition operator =:= be defined both
for terms and for highlighting graphics. Con-
sider the mapping highl, that assigns a term
to its visualisation. Then for every two musical
objects a and b it should hold:

highl (a ++ b) = highl a ++ highl b
highl (a =:= b) = highl a =:= highl b

If you highlight all symbols whose expan-
sion was necessary for generating a NoteOn or
NoteOff MIDI command, then we obtain a
function highl with these properties. However
this causes accumulation of highlighted parts.
In

note qn c ++ note qn d ++
note qn e ++ note qn f

the terms note qn c and note qn d would still
be highlighted if note qn e is played. The
reason is that note qn c and note qn d gen-
erate finite lists and this is the reason that
note qn e can be reached. That is the expan-
sion of note qn c and note qn d is necessary
to evaluate note qn e.

JACK support In the future our system
should support JACK in addition to ALSA. It
promises portability and synchronous control of
multiple synthesisers.

Beyond MIDI MIDI has several limitations.
For example, it is restricted to 16 channels. In
the current version of our sequencer the user
can add more ALSA sequencer ports where each
port adds 16 virtual MIDI channels. E.g. the
virtual channel 40 addresses the eigth channel
of the second port (zero-based counting). MIDI
through wires is limited to sequential data, that
is, there cannot be simultaneous events. In con-
trast to that the ALSA sequencer supports si-
multaneous events and our Live sequencer sup-
ports that, too.
Thus the use of MIDI is twofold: On the one

hand it is standard in hardware synthesisers and
it is the only music control protocoll supported
by JACK. On the other hand it has limitations.
The Open Sound Control protocol lifts many
of these limitations. It should also be relatively
simple to add OSC support, but currently it has
low priority.

5 Acknowledgments

This project is based on an idea by Johannes
Waldmann, that we developed into a prototype
implementation. I like to thank him, Renick
Bell, Alex McLean, and the anonymous review-
ers for their careful reading and several sugges-
tions for improving this article.
You can get more information on this

project including its development, demonstra-
tion videos, and papers at

http://www.haskell.org/
haskellwiki/Live-Sequencer .

A Glossary

A constructor is, mathematically speaking,
an injective function and, operationally speak-
ing, a way to bundle and wrap other values.
E.g. a list may be either empty, then it is rep-
resented by the empty list constructor [], or
it has a leading element, then it is represented
by the constructor : for the non-empty list. For
example, we represent a list containing the num-
bers 1, 2, 3 by 1 : (2 : (3 : [])), or more
concisely by 1 : 2 : 3 : [], since the infix :
is right-associative.

Co-recursion is a kind of inverted recursion.
Recursion decomposes a big problem into small
ones. E.g. the factorial “!” of a number can
be defined in terms of the factorial of a smaller
number:

n! =

{

1 : n = 0

n · (n− 1)! : n > 0

87

A recursion always needs a base case, that is, a
smallest or atomic problem that can be solved
without further decomposition.
In contrast to this, co-recursion solves a prob-

lem assuming that it has already solved the
problem. It does not need decomposition and it
does not need a base case. E.g. a co-recursive
definition of an infinite list consisting entirely of
zeros is: zeros = 0 : zeros

Lazy evaluation is an evaluation strategy for
non-strict semantics. An alternative name is
“call-by-need”. It means that the evaluation of
a value is delayed until it is needed. Addition-
ally it provides sharing of common results.

Non-strict semantics means that a function
may have a defined result even if it is applied to
an undefined value. It is a purely mathematical
property that is independent from a particular
evaluation strategy.
E.g. the logical “and” operator && in the C

programming language is non-strict. In a strict
semantics the value of p && *p would be unde-
fined if p is NULL, because then *p would be un-
defined. However, && allows the second operand
to be undefined if the first one is false.

Referential transparency means that func-
tion values depend entirely on their explicit in-
puts. You may express it formally by:

∀x, y : x = y ⇒ f(x) = f(y) .

For mathematical functions this is always true,
e.g. whenever x = y it holds sinx =
sin y. However for sub-routines in impera-
tive languages this is not true, e.g. for a
function readByte that reads the next byte
from a file, readByte(fileA) may differ from
readByte(fileB) although fileA = fileB.

Sharing means that if you read a variable
multiple times it is still computed only once and
then stored for later accesses.

References

Joe Armstrong. 1997. The development of
erlang. In Proceedings of the second ACM
SIGPLAN international conference on Func-
tional programming, ICFP 1997, pages 196–
203, New York, NY, USA. ACM.

Renick Bell. 2011. An interface for real-
time music using interpreted haskell. In Frank
Neumann and Victor Lazzarini, editors, Pro-
ceedings LAC2011: Linux Audio Conference,
pages 115–121, Maynooth, May.

Conal Elliott and Paul Hudak. 1997. Func-
tional reactive animation. In Proceedings
of the 1997 ACM SIGPLAN International
Conference on Functional Programming, vol-
ume 32, pages 263–273, August.

Lejaren A. Hiller and Leonard M. Isaac-
son. 1959. Experimental Music: Composition
With an Electronic Computer. McGraw-Hill,
New York.

Paul Hudak, T. Makucevich, S. Gadde, and
B. Whong. 1996. Haskore music notation –
an algebra of music. Journal of Functional
Programming, 6(3), June.

John Hughes. 1989. Why functional pro-
gramming matters. The Computer Journal,
32(2):98–107.

James McCartney. 1996. Super Collider.
http://www.audiosynth.com/, March.

Alex McLean and Geraint Wiggins. 2010.
Tidal - pattern language for the live coding
of music. In Proceedings of the 7th Sound and
Music Computing conference 2010.

MMA. 1996. Midi 1.0 detailed specification:
Document version 4.1.1. http://www.midi.
org/about-midi/specinfo.shtml, Febru-
ary.

Simon Peyton Jones et al. 1998. Haskell 98
language and libraries, the revised report.
http://www.haskell.org/definition/.

Simon Peyton Jones et al. 2012. GHC:
The Glasgow Haskell Compiler. http://www.
haskell.org/ghc/.

Simon Peyton Jones. 1992. Implementing
lazy functional languages on stock hard-
ware: The spineless tagless g-machine. Jour-
nal of Functional Programming, 2(2):127–
202, April.

Julian Smart, Robert Roebling, Vadim
Zeitlin, Robin Dunn, et al. 2011. wxwid-
gets 2.8.12. http://docs.wxwidgets.org/
stable/, March.

Ge Wang and Perry Cook. 2004. Chuck: a
programming language for on-the-fly, real-
time audio synthesis and multimedia. In
MULTIMEDIA ’04: Proceedings of the 12th
annual ACM international conference on
Multimedia, pages 812–815, New York, NY,
USA. ACM.

88

ipyclam, empowering CLAM with Python

David GARCÍA-GARZÓN
Departament de Tecnologia,
Universitat Pompeu Fabra

Tànger, 122-140
08018 Barcelona

Spain
david.garcia@upf.edu

Xavier SERRA-ROMÁN
Imm Sound, a Dolby Company

Diagonal 177
08018 Barcelona

Spain
Xavi.Serra@dolby.com

Abstract

This paper introduces ipyclam, a new way of manip-
ulating networks in CLAM (C++ Library for Audio
and Music) by using the Python language. This ex-
tends the power of the framework in many ways.
Some of them are exploring and manipulating live
processing networks via interactive Python shells, or
extending the power of visual prototyping in CLAM
by adding complex application logic and user in-
terfaces with PyQt/PySide. The described Python
API, ipyclam, by redefining the engine layer, can be
reused to control other patching based systems such
as JACK, gAlan...

Keywords

Python, CLAM, Qt, patching

1 Introduction

CLAM (C++ Library for Audio and Music)1

is a free software framework to develop ad-
vanced signal processing systems [Amatriain et
al., 2007]. Some successful use cases include
instruments [Haas, 2001; Mann et al., 2007],
voice processing [Sommavilla et al., 2007], audio
and music information retrieval [Gómez, 2006;
Gouyon, 2005; Amatriain et al., 2005; Ong,
2007], and 3D audio [Arumi et al., 2009; Giulio
Cengarle, 2012].
As its name states, CLAM is a C++ frame-

work. General purpose dynamic languages,
such as Python, do not mix well with real-time
audio programming. Those languages hide as-
pects that are important to control in real-time
programming, for example, memory manage-
ment and operations that imply system calls
that could stall the real-time thread. But real-
time restrictions only apply to the processing
code. Properly designed audio software sepa-
rates the real-time code from the rest where
those restrictions does not apply: setup, user
interface, application logic... CLAM fosters a

1http://clam-project.org

programming style which clearly localizes real-
time code. For the remaining code without real-
time restrictions, Python may still have an in-
teresting role to play.

This paper introduces ipyclam, a new way of
manipulating CLAM data flow definitions (net-
works) by using the Python language. This
extends the power of the framework in many
ways. For example, it can be used to build
complex networks, like the one shown in Fig-
ure 1, that are hard to build by graphical means.
Those manipulations could be done interac-
tively, by integrating interactive Python shells
like IPython [Pérez and Granger, 2007], into
the CLAM patching tool, the NetworkEditor.
And last but not least, it extends CLAM graphi-
cal prototyping architecture, currently based on
graphical design tools that generate fixed data
flow and single dialog interfaces. With Python
we can add rich application logic and interfaces
based on PySide [Bert, 2012] or PyQt [Summer-
field, 2007] without raising the difficulty to the
point of requiring C++ development.

Figure 1: Complex networks are hard to design
by pointing and clicking.

The rest of this paper has the following struc-
ture: Key concepts of the CLAM framework are
introduced in section 2. Section 3 describes the
new Python API at user level. Section 4 ex-
plains the internal design and how it enables

89

the reuse of the user API for other patching sys-
tems. Section 5 explains how to build PyQt/Py-
Side interfaces that can be related to CLAM
networks and how all that leads to a more pow-
erful prototyping architecture. Finally, section
6 evaluates the already reached milestones and
the ones that are at reach from now on.

2 CLAM elements

This section will shortly introduce the basic
components of the CLAM framework needed to
understand this paper. A more insightful de-
scription can be found in the referred literature
about CLAM.

Figure 2: A processing unit

Audio processing is modularized into objects
called processing units according the CLAM
meta-model [Amatriain, 2005]. A processing
unit consumes and produces data tokens by its
input and output connectors. Connectors are
called ports when data flow is continuous and
they are called controls when data is sent or re-
ceived unevenly. Token data can be any C++
type but each connector is bound to a single
type. When connecting connectors of different
processing units, they must be complementary
(input and output), same kind (port or control),
and same type (data token C++ class).
Each processing unit has a set of structured

configuration parameters. Configuration and
connection is done before run-time so that any
operation that requires resource allocation can
be done outside the real-time thread.
A network is a set of interconnected process-

ing units. The network schedules the execution
of the units under a given audio back-end (Por-
tAudio, JACK, LADSPA, LV2, VST...). Back-
end data is fed from and to special units in-
side the network called sources and sinks. Then

the network topology mandates the data-flow
scheduling [Arumı́, 2009].

UI binders are used to relate a CLAM net-
work to a user interface, currently Qt, but not
restricted to it. The programmer can establish
such relation by defining custom properties on
the elements of the user interface (widgets). UI
binders detect such properties and add any re-
quired stuff to bind them to the network. Com-
mon examples of UI binders are the ones used
to bind user interface for playback control and
monitoring, processing unit configuration, data
token visualization, and user control sending.

Figure 3: Visual prototyping architecture

All those elements enable the CLAM visual
prototyping architecture [Garcia, 2007] illus-
trated in Figure 3. Both the processing net-
work and the user interface can be designed with
graphical tools, CLAM NetworkEditor and Qt
Designer respectively. Both can be stored as
XML, loaded later in run-time, and related by
applying the binders. A tool called Prototyper
does that by taking the XML files by command
line.

Most elements in this architecture (process-
ing units, token data type handlers, back-ends,
UI binders, widgets...) can be extended via plu-
gins. Most of those extendible objects are avail-
able through abstract interfaces and factories.

90

3 ipyclam user API

3.1 Goals

ipyclam’s main goal is providing the API to be
able to build and explore a CLAM network.
Defining the processing code inside processing
units is reserved to C++ code to fit real-time
constraints.
An explicit choice has been taken on not de-

signing Python API as a direct map of the
C++ CLAM API, but to make it conveniently
Pythonic. Direct C++ library mapping often
leads to a badly designed Python interface. De-
sign decisions taken in C++ API just because
of C++ idiosyncrasy, may get pointlessly repli-
cated in Python, and opportunities of using
Python features such as attributes, iterators,
generators or dynamic interface creation, may
get lost.
Another choice is to provide a powerful tab

completion for interactive Python shell. It is
not just about discovering the static API but
taking a step further and discovering the run-
time structure of the objects via tab completion.
Because of that, such structure should be avail-
able as completable attributes.
Convenient ways of expressing things are fa-

vored but whenever those convenient ways are
not expressive enough to express everything, in-
stead of discarding the convenient one, we add
the less convenient one as alternative.
For example, processing units are accessible

as network attributes with their names. Also
processing ports, controls and configuration pa-
rameters are accessible as processing attributes
as well. That interface is compact and conve-
nient when doing tab completion.

net.Sink.Audio

But this is not a general solution. Many
names are not valid identifiers. Subscript ac-
cessors are provided to solve those cases:

net["A processing"]["1"]

Still, you may find two subelements of differ-
ent kind with the same name, or with a name
that matches an actual attribute or method of
the object. For those cases, it is useful to pro-
vide scoping attributes. So the syntax that will
always work would be:

net.processings["Sink"]. inports["Audio"]

But this is more verbose than the first pro-
posal. It is a design choice when this kind of

situation appears, to provide both the conve-
nient and the complete options so we get the
best of them.

3.2 An example

This is a minimal example that creates a 3 chan-
nel cable, that just copies the input to the out-
put, and plays it under JACK:

from ipyclam import Network , time
net = Network ()
creating units
net.source = "AudioSource"
net.sink = net.types.AudioSink
configuring
net.source.NSources = 3
net.sink.NSinks = 3
connecting
net.source > net.sink
Playing as JACK client for 1 minute
net.backend = "JACK"
net.play()
time.sleep (60)
net.stop()

3.3 Creating processing units

Notice that the first processing in the example,
source, is created by assigning a string, the pro-
cessing type name, to a new attribute with the
name of the processing. The second one, sink, is
created instead by using the ’net.types’ object.
Such object is convenient for interactive use to
discover the available types by tab completion.

>> net.types.Audio [tab]
AudioSink , AudioMixer , AudioSource
...

If the unit name is not a proper Python iden-
tifier, the subscript syntax can be used as well:

net["My Sink"] = net.types.AudioSink

3.4 Configuring

Configuration parameters can be accessed di-
rectly as direct attribute or subscript of the pro-
cessing unit. They can be accessed as well inside
the scoping attribute config to avoid conflicts
with other processing subelements or common
attributes and methods.

net.source.config.NSources = 3

Every time a parameter is set, the object is
reconfigured, but reconfiguration may be an ex-
pensive process. To address that issue reconfig-
uration may be held while setting a set of pa-
rameters for a given unit using the with state-
ment:

with net.mymodule.config as c :
c.AParameter = "A Value"
c.AnotherParameter = 23.2

91

Configuration parameters are typed, type
checking is done on assignment rising TypeEr-
ror if the type is not the proper one. In CLAM,
configuration parameters can be instantiated or
not. In Python uninstantiated state is repre-
sented by the None value.
Some configurations are structured using pa-

rameters that are configurations themselves.
Such sub-configurations can be accessed as nat-
ural by accessing successive attributes.

net.mymodule.SubConfig.Param1 = 4

3.5 Connecting

The example uses the greater-than operator to
establish the connection. Both sides of the op-
erator refer to the processing units, but indeed
what gets connected are the connectors. So this
is a short-cut for connecting each port pair-wise:

net.source["1"] > net.sink["1"]
net.source["2"] > net.sink["2"]
net.source["3"] > net.sink["3"]

Or, generally, by using the iterators of inports
and outports attributes:

for inport , outport in zip(
net.source.outports ,
net.sink.inports ,

) :
inport > outport

Similar iteration can be done with incon-
trols and outcontrols processing unit attributes.
They can be used as well with Python slices.
For example, if we want to reverse the channels:

net.source > net.sink.inports [:: -1]

Or first and third to the first two:

net.source.outports [::2] > \
net.sink.inports [:2]

3.6 Playback control

The audio back-end can be set by assigning the
backend special network attribute. For exam-
ple, if we wanted to use the PortAudio audio
backend we could use:

net.backend = "PortAudio"

The network has several methods, pause(),
play() and stop(), to control the playback, and
several methods, isPlaying(), isPaused() and is-
Stopped(), to query the playback status.

3.7 Serialization

Networks can be loaded from XML files gener-
ated by NetworkEditor.

Figure 4: IPython console integrated in the Net-
workEditor interface

net = Network ()
net.load("mynetwork.clamnetwork")
net.save("mynetwork -copy.clamnetwork")

Indeed you can get the XML string for the
current network using xml().

print net.xml()

Although XML is somehow readable, in fact,
we found that Python code is even more read-
able than XML. An ipyclam network is able to
generate code to reconstruct itself.

>> print net.code("mynet")
mynet = Network ()
mynet.sink = "AudioSink"
nynet.sink.NSinks = 3
...

This feature is quite powerful. Given a static
network stored as XML, it can be converted
to Python code and as Python code it can be
parametrized or turned into a more smart pro-
gram.
This also opens the door to the use of Python

code as serialization format instead of XML. In-
deed Python code using ipyclam API is more
compact and readable than XML. Despite that,
deprecating XML is not yet an option as it is
not save to use Python interpreter as parser. A
Python interpreter will allow to execute more
than just network definitions.

4 Implementation

This section gives a slight overview on how ipy-
clam API has been internally implemented and
how this design allows extending the use of the
API to control other patching systems.
ipyclam is designed in two layers as shown in

Figure 5. The user layer is the one that provides

92

Figure 5: Two layers architecture

the API explained on previous sections, with all
the sugar for the many redundant and pythonic
ways of expressing the same operation.
But that layer is stateless. In order to per-

form the actual operations it relies on a engine
layer which holds the actual state, in this case,
the C++ CLAM Network object. Those many
ways of performing a given operation at the user
API converge in a single entry point at the en-
gine layer resulting in a narrower API at that
level.
This design in two layers strengthens the re-

liability of the implementation. The user API
can be developed ignoring all the complexities of
the adapters to the C++ CLAM code by pro-
viding a mock-up engine in pure Python. A
narrow engine API reduces the number of oper-
ations to test for the engine and centralizes the
state checks for the front-end testing. A state-
less front-end avoids errors on the bookkeeping
of duplicated information.
Another positive side effect of this design is

that this narrow engine API can be reimple-
mented to address any other patch like systems,
such as JACK, Patchage, gAlan... As result all
the rich ipyclam API interface can be reused for
those systems. Other patching programs can
integrate the Qt console like the one that now
NetworkEditor has and is shown in Figure 4.

5 Prototyping user interfaces

CLAM visual prototyping architecture, ex-
plained in section 2, provided a way to build
a simple audio application by joining two parts
designed visually: a CLAM network and a Qt
Designer interface. Although that architecture
generated decent applications, it has a clear ceil-
ing of what you can build. Applications are
limited to simple application logic, a single di-
alog and a fixed processing data-flow. If any-
one wants to go beyond that, C++ program-

ming skills are required, so the learning thresh-
old goes up and the development work-flow gets
harder and slower [Garcia, 2007].
An intermediate solution is to introduce

Python as programming language for the user
interface and application logic. Python is easier
to learn and has a faster development work-flow.
This section explains some features of ipyclam
that facilitate building such applications and
shows some examples that illustrate the scope
of what you can do.

5.1 PyQt4 and PySide

Two Python bindings are available for Qt:
PyQt42 and PySide3. Each one uses a differ-
ent binding generator technology: PyQt4 uses
SIP while PySide uses Shiboken. The resulting
Python APIs are mostly identical, so writing
Python code that works for either is not hard.
ipyclam supports both. In the following exam-
ples, PyQt4 is used but using PySide is just a
matter of changing the import lines.

5.2 A Python based Prototyper

The following Python code provides a simplified
version of Prototyper.

import ipyclam , sys
from PyQt4 import QtGui
import ipyclam.ui.PyQt4 as ui
network setup
net = Network ()
net.backend = "JACK"
net.load(sys.argv [1])
ui setup
app = QtGui.QApplication ([])
w = ui.loadUi(sys.argv [2])
net.bindUi(w)
run
w.show()
net.play()
app.exec_()
net.stop()

The interesting bits are the loadUi function
from the ipyclam.ui.PyQt4 module and the
bindUi method of the network. The loadUi
function is a helper that instantiates a Qt De-
signer file. The bindUi method applies all the
available binders to the user interface. Possible
bindings are searched recursively so you can use
it with a full interface as well as a single widget.
This snippet has the same restrictions as Pro-

totyper: It is general but it is limited to a single
processing data flow and a single interface with
no application logic.

2http://www.riverbankcomputing.com/software/pyqt
3http://www.pyside.org

93

The good news is that now we can
change that code to modify the network with
the ipyclam API exposed on previous ver-
sions and modify the interface with regular
PyQt4/PySide API.

5.3 Building interfaces from scratch

A counterexample would be building the pro-
cessing network and the interface without XML
files, that is, using ipyclam and PyQt4/PySide
APIs. A problem with this approach is that
some useful audio widgets provided by CLAM
as Qt plugins have no specific Python wrappers.
Providing such wrappers would imply to gener-
ate them for SIP and Shiboken for each spe-
cific widget class in the plugin. Instead, ipy-
clam provides a helper method to access the Qt
widget factory, which creates the widgets from
the class name string. Factory created widgets
are handled by the generic QWidget interface,
which includes composing them and accessing
their properties.
The following example implements an oscillo-

scope, by binding a CLAM Oscilloscope widget
with an AudioSource.

import ipyclam , sys
from PyQt4 import QtGui
import ipyclam.ui.PyQt4 as ui
network setup
net = Network ()
net.backend = "JACK"
net.source = net.types.AudioSource
ui setup
app = QtGui.QApplication ([])
w = ui.createWidget("Oscilloscope")
w.setProperty("lineColor", "red")
w.setProperty(

"clamOutPort", "source .1")
net.bindUi(w)
run
w.show()
net.play()
app.exec_()
net.stop()

This example accesses specific behaviour of
the Oscilloscope, the lineColor, by using the
generic property interface. The same method is
used to set the binding property clamOutPort
that in a visually designed prototype should
have been defined with Qt Designer.

5.4 Hybrid approaches

Any combined approach is feasible. Figure 6
shows an example that comes with ipyclam that
combines a Qt Designer file with a coded inter-
face. Indeed, this example has some application
logic not available with simple visual prototyp-
ing. Notice that the combo box is filled with

Figure 6: Extending with Python an existing
visual prototype that uses Spectral Modeling
Synthesis for a two voices transposition. The
extension provides detailed configuration of ev-
ery unit.

information, the names of the processing units,
taken from the network with the ipyclam API.
The configure button, instead of being a bound
widget, activates a function that takes the cur-
rently selected processing unit, and launches a
configuration dialog bound to the given process-
ing configuration.

6 Conclusions

The API presented in this paper offers a
new way of developing real-time audio appli-
cations by combining the power and flexibility
of CLAM, Qt and Python. The API has been
designed with a strong stress on convenience
and expressiveness which results in very read-
able and compact code.
An interactive Python console has been inte-

grated with the graphical patching tool. This
enables the user to build complex networks
by interactive programming, and having visual
feedback of the results. This work can be eas-
ily extended to other patching systems just by
implementing a narrow API.
Indeed, a promising engine to implement in

the future is one relying on JACK because
CLAM users are likely to be interested in
controlling JACK application interconnections

94

from the console, just as they control inner
units.
Another work to be done is providing some

useful examples built with ipyclam that give po-
tential users a clear idea of the horizons of the
platform. They also will help to mature the API
highlighting any unpolished edges left.
Right now, the platform excludes Python for

processing tasks. But Python has a nice collec-
tion of numerical libraries based on the numpy
package [Ascher et al., 1999]. They could be
used for processing algorithms for off-line pro-
cessing or situations where lesser real-time con-
ditions are required. Two approaches are being
considered. One is being able to implement pro-
cessing units in Python. The other is a Python
audio back-end where Python code feeds the
network with numpy arrays as audio input and
output.

7 Acknowledgements

We would like to thank Pau Arumı́, Natanael
Olaiz and Eduard Aylon for helping us to define
and test the API. Part of this work has been
done using technical resources gently offered by
Fundació Barcelona Media and ImmSound.

References

Xavier Amatriain, Jordi Massaguer, David
Garcia, and Ivan Mosquera. 2005. The clam
annotator a cross-platform audio descriptors
editing tool. 1

Xavier Amatriain, Pau Arumi, and David
Garcia. 2007. A framework for efficient and
rapid development of cross-platform audio
applications. ACM Multimedia Systems Jour-
nal. 1

Xavier Amatriain. 2005. An Object-Oriented
Metamodel for Digital Signal Processing with
a focus on Audio and Music. Ph.D. thesis,
Universitat Pompeu Fabra. 2

Pau Arumi, Natanael Olaiz, and Toni Ma-
teos. 2009. Remastering of movie soundtracks
into immersive 3D audio. In Proceedings of
Blender Conference 2009. 1

Pau Arumı́. 2009. Real-time Multimedia
Computing on Off-the-Shelf Operating Sys-
tems: From Timeliness Dataflow Models to
Pattern Languages. Ph.D. thesis, Universitat
Pompeu Fabra. Master Thesis. 2

David Ascher, Paul F. Dubois, Konrad Hin-
sen, James Hugunin, and Travis Oliphant,

1999. Numerical Python. Lawrence Livermore
National Laboratory, Livermore, CA, ucrl-
ma-128569 edition. 7

A.C. Bert. 2012. Pyside. Chromo Publishing.
1

David Garcia. 2007. Visual Prototyping of
Audio Applications. Master’s thesis, Univer-
sitat Pompeu Fabra. 2, 5

Giulio Cengarle. 2012. 3D audio technolo-
gies: applications to sound capture, post-
production and listener perception. Ph.D. the-
sis, Universitat Pompeu Fabra. 1

Fabien Gouyon. 2005. A computational ap-
proach to rhythm description — Audio fea-
tures for the computation of rhythm periodic-
ity functions and their use in tempo induction
and music content processing. Ph.D. thesis,
Universitat Pompeu Fabra. 1

Emilia Gómez. 2006. Tonal Description of
Music Audio Signals. Ph.D. thesis, Universi-
tat Pompeu Fabra. 1

Joachim Haas. 2001. Salto - a spectral do-
main saxophone synthesizer. In Proceedings
of Mosart Conference 2001. 1

Steve Mann, Ryan Janzen, and James Meier.
2007. The electric hydraulophone: A hypera-
coustic instrument with acoustic feedbacks.
In Proceedings of the 2007 International
Computer Music Conference (ICMC2007),
pages 27–31. 1

Bee Suan Ong. 2007. Structural Analysis and
Segmentation of Music Signals. Ph.D. thesis,
University Pompeu Fabra, Barcelona, Spain,
February. 1

Fernando Pérez and Brian E. Granger. 2007.
IPython: a System for Interactive Scientific
Computing. Comput. Sci. Eng., 9(3):21–29,
May. 1

Giacomo Sommavilla, Carlo Drioli, Piero
Cosi, and Giulio Paci. 2007. SMS-
FESTIVAL: a New TTS Framework. In
Models and analysis of vocal emissions for
biomedical applications: 5th International
workshop, pages 89–92. Firenze University
Press, December 13-15. 1

Mark Summerfield. 2007. Rapid gui program-
ming with python and qt: the definitive guide
to pyqt programming. Prentice Hall Press,
Upper Saddle River, NJ, USA, first edition.
1

95

96

Music for Programmers (MFP): A Dataflow Patching Language

Bill GRIBBLE
grib@billgribble.com

Abstract
MFP is a graphical dataflow patching language in
the tradition of Max/MSP and Pure Data. It ex-
pands on its predecessors by integration of higher-
level language constructs from Python, including
a variety of data types and operations and the
widespread use of the Python evaluator. A new lex-
ical scoping system, a layers approach to building
logical code blocks, and a UI optimized for keyboard
control are also featured.

Keywords
Patching languages, Python, JACK, OSC, Pure
Data

1 Introduction

Graphical patching languages have a number
of basic principles in common. A “patch” is a
computer program specified by a diagram. The
patching system acts as the development envi-
ronment, compiler, and interpreter for this pro-
gram. The diagram consists of processing el-
ements and connections between them in the
form of patch cords or virtual wires. Typically
patches exist and operate in 3 domains: the
graphical domain, which includes the visual el-
ements displayed in the patch and any inter-
active controls such as buttons and sliders; the
control or symbol domain, where patch elements
communicate by sending discrete messages; and
the signal domain, where communication is in
blocks of audio data.
Possibly because the “patching” metaphor is

so familiar to electronic musicians, there exist
several patching languages for audio and music,
both commercial and FLOSS. Notable examples
include Miller Puckette’s languages (Max/MSP
[Puckette, 1989], jMax, and Pure Data [Puck-
ette, 1997]), Blechmann’s Nova/SuperNova
[Blechmann, 2008], and Ross Bencina’s Au-
dioMulch [Bencina, 1998]. The notion of a vi-
sual graph of processing nodes is also popular in
other domains, notably scientific data collection
where National Instruments’ LabView [National

Instruments, 1986] has used this metaphor since
1986.
In the Linux audio world, Pure Data is prob-

ably the leading patching system. Its large li-
brary of built-in and third-party modules make
it a versatile toolbox for audio synthesis, per-
formance control, interfacing with experimen-
tal input and output devices, video creation,
and video interpretation. The user and devel-
oper communities are full of enthusiastic, help-
ful, and talented people. In short, Pure Data is
awesome.
However, in my experience with Pure Data

I have been frustrated at times with the diffi-
culty of simple operations with basic data types
like strings and lists. I am more proficient as a
programmer than as a musician, so this kind of
thing annoys me perhaps more than most PD
users. Often third-party packages are required
to perform what seem to be elementary opera-
tions on data. Interpreting literal data entered
in message boxes, or building non-numeric val-
ues, often requires trial-and-error and results in
solutions that are nonintuitive for the non-guru.
Resolving issues of names and namespaces of-
ten involves what appear to be kludgy solutions
(I’m looking at you, $0).
When I was faced with tackling a significant

project in PD (a system to analyze the dynamic
behavior of a piece of external audio equip-
ment), I simply could not bring myself to do
it. I wanted a different tool, with more support
for general-purpose programming and a more
familiar approach to data. This was the genesis
of MFP.
I began to explore starting from a few basic

goals:

Use Pure Data’s graphical metaphor and
idiom as a baseline, without attempting to
preserve compatibility

Expose Python wherever possible, and use
plain Python data natively

97

Rethink name resolution and scoping

Implement a clean and simple GUI that as-
sists in the construction of patches

Expand the range of system, file, and string
operations, to make general-purpose pro-
gramming easier

Integrate readily into a variety of audio
production workflows as an instrument, a
forensic tool, or an audio swiss army knife

The work-in-progress result of this explo-
ration is MFP. MFP includes elements famil-
iar to high-level language programmers, with
a standard library and graphical presentation
layer that will be familiar to users of Max/MSP
and Pure Data, though there are many differ-
ences large and small.
My hope is that it will appeal to patching mu-

sicians while providing a stronger foundation for
analytical, scientific, and general-purpose pro-
gramming. The popularity of tools like Lab-
View in domains other than music shows that
dataflow patching systems can be useful in a
variety of control and analysis tasks, given an
appropriate infrastructure. MFP should be of
interest to musicians, particularly those focused
on the symbolic domain (MIDI, OSC, and gen-
erative music applications) where Python will
provide significant leverage, but also to audio
software developers, plugin authors, and record-
ing engineers who need to build custom tools to
interact with audio data.

2 Architecture

MFP is implemented in Python 2 [Van Rossum,
2010a], with C extensions for real-time DSP. In
order to mitigate Python’s Global Interpreter
Lock (GIL) bottleneck [Van Rossum, 2010b],
processing for each of the three domains (graph-
ical, control, and signal) is performed in a sep-
arate process. The three processes (“nodes”)
are coupled via the multiprocessing facility
present in Python 2.6 and later.
A patch, as represented in the user interface

for editing or control, appears as a multi-layered
diagram of visual elements such as boxes, con-
trols (sliders, buttons) and displays (indica-
tors, meters, signal graphs) connected by lines
representing communication pathways. Some
connections terminate in vias, which represent
invisible communications between endpoints.
Each element in the display domain has a cor-
responding unit or connection in the control do-
main, and may or may not have elements in the

Figure 1: “Hello, world” program in MFP
(doc/hello world.mfp)

signal domain. The use of layers, “wired” con-
nections within a layer, and vias between layers
evoke a printed-circuit board metaphor, but this
is not rigorously followed.
The “hello, world” example in Figure 1

demonstrates the basic properties of an MFP
patch in the simplest way. The literal string
“hello, world!” is contained in a message box,
which is an interactive element that emits its
contents when clicked. The print object is a
processor which prints its argument to the MFP
log window.
In this example we see the first differences

from Pure Data: in PD, it is not possible with-
out some difficulty to print messages contain-
ing commas, since strings are not one of the
basic “atom” types that can be represented
in message boxes. In MFP, the literal con-
tents of the message box are interpreted at cre-
ation time by the Python evaluator; a mes-
sage box can contain any Python expression,
including literal data or code that evaluates to
a Python object. In this case, if the message box
was filled with the text ", ".join(["hello",
"world!"]), which is an idiomatic Python ex-
pression for joining a list of strings into a sin-
gle comma-separated string, it would have pro-
duced the same message to the log when clicked:
"hello, world!"

2.1 Layers

Layers break a patch into “pages”, providing vi-
sual grouping and separation of elements, and
are are somewhat equivalent to code blocks
in traditional languages or subpatches in Pure
Data. Layering is a key mechanism for program
decomposition in MFP.
Figure 2 shows views of a more complex

multi-layered patch and the application context
when using it. This patch implements a basic
looping sampler inspired by the Akai Headrush

98

looping pedal. Four layers group the elements
of the patch into blocks. The Front Panel layer
of the patch contains the user interface: sig-
nal level meters for input and output, indica-
tors of current state, and two buttons to control
the sampler. The Buffer Control layer contains
the state machine controlled by the front-panel
buttons, with transition actions that change the
configuration of the sampling buffer at the core
of the patch. The third layer, Audio Processing,
contains the signal input/output and the sam-
pling buffer object. Finally, the Indicators layer
updates the front-panel indicator toggles based
on the state machine state.

This patch demonstrates how layers enable
program decomposition in a way similar to Pure
Data’s subpatches. Each layer contains a block
of functionality, with send/receive vias show-
ing names for inputs and outputs of the block.
The organization is not as structured as Pure
Data’s subpatches, but has the advantage of
being clearly a different mechanism from patch
reuse (Pure Data “abstraction”).

The Python-familiar will note that the con-
tents of many of the message boxes in the
Buffer Control layer (those which are a series
of comma-separated key=value assignments)
are not exactly valid Python code. This is
MFP-specific syntactic sugar for the Python ex-
pression dict(key1=value1, key2=value2) to
create a dictionary object.

2.2 Control domain

The control domain is the backbone of MFP’s
processing, and the control node is the master
and controller of the MFP application.

The control node hosts zero or more patches,
where each patch is an instance of the Patch
class. Each Patch consists of a connected graph
of processors (instances of the Processor class).
A Processor instance has one or more inlets
and zero or more outlets. Each inlet may be
connected to zero or more outlets of other pro-
cessors, and each outlet to zero or more inlets
of other processors. Communication between
processors consists of sending a message from
an outlet of one processor to an inlet of an-
other. The distinguishing feature of control do-
main communication is that it happens in dis-
crete chunks called messages.

Messages sent between processors in the con-
trol domain are ordinary Python objects of any
type: numbers, strings, lists, dicts, functions,
or other class instances. This is significantly

Figure 2: Looping sampler (doc/looper.mfp)

99

different from Pure Data and other patching
languages, which define a limited set of “atom”
types that can be used within the patch.
In many cases it is useful to think of a mes-

sage processor as a function or method, where
the arity is determined by the number of in-
lets. This model is supported by MFP’s default
marshaling policy, which buffers inputs to all
inlets until a message is received on a “hot” in-
let. Pure Data also takes this approach. By de-
fault, only the leftmost inlet (inlet 0) is “hot”,
but that behavior may be changed by a particu-
lar Processor subclass. The processor’s trigger
method is then called to perform message pro-
cessing. Functions of null arity are triggered
by any input on their inlet (by convention, the
special value Bang).

2.2.1 Method calls and dispatching

In other cases it is useful to think of a processor
as an object with methods of its own. For exam-
ple, a number box might have an API to control
the number of decimal digits to display. In in-
teractive usage, configuration of this property
might be accomplished by a dialog or key se-
quence, but the underlying mechanism is going
to call a configure method somewhere down
the line. In the spirit of exposing Python where
possible, we allow patches to directly call meth-
ods on the objects that make up the patch.
The control domain structure of MFP

matches fairly neatly with a message passing
metaphor for method calls. A method is called
on a control-domain object by sending it a mes-
sage representing the method call. In MFP, the
message is an instance of MethodCall. This ob-
ject captures the name and any arguments of
the method call (other than the object to call
the method on, which is always the recipient of
the MethodCall message).
MFP provides classes and syntax to support

this style of usage by allowing for concise and
flexible creation of MethodCall objects. The
example in Figure 3 shows a patch fragment
that uses @conf(digits=3) as syntactic sugar
for MethodCall("conf", digits=3). When
this message is received by the number box, the
method conf is called, with the keyword argu-
ment digits having the value of 3. The conf
method is supported by all Processor instances
as a way to directly set GUI display parameters.
Note that this activity is represented by

objects in the graphical domain (mostly
PatchElement subclasses) but the Python eval-
uation and message passing all takes place in

Figure 3: Sending a method-call
object to change displayed digits
(doc/enum control.mfp)

Figure 4: Custom method dis-
patch (doc/dispatch caller.mfp,
doc/dispatch callee.mfp)

the control domain.

User patches can dispatch their own method
calls using the [dispatch] builtin. This proces-
sor outputs any method call objects sent to the
patch as a (name, MethodCall) tuple suitable
for input into the [route] processor. The com-
panion [baseclass] processor handles method
resolution for methods implemented by the base
class. Figure 4 shows a patch fragment handling
dispatch of methods m1, m2, and m3, while pass-
ing all others back to the Patch class for reso-
lution as methods of the Python Patch class or
its base class Processor.

100

2.2.2 Names and scoping

At first glance, names may not seem to be
that important in a patching language. Patch
connections directly designate the caller and
callee objects without need for names. In re-
ality, larger patches need to hide some con-
nections for readability and structure. Pure
Data provides the [s name] and [r name] pair
(send/receive), which create a “virtual patch ca-
ble”, as well as some special message-box syn-
tax to send messages directly to an [r]. MFP
uses send/receive via pairs for the same pur-
pose. In both cases, names are required to con-
nect sender to receiver.
MFP gives each Patch a lexical scope, and

allows each layer of the patch to either use the
patch scope or to specify a different one. Sepa-
rate scopes can make it possible to hygienically
copy a layer or a group of layers without name
collisions. For example, a synthesizer patch
could use hygienic layer duplication to create a
dynamic number of polyphonic voices, if a single
voice was built in a layer or set of layers sharing
a scope distinct from the patch scope.
As a consequence, there is no need to “man-

gle” names to make them unique to a patch in-
stance in MFP. Names are automatically scoped
within the patch instance where they are cre-
ated. This contrasts with Pure Data, where
names are global by default; names intended to
be local use the magic variable $0, which ex-
pands to a unique-per-patch symbol, as part of
the variable name. For instance, the name foo
would be global, and a message sent to foo from
any open patch will go to all recipients of foo
messages. $0-foo would be local to the patch
containing it.

2.3 Signal domain

The signal domain component of MFP is pri-
marily implemented in a C library containing
the Python extension mfpdsp. MFP uses the
JACK Audio Connection Kit (JACK) [JACK
Team, 2002] to interface with the system audio
hardware and other audio applications.
As in the control domain, processing is im-

plemented in a connected graph of processing
nodes. However, communication between nodes
is a block-based stream of sample data rather
than a sequence of messages. For simplicity, the
processing block size used is always the JACK
block size, but this will likely change in future
releases.
A patch element which performs signal pro-

cessing activity will have both a control domain
representation (an instance of a Processor
class) and a signal domain representation (a C-
allocated instance of struct mfp proc). The
identity between the two is maintained using
an integer obj id which is shared.

JACK does the hard work in the signal layer,
and there are only a few built-in DSP operations
(about 20 in all) which, frankly, are not that in-
teresting: arithmetic, comparisons, simple oscil-
lators/noise, delay/buffering, simple filters, en-
velope follower. It is expected that LADSPA
(and, later: LV2, etc) plugins ([LADSPA Team,
2000], [LV2 Team, 2008]) will provide the more
sophisticated DSP processing tools.

