

DIPLOMARBEIT

Kugelmikrofonarray zur Abstrahlungsvermessung von Musikinstrumenten

Fabian Hohl

Graz, November 2009

Beurteiler: O.Univ.Prof. Mag.art. DI Dr.techn. Robert Höldrich Betreuer: Dipl.-Ing. Franz Zotter

IEM Institut für Elektronische Musik und Akustik Universität für Musik und darstellende Kunst Graz, Austria

Technische Universität Graz, Austria

meinen Eltern gewidmet

Abstract

Usually a single microphone is regarded sufficient to record the sound of a musical instrument. However, its location has a crucial influence on the timbre due to the radiation characteristics of the instrument. Conversely, this thesis considers an arrangement of microphones capturing the radiated sound in a complete set of surrounding directions, simultaneously.

Therefore a measurement environment is planned and constructed to position the microphones around the musical instrument. For the microphone placement, a spherical arrangement of sampling points is considered, in the centre of which a musician shall actually be able to play an instrument. To find the most suitable microphone layout for the measurement purpose, a sampling strategy is evaluated to capture the radiation of the instrument evenly.

An interpolation method allows to calculate continuous radiation patterns, which can be displayed more easily, graphically. The hereby enabled sound-radiation analyses are performed on different musical instruments. Woodwinds, brass instruments and strings are compared to show differences between groups of instruments.

Eventually, the analysis provides the basis for a survey on the radiation patterns of partial tones at the same frequency, but associated to different fundamental tones. Simplified to a scalar number, the correlation coefficient of these radiation patterns are investigated to observe their similarity.

Kurzfassung

Ein einzelnes Mikrofon wird in der Regel als ausreichend betrachtet, um den Klang eines Musikinstrumentes aufzunehmen. Aufgrund der Abstrahlcharakteristik des Instrumentes hat die Aufnahmeposition einen wesentlichen Einfluss auf die Klangfarbe der entstehenden Aufnahme.

In dieser Arbeit wird eine Anordnung von Mikrofonen vorgeschlagen, die gleichzeitig das gesamte Schallfeld um ein Instrument aufzeichnet. Zur Aufnahme der Mikrofone wird eine kugelförmige Konstruktion geplant und gebaut, in deren Innern ein Instrument gespielt wird. Um die bestmögliche Anordnung der Mikrofone zu finden, wird eine Samplingstrategie evaluiert, mit der die Abstrahlung des Instrumentes gleichmäßig und vollständig erfasst werden kann. Dadurch werden Interpolationsmethoden möglich, mit denen die örtlich diskreten Messwerte in kontinuierliche Abstrahlungsmuster umgerechnet und grafisch dargestellt werden können.

Mit den neu geschaffenen Möglichkeiten werden Abstrahlungsanalysen an verschiedenen Instrumenten durchgeführt. Um Unterschiede von verschiedenen Instrumenten aufzuzeigen, werden Klangbeispiele von Holzbläsern, Blechbläsern und Streichern analysiert.

Von besonderem Interesse sind Teiltöne gleicher Frequenz, die aber von unterschiedlichen Grundtönen stammen. Es wird untersucht, wie stark die Abstrahlungsmuster dieser Teiltöne korrelieren.

Dank

Mit vorliegender Diplomarbeit endet eine intensive Zeit. Während des Studiums und im Speziellen während der Entstehungszeit dieser Arbeit durfte ich von vielen Menschen Hilfe und Unterstützung verschiedenster Art in Anspruch nehmen.

Besonderen Dank gebührt:

Franz Zotter für die umsorgende Betreuung, seine motivierenden Ratschläge und für die vielen fachkundigen und blumigen Erklärungen.

Alois Sontacchi für sein Vertrauen in das Projekt.

Herwig Kamnig für die CAD Zeichnungen.

Daniel Deboy für seine Hilfe mit den Absorbern und den Aufnahmen.

Den Musikern für die Aufnahmen: Siegmar Brecher, Sascha Hois, Juliane Kollmann, Silvio Rether und Magdalena Rust

Firma Sotler für die einwandfreie Fertigung der Komponenten des Messaufbaus.

Meinen Freunden Mario, Schröcki, Peter und Tina für die gemeinsame Studienzeit.

Meiner Freundin Elisabeth, die mich ermunterte und immer für mich da ist.

Meinen Eltern Elsi und Hermann für ihre Unterstützung. Ihr habt immer alle meine Ideen gutgeheißen und sie sowohl emotional als auch finanziell mitgetragen. Danke!

Inhaltsverzeichnis

A	Abstract iii										
1	Einle	Einleitung									
2	The	Theorie									
	2.1	Kugelflächenfunktionen	2								
	2.2	Samplingstrategie	4								
		2.2.1 Zerlegbarkeit in Kugelharmonische	4								
		2.2.2 Konditionszahl	5								
	2.3	Anzahl Samplingpunkte	5								
3	Dok	Dokumentation									
	3.1	Messaufbau	6								
		3.1.1 Geometrische Struktur	6								
		3.1.2 Anforderungen an den Messaufbau	6								
		3.1.3 Diskutierte Konstruktionen	8								
	3.2	Modell	10								
	3.3	Mikrofonkugel	11								
	3.4	Eckelement	13								
	3.5	Verbindung	15								
	3.6	Aufhängung	17								
	3.7	Verkabelung	18								
	3.8	Gitterpodest	18								
	3.9	Raumlage	19								
		3.9.1 Akustische Messung	19								
		3.9.2 Manuelle Messung	20								
		3.9.3 Drehung der Messanordnung	21								
	3.10	Justierung	21								
	3.11	Kammfilter	22								
		3.11.1 Schaumstoffabsorber \ldots	22								
		3.11.2 Übertragungsfunktionen der Absorber	23								

4	Auf	nahmen 27
	4.1	Aufnahme Blechblasinstrumente
		4.1.1 Aufnahme Cornet
		4.1.2 Aufnahme Trompete
		4.1.3 Aufnahme Posaune
	4.2	Aufnahme Holzblasinstrumente
		4.2.1 Aufnahme Klarinetten
		4.2.2 Aufnahme Saxofone
		4.2.3 Aufnahme Bassblockflöte
	4.3	Aufnahme Streichinstrument
5	Ana	lyse 35
	5.1	Frequenzspektrum aus vier Richtungen
	5.2	Teiltöne im Frequenzbereich
	5.3	Räumliche Darstellung von Abstrahlungsmustern
		5.3.1 Räumliche Darstellung eines Grundtones
		5.3.2 Räumliche Darstellung von Teiltönen
	5.4	Teiltöne gleicher Frequenz
		5.4.1 Teiltonreihen $\ldots \ldots 43$
		5.4.2 Zugeordnete Teiltöne
		5.4.3 Tabelle von Teiltönen mit gleicher Frequenz
		5.4.4 Korrelation zweier Teiltöne
		5.4.5 Korrelationskoeffizient
		5.4.6 Korrelationskoeffizienten von Abstrahlungsmustern 49
	5.5	Korrelierende Abstrahlungsmuster
		5.5.1 Korrelierende Abstrahlungsmuster frequenzsortiert $\ldots 50$
		5.5.2 Korrelierende Abstrahlungsmuster teiltonsortiert
	5.6	Analyse und Diskussion von Abstrahlungsmustern
		5.6.1 Korrelationsplots Cornet
		5.6.2 Korrelationsplots Posaune
		5.6.3 Korrelationsplots Trompete
		5.6.4 Korrelationsplots Klarinette
		5.6.5 Korrelationsplots Altsaxofon
		5.6.6 Korrelationsplots Bassklarinette
		5.6.7 Korrelationsplots Bassblockflöte
		5.6.8 Korrelationsplots Violoncello
6	Kon	klusion und Ausblick 68
	6.1	Rückblick
	6.2	Ausblick

Literaturverzeichnis

Α	Anh	ang		73
	A.1	Abstra	ahlungsmuster für verschiedene Instrumente	73
	A.2	Korrel	ationsplots aller aufgenommenen Instrumente	75
		A.2.1	Korrelationsplots Cornet	76
		A.2.2	Korrelationsplots Trompete	80
		A.2.3	Korrelationsplots Posaune	84
		A.2.4	Korrelationsplots Klarinette in B	88
		A.2.5	Korrelationsplots Bassklarinette	92
		A.2.6	Korrelationsplots Altsaxofon	96
		A.2.7	Korrelationsplots Tenorsaxofon	100
		A.2.8	Korrelationsplots Bassblockflöte	104
		A.2.9	Korrelationsplots Violoncello	108
	A.3	Tabell	e der Stangenlängen	112
	A.4	Zeichn	ungen	117
		A.4.1	Baugruppe	117
		A.4.2	Sternelement	117
		A.4.3	Halbkugelmutter	117
		A.4.4	Klemmung	117
		A.4.5	Muffe	117

1. Einleitung

Ein Konzertbesucher nimmt den vom Orchester erzeugten Gesamtklang im Raum wahr. Es ist für ihn sogar möglich, sich auf ein einzelnes Instrument zu konzentrieren und es aus dem Orchesterklang herauszuhören. Eine genauere Beschreibung seines bevorzugten Instrumentes bleibt ihm jedoch vorenthalten, da er an seinem Sitzplatz nur die akustische Abstrahlung des ganzen Orchesters mit seinen Raumreflexionen hört.

Wäre er als einziger Zuhörer im Konzertsaal, so könnte er sich durchaus die Freiheit nehmen, sich im Raum zu bewegen um Klangunterschiede, abhängig von seiner Hörpositition, auszumachen. Ließe man nun auch noch sein bevorzugtes Instrument ganz alleine auf der Bühne spielen, so könnte er sich rund um den Musiker und das Instrument herum bewegen. Damit würde er einen momentanen räumlichen Eindruck der Klangabstrahlung des Instrumentes erhalten.

Ohne technische Hilfsmittel ist es für den Musikliebhaber nicht möglich, die Gesamtabstrahlung eines Instrumentes ohne seine Raumreflexionen zu ermitteln, weil er sich zu einem Zeitpunkt nur an einem Ort im Raum befinden kann. Da das Instrument aber gleichzeitig in verschiedene Richtungen abstrahlt, ist es von Interesse, dessen Gesamtklang ohne Rauminformation zu erfassen.

In dieser Arbeit wird eine Möglichkeit vorgestellt, Abstrahlungsvermessungen an Musikinstrumenten durchzuführen. Die Diplomarbeit kann als Weiterentwicklung der vorangegangenen Projektarbeit [Hoh08] betrachtet werden.

Es wird ein Messaufbau in Form eines Kugelmikrofonarrays entwickelt, der entsprechende Abstrahlungsvermessungen an akustischen Instrumenten ermöglicht. Der Gesamtklang kann damit rund um das Instrument erfasst werden.

Die gewonnenen Messdaten werden ausgewertet, um Abstrahlungsmuster mathematisch darstellen zu können. Aus visualisierten Messdaten können Abstrahlungseigenschaften von Instrumenten erkannt werden.

2. Theorie

Vorgängig zur Planung des Mikrofonarrays standen mathematische Überlegungen, aufgrund deren Basis die Planung und Realisierung der Messeinrichtung erfolgte und durch die eine Auswertung der Messergebnisse ermöglicht wird.

Um zum Ziel einer grafischen Darstellung von Klängen und deren Abstrahlungsmuster zu gelangen, werden nachfolgend erläuterte Zusammenhänge benötigt. Es erschließt sich aus der Literatur [Mor06, AW02, LDGD04, ME02, Reu08] zu Schallfeldzerlegungen im Kugelkoordinatensystem, dass eine Zerlegung in Kugelharmonische, *Spherical Harmonics*, sinnvoll ist. Dieses Interpolationsverfahren bietet die Möglichkeit, anhand der zerlegten diskreten Messwerte, jeden beliebigen Punkt auf der Kugel zwischen den eigentlichen Samplingpunkten definieren zu können. Über ein feinmaschiges Netz berechneter Interpolationspunkte können wolkenartige Abstrahlungsmuster grafisch dargestellt werden. Die Zerlegung in Kugelharmonische ist ein Interpolationsverfahren mit wohldefinierter Auflösung auf der Kugel.

2.1. Kugelflächenfunktionen

Um eine Analyse eines Schallfeldes durchzuführen, wird die geometrische Anordnung der Mikrofone, das Mikrofonarray, in die Kugelbasisfunktionen zerlegt. Dies wird mittels einer *diskreten Transformation in den Bereich der Kugelharmonischen* durchgeführt. Als Referenz zu Kugelflächenfunktionen kann [Wil99, Wei09] herangezogen werden. Diese Zerlegung führt zu einer holografischen Beschreibung des gesamten abstrahlenden Schallfeldes.

Die nachfolgende mathematische Nomenklatur wird von Franz Zotter [Zot08] übernommen.

Mit einer Anzahl von Mikrofonen, positioniert auf einer Kugeloberfläche, wird der diskrete Schalldruck rund um eine Schallquelle gemessen. Dadurch ergibt sich eine Reihe Samples \boldsymbol{g} diskreter Schalldrücke, die vom Radius r, und den Winkeln φ und ϑ abhängig sind.

Die sphärischen Winkel und der Radius werden zusammengefasst als $\boldsymbol{\theta}$ bezeichnet.

Eine Folge der Kugelharmonischen der Ordnung N beschreibt winkelabhängige, bandlimitierte Funktionen $g(\boldsymbol{\theta})$ auf der kontinuierlichen Kugeloberfläche.

Die sphärischen Harmonischen $Y_n^m(\boldsymbol{\theta})$ der Ordnung $n \leq N$ können als Vektor $\boldsymbol{y}_N(\boldsymbol{\theta})$ der Dimension $(N+1)^2 \times 1$ beschrieben werden.

Das innere Produkt aus $\boldsymbol{y}_{\mathrm{N}}(\boldsymbol{\theta})$ und dem Expansionskoeffizienten $\boldsymbol{\gamma}_{\mathrm{N}}$ ergibt dann die *spherical harmonics series*

$$g(\boldsymbol{\theta}) = \boldsymbol{y}_{\mathrm{N}}(\boldsymbol{\theta})^{\mathrm{T}} \boldsymbol{\gamma}_{\mathrm{N}}$$

mit

$$\boldsymbol{y}_{\mathrm{N}}(\boldsymbol{\theta})^{\mathrm{T}} = \left[Y_{0}^{0}(\boldsymbol{\theta}), Y_{1}^{-1}(\boldsymbol{\theta}), Y_{1}^{0}(\boldsymbol{\theta}), Y_{1}^{1}(\boldsymbol{\theta}), \dots, Y_{N}^{N}(\boldsymbol{\theta})\right]$$

Der Koeffizientenvektor $\gamma_{\rm N}$ wird nun genutzt, um mit der diskreten Folge der Kugelharmonischen die diskreten Samples $\{g(\boldsymbol{\theta}_l)\}$ darzustellen.

