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Abstract

Since the launch of electric vehicles, the sound design for those silent vehicles
has become a highly important issue nowadays, as it is required to have a suitable
exterior sound to alert pedestrians to approaching vehicles as well as an interior one
for driver’s recognition of the driving situation.
One widely applicable method for the engine sound design is to utilise the knowl-
edge of conventional combustion engine sounds. A engine of a car also generates
an appropriate sound corresponding to its specific car class. Is it therefore possible
to distinguish different car classes by their engine sound characteristics? The aim
of this work is to answer this question, i.e. to classify the car classes based on the
engine sounds specified by relevant psycho-acoustic parameters.
After pre-processing the given data, including normalisation and unnecessary param-
eter removal, the parameters with similar behaviour are grouped by means of PCA.
The feature subset is then generated in such a way that one parameter is selected in
each group, and then the classifier is constructed after applying LDA. The classifiers
that distinguish specific classes are then evaluated according to their performance
and robustness. Lastly, potential future works are proposed based on limitations of
this work.

Zusammenfassung

Seit der Markteinführung von Elektrofahrzeugen ist das Sound-Design für die-
se leisen Fahrzeuge zu einer wichtigen Thematik geworden, weil es notwendig ist,
dass sowohl ein passender äußerer Klang, zur Warnung von Fußgängern über sich
nähernde Fahrzeuge, als auch ein passender innerer Klang, um den Fahrer über die
Fahrsituation zu informieren, vorhanden ist.
Eine weitgehend anwendbare Methode für das Motorklang-Design ist es, das Wissen
über den Klang der konventionellen Verbrennungsmotoren zu verwenden. Der Motor
eines Fahrzeuges erzeugt einen passenden Klang entsprechend seiner Fahrzeugklas-
se. Ist es dann möglich, die verschiedenen Fahrzeugklassen durch ihre klanglichen
Merkmale zu unterscheiden? Ziel dieser Arbeit ist es, diese Frage zu beantworten,
d.h. die Fahrzeugklassen anhand der Motorklänge, die durch relevante psychoakus-
tische Parameter spezifiziert sind, zu klassifizieren.
Nach der Vorverarbeitung der vorgegebenen Daten, einschließlich der Normalisie-
rung und der Parameterentfernung, werden die Parameter mit ähnlichem Verhalten
mittels PCA gruppiert. Die Merkmalsuntermenge wird dann so erzeugt, dass in je-
der Gruppe ein Parameter ausgewählt wird und dann der Klassifikator nach LDA
aufgebaut wird. Die Klassifikatoren, die bestimmte Klassen unterscheiden, werden
dann nach ihrer Leistung und Robustheit ausgewertet. Schließlich werden mögliche
zukünftige Arbeiten auf der Grundlage von Einschränkungen dieser Arbeit vorge-
schlagen.
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1 Introduction

Since the launch of electric vehicles into the automotive market, diverse advantages have
been emphasised in using them. In addition to well-known benefits such as being environment-
friendly and the light body weight, one of the most important advantages is that it rarely
generates loud noise, i.e. it is highly silent compared to the conventional combustion
engine car. However, too quiet cars are not always desirable. The low exterior sound
level can put pedestrians in danger when driving at low speeds [GM14]. Actually, the
U.S. Department of Transportation National Highway Traffic Safety Administration spec-
ified the minimum sound power for hybrid and electric cars [oTNHTSA13]. Besides, the
electric vehicle also needs to have an appropriate interior sound during driving. The
interior sound affects loudness adaptation according to the driving situation, such as load-
dependency [KSFFG14]. Additionally, the perception of acceleration situation is related
with pitch shifting [YF14]. According to [SKvdPW14], the interior sound of the com-
bustion engine is more sporty compared to the sound of an electric engine. Thus, it is
necessary to generate a sporty interior sound for an electric car which is supposed to
sound sporty. Therefore, the above-mentioned claims justify that the proper engine sound
should be artificially generated by using active sound generator.
However, since there is not enough experience yet in designing engine sounds in elec-
tric vehicles [GF14], it is still unclear how the sound is supposed to be. It could be a
sound of a conventional combustion engine or a futuristic sound synthesised by a novel
way [GYS14], [CP16]. One thing is certain that we already have been familiar with
the sound of combustion engines. Therefore, we are willing to utilise the knowledge
about combustion engine sounds and also to apply it for generating the electric vehicle
sound [FSBH14].
When adopting the combustion engine sound for engine sound design of the electric cars,
following questions are raised; How do cars sound corresponding to a belonging car
class? Are there any distinctive characteristics of the engine sound in a specific car
class? Is it then possible to distinguish the classes by these characteristics? The aim of
this work is to answer these questions, i.e. to classify different car classes according to
their combustion engine sounds.
In this chapter, keywords, which are necessary for the understanding of this paper, will be
explained. In the first section, principles of the engine sound generation will be described,
which are summarised by the combustion noise and the mechanical noise. In the second
section, the car classification scheme exploited in this work will be introduced. Lastly, the
psycho-acoustic parameters as well as other relevant parameters used in this work will be
explained.

1.1 Combustion engine sound

The engine sound, in addition to the sounds from the gearbox and the intake- and exhaust-
system, is one of key elements to form the entire sound characteristics of a car. This sound
is also needed to fulfil acoustical requirements in a passenger car, for instance, to seek a
comfortable sound in a luxury car or to generate a unique sound corresponding to a sports
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car brand. The optimisation of the combustion engine sound has been an important issue
in the automotive industry since the car operated by the internal combustion engine was
developed. This task, however, becomes increasingly challenged by the trend of the light
and complex aggregate [Zel12].
The combustion engine sound consists of two parts: the direct combustion noise and the
mechanical noise. The direct combustion noise is caused by the pressure pulsation in the
combustion chamber as a result of the combustion of the air-fuel-mixture. The generating
process of the direct combustion noise is described in Figure 1, where the spectrum from
the pressure pulsation is summed up with the spectrum of a transmission path to a receiver.

Figure 1 – Cause-and-effect relationship of the direct combustion noise [Bar01]

On the other hand, the mechanical noise which essentially contributes to the sound dis-
tinction of a car, results from the crankshaft motion. The dynamical characteristics of
the crankshaft is influenced by various physical elements, such as cylinder order, balance
weights, mount concept of the crankshaft, etc. The periodic excitation moment of the
crankshaft can be described by Fourier-series:
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M(t) =M0 +
∑
ν

M̂ν sin(ν · ω · t+ δµ), (1)

where ω is the constant fundamental angular frequency and ν is the order of excitation.
Although undesirable harmonics of some specific orders can be compensated by the cylin-
der arrangement and the balancing weight in the crankshaft, it is only partially successful,
i.e. other undesirable harmonics remain uncompensated. As an example, an in-line 4
cylinders engine is shown in figure 2. The inertia force F2 corresponding to the moment
of second order has periodic of 180 [deg], which is not compensated in the system, while
other moments are eliminated successfully.

Figure 2 – (left) inertia force caused by moments of 1. and 2. order. (right) excitation
moments in in-line 4 cylinders engine [Zel12]

Consequently, these two mechanisms of noise generation contribute to producing the char-
acteristics of the engine sound.

1.2 Car classification

There are enormous different schemes for car classification worldwide that are used for
various purposes, including regulation, description, categorisation, etc [CCW17]. There
are also a lot of classification methods, such as, by means of the body style, number
of doors, number of seats, weight, etc. In this work, a scheme called Euro Car Segment
defined by European Commission is used, which is based on a number of objective criteria
like engine size and length of cars. However, this is not formal and somehow vague
[Car99]. The classes called segments are categorised into 9 segments as follows:

— A-segment : mini cars
— B-segment : small cars
— C-segment : medium cars
— D-segment : large cars
— E-segment : executive cars
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— F-segment : luxury cars
— S-segment : sport cars
— M-segment : multi-purpose cars
— J-segment : sport utility cars

1.3 Psycho-acoustic parameters

It is usual to evaluate the engine sound by psycho-acoustic parameters, since the subjec-
tive impression in various recognition-dimensions, such as loudness, sharpness, rough-
ness, etc., is the key factor to understand how the sound is recognised by humans. In
this section, the important psycho-acoustic parameters are introduced, for instance the
Zwicker-parameter and other relevant parameters which are often used in practice. These
parameters are also used in this work. Detailed description of the Zwicker-parameter is
represented in [FZ07].