The graph topology of the signal processing
network imposes some ordering on execution of
the node algorithms. A particular node is only
ready to process when all its inputs have been
computed. To manage this, a simple scheduling
step is performed whenever nodes are added or
removed. Units that are marked as generators
(their output in a particular processing cycle is
not dependent on their input during that cy-
cle) are always ready to process, nodes directly
connected to them may be processed next, and
so on. It is possible for cycles in the connec-
tivity graph to make a network that cannot be
scheduled. In this case, a delay of at least one
processing block must be added to break the
cycle.

Communication within the signal layer is
driven by the JACK callback thread and is de-
coupled from the message domain. Interaction
between message and signal occurs at block
boundaries and consists of parameter get/set
and simple messages from the signal back to the
message layer. This allows the real-time com-
ponent of the system to operate without a de-
pendency on the timeliness of processing in the
message domain.

2.4 Graphical domain

The graphical UI borrows its appearance heav-
ily from Pure Data. Each processor is repre-
sented by a visual element, with connections
represented by lines. Most processors have sim-
ple flow-chart style representations, with dis-
tinctive shapes providing cues as to their func-
tion.

Control of the UI is largely keyboard-driven.
The modal input system is patterned after text
editor controls, stacking modes based on the
current context. Authoring and editing of a

101

Figure 5: Graphical patch element types
(doc/gui elements.mfp)

patch can be accomplished without using the
mouse or touchpad at all, though a combina-
tion of pointing and typing is more efficient.
The UI is implemented using the Clutter

([Clutter Team, 2006]) and Gtk+ toolkits. Fig-
ure 5 shows samples of each visual type of
element, though one representation (such as
the button) can have several distinct identities
depending on parameters (clickable or display
only, momentary or latching, etc). The func-
tional element types are:
Processor box: The most common element,

a plain box containing the name and initializa-
tion arguments of the processor. Arguments are
interpreted by the Python evaluator at creation
time.
Message box: Interactive element emitting

a message when clicked. The message is dis-
played in the element and is interpreted by
the Python evaluator when entered through the
GUI.
Text comment: Free text display. Uses

Pango markup1 to enable a variety of text
styles, sizes, fonts, and colors.
Slider control/Bar meter display: Ver-

tical or horizontal slider/meter with optional

1An SGML-like syntax, see http://www.gtk.org/
api/2.6/pango/PangoMarkupFormat.html

scale display. Displays a solid bar indicating
a value, draggable for slider control
Number box: A simple box for inter-

actively entering or editing a number. Re-
sponds to mouse and keyboard actions to incre-
ment/decrement the value, and emits the value
as a message when it is changed.
X/Y chart: Multi-curve scatter/line chart

with plot, roll, and signal-view (oscilloscope)
modes. Can work in the control domain as
a scatter plot or strip chart, or in combina-
tion with a shared memory signal buffer as an
oscilloscope-type display.
Toggle button/indicator: Two-state but-

ton with visual indicator of on/off state. When
created as an indicator, it shows the underlying
state but does not respond to clicks.
Momentary (“bang”) button: Emits a

Bang object (or other object as configured)
when clicked. This is similar to a message box,
but does not display the value to be sent.
Send and receive vias: Circular pads rep-

resenting the end points of an invisible virtual
patch cord ([s name] and [r name] in Pure
Data). The name and appearance are inspired
by printed circuit board vias, which are conduc-
tive pathways connecting one layer of a circuit
board to another.

3 Extensibility

User-created processing modules in the signal
and message domains can be loaded at runtime
via several mechanisms:
Patch file discovery. When a reference to

an unknown processor type is made, the search
path is crawled to find a patch file (*.mfp) with
a matching name. User patches are equivalent
to builtins, except for the additional overhead
of network iteration.
Processor subclassing. User code loaded

at startup or patch load time can create new
Processor subclasses which can be referenced in
patches.
User-specified function wrapping. A

utility API is provided to wrap arbitrary
Python functions or methods as MFP proces-
sors. Code in user rcfile or other startup file
can create simple or complex processor types
using these tools.
Automatic Python callable wrapping.

An attempt to create a Processor will succeed if
any Python function with the specified name
is known to the MFP evaluator at runtime.
The matching function will be automatically

102

wrapped in a simple Processor subclass that
uses introspection to discover the arity of the
provided function.
Compiled DSP processor definitions.

Dynamically linked libraries containing DSP
type definitions can be loaded at runtime via
dlopen. A simple C-language processor type
definition API makes creation of new unit types
straightforward.
Plugin hosting. LADSPA plugins can

be hosted and controlled via the [plugin~]
builtin.

4 Interoperability

MFP implements interfaces to other software
via open standards:
JACK: MFP is a standalone JACK ap-

plication. The number of input and output
ports is specified at app startup time. Sup-
port for JACK MIDI, transport, and timecode
is planned.
Open Sound Control (OSC): Every MFP

object in the control domain has an OSC
address and can receive messages in nu-
meric or Python expression form. Every
Processor supports OSC controller learning
via the @osc learn method. OSC message
send and additional routing for incoming mes-
sages are provided through builtin processors
[osc in] and [osc out].

MIDI: The ALSA sequencer API is used
to provide MIDI I/O. MIDI data is processed
in the message domain, and is routed in
and out via the [midi in] and [midi out]
builtins. Chasing and generating MIDI time-
code is planned.
LADSPA: A builtin DSP type hosts

LADSPA plugins. LADSPA plugin meta-
information is used to add input and output
ports for all plugin parameters at run time. An
LV2 host is planned.

5 Implementation status

As of the submission of this paper (Feb 2013)
MFP is under heavy development leading up
to an initial public release. The functionality
described in this document is implemented and
exercised by demonstration patches provided in
the source code repository.
Much of the development process has been

exploratory in nature, so the feature set as a
whole is a bit spotty. Significant features are
missing or incomplete, including the ability to
have more than one patch open for editing,

exported patch UIs (“graph-on-parent”), host-
ing LV2 and other types of plugins, support
for session APIs, online help and other doc-
umentation, undo/redo, menu control of most
functions, and saved configurations (presets) in
patches.

6 Getting MFP

Source code and issue tracking for MFP are on
GitHub:

https://www.github.com/bgribble/mfp

The project is licensed under the GNU Gen-
eral Public License (GPL) version 2. Your inter-
est and participation is invited and welcomed.

References

R. Bencina. 1998. (Software) AudioMulch.
http://www.audiomulch.com.

T. Blechmann. 2008. nova - A New Com-
puter Music System with a Dataflow Syntax.
Bachelor’s thesis, Vienna University of Tech-
nology, Vienna, Austria.

Clutter Team. 2006. (Software) Clut-
ter Project. http://www.clutter-project.
org.

JACK Team. 2002. (Software) JACK Audio
Connection Kit. http://www.jackaudio.
org.

LADSPA Team. 2000. (Software) LADSPA
Project. http://www.ladspa.org.

LV2 Team. 2008. (Software) LV2 Project.
http://lv2plug.in.

National Instruments. 1986. (Software) NI
LabVIEW. http://www.ni.com/labview/.

M. Puckette. 1989. (Software) Max/MSP,
currently distributed by Cycling ’74. http:
//www.cycling74.com/max.

M. Puckette. 1997. (Software) Pure Data.
http://www.puredata.info.

G. Van Rossum. 2010a. Python 2.7 Docu-
mentation. http://docs.python.org/2.7/.

G. Van Rossum. 2010b. Python 2.7
Python/C API Reference Manual: Thread
State and the Global Interpreter Lock.
http://docs.python.org/2/c-api/init.
html#threads.

103

104

!"!"#$%&'('"#$$%&'#"($)")*+%,#'-*"./0#1*.'."$(")*+".2*3#)+%"4+#+"

5.3+)"6+7%$"89":9;<9!

!"#$%&'#()(*+),#-").*(%*/0#.1%'*

2-30%*4)%"5*6%7)*89:

/0#.1%';*<&=%">#");*89?@

-(#.#',#)A0"3B%(0B)&

!7.#)+3#

CD#' * E)E%& * E&%'%">' * '-F>G)&% * (%$%.-E1%"> *)"(*
&%'%)&,D*-"*>D%*F#%.(*-F*(#=#>).*)0(#-*'H">D%'#'*-F*
'E%,>&). * ()>) * 0'#"= * >D% *!"#$ %&'(' % $)*+#,)-$)(%
IJ#..%& * 60,K%>>% * %> *).L *)"(* >D% *./0* 'E%,>&).*
)").H'#'*>%,D"#30%*IMH*N0)"*6)1E#"*O@PLB*CD%*./0%
>%,D"#30% * E&-(0,%' * 'E%,>&). * ()>) * 0'#"=)*
(%>%&1#"#'>#,QE.0'Q'>-,D)'>#, * &%E&%'%">)>#-"B * CD%*
F-,0'*#'*-"*>D%*1%>D-('*MH*GD#,D*'0,D*()>)*1)H*M%*
&%).Q>#1%*&%)(*)"(*'H">D%'#5%(*0'#"=*'%$%&). *!"#$%
&'('*%R>%&").'*(%$%.-E%(*MH*>D%*)0>D-&*)"(*->D%&';*
)' * G%.. *)' * -" * >D% * #"$-.$%(*)0(#- * 'H">D%'#'*
'>&)>%=#%'B * <.. * >D% * '-F>G)&% * #"$-.$%(* #" * >D#'*
(%$%.-E1%"> *)&% *S+! *T#,%"'%(*)"(* &0" * 0"(%&*
T#"0RB

=*/>$)4.

U#=#>). * 4#="). * 6&-,%''#"=; * 4-0"(* <").H'#';*
V-1E0>%&*J0'#,B

? @1*")*+"+0+%/.'."#*310'AB*

?C? D*0*)+%

CD% *./0* >%,D"#30% * I.)'123+34/#')35,#-'(+,)4
02)(6$3+3L * G)' * (%$%.-E%(* MH * N0)" * 6)1E#"B * W>'*
,-1E&%D%"'#$% * '>0(H * %R,%%(' * >D% * =-). * -F * >D#'*
E)E%&8* M0>; * %''%">#)..H; * #> * 1)H * M% * ')#(* >D)> * #>*
&%E&%'%">'*>G-*)'E%,>'*-F*>D%*)").H5%(*'#=").X*>D%*
(%>%&1#"#'>#, * E)&> *)"(* >D% * '>-,D)'>#, *-& * &%'#(0).*
E)&>B*CD#'*1-(%.*G)'*#"#>#)..H*,-",%#$%(*MH*N0.#0'*
Y&#-" * 41#>D *)"(* Z)$#%& * 4%&&) * O88P; * M0> *./0%
&%F#"%'*,%&>)#"*)'E%,>'*-F*#>;*'0,D*)'*>D%*G%#=D>#"=*
-F* >D%*'E%,>&). *,-1E-"%">' *-"*>D%*M)'#' *-F * >D%#& *
0789B*
CD% * (%>%&1#"#'>#, * E)&> * ,-"'#'>' * #" * '#"0'-#().*
>&)[%,>-&#%'*G#>D*$)&H#"=*)1E.#>0(%;*F&%30%",H*)"(*
ED)'%B*W>*#'*),D#%$%(*MH*1%)"'*-F*>D%*(%E0&)>#-"*-F*
>D%*'E%,>&).*()>)*-M>)#"%(*0'#"=*0/:/%I06,#(4/+-$%
:,"#+$#%/#')35,#-L*)").H'#'B

1
�For�a�detailed�reference�of�this�technique,�see�[6].�
2
�Sound�to�Masking�ratio,�see�O8\PB�

CD% * '>-,D)'>#, * E)&> * #' *).'- * >%&1%(*#$3+;"'1;*
M%,)0'% * #> * #' *),D#%$%(* MH * '0M>&),>#"= * >D%*
(%>%&1#"#'>#,*'#=").*F&-1*>D%*-&#=#").*'#=").B*]-&*
'0,D * E0&E-'%'; * >D% * (%>%&1#"#'>#, * E)&> * #'*
'H">D%'#5%(*E&%'%&$#"=*>D%*ED)'%*).#="1%">*-F*#>'*
,-1E-"%">' * #" * >D% * '%,-"(* '>%E * -F * >D% *)").H'#'B*
CD% * &%'#(0). * E)&> * #' * &%E&%'%">%(* G#>D * "-#'%*
$)&#)M.%*%"%&=H*$).0%'*).-"=*>D%*\^*,&#>#,).*M)"('*
O8\PB
CD%*<C4*>%,D"#30%*D)'*>D%*F-..-G#"=*)($)">)=%'X
)QCD% * 'E.#>>#"= * M%>G%%" * (%>%&1#"#'>#, *)"(*
'>-,D)'>#, *E)&>' *)..-G'*)"*#"(%E%"(%"> *>&%)>1%">*
-F * >G-*(#FF%&%"> *30).#>)>#$% *)'E%,>' *-F *)" *)0(#-*
'#=").B
MQCD%*&%E&%'%">)>#-"*-F*>D%*(%>%&1#"#'>#,*E)&>*MH*
1%)"' * -F * '#"0'-#(). * >&)[%,>-&#%' * #1E&-$%' * >D%*
#"F-&1)>#-"*)"(*E&%'%">'*#>*-"*)*G)H*>D)>*#'*10,D*
,.-'%&*>-*>D% G)H*>D)>*10'#,#)"'*>D#"K*-F*'-0"(B*
CD%&%F-&%; * #> *)..-G' * 1)"H * _,.)''#,)._ * 'E%,>&).*
>&)"'F-&1)>#-"' * I'0,D *)' * >D% * '0EE&%''#-" * -F*
E)&>#).'*-&*>D%#&*F&%30%",H*()>)*>&)"'F-&1#"=L*#"*)*
1-&%*F.%R#M.%*)"(*,-",%E>0)..H*,.%)&%&*G)HB
,QCD%*&%E&%'%">)>#-"*-F*>D%*&%'#(0).*E)&>*MH*1%)"'*
-F * "-#'% * $).0%' *)1-"= * >D% * \^ * ,&#>#,). * M)"('*
'#1E.#F#%' * >D% * #"F-&1)>#-" *)"(* #>' * F0&>D%&*
&%,-"'>&0,>#-"B*+)1%.H;*>D%*,-11-"*)&>#F),>'*>D)>*
)&#'%*#"*'H">D%'#'*0'#"=*-',#..)>-&*M)"K'*-&*<&:/;*
GD%"*>D%*>#1%*-F*)*"-#'H*'#=").*)").H5%(*0'#"=*)*
]]C*#'*G)&E%(*1)H*M%*,-1E.%>%.H*'0EE&%''%(`B

?CE 6*)($)-'0F"+04".#$)'0F"!@;"+0+%/.'.

./0* G)' * #"#>#)..H * (%$%.-E%(* F-& * >D% *=>7%
%"$#&-"1%"> * I=,--,) % >+3? %7"3+@* O^PL; * M0> *)>*
E&%'%">*>D%&%*%R#'>*'%$%&). *ABC*)EE.#,)>#-"'*>D)>*
,)" *E%&F-&1* >D% *./0*)").H'#'; *)1-"=* >D%1* >D%*
=3,");* 6),K)=%*,-11)"(Q.#"%*0>#.#>H *./0.B.>%
O9Pa;*)"(*>D% *./0D* '-F>G)&%*IU#*T#',#);*6)1E#";*

3
� This � is � possible � because � the � residual � part�

representation � allows � its � synthesis � using � noise�

generators. �More �on � this �will �be �further �explained � in�

this�paper.
4
� ATSANAL � is �based �on � the �program �ATSA � (by�

Pampin,�Di�Liscia�and�Moss)�and�was�ported�to�Csound�

105

J-''*O`PLB*CD%*)").H'#'*E)&)1%>%&'*)&%*'-1%GD)>*
"01%&-0';*)"(*10'>*M%*,)&%F0..H*>0"%(*#"*-&(%&*>-*
-M>)#"*=--(*&%'0.>'*O\PB*

<' * (-,01%">%(* #" * O`P; * >D% *<C4 * F#.%' * '>-&% *)*
&%E&%'%">)>#-"*-F*)*(#=#>).*'-0"(*'#=").*#"*>%&1'*-F*
'#"0'-#(). * >&)[%,>-&#%' * I,)..%(*?'#(+'13L * G#>D*
#"'>)">)"%-0' * F&%30%",H; *)1E.#>0(%; *)"(* ED)'%*
,D)"=#"=*).-"=*>%1E-&).*F&)1%'B*b),D*F&)1%*D)'*)*
'%>*-F*E)&>#).';*%),D*D)$#"=*I)>*.%)'>L*)1E.#>0(%*)"(*
F&%30%",H * $).0%' * IED)'% * #"F-&1)>#-" * 1#=D> * M%*
(#',)&(%(* F&-1* >D% *)").H'#'LB *b),D * F&)1% *1#=D>*
).'-*,-">)#"*"-#'%*#"F-&1)>#-";*1-(%.%(*)'*>#1%Q
$)&H#"= * %"%&=H * #" * >D% * \^ * ,&#>#,). * M)"(' * -F * >D%*
)").H'#'*&%'#(0).B*
CD%*<C4*F#.%'*'>)&>*G#>D*)*D%)(%&*)>*GD#,D*>D%#&*
(%',&#E>#-"*#'*'>-&%(*I'0,D*)'*F&)1%*&)>%;*(0&)>#-";*
"01M%&*-F*'#"0'-#().*>&)[%,>-&#%';*%>,BLB*
<F>%& * >D% * D%)(%& * ()>); * >D% * >#1%; *)1E.#>0(%;*
F&%30%",H;*ED)'%*)"(*&%'#(0). *I>D%'%*>G-*1)H*-&*
1)H*"->*M%*E&%'%">L *()>)*-F*%),D*E)&>#). * #"*%),D*
F&)1%*)&%*'>-&%(*)'*@a*M#>'*(-0M.%*$).0%'B
CD%*F-&1)>*-F*>D%*<C4*F#.%'*,)"*M%*F-0"(*#"*O`P*
M0>*#>*#'*#1E-&>)">*>-*K%%E*#"*1#"(*>D)>;*)>*E&%'%">;*
>D%*<C4*F#.%'*,-1%*#"*F-0&*>HE%'X

CHE% * 8X * -".H * '#"0'-#(). * >&)[%,>-&#%' * G#>D*
)1E.#>0(%*)"(*F&%30%",H*()>)*-"*F#.%B

CHE% * \X * -".H * '#"0'-#(). * >&)[%,>-&#%' * G#>D*
)1E.#>0(%;*F&%30%",H*)"(*ED)'%*()>)*-"*F#.%B*

CHE%*`X *'#"0'-#(). *>&)[%,>-&#%' *G#>D*)1E.#>0(%;*
)"(*F&%30%",H*()>)*)'*G%..*)'*&%'#(0).*()>)*-"*F#.%B*

CHE%*aX *'#"0'-#(). *>&)[%,>-&#%' *G#>D*)1E.#>0(%;*
F&%30%",H*)"(*ED)'%*()>)*)'*G%..*)'*&%'#(0).*()>)*
-"*F#.%B
W"*]#=0&%'**)"(*`;*E.->'*-F*>D%*U%>%&1#"#'>#,*)"(*
-F*>D%*2%'#(0).*E)&>'*-F*)*'>%)(H;*aa:*c5*'-0"(*-F*
)*].0>%*,)"*M%*'%%"^B*
*

]#=0&%*8X*6.->*-F*>D%*U%>%&1#"#'>#,*E)&>*-F*)"*
./0*)").H'#'B

by�Itzvan�Varga.
5
�These�plots�were�obtained�using�the�ATSH�program�

(Di�Liscia,�Pampin�and�Moss)�[3].

]#=0&%*\X*6.->*-F*>D%*2%'#(0).*E)&>*-F*)"*./0%
)").H'#'B

E)*+".2*3#)+%"4+#+"./0#1*.'.

<>*E&%'%">;*M%'#(%'*>D%*-&#=#").*$%&'#-"*#"*=>7;*
'%$%&). *ABC*)EE.#,)>#-"' * F-& *./0* 'H">D%'#'*
).&%)(H * %R#'>B * 4%$%&). * !S%"' * F-& * >D% *=3,");%
E&-=&)1*G%&% *(%$%.-E%(*MH*<.%R *+-&1)"*O8:PB*
<.'-;*>D%*./0D*E&-=&)1*O`P;*)..-G'*>D%*'H">D%'#';*
%(#>#"=*)"(*>&)"'F-&1)>#-"*-F *./0*()>)*MH*1%)"'*
-F *) * =&)ED#, * #">%&F),%B *0"?$#=,11+;$#* #">%&F),%'*
F-& *./0* I#",.0(#"= *@1'33$3* >- * &%)(*./0* F#.%' *)'*
G%..*)'*!S%"'*>-*(-*>&)"'F-&1)>#-"*)"(*'H">D%'#'L*
)&% * #",.0(%(* #" * N-'D *6)&1%">%&_' *!S%" * .#M&)&H;*
GD#,D*#'*"-G*E)&>*-F*>D% *0"?$#=,11+;$#* '>)"()&(*
(#'>&#M0>#-"B

EC?)*+".2*3#)+%"4+#+"./0#1*.'."B.'0F"!&

CD%*'H">D%'#'*E&-,%(0&%*-F*)"*./0*)").H'#'*G)'*
(%'#="%(*#"*>D%*F-..-G#"=*'>)=%'X
8QCD%*./0*)").H'#'*()>)*10'>*M%*&%)(*F&-1*)*F#.%;*
E)&'%(;*)"(*.-)(%(*#"*1%1-&HB*CD%*()>)*-F*>D%*F#.%*
D%)(%&*I1)#".H*>D%*./0* F#.%*>HE%;*#>'*(0&)>#-";*#>'*
F&)1%*&)>%;*)"(*>D%*)1-0">*-F*E)&>#).'*E%&*F&)1%L*
10'>*M%*).'-*(%,-(%(*)"(*'>-&%(B
\Q<,,-&(#"=*>-*>D% *./0* F#.%*>HE%;*>D%*F&%30%",H;*
)1E.#>0(%*)"(*ED)'%*I#F*)"HL*)"(*I#F*%R#'>#"=*)"(*
&%30#&%(L * >D% %"%&=H*#"F-&1)>#-"*-F * >D%* &%'#(0).*
E)&>*F-&*%),D*F&)1%;*10'>*M%*'%">*)>*>D%*&#=D>*>#1%*
I-&*G#>D*1-(#F#,)>#-"'*>D)>*G#..*G)&E*>D%*>#1%*-F*
>D% * -&#=#"). * '#=").; * #F * (%'#&%(L * >- * >D% * 'H">D%'#'*
0"#>'B
`QWF * >D% *./0* F#.% * (-%' * "-> * D)$% * &%'#(0). * ()>)*
I>HE%' * 8 * -& * \L; * 0'#"= *) * M)"K * G#>D *)' * 1)"H*
'#"0'-#(). * -',#..)>-&' *)' * E)&>#).'; * G#>D * >D%#&*
$)&#)M.%*)1E.#>0(%*)"(*F&%30%",H*$).0%'*F-&*%),D*
F&)1% * E&-E%&.H * #">%&E-.)>%(* G-0.(* '0FF#,% * >-*
),D#%$%*>D%*(%>%&1#"#'>#,*E)&>*'H">D%'#'B*
aQWF*>D%*./0* F#.%*D)'*&%'#(0).*()>)*I>HE%'*`*-&*aL;*
>G-*'E%,#). *,)'%' *10'> *M%*,-"'#(%&%(B *CD% *F#&'>*
,)'% * #' * GD%" * -".H * >D% * &%'#(0). * E)&> * #' * >- * M%*
'H">D%'#5%(B *CD% *'%,-"(*,)'% * #' *GD%"*M->D; * >D%*
(%>%&1#"#'>#, *)"(* >D% * &%'#(0). * E)&> *)&% * >- * M%*
'H">D%'#5%(B
W"*M->D*,)'%';*'-F>G)&%*0"#>'*>D)>*E&-(0,%*&)"(-1*
$).0%'*#"*>D%*&)"=%*-F*Q8*>-*8*G#>D*E%&#-(#,#>H *)%

106

IF&%30%",H*5*EFd)L*#">%&E-.)>#"=*>D%1*.#"%)&.H;*)&%*
0'%(*)'*'-0&,%'*>-*&%,-"'>&0,>*>D%*-&#=#").*"-#'%B*
<'*'>)>%(*#"*OeP@;*'0,D*0"#>'*IGD#,D*G#..*M%*>%&1%(*
F&-1 * D%&% * -" *#');+GL * E&-(0,% *) * '#="). * GD-'%*
'E%,>&01 * D)' *) * 1)#" * .-M% *)> * : *DH*)"(*
IB2I"+3(J5#$I"$)@2d5*4%FL*.-M%'*'>)&>#"=*)>*I*5%K%5%L
9L;*)"(*'E),%(*MH*F&%30%",H*#">%&$).'*-F*5*DHB*CD%*
)1E.#>0(% * E%)K * -F * >D% * '%,-"(* .-M% * #'*
)EE&-R#1)>%.H*\a*;M*M%.-G*>D%*)1E.#>0(%*E%)K*-F*
>D%*1)#"*.-M%; *)"(*>D%*&%1)#"#"=*.-M%'*(%,&%)'%*
%$%"*1-&% #"*)1E.#>0(%*)'*>D%#&*F&%30%",H*&#'%'B*WF*
'0,D*'#=").*#'*10.>#E.#%(*MH*)*'#"0'-#().*'#=").*-F*
F&%30%",H*5@;*#>'*1)#"*.-M%*G#..*M%*,%">%&%(*#"*>D#'*
F&%30%",H*(0%*>-*>D%*,-"$-.0>#-"*-F*>D%*'E%,>&)*-F*
M->D*'#=").';*)"(*>D%*&%'0.>*#'*$%&H*'#1#.)&*>-*M)"(Q
E)''*F#.>%&%(*"-#'%*G#>D*,%">%&*F&%30%",H*)> *@5B*<*
E.->*-F*-"%*-F*'0,D*'#=").'*#'*'D-G"*#"*]#=0&%*`B*

]#=0&%*`X*)*E.->*-F*>D%*'E%,>&01*-F*>D%*-0>E0>*-F*)*
8:::*DH*#');+*0"#>*,-"$-.$%(*MH*)*'#"%*G)$%*)>*

\:::*DH%)"(*')1E.%(*)>*aaB8*NDH*<*::/%-F*8:\a*
')1E.%'*G#>D*)*M1'@O-')4D'##+3*'1-->D#"=*

G#"(-G*G)'*0'%(*#"*>D%*)").H'#'B
*

W" * >D% * F#&'> * ,)'% * I-".H * &%'#(0). * 'H">D%'#'L; * >D%*
-0>E0>*'#=").*#'*>D%*'01*-F*>D%*-0>E0>*'#=").'*-F*\^*
#');+* 0"#>' * G#>D * >D%#& * F&%30%",#%' * '%> *)' * >D%*
M)"(G#(>D*-F*%),D*-"%*-F*>D%*,&#>#,).*M)"(';*%),D*
-"% *1-(0.)>%(* MH *) * '#"0'-#(). * '#="). * G#>D * #>'*
F&%30%",H * '%> *)' * >D% * ,%">%& * F&%30%",H * -F * >D%*
,-&&%'E-"(#"= * ,&#>#,). * M)"(B * CD% *)1E.#>0(%' * -F*
%),D*-"%*-F*>D%*&%'0.>#"=*\^*'#=").'*)&%*',).%(*MH*
>D% *870* E-G%& * $).0%' * -M>)#"%(* #" * >D% * &%'#(0).*
)").H'#' * F-& * %),D * ,&#>#,). * M)"(*)"(* F&)1%* B *CD%*
.)>>%& *870* $).0%' * F-& * %),D * F&)1% *)&% * .#"%)&.H*
#">%&E-.)>%(B*
CD%*'%,-"(*,)'%*#'*'-1%GD)>*1-&%*,-1E.%RB*CD%*
&%'#(0).*%"%&=H*$).0%'*F-&*%),D*,&#>#,).*M)"(*10'>*
M%*f&%Q#"[%,>%(f*#">-*%),D*(%>%&1#"#'>#,*'#"0'-#().*
>&)[%,>-&H *),,-&(#"= * >- * >D% * ,&#>#,). * M)"(*GD%&%*
%),D*-"%*-F*>D%'%*>&)[%,>-&#%'*#'*.-,)>%(B*4#",%*>D#'*
#"F-&1)>#-"*#'*"->*'>-&%(*#"*>D% *./0* F#.%';*)"(*>-*
')$% * ,-1E0>)>#-" * >#1%; * >D#' * 10'> * M% *),D#%$%(*
M%F-&%*>D%*&%).Q>#1%*'H">D%'#'*E&-,%''B*<*F0",>#-"*

6
�See�pages�205�207.�

7
�Just�because�the�randi�UGen�of�the�Csound �

program�generates�this�kind�of�signals.�

>D)> * %$).0)>%' * >D% * .-,)>#-"' * #" * >D% * \^ * ,&#>#,).*
M)"(' * -F * %),D * F&%30%",H * $).0% * F-& *).. * >D%*
'#"0'-#(). * >&)[%,>-&#%' * #' * 0'%(* >- * ,-1E0>% *)"(*
'>-&%*#"*1%1-&H*$)&#)M.%*%"%&=H*$).0%'*-F*"-#'%*
F-&*%),D*E)&>#).*)>*%),D*F&)1%B*CD%*&%'0.>#"=*'#=").*
F-& * >D% *'H">D%'#' *-F *M->D; * >D% *(%>%&1#"#'>#, *E)&>*
)"(* >D% * &%'#(0). * E)&> * -F * %),D * E)&>#).; *O; * G#>D*
F&%30%",H*5O;*)1E.#>0(%*'O)"(*"-#'%*%"%&=H*#OP*#'*
1)(% * -F * >D% * '01 * -F * >D% * (%>%&1#"#'>#, * E)&>*
I'H">D%'#5%(*),,-&(#"=*>-*>D%*E&-,%(0&% (%',&#M%(*
#" * '>)=% * `L * E.0' * >D% * (%>%&1#"#'>#, * E)&> * IG#>D*
,D)"=#"= * F&%30%",H *5O; * M0> * ',).%(* MH * >D% *870%
$).0%'*-F*"-#'%*F-&*%),D*E)&>#).;*#O;*#"'>%)(*-F*>D%*
(%>%&1#"#'>#, *)1E.#>0(% *'OL; *1-(0.)>%(*MH *"-#'%*
IE&-(0,%(*MH*#');+ %0"#>'*G#>D*$)&#)M.%*F&%30%",H*
E&-E-&>#-").*>-*5OLB*CD%*F-..-G#"=*F-&10.)*'D-G'*
>D% * ,-1E0>#"= * -F *) * ')1E.%; *); * -F * >D% * -0>E0>*
'#=").9X

,"(?"()!
O!:

?'#!8

"' O '#" "\" 5 O)#8 $%# O '#" "\" 5 O)#8$#');+ "5 O 3$$

gD%&% *?'#* #' * >D%*"01M%&*-F*E)&>#).' *I'#"0'-#().*
>&)[%,>-&#%'L; *3* #' *) * ',).#"= * F),>-& *)"(*8* #' * >D%*
4)1E.#"=*2)>%B*CD%*',).#"=*F),>-&*3*'D-0.(*M%*.%''*
>D)" * 8; * M%,)0'% * >D% * &%'0.>#"= * F&%30%",H * $).0%'*
I5O3L *G#.. *(%>%&1#"% * >D% * &)>% *)> *GD#,D * >D% *#');+%
0"#>'*=%>*)*"%G*&)"(-1*$).0%*)"(;*%''%">#)..H;*>D%*
M)"(G#(>D * -F * >D% * &%'-")"> * E%)K' * -F * >D% * -0>E0>*
'#=").*'E%,>&)eB*
CD%*F-..-G#"=*'%,>#-"' *G#.. *%RE.)#"*D-G*'%$%&).*
!"#$%&'('*%R>%&").'*G%&%*,&%)>%(*)"(d-&*1-(#F#%(*
>-*E&-E%&.H*,-""%,>*>D%1*#"*-&(%&*>-*E%&F-&1*>D%*
'H">D%'#'*),,-&(#"=*>-*>D%*'>)=%'*)"(*>%,D"#30%'*
)M-$%*1%">#-"%(B*W>*#'*)''01%(*>D)>*>D%*&%)(%&*#'*
F)1#.#)& * G#>D * >D% * F0"()1%">).' * -F *!"#$ % &'('%
E&-=&)11#"=;*)>*>D%*$%&H*.%)'>B*CD%*'-0&,%*,-(%*
-F*)..*>D%*%R>%&").';*)'*G%..*)'*'-1%*./0*F#.%';*)"(*
'%$%&). *!"#$%&'('*%R)1E.%*E)>,D%'*,)"*M%*F-0"(*
)>*O8PB***

ECE G*+4'0F"#1*"4+#+H"@1*"'(,#$'-"*I#*)0+%

CD% *'(3#$';* %R>%&"). *IMH*<.%R*+-&1)"*O?PL; * F-&*
!"#$%&'(';*G)'*E&-=&)11%(*>-*&%)(*./0*F#.%'*)"(*

8
� The �deterministic � part � frequency � and � amplitude�

values�(fk,�ak)�as�well�as�the�RMS�power�of�the�residual�

part �values �(rk) �must �be �obtained �by � interpolating �the�

values�of�the�actual�frame�and�the�next�one�according�to�

the�desired�time.�
9
�The�bandwidth�of�the�main�lobe�of�the�spectra�will�

be �of �2fks �Hz� A � scaling � factor �of �0.1 � (10% �of �fk)�

seems�to�work�fairly�well�for�this�application,�but�even�

a�non��uniform�scaling�could�be�applied�in�order�to�get�

'optimal'�bandwidth�values�as�a�function�of�frequencies�

fk.

107

>- * '%"(* #>' * ()>) * >- * >D% * &%30#&%(* 'H">D%'#' * 0"#>'B*
b''%">#)..H;*>D#'*-M[%,>*>)K%'*)"*./0*F#.%;*E)&'%'*#>'*
()>) *)"(* '>-&%' * >D%1 * #" * 1%1-&H *)"(*)..-G'*
'%"(#"=*>D%1*>-*>D%*&%30#&%(*'H">D%'#'*0"#>'B*CD%*
-M[%,>*%RE%,>'*)*'0,,%''#-" -F*51,'('*#"(#,)>#"=*>D%*
>#1% * -F * >D% *)").H'#' * >D)> * #' * &%30#&%(* >- * M%*
'H">D%'#5%(B*<,,-&(#"=*>-*>D%*>#1%*$).0%*&%,%#$%(;*
>D% * F&)1% *-F * >D% *)").H'#' *GD%&% * #> * #' * .-,)>%(* #'*
F%>,D%(; *)"(* #>' * ,-&&%'E-"(#"= * ()>) * $).0%' *)&%*
-M>)#"%(*MH*.#"%)&*#">%&E-.)>#-"*-F*>D%*()>)*-F*>D%*
,0&&%">*)"(*>D%*"%R>*F&)1%';*)"(*'%">*>D&-0=D*>D%*
&%'E%,>#$%*,"(1$(3B*
CD% *)0>D-& * -F * >D#' * E)E%& * 1)(% * '%$%&).*
#1E&-$%1%">'*>-*>D% *'(3#$';* %R>%&").*#"*-&(%&*>-*
)(D%&%*>-*>D%*"%%('*-F*>D%*'H">D%'#'*0"#>'*>D)>*)&%*
>- *M% * F0&>D%& *0'%(B *CD% *1-(#F#,)>#-"' *)&% * .#'>%(*
M%.-G*)"(*M&#%F.H *%RE.)#"%(; *M0> * >D%#& * &%.%$)",%*
G#.. * M%,-1% * 1-&% * 0"(%&'>)"()M.% * #" * >D% * "%R>*
'%,>#-"';*GD%&%*>D%*'H">D%'#'*0"#>'*)&%*%RE.)#"%(B

8QW",.0'#-"*-F*)"*%R>&) *,"(1$(* F-&*>D%*-0>E0>*-F*
>D% * D%)(%& * ()>) * -F * >D% *./0* F#.%B *<' * E&%$#-0'.H*
1%">#-"%(; * K"-G.%(=% * -F * >D% * >HE% * IGD%>D%&*
&%'#(0).*()>)*#'*E&%'%">*-&*"->L*)"(*-F*>D%*(0&)>#-"*
)"(*"01M%&*-F*E)&>#).'*-F*>D%*-E%"%(*F#.%;*)>*.%)'>;*
#' * "%%(%(* #" * -&(%& * >- * E&-E%&.H * '%> * >D%*
,-&&%'E-"(#"=*'H">D%'#'*0"#>'*)"(*>-*'%"(*>-*>D%1*
>D%*>#1%*()>)B*CD%*D%)(%&*()>)*#'*'%">*#"*>D%*F-&1*
-F*)*1+3(*-F*51,'(3*-",%*)*F#.%*#'*-E%"%(B

\QW",.0'#-"*-F*)*F0",>#-"*>-*,-1E0>%*>D%*&%'#(0).*
"-#'%*$).0%'*,-&&%'E-"(#"=*>-*%),D*E)&>#).;*F-&*>D%*
,)'%*G%&%*&%'#(0).*#"F-&1)>#-"*#'*E&%'%">*)"(*M->D;*
(%>%&1#"#'>#, *)"(* &%'#(0). * 'H">D%'#'; *)&%*
&%30#&%(8:B * WF* >D%*F#.%*D)'*&%'#(0). *()>); * >D%"*>D#'*
F0",>#-" * #' * ,)..%(* -",% * #> * #' * -E%"%(; *)"(* >D%*
&%'0.>#"=*$).0%'*F-&*%),D*E)&>#).*)>*%),D*F&)1%*)&%*
'>-&%(*#"*1%1-&HB

`QW",.0'#-"*-F*)"*%R>&) *,"(1$(* F-&*>D%*-0>E0>*-F*
>D%*"-#'%*$).0%'*F-&*%),D*E)&>#).*,-1E0>%(*#"*\B

aQW",.0'#-"*-F*)"*%R>&) *,"(1$(* F-&*>D%*-0>E0>*-F*
>D% * #"(%R * I#B%B; * >D% * E)&>#). * "01M%&LB *CD% * E)&>#).*
"01M%& * #F * '%"> *)') *51,'(* $).0% * M%F-&% * #>'*
)1E.#>0(%; *F&%30%",H*)"(*"-#'% *I#F *)"HL*()>)*)&%*
'%">B*

^QJ-(#F#,)>#-" * -F * >D% * -0>E0> * F-&1)> * -F * >D%*
)1E.#>0(%; * F&%30%",H; * ED)'% *)"(* "-#'% * $).0%'B*
CD%'% *)&% *"-G*'%"> *)' * #"(%E%"(%"> * F.-)> *$).0%'*
IG#>D*>D%#&*E)&>#).*#"(%R*E&%,%(#"=*>D%1L;*#"'>%)(*
-F*)'*1+3(3*-F*51,'(*$).0%'B*
CD%*1-(#F#,)>#-"'*a*)"(*^*G%&%*1%)">*>-*'#1E.#FH*
>D%*,-""%,>#-"'*G#>D*>D%*'H">D%'#'*0"#>'B

10
� 40,D *=* .)"=0)=% * F0",>#-" * IQ');J$)$#R2J(,J#$3L*

G)'*>)K%"*F&-1*>D%*)").H'#'*%"=#"%*,-(%*-F*>D%*E&-=&)1*

./0.*IMH*6)1E#";*U#*T#',#)*)"(*J-''LB*

ECJ ;'0#1*.'K'0F"#1*"4*#*)-'0'.#'3 "2+)#H "@1*"
.,/0'123"*I#*)0+%

WF*-".H* >D%*'H">D%'#' *-F *>D%*(%>%&1#"#'>#, *E)&> * #'*
&%30#&%(;*>D% *'(3#$';* %R>%&"). *1)H*M%*,-""%,>%(*
G#>D*>D%*,3@Q')OS*%R>%&").*IMH*2#,D#%*b)K#";*OaPLB*
CD#' * %R>%&"). * #' * (%'#="%(* >- * E%&F-&1 *)((#>#$%*
'H">D%'#' *)"(* E&-(0,%' * #>' * -0>E0> *)0(#- * '#=").*
>D&-0=D >D%*0'%*-F*) *1,,O"?%,3@+11'(,#%Q')OB*]-&*
M%>>%& * E%&F-&1)",%; * >D% * -',#..)>-& * 0"#>' *)&% * "->*
#">%&E-.)>#"=;*M0>*)'*>D%*(%F)0.>*I'#"%L*>)M.%*.%"=>D*
0'%(*#'*.)&=%*%"-0=D*I@^^`@*$).0%'L;*>D%*)&>#F),>'*
-F * >&0",)>#-" *)&% * 1#"#1#5%(88B * CD% *,3@Q')Oh*
%R>%&"). * >)K%' *@,)(#,1 % #'($* '0,,%''#-"' *-F * >D&%%*
51,'(3* I%),D*-"%*M%#"=*&%'E%,>#$%.H*>D%*-',#..)>-&*
"01M%&; * #>' * F&%30%",H *)"(* #>' *)1E.#>0(%LB * CD%*
&%,%#$%(*$).0%'*)&%*0'%(*>-*,-">&-.*>D%*-0>E0>*-F*
>D%*,-&&%'E-"(#"=*-',#..)>-& *)"(*)&%*#">%&E-.)>%(*
.#"%)&.H*)>*)*&)>%*>D)>*,)"*M%*'%>*MH*>D%*0'%&B*CD%*
(%F)0.> * >)M.%*)"(*#>'*'#5%*)&%*)EE&-E&#)>%*F-& *>D%*
E0&E-'%'*-F*>D%*<C4*(%>%&1#"#'>#,*E)&>*'H">D%'#';*
M0> * >D% * 0'%& *1)H %RE%%"> * G#>D * ->D%& * G)$%*
'D)E%'*)"(*>)M.%*'#5%'8\B*

ECL ;'0#1*.'K'0F"#1*")*.'4B+% "2+)#H "@1* "'(,4
1.5,63"*I#*)0+%

WF * -".H * >D% * 'H">D%'#' * -F * >D% * &%'#(0). * E)&> * #'*
&%30#&%(;*>D% *'(3#$';* %R>%&"). *1)H*M%*,-""%,>%(*
G#>D*>D%*'(34),+32S*%R>%&").*IMH*6)M.-*U#*T#',#)LB*
CD% * -0>E0> *)0(#- * '#="). * -F * >D#' *$T($#)'1* #'*
-M>)#"%(*)((#"= * >D% * -0>E0>' * -F * \^ *#');+* 0"#>';*
%),D * -"% * G#>D * #>' * F&%30%",H *)([0'>%(* >- * >D%*
M)"(G#(>D*-F*%),D*,&#>#,).*M)"(*)"(*1-(0.)>%(*MH*
)*'#"%*G)$%*GD-'%*F&%30%",H*#'*)([0'>%(*MH*>D%*
,%">&). * F&%30%",H * -F * %),D * ,&#>#,). * M)"(B * CD%*
-0>E0> *-F *%),D *#');+* 0"#> * #' *',).%(*MH*>D% *870%
E-G%&*-F*>D%*&%'#(0). *E)&>*-F*%),D*,&#>#,). *M)"(B*
CD%'%*\^*870*$).0%'*F-&*%),D*)").H'#'*F&)1%*)&%*
&%,%#$%(*F&-1*>D%*'(3#$';*%R>%&").*#"*>D%*F-&1*-F*
) *51,'(% 1+3(*)"(* .#"%)&.H * #">%&E-.)>%(B * CD%*
#">%&E-.)>#-"*&)>%*1)H*M%*'%>*MH*>D%*0'%&B

ECM ;'0#1*.'K'0F " #1* " 4*#*)-'0'.#'3 " +04 " #1*"
)*.'4B+%"2+)#.H"@1* '(,4,511.53"*I#*)0+%

WF * >D% * 'H">D%'#' * -F * M->D; * >D% * &%'#(0). *)"(* >D%*
(%>%&1#"#'>#, * E)&>' * #' * &%30#&%(; * >D% *'(3#$';%
%R>%&"). *1)H*M% *,-""%,>%(*G#>D * >D% *'(343+)),+S%
%R>%&"). *IMH*2#,D#% *b)K#"*)"(*6)M.-*U#*T#',#)LB*

88* <'*'>)>%(*MH*J--&% *IOeP; *EEB *8@@L; *) * >&0",)>#"=*
-',#..)>-&*&%)(#"=*)*>)M.%*-F*@^^`@*$).0%';*E&-(0,%'*)*
3+R)'14(,4$##,#4),+3$%#'(+,*-F*)EE&-R#1)>%.H*9^*;MB*

12
�Possibly�obtaining�strange,�but�musically�

interesting,�results!