Schreibt man nun für alle Abtastpunkte L die Vektoren der diskretisierten Kugelflächenfunktionen in eine $L \times (N + 1)^2$ Matrix \boldsymbol{Y}_N , führt die *diskrete Folge der Kugelharmonischen* zu den winkelabhängigen Samples \boldsymbol{g}

$$oldsymbol{g} = oldsymbol{Y}_{\mathrm{N}}oldsymbol{\gamma}_{\mathrm{N}}, \qquad \mathrm{mit} \quad oldsymbol{Y}_{\mathrm{N}} = \left[egin{array}{c} oldsymbol{y}_{\mathrm{N}}(oldsymbol{ heta}_{\mathrm{L}})^{\mathrm{T}} \ dots \ oldsymbol{y}_{\mathrm{N}}(oldsymbol{ heta}_{\mathrm{L}})^{\mathrm{T}} \end{array}
ight].$$

Für die Analyse ist es nun notwendig, anhand der bekannten und gemessenen diskreten Samples g die Expansionskoeffizienten $\gamma_{\rm N}$ zu berechnen. Aus obiger Gleichung ist ersichtlich, dass dazu eine Matrixinversion $\boldsymbol{Y}_{\rm N}^{-1}$ der *spherical Harmonics* notwendig ist. Für $\gamma_{\rm N}$ gilt dann

$$oldsymbol{\gamma}_{\mathrm{N}}=oldsymbol{Y}_{\mathrm{N}}^{-1}oldsymbol{g}$$
 .

Die Kenntnis des Expansionskoeffizienten erlaubt nun eine Interpolation für jeden beliebigen Punkt auf der Kugeloberfläche. Berechnet man mit einer entsprechenden Anzahl an Zwischenpunkten ein feinmaschiges Netz von Abtastwerten, so können diese genutzt werden, um eine wolkenartige Abstrahlungsform einer abgestrahlten Frequenz in optisch guter Auflösung als 3D-Richtplot darzustellen.

$$p(\boldsymbol{\theta}) = \boldsymbol{y}(\boldsymbol{\theta})^{\mathrm{T}} \boldsymbol{\gamma}$$

Obwohl mit einer diskreten Zerlegung der Expansionskoeffizient γ ermittelt wurde, lässt sich dieser für eine kontinuierliche Interpolation auswerten.

2.2. Samplingstrategie

Abhängig von der gewählten Samplingstrategie ist es unterschiedlich schwierig, die Inversionsmatrix $\boldsymbol{Y}_{\mathrm{N}}^{-1}$ zu berechnen. Aufgrund der Effizienz und der einfachen Invertierbarkeit der SH-Matrix wurde vom Betreuer dieser Arbeit die Hyperinterpolation als Abtastungsstrategie vorgeschlagen [Zot08]. Die Konditionierung der Hyperinterpolation weist für die mathematische und praktische Realisierung günstige Eigenschaften auf.

Es gibt eine Vielzahl an anderen Methoden, Samplingpunkte auf einer Kugeloberfläche zu verteilen (vgl. [SWK03, Har96, Sug02]). Diese weisen eine Menge unterschiedlicher Eigenschaften auf, wie deren Gleichverteilung der Abtastpunkte auf der Kugel, deren Eignung zur Zerlegung in Kugelharmonische oder deren Abtastungseffizienz. Aufgrund ihrer Konditionierung sind sie aber für eine Verwendung als Abtaststrategie des zu entwickelnden Mikrofonarrays ungeeignet [KKP07, Zot08].

2.2.1. Zerlegbarkeit in Kugelharmonische

Hyperinterpolation (vgl. [WS01]) bietet den großen Vorteil, dass genau alle Array-Samples g auch als Samplingknoten $L = (N + 1)^2$ benutzt werden, und aus diesen – ohne Approximation oder numerischer Regularisierungsverfahren – gleich viele Koeffizienten des Kugelspektrums berechnet werden können, wie es Abtastpunkte gibt. Damit eignet sich die Hyperinterpolation besonders gut, um abgetastete Kugelharmonische zu invertieren.

Ineffizientere Abtaststrategien benötigen L > $(N + 1)^2$ Samplingpunkte, um eine Zerlegung in Kugelharmonische durchführen zu können. Dadurch würde auch eine höhere Anzahl an Messmikrofonen benötigt. Für eine zunehmende Anzahl L an Abtastpunkten wird das Auffinden von geeigneten Anordnungen erleichtert. Die Matrixinversion bleibt aber als Problem bestehen.

Die Hyperinterpolation setzt allerdings ein hochspezielles Abtastungsmuster der Samplingpunkte voraus, ansonsten ist keine Matrixinversion möglich. Dieses Set von Punkten konnte von der Webseite [Wom09] übernommen werden. Es diente als Basis für die Wahl der Abtastpunkte. Die genau definierten Koordinatenpunkte weisen keine geometrischen Symmetrien oder Regelmäßigkeiten auf. Diese Unregelmäßigkeit stellt eine konstruktive Herausforderung dar, auf die in Kapitel 3 eingegangen wird.

2.2.2. Konditionszahl

Die Koordinatenpunkte weisen als spezielle Eigenschaft auf, dass deren Basismatrix eine maximierte Determinante hat. Die Invertierbarkeit der Matrix wird durch die Konditionszahl [LW09] bestimmt. Eine Durchführung der diskreten Transformation in die Kugelharmonischen für gegebene Samplingknoten $\{\boldsymbol{\theta}_l\}$ wird also durch die Konditionszahl

 $\kappa = \operatorname{cond} \{ \boldsymbol{Y}_{\mathrm{N}} \}$

charakterisiert. Für orthonormale Matrizen wird $\kappa = 1$, für schwieriger zu invertierende Matrizen wird der Wert größer $\kappa > 1$. Bei der Hyperinterpolation mit L = 64 Samplingpunkten entsteht eine Konditionszahl von $\kappa = 2.5$. Mit Hilfe der Konditionszahl kann eine Ordnung N für die diskrete Transformation in den Bereich der Kugelharmonischen gefunden werden.

2.3. Anzahl Samplingpunkte

Aufgrund der Wahl der Hyperinterpolation wird im praktischen Messaufbau eine Anzahl $L = (N + 1)^2$ an Samplingpunkten benötigt. Um eine gewünschte Auflösung der Kugelharmonischen bis zur N = 7 Ordnung zu erzielen, werden L = 64Abtastpunkte vorausgesetzt. Mit Fixierung der Koordinaten aller Samplingpunkte steht die geometrische Form für das Kugelmikrofonarray fest.

3. Dokumentation

Durch die Kenntnis der Koordinaten [Wom09] in x-Richtung, y-Richtung und z-Richtung werden die Samplingpunkte auf der Kugel definiert. An diesen geometrisch fixierten Ortspunkten im Raum sollen Mikrofone montiert werden können, die gegen den Kugelmittelpunkt gerichtet sein müssen. Diese grundsätzliche Anforderung gilt es konstruktiv zu erfüllen.

3.1. Messaufbau

Durch die definierten 64 Eckpunkte wird die räumliche Struktur der Messanordnung fixiert. Da alle diese Eckpunkte auf einer Kugeloberfläche liegen, ist es naheliegend, die kugelförmige Anordnung auch konstruktiv zu nutzen. Verbindet man jeweils drei benachbarte Eckpunkte miteinander, entsteht eine Gitternetzstruktur. Das Netz wird durch 124 Dreiecke gebildet, deren Kanten die Verbindungslinien zwischen drei Eckpunkten sind. Von jedem Eckpunkt führen jeweils fünf oder sechs Kanten zu einem weiteren benachbarten Eckpunkt. Dadurch ergeben sich 186 Kanten für den entstehenden Körper.

3.1.1. Geometrische Struktur

Die so gebildete Struktur weist keine geometrischen Regelmäßigkeiten auf. Jede Kante des kugelförmigen Körpers (vgl. Abb 3.1) hat eine individuelle Länge. Dadurch entstehen lauter unterschiedliche Dreiecke, die sich folgedessen auch durch jeweils drei unterschiedliche Winkel auszeichnen.

3.1.2. Anforderungen an den Messaufbau

Der Messaufbau muss weitere Anforderungen erfüllen. Um die akustischen Eigenschaften des Messraumes nutzen zu können, muss der Messaufbau für den Schall in alle Richtungen transparent sein. Da sich ein Musiker mit seinem Instrument in die Mitte der Messeinrichtung begibt, muss diese Bedingung rund um das aufzunehmende Instrument erfüllt werden. Damit der Aufbau akustisch durchlässig bleibt, dürfen also möglichst keine festen Flächen den Schall reflektieren. Eng mit der akustischen Transparenz hängt auch ein weiteres Kriterium zusammen. Um

Abbildung 3.1.: Kugelförmiger Körper mit 64 Eckpunkten

objektive Messergebnisse zu erhalten, darf der Messaufbau möglichst keine Schallreflexionen an die Mikrofone erzeugen. Reflexionen des Schalls an einer harten Fläche könnten im Spektrum einzelne Frequenzen übermäßig betonen.

Weitere konstruktiv günstige Eigenschaften sollten erzielt werden, indem der Messaufbau mit leichten Materialien gebaut wird. Dies erleichtert den Aufbau der Messeinrichtung. Andererseits wird dadurch auch die Belastung des Messaufbaus durch die Gewichtskraft klein gehalten. Ein weiterer Vorteil von leichten Materialien besteht darin, dass die Konstruktion einfacher transportiert werden könnte. Dies ist zwar nicht ein primäres Kriterium, sollte aber dennoch möglich sein.

Da die Mikrofonpositionen, in Abb 3.1 rot eingezeichnet, einen wesentlichen Einfluss auf die Messergebnisse haben, muss gewährleistet sein, dass der Messaufbau formstabil bleibt. Er muss kleine Erschütterungen, erzeugt durch unbeabsichtigtes Anstoßen oder Berühren, tolerieren.

Die geometrisch ohnehin schon komplexe Struktur der Kugel muss konstruktiv möglichst einfach umgesetzt werden. Durch Modularität der Bauteile kann der Arbeitsaufwand in der Fertigung und beim Zusammenbau minimiert werden. Das heißt auch, dass möglichst viele baugleiche Teile zum Einsatz kommen sollen. Für den Aufbau der Messeinrichtung ist es von großem Vorteil, wenn wenig Werkzeuge benötigt werden. Durch einen modularen Aufbau wäre es auch denkbar, dass die Mikrofonpositionen im Radius verändert werden könnten. Eine Verwendung von Normteilen, die günstig einzukaufen sind, ist Spezialanfertigungen vorzuziehen.

3.1.3. Diskutierte Konstruktionen

Der tatsächlichen konstruktiven Umsetzung sind mehrere Konstruktionskonzepte vorangegangen. Drei herausgegriffene Varianten werden hier vorgestellt.

Vertikale Stativstangen Um an den definierten Positionen im Raum Messmikrofone befestigen zu können, wird ein quadratischer Gitterrost an der Decke und am Boden des Messraumes befestigt. Mit Flanschen werden abgelängte Mikrofonständer ohne Galgen von der Decke abhängend montiert. An geeigneten Punkten montiert, können so die Messpunkte der oberen Hemisphäre mit Mikrofonen erreicht werden. Für die untere Hemisphäre der Kugelfläche werden die Mikrofonständer auf den Bodenrost montiert.

Mit dieser Konstruktion kann mit kleinen Materialkosten und relativ geringem Arbeitsaufwand eine Messumgebung gebaut werden. Da die Messumgebung aber für häufigen Einsatz konzipiert werden muss, sind einige Punkte zu berücksichtigen, die gegen diese Konstruktion sprechen.

Die Ausrichtung der Messmikrofone ist aufwendig, und die Gefahr, durch Anstoßen ein Mikrofon unbeabsichtigt zu verschieben, ist groß. Es kann auch kaum überprüft werden, ob alle Mikrofone in die vorgesehene Richtung zeigen. Das Betreten des Messinnenraumes ist schwierig, da Stangen an der Bodenfläche montiert sind und einen einfachen Zugang verhindern.

Netzförmige Seilkonstruktion Eine weitere Möglichkeit, die Messpunkte zu definieren, besteht darin, die von den Dreiecken gebildeten Kanten mit Drahtseilen zu verlängern. Der zu bildenden Kugel wird ein Würfel aus Drahtgitter umschrieben, an dessen Seiten die Enden der Seile befestigt werden. An den durch die gespannten Seile entstehenden Knotenpunkten werden Mikrofone angebracht. Auch mit diesem Aufbau können die Messpunkte im Raum fixiert werden.

Doch diese Bauweise hat zwei größere Mängel, die gegen eine Realisierung sprechen. Einerseits entstehen durch die gespannten Seile hohe Zugkräfte auf die Seitenwände. Um diesen Kräften standhalten zu können, wären sehr große und sehr stabile Gitter nötig. Ein Aufbau mit einfachen Mitteln ist sehr schwierig. Ein weiterer Punkt, der gegen diese Konstruktionsvariante spricht, ist die Notwendigkeit, einen Eingang ins Zentrum des Messaufbaus freizuhalten. Da durch die gespannten Seile alle Seiten durchgehend fixiert sein müssen, gibt es keinen Eingang zum Kugelmittelpunkt. Damit ist auch diese Variante ausgeschieden.

Kugelkonstruktion Die kugelförmige Anordnung der Messpunkte kann konstruktiv genutzt werden. Es werden Elemente aus leichten und dünnen Rohren erstellt, welche genau den blau eingefärbten Dreiecken aus Abb. 3.1 entsprechen. Die Verbindungsstangen laufen jeweils in speziellen Eckelementen zusammen. Die so gebildeten Dreiecke sind in ihrer Form unveränderbar. Durch das Zusammenfügen aller 124 Dreiecke entsteht eine extrem formstabile kugelförmige Konstruktion. Damit sind die Raumpunkte für die Messmikrofone definiert und konstruktiv miteinander verbunden. In die Eckelemente werden die Messmikrofone so eingebaut, dass sie gegen das Kugelzentrum zeigen. (vgl. Regelmäßige Kugelkonstruktion [Reu08, BPS08])

Der vorgesehene Kugelradius wird durch die Wahl der Kantenlänge des Körpers erreicht. Damit müssen nur die Verbindungsstangen eine definierte Länge aufweisen.

Um einen Eingang zur Kugel zu erhalten, kann leicht eine Öffnung erstellt werden. Es müssen nur drei Verbindungsstangen nach der Fertigstellung der Kugel wieder entfernt werden. Die entstehende Lücke ist groß genug, um mühelos in die Kugel steigen zu können.

Die fertige Kugelkonstruktion wird an drei Punkten an der Betondecke aufgehängt. Damit ist der gesamte Aufbau im Raum leicht positionierbar.

Es wird darauf geachtet, dass die zu verbauenden Materialien ein geringes spezifisches Gewicht haben, um das Gesamtgewicht der Konstruktion tief zu halten. Dabei müssen die Verbindungsstangen auf Zug- und Druckkräfte formstabil bleiben. Aluminium bietet sich als Werkstoff an, da es gutmütig in der Verarbeitung ist und dennoch die gewünschten Vorzüge bietet.

Aufgrund der genannten Vorzüge wird diese Konstruktionsvariante weiter verfolgt und ausgearbeitet.

3.2. Modell

Es wird in MATLAB ein Modell erstellt, damit die zu erreichende Dimension der fertigen Konstruktion berechnet werden kann. Von Interesse sind neben den Längen der Stangen auch die Winkel, die durch die Dreiecke gebildet werden. Es können mit der Simulation sämtliche Winkel bestimmt werden, die an der Kugelkonstruktion auftreten.

Im Anhang A.3 werden die berechneten Längen und die entstehenden Winkel aufgelistet. Zur Berechnung der Dreiecksstruktur in MATLAB diente der Delaunay-Triangulierungsalgorithmus *cstripack* [Kei07].