— The most important part of the psycho-acoustical evaluation is to estimate how
loud a sound is. The representative parameter is Loudness [sone] defined in
ISO532B. There is also various weighted sound pressure level [dB( )] group de-
fined in ICE 61672. The weighted sound pressure levels are obtained by applying
different weight curves in the frequency domain. Moreover, other specified pa-
rameters used in practice, such as Annoyance, Sportiness, Powerfulness, etc, are
derived by combining basic parameters for the loudness. On the other hand, a
parameter Articulation Index is adopted in this work in order to evaluate quietness
as opposed to the loudness.

— Sharpness [acum] is one of the important parameters in determining the sensory
pleasantness. It indicates a measure of the high frequency content of a signal. The
sensory pleasantness decreases with increasing the sharpness.

— A feature distinguishing the tonal quality from the noise component of sounds is
Tonality, i.e. it indicates how many tonal components are contained in a signal.
The more tonal components the sound has, the more pleasant it sounds.

— A parameter Roughness [asper] is based on the amplitude-modulation. At very
low modulation frequency up to 15Hz, the loudness changes up and down slowly
and this sensation is represented as parameter Fluctuation Strength. On the other
hand, at the modulation frequency range from 15 to 300Hz, the sensation rough-
ness is dominant. In other words, the roughness is created by the relatively quick
changes of the loudness. The parameter Impulsiveness, similar with the roughness,
also indicates the sensation of quick level changes, however, it contains aperiodic
as well as periodic modulation excitation.
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2 Data Analysis

In this chapter, the procedure for data analysis is described. At the first section, given
parameters and the number of samples in each class are introduced. After that, feature
vectors are constructed by averaging values of each parameter within a certain engine
speed range and they are normalised as a next step. Consequently, some redundant param-
eters are removed from the set of feature and the rest are grouped by means of Principal
Component Analysis (PCA). Lastly, the most discriminant subset of features is selected
and then a classifier is built by this subset, with applying Linear Discriminant Analysis
(LDA).

2.1 Data structure

The set of samples used in this work is given by AVL List GmbH. It consists of engine
sounds of 261 different passenger cars. In each sample, the engine speed [rpm] increases
gradually as function of time, which means the acceleration situation, and 29 psycho-
acoustic parameters are calculated corresponding to the engine speed. Table 1 shows the
name of the given parameters. The given data includes not only the basic parameters such
as loudness, sharpness, tonality and roughness (see section 1.3) but also some combined
parameters such as annoyance, sportiness, luxury, etc. Although information about mea-
surement process or definition of these practical parameters are not provided, it is possible
to deduce the similarity with the known parameters by PCA (see section 2.3.2).

Linear Level Roughness (AVL) Sportiness (Japan)
A-weight. Level Articulation Index DOC Power
B-weight. Level Ext. Articulation Index RE0 Power
C-weight. Level Low frequency content Powerfulness
D-weight. Level Standard Deviation Luxury

AD-weight. Level Impulsiveness (Kurtosis) Evenness
Loudness (ISO532B) Annoyance (Europe) unweighted Sharpness

Sharpness (Aures) Engine Speed Change Annoyance (Japan)
Sharpness (Zwicker) DOC Sport CKI

Tonality Sportiness (Europe)

Table 1 – 29 given parameters

The number of samples in each class is shown in table 2. The scheme of car classification
used for this work is Euro Car Segment defined by European Commission (section 1.2).
Since the data set was not collected for the purpose of this work, there is a lack of samples
in some specific classes when compared to other classes, such as A-, F- and M-segment,
which makes it difficult to generalise classifiers for these classes (see section 3.5).
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Class #Samples
A-segment 9
B-segment 44
C-segment 55
D-segment 59
E-segment 23
F-segment 12
S-segment 20
M-segment 11
J-segment 28

Table 2 – The number of samples in each class

2.2 Data pre-processing

Before implementing classifiers, it is necessary to refine the given data set in so-called
pre-processing stage. This stage consists of two parts. At first, the engine speed is seg-
mented into five ranges and each parameter, called feature in the machine-learning sense,
is averaged over each range, which eventually yields a 29-dimensional feature vector in
each range. In other words, each sample keeps five feature vectors corresponding to the
engine speed range. The engine speed range is divided as follows:

@rpmcenter = [2250, 2750, 3250, 3750, 4250],±250, (2)

where @rpmcenter indicates the centre of each rpm-range and ±250 is the width of each
range. The range division was specified so that it includes all samples without discarding
any samples, since some samples have no measurement out of the proposed rpm-range.
The second step is to normalise the feature vectors. It is required as the values of each
feature are distributed with a different statistics, e.g. different mean and variance values,
thus each distribution has to be in one normalised range. The following normalisation

zij =
xij − µj
|σ|

(3)

yields feature values zij with µj = 0 and |σ| = 1, where i is the sample index, j is the
feature index, µj is the mean, and |σ| is the average absolute deviation. |σ| was applied
to suppress the influence of outliers under the assumption that the data set has a certain
amount of outliers.
After the pre-processing, the dimension of the data is 261× 29× 5.
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(a) rpmcenter = 2250 (b) rpmcenter = 4250

Figure 3 – Dendrogram plot of 27 features; coloured groups represent groups under the
threshold 0.2

2.3 Parameter grouping

2.3.1 Removal of unnecessary features

The dimension of the feature vectors should be reduced before the actual classification by
removing unnecessary features. First, two features that are not acoustic parameters were
removed from the feature set: Standard Deviation and Engine Speed Change.
Thereafter, the correlation between the parameters represented in the form of the dendro-
gram analysed (see figure 3). Figure 3 shows only the dendrograms of 2250 and 4250
rpm-range as the behaviour of the other ranges is highly similar with that of these two
ranges. According to the correlation analysis, there are several highly correlated parame-
ter pairs. One of the two features of each pair, that is, a total of 7 features was eliminated
from the feature set:

— Linear Level
— B-weight. Level
— AD-weight. Level
— Ext. Articulation Index
— Annoyance (Europe)
— Sportiness (Japan)
— Unweighted Sharpness.

After removing the redundant features, the dimension of the data was reduced intermedi-
ately to 261× 20× 5.

2.3.2 Principal Component Analysis (PCA)

After the removal of the redundant features, parameters which contribute to the data dis-
tribution should be examined. The information of the data distribution was investigated
by Principal Component Analysis (PCA). The PCA is a linear transformation which is
described as follows:
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Y = AX, (4)

where X is the matrix of input, Y is the output data, and A is the transformation matrix.
C is the covariance matrix which is calculated from the data matrix X as follows:

C =
1

N

N∑
n=1

(xn −mx)(xn −mx)
T , (5)

where xn is the feature vector of nth sample, mx is the mean vector, and N is the number
of samples. The eigenvalues corresponding to the eigenvectors of C represent the trans-
formed variances which are equal to the information of the data distribution. The eigen-
values are sorted in ascending order and their cumulative summation is shown in Figure 4.