108

CD#' * %R>%&"). * G)' * E&-=&)11%(* 1-(#FH#"= * >D%*
,3@Q')OS*%R>%&").*IMH*2#,D#%*b)K#"LB*
i)'#,)..H; * >D% *)M-$% * 1%">#-"%(* 1-(#F#,)>#-"'*
#",.0(%*>D%*)((#>#-"*-F*)*M)"K*G#>D*)'*1)"H*#');+%
0"#>' *)' * (%>%&1#"#'>#, * E)&>#).' *)&% * >- * M%*
'H">D%'#5%(;*E.0'*)" *+)1$(* >-*&%>&#%$%*>D%*&%'#(0).*
2J4*E-G%&*()>)*F-&*%),D*E)&>#).;*GD#,D*10'>*M%*
'%">*MH*'(3#$';*)'*)*'0,,%''#-"*-F*51,'(*$).0%'B*<'*
%RE.)#"%(* #" * '%,>#-" * \B8; * #" * >D#' * ,)'% * >D%*
,-&&%'E-"(#"=*"-#'%*-F*>D%*&%'#(0). *E)&> *10'>*M%*
&%Q#"[%,>%(*#"*%),D*(%>%&1#"#'>#,*>&)[%,>-&HB*CD#'*#'*
,-1E0>%(*E&%$#-0'.H*MH*>D%*'(3#$';*%R>%&").*-",%*
)*F#.%*D)$#"=*M->D*&%'#(0).*)"(*(%>%&1#"#'>#,*E)&>*#'*
.-)(%(B * CD% * &%'#(0). * E)&>; * #" * >D#' * ,)'%; * #'*
'H">D%'#5%(*0'#"= *#');+* 0"#>' *)'*'-0&,%'; *M0>*>D%*
-0>E0>*-F*%),D*-"%*#'*10.>#E.#%(*MH*>D%*-0>E0>*-F*
%),D * (%>%&1#"#'>#, * >&)[%,>-&H *)"(* ',).%(* MH * >D%*
2J4*-F*>D%*"-#'%*,-1E0>%(*F-&*%),D*E)&>#).B*CD%*
(%>%&1#"#'>#, *E)&> * #' * 'H">D%'#5%(*)' *%RE.)#"%(* #"*
'%,>#-"*\B`B*<"*%R>&)*'";+,%,"(1$(*G)'*)((%(*>-*>D%*
%R>%&"). *)' * G%..; * #" * -&(%& * >- * D)$% * #"(#$#(0).*
-0>E0>'*-F*M->D;*>D%*&%'#(0).*)"(*>D%*(%>%&1#"#'>#,*
E)&>'B *CD#' *)..-G' * >D% *0'%& * >- * F0&>D%& *1#R * >D%1*
G#>D*#"(#$#(0).*)1E.#>0(%*',).#"=;*#F*(%'#&%(B*CD%*
0'%& *1)H* 'H">D%'#5% * -".H * >D% * (%>%&1#"#'>#, * E)&> *
G#>D*>D#'*%R>%&"). *)'*G%..; *M0>*(-#"=*'-*G#>D*>D% *
,3@Q')OS* %R>%&"). * I)' %RE.)#"%(* #" * '%,>#-" * \B`L*
G#..*M%*10,D*.%''*V6!*,-"'01#"=B

J <$03%B.'$0.

CD%*'H">D%'#5%(*'#=").'*-F*)..*>D%*E&%'%">%(*0"#>'*
G%&%*F-0"(*-F*'#1#.)&*30).#>H*-F*>D%*-"%'*E&-(0,%(*
MH* >D%*'H">D%'#' *0"#>' * .#'>%(* #" * >D%*M%=#""#"=*-F*
4%,>#-" * \B *Y>D%& * '>&)>%=#%' * F-& * 'H">D%'#5#"= * >D%*
&%'#(0).*E)&>*'0,D*)';*F-&*#"'>)",%;*)*M)"K*-F*Q');4
?'33*F#.>%&'*E&-,%''#"=*U6+($%),+3$*'-0&,%';*,-0.(
M%*0'%(*)'*G%..B*c-G%$%&;*>D%*1%>D-(*(%',&#M%(*#"
>D#'*E)E%&*'%%1'*>-*E&-$#(%*)*M%>>%&* _M.%"(#"=_*-F*
>D% * &%'#(0). *)"(* (%>%&1#"#'>#, * '#=").' * G#>D * >D%*
)((#>#-").*M%"%F#>*-F*M%#"=*.%''*V6!*,-"'01#"=B
CD% * %R)1E.% * 6)>,D%' * >D)> * G%&% * (%$%.-E%(*)&%*
'#1E.%;*)"(*-".H*(%).*G#>D*>D%*'H">D%'#'*-F*)..*>D%*
E)&>#).'*G#>D*1-(#F#,)>#-"'*#"*>D%*(0&)>#-"*-F*>D%*
-0>E0> * '#="). *)"(* #>' * F&%30%",HB * c-G%$%&; * >D%*
%R)1E.%'*'0==%'>*>D)>;*0'#"=*>D%*!"#$%&'('*>--.K#>*
>D)>*G)'*E&%'%">%(*#"*>D#'*E)E%&;*>D%*0'%&*'K#..%(*#"*
!"#$ % &'('* E&-=&)11#"= * 1)H *),D#%$% * $%&H*
#">%&%'>#"=*>&)"'F-&1)>#-"'*#"*)*&%.)>#$%.H*'>&)#=D>*
F-&G)&(*G)HB
]0>0&% * &%'%)&,D * G#.. * M% * F-,0'%(* #" * >D%*
(%$%.-E1%"> * -F *)" *)").H'#' * %R>%&"). * >- * E%&F-&1*
D#=D * .%$%. *)").H'#' * -F * >D% *./0* ()>); * G#>D * >D%*
E0&E-'%*-F*)..-G#"=*&%). *>#1%*>&)"'F-&1)>#-"'*-F*
>#1M&% *)"(* 'E%,>&). *1-&ED#"= * M%>G%%" * (#FF%&%">*
'-0"('B*

L !3&0$>%*4F*-*0#.

CD%*)0>D-& * >D)"K'* >D% *C)+*$#3+;';%B'@+,)'1 %;$ %
V"+1-$3* ICBV; * i0%"-' * <#&%'; * <&=%">#")L * F-&*
'0EE-&>#"= *)"(* D-'>#"= * >D#' * &%'%)&,D; * >- * N0)"*
6)1E#"*I>D%*(%$%.-E%&*-F*>D% *./0* >%,D"#30%L*F-&*
D#'*)($#,%;*)"(*>-*<.%R*+-&1)"*)"(*2#,D#%*b)K#";*
>D%*)0>D-&'*-F*>D% *!"#$%&'('* %R>%&").'*>D)>*G%&%*
>)K%"*)'*>D%*M)'#'*F-&*>D#'*(%$%.-E1%">B

G*(*)*03*."

O8P*Y',)&*6)M.-*U#*T#',#)B*\:8`B*!&4./0%/,,1O+(B*
D>>E'XddE0&%()>)B#"F-dJ%1M%&'dE(#.#',#)d)>'QE(

O\P*Y',)&*6)M.-*U#*T#',#)*)"(*N0)"*6)1E#"B*\::\X*
./0D%7')"'1;*
D>>EXdd10'#,)B0"3B%(0B)&dE%&'-").%'d-(#.#',#)d'-F>
G)&%d<C4cQ(-,BD>1

O`P*Y',)&*6)M.-*U#*T#',#)*)"(*N0)"*6)1E#"B*\::`B*
4E%,>&). *)").H'#' * M)'%(* 'H">D%'#' *)"(*
>&)"'F-&1)>#-" * -F * (#=#>). * '-0"(X * >D% * <C4c*
E&-=&)1B *!#,@$$;+)R3 % ,5 % (6$ % <W % M#'H+1+') %
02-?,3+"-%,5%=,-?"($#%7"3+@;*+!VYJ;*J#")'*
S%&)#';*i&)'#.B*

OaP*2#,D#%*b)K#"B*\::?B*,3@Q')OSB*
D>>E'Xdd=#>D0MB,-1dE(.\-&KdE(d>&%%d1)'>%&d%R>%&")
.'d-',M)"Kh

O^P*N0)"*6)1E#"B*8eeeB*<C4X*)*T#'E*%"$#&-"1%">*
F-& * 4E%,>&). * J-(%.#"=B *!#,@$$;+)R3 % ,5 % (6$ %
<)($#)'(+,)'1 % =,-?"($# % 7"3+@ % =,)5$#$)@$;*
i%#[#"B

O@P*N0)"*6)1E#"B*\:88B*./0J(6$,#2;*
D>>EXddG#K#B(R)&>'BG)'D#"=>-"B%(0d=&-0E'd=%"%&).d
G#K#d`eF:?d)>>),D1%">'d^^M(@d<C4j>D%-&HBE(F

O?P * N0)" * 6)1E#"; *Y',)& * 6)M.- *U# * T#',#); * 6%>%*
J-'' *)"(* <.%R * +-&1)"B * \::aB * <C4 * 0'%&*
W">%&F),%'B *!#,@$$;+)R3 % ,5 % (6$ % <)($#)'(+,)'1 %
=,-?"($# %7"3+@ %=,)5$#$)@$; J#)1#*!"#$%&'#>H;*
!4<B

O9P*W>5$)"*k)&=);**./0.B.>%;,@"-$)('(+,);*
D>>EXddGGGB,'-0"('B,-1d1)"0).dD>1.d!>#.#>H<>')
BD>1.

OeP *]B * 2#,D)&(* J--&%B8ee:B *X1$-$)(3 % ,5 %
=,-?"($# 7"3+@Y* 6&%">#,%Qc)..B; * +%G * N%&'%H;*
!4<B

O8:P*<.%R*+-&1)"B*\::aB*=3,");%./0%3?$@(#'1 %
?#,@$33+)R%CA$)3;*

109

D>>EXddGGGB,'-0"('B,-1d1)"0).dD>1.d4E%,>&).<C
4BD>1.

O88P*Z)$#%&*4%&&)*)"(*N0.#0'*YB*41#>D*WWWB*8ee:B*<*
4-0"(* <").H'#'d4H">D%'#' * 4H'>%1 * i)'%(* -" *)*
U%>%&1#"#'>#, * E.0' * 4>-,D)'>#, * U%,-1E-'#>#-";*
=,-?"($#%7"3+@%Z,"#)'1; *k-.B8a*la;*JWC*6&%'';*
!4<B

O8\P * b&"'> * mG#K%& *)"(* c0=- *])'>.B * 8ee:B*
!32@6,'@,"3(+@3 % :'@(3 % '); % 7,;$13B * 4E&#"=%&;*
i%&.#";*c%#(%.M%&=B

110

Multi-Channel Noise/Echo Reduction in PulseAudio on
Embedded Linux

Karl FREIBERGER and Stefan HUBER and Peter MEERWALD
bct electronic GesmbH

Saalachstraße 88
A-5020 Salzburg, Austria

{k.freiberger, s.huber, p.meerwald}@bct-electronic.com

Abstract
Ambient noise and acoustic echo reduction are indis-
pensable signal processing steps in a hands-free au-
dio communication system. Taking the signals from
multiple microphones into account can help to more
effectively reduce disturbing noise and echo. This
paper outlines the design and implementation of a
multi-channel noise reduction and echo cancellation
module integrated in the PulseAudio sound system.
We discuss requirements, trade-offs and results ob-
tained from an embedded Linux platform.

Keywords
Acoustic echo cancellation, noise reduction, hands-
free telephony, beamforming, performance

1 Introduction

At bct electronic, we develop a speakerphone for
hands-free Voice over Internet Protocol (VoIP)
telephony and intercom. On our communica-
tion device, we run a custom embedded Linux
system created with OpenBricks1. The device
is designed for desktop or wall-mount use, has a
7” touch-screen and is powered by a TI OMAP3
processor (DM3730). Two independent hard-
ware audio codecs enable hands-free communi-
cation as well as hand-set or headset use at the
same time in order to support flexible intercom
and VoIP scenarios.
Speech quality is a very important criterion

for us. Therefore, our device is equipped with
a 4-channel array of digital, omnidirectional
MEMS microphones2. This allows to reduce
noise without distorting the desired speech sig-
nal [Souden et al., 2010]. However, elabo-
rate digital signal processing (DSP) is required
to achieve good speech quality in challenging
acoustic environments with high levels of ambi-
ent noise.
Several open-source software components are

available in our application area: SIP stacks

1http://www.openbricks.org
2http://mobiledevdesign.com/tutorials/

mems-microphones

(Linphone3, Sophia SIP4), audio compression
codecs (G722, Opus5), sound servers (JACK
[Davis, 2003], PulseAudio6), DSP primitives for
resampling and preprocessing (Speex7), to give
a few examples. Open-source SIP software has
gained support for single-channel acoustic echo
and noise reduction (AENR) recently. How-
ever, we are not aware of an open-source frame-
work for multi-channel audio communication
and AENR.
In section 2 we describe the acoustic setting

and the related challenges in AENR. The ba-
sic principles behind common methods are ex-
plained. In section 3 we motivate the use of
PulseAudio as a sound server and integrating
component of our software architecture and out-
line the design and implementation of a multi-
channel AENR plug-in module. While we can-
not release the DSP code at this point, several
improvements to PulseAudio have been made
available to enable multi-channel audio process-
ing on embedded Linux platforms. Section 4
outlines algorithms for multichannel AENR. We
have prototyped the algorithms in MATLAB
and Octave on the PC, transcribed the code
to C/C++, and successively adapted and opti-
mized the code to target the ARMv7 platform.
Runtime performance analysis and optimization
techniques are discussed in section 5. The test
setup and experimental results are detailed in
section 6. Finally, Section 7 summarizes results
and outlines further work.

2 Acoustic Echo and Noise
Reduction

The acoustic front-end of a basic speakerphone
comprises a microphone for picking up the near-
end speaker (NES) and a loudspeaker for play-

3http://www.linphone.org
4http://sofia-sip.sourceforge.net
5http://www.opus-codec.org
6http://www.pulseaudio.org
7http://www.speex.org

111

Near-End Speaker

From Far-End

Echo

Noise

To Far-End

Echo and Noise Reduction

M M

1

M

1

1

1

Echo path

Playback
Processing

M

Adaptive FilterAdaptive FilterAdaptive FilterPlayback
Device

Capture
Device

AEC Linear

Echo Suppr.
Noise Red.

S

Y

V

1

H

Sreverb

Eaec

Ĥ

X

D E

Ŷ

X̃

Figure 1: Near-end acoustic setting and general AENR system for one loudspeaker and M micro-
phone channels. For M > 1 the echo suppression & noise reduction module may include beam-
forming. The dashed, colored lines indicate room reflections.

ing back the far-end speaker (FES), see Fig. 1.
In practice, the captured microphone signal D
does not only contain the desired NES signal
S but also undesired components that degrade
speech intelligibility, namely room reverbera-
tion Sreverb, the so-called echo signal Y and an
additive noise signal V :

D = S + Sreverb + Y + V (1)

Here, Sreverb, Y and V are mutually uncorre-
lated, Sreverb is correlated (only) with S and
Y is correlated only with the playback signal
X, containing the FES. V denotes all other un-
wanted parts neither correlated with S nor X.
The challenge is to remove or at least reduce
the undesired components without (too much)
distortion of S.

2.1 Acoustic Echo

The echo signal can be written as Y = H{X},
where H{·} denotes the echo path system con-
sisting of playback device, loudspeaker, room,
microphone and capture device. The term
“echo signal” stems from the fact that Y is con-
tained in D and, thereby, a delayed and filtered
version of the FES signal X is sent back to the
far-end. It follows that if the near-end device
has an insufficient echo-reduction system, an
echo becomes obvious on the far-end. The larger
the delay of the echo, the more irritating is the
echo of a given level, cf. [Hänsler and Schmidt,
2004]. The overall delay of the echo signal con-
sists of delays due to capture and playback, the
acoustic path, the speech codec and VoIP trans-
mission. Because of the limited physical size of
a speakerphone, the loudspeaker is located close

to the microphone. The level of the echo might
hence be several times higher than that of the
NES. This makes high quality echo cancellation
and/or suppression indispensable.

The terms cancellation and suppression —
they are subsumed under the term reduction
in this paper — shall not be confused: The
idea behind echo cancellation is to find an es-
timate Ŷ of the echo and subtract it from the
microphone signal, i.e., Eaec = D − Ŷ , with
Ŷ = Ĥ{X}. By inserting D from Eq. (1), one
can see that Y can be fully removed without dis-
torting S if Y equals Ŷ . Most practical systems
use a linear adaptive filter with finite impulse
response (FIR) to identify and model the echo
path H. Nonlinear models exist, but are in less
widespread use due to their higher complexity
and slower convergence.

In practice, there are several reasons why the
adaptive filter does not fully cancel the echo
and a residual echo (RE) Yres remains in Eaec:
The adaptive FIR filter (i) does not model the
nonlinearity of the loudspeaker or a potential
clipping of the echo signal, (ii) is too short to
model the echo path impulse response h(t), (iii)
is too slow to follow changes of the echo path,
and (iv) does not fully converge or even diverge
due to double talk. As a consequence, Eaec is
usually further processed by a RE suppression
postfilter. The principle of suppression is to ap-
ply a real gain factor G(l, f) to the input of
the suppression filter. Because echo suppres-
sion is typically performed in the frequency do-
main or subbands of a filterbank, the indices
l and f are introduced to indicate the time-

112

and frequency-dependence, respectively. If D
is directly plugged into a suppression filter, we
have Esuppr(l, f) = D(l, f) ·G(l, f). Looking at
Eq. (1), we see that suppression of echo or noise
goes along with suppression of the NES S. Be-
cause Y and S do typically not fully overlap
in the time-frequency plane, duplex communi-
cation is possible at least to some extend.

2.2 Ambient Noise

In our application, the NES shall be able to
move freely around the device and still be picked
up flawlessly, even when being several meters
away from the microphone and having a low
level. Therefore, the microphone must be very
sensitive and/or highly amplified. As a conse-
quence, we face high levels of ambient noise,
e.g., fan noise in an office, traffic noise, as well
as the acoustic echo described above. Reverber-
ation and the self-noise of the microphone must
also be taken into account.
In the single microphone case, noise reduc-

tion (NR) is based on the suppression principle.
To compute the suppression filter Gnoise(l, f),
the power spectral density (PSD) of the noise
must be estimated. This can be done in speak-
ing pauses, i.e., when S = 0 is detected by
voice activity detection. Today, more advanced
statistical methods are typically used [Hänsler
and Schmidt, 2004]. These allow for updating
the noise estimator even in times when both
V and S are active. Still, single channel NR
delivers best results if the noise is stationary,
i.e., the noise PSD does not change much over
time. Otherwise, the PSD estimation is likely to
be inaccurate, which may cause unnatural arti-
facts in the residual noise and speech. Typically,
strong single channel noise reduction comes at
the cost of speech distortion. However, it is the-
oretically possible to perform single channel NR
without speech distortion [Huang and Benesty,
2012].
By using more than one microphone, we can

not only exploit time-frequency information but
also spatial information. This allows for im-
proved NR, which is discussed in section 4. At
this point we note that the cancellation princi-
ple can also be applied to NR if a reference of the
noise signal is available. In section 4 we explain
how a so called blocking matrix can provide a
noise reference in adaptive beamforming.

3 Echo Cancelling in PulseAudio

Over the last years, several widely-used desktop
Linux distributions adopted PulseAudio [Poet-

tering, 2010] as the default sound system. More
recently, PulseAudio became an option to en-
able software audio routing and mixing in em-
bedded Linux handheld devices [Sarha, 2009],
competing with AudioFlinger on Android. An
alternative sound server, JACK [Davis, 2003;
Phillips, 2006], is predominantly used for pro-
fessional, low-latency audio production.
PulseAudio is the software layer that controls

the audio hardware exposed via the ALSA inter-
face by the Linux kernel. Towards the applica-
tion layer, PulseAudio offers to connect multiple
audio streams to the actual hardware, providing
services such as mixing, per-application volume
controls, sample format conversion, resampling,
et cetera. This allows concurrent use of the au-
dio resources and matches the requirements of
the application layer. An important service for
hands-free telecommunication systems is acous-
tic echo and noise reduction (AENR). Since ver-
sion 1.0, PulseAudio furnishes an echo cancella-
tion framework as a pluggable module. In PA’s
terms, the echo cancellation (EC) module sub-
sumes AENR. The actual AENR implementa-
tions (AENRI) are provided by the Speex li-
brary and Andre Adrian’s code8. With version
2.0, the WebRTC9 AENRI was introduced and
became PulseAudio’s default.
The decisive advantage of the sound server ar-

chitecture is that the responsibility for AENR
can be separated from the VoIP application,
permitting reuse of the AENR resources by
multiple software components and saving du-
plicate development effort. Furthermore, hard-
ware constraints are hidden from the applica-
tion: While the audio hardware may only han-
dle interleaved stereo samples in 16-bit signed
integers with 48 KHz, the application is actually
interested in a mono audio stream represented
by single-precision floating-point data sampled
at 16 KHz.
So far, the PulseAudio echo-cancellation

framework was limited to a symmetric number
of channels entering and leaving the AENRI,
typically a mono audio stream. However, in
an audio setup with an array of microphones,
a multi-channel audio stream is processed by
the AENRI and generally reduced to mono out-
put, see Fig. 2. The AENRI signal processing
pipeline may choose to incorporate sample rate
adaption as well, leading to an additional asym-
metry of sample data entering and exiting the

8http://www.andreadrian.de/intercom/
9http://www.webrtc.org

113

PulseAudio ApplicationALSA

Echo Cancellation (EC)
Module

AEC and
NR Impl.

ALSA
sink

ALSA
source

EC
sink

EC
source

sink
master

source
master

R

R

R

R
D

X
E

Figure 2: Overview of the PulseAudio sound system providing acoustic echo and noise reduction
(AENR) service to an application (with 4 microphone channels).

EC module. A number of patches addressing
this issue and related limitations have been sub-
mitted during the PulseAudio version 4.0 devel-
opment cycle.
Fig. 2 shows the PulseAudio sound server in

between the ALSA sink/source and the appli-
cation. Instead of directly connecting to the
ALSA sink/source, the application binds to the
EC sink/source. Note that the EC module spec-
ifies its internal audio sample format and rate,
hence resampling stages (denoted by R) may
become necessary. Resampling, in PulseAu-
dio’s terms, includes sample format conversion,
channel remapping, and sample rate conver-
sion as necessary. The modular sound server
design brings great flexibility, but efficient im-
plementation of the resampling stages becomes
paramount, especially if microphones, AENRI
and application layer depend on different sam-
ple specifications.

4 Multi-Channel Audio Processing

A multi-channel noise reduction system optimal
in the minimum mean square error sense can
be factorized in a linearly constrained minimum
variance (LCMV) beamformer followed by a sin-
gle channel postfilter [Wolff and Buck, 2010].
The postfilter is essentially a noise suppressor
as explained in chapter 2. Echo suppression can
be efficiently combined with noise suppression
[Gustafsson et al., 2002].
A beamformer is a spatial filter, i.e., a beam

is steered towards a target direction, whereas
other directions are suppressed. The basic op-
eration behind linear beamforming is to filter-
and-sum the M input signals, i.e., the output F
of a filter-and-sum beamformer (FSB) W is

F (l, f) =
M−1
∑

m=0

Wm(l, f)Dm(l, f) (2)

where m is the microphone index and Wm(l, f)
is the filter weight for the m-th microphone.

A fixed beamformer (FBF) uses fixed weights
W , that can be precomputed, whereas an adap-
tive beamformer adapts the weights Wm(l, f)
in dependence of the current noise field. The
most basic FBF is the delay-sum beamformer
(DSB), where W implements pure, frequency
independent time delays. The idea is to time-
align signals from the target direction. Signals
from other directions are to some extent out of
phase and cancel partially because of the sum-
mation. The DSB exhibits a broad mainlobe
of the beampattern at low frequencies and a
very narrow mainlobe at high frequencies, i.e.,
at low frequencies it cannot reduce much noise,
whereas at high frequencies little deviation from
the target direction causes strong attenuation,
leading to a low-pass filtered sound in practi-
cal conditions with steering errors. Using filter
optimization strategies, better low-end suppres-
sion and a wider mainlobe at high frequencies
can be achieved [Tashev, 2009]. A FBF can
however only be optimal for a certain, given
noise-field.

Adaptive beamformers can adapt to chang-
ing noise fields and can hence achieve more
noise reduction. Still, it is possible to set lin-
ear constraints, like distortion-less operation to-
wards the target direction. It can be shown that
an adaptive LCMV beamformer can be imple-
mented in the Generalized Sidelobe Canceller
(GSC) form that transforms the constrained op-
timization in an unconstrained one [Souden et
al., 2010]. Though formally the same, the GSC
has advantages in the implementation and pro-
vides an intuitive access to the adaptive beam-
forming problem, cf. Fig. 3.

The noisy M -channel input is processed by

114

FBF

AICABM

Delay
MM

1

M

1

SSL

Delay

BAC

1

M

1

Figure 3: Structure of a Generalized Sidelobe
Canceler (GSC) beamformer.

an FBF that keeps the distortion-less constraint
towards the target direction. The output of
the FBF is further enhanced by subtracting
the output of an adaptive interference canceller
(AIC). The AIC should be fed with noise-only
signals. To this end, the adaptive blocking ma-
trix (ABM) subtracts the target from the noisy
microphone signals. The purpose of the beam-
former adaption control (BAC) is to guarantee
that the AIC is adapted in times of noise-only,
whereas the ABM should only be adapted in
times of high SNR. The delays are necessary
to ensure causality. The FBF needs the tar-
get direction as a control input. If the tar-
get direction cannot be set to a fixed value, a
sound source localization (SSL) algorithm can
be used to track the source of interest. SSL
is typically based on estimating the direction-
dependent time delay of arrival between the in-
dividual microphones. In [Souden et al., 2010]
a formulation of the GSC is stated, that does
not require knowledge of the target direction or
the microphone locations, but only the source
and noise statistics. This shows the strong link
between adaptive beamforming and linear blind
source separation.

Our current multichannel AENR system con-
tains a self-steered adaptive beamformer and a
postfilter. The latter performs combined echo
and noise suppression. A dedicated AEC mod-
ule has also been developed, but is not yet im-
plemented in C. Combining an AEC with adap-
tive beamforming promises synergy effects [Her-
bordt and Kellermann, 2002], i.e., the beam-
former can assist the AEC during adaption.
Once the AEC is adapted, the beamformer can
focus on reducing interfering noise. All process-

float v = *(src++) * (1 << 15);

// load 4 floats from src , increment pointer

vld1 .32 {q0}, [%[src]]!

// scale by q1 (= 32767)

vmul.f32 q0 , q0, q1

*dst++ = CLAMP(lrintf(v), - 0x8000 , 0x7FFF);

// convert float to 16:16 fixed -point

vcvt.s32.f32 q0 , q0 , #16

// shift right , round , narrow to 16 bit

// with saturation

vqrshrn.s32 d0, q0, #16

// store 4 int16 values , increment pointer

vst1 .16 {d0}, [%[dst]]!

Listing 1: Using ARM NEON to convert float
to 16-bit integer samples with saturation.

ing steps can be done in the frequency domain
(FD). To transform a time domain signal block
to FD and back, we use the forward and inverse
Fast Fourier Transform (FFT), respectively.

5 Targeting an embedded ARMv7
Cortex-A8 platform

To realize the actual VoIP/intercom applica-
tion, we build upon the Linux kernel and
ALSA for hardware handling and the PulseAu-
dio sound server. Here, we focus on the in-
termediate component. In order to integrate
hardware, AENRI and application, PulseAudio
must mediate sample format, sample rate and
number of channels at substantial runtime costs.
Besides the AENRI, sample rate adaptation is
expensive.

The ARMv7 processor architecture is quite
power-efficient, yet offers significantly less
computational resources than current desk-
top computers. Especially the Cortex-A8 has
weak single-precision floating-point (FP) per-
formance (i.e., most FP instructions take mul-
tiple cycles) and requires SIMD-type instruc-
tions named NEON [Anderson, 2011] for best
performance. Later CPU designs (e.g., Cortex-
A9/A15) have improved FP units and perfor-
mance is less dependent on NEON optimiza-
tions. Algorithms in fixed-point arithmetic are
more tedious to develop and often have less
numeric precision. Hence, we decided to im-
plement all audio signal processing in floating-
point arithmetic. On the OMAP3 processor,
single-precision FP NEON operations are often
executed in a single cycle and are not neces-
sarily slower than equivalent fixed-point/integer
instructions.

Resampling is provided by the Speex library

115

0

2000

4000

6000

8000

−40

−20

0

0

2000

4000

6000

8000

−40

−20

0

F
re

q
u
e
n
c
y

(H
z
)

0

2000

4000

6000

8000

−40

−20

0

Speex Output

WebRTC Output

bct 4-channel Output

Double Talk

Microphone Input

Echo Signal

Near-End Speaker

Ambient Noise

0

2000

4000

6000

8000

−40

−20

0

0

2000

4000

6000

8000

−40

−20

0

Time (s)

5 10 15 20 25 30
0

2000

4000

6000

8000

−40

−20

0

S

Y

D V

Figure 4: Spectrograms of the test audio signal (top three plots) at 16 KHz and the corresponding
output signals (bottom three plots).

for which an ARM NEON patch is available10.
On the target CPU, the FP implementation
is more efficient than fixed-point. Typically,
the AENR will be implemented in the fre-
quency domain (FD). To this end, the libav
project11 provides a fast ARM NEON FFT-
implementation12 with a public interface. List-
ing 1 illustrates how ARM NEON instructions
can be used to exploit data parallelism. For the
float to 16-bit integer sample conversion oper-
ation shown, a speedup of 11× is achieved pri-
marily due to the implicit saturation.
The overall runtime requirements of PulseAu-

dio on the target platform depend on the signal-
processing implementation, but to a large part
also on the audio latency requirements (set to 50
ms). We observe approximately 25 % CPU load
due to PulseAudio providing 4-channel AENR

10http://blog.gmane.org/gmane.comp.audio.
compression.speex.devel/month=20110901

11http://libav.org
12See http://pmeerw.net/blog/programming/arm_

fft.html for an informal comparison.

at 16 KHz. Profiling has been performed using
the Linux perf tool.

6 Test Setup and Experimental
Results

Assessing AENR systems is a broad and con-
troversial topic. In our experience, metrics that
access speech quality [Loizou, 2011] are often
not well suited to describe the behavior and ar-
tifacts that occur in complex, real world scenar-
ios. In this work, we rely on spectrogram plots
to make an exemplary comparison of different
algorithms in a complex scenario with double-
talk and noise. We do however believe that lis-
tening tests are crucial and need to complement
any numerical results.

In order to benchmark the different pluggable
AENRIs, PulseAudio’s echo-cancel-test pro-
gram is used: it reads raw audio data from a
play (denoted signal X) and record (signal D)
file and outputs the processed audio data (sig-
nal E). All experiments have been performed

116

at a sample rate of 16 KHz with PulseAu-
dio 3.0 on a Linux operating system. The
GNU compiler in version 4.6 has been invoked
with the options -O2 -ffast-math. The flags
-march=core2 and -march=armv7 -mfpu=neon
-mfloat-abi=softfp were used for the x86 64-
bit and ARM 32-bit target, respectively.

6.1 Audio Quality

The spectrogram plots in Fig. 4 depict the audio
energy in different frequency bands over time
(32 seconds; horizontal axis). The audio sig-
nals13 shown are near-end speaker (S), echo sig-
nal (Y), microphone input (D) and the output
of three AENRIs (Speex, WebRTC, bct4ch).
The Adrian AEC, turned out to not be com-
petitive and completely diverged during double-
talk. Therefore, we chose to not devote space to
it in our plots.
S and Y are obtained by convolution of

speech signals with measured impulse responses
HS and HX of our device/microphone array in
a medium-sized office room. In Fig. 4, only the
first channel m = 0 (farthest from the loud-
speaker) is shown. This channel is also used as
an input for the single channel AENRIs Speex
and WebRTC. The Cartesian coordinates of the
location of microphone m are ~pm = [0, pm,y, 0],
with p0 = −0.12, p1 = −0.03, p2 = 0.03,
p3 = 0.12. For measuring HS , a loudspeaker
was placed at ~pS ≈ [0.5, 0, 0.25]. We used the
exponential sweep method to compute the im-
pulse responses [Holters et al., 2009]. HX is
obtained with the integrated loudspeaker hav-
ing its acoustic center at ~pX ≈ [0, 0.1, 0.1]. In
Fig. 4 clearly discernible, alternating speech seg-
ments including a period of double talk starting
after about 11 seconds can be seen. Before sec-
ond 22 a recording of the “quiet” office room
has been added. After second 22, a broadband
ambient noise signal – a recording of a ventila-
tor, placed at ~pv ≈ [−1.5, 0.3, 0.5] – is added to
S to compare the noise reduction capabilities of
the tested AENRIs. The added noise recordings
include the self-noise of the microphones.
Observing the outputs, the echo signal is only

partially attenuated in the Speex and WebRTC
results during the adaptation (learning) period
in the beginning. bct4ch however delivers
echo reduction right from the start and provides
good double talk performance. Once adapted,
Speex delivers very good double talk perfor-
mance. This can probably be attributed to its

13Available at http://bct-electronic.com/lac13/.

 0

 2

 4

 6

 8

 10

 12

Speex WebRTC Adrian bct bct 4-ch
 0

 20

 40

 60

 80

 100

 120

Re
al

tim
e

/ R
un

tim
e

(A
RM

v7
)

Re
al

tim
e

/ R
un

tim
e

(x
86

-6
4)

ARMv7
x86-64

Figure 5: Comparing realtime vs. runtime of
several AEC plugins on x86-64 and ARMv7
(higher results are better).

advanced AEC learning rate adjustment[Valin,
2007]. WebRTC, on the other hand, suppresses
large portions of the high frequency content of
S. Furthermore, WebRTC retains audible echo,
see e.g. second 20–22. In other, practical situa-
tions WebRTC might however still be preferred
to the Speex AENRI, because it employs a more
rigorous echo suppression and loss/gain control,
which works as a safety guard if nonlinearities or
sudden changes of the echo path occur and AEC
fails. As outlined in Section 4 bct4ch does
currently not contain an actual AEC module.
Knowing this, our good echo reduction perfor-
mance is even more remarkable. It stems from
the superb interference suppression capability of
our adaptive beamformer and our high quality
postfilter.

Taking a look at the ambient noise scenario
at second 22–32 in Fig. 4, all methods are able
to reduce noise, however Speex and WebRTC
require some time to initially adapt to the new
noise characteristics. This clearly show the ben-
efit of the microphone array processing that is
less dependent on a stationary noise PSD esti-
mate.

6.2 Runtime

In Fig. 5 we compare the runtime of differ-
ent AENRIs on an ARMv7 Cortex-A8 plat-
form (TI OMAP3 processor, DM3730, clocked
at 800 MHz) and a x86-64 platform (Intel i7-
870 clocked at 3 GHz) relative to realtime. Not
surprisingly, the embedded platform turns out
to be more than 10 times slower than the PC
platform. bct and bct4ch refer to a single-
channel and multi-channel implementation de-
veloped by bct electronic. The bct and bct4ch

code has been optimized and implemented using

117

 0

 20

 40

 60

 80

 100

ARM (baseline) ARM NEON

Ru
nt

im
e

%

2.6x Speedup

Conversion
Forward FFT

SSL
FBF

GSC (BAC+ABM+AIC)
Postfilter

Inverse FFT

Figure 6: Runtime breakdown and ARM NEON
optimization result of the bct4ch implementa-
tion.

the ARM NEON instruction set; they consume
approximately 10 % CPU. The other ARMv7
AENRIs lacking optimization compare less fa-
vorable with the Intel platform.
Fig. 6 breaks down the runtime of the

bct4ch AENRI according to the processing
structure outlined in Section 4. Straightforward
optimization of the C/C++ code yields an over-
all speedup of 2.6×. The runtime contribution
in % of the total ARM execution time can be
observed: postfilter and GSC are the most ex-
pensive execution blocks. The performance of
the FFT is not improved as baseline and opti-
mized code both depend on the external libav
FFT implementation.

7 Conclusions

We have presented first results of a multi-
channel noise/echo reduction solution built on
top of PulseAudio and motivated the design
decisions. The work has resulted in a num-
ber of improvements in the PulseAudio echo
cancellation and signal-processing framework,
which have been contributed during the version
3.0/4.0 development cycle and should facilitate
future embedded Linux audio solutions. Fur-
ther work includes optimizing code for audio
stream mixing, more efficient resampling meth-
ods, and the implementation of an efficient AEC
in the multi-channel processing pipeline.

References

M. Anderson. 2011. ARM NEON instruction
set and why you should care. In Embedded
Linux Conf.’11, San Francisco, CA, USA.

P. Davis. 2003. The JACK audio connec-
tion kit. In Proc. Linux Audio Conference,
LAC’03, Karlsruhe, Germany.

S. Gustafsson, R. Martin, P. Jax, and P. Vary.
2002. A psychoacoustic approach to com-
bined acoustic echo cancellation and noise re-
duction. IEEE Trans. on Speech and Audio
Processing, 10(5):245–256.