Das Computermodell (Abb. 3.1) dient auch als Bauplan für einen Zusammenbau des Körpers. Da jede Verbindungsstange eine individuelle Länge aufweist, ist es wichtig zu wissen, welche Eckpunkte damit verbunden werden. Die Eckpunkte und die Stangen erhalten eine Identifikationsnummer, um einen Zusammenbau zu vereinfachen. Für die praktische Erstellung der Kugel färbt das Computermodell die jeweilige Dreiecksfläche ein, die gerade gebaut wird.

Abbildung 3.2.: Modell der Kugel aus PVC Rundrohr und Beilagscheiben

Um eine noch bessere Vorstellung der Konstruktion zu erhalten, wird ein Modell im Maßstab 1:8 (Abb. 3.2) angefertigt. Für die Verbindungsstangen kommt ein PVC Rundrohr mit 8 mm Außendurchmesser zum Einsatz. Das Material lässt sich sehr einfach verarbeiten und bietet die nötige Stabilität. PVC Rohr eignet sich auch besonders gut aufgrund seines geringen Gewichtes, da schon für das Modell insgesamt mehr als 12 m Verbindungsstangen benötigt werden. Als Eckelemente werden Beilagscheiben in passender Dimension verwendet. Mit zwei durch das Rundrohr gesteckten Kabelbindern werden die Eckelemente und die mit Nummern beschrifteten Rundrohre miteinander verbunden.

Wie sich zeigt, weist das Modell eine erstaunlich hohe Steifigkeit auf. Durch das geschlossene Netz der untereinander verbundenen Dreiecke ist es nicht deformierbar. Das ist genau jene Eigenschaft, die auch für den Messaufbau benötigt wird. So ist gewährleistet, dass die Eckpunkte ihre relative Position zueinander behalten, auch wenn die Kugel berührt werden sollte.

Das Modell dient nicht nur der Verifizierung des MATLAB–Bauplanes. Für die spätere Erstellung des Messaufbaus sorgen die durchnummerierten Stangen und Eckpunkte am Modell für einen erheblich besseren Überblick. Der grosse Vorteil des Modelles besteht darin, dass es sehr einfach gedreht werden kann. Somit lässt es sich leicht in die gleiche Lage wie die zusammenzufügenden Teile bringen, die gerade bearbeitet werden.

3.3. Mikrofonkugel

Aufgrund der Erkenntnisse aus der Anfertigung des Modells wird das kugelförmige Mikrofonarray in der oben besprochenen Dreieckstruktur geplant. Im Folgenden werden die benötigten und teils spezialangefertigten Teile zum Bau der Kugel vorgestellt. Zum besseren Verständnis dient vorgreifend Abbildung 3.3, die den fertigen Messaufbau zeigt.

Abbildung 3.3.: Mikrofonkugel im Messraum ohne Verkabelung

3.4. Eckelement

Als zentrales Bauteil wird ein Verbindungselement (Abb. 3.4) benötigt, das die Verbindungsstangen aufnehmen kann. In axialer Richtung zum Kugelmittelpunkt zeigend kann ein Messmikrofon befestigt werden. Durch Festklemmen mit einer Madenschraube wird das Mikrofon am Flansch des Eckelementes fixiert.

Abbildung 3.4.: Räumliche Ansicht des Eckelementes

Da der Kugelkörper keinerlei Symmetrie aufweist, muss die Verbindung von Eckelementen zu Verbindungsstangen sowohl in radialer als auch in axialer Richtung stufenlos veränderbar sein. Dennoch muss gewährleistet sein, dass die Verbindungsstangen fest mit den Eckelementen fixiert werden können. Abbildung 3.4 zeigt links die räumliche CAD Zeichnung des Eckelementes, rechts bildet ein Foto das Eckelement ab. Das aus Aluminium gefertigte ringförmige Teil verfügt über eine kreisförmige Nut, die rund um den Körper verläuft. Darin können mit den Halbkugelmuttern (siehe Abb. 3.7) die Verbindungsstangen montiert werden.

Durch die kreisförmige, umlaufende Nut ist es möglich, verschiedene Winkel stufenlos einzustellen. Abbildung 3.5 verdeutlicht die einstellbaren Winkel. Um die Verbindungsstangen in axiale Richtung (Zeichnung links) genügend zu neigen, ist es notwendig, einen maximalen Neigungswinkel von $\alpha = 20^{\circ}$ gegenüber der Symmetrieachse einstellen zu können.

Das rotationssymmetrische Eckelement ist außerdem in der Lage, bis zu sechs Halbkugelmuttern in ebenfalls stufenlos verstellbaren Winkeln ϑ aufzunehmen.

Abbildung 3.5.: Kritische Winkel am Eckelement mit symbolischer Verbindung

Damit können alle in der Struktur auftretenden Dreiecke gebildet werden.

Dimensionierung Die Dimensionierung der Eckelemente und der Aluminiumverbindungen wurde aufgrund von etlichen Gesprächen mit Fachleuten und ihrer wertvollen Einschätzung getroffen. Um die nötige Stabilität der Mikrofonkugel zu garantieren, wurden alle Teile auf die Dimension von M8 Gewindestangen ausgelegt. Dies hat zur Folge, dass auch Muttern mit einer Dimension von M8 eingesetzt werden. Damit ist es möglich, den ganzen Aufbau mit nur zwei gleich großen Gabelschlüsseln zu bewältigen. Die gewählte Dimensionierung wirkt sich auch auf die Größe des Eckelementes aus. Um das Gesamtgewicht des Messaufbaus möglichst gering zu halten, wird die Aluminiumhalterung so klein wie möglich dimensioniert. Dennoch wird darauf geachtet, dass die vorkommenden Winkel mit den einzusetzenden Bauteilen erreicht werden können. Aufgrund der benötigten Winkel α und ϑ wird auch die umlaufende Kreisnut des Sternelementes zur Aufnahme der Halbkugelmuttern dimensioniert. Durch eine Wandstärke von 3 mm wird die Stabilität des Eckelementes gewährleistet. Das Gesamtgewicht des Messaufbaus wurde anhand bemaßter Zeichnungen (Anhang A.4) und den bekannten Materialdichten auf unter 150 kg geschätzt.

3.5. Verbindung

Die gesamte Baugruppe eines Sternelementes mit den benötigten Einzelteilen für eine Verbindung an ein weiteres Sternelement ist in nachfolgender Abbildung 3.6 dargestellt. Die Tabelle rechts listet die notwendigen Einzelteile auf, die zur Verbindung an eine Alustange benötigt werden. In die Enden der Aluminiumrundrohre ist eine Muffe (8) mit einem durchgehenden Innengewinde eingeklebt. Dies ermöglicht ein Aufschrauben der Alurohre auf die Gewindestange (7).

Nr.	Bezeichnung
1	Unterlegscheiben DIN 126, M8
2	Madenschrauben DIN 913, M4x8
3	Sechskantmuttern DIN 934, M8
4	Halbkugelmutter
5	Eckelement
6	Klemmung
7	Gewindestange M8, 80 mm
8	Muffe mit Innengewinde M8

(a) Zeichung der Baugruppe um das Sternelement

(b) Tabelle der Einzelteile

Abbildung 3.6.: Zeichung der Baugruppe mit Auflistung der Einzelteile

Abbildung 3.7 zeigt ein fertig eingebautes Sternelement mit den montierten Halbkugelmuttern als Gelenke und den Verbindungsstangen.

In diesen Abbildungen sind auch die Aluminiumrundrohre, welche jeweils zwei Sternelemente (5) verbinden, zu erkennen. Über eine Kontermutter (3) werden die viertelkreisförmig gebogenen Stahlklemmen (6) und die Halbkugelmuttern (4) im Eckelement festgeklemmt. Eine Unterlegscheibe (1) verhindert ein direktes Reiben der Muttern an der Klemmung. Eine Gewindestange (7) verbindet die Rundrohre an die Eckelemente, gesichert durch eine zweite Kontermutter. Um eine gleiche Einbautiefe der Gewindestangen zu gewährleisten, werden die Kontermuttern mit Loctite Schraubenkleber festgeklebt. Damit lässt sich die Gewindestange nur noch in das Gewinde der Halbkugelmutter drehen und kann auch festgezogen werden. Mit einer kleinen Madenschraube (2) wird das Mikrofon im Sternelement fixiert.

(a) Foto des Sternelementes seitlich

(b) Foto des Sternelementes liegend

Abbildung 3.7.: Ansicht der eingebauten Sternelemente

In Abbildung 3.8 wird eine symbolische Verbindung von zwei Sternelementen dargestellt. Zur Montage können die Rundrohre mit den eingeklebten Muffen nun bis zum Anschlag auf die Gewindestangen aufgeschraubt werden (3.8 obere Grafik). Mit Aufschrauben auf die gegenüberliegende Gewindestange des Sternelementes wird die Länge nun nur noch durch die Stangenlänge definiert (3.8 untere Grafik). Das Aufschrauben der Stangen verändert den Abstand l der Eckelemente zueinander nicht. Dadurch ist es möglich, die Mikrofonkugel ganz ohne Messband zusammenzubauen. Dies ist eine wichtige Erleichterung beim Aufbauen, da so manuelle Messfehler, bedingt durch ungenaues Messen, gar nicht erst entstehen können.

Da alle Aluminiumstangen eine individuelle Länge haben, wurden diese mit einer Identifikationsnummer beschriftet. Dies ermöglichte einen übersichtlicheren Aufbau. Anhand des Modells wurden die Stangen für den Zusammenbau bestimmt. Die Mikrofonkugel wurde dann von der oberen Kuppel ausgehend spiralförmig zusammengebaut.

Abbildung 3.8.: Symbolische Darstellung der Verbindung zweier Sternelemente mit Aluminiumrundrohr

3.6. Aufhängung

Die Mikrofonkugel wurde an der Betondecke des Messraumes aufgehängt. Die schwebende Variante wurde gegenüber einer auf dem Boden stehenden Variante vorgezogen. Einerseits kann durch die Aufhängung an der Decke der Raum um die untere Hemisphäre frei gehalten werden. Dadurch werden störende Schallreflexionen vermieden, die durch eine Halterung am Fußboden entstehen würden. Andererseits ist eine Montage an der Decke mit technisch kleinem Aufwand zu realisieren. Das eingesetzte Montagematerial beeinflusst die Messungen durch Reflexionen nicht. Somit wird der schallabsorbierende Messraum bestmöglich genutzt.

Zur Befestigung der Kugel dienten Stahlseile mit dazugehörendem Montagematerial. Da die Kugel an drei Punkten befestigt ist, ist eine Justierung in der Höhe mit den Spannschlössern relativ einfach. Es wurde darauf geachtet, die drei Seile so zu spannen, dass sie drei linear unabhängige Richtungsvektoren aufweisen. Somit ist gewährleistet, dass der schwebende Messaufbau nicht schwingt. Sollte er unbeabsichtigt angestoßen werden, beruhigt sich das System auch sehr schnell wieder. Nachfolgende Abbildung 3.9 zeigt einen Punkt der Aufhängung mit den Stahlseilen. Die Tabelle rechts listet die Bauteile für die Aufhängung auf.

(a) Foto der Aufhängung an der Messraumdecke

Nr.	Bezeichnung
1	Stahlseil, $\emptyset 5 \text{ mm}$
2	Seilklemmen
3	Schäkel
4	Spannschloss, M8
5	Seilkauschen, 5 mm
6	Ringschraube, M8
7	Gewindestange M8, 80 mm
8	Betonanker, $\emptyset 12 \text{ mm}$, M8

(b) Tabelle der Einzelteile

Abbildung 3.9.: Foto der Aufhängung mit Auflistung der Einzelteile

3.7. Verkabelung

Zur Verkabelung der 64 Mikrofone wurden 8 Multicorekabel mit jeweils 8 Adern verwendet. Der Mantel der Multicores wurde teilweise aufgetrennt, sodass eine Verkabelung entlang der Aluminiumstangen möglich war. Die Leitungen wurden mit Kabelbindern fixiert. Nachfolgendes Foto (Abb. 3.10 links) zeigt ein Mikrofon mit dem XLR-Stecker und den Leitungen, die an der Unterseite der Kugel zusammengeführt werden. Die Multicorekabel verlaufen seitlich der Kugel und führen außerhalb des Messraumes in die Mikrofonvorverstärker. Das Foto rechts ist eine Detailaufnahme aus dem Vorverstärker Rack mit einem Ausschnitt der 64 Kanäle.

(a) Verkabelung der Mikrofone entlang der Alustangen

(b) Detailaufnahme des Vorverstärker Racks

Abbildung 3.10.: Fotos der Verkabelung der Mikrofone

3.8. Gitterpodest

Ein handelsüblicher Gitterrost (Abb. 3.11) mit den Außenmaßen 1 m x 1.2 m dient als Grundfläche innerhalb der Messkugel. Der Gitterrost steht auf 4 Holzbalken, die mit Stahlwinkel am Gitterrost befestigt sind. Die Füße haben eine Länge von 0.5 m. Der Gitterrost gewährt Schalltransparenz, sodass auch unterhalb der Standfläche Schall auf die Messmikrofone fällt.

Um einen einfachen Eingang zur Messkugel zu gewähren, wurden drei Aluminiumstangen aus dem umhüllenden Netz entfernt. Dadurch entstand eine Lücke, die groß genug ist, um in die Kugel einzusteigen. Die aus der Kugel entfernten Stangen beeinträchtigen die Gesamtstabilität der Konstruktion nicht.

3. Dokumentation

Abbildung 3.11.: Foto des Kugeleinganges und des Gitterrostes

3.9. Raumlage

Die Raumlage des Messaufbaus und des mathematischen Modells müssen für die Auswertung der Messungen übereinstimmen. Da die Mikrofonkugel im Raum gegenüber dem Modell aber verdreht ist, ist es notwendig, eine Rotationsmatrix zu finden, damit eine Anordnung gedreht werden kann. Das erscheint auf den ersten Blick einfach, doch die richtige Rotationsmatrix zu finden, stellt ein Problem dar.

Zum jetzigen Zeitpunkt gibt es drei Lösungsansätze:

3.9.1. Akustische Messung

Um die Rotationsmatrix zu finden, wird ein Lautsprecher mit starken Bündelungseigenschaften im Mittelpunkt der Kugel angebracht. Er wird für eine Mess-Serie jeweils in eine Raumrichtung ausgerichtet. So wird der Messaufbau in x, y und z-Richtung beschallt. Mittels einer feinen spherical Harmonics Interpolation kann die Abbildung der Richtungen im Koordinatensystem der verdrehten Kugel berechnet werden. In nachfolgender Grafik 3.12 sind die Frequenzbins farbig eingezeichnet. Ein Frequenzbin ist 1000 Hz breit. Die detektierte Raumlage ist für jeden Bin von 2000 Hz bis 10000 Hz in Form eines Dreibeins aufgetragen.

Abbildung 3.12.: Mittels einer akustischen Messung wird die Rotationsmatrix berechnet

Es ist zu erkennen, dass die Frequenzbins für eine Richtung eine große Streuung aufweisen. Am genauesten konnte die x-Richtung bestimmt werden. Für die beiden anderen Richtungen haben sich jedoch starke Abweichungen ergeben. Da die Messunsicherheiten in der vorliegenden Messreihe groß sind, müssen diese minimiert werden, um das echte rotierte Koordinatensystem zu finden. Ob mit mathematischen Mitteln die korrekte Rotationsmatrix aus der Messreihe gefunden werden kann, wird Objekt weiterer Untersuchungen sein.