Figure 4 – Cumulative summation of eigenvalues of all rpm-ranges

As seen in Figure 4, the cumulative summation of the eigenvalues already reaches 0.9 at
the index of 5 in all engine speed ranges. In other words, the transformation from 20D to
5D holds almost 90% of the distribution information. Assuming that the amount of this
information is sufficient to express the degree of the dispersion of the data, only up to
the fifth principal component is considered. Interestingly, the rpm-ranges of 2250, 2750,
3250 and 3750 have a similar behaviour, where the first eigenvalue has about 65% of the
information amount, while the behaviour of the range 4250 is different from the others,
where the first eigenvalue contains less than 60%. Appendix A shows 2D-biplots of both
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data distribution and contributing parameters represented by points and arrows, respec-
tively. It contains only of 2250, 3250, and 4250 rpm-range. Due to the similarities of the
plots of 2750, 3250 and 3750 rpm-range, only the plot of 3250 rpm-range is represented.
Since the fifth component of all rpm-ranges does not represent a specific parameter con-
tribution, it was eventually excluded. According to the biplots and the dendrogram plots
(see figure 3), the features were grouped by the PCA and the correlation analysis. Due
to the different feature contributions among the rpm-ranges: [2250], [2750, 3250, 3750],
[4250], parameter grouping was carried out in three different ranges. Table 3 shows the
parameter contribution to the each component. In 2250 rpm-range, each group named as
a representative parameter contains similar parameters as follows:

— Luxury: Articulation Index, Luxury
— Loudness: A-weight. Level, C-weight. Level, D-weight. Level, Loudness (ISO532B),

Low frequency content, DOC Sport, Sportiness (Europe), DOC Power, RE0 Power,
Powerfulness, Annoyance (Japan)

— Tonality: Tonality
— Sharpness: Sharpness (Aures), Sharpness (Zwicker)
— Evenness: Evenness
— Impulsiveness: Impulsiveness,

In 3250 and 4250 rpm-range, Low frequency content is separated from the Loudness as
an independent group and in 4250 rpm range Evenness is merged to the group Luxury.
It implies that some parameters behave differently depending on the rpm-range. There
are 6 or 7 groups with regard to the rpm-range. Additionally, two extra parameters were
removed from the feature set, which do not contribute to the PCA: Roughness (AVL) and
CKI. Ultimately, the dimension of the data was reduced to 261× 18× 5.

negative positive
1.PCA Luxury Loudness
2.PCA Tonality Sharpness
3.PCA Tonality Evenness
4.PCA Evenness Impulsiveness

negative positive
1.PCA Luxury Loudness
2.PCA Tonality Sharpness
3.PCA LFC Impulsiveness
4.PCA Evenness Tonality

negative positive
1.PCA Luxury Loudness
2.PCA Sharpness LFC
3.PCA Tonality Sharpness
4.PCA LFC Impulsiveness

Table 3 – Parameter contribution; top-left corner: rpm-range = 2250, top-right corner:
3250, bottom: 4250
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2.4 Feature selection

It is necessary to select a subset of features rather than using the entire set, since the full
set can cause a potential risk of overfitting, that is, it can build an unstable classifier. Fur-
thermore, a classifier might be physically contradictory e.g. multiple physically similar
features could contribute in the opposite direction of a projection vector in LDA (more
information in section 2.5.1). In the subset of features, the parameters are sorted in as-
cending order according to their discriminant performance. Only one feature per group
is selected to prevent physically contradictory classifier formation, i.e. once a parameter
is selected in one group, the remaining parameters of that group are not selected in the
next selection. The used selection algorithm is called Sequential Forward Selection. The
algorithm starts from an empty feature subset and adds a single feature which yields the
maximum value of an objective function J in order:

x+ = argmax
x∈X−Yk

[J(Yk + x)]

Yk+1 = Yk + x+,
(6)

where Yk is the subset of features and x+ is the selected feature. The applied objective
function is the discriminant potential (DP) which is also used for LDA, later. The DP is
defined as follows:

DP =
Tr{Sb}
Tr{Sw}

, (7)

where Sb is the between-class scatter matrix, Sw the within-class scatter matrix, and
Tr{·} is the trace operator. In Eq. (8), these scatter matrices are derived:

Sb =
K∑
k=1

Lk
L
(µk − µ)(µk − µ)T

Sw =
K∑
k=1

Lk
L
Ck,

(8)

whereK is the number of classes, Lk is the number of samples of class k, L is the number
of all samples, µk is the mean vector of class k, µ is the global mean vector, and Ck is
the covariance matrix of class k (cf. definition in Eq. (5)). To simply describe the DP,
it means maximising the distance between classes while minimising the variance within
each class. Consequently, the subset includes 6 or 7 features with regard to the rpm-range
and lower-priority features such as the 6th and 7th feature, can be removed from the subset
if they do not support the classification.
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2.5 Classification

Eventually, the car classes are distinguished by the selected feature subset. Linear Dis-
criminant Analysis was applied to make a classifier. The performance of the classifier is
represented by the confusion matrix. Also, the robustness is evaluated by N-folds cross
validation.

2.5.1 Linear Discriminant Analysis (LDA)

Likewise for PCA, Linear Discriminant Analysis (LDA) is also a method used for feature
extraction. Unlike PCA, LDA additionally considers the class information to find optimal
components contributing to the class separation. The method is realised by the between-
class scatter matrix Sb and the within-class scatter matrix Sw defined in Eq. (8). These
matrices are computed in each class and summed up at the end. Consequently,

S−1w Sb (9)

is diagonalised, i.e. the eigenvectors and its eigenvalues of Eq. (9) are computed. The
eigenvector with the largest eigenvalue is equal to the first projection vector. In this man-
ner, up to K − 1 projection vectors are obtained, where K is the number of classes.
Eventually, the data is transformed by the projection vectors and the transformed data is
classified by applying to a linear classifier.

2.5.2 Confusion matrix

The performance of a classifier is evaluated by the distance-based Confusion Matrix (CM).
The distance between each sample and the mean vector of each class is calculated. There-
fore, each sample belongs to a class which yields the shortest distance to the sample.
In this way, every sample belongs to one of the classes. Then, the assigned class is com-
pared with the actual class of the sample to determine whether the classification is correct.
The number of correctly categorised samples is represented by the diagonal elements of
CM, while the misclassified samples occupy other elements in CM corresponding to the
inaccurately categorised classes. For instance, in

CM =

[
a11 a12
a21 a22

]
, (10)

a11 occupies the rate of accurate classified samples to class 1 while a12 the rate of the
misclassified samples from class 1 to class 2.
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2.5.3 Cross validation

In order to evaluate the robustness of the classifier, 4-folds Cross Validation method was
used in this work. The sample set in each class is divided into 4 segments, three of them
are used for training while the other for testing. Likewise, the training and the testing
processes are repeated four times with different training and test set combinations and
confusion matrices are calculated by the test set in each run. Furthermore, a projection
vector is also calculated in each run and 4 projection vectors are then compared to each
other to evaluate how consistent they are. The consistency of the projection vectors is
evaluated quantitatively by the projection error in (11):

ei,j = 1−
∣∣∣ wi

Twj

|wi||wj|

∣∣∣, (11)

where w is the projection vector and i, j is the index of run.
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3 Results of Classification

In this chapter, the classification results are shown including target classes, a feature sub-
set, an estimate of misclassification rate, projection error averaged by run, a confusion
matrix, and a plot of a classifier. Only one classifier is adopted in the rpm-range with
the highest discrimination performance among the five ranges. The type of used classi-
fier is "Linear" to exclude any complexity of the classifier itself and to focus on only the
performance of the selected feature subset. Before implementing the actual classifier, the
outliers in all (upper-)classes are removed to prevent the distortion of the classifier by the
outliers which lie outside of a specific range:

{xc > 3σc‖xc < 3σc},∀xc, (12)

where xc is a single sample in the (upper-)class c and σc is the standard deviation of the
class.

3.1 Classifier for all classes

First of all, a classifier to distinguish all classes was investigated:

— target classes: {A} ‖ {B} ‖ {C} ‖ {D} ‖ {E} ‖ {F} ‖ {S} ‖ {M} ‖ {J}
— engine speed range = 2250
— feature subset = {Loudness (ISO532B), Articulation Index, Sharpness (Aures),

Tonality, Impulsiveness (Kurtosis), Evenness }
— estimate of misclassification rate ≈ 66%
— projection error ≈ 0%
— classifier plot and confusion matrix in figure 5.

(a) Confusion matrix (b) Classifier plot in 2D

Figure 5 – Classifier for all classes in rpm-range = 2250
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The subset of features was selected the same in all rpm-ranges, i.e. the subset is indepen-
dent of the rpm-range. The classifier, however, did not represent a sufficient classification
performance except for the F- and S-segment. In order to seek a better performance, the
full set of 18 features was used instead of the subset:

— target classes: {A} ‖ {B} ‖ {C} ‖ {D} ‖ {E} ‖ {F} ‖ {S} ‖ {M} ‖ {J}
— engine speed range = 2250
— full set of 18 features (see Table 1)
— estimate of misclassification rate ≈ 56%
— projection error ≈ 0%
— classifier plot and confusion matrix in figure 6,

(a) Confusion matrix (b) Classifier plot in 2D

Figure 6 – Classifier for all classes with full set of 18 features in rpm-range = 2250

Although the performance was slightly improved in this case, i.e. the misclassification
rate when using the entire set is slightly lower than when using the previous subset, 66%
to 56%, the size of the entire set is three times larger than the size of the previous subset
and the performance is still poor. As a result, it is nearly impossible to distinguish all
classes by a single classifier, using the given set of features.