E. Hänsler and G. Schmidt. 2004. Acous-
tic Echo and Noise Control: A Practical Ap-
proach. Wiley, New York.

W. Herbordt and W. Kellermann. 2002.
Frequency-domain integration of acoustic
echo cancellation and a generalized sidelobe
canceller with improved robustness. Europ.
Trans. on Telecomm., 13(2):123–132.

M. Holters, T. Corbach, and U. Zölzer. 2009.
Impulse response measurement techniques
and their applicability in the real world. In
Proc. 12th Int. Conference on Digital Audio
Effects, DAFx’09, Como, Italy.

Y.A. Huang and J. Benesty. 2012. A multi-
frame approach to the frequency-domain
single-channel noise reduction problem. IEEE
Trans. on Audio, Speech & Language Process-
ing, 20(4):1256–1269.

P. Loizou, 2011. Speech quality assessment,
volume 346, pages 623–654. Springer Verlagq.

D. Phillips. 2006. Knowing Jack. Linux Mag-
azine, (67).

Lennart Poettering. 2010. Pro audio is easy,
consumer audio is hard. In Proc. Linux Audio
Conference, LAC’10, Utrecht, Netherlands.

J. Sarha. 2009. Practical experiences from
using PulseAudio in embedded handheld de-
vice. In Linux Plumbers Conf.: Audio Mini-
conf., Portland, OR, USA.

M. Souden, J. Benesty, and S. Affes. 2010. On
optimal frequency-domain multichannel lin-
ear filtering for noise reduction. IEEE Trans.
on Audio, Speech & Language Processing,
18(2):260–276.

Ivan Tashev. 2009. Sound Capture and Pro-
cessing. Wiley.

J.-M. Valin. 2007. On adjusting the learn-
ing rate in frequency domain echo cancella-
tion with double-talk. IEEE Trans. on Audio,
Speech & Language Processing, 15(3):1030–
1034.

T. Wolff and M. Buck. 2010. A generalized
view on microphone array postfilters. In Proc.
Int. Workshop on Acoustic Echo and Noise
Control, IWAENC’10, Tel Aviv, Israel.

118

Lyapunov Space of Coupled FM Oscillators

Claude Heiland-Allen
claude@mathr.co.uk

Abstract

Consider two coupled oscillators, each modulating
the other’s frequency. This system is governed by
four parameters: the base frequency and modulation
index for each oscillator. For some parameter values
the system becomes unstable. The Lyapunov ex-
ponent is used to measure the instability. Images of
the parameter space are generated, with the number
crunching implemented on graphics hardware using
OpenGL. The mouse position over the displayed im-
age is linked to realtime audio output, creating an
audio-visual browser for the 4D parameter space.

Keywords

chaos, DSP, GPU

Figure 1: Example output.

1 Introduction

Soft Rock EP [ClaudiusMaximus, 2005] and
Soft Rock DVD [ClaudiusMaximus, 2006] ex-
plored the transitions between order and chaos
in coupled FM oscillators. A more recent con-
tinuation of this project is to make a map of the
parameter space of coupled FM oscillators on a
perceptually relevant level and use it in live per-
formance, choosing parameters on the basis of
desired sound character.
A bifurcation diagram produced by an ana-

logue Moog synthesizer [Slater, 1998] and im-
ages of Lyapunov fractals [Dewdney, 1991] were
inspiration to apply the latter technique to the
parameter space of coupled FM oscillators in
the digital realm.

119

2 Formulation

2.1 Coupled FM Oscillators

Figure 2: Coupled FM oscillators in Pure-data.

Consider the two coupled oscillators in Fig-
ure 2. Pure-data’s model of interconnected
components each with their own internal state
maps poorly to GPU architecture. Consider-
ing the whole system as one and flattening the
internal state into a single phase space vector
leads to the following formulation as a mutual
recurrence relation:

xn+1 = %(xn + I(fx +mx cos(2πyn−d)))

yn+1 = %(yn + I(fy +my cos(2πxn−d)))
(1)

where

%(t) = t− ⌊t⌋, I(t) =
440

SR
2

t−69

12

Here xn, yn is the phase of each oscillator at
time step n, d is a delay measured in sam-
ples, fx, fy is the base frequency of each os-
cillator as a MIDI note number, and mx, my

is the modulation index of each oscillator as a
MIDI note number. %(t) performs wrapping
into [0, 1), with ⌊t⌋ being the flooring operation
(the largest integer not greater than t).

The four-dimensional parameter space vector
will be written

a = (fx, fy,mx,my)

and the (2d+2)-dimensional phase space vector

z = (xn, yn, xn−1, yn−1, . . . , xn−d, yn−d)

with sample rate SR = 48000. For reasons ex-
plained in Section 5.2, d = 1 will be fixed.

2.2 Lyapunov Exponents

Lyapunov exponents can be used to measure the
stability (or otherwise) of a dynamical system.
A good introduction is found in Chapter 4.3
Lyapunov Exponent [Elert, 2007]. The defini-
tion is covered in Chapter 13.7 Liapounov expo-
nents and entropies [Falconer, 2003] which also
relates it to measures of fractal dimension.
The Lyapunov exponent λ measures diver-

gence in phase space:

|z1(t)− z0(t)| ≈ eλt |z1(0)− z0(0)|

λ = lim
t → ∞

z1(0) → z0(0)

1

t
log

|z1(t)− z0(t)|

|z1(0)− z0(0)|
(2)

An attracting orbit has λ < 0 and a divergent
(chaotic) orbit has λ > 0.
A modified norm is required to take into ac-

count the wrapping of phase into [0, 1):

|z|% =

√

∑

i

(min(%(zi), 1−%(zi)))
2

For example the distance between 0.1 and 0.9 is
properly 0.2 (not 0.8) because 0.1 can be phase-
unwrapped to 1.1.

2.3 Viewing Planes

An image is 2D, which requires choosing a sub-
set of the 4D parameter space to visualize. Two
particular planes were chosen:

A+(a0, r0) = a0 + r0

1 0
1 0
0 1
0 1

(

u
v

)

A
−
(a0, r0) = a0 + r0

1 0
−1 0
0 1
0 −1

(

u
v

)

(3)
where (u, v) is the coordinates of the pixel, a0
is the centre of the view, and r0 is the radius of
the view.
These planes were chosen because they are

simple, while still being flexible enough to ex-
plore the whole 4D space. The A+ plane varies
both oscillators in the same direction, while the
A

−
plane varies each oscillator in opposite di-

rections. To center on a particular target point
(fx, fy,mx,my) one might use the A+ plane to

120

center on the midpoint

(

fx + fy

2
,
fx + fy

2
,
mx +my

2
,
mx +my

2

)

and then switch to the A
−

plane to break the
(x, y) symmetry.

3 Implementation

The implementation uses OpenGL [Segal, 2013]
and OpenGL Shading Language [Kessenich,
2013] for computation and graphical rendering,
GLUT [Kilgard, 1996] for windowing and input
event handling, and JACK [Davis, 2013] for au-
dio output.

3.1 Introduction to Modern OpenGL

Modern OpenGL has a programmable shader
pipeline. Vertex attributes are read from vertex
buffers and processed by vertex shaders. The
outputs of the vertex shader (called varyings)
are further manipulated by an optional geome-
try shader stage. Geometry shaders can output
a different vertex count to their input count,
whereas vertex shaders are one-in one-out. The
result of the geometry shader can be captured
into another vertex buffer using transform feed-
back. Following the geometry shader the prim-
itives (points or triangles) are rasterized, and
varyings interpolated across each primitive. Fi-
nally a fragment shader takes these values and
computes the colour at that pixel. The output
of a fragment shader can be captured by attach-
ing a texture to a framebuffer.

3.2 Computation Overview

To render an image a texture is first filled with
(u, v) coordinates using a framebuffer object
and a fragment shader. This texture is copied to
a vertex buffer object, interleaved with an initial
phase space vector z = (0, 0, 0, 0) and Lyapunov
exponent statistics vector l = (0, 0, 0, 0) for each
point.
Using a vertex shader, a is calculated from

(u, v) using Equation 3, and then a rough es-
timate of the Lyapunov exponent is computed
using Equation 2 by perturbing z1(0) = z0(0)+δ
with δ small and performing t = 256 iterations
of Equation 1. The first few repetitions are dis-
carded, along with those resulting in −∞, and
the rough λ estimates are accumulated in l.
Between each repetition the working set is

compacted using a geometry shader. Points
whose mean Lyapunov exponent estimate
changed very little during the previous step are

plotted and removed from the working set. The
other points are kept to be refined further, di-
recting the computational effort on the points
that need it most: those slow to converge.
To ensure user interface responsiveness, the

computation is amortized over several frames.
The target frame period is divided by the mea-
sured time for one repetition to compute how
many repetitions to perform that frame. The
repetitions-per-frame increases as the working
set becomes smaller.

3.3 Noise Increases Stability

At the end of each repetition z1 is kept instead
of z0. This effectively adds a small amount
of noise, counter-intuitively increasing stability.
Noise allows more of the phase space to be ex-
plored, and makes it more likely for the per-
turbed orbit to reach an attracting part of the
phase space.

3.4 Dither Increases Quality

To reduce grid sampling artifacts, (u, v) is per-
turbed within the bounds of its corresponding
pixel before calculating the a parameter vector
for each repetition.

4 Results

4.1 Examples

Figure 3(a) shows the initial view on starting
the interactive browser. Low frequencies to the
left are stable even at high modulation index
away from the central axis. High frequencies to
the right become chaotic at progressively lower
modulation index. (b) shows the A

−
plane at

the same location. (c) shows bands alternat-
ing between stability and chaos. The bands be-
come distorted and collapse as the modulation
index and frequency increase. (d) shows its A

−

plane, bands become rings. When the frequency
is greatly increased, the shapes become more
intricate. (e) exhibits spirals of stability, with
similar spirals in the A

−
plane in (f).

When fx = fy andmx = my the A+ plane has
mirror symmetry about its horizontal axis, and
the A

−
plane has two-fold rotational symmetry

about its centre. Breaking the symmetry and
setting fx 6= fy or mx 6= my leads to diverse
forms. In particular Figure 3(h) has shapes that
resemble those of Lyapunov space images of the
logistic map.

4.2 Interactive Explorer

The implementation is an interactive audio-
visual explorer for the parameter space of cou-

121

(a) A+((120, 120, 0, 0), 72) (b) A
−
((120, 120, 0, 0), 72)

(c) A+((95.2, 95.2, 32.6, 32.6), 4.5) (d) A
−
((95.2, 95.2, 32.6, 32.6), 4.5)

(e) A+((151.57, 151.57, 1.64, 1.64), 0.07) (f) A
−
((151.57, 151.57, 1.64, 1.64), 0.07)

(g) A
−
((117.0, 148.4, 20.4, 2.7), 1.8) (h) A+((103.65, 108.41, 33.42, 10.93), 0.14)

Figure 3: Example images. Darker shades are stable, lighter shades chaotic.

122

pled FM oscillators. Clicking with the mouse
zooms the view about the clicked point. The left
button (or scroll up) zooms in, the right button
(or scroll down) zooms out, the middle button
centers the view on the target point. Pressing
the TAB key toggles between the A+ and A

−

planes in Equation 3, and F11 toggles full screen
operation.
While the GPU simulates and analyses one

oscillator pair per pixel, the CPU simulates one
oscillator pair with a determined from the pixel
under the mouse pointer. The image acts as a
map, a reference frame for chosing parameters
to audition by moving the mouse.

5 Conclusions

5.1 Original Intent

Earlier experiments used one Pure-data batch
mode instance per CPU core each sending anal-
ysis data to a realtime Pure-data instance. The
analysis used various methods (including FFT
for spectral statistics and the sigmund exter-
nal for pitch tracking) to classify points into
pitched (ordered, stable) or unpitched (chaotic,
unstable) with measures of distortion or noisi-
ness. Sadly this approach proved impractical as
it achieved only tens of pixels per second, even
with a fast multi-core CPU, and porting these
signal analysis algorithms to massively-parallel
programmable graphics hardware seemed to be
too difficult.

5.2 OpenGL Issues

The current implementation is hardcoded with
delay d = 1 and would be very awkward to
generalize. OpenGL architecture limits each
vertex attribute to four components with the
maximum number of attributes typically lim-
ited to sixteen. This totals 64 floats per ver-
tex, 6 of which are needed for the pixel coor-
dinates and Lyapunov exponent statistics accu-
mulation. Therefore using OpenGL imposes a
limit d < 28. For comparison the original ex-
periments in Soft Rock EP used Pure-data’s de-
fault block size of 64, with d = 32. Moreover,
increasing d increases video memory consump-
tion. With the maximum d = 27, browsing at
1920× 1080 resolution would require over 1GB.
Future work on this project will look into

using OpenCL, which provides a heterogenous
CPU and GPU computation framework, in the
hope that it will avoid the inherent awkward-
ness of abusing OpenGL shaders to perform cal-
culations.

5.3 Audio Issues

While the implementation works as intended,
with d = 1 the sound is nowhere near as rich
and varied as with d = 32. With small d there
is much more very high frequency content in
interesting-looking regions. There seem to be
few if any regions of the parameter space with
both interesting appearance and palatable au-
dio frequencies at d = 1, while with high d there
are parameters that generate sounds that fluc-
tuate intermittently between smooth tones and
noise. Visualization with high d has not been
possible so far, so whether their neighbourhoods
look as interesting as they sound remains an
openquestion .

Unfortunately, heavy use of the GPU in the
interactive browser can block the operating sys-
tem for too long and cause audible glitches
(JACK xruns). This situation may change as
free drivers continue to improve, allowing use of
the browser in a live situation.

5.4 Pretty Pictures

Despite these shortcomings, I think the images
look good. I plan to render a selection at high
resolution and print postcards and posters. For
huge images it is possible to divide the image
plane into tiles and compute each tile in succes-
sion, finally combining the pieces into one large
picture.

There is also scope for video work, moving
and rotating the viewing plane through the 4D
parameter space, with different shapes forming
and collapsing over time. Rough benchmarks
take 5-10 seconds per frame at 1920 × 1080,
so it seems sensible to wait until faster cheaper
graphics cards become available.

6 Obtaining the Implementation

The implementation was written on
GNU/Linux Debian Wheezy running on a
quad-core AMD64 processor with NVIDIA
GTX 550Ti graphics card using propri-
etary drivers. The source code is available at:
https://gitorious.org/maximus/lyapunov-fm

7 Acknowledgements

Thanks to the anonymous reviewers for their
constructive criticism on a number of issues,
and to Rob Canning, Adnan Hadzi, and Joanne
Seale for their helpful feedback on earlier ver-
sions of this paper.

123

References

ClaudiusMaximus. 2005. Soft Rock EP.
http://archive.org/details/
ClaudiusMaximus - Soft Rock EP.

ClaudiusMaximus. 2006. Soft Rock DVD.
http://archive.org/details/
ClaudiusMaximus - Soft Rock DVD.

Paul Davis. 2013. The JACK Audio Connec-
tion Kit. http://jackaudio.org.

A. K. Dewdney. 1991. Mathematical Recre-
ations: Leaping into Lyapunov Space. Scien-
tific American, 265:178–180.

Glenn Elert. 2007. The Chaos Hypertextbook.
http://hypertextbook.com/chaos/.

Kenneth Falconer. 2003. Fractal Geometry:
Mathematical Foundations and Applications,
Second Edition. Wiley.

John Kessenich. 2013. The
OpenGL Shading Language.
http://www.opengl.org/registry/doc/
GLSLangSpec.4.30.8.pdf.

Mark J. Kilgard. 1996. The OpenGL Utility
Toolkit (GLUT) Programming Interface.
http://www.opengl.org/documentation/
specs/glut/glut-3.spec.pdf.

Mark Segal. 2013. The OpenGL
Graphics System: A Specification.
http://www.opengl.org/registry/doc/
glspec43.core.20130214.pdf.

Dan Slater. 1998. Chaotic Sound Synthesis.
Computer Music Journal, 22(2):12–19.

124

Production and Application of Room Impulse Responses for
Multichannel Setups using FLOSS Tools

Florian HOLLERWEGER
A–4020 Linz

Austria
flo@mur.at

Martin RUMORI
University of Music and Performing Arts Graz
Institute of Electronic Music and Acoustics
Inffeldgasse 10 · A–8010 Graz · Austria

rumori@iem.at

Abstract

We present the outcomes of a series of room impulse
response (IR) measurements. We have recorded bin-
aural, Ambisonics-encoded and regular stereo/mono
IRs of multichannel loudspeaker arrays in various
concert halls in Austria, Northern Ireland, Germany
and New Zealand. The resulting IRs and accompa-
nying documentation have been made publicly avail-
able on a website for composers to use in the produc-
tion and documentation of their multichannel pieces.
The paper also discusses several custom-written shell
scripts and extensions to the Aliki and Jconvolver
software packages, which we have developed for the
production of the presented IRs.

Keywords

Impulse response, binaural auralisation, virtual
acoustics, convolution reverb

1 Introduction

In an earlier paper [Rumori et al., 2010], we
have discussed binaural room impulse responses
(BRIRs), i.e., impulse responses (IRs) recorded
using a dummy head in a ‘real’ room, as opposed
to an anechoic chamber. We have described the
usefulness of BRIRs for the pre-production and
documentation of multichannel electroacoustic
compositions. By recording the BRIRs of all
loudspeakers in a multichannel electroacoustic
concert hall, one can generate binaural mix-
downs of pieces composed for and/or performed
on that loudspeaker array. When listened to on
stereo headphones, such a mixdown preserves
not only the hall’s reverberation characteristics,
but also the perceived 3D direction of all loud-
speakers and phantom sources between them.
BRIRs thus combine the advantages of single-
source stereo IRs used in standard convolution
reverbs with those of head-related IRs usually
recorded in anechoic chambers.
Binaural mixdowns created from BRIRs as-

sist the composer with the pre-production of
multichannel pieces written for concert halls
where access is often restricted and rehearsal

time limited. Moreover, they provide an ef-
ficient method for documenting multichannel
pieces in a format that can be played back on
a simple pair of headphones, but nevertheless
conveys the acoustic spatiality intended by the
composer. Realtime convolution engines such
as BruteFIR or Jconvolver extend the useful-
ness of BRIRs towards real-time audio input.
Since the publication of our last paper, we

have conducted additional room impulse re-
sponse recordings, using both binaural and
other recording techniques, in a variety of con-
cert halls. One purpose of this paper is to pro-
vide an overview of these recordings (cf., sec-
tion 2) and the resulting IR repositories, which
we have made freely available (cf., section 5).
We also present some examples of how differ-
ent artists have applied these impulse responses
(cf., section 4).
Free/Libre Open Source Software (FLOSS)

packages have played a central role in the pro-
duction of the IRs that we present, and are also
essential for their actual application. The cre-
ative use of IRs is an area of audio processing
where the limited scope of commercial software
packages can easily become apparent. The abil-
ity to customise many of the FLOSS tools that
we have used was both welcome and necessary
to achieve our goals. Another purpose of our
paper is to provide an overview of our personal
extensions to FLOSS tools such as Aliki and
Jconvolver (cf., section 3).

2 Recording Sessions and Venues

2.1 IEM CUBE and SARC Sonic Lab

The CUBE concert hall at the Institute of Elec-
tronic Music and Acoustics (IEM) in Graz, Aus-
tria is a small concert space equipped with 24
Tannoy System 1200 loudspeakers, which are
arranged in a hemisphere above the listener and
optimised for Ambisonics playback.
The Sonic Lab at the Sonic Arts Research

Centre, Queen’s University Belfast, is a large

125

Figure 1: The CUBE at the Institute of Elec-
tronic Music and Acoustics in Graz (photograph
by courtesy of the Graz University of Music and
Performing Arts)

Figure 2: The Sonic Lab at the Sonic Arts Re-
search Centre in Belfast (photograph by cour-
tesy of Gawain Morrison)

electroacoustic concert hall whose acoustics can
be adapted through movable wall panels. At the
time of our recording, the Sonic Lab featured 40
full-range speakers (Meyer Sound and Genelec)
and 6 subwoofers.
Details on the IRs that we have recorded in

the CUBE and the Sonic Lab can be found in
our previous paper [Rumori et al., 2010], so we
will not reiterate them here.

2.2 New Zealand School of Music

The Adam Concert Room (ACR) is located at
the Kelburn Campus of Te Kōk̄ı New Zealand
School of Music (NZSM), a joint venture of
Massey University and Victoria University of
Wellington. The ACR is a medium-size concert
hall which is predominantly constructed from
wood and seats up to 200 people.

Figure 3: The Adam Concert Room (ACR)
at Te Kōk̄ı New Zealand School of Music in
Wellington (photograph by courtesy of Stephen
Gibbs)

In October 2011, an IR recording session
was conducted in the ACR to conclude a one-
trimester seminar on Spatial Audio. The final
repository includes binaural IRs (recorded by
a Kemar 45BA) and experimental Ambisonics-
encoded IRs (CoreSound TetraMic) of a cir-
cular eight-channel speaker array (Genelec
1037B/C), plus standard stereo IRs (X/Y pair
of Neumann KM184s) of the same array and for
a single centred speaker. The repository is ac-
companied by extensive documentation of the
production process and includes several demo
scripts to illustrate the usage of the final IRs.

2.3 Academy of Media Arts Cologne

The auditorium of the Academy of Media
Arts Cologne (KHM) is a medium-size, multi-
purpose hall used for lectures, presentations,
film screenings and concerts, the latter mostly of
an experimental kind, featuring electroacoustic
and improvised music. The reverb time of the
hall is rather short as it is mainly conceived for
good speech intelligibility.
In November 2011, a hands-on workshop

called Raumfaltung on measuring and using im-
pulse responses has been carried out at KHM.
During the workshop, a “classic” speaker ring
of eight K+H O108 has been set up in the au-
ditorium and room impulse responses for each
of the speakers were measured using an array
of different microphones: two kinds of custom-
built dummy heads,1 an ORTF configuration of
two Schoeps MK4, a small AB configuration of
two Schoeps MK2 s, a Soundfield ST 250 first-

1Binaural microphones Sellmeier Grey and Sellmeier

Brown, both constructed by Wilfried Sellmeier

126

Figure 4: The microphone setup at Academy of
Media Arts Cologne (photograph by courtesy of
Dirk Specht)

order Ambisonics microphone and a Behringer
ECM8000 measurement microphone as a refer-
ence channel above one of the dummy heads.
The impulse responses are suitable for mono

or stereo convolution reverb applications as well
as for auralisation of up to eight channels or
binaurally rendered horizontal Ambisonics.

2.4 MUMUTH Graz

MUMUTH Graz is the House of Music and Mu-
sic Theatre at the University of Music and Per-
forming Arts Graz (KUG). Its main hall, the
Ligeti Hall, is a multi-purpose space for theatre
and opera production, concerts, dance and elec-
troacoustic music. It features a rig of 33 speak-
ers with a motorised position control, which al-
lows for adjusting the heights, pan and tilt of ev-
ery speaker individually. This way, speaker con-
figurations can be changed and evaluated rather
quickly. Additionally, Ligeti Hall is equipped
with 64 fixed smaller speakers and eight sub-
woofers, which belong to a virtual room acous-
tics system, but which can be also directly fed
with arbitrary signals. Further speakers and
subwoofers may be hung or installed on stands
if needed.
Since fall 2010, the artistic research project

The Choreography of Sound2 is carried out at
the Institute of Electronic Music and Acous-
tics (IEM) at KUG. For the case studies of this
project, the Ligeti Hall is considered the main
instrument. As access times to the hall are quite
limited, a binaural auralisation of its acoustic
properties became desirable, which turned out
to be also quite useful for taking up a differ-

2http://cos.kug.ac.at, last retrieved 2013 – 02 –17,
see also [Eckel et al., 2012]

Figure 5: Speaker rig and measurement setup
at Ligeti Hall in MUMUTH Graz

ent perspective on the instrument. As part
of the VirtualMUMUTH subproject (see sec-
tion 4.4), many room impulse response measure-
ment sessions were undertaken between Febru-
ary 2011 and August 2012, for several combina-
tions of loudspeaker configurations and micro-
phone (i. e. listening) positions.

In order to achieve a high versatility, the
measurements were done using an arrange-
ment of multiple microphones: a Brüel &Kjær
dummy head with additional DPA4060 cap-
sules mounted on its temples, a Schoeps spher-
ical stereo microphone, an Ambisonics Sound-
field mic, a large AB configuration of two
Schoeps MK2s and a mono reference. Due to
the high number of channels and the resulting
large amount of data, some of the measurement
tools needed to be extended as described in sec-
tion 3.

3 Tools and Customisations

The abovementioned measurements and their
post-production have been carried out entirely
using FLOSS tools. The central tool being used
for all the venues described here is Aliki by Fons
Adriaensen [Adriaensen, 2006a]. In larger mul-
tichannel settings with many speakers, several
microphone channels and lots of measurement
iterations like at MUMUTH (cf. section 2.4), a
few additions and adaptations to Aliki became
necessary.

For post-processing and using the measured
impulse responses, some further tools have been
developed, such as scripts based on sox for trim-
ming and fading and a script for generating con-
figurations for Jconvolver, a high-performance
convolution engine [Adriaensen, 2006b].

127

3.1 Aliki and around

Aliki is a powerful and free impulse response
measurement framework, which implements the
swept-sine measurement method [Farina, 2000].
It provides means for generating the sweep sig-
nal, playing it back and recording the room’s
response, for deconvolving the recorded sweep
in order to get the impulse response, some func-
tionality for editing the resulting responses and
for exporting them.

3.1.1 Automated speaker channel

switching

In a larger setup such as in MUMUTH (cf. sec-
tion 2.4), it is desirable to carry out multiple
iterations, e. g. for several speaker channels in
a row, in an automated way. Unfortunately,
standard Aliki only offers eight output channels
and no means of directly switching them au-
tomatically. There is a functionality though for
specifying the number of iterations and a trigger
command, which is executed once every cycle.
For the automated measurements described

here, this trigger has been used to send an OSC
message to a small SuperCollider patch, which
receives the sweep signal on a single input chan-
nel (fixed output on channel 1 of Aliki) via the
Jack audio server. Upon an incoming OSC trig-
ger message, the sweep signal is routed sequen-
tially to the corresponding loudspeaker output
channels. This way, also more complex channel
sequences or groups with non-contiguous chan-
nel numbers could be easily realised.
For convenience, the custom version of Aliki

(as used in MUMUTH) also contained a reset
command field, which could be triggered by a
button. It was used to send another OSC mes-
sage to reset the channel routing to the starting
point.

3.1.2 More input and output channels

Standard Aliki provides eight recording chan-
nels for the microphone signals. In MUMUTH,
due to the high number of speaker channels (up
to 128) and long sweep times (> 10 sec), the
actual net measurement time was already so
long that it seemed appropriate to add a few
more microphones, as those additional impulse
responses come “for free” (time wise) and might
be suitable for future applications, even if the
focus was on binaural room impulse responses.
Thus, a configuration of 13 microphone channels
arose, including a dummy head, several differ-
ent stereo pairs, a Soundfield mic (Ambisonics
A-format) and a reference channel.

Figure 6: Capture dialog of the extended Aliki
using 16 input channels, trigger and reset com-
mands and an initial delay

The custom version of Aliki was modified
such that the number of audio input channels
could be specified as a command line option at
startup. In the same manner, also the num-
ber of output channels has been parametrised,
although this was not needed for the scope of
these measurements.

3.1.3 Initial delay

While carrying out a large, automated sequence
of iterations, it might be convenient to leave the
space being measured in order to minimise the
extra noise induced (and to minimise the sweep
level in the poor operator’s ears). In the custom
version of Aliki, an initial delay time may be
specified which allows for leaving the space well
before the first sweep starts.
Before Aliki was customised for that, some-

times the first measurement (first sweep play-
back) was regarded a “Nop” and discarded
later. This creates problems such as reduced
flexibility (fixed sweep length depending on the
measurement) and messed-up channel numbers
when exporting the impulse responses to single
files automatically.

3.1.4 CLI deconvolution and export

Aliki includes the deconvolution stage of the
recorded sweeps in order to generate the actual
impulse responses, and an export function for

128

converting from Aliki’s sound file format (.ald)
to standard formats such as .wav or .aiff.
Aliki’s file format supports multiple sections in
a single file, which correspond to the iterations
of a sequential measurement. Both the decon-
volution and the export may be performed for
a single section of a file or for all sections of
that file, using the same parameters. The lat-
ter option comes in handy when post-processing
measurements with a high number of iterations.
However, the measurements reported here,

especially those in MUMUTH (cf. section 2.4),
not only included many iterations per file but
also a large number of those files, due to the high
amount of combinations of loudspeaker config-
urations and microphone positions. Therefore,
the tedious and error-prone task of manually
loading each file for deconvolution and export
was replaced by two custom command-line ap-
plications, aliki-convol and aliki-export,
which are basically factored-out versions of the
respective built-in functions.
Corresponding to the GUI options in Aliki,

aliki-convol allows for specifying the start
and end times of the deconvolution and whether
one or all sections of the file shall be processed.
Likewise, aliki-export accepts options for the
export file format and bit depth, whether a sin-
gle section, all sections in one file or all sections
in separate files shall be exported, the file name
base and an offset for file numbering.

3.2 Post-processing impulse responses

All impulse responses taken in the above-
mentioned measurement series were not post-
processed in Aliki, but through separate tools
or scripts. This is mostly due to the high num-
ber of responses and the different applications
they are targeted at.
Post-processing here basically means trim-

ming the impulse responses, compensating the
measurement system latency at the beginning
of the file, in some cases also the air travelling
time of the direct sound, adding a short fade-
in to the beginning, trimming the length of the
impulse response and applying a fade-out at the
end. Other common tasks are gain adjustments,
either by a fixed factor or an individual normal-
isation, and possibly resampling to a different
target sample rate.

3.2.1 imptrim.sh

imptrim.sh is a shell script used for post-
processing the MUMUTH measurements. It is
a simple wrapper script around sox, which fa-

cilitates the handling of large sets of files with
a contiguous number part of a fixed width (e. g.
zero-padded) in their filenames. A certain range
of numbered files may be processed or all con-
tiguously numbered files found, starting from a
given index. For the output files, a different file-
name pattern and a different starting index for
filename numbering may be specified, which en-
ables simple renaming operations for chunks of
files at the same time as processing.
imptrim.sh allows for separately specifying

two portions of the audiofiles to be cut from
the beginning, e. g. a compensation portion in
samples and another trim in seconds. Further
options include the overall length of the result-
ing impulse response, the length and shape of
the fade-in and fade-out and a gain factor. Op-
tionally, a stamp file may be generated in the
output directory as a log for the parameters be-
ing used for processing.

3.2.2 remapch.sh

This is a helper script used for the MUMUTH
measurements which actually does not process
any audio but only facilitates renaming chunks
of numbered impulse response files. It is in-
cluded here because it might be of general in-
terest for adapting it to other settings.
Measuring and exporting a sequence of speak-

ers whose channel numbers do not start at 1 will
result in filenames which do not match the orig-
inal channel numbers anymore. For example,
measuring the MUMUTH sky (channels 65 –
128) will result in numbered filenames ranging
from 1 to 64. This may be avoided by using
aliki-export and specifying an offset for the
output filename (see section 3.1.4).
But when carrying out a large sequence

of measurements over a non-contiguous, i. e.
“sparse” array of channel numbers, the file-
name number offset will be different for each
loudspeaker block. In MUMUTH for example,
when measuring the hemisphere, corner and sky
speakers plus two subwoofers in a row, the hemi-
sphere and corner speaker numbers will remain
(channels 1 – 33), the subwoofer channels 42 and
43 will be named 34 and 35, respectively, and
the sky channels 65 – 128 will result in files num-
bered from 36 to 99.
remapch.sh allows for entering such transla-

tions for certain regions of channel numbers into
a simple database within the script. It may then
be used for renaming operations on chunks of
response files in both directions, based on the
specified configuration (translation).

129

3.2.3 post export.sh

The post export.sh script was written specifi-
cally for the production of the IRs of the Adam
Concert Room at the New Zealand School of
Music (cf., section 2.2). It provides an alter-
native implementation of some of the functions
provided by the imptrim.sh and remap.sh
scripts, as well as some additional features.
post export.sh aims at automating the

entire IR post-processing after the recorded
sweeps have been deconvolved and exported to
.wav. Similar to the tools presented so far, the
idea is to automate the process as much as pos-
sible. Thus, all edits are performed with com-
mand line tools such as sox rather than graph-
ically through the Aliki GUI. Being very much
tailored to the specific requirements of the pro-
duction it was used for, the script is not entirely
generic, but hopefully still useful for other IR
measurements after according adaptations. The
script performs the following processing steps:

Renaming of the IRs exported from Aliki with
mv, such that they are named according to
the respective loudspeaker’s direction. For
example, the suffix nnw denotes a loud-
speaker in north-north-west direction, de-
liberately (but falsely) assuming that the
listener always faces north.

A-to-B format conversion of the experimen-
tal Ambisonics-encoded IRs. This step is
performed using the tetrafile tool by
Fons Adriaensen, who also kindly provided
the required calibration file for the specific
TetraMic (serial ➏ 2099) that was used in
the recording.

Latency compensation countering the ef-
fects of the recording system’s latency, sim-
ilar to the imptrim.sh script.

Trimming the IRs to a pre-defined length with
sox, similar to imptrim.sh.

Fade-in and fade-out with sox, similar to
imptrim.sh.

Normalisation of the IRs to an arbitrary peak
value in dB.3 With the help of some bash
logic, this is performed in groups, such that

3This step is not strictly necessary, assuming that a
floating point number representation is used for the un-
derlying audio files, and considering that in a binaural
mixdown of a multichannel piece, many signals will even-
tually be superimposed anyway.

for every recorded take, the IRs of all loud-
speakers in the multichannel setup are nor-
malised to the same target value. The nor-
malisation is deliberately performed prior
to converting the IRs to different sample
rates, despite the theoretical possibility of
clipping due to intersample peaks (which
can in practice be avoided by choosing the
target value low enough). If an IR was to
be normalised after resampling, intersam-
ple peaks might translate to slightly vary-
ing peak levels for different sample rates.
The same IR would then be normalised by
a different amount for each sample rate.

Resampling from 96 to 44.1 and 48 kHz, us-
ing the sndfile-resample tool from the
samplerate-programs Debian package.

3.3 Jconvolver helpers

The tools described in this section do not
actually belong to the measurement or post-
processing of impulse responses but to their
application. In many use cases of the mea-
surements described here, the free command-
line convolution engine Jconvolver [Adriaensen,
2006b] has been used. Its highly efficient imple-
mentation of the so-called Gardner convolution
using increasing partition sizes makes it espe-
cially suitable for long impulse responses and
many channels, while at the same time allowing
for low-latency operation.

3.3.1 genjconv.sh and genjconvn.sh

Jconvolver uses a configuration file in OSC-
message-style syntax for describing the convo-
lution matrix. The settings include the number
of input and output channels, the minimum and
maximum partition size, the locations, names
and channels of the soundfiles containing the
impulse response and a couple of options for
each impulse response, such as gain or delay.
For the variety of impulse response sets de-

scribed in this paper, especially those of dif-
ferent combinable loudspeaker groups in MU-
MUTH (cf. section 2.4), one should be able to
quickly and flexibly generate Jconvolver config-
urations. For this task, the genjconv.sh and
genjconvn.sh scripts have been conceived.
Both scripts write a Jconvolver configuration

file to stdout based on a list of impulse response
files read from stdin. The general usage scheme
therefore is:

ls ir_*.wav | sort -n | genjconv.sh \
> irjconv.conf

130

The scripts try to be smart with respect to
the input and output channels: By default, the
number of input channels of the convolution ma-
trix is assumed to equal the number of input
files, while the number of output channels is de-
termined from the number of channels of the
first input file. Both parameters may also be
specified manually, as well as the number of in-
put file channels used and a channel offset.
genjconv.sh maps the input channels of the

convolution matrix sequentially to the list of
input impulse response files. It is possible to
specify exclude regions for both input and out-
put channel numbers of the matrix in order to
leave “holes”, i. e. produce a “sparse” convolu-
tion matrix.
genjconvn.sh parses for numbers in the in-

put impulse response filenames and creates
a matrix whose input channel numbers are
mapped to the corresponding filenames. Cur-
rently, this works for zero-padded three-digit
numbers directly in front of the last dot in
the filename. This facilitates the generation of
“sparse” convolution matrices and ensures that
impulse response files for certain speaker groups
are always associated with the right input chan-
nels, independent of the total number of input
files given (assuming that they are named ac-
cordingly).
For completeness, both scripts allow for spec-

ifying a fixed gain factor for all impulse re-
sponses, the base path to be used, the mini-
mum partition size, and the maximum impulse
response length.

3.3.2 jjconvolver.sh

When using manually written or automatically
generated Jconvolver configuration files across
different systems, a common problem is that the
impulse responses reside in a different location
than specified in the configuration file as an ab-
solute path. Often, the difference is negligible
and is caused only by the different name of the
home directory or a few initial path elements,
as the deeper structure of a commonly used im-
pulse response database is likely to be the same.
jjconvolver.sh tries to solve this prob-

lem by simply replacing the /cd directive in
the Jconvolver configuration, generating a tem-
porary file and starting Jconvolver using the
adapted configuration. It acts as a frontend
script to Jconvolver and passes through any of
its options. Additionally, it accepts a few ex-
tra options which either specify a full path to
completely replace the existing one in the con-

figuration, or the initial elements of the new
path from which the complete path is guessed.
This is done by concatenating the given initial
path and the existing one, subsequently strip-
ping one hierarchy from the front of the exist-
ing path, until a directory with the resulting
name is found in the filesystem. Although this
is a very simple mechanism, it turned out to be
quite effective in many practical use cases.

4 Application examples

4.1 Electroacoustic compositions

In our previous paper [Rumori et al., 2010],
we have already discussed some artistic appli-
cations of our impulse responses by different
composers. Justin Yang, Gary Kendall, and
John Moeller have used the IRs recorded in the
SARC Sonic Lab for the production and docu-
mentation of several multichannel electroacous-
tic compositions. Dirk Specht and Gerriet K.
Sharma have published binaural mixdowns of
their multichannel pieces on two CDs, using the
IRs recorded in the IEM CUBE.

4.2 Pop Production

Nic McBride has used the binaural room im-
pulse responses from the Adam Concert Room
at the New Zealand School of Music to create
a headphone mix of eight distinct stems in a
pop production entitled L’addio Scontato. This
example represents an original use of BRIRs in
the sense that the final production was never
primarily targeted at multichannel playback –
one cannot really speak of a stereo ‘reduction’
in this context. According to Nic, the BRIRs
allowed her to achieve a natural-sounding spa-
tial separation in the final binaural mix, which
has been released online [McBride, 2012].

4.3 Audio Augmented Environments

Binaural impulse responses recorded in sev-
eral of the described measurement sessions have
been used by Martin Rumori in sound instal-
lations which form different kinds of audio-
augmented environments. They include naviga-
ble virtual environments incorporating a head-
phone tracking system, such as Parisflâneur,4

or mixed-reality installations, where the virtual
layer blends with the real auditive surround-
ing of the listener, using open-loop headphones,
such as in ruhrprotokolle.5

4http://www.rumori.at/do/parisflaneur
5http://www.ruhrprotokolle.de

131

4.4 VirtualMUMUTH

Within the research project The Choreography
of Sound (see section 2.4), the impulse re-
sponses measured in MUMUTH’s Ligeti Hall
are used for an auralisation of the acoustic prop-
erties of the space. The Jconvolver helpers de-
scribed in section 3.3 have been integrated with
the CoS software framework conceived in Su-
perCollider, which will be published along with
the project’s documentation in the second half
of 2013. The auralisation is completed by a vi-
sual three-dimensional navigable model of Ligeti
Hall, realised in Blender and also integrated
with the software library.
Participants of the CoS workshop at Impuls

Academy 2013 6 in February 2013 and artists in-
vited to the Mind the Gap! symposium in MU-
MUTH in March 20137 prepared their contri-
butions using the VirtualMUMUTH standalone
application.

5 Availability

The impulse responses from all recording ses-
sions described in section 2, including the
patches, scripts and helpers introduced in sec-
tion 3 as well as the VirtualMUMUTH aurali-
sation tool mentioned in section 4.4, have been
made freely available at http://irdb.kug.ac.
at.

6 Conclusion

Impulse responses of multichannel loudspeaker
arrays in real concert halls provide many use-
ful applications for music production and the
documentation of electroacoustic compositions.
FLOSS tools continue to play an essential role
in the recording and usage of such IRs, due to
the customisability that these tools offer, and
the current limitations of commercial software
packages.
We are looking forward to feedback from mu-

sic producers and composers who would like to
use the presented impulse responses for their
own work, hopefully in unusual and original
ways that we have not envisioned here.