3.9.2. Manuelle Messung

Als alternative Methode kann die Rotationsmatrix manuell mit dem Messband bestimmt werden. Doch mit dieser Messung werden Unsicherheiten auftreten. Auch mit geeigneten Hilfsmitteln wie dem Laserpointer ist es schwierig, die Rotationsmatrix mit ausreichender Genauigkeit festzustellen. Da für eine Bestimmung der Rotationsmatrix die Kenntnis der Raumkoordinaten von 3 Punkten auf der Kugel notwendig ist, fallen, ausgehend von einem Referenzpunkt, pro Messpunkt mindestens 3 Messungen im dreidimensionalen Raum an. Dabei gilt es, mit dem Messband sehr genau parallel zum Ursprungskoordinatensystem zu messen. Dies ist die größte Quelle von Messunsicherheiten.

3.9.3. Drehung der Messanordnung

Als beste Lösung steht die Drehung der ganzen Mikrofonkugel, entsprechend dem mathematischen Modell, zur Diskussion. Dabei wird der höchste Punkt der oberen Hemisphäre an definierter Position angebracht. Das Sternelement mit der Nummer 1 liegt dann auf den Raumkoordinaten [0, 0, 1]. Die Ausrichtung der z-Achse ist damit fixiert. Glücklicherweise liegt das Sternelement mit der Nummer 2 zufällig ganz genau auf der x-Achse und weist damit die Koordinaten [1, 0, 0] auf. Eine sehr einfache Ausrichtung der ganzen Kugel ist leicht umzusetzen.

Natürlich ist die Realisation dieser schönen Lösung mit erheblichem Arbeitsaufwand verbunden. Um die Kugel drehen zu können, müssten sämtliche Kabelverbindungen neu gelegt, ein neuer Kugeleingang gefunden und drei neue Aufhängepunkte gesucht werden.

3.10. Justierung

Die genaue Justierung der Sternelemente erfolgt erst nach dem kompletten Aufbau der Messanordnung. Erst dann kann nämlich der Mittelpunkt der Kugel ermittelt werden. Mit vier gespannten Schnüren durch geschätzte Äquatorebenen der Kugel wird der Mittelpunkt angenähert. Durch Verbinden jeweils zweier Seitenhalbierenden mit Schnüren wird der Mittelpunkt definiert. In Abbildung 3.13 zeigt ein Foto, wie der Kugelmittelpunkt bestimmt wird.

Abbildung 3.13.: Foto der gespannten Schnüre zur Bestimmung des Kugelmittelpunktes. Mit Hilfe der Alustange werden die Sternelemente ausgerichtet.

Auf den so ermittelten Kugelmittelpunkt werden Laserpointer, die an den Stangen befestigt sind, ausgerichtet. So lässt sich jederzeit der gesuchte Punkt leicht wieder auffinden. Um die Messmikrofone möglichst genau ins Kugelzentrum zu richten, müssen sämtliche Sternelemente ausgerichtet werden. Mittels einer Stange, die durch das Eckelement geführt wird und durch den Kugelmittelpunkt verläuft, werden die Elemente justiert. Dazu müssen alle Schrauben um das Sternelement gelöst und im angepassten Winkel neu angezogen werden.

3.11. Kammfilter

Messungen des Frequenzganges der Übertragungsfunktion an einem Messmikrofon mit angebrachtem Sternelement zeigen einen starken Kammfiltereffekt. In nachfolgender Grafik 3.14 ist die Ursache des Kammfilters dargestellt. Durch Reflexionen an der schallharten Fläche des Sternelementes entstehen die unerwünschten Kammfiltereffekte.

Abbildung 3.14.: Schematische Darstellung der Reflexionen am Sternelement.

Der Abstand von Messmikrofon zu Lautsprecher betrug in der verwendeten Messanordnung 0.7 m, jener von Mikrofonkapsel zu reflektierendem Sternelement 105 mm. Eine Wellenlänge von 105 mm entspricht 3238 Hz. Da die halbe Wellenlänge für den unerwünschten Kammfiltereffekt von Bedeutung ist, kann es zu Interferenzen kommen. Frequenzen ab 1619 Hz (halbe Wellenlänge) sind hier problematisch. In nachfolgenden Grafiken 3.16 ist auch da schon ein Anstieg der Amplitude erkennbar, hervorgerufen durch konstruktive Interferenze.

3.11.1. Schaumstoffabsorber

Um dem Kammfiltereffekt entgegenzuwirken, wurden zwei verschiedene Absorber entworfen und deren Frequenzverhalten ermittelt.

Abbildung 3.15 (a) zeigt ein Messmikrofon mit dem problematisch reflektierenden Sternelement. In Abb. 3.15 (b und c) werden die beiden Prototypen der Schaumstoffabsorber abgebildet. Die Absorber dämpfen die Reflexionen an der schallharten Aluminiumfläche. Damit trifft im Idealfall nur noch Direktschall der Schallquelle auf der Mikrofonkapsel auf.

Abbildung 3.15.: Bilder der Messmikrofone mit verschiedenen Absorbern

3.11.2. Übertragungsfunktionen der Absorber

Um die Übertragungsfunktionen der Mikrofone mit Schaumstoffabsorbern zu bestimmen, wurden deren Übertragungskennlinien gemessen. Als Referenz diente die Messstrecke zwischen Lautsprecher und Messmikrofon ohne schallhartes Sternelement. Messlautsprecher war ein Studiomonitor Quested F11. Mit einem logarithmischen Sweep wurde die Referenzkennlinie des Systems bestimmt. Darin enthalten sind die Kennlinie des Lautsprechers, die Raumantwort und die Frequenzkennlinie des Messmikrofones.

Um die Wirkungsweise der Schaumstoffabsorber zu berechnen, wurden die Kennlinien der Absorber durch die Referenzkennlinie im Frequenzbereich dividiert. Damit wird nur noch die Übertragungsfunktion der Sternelemente mit aufgesteckten Absorbern dargestellt. In Abb. 3.16 werden die Frequenzgänge logarithmisch dargestellt. Frequenzen unter 100 Hz werden nicht berücksichtigt, da in diesem Frequenzbereich keine Reflexionen am Sternelement zu erwarten sind. Abb. 3.16 (*a*) zeigt die Übertragungsfunktion eines Mikrofones mit Sternelement, ohne Absorber. Darstellung (*b*) und (*c*) stellen die Kennlinien mit Kegelabsorber und Kreisscheibenabsorber dar.

(c) Frequenzgang mit aufgestecktem Kreisabsorber

Abbildung 3.16.: Frequenzgang der Messmikrofone mit verschiedenen Absorbern im Einfallswinkel von 0°

Es ist zu bemerken, dass der Kegelabsorber nicht so gut funktioniert wie der Kreisabsorber. Der Absorber mit Kegelgeometrie vermag in den kritischen Frequenzbereichen ab 1600 Hz nicht so stark zu dämpfen wie die Kreisscheibe.

Mit aufgestecktem Kreisabsorber wird die Welligkeit des Frequenzganges in der Amplitude in einem Bereich von weniger als ± 5 dB gehalten. Dies bedeutet eine markante Verbesserung des Frequenzganges der Messanordnung.

Um zu prüfen ob eine mathematische Eliminierung des Kammfilters möglich wäre, wurde das reflektierende Sternelement unter der gleichen Messanordnung wie oben unter einen Schalleinfallswinkel von 30° mit dem Sweepsignal beschallt. Es ist leicht zu erkennen, dass sich der Kammfilter in seiner Amplitude (Abb. 3.16 (a) und Abb. 3.17 (a)) gegenüber dem Einfallswinkel von 0° verändert.

Dies bedeutet, dass eine ausschießlich mathematische Bereinigung des Frequenzganges mit einem Filter nicht möglich ist. Es ist zu erwarten, dass in der Messanordnung auch Schall an den Mikrofonkapseln auftrifft, der nicht genau aus dem Kugelmittelpunkt stammt.

(c) Frequenzgang mit aufgestecktem Kreisabsorber

Abbildung 3.17.: Frequenzgang der Messmikrofone mit verschiedenen Absorbern im Einfallswinkel von 30°

4. Aufnahmen

Die Anwendung der Mikrofonkugel in dieser Diplomarbeit besteht darin, drei verschiedene Instrumentengruppen aufzunehmen und nachfolgend zu analysieren.

Es werden aus der Gruppe der Blechblasinstrumente das Cornet, die Trompete und die Posaune aufgezeichnet.

Aus der Gruppe der Streichinstrumente wird das Violoncello aufgenommen.

Vertreter der Holzblasinstrumente sind Klarinette, Bassklarinette, Altsaxofon, Tenorsaxofon und die Bassblockflöte.

4.1. Aufnahme Blechblasinstrumente

Es wurden mit den Blechbläsern pro Instrument verschiedene Aufnahmen gemacht. Um eine möglichst umfassende Analyse eines Instrumentes zu ermöglichen, wurde darauf geachtet, dass der Tonumfang des jeweiligen Instrumentes möglichst gut ausgenutzt wird. Dies wurde mittels einer chromatischen Tonleiter über den Tonraum des Instrumentes umgesetzt.

Um die gleichen Töne auch in einem anderen Zusammenhang zu erhalten, wurden zwei Dur-Tonleitern aufgenommen, die nur einen Halbton auseinander liegen. Diese wurden über zwei Oktaven gespielt.

Um die Musikalität in die Analyse einzelner Töne mit einfließen zu lassen, wurde eine kurze Melodie aufgenommen. Der traditionelle Andachtsjodler [Fan80] (Abb. 4.1) eignet sich dazu gut. Die langsame und getragene Melodie wurde in eine Tonart transponiert, die auf den Blechblasinstrumenten weich und rund klingt. Es wurde für die transponierenden B-Instrumente F-Dur gewählt – klingend Es-Dur.

Abbildung 4.1.: Andachtsjodler in F-Dur, am B-Instrument erklingt Es-Dur

4.1.1. Aufnahme Cornet

Der Musiker¹ wurde mit dem Instrument so in der Mikrofonkugel positioniert, dass sich der Schalltrichter des Instrumentes möglichst genau im Kugelzentrum befindet. Der Mittelpunkt kann als Ausrichtungshilfe mit drei Laserpointern markiert werden. Zur Positionierung wurde ein Drehstuhl so auf dem Gitterrost platziert, dass sich der Körper des Musikers hinter der Kugelmitte befindet. Abb. 4.2 zeigt den spielenden Musiker in der Mikrofonkugel und die Richtungsdefinition des Instrumentes.

Die Höhe des Schalltrichters betrug während der Aufnahmen 135 cm und war damit auf der Höhe des Kugelmittelpunktes. Der Schalltrichter wurde auf eine definierte Achse ausgerichtet.

Der aufgenommene Tonumfang des Cornets umfasst alle Halbtöne zwischen dem klingenden f
 und dem klingenden b".

(a) Musiker in der Mikrofonkugel

(b) Richtungsdefinition des Cornets

Abbildung 4.2.: Musiker in der Mikrofonkugel mit dem Cornet

 $^{^1\}mathrm{Danke}$ an Silvio Rether für die Aufnahmen mit dem Cornet und der Trompete
4.1.2. Aufnahme Trompete

Die Aufnahmen mit der Trompete verliefen analog zu den Aufnahmen des Cornets. Die Aufnahmen konnten mit gleicher Schalltrichterhöhe genau im Kugelmittelpunkt gemacht werden. Abb. 4.3 zeigt den spielenden Musiker in der Mikrofonkugel mit der Richtungsdefinition der Trompete.

Es liegen 64-Kanal Aufnahmen des Andachtsjodlers und eine chromatische Tonleiter über den gesamten Tonraum des Instrumentes vor.

Für die Trompete wurden ebenfalls Samples für einen Tonumfang von klingend f
 bis \mathbf{b}'' aufgenommen.

(a) Musiker in der Mikrofonkugel

(b) Richtungsdefinition der Trompete

Abbildung 4.3.: Musiker in der Mikrofonkugel mit der Trompete

4.1.3. Aufnahme Posaune

Die Aufnahmen mit der Posaune² verliefen ebenfalls analog zu den Aufnahmen des Cornets. Die Aufnahmen konnten mit der Schalltrichterhöhe genau im Kugelmittelpunkt gemacht werden. Abb. 4.4 zeigt den spielenden Musiker im Mikrofonarray und die Richtungsdefinition der Posaune.

Es liegen 64-Kanal Aufnahmen des Andachtsjodlers und eine chromatische Tonleiter über den gesamten Tonraum des Instrumentes vor.

Für die Posaune wurden Samples für einen sehr großen Tonumfang von klingend F bis d" aufgenommen.

(a) Musiker in der Mikrofonkugel

(b) Richtungsdefinition der Posaune

Abbildung 4.4.: Musiker in der Mikrofonkugel mit der Posaune

4.2. Aufnahme Holzblasinstrumente

In der Instrumentengruppe der Holzblasinstrumente wurden für die Klarinette, die Bassklarinette, das Altsaxofon, das Tenorsaxofon und die Bassblockflöte Aufnahmen im Mikrofonarray erstellt.

 $^{^2 \}mathrm{Danke}$ an Sascha Hois für die Aufnahmen mit der Posaune

4.2.1. Aufnahme Klarinetten

(a) Musiker in der Mikrofonkugel

(b) Richtungsdefinitionen der Klarinetten

Die Aufnahmen mit der Klarinette in B und der Bassklarinette³ verliefen genau so wie die Aufnahmen mit den Blechbläsern. Zu beachten gilt, dass aufgrund der Bauform der Klarinetten kein eigentlicher Mittelpunkt des Instrumentes gefunden werden kann. So entstehen Aufnahmen in der Mikrofonkugel, die in ihrer Aufnahmeposition eventuell leicht vom Kugelmittelpunkt abweichen. Abb. 4.5 zeigt den Musiker mit der Bassklarinette und die Richtungsdefinitionen der Klarinetten. Es liegen 64-Kanal Aufnahmen einer Jazzimprovisation und jeweils eine chromatische Tonleiter über den gesamten Tonraum der Instrumente vor.

Für die Klarinette in B wurden Samples für den Tonumfang von klingend d bis d^{""} aufgenommen.

Für die Bassklarinette wurden Samples für den Tonumfang von klingend Des bis ${\rm f}''$ aufgenommen.

 $^{^3\}mathrm{Danke}$ an Siegmar Brecher für die Aufnahmen mit den Klarinetten

4.2.2. Aufnahme Saxofone

Die Aufnahmen mit dem Altsaxofon und dem Tenorsaxofon⁴ verliefen genau so wie die Aufnahmen mit den Klarinetten. Zu beachten gilt auch bei den Saxofonen, dass aufgrund ihrer Bauform wiederum kein eigentlicher Mittelpunkt der Instrumente gefunden werden kann. So entstehen auch mit den Saxofonen Aufnahmen in der Mikrofonkugel, die in ihrer Aufnahmeposition eventuell leicht vom Kugelmittelpunkt abweichen. Abb. 4.6 stellt die Richtungsdefinitionen des Alt- und des Tenorsaxofones dar.

Es liegen 64-Kanal Aufnahmen einer Jazzimprovisation und jeweils eine chromatische Tonleiter über den gesamten Tonraum der Instrumente vor.

Für das Altsaxofon in Es wurden Samples für den Tonumfang von klingend es bis as" aufgenommen.

Für das Tenorsaxofon wurden Samples für den Tonumfang von klingend B bis es" aufgenommen.