3.2 Economy- vs. Silent- vs. Sport-class

Since it is difficult to discriminate all classes at once, the existing classes are grouped
into upper-classes. The upper-classes are conventionally divided according to [YVFR14]:
Economy-, Silent-, and Sport-class. The Silent-class includes the E- and F-segments and
the Sport-class consists solely of the S-segment while the Economy-class includes all the
rest segments. The classifier is represented as follows:

— target classes: {A, B, C, D, M, J} ‖ {E, F} ‖ {S}
— engine speed range = 2250
— feature subset = {Loudness (ISO532B), Articulation Index, Sharpness (Aures),

Tonality}
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— estimate of misclassification rate: ≈ 24%
— projection error: ≈ 0%
— classifier plot and confusion matrix in figure 7.

(a) Confusion matrix (b) Classifier plot in 2D

Figure 7 – Classifier for economy | silent | sports in rpm-range = 2250

The classifier is highly robust independent of rpm-ranges. It also yields a satisfactory
performance, even though there are some misclassifications between the Economy-class
and the Silent-class while there is no misclassification between the Economy-class and
Sports-class and between the Silent-class and Sports-class. The selected feature subset
includes only those features that contribute to the first and second PCA, which means that
these features is sufficient for classification.

3.3 Classifier for Sport Utility Vehicle class

Figure 8 shows a boxplot of 18 features in J-segment called sport utility vehicle (SUV)
class in 2250 rpm-range. It indicates that the J-segment has a distinctive feature Sharp-
ness. Therefore, it is necessary to examine whether the feature supports to distinguish the
J-segment from other classes.
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Figure 8 – Boxplot of 18 features in J-segment in 2250 rpm-range

Considering only the segments in the Economy-class, a classifier for the J-segment was
implemented by using only Sharpness (Zwicker) in 2250 rpm-range:

— target classes: {A, B, C, D, E, M} ‖ {J}
— engine speed range = 2250
— feature subset = {Sharpness (Zwicker)}
— estimate of misclassification rate ≈ 24%
— projection error: no exists
— classifier plot and confusion matrix in figure 9.

(a) Confusion matrix (b) Classifier plot in 1D

Figure 9 – Classifier for rest | J in rpm-range = 2250, vertical axis of plot is meaningless
i.e. the samples are randomly distributed in order to be presented clearly.

It is clear that the binary classifier between the J-segment and the rest yields a single pro-
jection vector, therefore, the classifier is one dimensional. In fact, the feature Sharpness



J. Seo: Car-classes classification 21

(Zwicker) successfully discriminated the J-segment from the rest. Although at a different
rpm-ranges the feature showed slightly lower DP, the performance itself was not poor
compared to the 2250 range. One interesting observation is that the performance of the
classifier has degenerated when other features selected by the selection algorithm belong
to the subset, which means that only Sharpness (Zwicker) is helpful for classification.

3.4 Executive- vs. Luxury-class

In the previous section 3.2, the E-segment (Executive class) and F-segment (Luxury class)
were grouped into the upper-class Silent-class. To prove that the two classes are distin-
guishable, the following classifier has been constructed:

— target classes: {E} ‖ {F}
— engine speed range = 2250
— feature subset = {DOC Power, Articulation Index}
— estimate of misclassification rate ≈ 20%
— projection error ≈ 0%
— classifier plot and confusion matrix in figure 10.

(a) Confusion matrix (b) Classifier plot in 1D

Figure 10 – Classifier for E | F in rpm-range = 2250, vertical axis of plot is meaningless
i.e. the samples are randomly distributed in order to be presented clearly.

As a result, both classes were separated by a subset of features that contains only two
parameters of the first PCA, even though they have similar characteristics of the feature
distribution (see Figure 11).
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Figure 11 – Boxplot of 18 features in E- (left) and F-segment (right) in 2250 rpm-range

3.5 Small-car- vs. Family-car-class

Due to insufficient numbers of samples in A- and M-segment, it is difficult to construct a
classifier for these classes. For example, it is difficult to produce a consistent projection
vector with a small number of samples, and it is easy to show a very large misclassification
rate with only a small number of false classified samples during the test. For these reasons
it is difficult to generalise the classifier for these classes. Hence, it was abandoned to
build classifiers for A- and M-segment. Instead, a classifier has been built to discriminate
between B-segment, called Small-car-class, and an upper-class called Family-class which
contains both C- and D-segments:

— target classes: {B} ‖ {C, D}
— engine speed range = 4250
— feature subset = {Sharpness (Aures), Luxury, Low frequency content, Loudness(ISO532B)}
— estimate of misclassification rate ≈ 25%
— projection error ≈ 6%
— classifier plot and confusion matrix in figure 12.
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(a) Confusion matrix (b) Classifier plot in 1D

Figure 12 – Classifier for small-car-class | family-car-class in rpm-range = 4250, verti-
cal axis of plot is meaningless i.e. the samples are randomly distributed in order to be
presented clearly.

Although it yields a satisfactory separation performance, there are a few misclassifications
in this case. The classifier is robust independent of rpm-ranges, i.e. the selected subset as
well as the performance are quite similar in all ranges.
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4 Conclusion

This work started with a simple question: Could different car classes be classified by their
engine sounds? Although it failed to realise an ideal classifier due to the limitations of the
given data information, several interesting results were observed.

First, it was not possible to distinguish all classes at once. There are two reasons for this;
one is that the given set of parameters may not have enough information to distinguish all
classes, the other is that some of the samples and classes may have already been overlaid
and so the classification itself was impossible.

The second interesting observation is that the classifications performed in this work were
usually independent of the engine speed range. In fact, according to the PCA, the param-
eters are grouped slightly differently over the speed range, nevertheless, most classifiers
had a consistent feature subset regardless of the rpm range. Moreover, the performance
difference across all ranges was not significant.

The third interesting point is that even among classes that did not expect classification to
be successful, some classifiers performed very well, for example, the J-segment actually
contains various types of vehicles, e.g. compact, compact-luxury and luxury SUVs, which
correspond to C-, D-, and E- or F-segment, respectively, the class was separated even by
only a single feature Sharpness.

Finally, it is observed that only the parameters corresponding to the first and secont PCA
were only selected as a subset of features. In other words, the parameters corresponding
to the third PCA: Evenness and Impulsiveness (Kurtosis), did not affect classification.
This means that about 80% of the distribution information occupying the first and second
PCAs has the most impact on classification.

In conclusion, the classification of car classes by their engine sounds is somewhat pos-
sible by replacing the existing classes with the upper-classes, by using the parameters
corresponding to the first and second PCA, regardless of the divided speed range.
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5 Future Works

The samples are not perfectly balanced because the given data is originally measured for
other research purposes. For this reason, the number of samples in some classes is abso-
lutely insufficient. To construct a classifier that can be applied to all classes, each class
is required to have the balanced number of samples. Thus, if each class has a sufficient
amount of samples, it would be possible to construct a reliable classifier for all classes.

In this work, there were only 6 or 7 parameter groups, of which only four were used
for classification. Given the parameters, only partial classifications were successful, and
no classifier could be made for all classes at once. This results from the limitations of
the given set of parameters. Therefore, as part of future work, new features, such as
a pitch, musical interval, musical chord as well as energetic distribution of deterministic
and stochastic components, formants position/shift, etc., need to be added to the parameter
set.