7 Acknowledgements

The measurements at MUMUTH Graz were
carried out within the Choreography of Sound
artistic research project initiated by Gerhard
Eckel and Ramón González-Arroyo, funded by

6http://www.impuls.cc
7http://www.researchcatalogue.net/view/33841/

37723/1022/567

the Austrian Science Fund (FWF) under the
project code PEEK AR41.
Fons Adriaensen has provided much-

appreciated support for his excellent Aliki,
Jconvolver and Tetrafile packages.
We would also like to acknowledge the contri-

butions of Bridget Johnson, Jason Post, Stuart
Macann, Roy Carr, Dugal McKinnon and Mark
McGann at the New Zealand School of Music,
and of Mark Poletti at Industrial Research Ltd.
in Lower Hutt.
At the Sonic Arts Research Centre in Belfast,

we would like to thank Andrés Cabrera, Gary
Kendall, John Moeller, Justin Yang and Chris
Corrigan.
Thanks to Anthony Moore and Dirk Specht

for organising the measurement workshop at the
Academy of Media Arts Cologne.

References

Fons Adriaensen. 2006a. Acoustical impulse
response measurement with ALIKI. In Pro-
ceedings of the International Linux Audio
Conference 2006, Karlsruhe.

Fons Adriaensen. 2006b. Design of a convolu-
tion engine optimised for reverb. In Proceed-
ings of the International Linux Audio Con-
ference 2006, Karlsruhe.

Gerhard Eckel, Martin Rumori, David Pirrò,
and Ramón González-Arroyo. 2012. A frame-
work for the Choreography of Sound. In Pro-
ceedings of the International Computer Music
Conference 2012, Ljubljana.

Angelo Farina. 2000. Simultanuous measure-
ment of impulse response and distortion with
a swept-sine technique. In Audio Engineering
Society Preprint 5093.

Nic McBride. 2012. L’addio scontato.
http://soundcloud.com/amynicmcbride/
l-addio-scontato-elyssa-vulpes. Pro-
duced by Nic McBride, written and per-
formed by Elyssa Vulpes. Last retrieved on
12 February 2013.

Martin Rumori, Florian Hollerweger, and
Andrés Cabrera. 2010. Binaural room im-
pulse responses for composition, documenta-
tion, virtual acoustics and audio augmented
environments. In Proceedings of the 26th

VDT International Convention, pages 670–
679, Leipzig.

132

Pitch-class Set design in SuperCollider

Lucas SAMARUGA

Universidad Nacional de Quilmes

Roque Saenz Peña 180

Quilmes, Argentina, 1876

lsamaruga@becarios.unq.edu.ar

Oscar Pablo DI LISCIA

Universidad Nacional de Quilmes

Roque Saenz Peña 180

Quilmes, Argentina, 1876

odiliscia@unq.edu.ar

Abstract
The Pitch-class set theory [6] and its extensions
[8] constitute an important basis for mastering
multi- layered atonal composition. The
SuperCollider [10] environment offers significant
possibilities of applying this technique in the
creation of abstract Pitch-class designs that may be
used as a part of more complex algorithmic
composition developments. This paper presents
pcslib-sc a quark (library) for Pitch-class set
design in SuperCollider and a use case in order to
demonstrate its musical relevance.

Keywords

Pitch-class Set Composition, SuperCollider,
Musical Composition.

1 Introduction

The Pitch-class Set theory uses both the
combinatorial and set theory to organize the twelve
Pitch-classes of the tempered system in Sets
(Pitch-class Set will be from here abbreviated as
PCS and Pitch-class as PC) in order to exploit their
structural properties on atonal music composition
and analysis. Although it is evident that this system
was inspired on the European pre and post serial
atonal music1, it was initially developed by
American composers and theorists like Milton
Babbitt [1], and Allen Forte [6].

Generally speaking, the PCS theory covers three
aspects. The first aspect deals with the concept of
the PCS as a subset of the Universal Superset
formed by the twelve Pitch-classes (also called
“aggregate”) and the concepts of equivalence by
inversion-transposition that generate the 224
different set classes. The second defines, encodes,
analyses and classifies the structural features of
each set class (such as, for example, their Interval
Class Vector). The third deals with the possible

1 Mainly, the music of Arnold Schönberg, Anton
Webern and Alban Berg, the three leading composers
of the so-called Viennese School.

relations between PCSs and set classes and their
significance in the musical context2.

A latter projection of this system explores the
possibilities of disposition of PCSs in the musical
space producing Combinatorial Matrices
(Combinatorial Matrix will be from here on
abbreviated as CM) and creating abstract
compositional designs3.

The complexity of atonal theory makes its
practical application almost impossible without the
aid of computer applications. Therefore, one of the
computer applications developed by the team of
this project was the pcslib library (by Pablo Di
Liscia and Pablo Cetta [2]) to be used in the PD
environment (Pure Data, by Miller Puckette et al).
pcslib is a set of “external objects” that allow the
work with PCSs and CMs in the PD environment
[4].

pcslib-sc for SuperCollider4 is based on pcslib
for PD with two small differences: 1) the adaption
of the original library interface to a more
general-purpose object-oriented language and 2)
the generalisation of some functionality in relation
to set theory.

Although SuperCollider is generally more
oriented to real-time sound synthesis and
algorithmic composition, its language is very
useful in manipulating and analysing musical data
mainly because of its dedicated library. Therefore
this quark is intended to work with the structure
generation approach of the PCS theory rather than
the pattern generation, task that can be
accomplished using the standard library.

This paper outlines the usage of three main
resources of PCS theory, its related data structures
and their combined use: Pitch-class sets,
Pitch-class chains and Pitch-class matrices. The
following discussion assumes that the reader is

2 For an extensive review on this specific subject,
see Di Liscia [5].

3 See Morris [7], [8].
4 pcslib-sc was written by Lucas Samaruga under the

supervision of Pablo Di Liscia and can be obtained at:
https://github.com/smrg-lm/pcslib-sc.

133

aware of both the fundamentals of the PCS theory
and of SuperCollider programming.

2 Data Structures

There are three main classes that are intended to
work in combination for the elaboration of pitch
structures. The PCS class, which defines a
particular PCS (together with its properties and
operations), the PCSChain class, which defines a
chain of PCSs and its elaboration methods and the
PCSMatrix class, which defines a combinatorial
matrix of PCS (together with its particular
properties, generation methods and operations).

The PCS class inherits from the library class
OrderedIdentitySet not only because they share
common set operations, but also because of the
importance of the Pitch-classes order for some data
calculation. PCSChain and PCSMatrix classes are
more likely utility classes to work with their
respective PCS theory counterpart. The former is a
list and the latter represents a matrix of PCS. In
their combined usage, chains are built from PCS
and matrices can be built from PCS or chains.
There is also a SCTable class, which holds the
Set-class (SC)5 table used for information retrieval
from the PCS class.

These classes do not try to cover exhaustively all
structural processes, but rather the common
qualities used for compositional design. Therefore,
the PCS class is the most complex in terms of
information retrieval, operations and
transformations, as they are the basic resources for
further developments.

2.1 Basic Properties and Information

As stated before, the PCS class is the core class
of the quark, it holds all the operations and
properties related to the PCS theory.

A PCS can be built from its symbolic table name,
consisting of its cardinal and ordinal numbers
separated by a hyphen, like '4-16' or '5-12', but
without the 'Z' pair identifier which can be queried
with the z method, e.g. '5-12' is written '5-Z12' in
Forte's nomenclature [6]; or can be created from an
array of numbers, like PCS[0, 1, 3, 5, 6] with the
array syntax shortcut. Internally, the PCs are stored
as an ordered set in modulo 12, so the conversion
of an array of MIDI notes such as [77, 72, 54, 49,
51, 60, 51, 48] will result in PCS[5, 0, 6, 1, 3].

Once the note numbers are stored in a PCS its
prime form, normal order, Forte's name, Z pair,
interval-class vector, invariance vector and cyclic

5 In this paper SC stands for Set-class, and it should
not be confused with SuperCollider, which is written
always with no acronym.

adjacent interval array, can be obtained from the
SCTable through the PCS instance methods. Also
the twelve-tone operators, relations, similarity
and status between different PCSs and its prime
form are supported as basic operations aside of the
inherited set operations.

2.2 Combined Use and Design Methods

PCSChain and PCSMatrix classes are related to
the pitch design in one and two dimensions
respectively (see below). They holds the structured
data as higher abstractions and provides different
creation, information and manipulation methods.

PCSChain is used to build chains with the
procedures explained in Section 3.2. The built lists
can be used as streams by the pattern library.

PCSMatrix can be built with different methods:
from arrays (a free matrix), from chains (special
cases were the chain is specially set, as explained
in Section 3.1), from SC to build different Morris's
CM types, and from twelve-tone operators [8].
Basic operations like swapping, transposition,
multiplications, inversion, rotation, and
information about the properties of a CM, such as
sparseness and fragmentation factors and
histogram of PC density are also provided [8]. The
data of the rows and columns of the matrix can be
converted back to PCS or used as streams as well.

3 Use case: constructing Combinatorial
Matrices from chains

In this section a use case, out of the many
possible using pcslib-sc, will be presented with the
objective of showing its musical relevance. The
particular subject of PCS composition addressed
here will be CMs. In the next section, the basic
underliying theory of CMs is briefly explained.

3.1 Introduction to the theory of
Combinatorial Matrices and chains

CMs are two-dimensional arrays that hold in
their vertical and horizontal dimensions PCSs of
one or more SCs. The classes of those PCSs are
referred to as the norm of a CM and are meant to
produce sonic coherence with respect to some
particular pitch organization. As shown in [7] and
[8], there are several methods to deal with the
construction of CMs, and several CMs types. The
method addressed here is the construction of
chains of PCSs.

Figure 1

134

A chain is a succession of PCSs that, being
considered in adjacent pairs, form a PCS of a
particular SC referred to as norm. An example of
such a chain is presented in Figure 1. The ordered
succession of the (unordered) PCSs: < {094}
{562} {79B} {A52} >6 constitutes a chain having
the class 6-46 as its norm. The horizontal brackets
show how the norm of the chain overlaps between
the adjacent pairs of PCSs.

A chain with a unique norm may be taken as a
basis for constructing a CM with the same norm. A
chain constructed with the set class 5-15 together
with its corresponding CM is shown below:

PCS chain: < {01} {268} {07} {15B} {67} {028}
{16} {57B} >

Resulting CM (Table 1):

01 268

07 15B

67 028

57B 16

Table 1

As can be seen, the union of the PCS of each one
of the columns and each one of the rows of the CM
form a PCS of the class 5-15 (the norm of the CM).
The distribution of the PCS in the resulting CM
may be further improved through swapping
operations7. One possible result would be (Table 2):

1 02 6 8

B 7 15 0

0 8 7 26

57 6 B 1

Table 2

3.2 Constructing chains

Essencially, it can be said that the method8 for
chain construction consists in connecting different
transposed and/or inverted, partially-ordered
versions of a PCS. Such partially ordered versions
are the binary partitions of a PCS which will be
termed partitions. For example, the Table 3 below
shows the ten different partitions of a PCS of the

6 The convention of representing PC 10 with an A
and PC 11 with a B will be followed from here for
practical reasons.

7 Such swapping operations are documented in [7]
and [8] and will not be explained here.

8 The method is fully explained in [7] and [8]. See
also [3].

class 5-15, and has all the information needed for
constructing a chain with this set-class as norm:

If, for instance, the partition F (01|268) is
selected for starting the chain, the different 2/3
transposed and/or inverted partitions having a PCS
of cardinality 3 that match the PCS in the ‘right
part’ of the starting partition are candidates for
continuing the chain. When one of these candidates
is selected and added to the chain, there will be
new candidates to continue the chain according to
the new PCS added, and the procedure is continued
as explained until it is decided that the chain must
be finished or when a partition that closes the chain
is found9.

5-15 {0,1,2,6,8}
Partitions 1/4

A 0|1268 1-1 4-16
B 1|0268 1-1 4-25
C 2|0168 1-1 4-16
D 6|0128 1-1 4-5
E 8|0126 1-1 4-5

Partitions 2/3
F 01|268 2-1 3-8
G 02|168 2-2 3-9
H 06|128 2-6 3-5
I 08|126 2-4 3-4
J 12|068 2-1 3-8
K 16|028 2-5 3-8
L 18|026 2-5 3-8
M 26|018 2-4 3-4
N 28|016 2-6 3-5
O 68|012 2-2 3-1

Table 3

3.3 Choosing partition candidates

The explained method suggest that more than
one candidate for continuing a chain may be found,
depending on both the chain itself and the
properties of the SC of its norm. If the norm does
not change along the chain, then at least one
candidate partition to continue it will exist10. When
more than one candidate exists, one or several
selection criteria must be applied. A criterion for
measuring the ‘qualification’ of a list of candidates
is to score them according their contribution of
new PCs in the chain or, if the aggregate set is
complete, according the distance of the PCs added

9 The possibility of finding a partition that may
close the chain is explained in [7].

10 This partition may not be musically interesting, as
it is the same partition in reverse order,.

135

to their previous presentation11. Such criterion is
formalized as:

score(cand i)=
∑
n=0

C
i−1

dist (pcn , cand i)

(S)C i

EQ. 1

Where S is the chain size (number of positions);
Ci is the cardinality of the ith PCS to be added;
dist(pcn, candi) = S - (pos(pcn, candi) + 2) and
pos(pcn, candi) is the last position in which the pcn

of candi was found (i=0 to S-1, and n=0 to Ci). If
the pcn is not found in the chain, then pos(pcn,
candi)=0.

For example, considering a chain having 3
positions (S=3), whose norm is of the class 5-3:

2 4 | 0 1 5 | 4 3 |

And the following candidates to be added with
their scores (the repeated PCs are marked in Italics
Bold):

candidate0 = {5 1 0}
score = [(3-3) + (3-3) + (3-3)] / (3*3) = 0
candidate1 = {B 0 1 }
score = [(3-0) + (3-3) + (3-3)] / (3*3) = 0.33…
candidate2 = {2 0 B}
score = [(3-2) + (3-3) + (3-0)] / (3*3) = 0.44…
candidate3 = {5 7 8}
score = [(3-3) + (3-0) + (3-0)] / (3*3) = 0.66…
candidate4 = {2 6 7}
score = [(3-2) + (3-0) + (3-0)] / (3*3) = 0.77…
candidate5 = {8 7 6}
score=[(3-0) + (3-0) + (3-0)] / (3*3) = 1

It can be easily seen that –according to this
criterion- the ‘best’ candidate is scored by 1 and is
also the one that adds three new PCs to the chain
whilst the ‘worst’ candidate is scored by 0 and it
merely repeats the PCs of the norm of the chain.
Finally, it is worth noting that is not mandatory at
all to select the candidate with the highest score,
because there may be many other criteria by which
a PCS may not be considered a ‘good’ candidate
(just to mention one of them, the PCS candidate
may belong to a SC that was decided to be
excluded because of aural or stylistic reasons).

3.4 Constructing chains with more than one
norm

It is possible to extend the already explained
method for constructing chains to obtain a CM with

11 This criterion was formalized by Pablo Di Liscia
[3].

different norms. A case having special relevance in
music is presented here. If it is desired to achieve a
CM whose vertical norm is always of the same SC,
x, whilst all the horizontal norms are of different
classes, a, b, c, d and e and supposing the
cardinality of the norms is always 5, the scheme of
the chain to be generated is shown in Table 412:

 a b c d e

** *** ** *** ** *** ** *** ** ***

x x x x

Table 4

That will be the base for the CM shown in Table
5 below:

(sc) x x x x x

a ** ***

b ** ***

c ** ***

d ** ***

e *** **

Table 5

Achieving such structures is a key for mastering
atonal counterpoint, since they may be very
effectively used for controlling both the
simultaneity and the succession of PCs and their
SCs on a polyphonic musical thread.

3.5 Using pcslib in the SuperCollider
environment to construct chains and CMs

In this section, a use case in which the
construction of the chains and CMs above
mentioned will be presented.

Being the following PCSs:

a = PCS('5-1');
b = PCS('5-21');
c = PCS('5-35');
d = PCS('5-7');
e = PCS('5-33');
x = PCS('5-12'); // 5-Z12

A chain may be constructed using the methods
explained in Section 3.2. First a PCSChain is
created and its initial norm is set. Then the
candidates for continuing it are computed and
evaluated, and a selected partition out of the
candidates list is added:

~chain = PCSChain.new.norm_(a);
~chain.candidates(false);
~chain.addCand(7);

12 Where each ‘*’ represents a Pitch-class.

136

Next, the criteria described above to create a
chain is applied. Note that it is known beforehand
that the chain can be constructed, so just to execute
the following ad hoc algorithm is needed (the
resulting chain is show in Table 6):

[x, b, x, c, x, d, x, e].do({ arg pcs;
 ~chain.norm = pcs;
 ~chain.candidates(false);
 ~chain.candList.notEmpty.if({
 ~chain.addCand(
 ~chain.scores.indexOf(
 ~chain.scores.maxItem
);
);
 }, {
 "candidates for %"
 .format(pcs.name).throw;
 });
});
A (5-1) B (5-21) C (5-35) D (5-7) E (5-33)

03 124 67 3AB 14 68B 5A 349 68 02A
X (5-Z12) X (5-Z12) X (5-Z12) X (5-Z12)

Table 6

Now a PCSMatrix from the generated chain is
created (shown in Table 7):

~matrix = PCSMatrix.fromChain(~chain);

set-class
4-11

X

(5-Z12)

X

(5-Z12)

X

(5-Z12)

X

(5-Z12)

A (5-1) 03 124

B (5-21) 67 3AB

C (5-35) 14 68B

D (5-7) 5A 349

E (5-33) 02A 68

Table 7

and the default swapping algorithm is performed
to improve the distribution of the CM:

~matrix.swapping;

Finally, the PC 9 of the fourth row is duplicated
in the first column to keep all the vertical norms
within the SC 5-Z12:

~matrix.addAt(3, 0, PCS[9]);

which will result in Table 8.

set-class X

(5-Z12)

X

(5-Z12)

X

(5-Z12)

X

(5-Z12)

X

(5-Z12)

A (5-1) 02 1 4 3

B (5-21) A 7 3 B 6

C (5-35) 6 1B 8 4

D (5-7) 39 4 5A 9

E (5-33) 0 2 A 6 8

Table 8

The process described so far results in a
particular and coherent PCS distribution in two
dimensions but it only defines the sonic potential of
the pitch organization. There are many possible
'realizations' of this structural organization which
will turn in different musical results. No rhythmic
constrains are given except for the vertical
alignment that provides a relative temporal
'window' within which the harmony can remain in
norm. Other parameters of the pitch organization
like register, range and timbre are not given either.
All of these basic variables remain free for further
development.

4 Conclusion

The pcslib-sc library presented in this paper is a
flexible and robust tool for effectively handling the
main features of atonal pitch organization.
Although the structures that can be created are
highly abstract, they may constitute the basis for
pitched music organization. The realization of such
abstract structures (i.e., the conversion of them in
music) requires the setting of numerous sound
features (such as register, duration, intensity and
timbre among others) which are suppose to be
congruent with the underlying pitch organization.
SuperCollider is a very powerful environment for
the latter accomplishment, and the objective of the
pcslib-sc library was to add to it yet a new
extension of its capacities.

5 Acknowledgments

The authors thank to Universidad Nacional de
Quilmes (Buenos Aires, Argentina) for supporting
and hosting this research.

References

[1] Milton Babbit. 1961. Set Structure as
Compositional Determinant. Journal of Music
Theory 5, no.1, USA.

[2] Oscar Pablo Di Liscia. 2012. PCSLIB site.
https://puredata.info/Members/pdiliscia/pcslib/

[3] Oscar Pablo Di Liscia. 2012: PCSLIB
reference.
https://puredata.info/Members/pdiliscia/pcslib/H
elp-English.doc/view

[4] O. P. Di Liscia and P. Cetta. 2009.
Pitch-class composition in the pd environment.
XII Simposio Internacional de Computación y
Música, Recife, Brasil.

[5] O. P. Di Liscia. 2011. Medidas de similitud
entre conjuntos ordenados de grados
cromáticos. Revista de Investigación

137

Multimedia, Vol III, IUNA, Buenos Aires.
Argentina.

[6] Allen Forte. 1974. The Structure of Atonal
Music. Yale University Press. England.

[7] Robert Morris. 1984. Combinatorialty
without the aggregate. Perspectives of new
Music. USA.

[8] Robert Morris. 1987. Composition with
Pitch-classes: A Theory of Compositional
Design. Yale University Press. USA.

[9] Puckette, Miller. 2007. The theory and
technique of electronic music,
world scientific publishing co. Pte. Ltd.

[10] Mccartney, James. 2002. Rethinking the
computer music language: supercollider.
Computer music journal, 26:4:61-68, mit press,
massachussets.

138

Experiments with dynamic convolution techniques in live
performance

Øyvind BRANDTSEGG

Music technology
NTNU - Department of Music
NO-7491 Trondheim, Norway
oyvind.brandtsegg@ntnu.no

Sigurd SAUE

Music technology
NTNU – Department of Music
NO-7491 Trondheim, Norway

sigurd.saue@ntnu.no

Abstract

This article discusses dynamic convolution
techniques motivated by the musical exploration of
interprocessing between performers in improvised
electroacoustic music. After covering some basic
challenges with convolution as live performance
tool we present experimental work that enables
dynamic updates of impulse responses and
parametric control of the convolution process. An
audio plugin implemented in the open source
software Csound and Cabbage integrates the
experimental work in a single convolver.

Keywords

Convolution, live processing, Csound, cross
synthesis

1 Introduction

The Music Technology section at NTNU
Department of Music has established the ensemble
T-EMP (Trondheim ensemble for Electroacoustic
Music Performance). The ensemble focuses on
new modes of improvisation and music making,
utilizing the possibilities inherent in contemporary
electroacoustic instrumentation (Figure 1). A key
objective is to blur the separation between the
individual contributions from each musician and
collectively develop tight-woven timbral gestures.

Through live sampling and processing the very
generation of sonic material may grow out of a
collaborative effort where acoustic sounds (voice,
drums, etc.) are processed in real-time by digital
instruments. Ultimately any sound produced could
serve as source material for processing by another
member of the ensemble. This concept of live
interprocessing has a huge potential for timbral
experimentation, but there are some very
challenging issues regarding performance
complexity.

We are experimenting with processing tools
built upon the open source, platform-independent
computer music software Csound [2], either
written in the Csound language itself or
implemented as opcodes1 extending the language
[3].

So far we have concentrated our attention on
two different processing techniques: Granular
synthesis and convolution. We have already
presented our work on particle synthesis through
the Hadron synthesizer, a digital instrument that
unifies all known variants of time based granular
synthesis [4, 5] . In the present paper we will
focus on the musical uses of convolution, as an
extension of previous work by our
colleague,Trond Engum [6].

2 Convolution

Convolution is a well known signal processing
technique, but the theory behind it remains
unknown to most musicians [7]. The convolution
of two finite sequences x(n) and h(n) of length N
is defined as:

1An opcode is a basic Csound module that either
generates or modifies signals.

Figure 1: T-EMP playing live with guests from
Maynooth, Ireland.

139

x (n) h (n)=∑
k=0

N−1

h(k) x (n−k)

A time-domain, direct-form implementation
(similar to a FIR2 filter) will require on the order
of N2 multiplications. We typically use segments
of 2 seconds length, equivalent to 88200 sample
points at 44,1 kHz sampling rate, which makes the
computational complexity prohibiting. A far more
efficient solution is fast convolution using FFT
and simple multiplication in the frequency domain
[8]. It does however introduce latency equal to the
segment length, which is undesirable for real-time
applications. Partitioned convolution reduces
latency by breaking up the input signal into
smaller partitions. Techniques combining
partitioned and direct-form convolution can
eliminate processing latency entirely [9].

There are many well-known applications of
convolution, such as filtering, spatialization and
reverberation. Common to them is that one of the
inputs is a static impulse response (characterizing
a filter, an acoustic space or similar), allocated and
preprocessed prior to the convolution operation.
Impulse responses are typically short and/or with a
pronounced amplitude decay throughout its
duration. The convolution process does not
normally allow parametric real-time control.

We wanted to explore convolution as a creative
sound morphing tool, using the spectral and
temporal qualities of one sound to filter another.
This is closely related to cross-filtering [7] or
cross-synthesis, although in the latter case one
usually extracts the spectral envelope of one of the
signals prior to their multiplication in the
frequency domain [10].

Trond Engum employed similar techniques in
his artistic research project where he did real-time
convolution of drums and guitars with industrial
sounds such as trains and angle grinders. There are
a few earlier references of related uses of
convolution, starting with Barry Truax [10-13].

An important aspect of our approach is that both
impulse response and input should be dynamically
updated during performance. This adds significant
amounts of complexity, both with respect to
technical implementation and practical use.
Without any real-time control of the convolution
process, it can be very hard to master in live
performance. Depending on the amount of overlap
of spectral content between the two signals, the
output amplitude may vary by several orders of
magnitude. Also, when both input sounds are long,

2FIR: Finite Impulse Response

significant blurring may appear in the audio
output as the spectrotemporal profiles are layered.

A possible workaround is to convolve only
short fragments of the input sounds at a time,
multiplying them frame by frame in the frequency
domain. The drawback is that any musically
significant temporal structure of the input signals
will be lost in the convolution output. To capture
the sound's evolution over time requires longer
segments, with the possible artifact of time
smearing as a byproduct. This seems to be a
distinguishing factor in our approach to
convolution and cross-synthesis.

This paper presents some experiments that try
to overcome some of the issues above. Our aim
has been to:

• create dynamic parametric control over
the convolution process in order to
increase playability

• investigate methods to avoid or control
dense and smeared output

• provide the ability to update/change the
impulse responses in real-time without
glitches

• provide the ability to use two live input
sounds to a continuous, real-time
convolution process

The motivation behind the experiments is the
artistic research within the ensemble T-EMP and
specific musical questions posed within that
context.

3 Experiments

The experimental work has produced various
digital convolution instruments, for simplicity
called convolvers, using Csound and Cabbage3.

The experiments can be grouped under two
main headings: Dynamic updates of the impulse
response, and parametric control of the
convolution process.

3.1 Real-time convolution with dynamic

impulse response

From our point of view processing with a static
impulse response does not fully exploit the
potential of convolution in live performance. We
therefore wanted to investigate strategies for
dynamically updating the impulse response.

3 Cabbage is a toolkit for making platform-
independent Csound-based audio plugins [1]. See also
http://www.thecabbagefoundation.org/

140

A note on terminology: The term impulse

response relates explicitly to the mathematical
theory behind FIR filters or to the acoustic
measurements of reverberation. Still we find it
convenient to use the term (or its abbreviation IR)
to signify the static input of a convolver, even
when the signal no longer is the response to any
impulse, strictly speaking.

3.1.1 The live sampling convolver

As a first attempt, we implemented a convolver
effect where the impulse response could be
recorded and replaced in real-time. This was
intended for use in improvised music performance,
similar to traditional live sampling, but using the
live recorded audio segment as an impulse
response for convolution instead. No care was
taken to avoid glitches when replacing the IR in
this case, but the instrument can be used as an
experimental tool to explore some possibilities.
Input level controls were used to manually shape
the overall amplitude envelope of the sampled IR,
by fading in and out of the continuous external
signal. This proved to be a simple, but valuable
method for controlling the timbral output.

In our use of this instrument we felt that the
result was a bit too static to provide a promising
basis for an improvised instrumental practice.
Still, with some enhancements in the user
interface, such as allowing the user to store, select
and re-enable recorded impulse responses, it could
be a valuable musical tool in its own right.

3.1.2 The stepwise updated IR buffer

The next step was to dynamically update the
impulse response during convolution. A possible
application could be to tune a reverberation IR
during real-time performance. A straightforward
method to accomplish this without audible
artifacts is to use two concurrent convolution
processes and crossfade between them when the
IR needs to be modified.

When combined with live sampling convolution,
the crossfade technique renders it possible to do
real-time, stepwise updates of the IR, using a live
signal as input. In this manner the IR is updated

and replaced without glitches, always
representing a recent image of the input sound.

Figure 2 illustrates the concept: Impulse
responses are recorded in alternating buffers A
and B from one of the inputs. Typical buffer
length is between 0.5 and 4 seconds with 2
seconds as the most common. An envelope
function is applied to the recorded segments for
smoother convolution. The second input is routed
to two parallel processing threads where it is
convolved with buffer A and B respectively. The
convolution with buffer A fades in as soon as that
buffer is done recording. Simultaneously the tail
of convolution with buffer B is faded out and that
buffer starts to record.

This allows us to use two live input signals to
the convolution process. There is however an
inherent delay given by the buffer length. Future
research will explore partitioned IR buffer
updates to reduce the delay to the length of a
single FFT frame.

3.2 Parametric control of the convolution

process

Convolution can be very hard to control even
for a knowledgeable and experienced user [7]. A
fundamental goal for our experiments has been to
open up convolution by providing enhanced
parametric control for real-time exploration of the
technique.

3.2.1 Signal preprocessing

As we have noted, the convolution process
relates all samples of the IR to all samples of the
input sound. This can easily result in a densely
layered, muddy and spectrally unbalanced output.
Various forms for preprocessing of the input
signals has been proposed, such as high-pass
filtering [14], compression/expansion and square-
root scaling [10].

We furnished our convolver with user-
controlled filtering (high-pass and low-pass) on
both convolution inputs, as this can reduce the
problem of dense, muddy output considerably.

Figure 2: The stepwise updated IR buffer

141

The point is to provide dynamic control over the
“degree of spectral intersection” [10].

3.2.2 The transient convolver

 As another strategy for controlling the spectral
density of the output, while still keeping with the
basic premise that we want to preserve the
temporal characteristics of the IR sound, we split
both the IR and the input sound into transient and
sustained parts. Convolving with an IR that
contains only transients will produce a
considerably less dense result, while still
preserving the large-scale spectral and temporal
evolution of the IR.

The splitting of the transient and sustained parts
was done in the time domain by detecting
transients and generating a transient-triggered
envelope (see Figure 3). The transient analysis can
be tuned by a number of user-controlled
parameters. The sustained part was extracted by

using the inverted transient envelope. Hence the
sum of the transient and sustained parts are equal
to the original input.

Transient splitting enables parametric control
over the density of the convolution output,
allowing the user to mix in as much sustained
material as needed. It is also possible to convolve
with an IR that has all transients removed,
providing a very lush and broad variant.

3.3 Combining the results

Finally, the various convolution experiments
outlined above were combined into a single
convolver4. It works with two live audio inputs:
one is buffered as a stepwise updated IR and the
other used as convolution input (see Figure 4).

The IR can be automatically updated at regular
intervals. The sampling and replacement of the IR
can also be relegated to manual control, as a way
of “holding on” to material that the performer
finds musically interesting or particularly
effective.

Each of the two input signals can be split into
transient and sustained parts, and simple low-pass
and high-pass filters are provided as rudimentary
methods for controlling spectral spread.

Straightforward cross-filtering, continuously
multiplying the spectral profile of the two inputs
frame by frame, was also added to enable direct
comparison and further experimentation. As
should be evident from Figure 5 the user interface

4 The Csound code for this convolver is available at
http://folk.ntnu.no/oyvinbra/LAC2013/, ready to be
compiled into a VST using Cabbage.

Figure 4: Convolver with transient split and stepwise
update IR buffer. Straightforward cross-filtering is
added as reference.

Figure 3: Splitting transient and sustained parts of an input signal

142

provides a great deal of parametric control of this
convolver.

4 Conclusion and further work

We have implemented a number of variations of
convolution as an attempt to overcome limitations
inherent in convolution as a music processing
technique. The context for our experimental work
is musical objectives growing out of
improvisational practice in electroacoustic music.
Preliminary tests show that some of the limitations
have been lifted by giving real-time parametric
control over the convolution process and the
density of its output, and by allowing real-time
updates of the IR.

In practical use, the effect is still hard to control.
This relates to the fact that, with real-time
stepwise updates of the IR, the performer does not
have detailed control over the IR buffer content.
The IR may contain rhythmic material that are
offset in time, creating offbeat effects or other
irregular rhythmic behavior. With automatic IR
updates the performer does not have direct and
precise control over the timing of IR changes.
Instead the sound of the instrument will change at
regular intervals, not necessarily at musically
relevant instants.

A possible way of controlling rhythmic
consistency would be to update the IR in
synchrony with the tempo of the input material,
for instance so that the IR always consists of a

whole measure or beat and that it is replaced only
on beat boundaries. Another proposal would be to
strip off non-transient material at the start of the
IR, so that the IR would always start with a
transient. This is ongoing work.

We hope to present our convolver live at the
conference.

5 Acknowledgements

Our thanks goes to the performers of T-EMP
who in addition to author Øyvind Brandtsegg are:
Tone Åse, Ingrid Lode, Carl Haakon Waadeland,
Bernt Isak Wærstad and in particular Trond
Engum, who has advocated creative uses of
convolution for many years now. We would also
like to thank the Norwegian Artistic Research
Programme for supporting T-EMP as a
performing laboratory.

References

[1] R. Walsh. 2011. Audio Plugin
development with Cabbage. Proceedings of
Linux Audio Conference, pages 47-53.
[2] Csound. See http://www.csounds.com/.
[3] V. Lazzarini. 2005. Extensions to the
Csound Language: from User-Defined to
Plugin Opcodes and Beyond. LAC2005
Proceedings, pages 13.
[4] Ø. Brandtsegg, S. Saue, T. Johansen.
2011. Particle synthesis–a unified model for
granular synthesis. Proceedings of the 2011
Linux Audio Conference(LAC’11).
[5] Ø. Brandtsegg, S. Saue. 2011. Performing
and composing with the Hadron Particle
Synthesizer. Forum Acusticum, Aalborg,
Denmark.
[6] T. Engum. Real-time control and creative
convolution. Proceedings of the International
Conference on New Interfaces for Musical
Expression}, pages 519-22.
[7] C. Roads. 1997. Sound transformation by
convolution. In C. Roads, A. Piccialli, G. D.
Poli, S. T. Pope, editors, Musical signal

processing, pages 411-38. Swets & Zeitlinger.
[8] R. Boulanger, V. Lazzarini. 2010. The

Audio Programming Book, The MIT Press.
[9] W. G. Gardner. 1995. Efficient
Convolution without Input-Output Delay. J

Audio Eng Soc, 43(3), pages 127.

Figure 5: The convolver user-interface

143

[10] Z. Settel, C. Lippe. 1995. Real-time
musical applications using frequency domain
signal processing. Applications of Signal
Processing to Audio and Acoustics, 1995,
IEEE ASSP Workshop on, pages 230-3 IEEE.
[11] B. Truax. 2005. Music and science meet
at the micro level: Time-frequency methods
and granular synthesis. Acoustical Society of

America Journal, 117pages 2415-6.
[12] R. Aimi. 2007. Percussion instruments
using realtime convolution: Physical
controllers. Proceedings of the 7th
international conference on New interfaces for
musical expression, pages 154-9 ACM.
[13] D. Merrill, H. Raffle, R. Aimi. 2008. The
sound of touch: physical manipulation of
digital sound. Proceedings of the twenty-sixth
annual SIGCHI conference on Human factors
in computing systems, pages 739-42 ACM.
[14] T. Erbe. 1997. SoundHack: A Brief
Overview. Computer Music Journal, 21(1),
pages 35-8.