(a) Richtungsdefinition des Altsaxofones

(b) Richtungsdefinition des Tenorsaxofones

Abbildung 4.6.: Richtungsdefinition der Saxofone

 $^{^4\}mathrm{Danke}$ an Siegmar Brecher für die Aufnahmen mit den Saxofonen

4.2.3. Aufnahme Bassblockflöte

Die Aufnahmen mit der Bassblockflöte⁵ wurden auch nach dem bekannten Schema durchgeführt. Bei der Bassblockflöte kann aufgrund ihrer Größe kein eigentlicher Mittelpunkt des Instrumentes gefunden werden. So entstehen wiederum Aufnahmen in der Mikrofonkugel, die in ihrer Aufnahmeposition eventuell leicht vom Kugelmittelpunkt abweichen. Abb. 4.7 zeigt die Musikerin in der Mikrofonkugel und die Richtungsdefinition des Instrumentes.

Es liegen 64-Kanal Aufnahmen des Andachtsjodlers sowie eine chromatische Tonleiter über den gesamten Tonraum der Flöte vor.

Für die Bassblockflöte wurden Samples für den Tonumfang von klingend f
 bis f" aufgenommen.

(a) Musikerin in der Mikrofonkugel

(b) Richtungsdefinition der Bassblockflöte

 $^{^5 \}mathrm{Danke}$ an Juliane Kollmann für die Aufnahmen mit der Bassblockflöte

4.3. Aufnahme Streichinstrument

Die Aufnahmen mit dem Violoncello⁶ wurden auch nach dem bekannten Schema durchgeführt. Aufgrund der Größe des Cellos kann kein eigentlicher Mittelpunkt des Instrumentes definiert werden. Der Korpus des Instrumentes wurde so genau wie möglich in der Mitte des Mikrofonarrays positioniert. So entstanden wiederum Aufnahmen in der Mikrofonkugel, die in ihrer Aufnahmeposition eventuell leicht vom Kugelmittelpunkt abweichen. Abb. 4.8 zeigt die spielende Musikerin im Mikrofonarray und die Richtungsdefinition des Instrumentes.

Es liegen 64-Kanal Aufnahmen des Andachtsjodlers und eine chromatische Tonleiter über zwei Oktaven des Violoncellos vor.

Für das Cello wurden Samples für den Tonumfang von klingend E bis f' aufgenommen.

(a) Musikerin in der Mikrofonkugel

(b) Richtungsdefinition des Cellos

Abbildung 4.8.: Musikerin in der Mikrofonkugel mit dem Violoncello

 $^{^6\}mathrm{Danke}$ an Magdalena Rust für die Aufnahmen mit dem Cello

5. Analyse

Die nachfolgenden Abschnitte beschreiben die Auswertung der Messungen. Die Ergebnisse werden diskutiert und grafisch dargestellt.

5.1. Frequenzspektrum aus vier Richtungen

Da sich der Gesamtklang eines aufgenommenen Instrumentes aus der Summe aller Ereignisse an den einzelnen Mikrofonen zusammensetzt, werden im Folgenden zuerst vier ausgewählte Punkte auf der Kugel betrachtet.

Es wird in vier Richtungen das Frequenzverhalten des Cornets untersucht. Abbildung 5.1 zeigt das Instrument mit den eingezeichneten Richtungsachsen.

Abbildung 5.1.: Analyse der Frequenzspektren des Cornets in allen Raumrichtungen

Es ist zu erwarten, dass in positiver x-Richtung die Ausbreitung der harmonischen Teiltöne am ausgeprägtesten ist.

Als Analysematerial diente der Andachtsjodler (Abb. 4.1). Davon wurde aus dem vierten Takt das klingende g' mit einem Hann Fenster herausgeschnitten und analysiert. Eine n-Punkt DFT mit gleicher Fensterlänge diente zur Berechnung des Frequenzspektrums.

In Abbildung 5.2 ist zu erkennen, dass das Cornet in positiver x-Richtung (a) wie erwartet am stärksten abstrahlt. Es sind 6 harmonische Teiltöne leicht erkennbar. In den anderen Raumrichtungen sind aufgrund der starken Richtwirkung des

Abbildung 5.2.: FFT des g $^\prime$ aus dem Andachtsjodler, gespielt mit dem Cornet

Cornets die Teiltöne abgeschwächt vorhanden. In y-Richtung (b), also seitlich zum Instrument, liegen immer noch 6 Teiltöne über 20 dB. In z-Richtung (c), also vom Instrument aus gesehen nach oben, kommen deutlich weniger Teiltöne im Gesamtklang vor als in Abstrahlrichtung des Schalltrichters. So beinhaltet der Cornetklang in z-Richtung neben dem Grundton noch drei weitere Teiltöne, die über 20 dB liegen. Fünf Teiltöne sind hinter dem Instrument, in negativer x-Richtung (d), zu erkennen.

5.2. Teiltöne im Frequenzbereich

Das gleichschwebend temperierte g' weist bei einer Grundstimmung von 443 Hz eine Frequenz von 443 Hz $\cdot 2^{-2/12} = 394.67$ Hz auf. Im Vergleich zur reinen Stimmung 443 Hz $\cdot \frac{4}{3} \cdot \frac{4}{3} \cdot \frac{1}{2} = 393.78$ Hz entsteht schon beim Grundton eine Differenz von 0.89 Hz, die nur von unterschiedlichen Stimmungen hervorgerufen wird. Dieser Unterschied ist für ein geschultes Ohr bereits hörbar.

Die harmonischen Teiltöne sind ganzzahlige Vielfache der Frequenz des Grundtones. In Abbildung 5.2 erkennt man, dass die Teiltöne des Cornets, genau wie erwartet, als Vielfache der Grundtonfrequenz auftreten. Eine Schwankung der Grundfrequenz

$$f_{Teilton} = n \cdot f_{Grundton}$$

wirkt sich somit in den Teiltönen als ganzzahliges Vielfaches der Frequenzänderung aus.

Das in den Aufnahmen gespielte g' weist eine Frequenz von 389 Hz auf und ist damit um 5.6 Hz zu tief gegenüber der temperierten Stimmung von 443 Hz. Diese Abweichung von nur

$$1200 \cdot log_2 \frac{394.67 \text{ Hz}}{389 \text{ Hz}} = 25 \text{ Cent}$$

in der Stimmung stellt kein Problem für die weitere Analyse dar.

5.3. Räumliche Darstellung von Abstrahlungsmustern

Für alle folgenden Darstellungen von räumlichen Abstrahlungsmustern dient zur Phaseninterpretation Abbildung 5.3 als Farbreferenz.

Alle nachfolgenden räumlichen Abbildungen von Abstrahlungsmustern stellen einen Dynamikbereich von 30 dB dar, wobei jedes Abstrahlungsmuster auf 0 dB normiert wird. Konzentrische Kreise in -3 dB Abstufung um die Achsen bilden eine Skalierung des Dynamikbereiches. Der äußerste Ring kennzeichnet die Normierung von 0 dB.

Abbildung 5.3.: Farbreferenz der Phaseninformation für alle farbigen Abstrahlungsmuster

5.3.1. Räumliche Darstellung eines Grundtones

Die nachfolgende Abbildung 5.4 stellt die räumliche Ausbreitung des Grundtones g' in einem 3D-Richtplot dar. Die Achsen sind farblich gekennzeichnet, wobei die x-Achse *orange*, die y-Achse *grün* und die nach oben zeigende z-Achse *blau* eingefärbt wurde.

Aus dieser Perspektive ist zu erkennen, dass die Grundfrequenz des g' keine allzu starke Richtwirkung aufweist. Die Abstrahlung rund um das Cornet scheint in alle Richtungen ähnlich ausgeprägt. Der Schalltrichter des Cornets beeinflusst die Abstrahlrichtung in diesem Frequenzbereich noch nicht stark. Da das gesamte Instrument schwingt, breitet sich der Schall auch hinter dem Instrument homogen aus. Zu erkennen ist die entgegengesetzte Phasenlage. Nach vorne wird die negative Phasenlage blau eingefärbt, in negativer x-Richtung wird eine positive Phasenlage rot dargestellt. Verantwortlich dafür ist die Geometrie des Blechblasinstrumentes. So strahlt der Schalltrichter des Cornets in x-Richtung mit positiver Phase, in die entgegengesetzte Richtung werden die Longitudinalwellen mit negativer Phase abgestrahlt.

Wenn die gleiche Darstellung des g' nun von oben (Abb. 5.5), also aus der z-Richtung betrachtet wird, erkennt man, dass schon die Grundfrequenz des g' leicht gerichtet abgestrahlt wird. In positiver x-Richtung, also in Spielrichtung, ist eine bauchförmige Abstrahlung zu sehen. Hinter dem Instrument ist der Pegel deutlich abgeschwächt, einerseits durch die Richtungsbeeinflussung durch den Schalltrichter, andererseits durch die Absorption des Schalles am Körper und der Kleidung des Musikers. Von oben ist auch die Phasenlage deutlicher ersichtlich: Nach hinten strahlt zum Messzeitpunkt eine positive Phase, nach vorne (in x-Richtung) eine negative (blau).

Abbildung 5.4.: Abstrahlung der Grundfrequenz des g' bei 389 Hz, gespielt auf dem Cornet, seitliche Ansicht

Abbildung 5.5.: Abstrahlung der Grundfrequenz des g' bei 389 Hz, gespielt auf dem Cornet, Ansicht von oben

5.3.2. Räumliche Darstellung von Teiltönen

In nachfolgender Tabelle 5.1 werden die harmonischen Teiltöne des Grundtones g' räumlich dargestellt. In den ersten zwei Spalten stehen die Teiltonnummer und die entsprechenden Frequenzen, daneben wird der Teilton dargestellt. Um einen besseren Eindruck des Abstrahlungsmusters zu bekommen, wird der Teilton sowohl seitlich als auch von oben (aus der z-Richtung) abgebildet.

Die Nummerierung der Teiltöne beginnt mit dem Grundton bei 1. Der Grundton entspricht also dem ersten Teilton. Der zweite Teilton weist somit die doppelte Frequenz des Grundtones auf.

In den Darstellungen ist schön zu erkennen, dass nicht nur der Grundton eine Richtwirkung aufweist, sondern auch alle dazugehörigen Teiltöne in ihrer Ausbreitung gerichtet sind. Je höher die Frequenz eines Teiltones wird, desto komplexer wird auch das Abstrahlungsmuster. Der zweite Teilton weist großzügige Formen auf, doch schon der dritte Teilton wird wolkenartiger und komplexer in seiner Form. Auffallend ist, dass sich der Klang des Cornets bei allen Teiltönen nach vorne (in positiver x-Richtung) homogener ausbreitet als nach hinten. Durch die Richtwirkung des Schalltrichters und auch durch die Dämpfung am Musiker gestalten sich die Abstrahlungsformen hinter dem Instrument keulenartiger, während nach vorne rundere Formen entstehen.

Teilton	Frequenz	seitlich	von oben
4	1556 Hz		
5	1945 Hz		
6	2334 Hz		
7	2723 Hz		

5. Analyse

Tabelle 5.1.: Räumliche Darstellungen der ersten neun Teiltöne des g'.

5.4. Teiltöne gleicher Frequenz

Nachfolgend werden Teiltöne untersucht, die von unterschiedlichen Grundtönen stammen, aber dennoch die gleiche Frequenz aufweisen. Die Frequenzverhältnisse dieser Teiltöne basieren auf den Frequenzverhältnissen, die auch ihre Grundtöne zueinander haben. Untenstehende Tabelle 5.2 zeigt die Frequenzverhältnisse der Grundtöne zueinander an. Es werden die Frequenzverhältnisse der reinen Stimmung verwendet.

Es ist nun leicht zu erkennen, dass auch die Frequenzverhältnisse zweier Teiltöne von jenen der beiden Grundtöne abhängig sind. Genau dieses Frequenzverhältnis findet man auch wieder, wenn zwei Teiltöne gleicher Frequenz gesucht werden. Betrachtet man die Töne c' und g', also eine reine Quinte mit dem Verhältnis 3/2, so stellt man fest, dass der dritte Teilton des c' und der zweite Teilton des g' eine Frequenz von 785 Hz aufweisen.

Aus vorangegangenem Absatz ergibt sich, dass die Nummerierung der Teiltöne beim Grundton beginnt. Der Grundton entspricht also dem ersten Teilton.

Frequenzverhältnis	Intervall
1	Prime
16/15	kleine Sekunde
9/8	grosse Sekunde
6/5	kleine Terz
5/4	grosse Terz
$\frac{4}{3}$	reine Quarte
7/5	verminderte Quinte
$^{3/2}$	reine Quinte
8/5	kleine Sexte
$\frac{5}{3}$	grosse Sexte
16/9	kleine Septime
15/8	grosse Septime
16/8	Oktave

5. Analyse

 Tabelle 5.2.:
 Frequenzverhältnisse und Intervalle

5.4.1. Teiltonreihen

In Abbildung 5.6 wird der musikalische Ansatz zum Erkennen von Teiltönen gleicher Frequenz verfolgt. Die Teiltonreihe, ausgehend vom großen C, bildet die Basis im untersten Notensystem. Die eingekreisten Zahlen unter den Systemen bezeichnen den n-Teilton der Teiltonreihe.

In darüberstehenden Systemen stehen die Teiltonreihen aufbauend auf anderen Grundtönen. Deren Frequenzverhältnisse zur Teiltonreihe in C sind links neben der Akkolade in eckigen Klammern dargestellt (vgl. Tab. 5.2).

Um zu zeigen, dass zwei Teiltonreihen einen gemeinsamen Ton aufweisen, wurden deren Anfangspunkte gegeneinander verschoben, sodass gleiche Töne über der Grundteiltonreihe stehen. Gleiche Töne sind durch eine vertikale Verbindungslinie bezeichnet.

Es ist bemerkenswert, dass in den rund umrahmten Zahlen zweier Teiltonreihen mit gemeinsamem Ton genau wieder jene Frequenzverhältnisse zu finden sind, die auch das Intervall der Grundtöne der Teiltonreihen bilden.

Für den 11. und den 13. Teilton gibt es keine passenden Teiltöne mit gleicher Frequenz, da diese Zahlenverhältnisse in der reinen Stimmung (vgl. Tab. 5.2) nicht vorkommen.