Another thing to be done in future work is to validate the classifiers constructed in this
work through a psycho-acoustic test. This will verify that these classifiers made from data
analysis are actually useful.
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A Appendix 1: PCA-Biplot from 1. to 4. Compo-
nent

(a) 1. and 2. component (b) 1. and 3. component

(c) 1. and 4. component (d) 2. and 3. component

(e) 2. and 4. component (f) 3. and 4. component

2D-biplots from 1. to 4. component of 2250 rpm-range
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(a) 1. and 2. component (b) 1. and 3. component

(c) 1. and 4. component (d) 2. and 3. component

(e) 2. and 4. component (f) 3. and 4. component

2D-biplots from 1. to 4. component of 3250 rpm-range
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(a) 1. and 2. component (b) 1. and 3. component

(c) 1. and 4. component (d) 2. and 3. component

(e) 2. and 4. component (f) 3. and 4. component

2D-biplots from 1. to 4. component of 4250 rpm-range
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B Appendix 2: Overview of Matlab Structure
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C Appendix 3: pca_classdef.m

1 %%% Toningenieur -Projekt , Students Project
2 %%% Title : Classification of Car Classes Based on Combustion

Engine Sound
3 %%% University of Music and Performing Arts Graz , Insititue of

Electronic
4 %%% Music and Acoustics
5 %%% 1173081 , Jiwon Seo
6 %%% Supervisor : Dr. Alois Sontacchi
7 %%% Matlab -Implementation Part 1 : PCA & Class Definition
8

9 clc
10 clear all;
11 close all;
12

13 % load data set and lable
14 load('/Users/jiwonseo/Documents/MATLAB/TI_code/tables.mat')
15 load('/Users/jiwonseo/Documents/MATLAB/TI_code/class.mat')
16

17 % define parameter name with numbering
18 par_name = char(tables (1).parametername (1:31));
19 par_name = char(par_name);
20

21 parn = [1: length(par_name)]';
22 po(1:31 ,1) = '.';
23

24 par_n = [num2str(parn) po];
25 par_name = cellstr ([par_n par_name ]);
26

27 % initialisation
28 rpm_center = [2250 2750 3250 3750 4250];
29 len_rpm = length(rpm_center);
30 len_sam = length(tables);
31 len_par = length(par_name);
32

33 %% calculate averaged parameter -vectors according to engine speeds
[rpm]

34 % eliminate samples if the number of samples in a certain range is
smaller

35 % than 5.
36

37 for i = 1 : len_rpm
38 for j = 1 : len_sam
39 par = tables(j).parameter;
40 rpm_ranged = par(par(:,2) >= rpm_center(i) -250 & par(:,2)

<= rpm_center(i)+250, :);
41 size_sam(j,i) = size(rpm_ranged ,1);
42 if size_sam(j,i) <= 5
43 rpm_ranged = NaN;
44 end
45 par_m(j,:,i) = mean(rpm_ranged ,1);
46 end
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47 end
48

49 %% Normalisation
50

51 for i = 1 : len_rpm
52 for j = 1 : len_par
53

54 parmean(j,i) = nanmean(par_m(:,j,i))';
55 parstd(j,i) = nanstd(par_m(:,j,i))';
56 parmad(j,i) = mad(par_m(:,j,i))';
57 par_m_norm (:,j,i) = (par_m(:,j,i) - parmean(j,i)) ./ parmad

(j,i);
58

59 end
60 end
61

62 %% Selection of a subset of features
63 par_m_norm_29 = par_m_norm (: ,[3:16 18:19 21:31] ,:);
64 par_name_29 = par_name ([3:16 18:19 21:31]);
65 par_m_norm_20 = par_m_norm (:,[4 6 7 9 10 11 12 13 14 16 18 21 22 24

25 26 27 28 30 31],:);
66 par_name_20 = par_name ([4 6 7 9 10 11 12 13 14 16 18 21 22 24 25 26

27 28 30 31]);
67 param_18 = [4 6 7 9 10 11 12 14 16 18 21 22 24 25 26 27 28 30];
68 par_m_norm_18 = par_m_norm (:,[4 6 7 9 10 11 12 14 16 18 21 22 24 25

26 27 28 30] ,:);
69 par_name_18 = par_name ([4 6 7 9 10 11 12 14 16 18 21 22 24 25 26 27

28 30]);
70

71

72 %% Dendrogram
73

74 % for i = 1 : len_rpm
75 %
76 % C(:,:,i) = corr(par_m_norm_29 (:,:,i),'rows ','complete ');
77 %
78 % figure
79 % %imagesc(C(:,:,i)), colorbar
80 % %title(rpm_center(i));
81 % %hold on;
82 % D=1-C(:,:,i);
83 % y=squareform(D);
84 % z=linkage(y);
85 % [H, T] = dendrogram(z,'labels ',par_name_29 ,'orientation ','

left ','ColorThreshold ',0.2);
86 % title(['rpm center = ', num2str(rpm_center(i))]);
87 %
88 % end
89

90 %% PCA
91

92 % initialisation
93 rpm = 3; % select rpm -range for PCA e.g. 3 = [3250]
94 par_pca = par_m_norm_20;
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95 par_pca_name = par_name_20;
96 len_fea_pca = size(par_pca ,2);
97

98 for i = 1 : len_rpm
99 [coeff(:,:,i),score(:,:,i),latent(:,:,i)] = pca(par_pca(:,:,i))

;
100 sum_c(:,i) = cumsum(latent(:,:,i))/sum(latent(:,:,i));
101 end
102

103 % plot cumulative summation of eigenvalues
104 % figure
105 % hold on
106 % plot(sum_c (1:5 ,1) ,'-.*','LineWidth ',2)
107 % plot(sum_c (1:5 ,2) ,'--o','LineWidth ',2)
108 % plot(sum_c (1:5 ,3) ,'-.+','LineWidth ',2)
109 % plot(sum_c (1:5 ,4) ,'--*','LineWidth ',2)
110 % plot(sum_c (1:5 ,5) ,'-.x','LineWidth ',2)
111 % xticks (1:5);
112 % xlabel('Index of Eigenvalue '); ylabel('Cumulative Summation of

Eigenvalues ');
113 % title('Cumulative Summation of Eigenvalues ');
114 % legend ('2250','2750','3250','3750','4250');
115

116 % 1D plot
117 % for i = 1 : 10
118 % figure
119 % biplot ([ zeros(len_fea_pca ,1) coeff(:,i,rpm)],'varlabels ',

par_pca_name)
120 % xlabel(' ');
121 % ylabel ([ num2str(i) '. Component ']);
122 % %title(['rpm = ' num2str(rpm_center(i)) '+-250']);
123 % end
124

125 % 2D plot
126 % for i = 1 : 3
127 % for j = i+1 : 4
128 % figure
129 % parbi(:,i,j) = biplot(coeff (:,[i j],rpm), ...
130 % 'scores ',score(:,[i j],rpm),'varlabels ',par_pca_name);
131 % xlabel ([ num2str(i) '. Component ']);
132 % ylabel ([ num2str(j) '. Component ']);
133 % %legend('A','B','C','D','E','F','S','M','J');
134 % title(['rpm = ' num2str(rpm_center(rpm))]);
135 % end
136 % end
137

138 % 3D plot
139 % biplot(coeff (:,[1 2 3],rpm),'scores ',score (:,[1 2 3],rpm),'

varlabels ',par_pca_name);
140 % xlabel ('1.PCA '); ylabel ('2.PCA '); zlabel ('3.PCA ');
141 % title(['rpm = ' num2str(rpm_center(rpm))]);
142

143 %% select a feature subset for LDA
144 EU_Com_init = ['A','B','C','D','E','F','S','M','J'];
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145 par_lda = par_m_norm_18;
146 par_lda_name = par_name_18;
147 len_feature = size(par_lda ,2);
148

149 %% Classification of data according to car class (9 classes)
150 for i = 1 : len_rpm
151 for j = 1 : length(EU_Com_init)
152 cc = find(class == j);
153 eval(['par_lda_ ' num2str(EU_Com_init(j)) '(:,:,i) = par_lda

(cc ,:,i);']);
154

155 end
156 end
157

158 %% class merge
159

160 % par_lda_A = [par_lda_A; par_lda_B; par_lda_C; par_lda_D;
par_lda_M; par_lda_J ];

161 % par_lda_E = [par_lda_E; par_lda_F ];
162 % par_lda_B = [par_lda_B; par_lda_C; par_lda_D; par_lda_M;

par_lda_J ];
163 % par_lda_C = [par_lda_C; par_lda_D; par_lda_M ];
164 % par_lda_A = [par_lda_A; par_lda_B; par_lda_C; par_lda_D;

par_lda_M ];
165 % par_lda_D = [par_lda_D; par_lda_E ];
166 % par_lda_C = [par_lda_C; par_lda_D ];
167 % par_lda_B = [par_lda_B; par_lda_J ];
168 % par_lda_C = [par_lda_C; par_lda_D; par_lda_E ];
169