144

❈r❡❛t✐♥❣ ▲❱✷ P❧✉❣✐♥s ✇✐t❤ ❋❛✉st

❆❧❜❡rt ●rä❢
❉❡♣t✳ ♦❢ ❈♦♠♣✉t❡r ▼✉s✐❝✱ ■♥st✐t✉t❡ ♦❢ ▼✉s✐❝♦❧♦❣②

❏♦❤❛♥♥❡s ●✉t❡♥❜❡r❣ ❯♥✐✈❡rs✐t② ✭❏●❯✮ ▼❛✐♥③✱ ●❡r♠❛♥②
❉r✳●r❛❡❢❅t✲♦♥❧✐♥❡✳❞❡

❆❜str❛❝t

❚❤❡ ❢❛✉st✲❧✈✷ ♣r♦❥❡❝t ❛✐♠s t♦ ♣r♦✈✐❞❡ ❛ ❝♦♠♣❧❡t❡
s❡t ♦❢ ▲❱✷ ♣❧✉❣✐♥ ❛r❝❤✐t❡❝t✉r❡s ❢♦r t❤❡ ❋❛✉st
♣r♦❣r❛♠♠✐♥❣ ❧❛♥❣✉❛❣❡✳ ■t ❝✉rr❡♥t❧② ✐♠♣❧❡♠❡♥ts
❣❡♥❡r✐❝ ❛✉❞✐♦ ❛♥❞ ▼■❉■ ♣❧✉❣✐♥s ✇✐t❤ s♦♠❡ ✐♥✲
t❡r❡st✐♥❣ ❢❡❛t✉r❡s s✉❝❤ ❛s ❋❛✉st ▼■❉■ ❝♦♥tr♦❧❧❡r
♠❛♣♣✐♥❣✱ ♣♦❧②♣❤♦♥✐❝ ✐♥str✉♠❡♥ts ✇✐t❤ ❛✉t♦✲
♠❛t✐❝ ✈♦✐❝❡ ❛❧❧♦❝❛t✐♦♥ ❛♥❞ s✉♣♣♦rt ❢♦r t❤❡ ▼■❉■
t✉♥✐♥❣ st❛♥❞❛r❞✳ ❨♦✉ ❝❛♥ ✉s❡ t❤❡s❡ ❛r❝❤✐t❡❝✲
t✉r❡s t♦ q✉✐❝❦❧② t✉r♥ ❋❛✉st ♣r♦❣r❛♠s ✐♥t♦ ✇♦r❦✲
✐♥❣ ▲❱✷ ❛✉❞✐♦ ❡✛❡❝ts ❛♥❞ ✐♥str✉♠❡♥t ♣❧✉❣✐♥s✱
r❡❛❞② t♦ ❜❡ r✉♥ ✇✐t❤ ▲❱✷✲❝❛♣❛❜❧❡ ❉❆❲s s✉❝❤ ❛s
❆r❞♦✉r ❛♥❞ ◗tr❛❝t♦r✳ ❚❤❡ ♣❧✉❣✐♥ ❛r❝❤✐t❡❝t✉r❡s
❛♥❞ s♦♠❡ ❤❡❧♣❡r s❝r✐♣ts ❛r❡ ♥♦✇ ❛❧s♦ ❛✈❛✐❧❛❜❧❡
✐♥ t❤❡ ❋❛✉st ❞✐str✐❜✉t✐♦♥✱ ❛♥❞ t❤❡ ❋❛✉st ♦♥❧✐♥❡
❝♦♠♣✐❧❡r s✉♣♣♦rts t❤❡s❡ ❛s ✇❡❧❧✳

❑❡②✇♦r❞s

❋❛✉st✱ ▲❱✷✱ ♣❧✉❣✐♥s✱ ❛✉❞✐♦✱ ▼■❉■✳

✶ ■♥tr♦❞✉❝t✐♦♥

▼♦st ▲✐♥✉① ❛✉❞✐♦ ✉s❡rs ✇✐❧❧ ❜❡ ❢❛♠✐❧✐❛r ✇✐t❤
❉❛✈✐❞ ❘♦❜✐❧❧❛r❞✬s ▲❱✷ ❬✹❪✱ t❤❡ s✉❝❝❡ss♦r ♦❢ t❤❡
✈❡♥❡r❛❜❧❡ ▲❆❉❙P❆ ♣❧✉❣✐♥ st❛♥❞❛r❞✳ ▲❱✷ ❤❛s
❜❡❡♥ s✉♣♣♦rt❡❞ ❜② ♠❛❥♦r ▲✐♥✉① ❉❆❲s s✉❝❤ ❛s
❆r❞♦✉r ❛♥❞ ◗tr❛❝t♦r ❢♦r q✉✐t❡ s♦♠❡ t✐♠❡✱ ❛♥❞
✈❡rs✐♦♥ ✶✳✵ ♦❢ t❤❡ st❛♥❞❛r❞ ❤❛s ❜❡❡♥ r❡❧❡❛s❡❞ ✐♥
✷✵✶✷✱ s♦ t❤❛t ▲❱✷ ❤♦st ❛♥❞ ♣❧✉❣✐♥ ❛✉t❤♦rs ♥♦✇
❤❛✈❡ ❛ st❛❜❧❡ s♣❡❝✐✜❝❛t✐♦♥ t♦ ❜❛s❡ t❤❡✐r ✇♦r❦
♦♥✳ ▲❱✷ ✐s ♠✉❝❤ ♠♦r❡ ❝♦♠♣❧❡① t❤❛♥ ▲❆❉❙P❆✱
❜✉t ✐t ✐s ❛❧s♦ ♠✉❝❤ ♠♦r❡ ❝❛♣❛❜❧❡✳ ■♥ ♣❛rt✐❝✉❧❛r✱
✐t s✉♣♣♦rts ❜♦t❤ ❛✉❞✐♦ ❛♥❞ ▼■❉■ ♣❧✉❣✐♥s ❛♥❞
❝❛♥ t❤✉s ❜❡ ✉s❡❞ t♦ ❞❡✈❡❧♦♣ ❛✉❞✐♦ ❡✛❡❝ts ❛s ✇❡❧❧
❛s s♦❢t✇❛r❡ ✐♥str✉♠❡♥ts✳ ❖♥❡ ♦❢ ▲❱✷✬s str♦♥❣
♣♦✐♥ts ✐s t❤❛t ✐t ✐s ❡①t❡♥s✐❜❧❡✱ s♦ t❤❛t ♥❡✇ ❡①✲
t❡♥s✐♦♥s ❢♦r ✈❛r✐♦✉s s♣❡❝✐❛❧ ♥❡❡❞s ❝❛♥ ❜❡ ❞❡✈❡❧✲
♦♣❡❞ ❛♥❞ ❞❡♣❧♦②❡❞ ✐♥ ▲❱✷ ❤♦sts ✇✐t❤ ✭r❡❧❛t✐✈❡✮
❡❛s❡✳ ❚❤✐s ♠❛❦❡s ▲❱✷ ✈❡r② ✢❡①✐❜❧❡✳ ❆ ♥✉♠❜❡r
♦❢ ❜♦t❤ ♦♣❡♥ s♦✉r❝❡ ❛♥❞ ♣r♦♣r✐❡t❛r② s✉✐t❡s ♦❢
▲❱✷ ♣❧✉❣✐♥s ❤❛✈❡ ❜❡❡♥ ❞❡✈❡❧♦♣❡❞ ♦r ♣♦rt❡❞ ♦✈❡r
t♦ ▲❱✷✱ s✉❝❤ ❛s ❈❛❧❢✱ ❈❆P❙✱ ❚❆▲✱ ❞r♦✇❆✉❞✐♦✱
▲♦♦♠❡r ❛♥❞ ❧✐♥✉①❉❙P✱ s♦ t❤❛t ▲✐♥✉① ❛✉❞✐♦ ✉s❡rs

♥♦✇ ❤❛✈❡ ❛ ✈❛r✐❡t② ♦❢ ❤✐❣❤✲q✉❛❧✐t② ♣❧✉❣✐♥s ❛✈❛✐❧✲
❛❜❧❡ t♦ t❤❡♠✳ ◆❡✈❡rt❤❡❧❡ss✱ ❝♦♠♣❛r❡❞ t♦ ♦t❤❡r
♣❧✉❣✐♥ st❛♥❞❛r❞s s✉❝❤ ❛s ❙t❡✐♥❜❡r❣✬s ❱❙❚✱ t❤❡
♥✉♠❜❡r ♦❢ ❛✈❛✐❧❛❜❧❡ ♣❧✉❣✐♥s ✐s st✐❧❧ q✉✐t❡ s♠❛❧❧✳
❚❤❡ ❣♦❛❧ ♦❢ t❤❡ ❢❛✉st✲❧✈✷ ♣r♦❥❡❝t ✐s t♦ ❜r✐♥❣

▲❱✷ t♦ ❋❛✉st✱ ●r❛♠❡✬s ❢✉♥t✐♦♥❛❧ ❉❙P ♣r♦❣r❛♠✲
♠✐♥❣ ❧❛♥❣✉❛❣❡ ❬✸❪✱ s♦ t❤❛t ▲❱✷ ♣❧✉❣✐♥s ❝❛♥ ❜❡
❞❡✈❡❧♦♣❡❞ ♠♦r❡ ❡❛s✐❧②✳ ❚❤❡ ✐♥t❡r❢❛❝❡ ✐s ✐♠♣❧❡✲
♠❡♥t❡❞ ✐♥ t❡r♠s ♦❢ ❝♦rr❡s♣♦♥❞✐♥❣ ▲❱✷ ❛r❝❤✐✲
t❡❝t✉r❡s ❢♦r ❋❛✉st✳ ❆t ♣r❡s❡♥t t✇♦ ❛r❝❤✐t❡❝t✉r❡
✭❈✰✰✮ ✜❧❡s ❛r❡ ♣r♦✈✐❞❡❞✱ ♦♥❡ ❢♦r ♦r❞✐♥❛r② ❛✉✲
❞✐♦ ✭❡✛❡❝t t②♣❡✮ ♣❧✉❣✐♥s ❛♥❞ ♦♥❡ ❢♦r ♣♦❧②♣❤♦♥✐❝
▼■❉■ ✭✐♥str✉♠❡♥t t②♣❡✮ ♣❧✉❣✐♥s✳
❲❡ s❤♦✉❧❞ ♥♦t❡ ❤❡r❡ t❤❛t t❤✐s ✐s ♥♦t t❤❡ ✜rst

t✐♠❡ t❤❛t ▲❱✷ ❤❛s ❜❡❡♥ t❛r❣❡t❡❞ ❜② ❋❛✉st ❞❡✲
✈❡❧♦♣❡rs❀ ♣r♦❥❡❝ts s✉❝❤ ❛s ❙❛♠♣♦ ❙❛✈♦❧❛✐♥❡♥✬s
❋♦♦ ❨❈✲✷✵ ♦r❣❛♥ ❡♠✉❧❛t✐♦♥ ❬✺❪ ♦r t❤❡ ●✉✐t❛r✐①
t✉❜❡ ❛♠♣❧✐✜❡r s✐♠✉❧❛t✐♦♥ ❜② ❍❡r♠❛♥♥ ▼❡②❡r
❛♥❞ ♦t❤❡rs ❬✶❪ ✉t✐❧✐③❡ ❋❛✉st ❛s ✇❡❧❧✳ ❍♦✇❡✈❡r✱
t❤❡ ❣♦❛❧ ♦❢ ❢❛✉st✲❧✈✷ ✐s ❞✐✛❡r❡♥t✳ ❚❤❡ ❛r❝❤✐✲
t❡❝t✉r❡s ♣r♦✈✐❞❡❞ ❜② ❢❛✉st✲❧✈✷ ❛r❡ ❝♦♠♣❧❡t❡❧②
❣❡♥❡r✐❝ ❛♥❞ t❤✉s ❛❧❧♦✇ ②♦✉ t♦ ❝♦♠♣✐❧❡ ❛♥② ❋❛✉st
s♦✉r❝❡ ❛♥❞ ❣❡t ❛ ✇♦r❦✐♥❣ ▲❱✷ ♣❧✉❣✐♥ ❢r♦♠ ✐t✳
❚❤❡r❡ ✐s ❛ ❣r♦✇✐♥❣ ❝♦❧❧❡❝t✐♦♥ ♦❢ ❋❛✉st ♣r♦❣r❛♠s
❛✈❛✐❧❛❜❧❡✱ r❛♥❣✐♥❣ ❢r♦♠ s✐♠♣❧❡ r♦✉t✐♥❣ ❛♥❞ ♣❛♥✲
♥✐♥❣ ♣❧✉❣✐♥s t♦ s♦♣❤✐st✐❝❛t❡❞ s♦✉♥❞ ❡✛❡❝ts ❛♥❞
✐♥str✉♠❡♥ts s✉❝❤ ❛s t❤❡ ❋❛✉st ❙②♥t❤❡s✐s ❚♦♦❧❦✐t
❬✷❪✳ ❢❛✉st✲❧✈✷ ❡♥❛❜❧❡s ②♦✉ t♦ ✉s❡ ❛❧❧ ♦❢ t❤❡s❡
✐♥ ②♦✉r ❢❛✈♦✉r✐t❡ ▲❱✷ ❤♦st ✇✐t❤♦✉t ❛♥② ❢✉rt❤❡r
❛❞♦✳ ▼❛♥② s♦✉r❝❡s ✇✐❧❧ ✇♦r❦ ♦✉t ♦❢ t❤❡ ❜♦①✱
✇❤✐❧❡ ♦t❤❡rs ♠❛② r❡q✉✐r❡ ❛ ❢❡✇ ❡❞✐ts t♦ ♠❛❦❡ t❤❡
❋❛✉st ♣r♦❣r❛♠ ❜❡❤❛✈❡ ♥✐❝❡❧② ❛s ❛♥ ▲❱✷ ♣❧✉❣✐♥✳
❆♥❞ ♦❢ ❝♦✉rs❡ ❢❛✉st✲❧✈✷ ♥♦✇ ❛❧s♦ ♣r♦✈✐❞❡s ❛ ❝♦♥✲
✈❡♥✐❡♥t ✇❛② t♦ ❞❡✈❡❧♦♣ ♥❡✇ s♦✉♥❞ ♠♦❞✉❧❡s ❛♥❞
✐♥str✉♠❡♥ts ✐♥ ❋❛✉st ❛♥❞ ❞❡♣❧♦② t❤❡♠ ❛s ▲❱✷
♣❧✉❣✐♥s ✭✐♥ ❢❛❝t✱ r❡❝❡♥t ♣♦sts t♦ t❤❡ ▲✐♥✉① ❛✉❞✐♦
♠❛✐❧✐♥❣ ❧✐sts s❡❡♠ t♦ ✐♥❞✐❝❛t❡ t❤❛t ❢❛✉st✲❧✈✷ ✐s
❛❧r❡❛❞② ❜❡✐♥❣ ✉s❡❞ t❤❛t ✇❛② ✐♥ s♦♠❡ ♣r♦❥❡❝ts✮✳
❚❤✐s ♣❛♣❡r ❣✐✈❡s ❛ ❜r✐❡❢ ♦✈❡r✈✐❡✇ ♦❢ ❢❛✉st✲❧✈✷

❛♥❞ ❤♦✇ ②♦✉ ❝❛♥ ✉s❡ ✐t t♦ ❝♦♠♣✐❧❡ ②♦✉r ♦✇♥ ♣❧✉✲
❣✐♥s✳ ❲❡ ❛❧s♦ ❞✐s❝✉ss ♠❛❥♦r ❢❡❛t✉r❡s ❛♥❞ ❝✉rr❡♥t
❧✐♠✐t❛t✐♦♥s ♦❢ t❤❡ s♦❢t✇❛r❡ ❛♥❞ ❣✐✈❡ ❛♥ ♦✉t❧♦♦❦
♦♥ ❢✉t✉r❡ ✇♦r❦✳ ❲❡ ❞♦♥✬t ❣♦ ✐♥t♦ ❛❧❧ t❤❡ ❣♦r②

145

❞❡t❛✐❧s ❤❡r❡✱ ❤♦✇❡✈❡r✱ s♦ t❤❡ ✐♥t❡r❡st❡❞ r❡❛❞❡r
s❤♦✉❧❞ r❡❢❡r t♦ t❤❡ ❡①t❡♥❞❡❞ ✈❡rs✐♦♥ ♦❢ t❤✐s ♣❛✲
♣❡r ❛t t❤❡ ❢❛✉st✲❧✈✷ ✇❡❜s✐t❡ ❢♦r ♠♦r❡ ✐♥❢♦r♠❛✲
t✐♦♥✿

http://faust-lv2.googlecode.com

✷ ■♥st❛❧❧❛t✐♦♥ ❛♥❞ ❜❛s✐❝ ✉s❛❣❡

❈❤❛♥❝❡s ❛r❡ t❤❛t ✐❢ ②♦✉ ❛r❡ r✉♥♥✐♥❣ ❛ r❡❝❡♥t
❋❛✉st ✈❡rs✐♦♥ ✭❋❛✉st ✵✳✾✳✺✽ ✇✐❧❧ ❞♦✮ t❤❡♥ ❢❛✉st✲
❧✈✷ ✐s ❛❧r❡❛❞② ✐♥❝❧✉❞❡❞✱ s♦ ②♦✉ ❞♦♥✬t ❤❛✈❡ t♦
✐♥st❛❧❧ ❛♥②t❤✐♥❣ ❡①tr❛✳ ❢❛✉st✲❧✈✷ ✐s ❛❧s♦ ❢✉❧❧②
s✉♣♣♦rt❡❞ ❜② t❤❡ ❋❛✉st ♦♥❧✐♥❡ ❝♦♠♣✐❧❡r✱ s♦ ②♦✉
❝❛♥ ❥✉st ❞r♦♣ ②♦✉r ❞s♣ s♦✉r❝❡s t❤❡r❡ ❛♥❞✱ ❛❢t❡r
❛ ❢❡✇ ❝❧✐❝❦s✱ ❣r❛❜ ②♦✉r r❡❛❞②✲♠❛❞❡ ▲❱✷ ♣❧✉❣✐♥
❜✉♥❞❧❡s✱ ❡✈❡♥ ✇✐t❤♦✉t ✐♥st❛❧❧✐♥❣ ❋❛✉st ♦♥ ②♦✉r
❝♦♠♣✉t❡r✳
❆♥♦t❤❡r ♦♣t✐♦♥ ✐s t♦ ✐♥st❛❧❧ ❢❛✉st✲❧✈✷ ❢r♦♠

t❤❡ s♦✉r❝❡ ❞✐str✐❜✉t✐♦♥ t❛r❜❛❧❧ ❛✈❛✐❧❛❜❧❡ ❛t t❤❡
❢❛✉st✲❧✈✷ ♣r♦❥❡❝t ✇❡❜s✐t❡✳ ❆s ❛ ❜♦♥✉s t❤✐s ❛❧s♦
❣✐✈❡s ②♦✉ ❛ ❢❡✇ ♣❧✉❣✐♥ ❡①❛♠♣❧❡s ②♦✉ ❝❛♥ st❛rt
♣❧❛②✐♥❣ ✇✐t❤✳ ❚❤❡ ♣❛❝❦❛❣❡ ❛❧s♦ ❞❡♠♦♥str❛t❡s
❤♦✇ ②♦✉ ❝❛♥ ♣✉t t♦❣❡t❤❡r ②♦✉r ♦✇♥ ▲❱✷ ♣❧✉❣✐♥
❝♦❧❧❡❝t✐♦♥s r❡❛❞② t♦ ❜❡ ❝♦♠♣✐❧❡❞ ❢r♦♠ s♦✉r❝❡✳
❢❛✉st✲❧✈✷ ✐s ❞✐str✐❜✉t❡❞ ❛s ❢r❡❡ ❛♥❞ ♦♣❡♥✲s♦✉r❝❡
s♦❢t✇❛r❡✱ ❧✐❝❡♥s❡❞ ✉♥❞❡r t❤❡ ▲●P▲✳ ▼♦r❡ ❞❡✲
t❛✐❧❡❞ ✐♥❢♦r♠❛t✐♦♥ ❛❜♦✉t t❤❡ s♦✉r❝❡ ♣❛❝❦❛❣❡ ❝❛♥
❜❡ ❢♦✉♥❞ ❛t t❤❡ ♣r♦❥❡❝t ✇❡❜s✐t❡✳ ❇r✐❡✢②✱ ✐❢ ②♦✉
❣♦ t❤✐s r♦✉t❡ t❤❡♥ ②♦✉ ❝❛♥ ❝♦♠♣✐❧❡ ❛♥❞ ✐♥st❛❧❧
❢❛✉st✲❧✈✷ ❛s ❢♦❧❧♦✇s✿

./waf configure && ./waf && sudo ./waf

install

❚❤✐s ✇✐❧❧ ✐♥st❛❧❧ ❜♦t❤ t❤❡ ❋❛✉st ❛r❝❤✐t❡❝t✉r❡
✜❧❡s ❛♥❞ t❤❡ s❛♠♣❧❡ ♣❧✉❣✐♥s ✉♥❞❡r /usr/local✱
s♦ t❤❛t ②♦✉ ❝❛♥ ❝♦♠♣✐❧❡ ②♦✉r ♦✇♥ ♣❧✉❣✐♥s ❛♥❞
tr② t❤❡ s❛♠♣❧❡ ♣❧✉❣✐♥s ✐♥ ②♦✉r ❢❛✈♦✉r✐t❡ ❉❆❲✳
❨♦✉ ❝❛♥ ❛❧s♦ ❥✉st ❞r♦♣ ②♦✉r ❋❛✉st ❞s♣ ✜❧❡s ✐♥t♦
t❤❡ effects ❛♥❞ synths s✉❜❢♦❧❞❡rs ❛♥❞ ❤❛✈❡
t❤❡♠ ❝♦♠♣✐❧❡❞ ❛♥❞ ✐♥st❛❧❧❡❞ ✇❤❡♥ r✉♥♥✐♥❣ waf✳
❆❧t❡r♥❛t✐✈❡❧②✱ ✐❢ ②♦✉ ❛❧r❡❛❞② ❤❛✈❡ ❋❛✉st ✐♥✲

st❛❧❧❡❞✱ ②♦✉ ❝❛♥ ❛❧s♦ ❡♠♣❧♦② t✇♦ ❝♦♥✈❡♥✐❡♥❝❡
s❝r✐♣ts faust2lv2 ❛♥❞ faust2lv2synth ❞✐s✲
tr✐❜✉t❡❞ ✇✐t❤ r❡❝❡♥t ❋❛✉st ✈❡rs✐♦♥s✱ ✇❤✐❝❤ ♠❛❦❡
t❤❡ ❝r❡❛t✐♦♥ ♦❢ ▲❱✷ ❜✉♥❞❧❡s ✈❡r② ❡❛s②❀ t❤✐s ✐s
❛❧s♦ t❤❡ ❛♣♣r♦❛❝❤ s❤♦✇♥ ✐♥ t❤❡ r❡♠❛✐♥❞❡r ♦❢ t❤✐s
♣❛♣❡r✳
■❢ ②♦✉ ✇❛♥t t♦ ❧❡❛r♥ ❡①❛❝t❧② ❤♦✇ t❤✐s ✇♦r❦s✱

②♦✉ s❤♦✉❧❞ ♥♦t❡ t❤❛t ❝♦♠♣✐❧✐♥❣ ▲❱✷ ♣❧✉❣✐♥s ✉s✲
✐♥❣ ❋❛✉st ✐s ❛ ❜✐t ♠♦r❡ ✐♥✈♦❧✈❡❞ t❤❛♥ ✉s✉❛❧✳ ❚❤✐s
✐s ❜❡❝❛✉s❡ ▲❱✷ ♣❧✉❣✐♥s ❛r❡♥✬t ♠❡r❡ s❤❛r❡❞ ❧✐✲
❜r❛r② ✭.so✮ ✜❧❡s✱ ❜✉t ❝♦❧❧❡❝t✐♦♥s ♦❢ ❧✐❜r❛r✐❡s ❛♥❞
❘❉❋ ❞❡s❝r✐♣t✐♦♥ ✜❧❡s ✐♥ ❚✉rt❧❡ s②♥t❛① ✭.ttl✮ ✐♥
t❤❡✐r ♦✇♥ ❞✐r❡❝t♦r②✳ ❚❤✐s ✐s ❛❧s♦ ❦♥♦✇♥ ❛s ❛♥

▲❱✷ ❜✉♥❞❧❡✳ ❚❤❡ ♣r❡❝✐s❡ st❡♣s ♥❡❡❞❡❞ t♦ ❝r❡✲
❛t❡ ♣❧✉❣✐♥ ❜✉♥❞❧❡s ✇✐t❤ ❋❛✉st ❛r❡ ❞❡s❝r✐❜❡❞ ✐♥
t❤❡ ❡①t❡♥❞❡❞ ✈❡rs✐♦♥ ♦❢ t❤✐s ♣❛♣❡r ❛♥❞ ✐♥ t❤❡
❢❛✉st✲❧✈✷ ♦♥❧✐♥❡ ❞♦❝✉♠❡♥t❛t✐♦♥✱ ❜♦t❤ ❛✈❛✐❧❛❜❧❡
❛t http://faust-lv2.googlecode.com✳ ❉❡✈❡❧✲
♦♣❡rs ♠❛② ✇❛♥t t♦ st✉❞② t❤❡s❡ ✐❢ t❤❡② ✇❛♥t t♦
❝♦♠❡ ✉♣ ✇✐t❤ t❤❡✐r ♦✇♥ ❜✉✐❧❞ s②st❡♠s ❢♦r ❝♦♠✲
♣✐❧✐♥❣ ❋❛✉st ▲❱✷ ♣❧✉❣✐♥s✳

✸ ❙✉♣♣♦rt❡❞ ♣❧✉❣✐♥ t②♣❡s

❆t ♣r❡s❡♥t✱ ❢❛✉st✲❧✈✷ s✉♣♣♦rts t✇♦ t②♣❡s ♦❢ ♣❧✉❣✲
✐♥s✿ t❤❡ ✉s✉❛❧ ❛✉❞✐♦ ♣r♦❝❡ss✐♥❣ ♣❧✉❣✐♥s ❛s ✇❡❧❧ ❛s
▼■❉■✲❞r✐✈❡♥ s♦❢t✇❛r❡ s②♥t❤❡s✐③❡r ♣❧✉❣✐♥s✳ ❚♦✲
❣❡t❤❡r t❤❡s❡ s❤♦✉❧❞ ❝♦✈❡r ♠♦st ❝♦♠♠♦♥ ✉s❡s ✐♥
▲✐♥✉① ❛✉❞✐♦ s♦❢t✇❛r❡✳

✸✳✶ ❆✉❞✐♦ ♣❧✉❣✐♥s

❆✉❞✐♦ ♣❧✉❣✐♥s ❝❛♥ ❜❡ ❛❞❞❡❞ t♦ t❤❡ s✐❣♥❛❧
♣❛t❤✇❛② ✐♥ ❛ ❉❆❲ ✐♥ ♦r❞❡r t♦ r❡❛❧✐③❡ ❛✉✲
❞✐♦ ❡✛❡❝ts s✉❝❤ ❛s ❛♠♣❧✐✜❝❛t✐♦♥✱ ♣❛♥♥✐♥❣✱ ✜❧✲
t❡r✐♥❣✱ ❞✐st♦rt✐♦♥✱ ❝❤♦r✉s✱ r❡✈❡r❜❛t✐♦♥✱ ❡t❝✳
❚❤❡② ❛r❡ ✐♠♣❧❡♠❡♥t❡❞ ❜② t❤❡ lv2 ❛r❝❤✐t❡❝✲
t✉r❡✳ P❧❡❛s❡ ❝❤❡❝❦ t❤❡ lv2.cpp ✜❧❡ ✐♥ t❤❡ ❢❛✉st✲
❧✈✷ ❞✐str✐❜✉t✐♦♥ ♦r t❤❡ ❋❛✉st ❧✐❜r❛r② ❞✐r❡❝t♦r②
✭/usr/local/lib/faust ♦r /usr/lib/faust ✐♥
♠♦st ✐♥st❛❧❧❛t✐♦♥s✮ ✐❢ ②♦✉ ❛r❡ ✐♥t❡r❡st❡❞ ✐♥ ❤♦✇
❡①❛❝t❧② t❤❡s❡ ♣❧✉❣✐♥s ❛r❡ ✐♠♣❧❡♠❡♥t❡❞✳ P❧✉❣✐♥s
❝r❡❛t❡❞ ✇✐t❤ t❤❡ lv2 ❛r❝❤✐t❡❝t✉r❡ ♣r♦✈✐❞❡ t❤❡
❢♦❧❧♦✇✐♥❣ ❜❛s✐❝ ❢❡❛t✉r❡s✿

• ❆✉❞✐♦ ✐♥♣✉ts ❛♥❞ ♦✉t♣✉ts ♦❢ t❤❡ ❋❛✉st ❞s♣
❛r❡ ♠❛❞❡ ❛✈❛✐❧❛❜❧❡ ❛s ▲❱✷ ❛✉❞✐♦ ✐♥♣✉t ❛♥❞
♦✉t♣✉t ♣♦rts✳

• ❋❛✉st ❝♦♥tr♦❧s ❛r❡ ♠❛❞❡ ❛✈❛✐❧❛❜❧❡ ❛s ▲❱✷
❝♦♥tr♦❧ ♣♦rts ✇✐t❤ t❤❡ ♣r♦♣❡r ❧❛❜❡❧✱ ✐♥✐t✐❛❧
✈❛❧✉❡✱ r❛♥❣❡ ❛♥❞ ✭✐❢ s✉♣♣♦rt❡❞ ❜② t❤❡ ❤♦st✮
st❡♣ s✐③❡✳ ❇♦t❤ ✏❛❝t✐✈❡✑ ✭✐♥♣✉t✮ ❛♥❞ ✏♣❛s✲
s✐✈❡✑ ✭♦✉t♣✉t✮ ❋❛✉st ❝♦♥tr♦❧s ❛r❡ s✉♣♣♦rt❡❞
❛♥❞ ♠❛♣♣❡❞ t♦ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ▲❱✷ ✐♥✲
♣✉t ❛♥❞ ♦✉t♣✉t ♣♦rts✱ ❜✉t ♥♦t❡ t❤❛t ♠♦st
▲❱✷ ❤♦sts ❞♦♥✬t ♣r♦✈✐❞❡ ❛❝❝❡ss t♦ ▲❱✷ ❝♦♥✲
tr♦❧ ♦✉t♣✉t ♣♦rts ✭❛✳❦✳❛✳ ❋❛✉st ♣❛ss✐✈❡ ❝♦♥✲
tr♦❧s✮ ❛t t❤✐s t✐♠❡✳

• ■❢ t❤❡ ❞s♣ ❞❡✜♥❡s ❛♥② ❝♦♥tr♦❧s ✇✐t❤ ❝♦rr❡✲
s♣♦♥❞✐♥❣ ▼■❉■ ♠❛♣♣✐♥❣s ✭midi:ctrl ❛t✲
tr✐❜✉t❡s ✐♥ t❤❡ ❋❛✉st s♦✉r❝❡✮✱ t❤❡ ♣❧✉❣✐♥
❛❧s♦ ♣r♦✈✐❞❡s ❛♥ ▲❱✷ ▼■❉■ ✐♥♣✉t ♣♦rt ❛♥❞
✐♥t❡r♣r❡ts ✐♥❝♦♠✐♥❣ ▼■❉■ ❝♦♥tr♦❧❧❡r ♠❡s✲
s❛❣❡s ❛❝❝♦r❞✐♥❣❧②✳

• P❧✉❣✐♥ ♥❛♠❡✱ ❞❡s❝r✐♣t✐♦♥✱ ❛✉t❤♦r ❛♥❞ ❧✐✲
❝❡♥s❡ ✐♥❢♦r♠❛t✐♦♥ ♣r♦✈✐❞❡❞ ❛s ♠❡t❛❞❛t❛ ✐♥
t❤❡ ❋❛✉st s♦✉r❝❡ ❛r❡ tr❛♥s❧❛t❡❞ t♦ t❤❡ ❝♦r✲
r❡s♣♦♥❞✐♥❣ ✜❡❧❞s ✐♥ t❤❡ ▲❱✷ ♠❛♥✐❢❡st ♦❢ t❤❡
♣❧✉❣✐♥✳

146

❚❤❡ ❛r❝❤✐t❡❝t✉r❡s ❛❧s♦ r❡❝♦❣♥✐③❡ t❤❡ ❢♦❧❧♦✇✐♥❣
❋❛✉st ❝♦♥tr♦❧ ♠❡t❛❞❛t❛ ❛♥❞ s❡t ✉♣ t❤❡ ▲❱✷ ❝♦♥✲
tr♦❧ ♣♦rt ♣r♦♣❡rt✐❡s ❛❝❝♦r❞✐♥❣❧②✳ ◆♦t❡ t❤❛t s♦♠❡
♦❢ t❤❡s❡ ♣r♦♣❡rt✐❡s r❡❧② ♦♥ ❡①t❡♥s✐♦♥s ✇❤✐❝❤ ♠❛②
♥♦t ❜❡ s✉♣♣♦rt❡❞ ❜② ❛❧❧ ▲❱✷ ❤♦sts✳ P❧❡❛s❡ r❡❢❡r
t♦ t❤❡ ▲❱✷ ❞♦❝✉♠❡♥t❛t✐♦♥ ❢♦r ❛ ❝❧♦s❡r ❞❡s❝r✐♣✲
t✐♦♥ ♦❢ t❤❡s❡ ♦♣t✐♦♥s✳

• ❚❤❡ unit ❛ttr✐❜✉t❡ ✭❡✳❣✳✱ [unit:Hz]✮ ✐♥ t❤❡
❋❛✉st s♦✉r❝❡ ✐s tr❛♥s❧❛t❡❞ t♦ ❛ ❝♦rr❡s♣♦♥❞✲
✐♥❣ ▲❱✷ unit ❛ttr✐❜✉t❡✳ ❚❤❡ ❤♦st ♠❛② t❤❡♥
❞✐s♣❧❛② t❤✐s ✐♥❢♦r♠❛t✐♦♥ ✐♥ ✐ts ●❯■ r❡♥❞❡r✲
✐♥❣ ♦❢ t❤❡ ♣❧✉❣✐♥ ❝♦♥tr♦❧s✳

• ▲❱✷ s❝❛❧❡ ♣♦✐♥ts ❝❛♥ ❜❡ s❡t ✇✐t❤ t❤❡
lv2:scalePoint ✭♦r lv2:scalepoint✮ ❛t✲
tr✐❜✉t❡ ♦♥ t❤❡ ❋❛✉st s✐❞❡✳ ❚❤❡ ✈❛❧✉❡ ♦❢ t❤✐s
❛ttr✐❜✉t❡ ✐♥ t❤❡ ❋❛✉st s♦✉r❝❡ t❛❦❡s t❤❡ ❢♦r♠
♦❢ ❛ ❧✐st ♦❢ ♣❛✐rs ♦❢ ❞❡s❝r✐♣t✐✈❡ ❧❛❜❡❧s ❛♥❞
❝♦rr❡s♣♦♥❞✐♥❣ ✈❛❧✉❡s✱ ❢♦r ✐♥st❛♥❝❡✿

toggle = button(

"trigger [lv2:scalepoint on 1 off 0]");

❚❤❡ ❤♦st ♠❛② t❤❡♥ ❞✐s♣❧❛② t❤❡ ❣✐✈❡♥ s❝❛❧❡
♣♦✐♥ts ✇✐t❤ ❛ ❞❡s❝r✐♣t✐✈❡ ❧❛❜❡❧ ✐♥ ✐ts ●❯■✳

• ❚❤❡ lv2:integer ❛ttr✐❜✉t❡ ✐♥ t❤❡ ❋❛✉st
s♦✉r❝❡ ✐s tr❛♥s❧❛t❡❞ t♦ t❤❡ lv2:integer ▲❱✷
♣♦rt ♣r♦♣❡rt②✱ s♦ t❤❛t t❤❡ ❝♦♥tr♦❧ ♠❛② ❜❡
s❤♦✇♥ ❛s ❛♥ ✐♥t❡❣❡r✲♦♥❧② ✜❡❧❞ ✐♥ t❤❡ ❤♦st✬s
●❯■✳

• ❚❤❡ lv2:hidden ♦r lv2:notOnGUI ❛ttr✐❜✉t❡
♠❛♣s t♦ t❤❡ ▲❱✷ notOnGUI ♣♦rt ♣r♦♣❡rt②✱
s♦ t❤❛t ❤♦sts ❤♦♥♦r✐♥❣ t❤✐s ♣r♦♣❡rt② ♠❛②
s✉♣♣r❡ss t❤❡ ❞✐s♣❧❛② ♦❢ t❤✐s ❝♦♥tr♦❧ ✐♥ t❤❡✐r
●❯■✳

■t ✐s ✇♦rt❤ ♥♦t✐♥❣ ❤❡r❡ t❤❛t t❤❡ s♣❡❝✐❛❧ tr❡❛t✲
♠❡♥t ♦❢ ▼■❉■ ❝♦♥tr♦❧❧❡rs ❛♥❞ ♠❡t❛❞❛t❛ ✐♥ t❤❡
❋❛✉st s♦✉r❝❡ ❝❛♥ ❛❧s♦ ❜❡ t✉r♥❡❞ ♦✛✱ ❡✐t❤❡r ✇✐t❤
❝♦rr❡s♣♦♥❞✐♥❣ ✇❛❢ ❝♦♥✜❣✉r❡ ♦♣t✐♦♥s ✭✇❤❡♥ ✉s✲
✐♥❣ t❤❡ ❢❛✉st✲❧✈✷ s♦✉r❝❡ ♣❛❝❦❛❣❡✮ ♦r ❜② ❞✐s❛❜❧✐♥❣
❝♦rr❡s♣♦♥❞✐♥❣ ❝♦♥❞✐t✐♦♥❛❧ ❝♦♠♣✐❧❛t✐♦♥ s②♠❜♦❧s
✐♥ t❤❡ lv2.cpp ✜❧❡✳
❋♦r ✐♥st❛♥❝❡✱ ❝♦♥s✐❞❡r t❤❡ chorus.dsp ❡①❛♠✲

♣❧❡ ✐♥ t❤❡ ❢❛✉st✲❧✈✷ s♦✉r❝❡ ✭❝❢✳ ❋✐❣✳ ✶✮✳
❈♦♠♣✐❧✐♥❣ t❤✐s ♣r♦❣r❛♠ t♦ ❛♥ ▲❱✷ ❜✉♥❞❧❡ ❝❛♥

❜❡ ❞♦♥❡ ❝♦♥✈❡♥✐❡♥t❧② ✇✐t❤ t❤❡ faust2lv2 ❤❡❧♣❡r
s❝r✐♣t ✐♥❝❧✉❞❡❞ ✐♥ r❡❝❡♥t ❋❛✉st ✈❡rs✐♦♥s✿

faust2lv2 chorus.dsp

❚❤✐s ❧❡❛✈❡s ❛ s✉❜❢♦❧❞❡r ♥❛♠❡❞ chorus.lv2

✇✐t❤ t❤❡ ▲❱✷ ♣❧✉❣✐♥ ✭.so ✜❧❡✮ ✐ts❡❧❢ ❛♥❞ t❤❡
r❡q✉✐s✐t❡ .ttl ✜❧❡s ✐♥ t❤❡ ❝✉rr❡♥t ❞✐r❡❝t♦r②✳

❨♦✉ ❝❛♥ ❥✉st ❝♦♣② t❤✐s ❢♦❧❞❡r t♦ /usr/lib/lv2✱
/usr/local/lib/lv2 ♦r ❛♥② ♦t❤❡r ❞✐r❡❝t♦r② ♦♥
②♦✉r LV2_PATH t♦ ❤❛✈❡ t❤❡ ♣❧✉❣✐♥ r❡❝♦❣♥✐③❡❞ ❜②
②♦✉r ❉❆❲ ♦r ♦t❤❡r ▲❱✷ ❤♦st ♣r♦❣r❛♠✳
❇❡s✐❞❡s t❤❡ ✉s✉❛❧ ♦♣t✐♦♥s s✉♣♣♦rt❡❞ ❜② ❋❛✉st

❝♦♠♣✐❧❛t✐♦♥ s❝r✐♣ts✱ faust2lv2 ❛❧s♦ ✉♥❞❡rst❛♥❞s
t❤❡ ❢♦❧❧♦✇✐♥❣ t❛r❣❡t✲s♣❡❝✐✜❝ ♦♣t✐♦♥s✿

• -nometa✿ ◆♦r♠❛❧❧②✱ ♠❡t❛❞❛t❛ ✐♥ t❤❡ ❋❛✉st
♣r♦❣r❛♠ ✭♣❧✉❣✐♥ ❞❡s❝r✐♣t✐♦♥✱ ❛✉t❤♦r ✐♥❢♦r✲
♠❛t✐♦♥✱ ❡t❝✳✱ ❛s s❤♦✇♥ ✐♥ t❤❡ ❝❤♦r✉s ❡①✲
❛♠♣❧❡✮ ✇✐❧❧ ❜❡ tr❛♥s❧❛t❡❞ t♦ ❝♦rr❡s♣♦♥❞✐♥❣
▲❱✷ ♣r♦♣❡rt✐❡s s♦ t❤❛t t❤✐s ❞❛t❛ ❜❡❝♦♠❡s
❛✈❛✐❧❛❜❧❡ ✐♥ t❤❡ ▲❱✷ ♣❧✉❣✐♥ ❤♦st✳ ❲❤❡♥ ✉s✲
✐♥❣ t❤❡ -nometa ♦♣t✐♦♥✱ t❤❡ ♠❡t❛❞❛t❛ ❢r♦♠
t❤❡ ❋❛✉st s♦✉r❝❡ ✐s ✐❣♥♦r❡❞✱ ✇❤✐❝❤ ♠❛② ❜❡
✉s❡❢✉❧ ✐❢ ②♦✉ ♣r❡❢❡r t♦ s♣❡❝✐❢② t❤❡ ❝♦rr❡✲
s♣♦♥❞✐♥❣ ✐♥❢♦r♠❛t✐♦♥ ❜② ♠❛♥✉❛❧❧② ❡❞✐t✐♥❣
t❤❡ manifest.ttl ✜❧❡ ✐♥ t❤❡ ♣❧✉❣✐♥ ❜✉♥❞❧❡✳

• -nomidicc✿ ■❢ ②♦✉ s♣❡❝✐❢② t❤✐s✱ t❤❡ ♣❧✉❣✐♥
✇✐❧❧ ♥♦t ♣r♦❝❡ss ❛♥② ▼■❉■ ❝♦♥tr♦❧ ❞❛t❛✳
❚❤✐s ♠✐❣❤t ❜❡ ✉s❡❢✉❧ ✐❢ t❤❡ ❜✉✐❧t✲✐♥ ▼■❉■
❝♦♥tr♦❧ ♣r♦❝❡ss✐♥❣ ♦❢ t❤❡ ♣❧✉❣✐♥ ❣❡ts ✐♥ t❤❡
✇❛② ♦❢ t❤❡ ♣❧✉❣✐♥ ❤♦st✬s ♦✇♥ ▼■❉■ ❝♦♥✲
tr♦❧❧❡r ❛♥❞ ❛✉t♦♠❛t✐♦♥ ❢❡❛t✉r❡s✳

• -uri-prefix ❯❘■ ✿ ❚❤✐s ♦♣t✐♦♥ s♣❡❝✐✜❡s
t❤❡ ❯❘■ ♣r❡✜① ♦❢ t❤❡ ♣❧✉❣✐♥✳ ❚❤❡ ❛r✲
❣✉♠❡♥t ♠✉st ❜❡ ❛ ✈❛❧✐❞ ❯❘■ ❞❡s✐❣♥❛✲
t✐♦♥ ✇❤✐❝❤✱ t♦❣❡t❤❡r ✇✐t❤ t❤❡ ♥❛♠❡ ♦❢
t❤❡ ♣❧✉❣✐♥ ✉♥✐q✉❡❧② ✐❞❡♥t✐✜❡s t❤❡ ♣❧✉✲
❣✐♥❀ ♣❧❡❛s❡ ❝❤❡❝❦ t❤❡ ▲❱✷ ❞♦❝✉♠❡♥t❛t✐♦♥
❢♦r ❞❡t❛✐❧s✳ ❇②✱ ❞❡❢❛✉❧t✱ t❤❡ ❯❘■ ♣r❡✜①
http://faust-lv2.googlecode.com ✇✐❧❧ ❜❡
✉s❡❞✳ ❨♦✉ ♠❛② ✇❛♥t t♦ r❡♣❧❛❝❡ t❤✐s ✇✐t❤
t❤❡ ❯❘▲ ♦❢ t❤❡ ✇❡❜s✐t❡ ✇❤❡r❡ ②♦✉r ♣❧✉❣✐♥s
❝❛♥ ❜❡ ❞♦✇♥❧♦❛❞❡❞✱ ♦r ❛♥② ♦t❤❡r ✭♣♦ss✐❜❧②
❛❜str❛❝t✮ ❯❘■ ♣r❡✜① ✇❤✐❝❤ ✉♥✐q✉❡❧② ✐❞❡♥✲
t✐✜❡s ②♦✉r ♣❧✉❣✐♥s s♦ t❤❛t t❤❡② ❞♦♥✬t ❝❧❛s❤
✇✐t❤ ♦t❤❡r ▲❱✷ ♣❧✉❣✐♥s ✐♥st❛❧❧❡❞ ♦♥ ②♦✉r
s②st❡♠✳

• -dyn-manifest✿ ❚❤✐s ❡♥❛❜❧❡s ❞②♥❛♠✐❝
♠❛♥✐❢❡sts ✐♥ t❤❡ ♣❧✉❣✐♥✱ s❡❡ ❙❡❝t✐♦♥ ✹✳✷
❜❡❧♦✇ ❢♦r ❞❡t❛✐❧s✳ ◆♦t❡ t❤❛t t♦ ♠❛❦❡
t❤✐s ✇♦r❦✱ ②♦✉r ▲❱✷ ❤♦st ♠✉st s✉♣♣♦rt
❞②♥❛♠✐❝ ♠❛♥✐❢❡sts✳ ✭❋♦r ❤♦sts ❧✐❦❡ ❆r✲
❞♦✉r ❛♥❞ ◗tr❛❝t♦r ✇❤✐❝❤ ❛r❡ ❜❛s❡❞ ♦♥
❉❛✈✐❞ ❘♦❜✐❧❧❛r❞✬s lilv ❧✐❜r❛r②✱ ②♦✉✬❧❧ ❤❛✈❡
t♦ ♠❛❦❡ s✉r❡ t❤❛t lilv ✇❛s ❜✉✐❧t ✇✐t❤ t❤❡
--dyn-manifest ✇❛❢ ❝♦♥✜❣✉r❡ ♦♣t✐♦♥✳✮