5. Analyse

Dec [16:15	•		h.a.	-	20	<u> </u>		0	Þo	20	-0-	0	•	20	₽ <u>₩</u>	(¢) <u>⊕</u> <	F
Des [10:15		של	••	3	4	9 0	0	0	8	0	<u></u>		(D)	13	(14)	(15)	=
		0	٢	9	G	9	0	U	0	Ø	0	0			•• • •	te	
H [15:8]	€							0	0	6	0	0	10	•			
								1	2	3	4	5	6	7	8	9	
									Ð	^		0	0	م ر	Ð	ō	
c [14:7]	9							o	_	<u>6</u>	o	~	_				=
								(1)	(2)	(3)	(4)	(5)	6	(7)	(8)	(9) •	
c [12:6]	9 :						0	•	6	0	o	•	ρσ	<u> </u>	<u> </u>	=	E
							1	2	3	(4)	(5)	6	0	8	9	(10)	\square
							•		_		0	þo	<u>•</u>	<u>o</u>	€	<u>‡0</u>	
c [10:5]	9:					0		6.	0	0							E
						1	2	3	4	5	6	7	8	9	(10)	(1)	
D [9:8]	- 9 :			0	Ð	2				0	- 10	‡0	÷	Q	<u>•</u>	(‡) <u>⊕</u>	L
D [9.0]		ᢦ	0	3	(4)	9 ‡o ⊙	 	0	8	9	(0)	Ŵ	12	13	(14)	(15)	F
		0	U	U	Ú.	þe		0	0		ho		•	Q	₽ <u>₽</u>	<u>e</u>	
As [8:5]	9:			10	• •			% ° 5	20	20	10						E
				1	2	3	4	5	6	0	8	9	10	(1)	(12)	13	
				ha						20	Þø	þo	<u>•</u>	2	2€	20	
Ges [7:5])):		b 0		2 ho	20) 0 <)0									E
			1	2	3	4	5	6	7	8	9	10	(1)	(12)	(13)	14	
D. (C.D.[.		-	20	<u> </u>				->0	-0	0	•	ρo	₫	<u>0</u>	(i) <u>o</u>	
E8 [0:5]		be	0	(}		%	6	9	9		<u></u>	(1)	6		6	
		0	٢	0	G	9	0	\bigcirc	0	Ø				•	•••	() () ()	
E [5:4]	9≔		0		2	0	•	Þo	0	•	0	₽↔		_	_		E
		•	2	3	4	5	6	7	8	9	(10)	(1)	(12)	(13)	(14)	(15)	
				e٩	,					0	Ð	¢Ω	e	Ð	° ⊕	¢€	
F [4:3])	0	0	(9 0	o	0										
		1	2	3	4	5	6	0	8	9	(10)	(1)	12	13	(14)	(15)	
G [3:2]	ગઃ		• <u>5</u>	2		0	•	Þo	0	•	٥	₽ <u>₽</u>	<u>0</u>	×	į ⊧o	_ ¢o	
- (,		0	0	9 3	• (4)	<u></u> (5)	୍ତ	0	(8)	0	(10)	M	(12)	(13)	9 (14)	13	
		0				0	0	20	•	٩			0	•	20	(ho	
c [2:1]	9 :	o <	- (6.0	0	0	0					≬ ‡•	0	•			
		1	2	3	4	5	6	7	8	9	10	II	(12)	(13)	(14)	(15)	
	0.			•	,								•	> مرا	(b)Q <	<u></u> •	!
C [1]	1	o <		(9 o<	•		<u> </u>	- 0 <		- 1 1 -	-	-	-			=
	•	(2)	(3)	4	5	6	7	8	9	10	(11)	(12)	(13)	(14)	(15)	(16)	

Abbildung 5.6.: Teiltonreihen verschiedener Grundtöne — Teiltöne gleicher Frequenz werden durch vertikale Verbindungen gekennzeichnet

5.4.2. Zugeordnete Teiltöne

Im Folgenden wird eine neue Nomenklatur eingeführt, um einen Teilton seinem Grundton zuzuordnen:

 ${}^{n\text{-Teilton}}_{\text{m Hz}}G = \begin{cases} \text{der } n\text{-Teilton} \\ \text{stammt vom Grundton } G \text{ ab} \\ \text{und weist eine Frequenz m auf} \end{cases}$

Als Beispiel wird der dritte Teilton des c' als ${}^{3}_{785}$ geschrieben.

5.4.3. Tabelle von Teiltönen mit gleicher Frequenz

Um in einem späteren Abschnitt die Abstrahlungsmuster zweier Teiltöne vergleichen zu können, muss erst einmal bekannt sein, welche Teiltöne eine gleiche Frequenz aufweisen.

Zum Auffinden der Frequenzen wurde wieder wie oben auf die reine Stimmung zurückgegriffen. Mit den Zahlenverhältnissen aus Tabelle 5.2 können auch übereinstimmende Teiltöne gefunden werden.

Nachfolgende Tabelle 5.3 stellt 16 Teiltöne eines Grundtones dar und ordnet diesen einen Teilton gleicher Frequenz eines anderen Grundtones zu.

Um die Anwendung der Tabelle zu verdeutlichen dient ein Beispiel:

Gesucht ist ein Teilton, der die gleiche Frequenz aufweist wie der dritte Teilton des f'.

In der Spalte *Grundton* wird die Zeile des f' ausgewählt. In der Spalte 3 (für den dritten Teilton) auf Zeilenhöhe des f' steht nun ein ${}^{2}c''_{1047}$. Der zweite Teilton des c'' hat also die gleiche Frequenz, nämlich 1047 Hz, wie der dritte Teilton von f' $({}^{3}f'_{1047})$.

Die Tabelle wurde für Grundtöne der eingestrichenen Oktave erstellt. Selbstverständlich kann sie durch einfache Anpassung aller Oktavangaben leicht in ihrem Tonumfang erweitert werden.

	$_{36}^{\rm es'}$,1, ;;)3 30		f' 33	1S/ 31	' ^{b0} 0	'S' 9'	ر 8(, <u>, ,</u>	12 12 12	// []	3SS"/ 72
16	$^{15}_{418}$	$^{15}_{446}$	$\substack{15\\470}$	$^{15}_{502}$	$\frac{15}{523}$	$^{15}_{558}$	$\frac{15}{586}$	15 _a 627	$^{15}_{669}$	$\frac{15}{697}$	$\frac{15}{744}$	$^{15}_{784}$	$^{15}_{837}$
10	$^{8}_{3924}$	${}^{8}_{0}{}^{\prime\prime}_{0}{}^{\prime\prime}_{186}$	$^{8}_{4415}^{\rm des}^{\prime\prime}$	$^{8}_{4709}$	$^{8}_{\rm eS}{}^{\prime\prime}_{\rm 4905}$	${}^{8}_{e''}{}^{\prime\prime}_{5233}$	⁸ f'' 5494	$^8\mathrm{fis}''_{5887}$	8g'' 6279	$^8_{\rm AS''}_{6541}$	$^{8}_{8a''}_{6977}$	$^{8}_{7358}$	$^{8}_{7849}$
14	7 c'' 3663	$^7\mathrm{des}''_{3907}$	$^{7}_{4121}$	$^{7}_{\rm 4395}_{\rm 4395}$	$\substack{7\\4578}$	$^7f_{484}^{\prime\prime}$	$^7\mathrm{fis}''$	$^7\mathrm{g}''_{5494}$	$^{7}_{\rm 3860}$	$^{7}_{ m a''}_{ m 6105}$	$^{7}\mathrm{b}''_{6512}$	$^{7}\mathrm{h}''_{6868}$	7 _C ''' 7326
13													
12	$^{6}_{ m C''}_{3140}$	$^6\mathrm{des}''_{3349}$	$^{6}_{3532}$	$^{6}_{\mathrm{es}^{\prime\prime}}_{3767}$	$^{6}_{ m e''}_{3924}$	$^{6}_{4186}$	$^{6}\mathrm{fis}_{4395}^{\prime\prime}$	$^6g'_{4709}$	$^{6}_{ m BaS}^{\prime\prime\prime}_{ m 5023}$	$^{6}a''_{5233}$	$^{6}\mathrm{b}''_{5581}$	$^{6}\mathrm{h}''_{5887}$	6 _C ''' 6279
11													
10	${}^{5}{}_{ m C}''$ 2616	$^5_{2791}_{2791}$	$^5\mathrm{d}''$ 2943	$_{3140}^{5}$	${}^{5}_{e''}$	5f'' 3488	$^5\mathrm{fis}''_{3663}$	${}^{5}{}^{g''}_{3924}$	$^5_{ m AS}^{ m M}_{ m 4186}$	${}^{5}a''$ 4360	${}^{5}_{4651}$	$^{5}_{4905}$	5 _C /// 5233
6	$^{8}_{2355}$	$^{8}_{\rm eS}{}^{\prime}_{\rm 2512}$	${}^{8}_{6}{}^{\prime}_{2649}$	$^{8}_{2826}$	$^8\mathrm{fis}'$ 2943	⁸ g' 3140	$^{8}_{3296}$	⁸ a' 3532	$^{8}_{3767}$	$^{8}_{3924}$	${}^{8}_{0}{}^{\prime\prime}_{4186}$	$^{8}_{4415}^{\rm des}^{\prime\prime}$	$^{8}_{4709}$
×	$^5_{ m as}'_{ m 2093}$	$^{5}a'_{2233}$	$^5\mathrm{b}'_{2355}$	$^5\mathrm{h}'$ 2512	${}^{5}_{c''}_{2616}$	$^5_{2791}$	$^5\mathrm{d}''_{2930}$	$^5_{\mathrm{es}''}_{3140}$	${}^{5}{\rm e}''$ 3349	5f'' 3488	$^5\mathrm{fhs}''_{3721}$	⁵ g'' 3924	$^5_{ m AS}{}^{\prime\prime}_{ m 4186}$
-1	$^5\mathrm{fhs}'_{1831}$	${}^{5}_{1953}$	$^5_{ m aS}$	$^{5}a'_{2198}$	$^5\mathrm{b}'$ 2289	$^5\mathrm{h}'$ 2442	${}^{5}_{2564}$	$^5_{2747}$	$^{5}\mathrm{d}''_{2930}$	$^5_{\mathrm{es}^{\prime\prime}}$ 3052	${}^{5}_{6}''$ 3256	5f'' 3434	$^5\mathrm{fis}''$
9	$^5_{\rm es'}_{\rm 1570}$	${}^{5}_{0}{}^{\prime}_{1674}$	${}^{5}_{1766}$	$^5\mathrm{fis}'_{1884}$	${}^{5}_{1962}$	$^5_{ m as'}$	$^{5}_{2198}$	$^5\mathrm{b}'$ 2355	$^5\mathrm{h}'_{2512}$	${}^{5}{}_{ m C}''$ 2616	$^5_{2791}$	$^5\mathrm{d}''$ 2943	${}^{5}_{\mathrm{es}''}$
Ŋ	${}^{4}_{1308}$	${}^4_{1395}$	$^4_{1472}$	${}^4\mathrm{g}'$ 1570	$^4_{1635}$	$^4\mathrm{a'}_{1744}$	${}^4{}^{\rm b'}_{1831}$	$^4_{1962}$	${}^{4}_{2093}$	$^4_{2180}\mathrm{des}''_{2180}$	$^4\mathrm{d}''$ 2326	$^{4}_{\rm es''}_{2453}$	${}^4_{ m e''}_{2616}$
4	${}^3f'_{1047}$	$^3\mathrm{fhs}'$	³ g' 1177	$^3_{ m aS}{}'_{ m 1256}$	$^{3}a'_{1308}$	$^{3}\mathrm{b}'_{1395}$	$^{3}_{1465}$	${}^{3}_{ m C''}_{1570}$	$^{3}_{1674}^{\mathrm{des}^{\prime\prime}}$	$^{3}_{1744}$	$^{3}_{\mathrm{es}''}_{1860}$	${}^{3}_{e''}_{1962}$	3 f'/ 2093
co	2g' 785	$^2_{ m as7}$	$^{2}{ m a'}_{883}$	$^2\mathrm{b}'_{942}$	$^2\mathrm{h}'_{981}$	${^2}{_{ m C}}''$ 1047	$^2\mathrm{des}''_{1099}$	$^{2}\mathrm{d}''_{1177}$	$^{2}_{\mathrm{eS}''}_{\mathrm{1256}}$	${}^2_{e''}_{1308}$	${}^{2}\mathrm{f}''$ 1395	$^2_{\rm fhs''}_{1472}$	${}^{2}{}^{g''}_{1570}$
5	${}^{1}_{523}$	$^{1}_{558}^{\rm des''}$	$^1_{589}$	$^{1}_{628}^{\circ\prime\prime}$	${}^{1}_{654}$	$^{11}_{698}$	$^{1}_{733}^{1}$	$^{1}\mathrm{g}''_{785}$	$^{1}_{837}^{1}$	$^{1}_{872}$	$^{1}\mathrm{b}^{\prime\prime}_{930}$	$^{1}_{981} \mathrm{h}^{\prime\prime}_{981}$	${1 \atop 1047}^{1}$
n-Teilton Grundton	$^{1}_{262}$	$^{1}_{279}$	$^{1}_{294}$	$\begin{smallmatrix}1\\\mathrm{es'}\\314\end{smallmatrix}$	${}^{1}_{327}$	${}^{1}_{349}$	$^{1}\mathrm{fhs'}_{366}$	1 ^g / 392	$\begin{array}{c} 1 \\ 4.19 \\ 4.19 \end{array}$	${}^{1}_{436}$	${}^{1}\mathrm{b}'_{465}$	$^{1}_{491}$	1 _C '/ 523

46

Da in der Praxis mit natürlichen Stimmungsschwankungen gegenüber der reinen Stimmung zu rechnen ist, wurde für die Anwendung in Matlab ein Skript programmiert, das die tatsächlichen Frequenzen der Grundtöne sucht und aufgrund dieser die Frequenzen der Teiltöne ermittelt. Damit entsteht ein Toleranzbereich um die eigentliche Teiltonfrequenz, in dem sich zwei Teiltöne gleicher Frequenz bewegen dürfen.

5.4.4. Korrelation zweier Teiltöne

Durch die Kenntnis der Frequenzen aller Teiltöne wird es nun möglich, zwei Teiltöne von unterschiedlichen Grundtönen stammend mit theoretisch gleicher Frequenz genauer zu untersuchen. Nachfolgend werden ${}^{2}c'_{522}$ und ${}^{3}f'_{529}$ des Cornets grafisch dargestellt und optisch miteinander verglichen.

Tabelle 5.4.: Räumliche Darstellungen des 3. Teiltones von f' und des zweiten Teiltones
von c', jeweils seitlich und von oben gesehen

Die optische Ähnlichkeit der beiden Abstrahlungsmuster aus Tabelle 5.4 ist frappierend. Es sei noch einmal darauf hingewiesen, dass die beiden gewählten Teiltöne von unterschiedlichen Grundtönen stammen und eine, bedingt durch Intonationsschwankungen, sehr ähnliche Frequenz aufweisen. Natürlich bestehen Phasenunterschiede in den Darstellungen, die jedoch auf die Ausbreitungsform keine Auswirkung haben.

Erkenntnis

Für Blechblasinstrumente zeichnet sich ab: Offensichtlich hängt die Abstrahlungsform eines Teiltones von der Bauform des untersuchten Instrumentes und der Frequenz ab. Es spielt keine Rolle von welchen Grundtönen die Teiltöne stammen. Gleiche Frequenzen rufen gleiche Abstrahlungsmuster hervor.

5.4.5. Korrelationskoeffizient

Um eine abstraktere Vergleichsmöglichkeit zweier Abstrahlungsmuster zu erhalten, wird der Korrelationskoeffizient $c_{(12)}$ eingeführt (vgl. [Mor06, S.127]).