170 % new class definition , len_class is newly defined
171 EU_Com = ['A','B','C','D','E','F','S','M','J'];
172 len_class = length(EU_Com);
173 len_coeff = len_class - 1;
174

175

176 %% calculate the number of samples for each class
177 n_all = 0;
178 for i = 1 : len_class
179 eval(['n_' num2str(EU_Com(i)) '= size(par_lda_ ' num2str(EU_Com(

i)) '(:,:,1), 1);']);
180 n_all = n_all + eval(['n_' num2str(EU_Com(i))]);
181 end
182

183 % count the number of NaN -samples of each class
184 % for i = 1 : len_rpm
185 % for j = 1 : len_class
186 % eval(['nonnan_n_ ' num2str(EU_Com(j)) '(i)= sum(isnan(

par_lda_ ' ...
187 % num2str(EU_Com(j)) '(:,1,i)));']);
188 % end
189 % end
190

191 %% calculate mean - and variance -vectors
192 m_ff_u = zeros(1,len_feature ,len_rpm);
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193 for i = 1 : len_rpm
194 for j = 1 : len_class
195 eval(['m_ff_' num2str(EU_Com(j)) '(:,:,i)= nanmean(par_lda_

' num2str(EU_Com(j)) ...
196 '(:,:,i) ,1);']);
197 eval(['var_ff_ ' num2str(EU_Com(j)) '(:,:,i)= nanvar(

par_lda_ ' num2str(EU_Com(j)) ...
198 '(:,:,i) ,1);']);
199 eval(['m_ff_u(:,:,i) = m_ff_u(:,:,i) + m_ff_ ' num2str(

EU_Com(j)) '(:,:,i);']);
200 end
201 end
202 m_ff_u = m_ff_u / len_class;
203

204 %% eliminate deviated samples
205 for i = 1 : len_rpm
206 for j = 1 : len_feature
207 for k = 1 : len_class
208 for l = 1 : eval(['n_' num2str(EU_Com(k)) ';']);
209 if eval(['par_lda_ ' num2str(EU_Com(k)) '(l,j,i) >'

...
210 'm_ff_' num2str(EU_Com(k)) '(1,j,i) + 3*sqrt

(var_ff_ ' ...
211 num2str(EU_Com(k)) '(1,j,i)) || par_lda_ '

num2str(EU_Com(k)) ...
212 '(l,j,i) < m_ff_ ' num2str(EU_Com(k)) '(1,j,i

) - 3*sqrt(var_ff_ ' ...
213 num2str(EU_Com(k)) '(1,j,i))']);
214 eval(['par_lda_ ' num2str(EU_Com(k)) '(l,:,i) = NaN;

']);
215 end
216 end
217 end
218 end
219 end
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D Appendix 4: feature_selection.m

1 %%% Toningenieur -Projekt , Students Project
2 %%% Title : Classification of Car Classes Based on Combustion

Engine Sound
3 %%% University of Music and Performing Arts Graz , Insititue of

Electronic
4 %%% Music and Acoustics
5 %%% 1173081 , Jiwon Seo
6 %%% Supervisor : Dr. Alois Sontacchi
7 %%% Matlab -Implementation Part 2 : Feature Selection
8

9 % initialize parameter group
10 rpm = 1; % select rpm -range for FS
11 clear feat_sel_value
12

13 if rpm == 5
14 pargrp = [2 2 2 2 4 4 3 1 5 6 2 2 2 2 2 1 1 2];
15 E = 6;
16 elseif rpm == 1
17 pargrp = [2 2 2 2 4 4 3 1 2 6 2 2 2 2 2 1 5 2];
18 E = 6;
19 else
20 pargrp = [2 2 2 2 4 4 3 1 7 6 2 2 2 2 2 1 5 2];
21 E = 7;
22 end
23

24 %% calculate optimal feature subset
25 % sequential forward algorithm
26 for h = 1 : E
27

28 if h == 1
29 feat_sel = [];
30 end
31 clear d_p
32 comp_par = find(~isnan(pargrp));
33

34 for i = 1 : length(comp_par)
35 S_w_fs = zeros(h); S_b_fs = zeros(h);
36 for j = 1 : len_class
37 % calculate S_w and S_b
38 eval(['S_w' num2str(EU_Com(j)) '_fs = n_' num2str(

EU_Com(j)) ...
39 '/n_all * nancov(par_lda_ ' num2str(EU_Com(j)) ...
40 '(:,[ feat_sel comp_par(i)],rpm));']);
41 S_w_fs = S_w_fs + eval(['S_w' num2str(EU_Com(j)) '_fs;'

]);
42

43 eval(['S_b' num2str(EU_Com(j)) '_fs= n_' num2str(EU_Com
(j)) '/n_all * transpose(m_ff_' ...

44 num2str(EU_Com(j)) '(1,[ feat_sel comp_par(i)],rpm) '
...

45 '- m_ff_u (1,[ feat_sel comp_par(i)],rpm))' ...
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46 '* (m_ff_' num2str(EU_Com(j)) '(1,[ feat_sel comp_par(i)
],rpm)' ...

47 ' - m_ff_u (1,[ feat_sel comp_par(i)],rpm));']);
48 S_b_fs = S_b_fs + eval(['S_b' num2str(EU_Com(j)) '_fs;'

]);
49 end
50 d_p(i) = sum(diag(S_b_fs)) / sum(diag(S_w_fs)); %

discriminant potential
51 end
52

53 [max_param , max_param_index] = max(d_p);
54 feat_sel_value(h) = max_param;
55 feat_sel(h) = comp_par(max_param_index);
56

57 subt_pargrp = (pargrp(feat_sel(h)) == pargrp);
58 for i = 1 : length(pargrp)
59 if subt_pargrp(i)
60 pargrp(i) = NaN;
61 end
62 end
63

64 end
65

66 % parameter name and dp -value of selected subset
67 par_lda_name(feat_sel)'
68 feat_sel_value
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E Appendix 5: paramsel_for_lda.m

1 %%% Toningenieur -Projekt , Students Project
2 %%% Title : Classification of Car Classes Based on Combustion

Engine Sound
3 %%% University of Music and Performing Arts Graz , Insititue of

Electronic
4 %%% Music and Acoustics
5 %%% 1173081 , Jiwon Seo
6 %%% Supervisor : Dr. Alois Sontacchi
7 %%% Matlab -Implementation Part 3 : Parameter Selection for LDA
8

9 %% Selection of a subset of features
10 subset = [10 21 14 12];
11 par_m_norm_subset = par_m_norm (:,subset ,:);
12 par_name_subset = par_name(subset);
13 for i = 1 : length(subset)
14 subset_ind(i) = find(param_18 == subset(i));
15 end
16

17 %% select a feature subset for LDA
18 par_lda = par_m_norm_subset;
19 par_lda_name = par_name_subset;
20

21 len_feature = size(par_lda ,2);
22 if len_feature < len_class - 1
23 len_coeff = len_feature;
24 end
25 if len_class == 2 && len_feature == 2
26 len_coeff = 2;
27 end
28

29 %% only selected parameters for the selected classes
30 for i = 1 : len_class
31 eval(['par_lda_ ' num2str(EU_Com(i)) '= par_lda_ ' num2str(EU_Com

(i)) '(:,subset_ind ,:);']);
32 end
33

34 par_lda_merged = [];
35 class_merged = [];
36 for i = 1 : length(EU_Com)
37 par_lda_merged = eval(['[par_lda_merged; par_lda_ ' EU_Com(i) '

];']);
38 eval(['class_merged = [class_merged; repmat(EU_Com(i),n_'

EU_Com(i) ' ,1)];']);
39 end
40 class_merged = cellstr(class_merged);
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F Appendix 6: classify_with_lda.m

Since classify_with_lda_1d.m, classify_without_lda.m, and classify_without_lda_1d.m
are slightly modified version of the routine classify_with_lda.m. Therefore, these three
routines are omitted due to the simplification.