◆♦t❡ t❤❛t t❤❡ ❢❛✉st✲❧✈✷ s♦✉r❝❡ ♣❛❝❦❛❣❡ s✉♣✲
♣♦rts s✐♠✐❧❛r ✭❛s ✇❡❧❧ ❛s ❛ ❜✉♥❝❤ ♦❢ ♦t❤❡r✮ ♦♣✲
t✐♦♥s ✇❤❡♥ ❝♦♥✜❣✉r✐♥❣ t❤❡ ♣❛❝❦❛❣❡❀ r✉♥ ./waf

147

declare name "chorus";

declare description "stereo chorus effect";

declare author "Albert Graef";

declare version "1.0";

import("music.lib");

level = hslider("level", 0.5, 0, 1, 0.01);

freq = hslider("freq", 3, 0, 10, 0.01);

dtime = hslider("delay", 0.025, 0, 0.2, 0.001);

depth = hslider("depth", 0.02, 0, 1, 0.001);

tblosc(n,f,freq,mod) = (1-d)*rdtable(n,waveform,i&(n-1)) +

d*rdtable(n,waveform,(i+1)&(n-1))

with {

waveform = time*(2.0*PI)/n : f;

phase = freq/SR : (+ : decimal) ~ _;

modphase = decimal(phase+mod/(2*PI))*n;

i = int(floor(modphase));

d = decimal(modphase);

};

chorus(dtime,freq,depth,phase,x)

= x+level*fdelay(1<<16, t, x)

with {

t = SR*dtime/2*(1+depth*tblosc(1<<16, sin, freq, phase));

};

process = vgroup("chorus", (left, right))

with {

left = chorus(dtime,freq,depth,0);

right = chorus(dtime,freq,depth,PI/2);

};

❋✐❣✉r❡ ✶✿ ❋❛✉st ♣r♦❣r❛♠ chorus.dsp✳

configure --help ✐♥ t❤❡ ❢❛✉st✲❧✈✷ s♦✉r❝❡ ❞✐r❡❝✲
t♦r② t♦ ❣❡t ❛ ❧✐st ♦❢ t❤❡s❡✳

✸✳✷ ▼■❉■ ♣❧✉❣✐♥s

❢❛✉st✲❧✈✷ ❛❧s♦ ❢✉❧❧② s✉♣♣♦rts ✐♥str✉♠❡♥t ♣❧✉❣✐♥s
❛✳❦✳❛✳ s♦❢t✇❛r❡ s②♥t❤❡s✐③❡rs✱ ✇❤✐❝❤ ❝❛♥ ❜❡ ❡♠✲
♣❧♦②❡❞ ❛s t❤❡ ❤❡❛❞ ♦❢ t❤❡ s②♥t❤✲❡✛❡❝ts ❝❤❛✐♥ ✐♥
❛ ▼■❉■ tr❛❝❦ ♦❢ ②♦✉r ❉❆❲✳ ❚❤❡s❡ ❛r❡ ✐♠♣❧❡✲
♠❡♥t❡❞ ❜② ❛ s❡♣❛r❛t❡ lv2synth ❛r❝❤✐t❡❝t✉r❡✳
❇❡s✐❞❡s ❛❧❧ ♦❢ t❤❡ ❢❡❛t✉r❡s ♦❢ t❤❡ ❛✉❞✐♦ ♣❧✉✲

❣✐♥s ❞❡s❝r✐❜❡❞ ❛❜♦✈❡✱ ♣❧✉❣✐♥s ❝r❡❛t❡❞ ✇✐t❤ t❤❡
lv2synth ❛r❝❤✐t❡❝t✉r❡ ❛❧s♦ ♣r♦✈✐❞❡ t❤❡ ♥❡❝❡ss❛r②
❧♦❣✐❝ t♦ ❞r✐✈❡ ❛ ♣♦❧②♣❤♦♥✐❝ s②♥t❤ ✇✐t❤ ❛✉t♦♠❛t✐❝
✈♦✐❝❡ ❛❧❧♦❝❛t✐♦♥✳ ❚♦ ♠❛❦❡ t❤✐s ✇♦r❦✱ t❤❡ ❋❛✉st
❞s♣ ♠✉st ❜❡ ❛❜❧❡ t♦ ❢✉♥❝t✐♦♥ ❛s ❛ ♠♦♥♦♣❤♦♥✐❝
s②♥t❤ ✇❤✐❝❤ ♣r♦✈✐❞❡s ❝♦♥tr♦❧s ♥❛♠❡❞ freq✱ gain
❛♥❞ gate t♦ s❡t t❤❡ ♣✐t❝❤ ✭❛s ❛ ❢r❡q✉❡♥❝② ✐♥
❍③✮✱ ✈❡❧♦❝✐t② ✭❛s ❛ ♥♦r♠❛❧✐③❡❞ ✈❛❧✉❡ ✐♥ t❤❡ r❛♥❣❡
✵✳✳✳✶✮ ❛♥❞ ❣❛t❡ ✭❛s ❛ ❜✐♥❛r② ✵ ♦r ✶ ✈❛❧✉❡✮ ♦❢
❛ ♥♦t❡✱ r❡s♣❡❝t✐✈❡❧②❀ t❤❡ ❡①❛♠♣❧❡ ❜❡❧♦✇ ✐❧❧✉s✲
tr❛t❡s ❤♦✇ t❤✐s ✐s ❞♦♥❡✳ ❚❤❡ ❞❡s✐r❡❞ ♠❛①✐✲

♠✉♠ ♥✉♠❜❡r ♦❢ ✈♦✐❝❡s ❝❛♥ ❜❡ ❝♦♥✜❣✉r❡❞ ✇✐t❤
t❤❡ --nvoices ♦♣t✐♦♥ ✭✇❤❡♥ ✉s✐♥❣ t❤❡ ❢❛✉st✲❧✈✷
s♦✉r❝❡ ♣❛❝❦❛❣❡✮ ♦r ❜② s❡tt✐♥❣ t❤❡ NVOICES ♠❛❝r♦
✐♥ t❤❡ lv2synth.cpp ✜❧❡ ❛❝❝♦r❞✐♥❣❧②✳ ❚❤❡ ♣❧✉❣✐♥
✇✐❧❧ ♠❛♥❛❣❡ ❛t ♠♦st t❤❛t ♠❛♥② ✐♥st❛♥❝❡s ♦❢ t❤❡
❋❛✉st ❞s♣✳ ❚❤❡ ❛❝t✉❛❧ ♥✉♠❜❡r ♦❢ ✈♦✐❝❡s ❝❛♥ ❜❡
❝❤❛♥❣❡❞ ❞②♥❛♠✐❝❛❧❧② ❢r♦♠ ✶ t♦ NVOICES ✇✐t❤ ❛
s♣❡❝✐❛❧ Polyphony ❝♦♥tr♦❧ ♣r♦✈✐❞❡❞ ❜② t❤❡ ♣❧✉✲
❣✐♥✳

❚❤✐s ❦✐♥❞ ♦❢ ♣❧✉❣✐♥ ❛❧✇❛②s ♣r♦✈✐❞❡s ❛ ▼■❉■
✐♥♣✉t ♣♦rt ❛♥❞ ✐♥t❡r♣r❡ts ✐♥❝♦♠✐♥❣ ▼■❉■ ♥♦t❡
❛♥❞ ♣✐t❝❤ ❜❡♥❞ ♠❡ss❛❣❡s✱ ❛s ✇❡❧❧ ❛s ❛ ♥✉♠❜❡r ♦❢
●❡♥❡r❛❧ ▼■❉■ st❛♥❞❛r❞ ❝♦♥tr♦❧❧❡r ❛♥❞ s②st❡♠
❡①❝❧✉s✐✈❡ ✭s②s❡①✮ ♠❡ss❛❣❡s✱ ❛s ❞❡t❛✐❧❡❞ ❜❡❧♦✇✳
❇② ❞❡❢❛✉❧t✱ t❤❡ s②♥t❤ ✉♥✐ts ❤❛✈❡ ❛ ♣✐t❝❤ ❜❡♥❞
r❛♥❣❡ ♦❢ ±2 s❡♠✐t♦♥❡s ✭●❡♥❡r❛❧ ▼■❉■ ❞❡❢❛✉❧t✮
❛♥❞ ❛r❡ t✉♥❡❞ ✐♥ ❡q✉❛❧ t❡♠♣❡r❛♠❡♥t ✇✐t❤ ❆✹
❛t ✹✹✵ ❍③✳ ❚❤❡s❡ ❞❡❢❛✉❧ts ❝❛♥ ❜❡ ❛❞❥✉st❡❞ ❛s
♥❡❡❞❡❞ ✉s✐♥❣ s♦♠❡ ♦❢ t❤❡ ❝♦♥tr♦❧❧❡r ❛♥❞ s②s❡①
♠❡ss❛❣❡s ❞❡s❝r✐❜❡❞ ❜❡❧♦✇✳

148

• ❚❤❡ ✏❛❧❧ ♥♦t❡s ♦✛✑ ✭✶✷✸✮ ❛♥❞ ✏❛❧❧ s♦✉♥❞s ♦✛✑
✭✶✷✵✮ ▼■❉■ ❝♦♥tr♦❧❧❡rs st♦♣ s♦✉♥❞✐♥❣ ♥♦t❡s
♦♥ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ▼■❉■ ❝❤❛♥♥❡❧✳

• ❚❤❡ ✏❛❧❧ ❝♦♥tr♦❧❧❡rs ♦✛✑ ✭✶✷✶✮ ▼■❉■ ❝♦♥✲
tr♦❧❧❡r r❡s❡ts t❤❡ ❝✉rr❡♥t ❘P◆ ✭✏r❡❣✐st❡r❡❞
♣❛r❛♠❡t❡r ♥✉♠❜❡r✑✮ ❛♥❞ ❞❛t❛ ❡♥tr② ❝♦♥✲
tr♦❧❧❡rs ♦♥ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ▼■❉■ ❝❤❛♥♥❡❧
✭s❡❡ ❜❡❧♦✇✮✳

• ❚❤❡ r❡❣✐st❡r❡❞ ♣❛r❛♠❡t❡rs ✭❘P◆s✮ ✵ ✭♣✐t❝❤
❜❡♥❞ r❛♥❣❡✮✱ ✶ ✭❝❤❛♥♥❡❧ ✜♥❡ t✉♥✐♥❣✮ ❛♥❞ ✷
✭❝❤❛♥♥❡❧ ❝♦❛rs❡ t✉♥✐♥❣✮ ❝❛♥ ❜❡ ✉s❡❞ t♦ s❡t
t❤❡ ♣✐t❝❤ ❜❡♥❞ r❛♥❣❡ ❛♥❞ ✜♥❡✴❝♦❛rs❡ ♠❛s✲
t❡r t✉♥✐♥❣ ♦♥ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ▼■❉■ ❝❤❛♥✲
♥❡❧ ✐♥ t❤❡ ✉s✉❛❧ ✇❛②✱ ❡♠♣❧♦②✐♥❣ ❛ ❝♦♠❜✐♥❛✲
t✐♦♥ ♦❢ t❤❡ ❘P◆ ✭✶✵✶✱ ✶✵✵✮ ❛♥❞ ❞❛t❛ ❡♥tr②
❝♦♥tr♦❧❧❡r ♣❛✐rs ✭✻ ❛♥❞ ✸✽✱ ❛s ✇❡❧❧ ❛s ✾✻ ❛♥❞
✾✼✮✳ P❧❡❛s❡ ❝❤❡❝❦ t❤❡ ▼■❉■ s♣❡❝✐✜❝❛t✐♦♥ ❢♦r
❞❡t❛✐❧s✳

• ❯♥✐✈❡rs❛❧ r❡❛❧t✐♠❡ ❛♥❞ ♥♦♥✲r❡❛❧t✐♠❡
s❝❛❧❡✴♦❝t❛✈❡ t✉♥✐♥❣ ♠❡ss❛❣❡s ❢♦❧❧♦✇✐♥❣ t❤❡
▼■❉■ ❚✉♥✐♥❣ ❙t❛♥❞❛r❞ ✭▼❚❙✮✱ ❙❡❝t✐♦♥
▼■❉■ ❚✉♥✐♥❣ ❙❝❛❧❡✴❖❝t❛✈❡ ❊①t❡♥s✐♦♥s✱
❝❛♥ ❜❡ ✉s❡❞ t♦ s❡t t❤❡ s②♥t❤ t♦ ❛ ❣✐✈❡♥
♦❝t❛✈❡✲❜❛s❡❞ t✉♥✐♥❣ s♣❡❝✐✜❡❞ ❛s ❝❡♥t ♦✛✲
s❡ts r❡❧❛t✐✈❡ t♦ ❡q✉❛❧ t❡♠♣❡r❛♠❡♥t✱ ✇❤✐❝❤
✐s r❡♣❡❛t❡❞ ✐♥ ❡✈❡r② ♦❝t❛✈❡ ♦❢ t❤❡ ▼■❉■
♥♦t❡ r❛♥❣❡ ✵✳✳✳✶✷✼✳ P❧❡❛s❡ ❝❤❡❝❦ ❙❡❝t✐♦♥
✹✳✶ ❜❡❧♦✇ ❢♦r ❢✉rt❤❡r ❞❡t❛✐❧s✳

❋♦r ✐♥st❛♥❝❡✱ ❝♦♥s✐❞❡r t❤❡ organ.dsp ❡①❛♠♣❧❡
❢r♦♠ t❤❡ ❢❛✉st✲❧✈✷ ❞✐str✐❜✉t✐♦♥ ✭❝❢✳ ❋✐❣✳ ✷✮✳
◆♦t❡ t❤❡ freq✱ gain ❛♥❞ gate ❝♦♥tr♦❧s ✇❤✐❝❤

t✉r♥ t❤✐s ❋❛✉st ❞s♣ ✐♥t♦ ❛ ♠♦♥♦♣❤♦♥✐❝ s②♥t❤❡✲
s✐③❡r✳ P♦❧②♣❤♦♥② ✇✐t❤ ❛✉t♦♠❛t✐❝ ❛❧❧♦❝❛t✐♦♥ ♦❢
✉♣ t♦ NVOICES ✈♦✐❝❡s ✐s ✐♠♣❧❡♠❡♥t❡❞ ✐♥ t❤❡ ♣❧✉✲
❣✐♥ ❛r❝❤✐t❡❝t✉r❡✳ ❆❧s♦ ♥♦t❡ t❤❡ midi:ctrl 10

❛ttr✐❜✉t❡ ✐♥ t❤❡ ❧❛❜❡❧ ♦❢ t❤❡ pan ❝♦♥tr♦❧✳ ❚❤✐s
✐s ❋❛✉st ❝♦♥tr♦❧ ♠❡t❛❞❛t❛ ✇❤✐❝❤ ❞❡♥♦t❡s t❤❛t
▼■❉■ ❝♦♥tr♦❧❧❡r ✶✵ ✭t❤❡ ▼■❉■ ♣❛♥ ♣♦s✐t✐♦♥ ❝♦♥✲
tr♦❧❧❡r✮ s❤♦✉❧❞ ❜❡ ❛ss♦❝✐❛t❡❞ ✇✐t❤ t❤✐s ❝♦♥tr♦❧
✈❛❧✉❡✳ ❚❤❡ ♣❧✉❣✐♥ ❛r❝❤✐t❡❝t✉r❡ ✇✐❧❧ ❛❞❞ ❛ ▼■❉■
✐♥♣✉t ♣♦rt ❛♥❞ t❤❡ r❡q✉✐r❡❞ ▼■❉■ ❝♦♥tr♦❧❧❡r ♣r♦✲
❝❡ss✐♥❣ t♦ t❤❡ ♣❧✉❣✐♥ ✐♥ ♦r❞❡r t♦ ✐♠♣❧❡♠❡♥t t❤✐s✳
✭❲❤❡t❤❡r ②♦✉r ▲❱✷ ❤♦st ❛❝t✉❛❧❧② ♣❛ss❡s s✉❝❤
▼■❉■ ❝♦♥tr♦❧❧❡r ♠❡ss❛❣❡s t♦ t❤❡ ♣❧✉❣✐♥ ❞❡♣❡♥❞s
♦♥ t❤❡ ❤♦st✱ t❤♦✉❣❤✳✮
❈♦♠♣✐❧✐♥❣ t❤❡ ♣❧✉❣✐♥ ✇♦r❦s ❛s ✇✐t❤ ❛✉❞✐♦ ♣❧✉✲

❣✐♥s✱ ✉s✐♥❣ faust2lv2synth ✐♥ ❧✐❡✉ ♦❢ faust2lv2✿

faust2lv2synth organ.dsp

❨♦✉✬❧❧ ❣❡t ❛♥ organ.lv2 ❢♦❧❞❡r ✇❤✐❝❤ ②♦✉
s✐♠♣❧② ❝♦♣② t♦ ②♦✉r ▲❱✷ ❧✐❜r❛r② ❞✐r❡❝t♦r② t♦
❤❛✈❡ t❤❡ ♣❧✉❣✐♥ r❡❝♦❣♥✐③❡❞✳ ■♥ ❛❞❞✐t✐♦♥ t♦ t❤❡

t❛r❣❡t✲s♣❡❝✐✜❝ ♦♣t✐♦♥s r❡❝♦❣♥✐③❡❞ ❜② faust2lv2✱
faust2lv2synth ❛❧s♦ ❧❡ts ②♦✉ s♣❡❝✐❢② t❤❡ ❞❡s✐r❡❞
♠❛①✐♠✉♠ ♥✉♠❜❡r ♦❢ ✈♦✐❝❡s ✇✐t❤ t❤❡ -nvoices

♦♣t✐♦♥ ✇❤✐❝❤ t❛❦❡s t❤❡ ❞❡s✐r❡❞ ♥✉♠❜❡r ♦❢ ✈♦✐❝❡s
❛s ✐ts ❛r❣✉♠❡♥t ✭t❤❡ ❞❡❢❛✉❧t ✐s ✶✻✮✳ ■♥ ♣r✐♥❝✐♣❧❡✱
❛♥② ♣♦s✐t✐✈❡ ✐♥t❡❣❡r ❝❛♥ ❜❡ s♣❡❝✐✜❡❞ ❤❡r❡✱ ❜✉t
t❤❡ ❢❡❛s✐❜❧❡ r❛♥❣❡ ✇✐❧❧ ♦❢ ❝♦✉rs❡ ❞❡♣❡♥❞ ♦♥ ❤♦✇
♠✉❝❤ ❝♣✉ ♣♦✇❡r ②♦✉ ❤❛✈❡ t♦ s♣❛r❡✳
❋✐❣✉r❡ ✸ s❤♦✇s t❤❡ organ.lv2 ✐♥str✉♠❡♥t

❛❧♦♥❣ ✇✐t❤ s♦♠❡ ♦t❤❡r ❋❛✉st✲❣❡♥❡r❛t❡❞ ▲❱✷ ♣❧✉✲
❣✐♥s r✉♥♥✐♥❣ ✐♥ ◗tr❛❝t♦r✳

✹ ❙♣❡❝✐❛❧ ❢❡❛t✉r❡s ❛♥❞ ❧✐♠✐t❛t✐♦♥s

■♥ t❤✐s s❡❝t✐♦♥ ✇❡ ❞✐s❝✉ss s♦♠❡ ♥♦t❛❜❧❡ ❢❡❛t✉r❡s
❛♥❞ ❧✐♠✐t❛t✐♦♥s ♦❢ t❤❡ ❋❛✉st ▲❱✷ ✐♠♣❧❡♠❡♥t❛✲
t✐♦♥✳ ❚❤❡ ❣❡♥❡r❛t❡❞ ♣❧✉❣✐♥s s❤♦✉❧❞ ✇♦r❦ ✇✐t❤
❛♥② ▲❱✷ ✶✳✵ ❝♦♠♣❛t✐❜❧❡ ❤♦st ✇❤✐❝❤ s✉♣♣♦rts ❡✐✲
t❤❡r t❤❡ urid ♦r t❤❡ ♦❧❞❡r uri-map ❡①t❡♥s✐♦♥
✭♠♦st ✐❢ ♥♦t ❛❧❧ ▲❱✷ ❤♦sts ✇✐❧❧ ❤❛✈❡ t❤✐s✮✳ ▼■❉■
✐♥♣✉t r❡q✉✐r❡s ❛ ❤♦st ❝❛♣❛❜❧❡ ♦❢ ❞❡❧✐✈❡r✐♥❣ ▼■❉■
❡✈❡♥ts t❤r♦✉❣❤ ▲❱✷✬s event ❡①t❡♥s✐♦♥✳ ❢❛✉st✲
❧✈✷ ❛❧s♦ s✉♣♣♦rts t❤❡ dynmanifest ❡①t❡♥s✐♦♥ ✭s❡❡
❙❡❝t✐♦♥ ✹✳✷ ❜❡❧♦✇✮✱ ❜✉t t❤✐s ✐s ❛♥ ♦♣t✐♦♥❛❧ ❢❡❛✲
t✉r❡ ✇❤✐❝❤ ✐s ❜② ♥♦ ♠❡❛♥s r❡q✉✐r❡❞ ❢♦r ♣r♦♣❡r
♦♣❡r❛t✐♦♥ ♦❢ t❤❡ ♣❧✉❣✐♥s✳

✹✳✶ ▼■❉■ t✉♥✐♥❣s

❚❤❡ ▼❚❙ s✉♣♣♦rt ♦❢ ✐♥str✉♠❡♥t ♣❧✉❣✐♥s ♠❡♥✲
t✐♦♥❡❞ ✐♥ t❤❡ ♣r❡✈✐♦✉s s❡❝t✐♦♥ ❝❛❧❧s ❢♦r ❛ ♠♦r❡
❞❡t❛✐❧❡❞ ❡①♣❧❛♥❛t✐♦♥✳ ❚❤❡ ❣❡♥❡r❛❧ ❢♦r♠❛t ♦❢ t❤❡
s✉♣♣♦rt❡❞ ▼❚❙ ♠❡ss❛❣❡s ✐s ❛s ❢♦❧❧♦✇s ✭✉s✐♥❣
❤❡①❛❞❡❝✐♠❛❧ ♥♦t❛t✐♦♥✮✿

f0 7f/7e id 08 08/09 bb bb bb tt ... tt f7

◆♦t❡ t❤❛t t❤❡ f0 7f ❛♥❞ f0 7e ❤❡❛❞❡rs ❛r❡
✉s❡❞ t♦ ❞❡♥♦t❡ ❛ ✉♥✐✈❡rs❛❧ r❡❛❧t✐♠❡ ❛♥❞ ♥♦♥✲
r❡❛❧t✐♠❡ s②s❡① ♠❡ss❛❣❡✱ r❡s♣❡❝t✐✈❡❧②✱ ❛♥❞ t❤❡ ✜✲
♥❛❧ f7 ❜②t❡ t❡r♠✐♥❛t❡s t❤❡ ♠❡ss❛❣❡✳ ❇♦t❤ t②♣❡s
♦❢ ♠❡ss❛❣❡s ✇✐❧❧ t❛❦❡ ❡✛❡❝t ✐♠♠❡❞✐❛t❡❧②✱ ❜✉t t❤❡
r❡❛❧t✐♠❡ ❢♦r♠ ✇✐❧❧ ❛❧s♦ ❝❤❛♥❣❡ t❤❡ ❢r❡q✉❡♥❝✐❡s
♦❢ ❛❧r❡❛❞② s♦✉♥❞✐♥❣ ♥♦t❡s✳ ❚❤❡ ❞❡✈✐❝❡ ✐❞ ❝❛♥
❜❡ ❛♥② ✼✲❜✐t ✈❛❧✉❡ ❢r♦♠ 00 t♦ 7f ❛♥❞ ✇✐❧❧ ❜❡
✐❣♥♦r❡❞✱ s♦ t❤❛t t❤❡ ✉♥✐t ✇✐❧❧ ❛❧✇❛②s r❡s♣♦♥❞
t♦ t❤❡s❡ ♠❡ss❛❣❡s✱ ♥♦ ♠❛tt❡r ✇❤✐❝❤ ❞❡✈✐❝❡ ✐❞ ✐s
s♣❡❝✐✜❡❞✳ ❚❤❡ ❢♦❧❧♦✇✐♥❣ 08 ✐❞ ❞❡♥♦t❡s ❛♥ ▼❚❙
♠❡ss❛❣❡✱ ❢♦❧❧♦✇❡❞ ❡✐t❤❡r ❜② t❤❡ 08 s✉❜✐❞ t♦ ❞❡✲
♥♦t❡ ✶✲❜②t❡✱ ♦r t❤❡ 09 s✉❜✐❞ t♦ ❞❡♥♦t❡ ✷✲❜②t❡
❡♥❝♦❞✐♥❣ ✭s❡❡ ❜❡❧♦✇✮✳
❚❤❡ lv2synth ❛r❝❤✐t❡❝t✉r❡ ❦❡❡♣s tr❛❝❦ ♦❢ s❡♣✲

❛r❛t❡ t✉♥✐♥❣s ❢♦r ❞✐✛❡r❡♥t ▼■❉■ ❝❤❛♥♥❡❧s✳ ❚❤❡
t❤r❡❡ bb ❜②t❡s t♦❣❡t❤❡r s♣❡❝✐❢② t❤❡ ❜✐t♠❛s❦ ♦❢
▼■❉■ ❝❤❛♥♥❡❧s t❤❡ ♠❡ss❛❣❡ ❛♣♣❧✐❡s t♦✱ ♠♦st s✐❣✲
♥✐✜❝❛♥t ❜②t❡ ✜rst❀ t❤❡ ❜✐t♠❛s❦ 03 7f 7f t❤✉s
s❡ts t❤❡ t✉♥✐♥❣ ❢♦r ❛❧❧ ▼■❉■ ❝❤❛♥♥❡❧s✱ ✇❤✐❧❡ t❤❡

149

declare name "organ";

declare description "a simple additive synth";

declare author "Albert Graef";

declare version "1.0";

import("music.lib");

// control variables

vol = hslider("vol", 0.3, 0, 10, 0.01); // %

pan = hslider("pan [midi:ctrl 10]", 0.5, 0, 1, 0.01); // %

attack = hslider("attack", 0.01, 0, 1, 0.001); // sec

decay = hslider("decay", 0.3, 0, 1, 0.001); // sec

sustain = hslider("sustain", 0.5, 0, 1, 0.01); // %

release = hslider("release", 0.2, 0, 1, 0.001); // sec

freq = nentry("freq", 440, 20, 20000, 1); // Hz

gain = nentry("gain", 0.3, 0, 10, 0.01); // %

gate = button("gate"); // 0/1

// relative amplitudes of the different partials

amp(1) = hslider("amp1", 1.0, 0, 3, 0.01);

amp(2) = hslider("amp2", 0.5, 0, 3, 0.01);

amp(3) = hslider("amp3", 0.25, 0, 3, 0.01);

// additive synth: 3 sine oscillators with adsr envelop

partial(i) = amp(i+1)*osc((i+1)*freq);

process = sum(i, 3, partial(i))

* (gate : vgroup("1-adsr", adsr(attack, decay, sustain, release)))

* gain : vgroup("2-master", *(vol) : panner(pan));

❋✐❣✉r❡ ✷✿ ❋❛✉st ♣r♦❣r❛♠ organ.dsp✳

❜✐t♠❛s❦ 00 00 01 ♦♥❧② ❛✛❡❝ts t❤❡ t✉♥✐♥❣ ♦❢ t❤❡
✜rst ▼■❉■ ❝❤❛♥♥❡❧✳
❚❤❡ tt ❜②t❡s s♣❡❝✐❢② t❤❡ t✉♥✐♥❣ ✐ts❡❧❢✱ ❛s ❛ s❡✲

q✉❡♥❝❡ ♦❢ ✶✷ t✉♥✐♥❣ ♦✛s❡ts ❢♦r t❤❡ ♥♦t❡s ❈✱ ❈♯✱
❉✱ ❡t❝✳✱ t❤r✉ ❇✳ ■♥ t❤❡ ♦♥❡✲❜②t❡ ❡♥❝♦❞✐♥❣ ✭s✉❜✐❞
08✮✱ ❡❛❝❤ t✉♥✐♥❣ ♦✛s❡t ✐s ❛ ✼ ❜✐t ✈❛❧✉❡ ✐♥ t❤❡
r❛♥❣❡ 00✳✳✳7f✱ ✇✐t❤ 00✱ 40 ❛♥❞ 7f ❞❡♥♦t✐♥❣ ✲✻✹✱
✵ ❛♥❞ ✰✻✸ ❝❡♥ts✱ r❡s♣❡❝t✐✈❡❧②✳ ❚❤✉s ❡q✉❛❧ t❡♠✲
♣❡r❛♠❡♥t ✐s s♣❡❝✐✜❡❞ ✉s✐♥❣ t✇❡❧✈❡ 40 ❜②t❡s✱ ❛♥❞
❛ q✉❛rt❡r ❝♦♠♠❛ ♠❡❛♥t♦♥❡ t✉♥✐♥❣ ❝♦✉❧❞ ❜❡ ❞❡✲
♥♦t❡❞✱ ❡✳❣✳✱ ❛s 4a 32 43 55 3d 4e 36 47 2f 40

51 39✳ ❚❤❡ t✇♦✲❜②t❡ ❡♥❝♦❞✐♥❣ ✭s✉❜✐❞ 09✮ ✇♦r❦s
✐♥ ❛ s✐♠✐❧❛r ❢❛s❤✐♦♥✱ ❜✉t ♣r♦✈✐❞❡s ❜♦t❤ ❛♥ ❡①✲
t❡♥❞❡❞ r❛♥❣❡ ❛♥❞ ❜❡tt❡r r❡s♦❧✉t✐♦♥✳ ❍❡r❡ ❡❛❝❤
t✉♥✐♥❣ ♦✛s❡t ✐s s♣❡❝✐✜❡❞ ❛s ❛ ✶✹ ❜✐t ✈❛❧✉❡ ❡♥✲
❝♦❞❡❞ ❛s t✇♦ ❞❛t❛ ❜②t❡s ✭♠♦st s✐❣♥✐✜❝❛♥t ❜②t❡
✜rst✮✱ ♠❛♣♣✐♥❣ t❤❡ r❛♥❣❡ ✵✳✳✳✶✻✸✽✹ t♦ ✲✶✵✵✳✳✰✶✵✵
❝❡♥ts ✇✐t❤ t❤❡ ❝❡♥t❡r ✈❛❧✉❡ ✽✶✾✷ ✭40 00✮ ❞❡♥♦t✲
✐♥❣ ✵ ❝❡♥ts✳ P❧❡❛s❡ ❝❤❡❝❦ t❤❡ ▼▼❆✬s ▼■❉■ ❚✉♥✲
✐♥❣ ❙t❛♥❞❛r❞ ❞♦❝✉♠❡♥t ❢♦r ❞❡t❛✐❧s✳
❯s✐♥❣ t❤❡s❡ ♠❡ss❛❣❡s ②♦✉ ❝❛♥ t✉♥❡ ❛ ❋❛✉st

s②♥t❤ ✐♥ ❛♥② ♦❝t❛✈❡✲❜❛s❡❞ t❡♠♣❡r❛♠❡♥t ②♦✉

❧✐❦❡✱ ♣r♦✈✐❞❡❞ t❤❛t ②♦✉r ❉❆❲ s✉♣♣♦rts s❡♥❞✲
✐♥❣ s②s❡① ♠❡ss❛❣❡s t♦ ▲❱✷ ✐♥str✉♠❡♥t ♣❧✉❣✐♥s✳
✭◗tr❛❝t♦r ❛❧❧♦✇s ②♦✉ t♦ ❡♥t❡r t❤❡ s②s❡① ♠❡ss❛❣❡s
✐♥ ✐ts ✏❇✉s❡s✑ ❞✐❛❧♦❣✳ ❆r❞♦✉r ✸ ❞♦❡s♥✬t s✉♣♣♦rt
❡❞✐t✐♥❣ s②s❡① ♠❡ss❛❣❡s ②❡t✱ ❜✉t ✐t ✐s st✐❧❧ ✉♥❞❡r
❞❡✈❡❧♦♣♠❡♥t✱ s♦ t❤❡r❡ ✐s ❤♦♣❡ t❤❛t t❤✐s ✇✐❧❧ ❜❡
✜①❡❞ ❜❡❢♦r❡ t❤❡ ✜♥❛❧ r❡❧❡❛s❡✳✮ ❆ ❧❛r❣❡ r❡♣♦s✐✲
t♦r② ♦❢ ❤✐st♦r✐❝❛❧ ❛♥❞ ❝♦♥t❡♠♣♦r❛r② ♠✐❝r♦t♦♥❛❧
t✉♥✐♥❣s ✐s ❛✈❛✐❧❛❜❧❡ ♦♥ t❤❡ ✇❡❜s✐t❡ ♦❢ t❤❡ ❙❝❛❧❛
♣r♦❣r❛♠❀ ✇r✐t✐♥❣ ❛ ❧✐tt❧❡ s❝r✐♣t t♦ ❝♦♥✈❡rt t❤❡
❙❝❛❧❛ t✉♥✐♥❣ ✜❧❡s t♦ ❜✐♥❛r② s②s❡① ✜❧❡s ✐♥ ♦♥❡ ♦❢
t❤❡ ❢♦r♠❛ts ❞❡s❝r✐❜❡❞ ❛❜♦✈❡ s❤♦✉❧❞ ❜❡ ❛ ❢✉♥ ❡①✲
❡r❝✐s❡ ❢♦r ▲✐♥✉① ❛✉❞✐♦ ❞❡✈❡❧♦♣❡rs✳

✹✳✷ ❉②♥❛♠✐❝ ♠❛♥✐❢❡sts

P❧✉❣✐♥s ❝r❡❛t❡❞ ✇✐t❤ ❢❛✉st✲❧✈✷ s✉♣♣♦rt t❤❡ ▲❱✷
❞②♥❛♠✐❝ ♠❛♥✐❢❡st ❡①t❡♥s✐♦♥✱ s♦ t❤❛t ❛❧❧ r❡q✉✐✲
s✐t❡ ✐♥❢♦r♠❛t✐♦♥ ❛❜♦✉t t❤❡ ♣❧✉❣✐♥✬s ♥❛♠❡✱ ❛✉✲
t❤♦r✱ ♣♦rts✱ ❡t❝✳ ❝❛♥ ❛❧s♦ ❜❡ ✐♥❝❧✉❞❡❞ ✐♥ t❤❡ ♣❧✉✲
❣✐♥ ♠♦❞✉❧❡ ✭.so ✜❧❡✮ ✐ts❡❧❢✳ ❚❤✐s ❛❧s♦ ❝✉ts ❞♦✇♥
t❤❡ ❝♦♠♣✐❧❛t✐♦♥ t✐♠❡ s✐♥❝❡ t❤❡ ♠❛♥✐❢❡st ❞♦❡s♥✬t
❤❛✈❡ t♦ ❜❡ ❣❡♥❡r❛t❡❞ ❢r♦♠ t❤❡ ♣❧✉❣✐♥ ❡①❡❝✉t❛❜❧❡

150

❋✐❣✉r❡ ✸✿ ❢❛✉st✲❧✈✷ ♣❧✉❣✐♥s r✉♥♥✐♥❣ ✐♥ ◗tr❛❝t♦r✳

❜❡❢♦r❡❤❛♥❞✳
◆♦t❡ t❤❛t ✐♥ ♦r❞❡r t♦ ♣r♦✈✐❞❡ ❜❡tt❡r ❝♦♠✲

♣❛t✐❜✐❧✐t② ✇✐t❤ ❝✉rr❡♥t ▲❱✷ ❤♦sts✱ ✇❤✐❝❤ ✉s✉✲
❛❧❧② ❞♦♥✬t ❤❛✈❡ t❤✐s ❡①t❡♥s✐♦♥ ❡♥❛❜❧❡❞✱ t❤✐s ❢❡❛✲
t✉r❡ ✐s♥✬t ✉s❡❞ ❜② ❞❡❢❛✉❧t ✐♥ t❤❡ ♣r♦✈✐❞❡❞ ❜✉✐❧❞
s❝r✐♣ts✳ ❇✉t ②♦✉ ❝❛♥ s❡❧❡❝t ✐t ❜② ❝♦♥✜❣✉r✲
✐♥❣ ❢❛✉st✲❧✈✷ ✇✐t❤ t❤❡ --dyn-manifest ♦♣t✐♦♥✱
✇❤❡♥ ✉s✐♥❣ t❤❡ ❢❛✉st✲❧✈✷ s♦✉r❝❡ ♣❛❝❦❛❣❡✱ ♦r ✇✐t❤
t❤❡ -dyn-manifest ♦♣t✐♦♥ ♦❢ t❤❡ faust2lv2 ❛♥❞
faust2lv2synth s❝r✐♣ts ✐♥❝❧✉❞❡❞ ✐♥ r❡❝❡♥t ❋❛✉st
✈❡rs✐♦♥s✳

✹✳✸ ●❯■s

❖♥❡ ♠❛❥♦r ❧✐♠✐t❛t✐♦♥ ♦❢ ❢❛✉st✲❧✈✷ ✐s t❤❛t ✐t ❞♦❡s
♥♦t s✉♣♣♦rt ❝✉st♦♠ ♣❧✉❣✐♥ ●❯■s ✐♥ t❤❡ ❝✉rr❡♥t
✈❡rs✐♦♥✳ ❚❤✐s ♠✐❣❤t ❜❡ ❛❞❞❡❞ ✐♥ t❤❡ ❢✉t✉r❡✱ ❜✉t
❢♦r t❤❡ t✐♠❡ ❜❡✐♥❣ ②♦✉✬❧❧ ❤❛✈❡ t♦ r❡❧② ♦♥ t❤❡ ▲❱✷
❤♦st t♦ ❞✐s♣❧❛② ❛ ●❯■ ❢♦r t❤❡ ❝♦♥tr♦❧ ❡❧❡♠❡♥ts✳
❇♦t❤ ❆r❞♦✉r ❛♥❞ ◗tr❛❝t♦r ❞♦ ❛ r❡❛s♦♥❛❜❧② ❣♦♦❞
❥♦❜ ❛t t❤✐s✳ ✭❍♦✇❡✈❡r✱ t❤❡ ❤✐❡r❛r❝❤✐❝❛❧ ❧❛②♦✉t ♦❢
●❯■ ❝♦♥tr♦❧s ♣r❡s❝r✐❜❡❞ ❜② t❤❡ ❋❛✉st s♦✉r❝❡ ✐s
❧♦st ✐♥ t❤❡ ❣❡♥❡r✐❝ ♣❧✉❣✐♥ ●❯■s ♣r♦✈✐❞❡❞ ❜② ▲❱✷
❤♦sts✳✮

✺ ❋✉t✉r❡ ✇♦r❦

❲❤✐❧❡ t❤❡ ▲❱✷ ♣❧✉❣✐♥ ✐♠♣❧❡♠❡♥t❛t✐♦♥ ♦❢ t❤❡
❋❛✉st ▲❱✷ ❛r❝❤✐t❡❝t✉r❡s ✐s ❢✉❧❧② ❢✉♥❝t✐♦♥❛❧ ❛♥❞
r❡❛s♦♥❛❜❧② ❝♦♠♣❧❡t❡ ❛❧r❡❛❞②✱ t❤❡r❡ ❛r❡ ✇❛②s ✐♥
✇❤✐❝❤ t❤❡② ❝♦✉❧❞ ❜❡ ❢✉rt❤❡r ✐♠♣r♦✈❡❞✳ ❙♦♠❡
✐t❡♠s ✇❤✐❝❤ ❛r❡ ✇♦rt❤ ❢✉rt❤❡r ❝♦♥s✐❞❡r❛t✐♦♥ ❛r❡
❧✐st❡❞ ❜❡❧♦✇✳

• ❆❞❞ ✐♠♣r♦✈❡♠❡♥ts ❢♦r s♠♦♦t❤❡r ♣❧❛②❜❛❝❦✳

■♥ ♣❛rt✐❝✉❧❛r✱ t❤❡ ♣♦❧②♣❤♦♥② ❝♦♥tr♦❧ ♣r♦✲
✈✐❞❡❞ ❜② lv2synth.cpp ✐s ❢❛✐r❧② ❞✐sr✉♣t✐✈❡
r✐❣❤t ♥♦✇✱ ❛s ✐t s✐♠♣❧② r❡s❡ts ❛❧❧ ✈♦✐❝❡s ❡❛❝❤
t✐♠❡ t❤❡ ❝♦♥tr♦❧ ❝❤❛♥❣❡s✳