Zwei Abstrahlungsmuster in Spherical Harmonics Zerlegung haben die Form

$$g^{(1)}(\boldsymbol{\theta}) = \sum_{n,m} \gamma_{nm}^{(1)} Y_{nm}(\boldsymbol{\theta})$$
$$g^{(2)}(\boldsymbol{\theta}) = \sum_{n,m} \gamma_{nm}^{(2)} Y_{nm}(\boldsymbol{\theta}).$$

Normiert man die Abstrahlungsmuster auf die Einheitsenergie auf der Kugel, so erhält man in Vektorschreibweise

$$rac{oldsymbol{\gamma}^{(1)}}{\|oldsymbol{\gamma}^{(1)}\|} \ rac{oldsymbol{\gamma}^{(2)}}{\|oldsymbol{\gamma}^{(2)}\|}.$$

Es ergibt sich dann für den normierten Korrelationskoeffizienten folgende Beziehung

$$c_{(12)} = \frac{\boldsymbol{\gamma}^{(1)\mathrm{H}}\boldsymbol{\gamma}^{(2)}}{\sqrt{(\boldsymbol{\gamma}^{(1)\mathrm{H}}\boldsymbol{\gamma}^{(1)})(\boldsymbol{\gamma}^{(2)\mathrm{H}}\boldsymbol{\gamma}^{(2)})}}.$$

5.4.6. Korrelationskoeffizienten von Abstrahlungsmustern

Wie schon in Abschnitt 5.4.4 grafisch gezeigt, werden nun für alle Teiltöne des f eines Cornetklanges korrespondierende Teiltöne gesucht. In nachfolgender Tabelle 5.5 werden zwischen den Teiltönen des f und den Teiltönen mit gleicher Frequenz der Korrelationskoeffizient $c_{(12)}$ berechnet.

Auch im mathematischen Sinne ist durch den Korrelationskoeffizienten ersichtlich, dass Teiltöne gleicher Frequenz eine erstaunlich hohe Ähnlichkeit zueinander aufweisen. Je genauer die Teiltonfrequenzen zueinander passen, desto größer wird auch die Korrelation zwischen deren Abstrahlungsmustern.

Die Abweichung der Frequenzen für hohe Teiltöne wird durch die natürliche Schwankung der Grundfrequenz größer. Schon eine kleine Ungenauigkeit der Stimmung im Grundton ver n-facht sich in den Teiltönen. Dies wirkt sich sofort auch auf den Korrelationskoeffizienten aus. Es ist erkennbar, dass für nicht genau zusammenpassende Frequenzen auch der Korrelationskoeffizient kleiner wird.

5.5. Korrelierende Abstrahlungsmuster

Eine Darstellung von Korrelationskoeffizienten in Tabellenform ist für eine kleine Anzahl von Koeffzienten übersichtlich und genau. Analysiert man aber einen größeren Tonumfang, fallen große Datenmengen an, die in Tabellenform nicht mehr interpretierbar sind.

Um die Korrelationskoeffizienten von Abstrahlungsmustern eines Instrumentes über den ganzen Tonraum auszuwerten, wird eine grafische Darstellung entwickelt. (vgl. [BPS08])

Als Farbreferenz für alle nachfolgenden Graustufenplots dient der Farbbalken in Abbildung 5.7. Je dunkler ein Punkt in der Grafik dargestellt wird, desto stärker ist die Korrelation der Abstrahlungsmuster zweier Frequenzen. Die Koeffizienten verglichener Abstrahlungsmuster werden in den folgenden Diagrammen als einzelne Graustufenpunkte dargestellt.

Abbildung 5.7.: Farbreferenz der Korrelationskoeffizienten für alle Graustufenplots

$\operatorname{Teilton}_{(1)}$	$\operatorname{Teilton}_{(2)}$	Korrelation $c_{(12)}$
$^{2}_{355}$	$^{1}_{350}$ f'	0.9702
$^{3}_{533}$	$^{2}_{533}$ c'	0.9991
$^{4}{}^{f}_{711}$	³ b 707	0.9936
$^{5}_{888}$	$^{4}_{888}$	0.9981
$^{6}{}^{\rm f}_{ m 1066}$	$^{5}_{1056}$	0.9746
$^{7}_{1244}$	$^{5}_{1258}$	0.9287
$^{8}{ m f}_{1421}$	$^{5}_{1393}$ des'	0.8685
$^{9}{ m f}_{1599}$	$^{8}{ m g}_{1593}$	0.9846
$^{10}_{1776}$	$^{5}{}^{f'}_{1750}$	0.9281
$^{12}{}^{ m f}_{ m 2132}$	${}^{6}f'_{2099}$	0.8822
$^{14}_{2487}$	${}^{7}{}^{f'}_{2449}$	0.7744
$^{15}{ m f}_{ m 2665}$	$^{8}e'_{2649}$	0.8112
$^{16}_{2842}$	$^{15}_{2826}$ fis	0.7810

5. Analyse

Tabelle 5.5.: Korrelation von Teiltönen mit gleichen Frequenzen, die von unterschiedlichen Grundtönen stammen

5.5.1. Korrelierende Abstrahlungsmuster frequenzsortiert

Folgendes Beispielbild (Abb. 5.8) steht zum besseren Verständnis der nachfolgenden Plots. Es wurden alle Halbtöne zwischen c und c' einer Posaune bis zu ihrem 3. Teilton analysiert.

Um die Korrelationskoeffizienten der Abstrahlungsmuster darzustellen, wird in einer Matrix der Koeffizient zweier Teiltöne als Graustufenpunkt eingetragen. Der Plot beginnt links unten mit dem Teilton der niedrigsten Frequenz. Für diese wird die Ähnlichkeit mit allen anderen analysierten Teiltönen in einer Spalte und Reihe aufgetragen. In den nachfolgenden Spalten werden die Teiltöne nach ihrer Frequenz sortiert und auf den Achsen des Plots aufgetragen. Teiltöne gleicher oder aufeinanderfolgender Frequenz liegen damit nebeneinander auf den Achsen. Die Hauptdiagonale des Plots weist die Korrelation der Teiltöne mit sich selber auf – es entstehen Korrelationen von 1, die mit einem schwarzen Punkt dargestellt werden. Der Plot ist symmetrisch und an der Hauptdiagonale spiegelt sich das Korrelationsmuster.

Durch das Sortieren der Teiltöne nach ihrer Frequenz sind die Teiltöne auf den Achsen nicht mehr tonal geordnet. Im Beispielbild wurde die tonale Durchmischung auf der Frequenzachse grün unterlegt. Je mehr Teiltöne analysiert werden, desto komplexer wird deren tonale Durchmischung. Nur die Grundtöne bleiben in tonaler Ordnung. Anstelle einer detaillierten Achsenbeschriftung dient deshalb die Frequenz der analysierten Teiltöne.

Aus dem frequenzsortierten Korrelationsplot kann die Homogenität der Abstrahlrichtungen über einen Frequenzbereich geschätzt werden. Auch die Frequenzbreite der Ähnlichkeit von Abstrahlmustern ist aus einem frequenzsortierten Korrelationsplot ersichtlich.

Abbildung 5.8.: Beispieldarstellung eines Korrelationsplots. Analyse aller Halbtöne der Posaune, von c bis c' für die ersten 3 Teiltöne

5.5.2. Korrelierende Abstrahlungsmuster teiltonsortiert

Die analysierten Klänge aufgrund ihrer Teiltonreihenfolge zu ordnen, ist wohl die interessanteste Möglichkeit der Achsensortierung. Anhand des Plotbeispiels (Abb. 5.9) wird die Sortierung der Teiltöne erläutert.

Im Beispielplot sind die Achsen mit einer Akkolade aus vier Notensystemen beschriftet. Ein Takt in der Akkolade beinhaltet das analysierte Audiomaterial. Im Beispiel wurden die Halbtöne einer Posaune von c bis c' mit ihren vier Teiltönen analysiert. Um die Lesbarkeit zu verbessern wurde aber die Achsenbeschriftung, die im Beispiel nur zum Verständnis dienen soll, in ihrer Oktavlage transponiert.

Im ersten Takt stehen die Halbtöne einer Oktave tonal aufsteigend sortiert. Im Plot wird in diesem Ausschnitt das Korrelationsverhalten der Abstrahlungsmuster aller Grundtöne dargestellt, die im untersten System mit herkömmlichen Notenköpfen notiert sind.

Im zweiten Takt stehen die 2. Teiltöne aller Grundtöne. Sie sind im zweituntersten System mit gefüllten Flageolettnotenköpfen als Teiltöne gekennzeichnet. Das unterste System weist mit leeren Flageolettköpfen auf die Herkunft der analysierten Frequenz hin.

Die Achsensortierung folgt nun vorgegebenem Schema und kann beliebig erweitert werden. Für den 3. Teilton ist im 3. Takt das zweitoberste Notensytem reserviert, in dem wieder mit gefüllten Flageolettköpfen die Tonhöhen der analysierten Frequenzen stehen. Im untersten System wiederholen sich in leeren Notenköpfen die Hinweise auf deren Abstammung.

Auf Ordinate und Abszisse werden die Korrelationskoeffizienten als Graustufenpunkt dargestellt. (vgl. Abb. 5.7). Dadurch entsteht ein an der Hauptdiagonale symmetrischer Plot. (vgl. Abb. 5.8)

Abbildung 5.9.: Beispieldarstellung eines teiltonsortierten Korrelationsplots. Analyse aller Halbtöne der Posaune, von c bis c' für die ersten 4 Teiltöne

5.6. Analyse und Diskussion von Abstrahlungsmustern

Nachfolgend werden anhand von verschiedenen Beispielen Korrelationsplots diskutiert und analysiert. Aufgrund der großen Datenmenge können nicht alle Korrelationsplots diskutiert werden. Es werden hier einige interessante Beispiele vorgestellt.

5.6.1. Korrelationsplots Cornet

Abbildung 5.10 (a) zeigt einen frequenzsortierten Korrelationsplot für das Cornet. Es werden für alle Halbtöne innerhalb der Oktave c' bis c" einschließlich der beiden Oktavtöne deren Abstrahlungsmuster für 16 Teiltöne verglichen. Da die Achsen frequenzsortiert sind (vgl. 5.5.1), erkennt man beim Cornet eine dunkle Färbung entlang der Hauptdiagonale. Die Frequenzbreite dieser dunklen Diagonale ist groß. Für das Cornet bedeutet das, dass ähnliche Frequenzen auch zueinander ähnliche Abstrahlungsmuster hervorrufen. Es gibt kaum Ausreißer in diesem Plot. Offensichtlich ändern sich die Abstrahlungsmuster über die Frequenz nur langsam.

(a) Frequenzsortierter Korrelationsplot

(b) Teiltonsortierter Korrelationsplot

Abbildung 5.10.: Korrelationsplots über eine Oktave des Cornets – Tonraum von c' bis c'' für 16 Teiltöne

Im Anhang in Abbildung A.2.1 sind die gleichen zwei Plots vergrößert aufgeführt.

In Abbildung 5.10 (b) werden die Achsen teiltonsortiert aufgetragen (vgl. 5.5.2). Das homogene Abstrahlungsverhalten des Cornets ist auch aus dieser Darstellung ersichtlich. Sehr schön zu erkennen ist die große Ähnlichkeit von Teiltönen gleicher Frequenz (vgl. 5.4) zueinander. So entsteht für den 2. und 3. Teilton im entsprechenden Quadrat eine Nebendiagonale mit hoher Korrelation. Diese ist aber versetzt zur Hauptdiagonale des kleinen Quadrates zu erkennen. Die Verschiebung entsteht, weil Teiltöne gleicher Frequenz auf genau dieser versetzten Diagonale dargestellt werden (vgl. 5.9).

Anhand dieser Darstellung wird gezeigt, dass die in Absatz 5.4.3 vorgestellte Theorie über den gesamten Tonumfang des Cornets gilt.

Plots von weiteren Blechblasinstrumenten wie der Posaune und der Trompete zeigen, dass innerhalb dieser Instrumentengruppe das Korrelationsverhalten der Abstrahlungsmuster sehr ähnlich ist. Es ergeben sich auch für Posaune und Trompete fast gleiche Muster (vgl. A.2).

5.6.2. Korrelationsplots Posaune

Die Korrelationsplots für die Posaune, Abb. 5.11, sind ebenfalls über einen Oktavbereich für jeden Halbton von c bis c' ausgeführt, im Unterschied zum Cornet aber jeweils nur bis zum 6. Teilton.

Aus dem frequenzsortierten Plot (a) ist durch die dunkle Färbung entlang der Hauptdiagonale zu erkennen, dass die Posaune über einen weiten Frequenzbereich Teiltöne mit einander relativ ähnlichen Abstrahlungsmustern erzeugt.

Betrachtet man in Abbildung (b) den teiltonsortierten Korrelationsplot, so sieht man auch in diesem die dunklen Bereiche entlang der Haupt- und Nebendiagonalen. Dies ist ebenfalls ein Hinweis auf einander sehr ähnliche Abstrahlungsmuster.

Sehr ausgeprägt erkennbar sind in den Nebendiagonalen die Teiltöne gleicher Frequenz, die sehr stark korrelieren. So bilden die 2. und 3. Teiltöne gleicher Frequenz in Quadrat_{2,3} die erste Nebendiagonale (vgl. Abschnitt 5.5.2).

Die zweite deutliche Nebendiagonale bilden die 3. und 4. Teiltöne gleicher Frequenz in $\text{Quadrat}_{3,4}$.

In $\text{Quadrat}_{2,4}$ ist schön zu sehen, dass der vierte Teilton von c und der zweite Teilton von c' ein gleiches Abstrahlungsmuster aufweisen, das im Korrelationsplot als schwarzer Punkt erscheint. Natürlich weisen die beiden Teiltöne auch die glei-

che Frequenz auf.

Die Posaune zeigt ein für die Blechblasinstrumente typisches Abstrahlverhalten, das in den Korrelationsplots durch die deutlichen Nebendiagonalen in Plot (b) und die breite dunkle Färbung entlang der Hauptdiagonale in Plot (a) gekennzeichnet ist.

(b) Teiltonsortierter Korrelationsplot

Abbildung 5.11.: Korrelationsplots über eine Oktave der Posaune – Tonraum von c bis c' für 6 Teiltöne

5.6.3. Korrelationsplots Trompete

Die Korrelationsplots (Abb. 5.12) der Trompete sind über den gesamten Tonraum des Instrumentes für alle Halbtöne von f bis b" für jeweils 16 Teiltöne ausgeführt.

Aus dem frequenzsortierten Plot ist zu erkennen, dass entlang der Hauptdiagonale bis zu einer Frequenz von 4 kHz eine homogene schwarze Färbung entsteht. Das bedeutet, dass ähnliche Frequenzen ähnliche Abstrahlungsmuster hervorrufen. Für Frequenzen über 4 kHz nehmen die Korrelationen der Abstrahlungsmuster leicht ab. Höhere Teiltöne weisen komplexere und individuellere Abstrahlungsmuster auf.

Die drei leicht dunkleren Färbungen, die ab 4 kHz von den Achsen in Linienform in die rechte obere Ecke des Diagrammes zulaufen, deuten auf Aliasing-Fehler hin. Ab einer Frequenz von 4 kHz muss mit Aliasing gerechnet werden [Zot08, RWB07].

Aus dem teiltonsortierten Plot ist die starke Korrelation der Teiltöne gleicher Frequenz zu erkennen. Sogar sehr hohe Teiltöne gleicher Frequenz weisen in ihrem Abstrahlungsverhalten eine deutliche Ähnlichkeit zueinander auf.

(a) Frequenzsortierter Korrelationsplot (b) Teiltonsortierter Korrelationsplot

Abbildung 5.12.: Korrelationsplots über den ganzen Tonraum der Trompete – von f bis b" für 16 Teiltöne

5.6.4. Korrelationsplots Klarinette

Die Korrelationsplots (Abb. 5.13) der Klarinette sind hier über eine Oktave für den Tonraum von c' bis c" für 6 Teiltöne dargestellt. Sie sind im Vergleich zu denen der Blechblasinstrumente sehr viel unregelmäßiger. Zum physikalischen Hintergund der musikalischen Akustik der Klarinette siehe [Uni09]. Aus Plot (a) ist ersichtlich, dass bei Frequenzen um 1 kHz eine schachbrettartige Musterung auf der Diagonale entsteht. Dieses Schachbrett entsteht, weil Teiltöne nebeneinanderliegender oder gleicher Frequenz eine unterschiedliche Abstrahlform aufweisen.