1 %%% Toningenieur -Projekt , Students Project
2 %%% Title : Classification of Car Classes Based on Combustion

Engine Sound
3 %%% University of Music and Performing Arts Graz , Insititue of

Electronic
4 %%% Music and Acoustics
5 %%% 1173081 , Jiwon Seo
6 %%% Supervisor : Dr. Alois Sontacchi
7 %%% Matlab -Implementation Part 4 : Classification & Evaluation
8

9 clc
10 close all
11

12 %% divide samples in each class by 4 groups for 4-fold cross
validation

13 for j = 1 : len_class
14 n_sam = eval(['n_' num2str(EU_Com(j)) ';']);
15 eval(['par_lda_cv_ ' num2str(EU_Com(j)) ' = par_lda_ ' num2str(

EU_Com(j)) '(:,:,rpm);']);
16 eval(['par_lda_cv_ ' num2str(EU_Com(j)) '= par_lda_cv_ ' num2str(

EU_Com(j)) ...
17 '(randperm(n_sam)'' ,:);']);
18

19 nseg = floor(n_sam /4);
20 if n_sam == 4*nseg
21 bbb = [nseg nseg nseg nseg];
22 elseif n_sam == 4*nseg+1
23 bbb = [nseg+1 nseg nseg nseg];
24 elseif n_sam == 4*nseg+2
25 bbb = [nseg+1 nseg+1 nseg nseg];
26 elseif n_sam == 4*nseg+3
27 bbb = [nseg+1 nseg+1 nseg+1 nseg];
28 end
29

30 b1_c = [0 cumsum(bbb)];
31

32 for i = 1 : 4
33 eval(['par_lda_ ' num2str(EU_Com(j)) num2str(i) '= par_lda_cv_ '

num2str(EU_Com(j)) ...
34 '(b1_c(i)+1: b1_c(i+1) ,:);']);
35 end
36

37 end
38

39 for i = 1 : len_class
40 eval(['par_lda_ ' num2str(EU_Com(i)) '_train1 = [par_lda_ '

num2str(EU_Com(i)) ...
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41 '2 ; par_lda_ ' num2str(EU_Com(i)) '3 ; par_lda_ ' num2str(EU_Com
(i)) '4];']);

42 eval(['par_lda_ ' num2str(EU_Com(i)) '_train2 = [par_lda_ '
num2str(EU_Com(i)) ...

43 '1 ; par_lda_ ' num2str(EU_Com(i)) '3 ; par_lda_ ' num2str(EU_Com
(i)) '4];']);

44 eval(['par_lda_ ' num2str(EU_Com(i)) '_train3 = [par_lda_ '
num2str(EU_Com(i)) ...

45 '1 ; par_lda_ ' num2str(EU_Com(i)) '2 ; par_lda_ ' num2str(EU_Com
(i)) '4];']);

46 eval(['par_lda_ ' num2str(EU_Com(i)) '_train4 = [par_lda_ '
num2str(EU_Com(i)) ...

47 '1 ; par_lda_ ' num2str(EU_Com(i)) '2 ; par_lda_ ' num2str(EU_Com
(i)) '3];']);

48 end
49

50 %% LDA for 4 training/test sets
51

52 for t = 1 : 4
53

54 % Clear previous training/test set
55 for i = 1 : len_class
56 eval(['clear par_lda_train_ ' num2str(EU_Com(i))]);
57 eval(['clear par_lda_test_ ' num2str(EU_Com(i))]);
58 end
59

60 % define training/test set
61 for i = 1 : len_class
62 eval(['par_lda_train_ ' num2str(EU_Com(i)) '= par_lda_ ' num2str(

EU_Com(i)) ...
63 '_train ' num2str(t) ';']);
64 eval(['par_lda_test_ ' num2str(EU_Com(i)) '= par_lda_ ' num2str(

EU_Com(i)) num2str(t) ';']);
65 end
66

67 % Calculate mean -vectors
68 for i = 1 : len_class
69 eval(['m_' num2str(EU_Com(i)) '= nanmean(par_lda_train_ '

num2str(EU_Com(i)) ...
70 ' ,1);']);
71 end
72

73 % Calculate global mean vector
74 m_u = 0;
75 for i = 1 : len_class
76 m_u = eval(['m_' num2str(EU_Com(i)) '+ m_u;']);
77 end
78 m_u = m_u / len_class;
79

80 % Calculate S_w and S_b
81 S_w = zeros(len_feature , len_feature);
82 S_b = zeros(len_feature , len_feature);
83

84 for j = 1 : len_class
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85 eval(['S_w' num2str(EU_Com(j)) ' = n_' num2str(EU_Com(j)) ...
86 '/n_all * nancov(par_lda_train_ ' num2str(EU_Com(j)) ');']);
87 S_w = S_w + eval(['S_w' num2str(EU_Com(j)) '']);
88

89 eval(['S_b = S_b + n_' num2str(EU_Com(j)) '/n_all * transpose(
m_' ...

90 num2str(EU_Com(j)) ' - m_u) * (m_' num2str(EU_Com(j)) ...
91 ' - m_u);']);
92 end
93

94 % Calculate projection vectors
95 [EV , E] = eig(S_w \ S_b);
96 lambda = abs(diag(E));
97 [~,indx] = sort(-abs(diag(E)));
98 for j = 1 : len_coeff
99 eval(['w_' num2str(j) '(:,t) = EV(:,indx(j,:));' ]);

100 end
101

102 % Calculate transformed vectors for test
103 for j = 1 : len_class
104 for k = 1 : len_coeff
105 eval(['y_test_ ' num2str(EU_Com(j)) num2str(k) num2str(t) '=

transpose(w_' ...
106 num2str(k) '(:,t)) * transpose(par_lda_test_ ' ...
107 num2str(EU_Com(j)) ');']);
108 end
109 end
110

111 for j = 1 : len_class
112 for k = 1 : len_coeff
113 eval(['y_test_ ' num2str(EU_Com(j)) num2str(k) num2str(t

) '= transpose(y_test_ ' ...
114 num2str(EU_Com(j)) num2str(k) num2str(t) ');']);
115 end
116 end
117

118 % Calculate transformed vectors for training
119 for j = 1 : len_class
120 for k = 1 : len_coeff
121 eval(['y_train_ ' num2str(EU_Com(j)) num2str(k) num2str(t) '

= transpose(w_' ...
122 num2str(k) '(:,t)) * transpose(par_lda_train_ ' ...
123 num2str(EU_Com(j)) ');']);
124 end
125 end
126

127 for j = 1 : len_class
128 for k = 1 : len_coeff
129 eval(['y_train_ ' num2str(EU_Com(j)) num2str(k) num2str(

t) '= transpose(y_train_ ' ...
130 num2str(EU_Com(j)) num2str(k) num2str(t) ');']);
131 end
132 end
133
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134

135 %% Confusion Matrix
136

137 for j = 1 : len_class
138 W = [w_1(:,t) w_2(:,t)]; %%%%%%%%
139 eval(['tp_' num2str(EU_Com(j)) ' = m_' num2str(EU_Com(j)) ' * W

;']);
140 end
141

142 for j = 1 : len_class
143 eval(['td_' num2str(EU_Com(j)) ' = par_lda_ ' num2str(EU_Com(j))

num2str(t) ...
144 ' * W;']);
145 end
146

147 for i = 1 : len_class
148 eval(['clear D' num2str(EU_Com(i))]);
149 end
150

151 for j = 1 : len_class
152 for k = 1 : len_class
153 eval(['D' num2str(EU_Com(j)) '(k,:) = sum((td_' num2str(

EU_Com(j)) ...
154 '- tp_' num2str(EU_Com(k)) ').^2,2);']);
155 end
156 end
157

158 for i = 1 : len_class
159 eval(['clear cD' num2str(EU_Com(i))]);
160 end
161

162 for j = 1 : len_class
163 eval(['[~,cD' num2str(EU_Com(j)) ']=min(D' num2str(EU_Com(j)) '

,[],1);']);
164 end
165

166 for i = 1 : len_class
167 for j = 1 : len_class
168 eval(['CM(i,j,t) = length(find(cD' num2str(EU_Com(i)) ...
169 '==j)) / length(cD' num2str(EU_Com(i)) ')*100;']);
170 eval(['CM_c(i,j,t) = length(cD' num2str(EU_Com(i)) ...
171 '(cD' num2str(EU_Com(i)) '==j));']);
172 end
173 end
174

175

176 %% Classify
177

178 for i = 1 : len_class
179 for j = 1 : len_coeff
180 eval(['nonnan_1 = y_train_ ' num2str(EU_Com(i)) num2str(j)

num2str(t) ';']);
181 eval(['nonnan_1(isnan(nonnan_1)) = [];']);
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182 eval(['nony_train_ ' num2str(EU_Com(i)) num2str(j) '=
nonnan_1;']);