• ❆❞❞ ❝✉st♦♠ ♣❧✉❣✐♥ ●❯■s ✇❤✐❝❤ ❤♦♥♦r t❤❡
❤✐❡r❛r❝❤✐❝❛❧ ●❯■ ❧❛②♦✉t ❞❡✜♥❡❞ ✐♥ t❤❡ ❋❛✉st
s♦✉r❝❡✳ ❈♦rr❡s♣♦♥❞✐♥❣ ❝♦❞❡ ✐s r❡❛❞✐❧② ❛✈❛✐❧✲
❛❜❧❡ ✐♥ ♦t❤❡r ❋❛✉st ❛r❝❤✐t❡❝t✉r❡s s✉❝❤ ❛s
❥❛❝❦✲❣t❦ ❛♥❞ ❥❛❝❦✲qt✱ ❜✉t ✇♦✉❧❞ ♥❡❡❞ t♦ ❜❡
✐♥t❡❣r❛t❡❞ ✇✐t❤ t❤❡ ▲❱✷ ❛r❝❤✐t❡❝t✉r❡s ❛♥❞
t❤❡ ▲❱✷ ●❯■ ❡①t❡♥s✐♦♥✳

• ❯♣❞❛t❡ t❤❡ ❛r❝❤✐t❡❝t✉r❡s s♦ t❤❛t t❤❡② ❡♠✲
♣❧♦② t❤❡ ♥❡✇ ❛t♦♠✲❜❛s❡❞ ✐♥t❡r❢❛❝❡ ❢♦r ▼■❉■
✐♥♣✉t ✐♥st❡❛❞ ♦❢ t❤❡ ♦❧❞❡r ✭❛♥❞ ♥♦✇ ❞❡♣r❡✲
❝❛t❡❞✮ ▲❱✷ ❊✈❡♥t ❡①t❡♥s✐♦♥✳

• ❆❞❞ s✉♣♣♦rt ❢♦r t❤❡ ♥❡✇ ▲❱✷ ❚✐♠❡ ❡①t❡♥✲
s✐♦♥✱ ✇❤✐❝❤ ♣r♦✈✐❞❡s tr❛♥s♣♦rt ✐♥❢♦r♠❛t✐♦♥
s✉❝❤ ❛s t❤❡ ❝✉rr❡♥t ♣♦s✐t✐♦♥✱ t❡♠♣♦ ❛♥❞
t✐♠❡ s✐❣♥❛t✉r❡ t♦ ❛ ♣❧✉❣✐♥✳

• ■♠♣❧❡♠❡♥t ▼■❉■ ♦✉t♣✉t ❢♦r ♣❛ss✐✈❡ ❋❛✉st
❝♦♥tr♦❧s✳ ■t✬s ✉♥❝❧❡❛r ✐❢ ❛♥❞ ❤♦✇ ❡①✐st✐♥❣
▲❱✷ ❤♦sts ✇♦✉❧❞ ♣r♦❝❡ss s✉❝❤ ❞❛t❛✱ ❤♦✇✲
❡✈❡r✱ s♦ t❤❡r❡✬s st✐❧❧ s♦♠❡ r❡s❡❛r❝❤ t♦ ❜❡
❞♦♥❡ t❤❡r❡✳

❇❡s✐❞❡s t❤❡s❡✱ ▲❱✷✬s ❡①t❡♥s✐❜❧❡ ♥❛t✉r❡ ♠✐❣❤t ❝❛❧❧
❢♦r ❝♦♠♣❧❡t❡❧② ♥❡✇ ♣❧✉❣✐♥ t②♣❡s ✐♥ t❤❡ ❢✉t✉r❡✳
❲❤✐❧❡ t❤❡ ❛✉❞✐♦ ❛♥❞ ✐♥str✉♠❡♥t ♣❧✉❣✐♥ t②♣❡s
✐♠♣❧❡♠❡♥t❡❞ ❜② ❢❛✉st✲❧✈✷ s❡❡♠ t♦ ❝♦✈❡r t❤❡ r❡✲
q✉✐r❡♠❡♥ts ♦❢ t❤❡ ❝✉rr❡♥t ❣❡♥❡r❛t✐♦♥ ♦❢ ❉❆❲s✱

151

✐t ✐s ❣♦♦❞ t♦ ❦♥♦✇ t❤❛t ❋❛✉st✬s ❛♥❞ ▲❱✷✬s ♠♦❞✲
✉❧❛r ♥❛t✉r❡ ✇✐❧❧ ♠❛❦❡ ✐t ❡❛s② t♦ s✉♣♣♦rt ♥❡✇
t②♣❡s ♦❢ ❛✉❞✐♦ ❛♣♣❧✐❝❛t✐♦♥s ✇❤❡♥ t❤❡② ❡♠❡r❣❡✳

❘❡❢❡r❡♥❝❡s

❍✳ ▼❡②❡r✱ ❆✳ ❉❡❣❡rt✱ ❛♥❞ P✳ ❙❤♦rt❤♦s❡✳ ●✉✐✲
t❛r✐① t✉❜❡ ❛♠♣❧✐✜❡r s✐♠✉❧❛t✐♦♥ ❢♦r ❏❛❝❦✴
▲✐♥✉①✳ http://guitarix.sourceforge.net✱
✷✵✶✸✳

❘✳ ▼✐❝❤♦♥ ❛♥❞ ❏✳ ❖✳ ❙♠✐t❤✳ ❋❛✉st✲❙❚❑✿
❛ s❡t ♦❢ ❧✐♥❡❛r ❛♥❞ ♥♦♥❧✐♥❡❛r ♣❤②s✐❝❛❧ ♠♦❞✲
❡❧s ❢♦r t❤❡ ❋❛✉st ♣r♦❣r❛♠♠✐♥❣ ❧❛♥❣✉❛❣❡✳ ■♥
●✳ P❡❡t❡rs✱ ❡❞✐t♦r✱ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡ ✶✶t❤
■♥t❡r♥❛t✐♦♥❛❧ ❈♦♥❢❡r❡♥❝❡ ♦♥ ❉✐❣✐t❛❧ ❆✉❞✐♦
❊✛❡❝ts ✭❉❆❋①✲✶✶✮✱ ♣❛❣❡s ✶✾✾✕✷✵✹✱ P❛r✐s✱
✷✵✶✶✳ ■❘❈❆▼✳

❨✳ ❖r❧❛r❡②✱ ❉✳ ❋♦❜❡r✱ ❛♥❞ ❙✳ ▲❡t③✳ ❋❆❯❙❚ ✿
❛♥ ❡✣❝✐❡♥t ❢✉♥❝t✐♦♥❛❧ ❛♣♣r♦❛❝❤ t♦ ❉❙P ♣r♦✲
❣r❛♠♠✐♥❣✳ ■♥ ●✳ ❆ss❛②❛❣ ❛♥❞ ❆✳ ●❡r③s♦✱
❡❞✐t♦rs✱ ◆❡✇ ❈♦♠♣✉t❛t✐♦♥❛❧ P❛r❛❞✐❣♠s ❢♦r
❈♦♠♣✉t❡r ▼✉s✐❝✳ ❊❞✐t✐♦♥s ❉❡❧❛t♦✉r ❋r❛♥❝❡✱
✷✵✵✾✳

❉✳ ❘♦❜✐❧❧❛r❞✳ ▲❱✷ ✶✳✷✳✵ ❙♣❡❝✐✜❝❛t✐♦♥s✳ http:
//lv2plug.in/ns/✱ ✷✵✶✸✳

❙✳ ❙❛✈♦❧❛✐♥❡♥✳ ❊♠✉❧❛t✐♥❣ ❛ ❝♦♠❜♦ ♦r❣❛♥ ✉s✲
✐♥❣ ❋❛✉st✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡ ✾t❤ ■♥t❡r♥❛✲
t✐♦♥❛❧ ▲✐♥✉① ❆✉❞✐♦ ❈♦♥❢❡r❡♥❝❡✱ ♣❛❣❡s ✷✶✕✷✾✱
❯tr❡❝❤t✱ ✷✵✶✵✳ ❍♦❣❡s❝❤♦♦❧ ✈♦♦r ❞❡ ❑✉♥st❡♥✳

152

Towards a live-electronic setup with a sensor-reed saxophone and
Csound

Alex Hofmann, Alexander Mayer, and Werner Goebl
Institute of Music Acoustics, University of Music and Performing Arts Vienna, Austria

hofmann-alex@mdw.ac.at

Abstract

This paper presents a setup to pick up saxophone
reed vibrations directly, in an attempt to monitor
the saxophone signal without risky feedbackloops
despite drastic dynamic manipulations. We pre-
pared synthetic saxophone reeds with strain gauge
sensors and proposed a circuit to connect the sensor
reed to a line-level soundcard input. Furthermore,
we discussed possible open-source software to emu-
late classic stompbox effects. Finally, we presented
a Csound instrument design, that allows on-the-fly
signal routing between multiple effects in an ongoing
live performance.

1 Introduction

On the electric guitar, the coil pickup converts
the vibrations of the steel strings directly into
an alternating current through electromagnetic
induction [Campbell et al., 2004]. This makes it
possible to amplify the instrument without risk-
ing feedback loops between a microphone and
the speaker system [Lemme, 1994]. To enrich
the sound possibilities of the electric guitar, mu-
sicians and instrument makers developed sev-
eral circuits to modify the clean pickup signal.
These circuits were build into little boxes, which
the performer turns on and off by foot (stomp-
boxes) during live performance [Bacon, 1984;
Collins, 2009].
With todays processing speed of portable

computers, digital signal processing can re-
place analog signal modifiers on stage [Noble,
2009; Boulanger and Lazzarini, 2011]. Be-
sides stand alone guitar effect software (e.g., on
Linux: Rakarrack, Guitarix), computer music
languages like Csound or Supercollider provide
ready-made signal processing modules (Csound
opcodes, SuperCollider Ugens) to rebuild clas-
sic stompbox effects [Mikelson, 2000]. New ef-
fects can easily be designed and tested live with
such toolboxes [Ervik and Brandtsegg, in press;
Waerstad, 2010].
When playing wind instruments, like the sax-

ophone, the sound source is usually picked up

with a microphone. Drastic, dynamic modifying
sound effects like distortion or resonating filters
are difficult to apply to a microphone signal in a
live situation. The high volume levels on stage
lead to an increased risk of microphone-speaker
feedback loops, which might disturb the perfor-
mance.
Sensor saxophone reeds were developed in

acoustic research to investigate single reed be-
havior under real playing conditions [Hofmann
et al., 2012a]. In this paper, we will discuss ap-
plications for such sensor-reeds within an elec-
tronic live performance setup with the open
source audio software Csound.

2 Method

2.1 Saxophone reed pickup

We attached a strain gauge sensor to a synthetic
alto saxophone reed, to directly capture the vi-
brations of the reed during performance (Fig-
ure 1). A detailed description of how to pre-
pare synthetic reeds with strain gauge sensors
is given in [Hofmann et al., 2013].

Figure 1: Synthetic alto-saxophone reed with 2
mm strain gauge attached

The standard measurement setup foresees the
strain gauge as one resistor in a quarter Wheat-
stone bridge [Scott and Owens, 1989]. The
range of the resulting signal depends on the
supply voltage of the bridge (+3V, -3V). An
instrumentation amplifier (INA 126) is used to
adjust the signal amplitude of the differential
bridge voltage. A first order RC filter removes
the DC offset. Figure 2 (C) depicts a circuit
with two operational amplifiers (LM358N) to

153

Figure 2: Circuit with a quarter Wheatstone bridge and an instrumentation amplifier (A), a RC
filter (B), and two operation amplifiers for symmetric signal output (C)

gain symmetric output. This allows direct plug-
ging into the symmetric Line-Input of a profes-
sional soundcard for A/D conversion.

2.2 Effect Setup

We decided to build signal modifying sound ef-
fects with Csound, a well documented, flexible,
open source, platform independent audio pro-
gramming language [Heintz et al., 2011].
We will encapsulate the signal modifiers (ef-

fects) as independent Csound Instruments and
use the subinstr opcode to enable signal re-
routing in real-time, during performance.

2.3 Signal Flow

The current system is intended for mono sound
input and stereo sound output. Two global au-
dio rate variables (gaOutL, gaOutR) are keep-
ing the main output of the system. A simple
audio input to output patch looks like shown in
Figure 3.
The main controller Csound Instrument (in-

str 1) is used to receive MIDI note messages dur-
ing performance. Received MIDI notes deter-
mine which sub-instrument’s effect is processed.
A sub-instrument reads audio samples from the
global audio variables (gaOutL, gaOutR), mod-
ifies them and then overwrites them.
Usually Csound instruments are calculated by

the order of their instrument number. During
one audio processing cycle, instrument 10 is al-
ways calculated before instrument 30, indepen-
dent of their sequence in the Csound score. The

use of sub-instruments (subinstr) makes it pos-
sible to start multiple versions of instrument 1
by MIDI note messages. Csound treats each in-
stance like a voice of instrument 1. According
to the received MIDI note number, instrument 1
is holding a different sub-instrument each time.
This method allows to shift calculations of sub-
instrument 30 before sub-instrument 10 within
the current audio cycle.

<CsInstruments>
gaOutL init 0.0
gaOutR init 0.0

instr 1 ;Main Controller Instrument
inote notnum
ichn midichn
if inote == 10 then
gaOutL, gaOutR subinstr 10, 0, -1

elseif inote == 30
gaOutL, gaOutR subinstr 30, 0, -1

elseif inote == 31
gaOutL, gaOutR subinstr 31, 0, -1

elseif ..
endif

endin

2.3.1 Input and Output

In our setup, the soundcard input is also im-
plemented as a sub-instrument (instr 10). For
example, this can be useful to loop an audio se-
quence by routing the soundcard input into a
delay (Figure 4, top). When the soundcard in-
put instrument is later released and triggered

154

init global variables

gaOutL = 0.0

gaOutR = 0.0

instr 1

holding subinstr 10; audio Input

gaOutL = gaOutL + InputL

gaOutR = gaOutR + InputR

instr 200; Main Output

outx = gaOutL, gaOutR

Figure 3: Signal flow of a simple input-to-output routing

again, it is automatically placed after the delay
and you can play over the recorded loop without
changing it (Figure 4, bottom).

instr 10 ;Soundcard Input Instrument
aIn inch 1
outs gaOutL + aIn, gaOutR + aIn

endin

instr 30 ;Loop-Delay
aDelayL delayr 3 ;init 3 sec. delayline
aWetL deltapi 3 ;read from delayline
delayw gaOutL+(aWetL) ;write to dlyln.

aDelayR delayr 3
aWetR deltapi 3
delayw gaOutR+(aWetR)

outs gaOutL + aWetL, gaOutR + aWetR
endin

instr 31 ;Amplitude Modulation Effect
aMod oscils 0.5, 300, 0 ;Sinus 300 Hz
aL = gaOutL * (aMod+0.5)
aR = gaOutR * (aMod+0.5)
outs aL, aR

endin

To make sure the overall audio output to
the soundcard is never overwritten, an output
instrument with the highest instrument num-
ber (here instr 200) is started directly from the
Csound score.

instr 200 ;Main Output
outs gaOutL, gaOutR
gaOutL = 0.0
gaOutR = 0.0
endin

</CsInstruments>
<CsScore>
i 200 0 3600 ;Output runs for one hour
e

</CsScore>
</CsoundSynthesizer>

This technique allows on-the-fly re-routing of
sub-instruments and supports the creation of
various effect chains also with any number of
effects.

Additionally we recommend to add a cross-
fade function to the sub-instruments to avoid
clicks when changing the order of effects.

3 Discussion

We developed a live-electronic performance
setup, that monitored and processed the sax-
ophone’s reed vibrations directly. With this
method we can work at a wide range of am-
plitude levels on stage and apply drastic sound
effects to the signal without the risk of feed-
back loops. Also when playing in an ensemble,
the reed signal is free of surrounding noise from
other instruments. This makes the reed sig-
nal also more suitable for frequency-domain fea-
ture detection (e.g., pitch-tracking, onset detec-
tion). In addition, we explained a setup within
Csound, which allows re-routing of sound effects
on-the-fly during live performance.

One disadvantage of this pickup method is
that the characteristic air noise is missing in the
sound. For compensation a synthetic noise sig-
nal could be added to the output.

An other difficulty is the overall high amount
of background noise in the signal, which is a
common problem with strain gauge measure-
ments [Scott and Owens, 1989]. Further re-
search on the characteristics of each single com-
ponent is intended to improve the signal to noise
ratio.

In future work, we also plan to optimize ar-
ticulation detection algorithms, based on find-
ings from performance research [Hofmann et al.,
2012b], in terms of real-time onset detection ap-
plications.

155

init global variables

gaOutL = 0.0

gaOutR = 0.0

instr 1

holding subinstr 10; audio Input

gaOutL = gaOutL + InputL

gaOutR = gaOutR + InputR

instr 1

holding instr 30; e.g. Delay FX

gaOutL = FXSignalL

gaOutR = FXSignalR

instr 200; Main Output

outx = gaOutL, gaOutR

init global variables

gaOutL = 0.0

gaOutR = 0.0

instr 1

holding instr 30; e.g. Delay FX

gaOutL = FXSignalL

gaOutR = FXSignalR

instr 1

holding subinstr 10; audio Input

gaOutL = gaOutL + InputL

gaOutR = gaOutR + InputR

instr 200; Main Output

outx = gaOutL, gaOutR

Figure 4: Top: Routing of soundcard input into an (delay) effect instrument. Bottom: Changed
processing order. The input is placed after the (delay) effect.

4 Acknowledgements

The authors would like to thank the Csound
mailing list for their support, particularly Vic-
tor Lazzarini, Oeyvind Brandtsegg and Joachim
Heintz for discussing possiblities of instrument
routing in Csound, and Roman Rofalski for live
testing the effect setup. This research was sup-
ported by the Austrian Science Fund (FWF):
P23248-N24.

References

T. Bacon, 1984. The New Grove dictionary
of musical instruments, chapter ’Electric gui-
tar’ S. Sadie (Ed.). London: Macmillan Press
Ltd.; Grove’s Dictionaries of Music.

R.C. Boulanger and V. Lazzarini. 2011. The
Audio Programming Book. Cambridge: MIT
Press.

M. Campbell, C.A. Greated, and A. Myers.
2004. Musical Instruments: History, Tech-
nology, and Performance of Instruments of
Western Music. Oxford: Oxford University
Press.

N. Collins. 2009. Handmade Electronic Mu-
sic: The Art of Hardware Hacking. New York:
Routledge, second edition.

K. Ervik and O. Brandtsegg. (in press). Cre-
ating reverb effects using granular synthesis.
Proceedings of the First Csound Confer-
ence. Retrieved from www.incontri.hmtm-
hannover.de/fileadmin/www.incontri/Csound-
Conference.

J. Heintz, A. Hofmann, and I. McCurdy,
2011. Csound - Floss Manual, first edition.
www.flossmanuals.net/csound.

A. Hofmann, V. Chatziioannou, W. Kausel,
W. Goebl, M. Weilguni, and W. Smetana.

2012a. The influence of tonguing on tone pro-
duction with single-reed instruments. In 5th
Congress of the Alps Adria Acoustics Associ-
ation, Zadar, Croatia.

A. Hofmann, W. Goebl, M. Weilguni,
A. Mayer, and W. Smetana. 2012b. Mea-
suring tongue and finger coordination in sax-
ophone performance. In 12th International
Conference on Music Perception and Cog-
nition (ICMPC) and 8th Triennial Confer-
ence of the European Society for the Cognitive
Sciences of Music (ESCOM), pages 442–445,
Thessaloniki, Greece.

A. Hofmann, M. Chatziioannou, V.and Weil-
guni, W. Goebl, and W. Kausel. 2013. Mea-
surement setup for articulatory transient dif-
ferences in woodwind performance. In Pro-
ceedings of the 21st International Congress on
Acoustics, page to appear.

H. Lemme. 1994. Elektro Gitarren Sound.
Richard Pflaum Verlag GmbH & Co. KG,
München.

H. Mikelson. 2000. Modeling a multieffects
processor in csound. In The Csound Book,
pages 575–594. Cambridge: MIT Press.

J. Noble. 2009. Programming Interactivity.
Oreilly Series. O’Reilly Media.

K. Scott and A. Owens, 1989. Strain Gauge
Technology, chapter ’Instrumentation’ A.L.
Window (Ed.), pages 151–216. An Objective
publication. Essex: Elsevier Science Publish-
ers, second edition.

B.I. Waerstad. 2010. Granulated guitar - en
digital utvidelse av gitaren som instrument.
Master’s thesis, Institutt for Musikk, Norwe-
gian University of Science and Technology.

156

����������	
�����������������������������

��������������������

����������	
�

��	�������������������������������

�����	�������	 ��

��!�	��"#���	�
�$%��

����������������

����������	

��	�������������������������������

�����	�������	 ��

���&��
	!�"�	�'�	�%��
%��

�������

����� �	 � ��!�()�	 �$�*+, �-./� #��&�!�#���� ���
	!$ � ��!�������% �0� � � � 	��� �$ � �1 �
� ���	! � 2�	�
��������� ���� ���# � ����� � #�$	���	�$ � �1 �
	'�!&�
�!���!	� � $�&��	� � ��!!�����! � ���3��! � #��&�! � 	!$�
	�$����!#�� 4���#�� %�

56����	 �#�$	���	�$� ��� � � 	2�$�� �� ��	!���� �	��$�
3����������� �� �	��������������	��!��3��'%�

���� �6�3	�����
#�!�!� �	����#�!���������3�����

�	! �1����	!�	� ����!�����!�	!1 ���
#������ �!&�
7894*�!�(��#��	��!&� 1 ��
� �!����!�1��!�����
�	�$3	��%�

����#�� �!�	���!�	�
 �����!���$��������$�2�����������
��

�!��1�	!$�$� �� ���3��� �$�2���#
�!��
	1�
�!���	�� � 3��� � #��&�! � 	!$� ��� � *+, � �	!$	�$: �
$�2���#
�!�%

�������

*+,���� ����	�$3	�����	�'��#��&�!

 !�����������

;���	2�����!�$�2���#�!&�����6���
���� ��	!�
����� � 1�	� % � <��
 � ��� � 6�� � � $�	6� � �� �	� � 	����
#�����1#���!�3����� 6�� � � �!$)� ��� ��	$1��!�� �	���
���!&�#��$���$�	!$�3��3���$���2����� ��3����
�	��
*5=� � �!������� � ��!�1�#� ����� ��	!' � �� � ����
3��'��6�
	!1�#��#���3���(#�������
���������%�

����� �	�*+,��� ��$�2����	��1����6�������	���	!�
���� �$��!�	���2��#��6��
	!���$� ��!!����$�6��
�	�
��
#����% � 0� � �	 � 	 �#�3��6�� � 	!$ � �!�����2�� � ���
�!���6	���������	��� ���# �2�	��	����������
#�����	!$�
��� �##��� �	!1�*+,�#��&�!%

 " ����#�����

5 ���$)��
��� �� ��6�	�'��*5���5�	!$�	�������
7894*�!�(�#��)	�$��� �	�'��3��	�3	1 �
� �$�	!�
�	 1��#��&)	!$)#�	1�3	1����� �������66��� �	!$����� �
	2	��	�����!�����7894*�!�(���(� %�����3	 ����!�
3��� � ��� � �! �
�!$� � �� � #��2�$� � 	! � 	��� ���� � 	!$�
� ��)6���!$�1 � $�2��� � ��	� � �##��� � ��� � ���� �

7894*�!�(�� �� �	���� �$����	!$�	� ��	��� ��������

������	$����!	��
� ���	! %

 �#��#���

" $���������%

0!�	�#�!����1���#��&�1�����! ���
�!��	!$�	
#����
��������	!$�#�	1%� 0� �#���� � � ����#�$	���	�$ �
1����	2�� 	2�$��!���%�

������	��������	!&��	�#�$	���	�$�1�����!!�������
��� � ��� � � �!& � 	 � �	���� � �� � 	 � ��
#���� � 2�	�
����������	!$�	��� ����� �!&�	����3 ��%�>���3����
���#�� �!��$�3����	�$	 ���	�$�3�����1����	!�$�	&�
	!$�$��#�#��&�! �	!$�
	'����!!�����! %�5��������6��
 �$���!� ���� ����!�1���3���� ��� �3�� 6�(�$� ��!$�
 ����� � ��	����#�� �!� �����#�1 ��	��	�$��� �!#�� ��
3�����1���3����#��&��!�1�����! ���
�!� ��	!$��3��
	�$�� � ���#�� � �! � ��� � ��&��� � ��#�� �!��!& � ����
#�1 ��	��	�$������#�� %�

157

>����	!�
	'��	 �
	!1���!!�����! �	 �1�����'��
6��
��	��� ��!$� ����������!&��������#�1 ��	��	�$���
�!#������	�#��&�!����#��%�

?	���#��&�!�� ���#�� �!��$��1�	�#�$	�%�=���'��!����
	!$�1����	!��3�	'�	����� �#	�	
���� %�>����	!�	� ��
	$$�� �	�#��&�!�#	�	
��������	�#�1 ��	��'!����6����
 3���������(#�� ��!�#�$	�%�

��� � ��
� �3��� �
	!1� #��&�! � �! �	���$� � ����
1����	!� �	����	!$��! �	���
����#��&�! ��!�����6�1��
���3 �!&� �������� ��#� ����1� @ ��� �%.A% � ���&�! �
	�����&	!���$��!����	��&���� �	!$��	��$��1������ �� %�

�!���1���	���$�!��3����1���� ���#��3���	������	�
#�$	���	�$��1����	!�!	
�����	!$� 	2����%�;��!�1���
�	2� �
	!1 � #�$	���	�$ � 1�� � �	! � ��&	!��� � �� � �!�
�	!' � ��1����	!��	 ��1�	��� ����6��
���������

�!��3��!�1���	���!���� �!&�1�����	����4��
#����%�

�����	!����� �$��!�	� �	!$	��!��
�$���3�����

�	!�1���$�!:��!��$�����	��1�1������
#������������
&�&% � >�� � �	! � �	 ��1 � ���3 � � ��� � �	!' � 	!$�
#�$	���	�$ �1�����&	!���$�6��
�����
�!������1���
�	!��2�!�	$$�� ��!������3��6���) 3����� ����&�����
����!�(�4#��2��� �#�$	���	�$%�

�	�'����1������
#������1����	!�!�3� �	���1����
#�$	���	�$ �3��������������� �� �	!$��(��	!&��
�$�	 �	!$���!� %

"
 $�������

��� � ��� � � � �!��� �$ � �! � 	 � ���� � � 6��$�$�
 ����)
��	� � ���� � �!��� ��� � 3��� � #���)#���6 � ��#�
6	��%�

0! �$�� �� � �����B � 	! � �
��$$�$� 0!����5��
�$�	��
���� � ��!!�!&� 	� � .%�7C� �3��� � 	! � ��� � $��2�� 6���
 ���	&�%�

0�� #��� �	�,�(�,�,�����4���'C��	�$����!���6	���
3����2��1� ��3�!�� �� @D.EE$�A% ����� �!#�� � �����!�
��! � � ��6��3��#��)	
#�$�F*��G��.E���
����	�' �
3���� �����	������!�4�! ���
�!����2���	!$�	$�� �	����

&	�!%��������#��� �����!���! � � ��6��3���	�	!��$�
�.E � ��!!����� � 3��� � 	$�� �	��� � &	�! � #�� � 	�
C�	$#��!���	�'%�

������!��������� ���
#� �$��6�6�����!���
�!�	��
�!��$�� � 3��� � *=� � $� #�	1 � 6�� � #	�	
�����
��	!&�!&� 	!$�2� �	���	���!�#�� � 6��� ���	21�$��1�
6���) 3����� % � 0� �� � �H��##�$ � 3��� � 	!� 5���
#���� ���6���#	�	
���� ����	�
�!��	!$�$� #�	1�!&%�

�����B �	� ��	!��!���!	��6�����	!&��#�3��� �##�1�
) � .EE+),�E+�)� ���$���2���	$�H�	���#�3��� ��� 	���
�!���!	����
#�!�!� %

"& '�������

���� �6�3	���� �$�2�$�$� �!���	!�*+,��� �������
6��
3	����	�3��)�	 �$�790�	!$�����
	!	&���)�����
 �6�3	�� � �� #�! ���� � 6�� � ��� � ��

�!��	���!�
���3��!�	�������������#���� %�

5��� �6�3	����3���������(��#���!��6�����6��
3	����
� � <������6�3	��� 	!$� ����! �$��!$�� � ����7�*2��
����! ��-,/%

158

& '�����������������

��������.I���6�3	�����
#�!�!�

&" ��������(�'����

������! � 	 � �� ��
���$�5���*�!�(�-�/� �	 �$�
$� ����������!��1���!!�!&�����'��!����%J%..���!�$�6���
��	�)��
��	!$� �
��������#��6��
	!���#	���� %�

0��� � � 1 ��
$�	!$�	���$	�
�! ����1��!����6�������
 �	��4 ��#4$�#�!$�!�14'��# � 	��2� � 	����! % � ����
 �6�3	���� �#	�'	&�$�	 �#	�
	!�-�/� #	�'	&� �	!$�
	�� �#���� ��$� �!�����	��� � ��#� ����1�3����� � �
� �$����
	!	&������$�#�!$�!��� ����3��!�#	�'	&� �
	!$����'��#�������� �	���46����!%�

��� � ��

�!��	���!� ���3��!� ���� �	�$3	�� � 	!$�
������4 �6�3	���� �$�!�������&��	���	�� ���	��#���%

&"
 �	
�����)�*��%��������+�����

������ ��� ��	���$�
�$$�	!$�� ���	��1� �
#���� ��
6	����� �##��� �	��������	 ���4�������2,�6�!����!	����� �
	!$�	� ������6����3�!&��2,�6�	���� 4�(��! ��! I�

� ���)
	#�
� ���$
	#�
� �0�0��2�!� �@�2�!��	!$�	��
A�

��##�������������
���(��! ��!�� ����!&�$�2���#�$��
����	��6�� �����3����!����	2����	! #���� �##��������!&�
6�	
� � 	!$ � ��
#� � 	3	�� � �!�1� � � � ��� � � �� � �	!�
 #���61�	�����@2�	�'!�� ����� �!&������	#)��
#��
6���) 3����A�	!$� 1!��!&���
�4�#
4���#	�	
���� %�

��$$ � � �
� ��1 � 3�����! � �! � = � � �!& � �	2�$�
������	�$: ����2�-K/�����	�1�	!$�� �����
	�!��	�'�-J/�
����!�%�0����! �3������	�)��
��#������1%

&"& ��������(���+�������

��� �
	!	&�� � � � �� #�! ���� � 6�� � �	!$��!& � ����
��

�!��	���!����3��!�����790� � ���� �=�!��������
<��
3	��������C� ��	!$�������%�0��	� ���	2�� �
��
������� #�! �������� �6����(
#���3��!� 	2�!&�� ���
$	�	�����!�!&��!4�66���������������	!$������� 1 ��
�
���	��$��	 ' %�

0�: �	� ��3�����!��!�=�	!$������

�!��	�� �3����

�$$�� �!&� 	 � �	��$� ����� � @ �	��$�
�
��1A% � 0��
� � �	� ���	��#������� �!$�
� 	&� ��������6��
3	���
	!$�	� ��'��� ��������1���! �-L/� �	 �$�3��� ��2���
	!$� 	2	����#� � -�/ �790% �5�� � ���� ��

�!��	���!�
� � �	� �
#���#�������� #���6��$��1����B ���	
%�
����#��������$� ����� �	�������6�!����!	����� �6��
�
	$$�!&4��
�2�!&�#��&�! ����	 �&!�!&���!�����#��� �
�� � �	�$3	�� � �!��$�� � �� � ����!&4��	$�!& � ��!�����
#����2	��� %

&", -��������

���� ���������� �� � � � �3�����!� �!��1���!� � �!&�
��� �-M/� 	!$ � ����� �-.E/% � 0� � �
#�1 � #	�� ��
	�������� � 	!$ �3	�� � 6�� � !�3� ���������� !��3��'�
��!!�����! � � 3��!�2�� � 	 � ��!!�����! � � � ���	��$�
@� �!&� �����!�#E� �!���6	��A� 	! ��$�2 �-../� ����� � �

	����$�	!$��(����� �	� ���#����	��3���� �������0��
	$$�� �6��������!���6	���	!$���!�$!
	 H�-.,/��!�
��	� � �!���6	��%�$!
	 H�3���� ���!�#��2�$��	 �$��#�
	!$ � $! � ��2�� � 6�� � ����!� � ��!!����$ � �����&��
�������������	��3	1��6������ ��: ���
#���������	�����
���� � ����� ��2�� ����!	
��N
�$N����3������ ��2�����
����$�2���: �0��	$$�� %

&". /����0!�

��� �790 � � �
� ��1�3�����!� �! � 	2	����#� � 	!$�
�1���!�� �!&��������!	$��6�	
�3��'%�0��� � �����
��

	!$ � $� �����$ � �1 ���� ���� � #������� � ���
��

�!��	���3��������
	!	&���@
�$
	!A������&��
	� ��'����
�$
	!�3�������!�����������
� 	&� ����
������������
#�!�!� %�

159

��������$�2����� �!�2�����!!����$�$������1����
����0!���!��������790�	2	����#����$��3����$�������6�
����� ��: ���
#����4�	������ ���!!����$�	!$���6����� ��
�� �3�������	���� ���	��� � ��������$�	!$�$�3!��	$�
!�3�#��&�! ���#&�	$����$���#��&�! �����#&�	$������
3����� 1 ��
���!���$�!&�����6��
3	��%

��������,I��������	�790�

&"1 2�������

����6��
3	�����	��$��2� �������!��������
	!	&� �
	�� � ��B � �	�$3	�� � I � $� #�	1 � � �!��$�� � 	!$�
6���) 3����� %�

0��� �	� ���� #�! �����6��I�

�
	!	&�!&������(��	!&���6�$	�	����3��!�����
	���	��� �	!$�
�$
	!O

� $�	��!& � 3��� � ��!����3� � � #	�	
���� �
#��#����� �� ����	 �� �!&���&	����
��� �	�� �
��� ����!&�	��	#)��
#������!�
�����3��!�	�
��
�)���	��$ � #	�	
���� � � � 	$$�� �$ � �� � 	�
6��� 3����O
�

, ���������	

," 3��(������������

�� �
	'� � ���B � � �� � ��6� � �	 ���� � 3� � 	���
#	�'	&�!&�	!$��� ��!&�*+,�#��&�! ��!�	���#� ����1��
�� ��	 ���!�(�$� ��������! �$�%�

;���	2��#����$� �
��*5���5�-.�/� #��&�! ����
*+,� � ��� � 	 � ��� � =5�� �-.�/ �	!$ � �5� �-.K/�
#	�'	&� � 	!$�3��3��� � �	2�� 	���!$� �(�1� #��&�! �
#	�'	&�$��!������!&��!&�����	 ��$	��%�

<��
� ���� � �� � �!���6	��� � �� � �	! � �!�1� �! �	���
#��&�! � 6��
� ��� � ��#� ����1� � ��� �3�� 	�� � 	���	$1�
3��'�!&���� ���#�	�P��!����Q���#� ����1�	!$�	� ������
#� ������1 � �� � �! �	�� � 	!1 � *+, � #��&�! � 1�� � �	2��
$�3!��	$�$�6��
�	!13����%

,"
 �����	
��4������

5!1�*+,�#��&�!�3����3��'�3�����!����%�����
 �!���3��	���6��� �!&��!�� ����(#����!����3��3	!��
�	���#��&�!�����	2���� ��3!����'%�

�	����6����� � �##����$��1�����*+,������	!������
#	����6����� � #���6���������%�<����! �	!�����!�����
����$	 ���	�$���	���#��&�!��	 ��� ����!��� �	��1�
	 � #�$	� � ���!% � 0� � 3���$ � �� � !��� � ��	� � ��� � #��&�!�
$�2���#�� � ����$ � ���� �� ��� � ���!� ��4 ���3	!��$%�
;��! � 	 � #	�	
���� � � � 	$$�� �$ � �� � 	 � #�1 ��	��
��!����� � �� ��	 � 	 � �	���� ��	� � 	##�	� ��!� ����*=��
 ����!� � ��� � ����$ � �� � �� ��
���$� ���% � 5� �� � ����
��!6�&��	���!�790�� ��	� �*+,�	���3 �$�2���#��� ���
����$������$��!�1����� �$��!������6����3	 �3�����!�
�!�C��*4�	2	 ���#�%�

<�� � ��� � � ��	 �! �3�� 	�� � �(��!$�!&� ��� � *+,�
 �	!$	�$��	$$�!&� �
�� #���6���6�	���� ���	������
 �##��� % �8�2������� � �3�� 	�� � !�� � ������!&� ����
 �	!$	�$� � 	!$�3��	�� � �##����!&�	!1�#��&�!� ��	��
$�� � !�� � �	2� � ��� � �(��! ��! � 3��� � ��� � � � � �6�
$�6	�����#���! %

,"
" '��

0!�����6������3��3	!���������	 ��	���R�������#�
#��&�!�$�2���#�� �	$	#�� ������#��&�!� �����������
�(��! ��! %�0��3����&�2�����
��	1������
#�	�� �	!$�	�
 ����6����! �������� ��6��
%�

. ����������

���!&��	 �$��!��#�!� �	!$	�$ �3�������2������
�	! � ����
� � 	 �
��� � ������ � 	!$ � 2�� 	�����

����)�66����#���� �����	!�	!1�������6��!$��!�����

	�'��% �;� � 3	!� � �� � �
#��2� � ��� � ���	��
6�!����!	����� � 	!$ � �##��� � ����*+,� �	!$	�$ � ��
!�3�$�2���#�� �&����!���� ��$�	!$�!�3�#��&�! �	���
$�2���#�$%�

1 ��%������(�����

���� �	���$ � ���	� � � �6 � ��� � *5�� 	!$ � *59�
��

�!��1�����	� ���6����� �6�3	�� �	!$���!��#� �
��	�����&�!	��$�������� ��3��3���$���'�������	!'���� �
��

�!��1��6�� �� �	!$�$�2���#�� %�;��	� ��3	!��
�� � ��	!' � ��� � � ��$����2��%��& � ��

�!��1 � @	�
��	����	!� ��

�!��1� 6��� �$��!� ���� � �� �6 � 6����
	!$ � �#�!) ����� � �6�3	�� � 6�� �
����
�$�	�
#��$�����!A%

160

7 References

[1] LV2, a plugin standard for audio systems

http://lv2plug.in/trac/

[2] GPL, the GNU General Public License

http://www.gnu.org/licenses/gpl.html

[3] ArchLinux, a simple and lightweight

GNU/Linux distribution

http://www.archlinux.org

[4] PACMAN, the ArchLinux package

manager

https://wiki.archlinux.org/index.php/Pacman

[5] LILV, a library to make the use of LV2

plugins as simple as possible

http://drobilla.net/software/lilv

[6] JACK Audio Connection Kit

http://www.jackaudio.org

[7] Python Programming Language

http://www.python.org/

[8] JavaScript, the scripting language of the

Web

http://www.w3schools.com/js/default.asp

[9] Dbus, a message bus system for

applications to talk to one another

http://www.freedesktop.org/wiki/Software/dbus

[10] BlueZ, the official Linux bluetooth

protocol stack http://www.bluez.org/

[11] UDEV, Linux dynamic device

management

https://www.kernel.org/pub/linux/utils/kernel/ho

tplug/udev/udev.html

[12] DNSMASQ, a lightweight DNS forwarder

and DHCP server

http://www.thekelleys.org.uk/dnsmasq/

[13] LADSPA, Linux Audio Developer’s

Simple Plugin API http://www.ladspa.org

[14] CAPS, the C* Audio Plugin Suite

http://quitte.de/dsp/caps.html

[15] TAP, Tom's Audio Processing plugins

http://tap-plugins.sourceforge.net/

161

Pd~graz

Supporters

	LAC 2013 Proceedings
	Welcome Note
	Conference Organization Team

	Proceedings
	netpd - A Collaborative Realtime Networked Music Making Environment written in Pure Data
	Byzantium in Bing: Live Virtual Acoustics Employing Free Software
	Combining granular synthesis with frequency modulation
	SuperCollider IDE: A Dedicated Integrated Development Environment for SuperCollider
	An Approach to Live Algorithmic Composition using Conductive
	MorphOSC- A Toolkit for Building Sound Control GUIs with Preset Interpolation in Processing
	Design of an audio oscilloscope application
	Ambisonics plug-in suite for production and performance usage
	The Rationale behind Rationale: Designing a Sequencer for Unlimited Just Intonation
	Chino -- a framework for scripted meta-applications
	Csound6; old code renewed
	Linux AVB Stack Workshop
	Live music programming in Haskell
	ipyclam, empowering CLAM with Python
	Music for Programmers (MFP): A Dataflow Patching Language
	A Pure Data toolkit for real-time synthesis of ATS spectral data
	Multi-Channel Noise/Echo Reduction in PulseAudio on Embedded Linux
	Lyapunov Space of Coupled FM Oscillators
	Production and Application of Room Impulse Responses for Multichannel Setups using FLOSS Tools
	Pitch-class Set design in SuperCollider
	Experiments with dynamic convolution techniques in live performance
	Creating LV2 Plugins with Faust
	Towards a live-electronic setup with a sensor-reed saxophone and Csound
	MOD - An LV2 host and processor at your feet