183 eval(['nonnan_2 = y_test_ ' num2str(EU_Com(i)) num2str(j)
num2str(t) ';']);

184 eval(['nonnan_2(isnan(nonnan_2)) = [];']);
185 eval(['nony_test_ ' num2str(EU_Com(i)) num2str(j) '=

nonnan_2;']);
186 end
187 end
188

189 % for i = 1 : len_class
190 % eval(['num_nan(:,i) = length(y_train_ ' num2str(EU_Com(i)) ...
191 % num2str () '1) - length(nony_ ' num2str(EU_Com(i)) '1);']);
192 % end
193

194 % define train
195 for i = 1 : len_class
196 eval(['len_non_nan_train(i) = length(nony_train_ ' num2str(

EU_Com(i)) '1);']);
197 end
198

199 clear group
200 m = 0;
201 for i = 1 : len_class
202 for j = 1 : len_non_nan_train(i)
203 m = m+1;
204 group(m) = num2str(EU_Com(i));
205 end
206 end
207

208 group = group ';
209

210 clear aa
211 clear bb
212

213 l = 0;
214 for i = 1 : len_class
215 eval(['aa(l+1: len_non_nan_train(i)+l,1) = (nony_train_ ' num2str

(EU_Com(i)) '1);']);
216 eval(['bb(l+1: len_non_nan_train(i)+l,1) = (nony_train_ ' num2str

(EU_Com(i)) '2);']);
217 l = l + len_non_nan_train(i);
218 end
219

220 % define test
221 for i = 1 : len_class
222 eval(['len_non_nan_test(i) = length(nony_test_ ' num2str(EU_Com(

i)) '1);']);
223 end
224

225 l = 0;
226 for i = 1 : len_class
227 eval(['aa_t(l+1: len_non_nan_test(i)+l,1) = (nony_test_ ' num2str

(EU_Com(i)) '1);']);
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228 eval(['bb_t(l+1: len_non_nan_test(i)+l,1) = (nony_test_ ' num2str
(EU_Com(i)) '2);']);

229 l = l + len_non_nan_test(i);
230 end
231

232 [X,Y] = meshgrid(linspace(min(aa_t),max(aa_t)),linspace(min(bb_t),
max(bb_t)));

233 X = X(:); Y = Y(:);
234

235 [C,err(:,t),P,logp ,coeff] = classify ([X Y],[aa bb],group ,'Linear ');
236

237

238 %%%%%%% SCATTER PLOT OF ONLY CHOSEN CLASSES %%%%%%%
239

240 % AFS
241 % figure
242 % hold on
243 % scatter(nony_test_F1 ,nony_test_F2 ,75,'k','filled ');
244 % %scatter(nony_test_F1 ,nony_test_F2 ,75,'r','filled ');
245 % scatter(nony_test_S1 ,nony_test_S2 ,75,'b','filled ');
246 % scatter(nony_test_A1 ,nony_test_A2 ,50,'r');
247 % gscatter(X,Y,C,'kby ','.',1,'off ');
248 % legend('F-segment ','S-segment ','Rest segments ');
249 % xlabel ('1.LDA '); ylabel ('2.LDA ');
250 % title('points from test -set , boundaries from training set ');
251

252 % AJ
253 % figure
254 % hold on
255 % scatter(nony_test_B1 ,nony_test_B2 ,50,'k','filled ');
256 % scatter(nony_test_C1 ,nony_test_C2 ,50,'m','filled ');
257 % scatter(nony_test_D1 ,nony_test_D2 ,50,'y','filled ');
258 % %scatter(nony_test_J1 ,nony_test_E2 ,80,'r','filled ');
259 % gscatter(X,Y,C,'kbr ','.',1,'off ');
260 % legend('B-segment ','C-segment ','D-segment ');
261 % xlabel ('1.LDA '); ylabel ('2.LDA ');
262 % title('points from test -set , boundaries from training set ');
263

264 % AESJ
265 % figure
266 % hold on
267 % scatter(nony_test_A1 ,nony_test_A2 ,50,'g','filled ');
268 % %scatter(nony_test_B1 ,nony_test_B2 ,50,'g','filled ');
269 % %scatter(nony_test_C1 ,nony_test_C2 ,50,'b','filled ');
270 % %scatter(nony_test_D1 ,nony_test_D2 ,50,'m','filled ');
271 % %scatter(nony_test_E1 ,nony_test_E2 ,75,'y','filled ');
272 % %scatter(nony_test_F1 ,nony_test_F2 ,75,'k','filled ');
273 % scatter(nony_test_S1 ,nony_test_S2 ,75,'r','filled ');
274 % %scatter(nony_test_M1 ,nony_test_M2 ,50,'g');
275 % %scatter(nony_test_J1 ,nony_test_J2 ,75,'r','filled ');
276 % gscatter(X,Y,C,'kbyg ','.',1,'off ');
277 % legend('A','S');
278 % xlabel ('1.LDA '); ylabel ('2.LDA ');
279 % title('points from test -set , boundaries from training set ');
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280

281 % all classes
282 % figure
283 % hold on
284 % scatter(nony_test_A1 ,nony_test_A2 ,75,'m');
285 % scatter(nony_test_B1 ,nony_test_B2 ,50,'m','filled ');
286 % scatter(nony_test_C1 ,nony_test_C2 ,50,'k','filled ');
287 % scatter(nony_test_D1 ,nony_test_D2 ,50,'r','filled ');
288 % scatter(nony_test_E1 ,nony_test_E2 ,50,'g','filled ');
289 % scatter(nony_test_F1 ,nony_test_F2 ,50,'b','filled ');
290 % scatter(nony_test_S1 ,nony_test_S2 ,75,'b');
291 % scatter(nony_test_M1 ,nony_test_M2 ,75,'k');
292 % scatter(nony_test_J1 ,nony_test_J2 ,75,'r');
293 % gscatter(X,Y,C,'crgbmky ','.',1,'off ');
294 % legend('A-segment ','B-segment ','C-segment ','D-segment ', ...
295 % 'E-segment ','F-segment ','S-segment ','M-segment ','J-segment ')

;
296 % xlabel ('1.LDA '); ylabel ('2.LDA ');
297 % title('points from test -set , boundaries from training set ');]
298

299 % Economy | Slient | Sport
300 % figure
301 % hold on
302 % scatter(nony_test_A1 ,nony_test_A2 ,75,'r');
303 % scatter(nony_test_E1 ,nony_test_E2 ,75,'g');
304 % scatter(nony_test_S1 ,nony_test_S2 ,75,'b');
305 % gscatter(X,Y,C,'crgbmky ','.',1,'off ');
306 % legend('Economy (A,B,C,D,M,J)','Silent (E,F)','Sport (S)');
307 % xlabel ('1.LDA '); ylabel ('2.LDA ');
308 % title('points from test -set , boundaries from training set ');
309

310 end
311

312 %% calculate projection error between 4 training processes
313 m = 1;
314 for i = 1 : 3
315 for j = i+1 : 4
316 err_w(m,1) = 1 - abs(w_1(:,i).' * w_1(:,j) / (abs(w_1(:,i))

.' * abs(w_1(:,j))));
317 err_w(m,2) = 1 - abs(w_2(:,i).' * w_2(:,j) / (abs(w_2(:,i))

.' * abs(w_2(:,j))));
318 %err_w(m,3) = 1 - abs(w_3(:,i).' * w_3(:,j) / (abs(w_3(:,i)

).' * abs(w_3(:,j))));
319 m = m+1;
320 end
321 end
322

323 % figure
324 % imagesc(err_w)
325 % colorbar
326 % xticks (1:3);
327 % xticklabels ({'w_1 ', 'w_2 ', 'w_3 '});
328 % xlabel('projection vectors ');
329 % yticks (1:6);
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330 % yticklabels ({12, 13, 14, 23, 24, 34});
331 % ylabel('between two folds ');
332 % title('projection vector errors between two folds ');
333

334 %%
335

336 [CM_c sum(CM_c ,2)]
337 round(mean(CM ,3))
338 err
339 err_w '
340 %w_1
341 %w_2
342 par_lda_name