Betrachtet man die Korrelationen der Grundtöne in Abbildung 5.13 (b) im Quadrat_{1,1}, so erkennt man, dass es in seiner Graustufenfärbung geteilt ist. Durch einfaches Abzählen der einzelnen Graupunkte erkennt man, dass sich die Grundtöne von c' bis gis' in ihrer Form ähnlich sind. Die Töne von a' bis c'' korrelieren ebenfalls sehr

(a) Frequenzsortierter Korrelationsplot

(b) Teiltonsortierter Korrelationsplot

Abbildung 5.13.: Korrelationsplots über eine Oktave der Klarinette – Tonraum von c' bis c" für 6 Teiltöne

gut, weisen aber kaum eine Ähnlichkeit mit den Grundtönen von c' bis gis' auf. Untersucht man die Klarinette auf deren technische Spielweise, so stellt man fest, dass beim Ton a', also genau an der Stelle wo sich das Muster ändert, die Überblasgrenze liegt [Mey95]. Damit wird gezeigt, dass sich die Abstrahlungsformen der Klarinette unterhalb, respektive oberhalb der Überblasgrenze ähnlich sind. Sie weisen zueinander jedoch kaum Ähnlichkeit auf.

Dies ist mit ein Grund, weshalb auch Teiltöne gleicher Frequenz nicht so gut korrelieren wie bei den Blechblasinstrumenten (vgl. 5.10). Da sich auch die Abstrahlungsmuster der Teiltöne an der Überblasgrenze ändern, ist nun leicht verständlich, dass bei frequenzsortierten Achsen eine Art Schachbrettmusterung auftritt.

Zusammenfassend kann für die Klarinette vereinfacht gesagt werden, dass im Wesentlichen zwei verschiedene Abstrahlmuster auftreten, die sich an der Überblasgrenze bei a' in ihrer Charakteristik trennen.

Schalldruckverlauf

Um besser zu erkennen, weshalb sich an der Überblasgrenze auch die Abstrahlungsmuster ändern, dient Abbildung 5.14. In der Abbildung werden Schalldruckverläufe für offene und gedeckte Pfeifen dargestellt. Klarinetten werden als gedeckte Pfeifen (Grafik oben) betrachtet [DFSW07], die durch das Holzplättchen am Mundstück geschlossen sind. Gedeckte Pfeifen weisen am schallharten Ende ein Druckmaximum auf, während am offenen Ende ein Druckminimum herrscht. In gedeckten Pfeifen sprechen nur ungerade Teiltöne an. Für gerade Teiltöne können sich darin keine entsprechenden Druckverhältnisse entwickeln.

Bei offenen Pfeifen (Grafik unten) sprechen hingegen nur gerade Teiltöne an. Die offenen Pfeifen weisen an beiden Enden ein Druckminimum auf, weshalb sich für die ungeraden Teiltöne der Grundtonreihe keine Druckverhältnisse einstellen können.

Beim Überblasen eines Teiltones werden durch die Anregung mit höherer Frequenz innerhalb der Pfeife Druckknoten erzeugt - es wird ein anderer Teilton hörbar, der durch die veränderten Schalldruckverhältnisse im Instrument auch ein neues Abstrahlungsmuster hervorruft.

Abbildung 5.14.: Schalldruckverlauf (orange) in gedeckten und offenen Pfeifen

5.6.5. Korrelationsplots Altsaxofon

Betrachtet man die Korrelationsplots (Abb. 5.15) des Altsaxofones, so stellt man fest, dass sie den Plots der Klarinette sehr ähnlich sind. Offenbar gelten die Erkenntnisse, die für die Klarinette gefunden wurden, auch für das Altsaxofon. Die Plots wurden zum einfachen Vergleich für den gleichen Tonumfang wie bei der Analyse der Klarinette gezeichnet, also von c' bis c'' für 6 Teiltöne.

Schön zu erkennen aus den Korrelationsplots ist, dass die Überblasgrenze für das Altsaxofon hier zwischen den Tönen e' und f' liegt. Auch beim Altsaxofon korrelieren daher die Teiltöne gleicher Frequenz nicht so gut wie bei den Blechblasinstrumenten. Dies ist aus den nicht so ausgeprägten Nebendiagonalen der Quadrate_{2,3}, der Quadrate_{3,4} und der Quadrate_{5,6} ersichtlich (vlg. 5.4).

Offensichtlich trennen sich auch beim Altsaxofon an der Überblasgrenze die Formen der Abstrahlungsmuster.

(b) Teiltonsortierter Korrelationsplot

Abbildung 5.15.: Korrelationsplots über eine Oktave des Altsaxofones – Tonraum von c' bis c'' für 6 Teiltöne

5.6.6. Korrelationsplots Bassklarinette

Aus den Plots der Bassklarinette (Abb. 5.16) sieht man wiederum schön die Überblasgrenze beim a. Unterhalb dieser Grenze sind die Abstrahlungsmuster der Grundtöne einander ähnlich, oberhalb gleichen sie sich ebenfalls. Dies ist bei der Bassklarinette noch viel stärker der Fall als bei der Klarinette in B oder dem Altsaxofon, erkennbar an den fast weissen Stellen in den Quadraten_{3,3} und Quadraten_{4,4} in Abbildung (b).

Erwähnenswert ist, dass es Teiltöne gibt, die ein ganz eigenes Abstrahlungsverhalten aufweisen, das keinem anderen Teilton ähnlich ist. Damit gibt es bei der Bassklarinette also Töne, die ganz individuell abstrahlen wie zum Beispiel der 2. Teilton von e im Quadrat_{2,2}.

Durch die starke Trennung der Abstrahlmuster an der Überblasgrenze korrelieren auch bei der Bassklarinette die Teiltöne gleicher Frequenz nicht so ausgeprägt wie beim Cornet. Erkennbar sind die versetzten Diagonalen in den Quadraten_{2,3} und Quadraten_{3,4} aber dennoch. Natürlich ist auch in diesen die Überblasgrenze erkennbar.

(a) Frequenzsortierter Korrelationsplot

(b) Teiltonsortierter Korrelationsplot

5.6.7. Korrelationsplots Bassblockflöte

Die Korrelationsplots der Bassblockflöte (Abb. 5.18) sind für einen Tonraum von c' bis c" für 4 Teiltöne erstellt. Aus diesen Plots ist wieder deutlich zu erkennen,

dass auch die Bassblockflöte für den Tonraum, der durch die Überblasgrenze getrennt wird, sehr unterschiedliche Abstrahlungsmuster aufweist (vgl. [Wei08, Kapitel 4.3.1.4]). In der Bassblockflöte bauen sich Schalldruckverhältnisse entsprechend der offenen Pfeife auf (siehe 5.6.4). Betrachtet man Quadrat_{1,1}, stellt man fest, dass die Muster unter- und oberhalb der Überblasgrenze durch einen Ton verbunden werden, der Gemeinsamkeiten mit beiden Abstrahlungsmustern aufweist. Betrachtet man die Abstrahlungsform vom Grundton des a' (Abb. 5.17 *b*) genauer, so stellt sich heraus, dass dieser in ausgeprägter Dipolform von der Flöte abgestrahlt wird. Das a' stellt damit mit seiner eigenen Abstrahlform eine Art Übergang zwischen den durch die Überblasgrenze voneinander getrennten Abstrahlungsmustern dar.

In Abbildung 5.17 sind drei Abstrahlungsmuster von aufeinanderfolgenden Grundtönen aus der C-Dur Tonleiter zu sehen. Das g' in Grafik (a) breitet sich in einer rundlichen Wolkenform aus. Es sind keine Phasenunterschiede zu erkennen. In Grafik (b) wird das a' dargestellt, welches die stark ausgeprägte Dipolform aufweist. Gut zu erkennen sind auch die Phasenunterschiede von oberer Ausdehnung und unterer Ausdehnung. Abbildung (c) weist dann ebenfalls die Phasenunterschiede auf, ist aber in seiner Dipolform viel weniger markant als das a'.

Abbildung 5.17.: Abstrahlungsmuster für die Grundfrequenzen von g', a' und h'

Betrachtet man Teiltöne ab dem 2. Teilton in $\text{Quadrat}_{2,2}$, stellt man fest, dass im Gegensatz zur Klarinette kaum mehr korrelierende Abstrahlungsmuster auftreten. Die Überblasgrenze ist in den Teiltönen der Bassblockflöte nicht mehr zu erkennen.

Teiltöne gleicher Frequenz korrelieren stärker als bei der Klarinette. Die verschobenen Nebendiagonalen in den Quadraten_{2,3} und Quadraten_{3,4} sind wieder deutlich erkennbar.

(a) Frequenzsortierter Korrelationsplot (b

(b) Teiltonsortierter Korrelationsplot

Abbildung 5.18.: Korrelationsplots über eine Oktave der Bassblockflöte – Tonraum von c' bis c'' für 4 Teiltöne

5.6.8. Korrelationsplots Violoncello

In den nachfolgenden Korrelationsplots (Abb. 5.20 und 5.21) des Cellos werden 16 Teiltöne für den Tonraum von c bis c' dargestellt.

Die Plots unterscheiden sich ganz stark von den bisher diskutierten. Das Cello zeigt ein sehr komplexes Abstrahlverhalten über den ganzen Frequenzbereich. Für Teiltöne gleicher Frequenzen gibt es eine starke Korrelation, erkennbar in den Quadraten_{2,3} und den Quadraten_{3,4}. Auch weitere Teiltöne, die gleiche Frequenzen aufweisen (vgl. Tab. 5.3 und Abschnitt 5.4) bilden einander ähnliche Abstrahlungsmuster.

Alle anderen vom Cello abgestrahlten Teiltöne haben ein ganz individuelles Abstrahlungsmuster, das zu keinem anderen Teilton ähnlich ist. Erkennbar ist das an den ganz fein gezeichneten Nebendiagonalen in Plot 5.21. Hohe Korrelationen sind damit nur als einzelner Pixel, der für eine einzige Frequenz steht, dargestellt. Als Beispiel der sehr unterschiedlichen Abstrahlungseigenschaften dienen die Abstrahlungsmuster von sechs in der C-Dur Tonleiter aufeinanderfolgenden Grundtönen in Abbildung 5.19.

Im frequenzsortierten Plot 5.20 weist auch die sofort sehr hell dargestellte Flä-
che unter der Hauptdiagonale auf ein komplexes Abstrahlverhalten hin.

Es wird vermutet, dass aufgrund der Größe des Cellokorpus eine enorme Vielfalt an Abstrahlungsmöglichkeiten besteht. Für jede vom Cello abgestrahlte Frequenz gibt es ein eigenes Resonanzverhalten des Instrumentenkörpers, das der Grund für die sehr komplexen und individuellen Abstrahlmuster der Teiltöne ist.

Abbildung 5.20.: Frequenzsortierter Korrelationsplot über eine Oktave des Violoncellos – Tonraum von c bis c' für 16 Teiltöne

Abbildung 5.21.: Teiltonsortierter Korrelationsplot über eine Oktave des Violoncellos – Tonraum von c bis c' für 16 Teiltöne

6. Konklusion und Ausblick

6.1. Rückblick

Während dieser Diplomarbeit wurde ein Kugelmikrofonarray geplant und erstellt, mit dem die Abstrahlungsvermessung von Musikinstrumenten ermöglicht wird. Damit kann die Kenntnis von Abstrahlungseigenschaften ohne Rauminformation von akustischen Instrumenten erlangt werden. Mit dem neuen Messaufbau wurden Abstrahlungsvermessungen mehrerer Musikinstrumente durchgeführt. Die Messdaten wurden mathematisch ausgewertet und die analysierten Daten wurden grafisch dargestellt. Die anschließende Diskussion der Messergebnisse umfasste sowohl den technischen als auch den musikalischen Kontext.

6.2. Ausblick

Die ersten Abstrahlungsvermessungen haben gezeigt, dass der Messaufbau und die mathematische Analyse der Messdaten sinnvolle Ergebnisse liefern. Dennoch sind verschiedenste Verbesserungen und Anwendungen denkbar und im Weiteren auch realisierbar:

Aliasing Ab Frequenzen von 4 kHz kann winkelabhängiges Aliasing entstehen. Es bedarf weiterer Untersuchungen, um festzustellen welchen Einfluss Aliasing auf die Messungen hat.

Dezentrierte Aufnahmen Werden Aufnahmen, welche dezentriert vom Kugelmittelpunkt aufgenommen wurden, analysiert, so können verzerrte Abstrahlungsmuster entstehen. Genaue Auswirkungen von dezentrierten Aufnahmen auf die Analyse wurden in dieser Diplomarbeit nicht diskutiert. Es ist denkbar, dass dezentrierte Aufnahmen mathematisch korrigiert werden können.

Akustische Verbesserungen des Messraumes Um über einen größeren Frequenzbereich neutrale Messergebnisse ohne Raumreflexionen zu erhalten, müsste der Messraum auch tiefere Frequenzen stärker absorbieren. Eventuell wären deshalb akustische Verbesserungsmaßnahmen sinnvoll. **Datenbank von Instrumenten** Im Rahmen eines weiterführenden Projektes könnte eine umfassende Datenbank von verschiedensten Instrumenten erstellt werden. Interessant wäre auch im Folgenden, verschiedene Spielarten aufzunehmen und zu analysieren. Es wäre auch denkbar, die Abstrahlungseigenschaften einer Reihe von gleichen Instrumenten auf ihre individuellen Abstrahlungsmuster zu untersuchen und sie anhand der Analysedaten zu klassieren.

Hauptabstrahlrichtung Es ist denkbar, die Abstrahlungsvermessung von Musikinstrumenten analog zu [Mey95] durchzuführen. Um eine Hauptabstrahlrichtung eines Instrumentes bestimmen zu können, müssten die Abstrahlmuster aller Teiltöne superpositioniert werden. Damit könnte für jeden beliebigen Ton ein 3D-Richtplot mit der Hauptabstrahlrichtung gezeichnet werden.

Künstlerische Anwendung Eine künstlerische Anwendung der Mikrofonkugel könnte in einem größeren Raum stattfinden. Dabei wäre es möglich, dem Zuhörer über entsprechende Lautsprecherkonfigurationen einen neuen räumlichen Klangeindruck eines Instrumentes zu vermitteln (vgl.[JAS05, LPP08]). Es wäre möglich, dem Zuhörer die akustische Position des Musikers zuzuspielen, sodass das Instrument wie am Sitzplatz des Musikers wahrgenommen wird.

Tonmeister könnten die neu errechneten Abstrahlinformationen für die Mikrofonierung eines Soloinstrumentes nutzen, um den Abstrahlungseigenschaften eines aufzunehmenden Instrumentes gerecht zu werden.

Literaturverzeichnis

- [AW02] T. D. Abhayapala and D. B. Ward, "Theory and design of high order sound field microphones using spherical microphone array," *IEEE Proc. ICASSP'02*, vol. 2, pp. 1949–1952, 2002. (Zitiert auf Seite 2.)
- [BPS08] G. K. Behler, M. Pollow, and D. Schröder, "25. Tonmeistertagung – VDT International Convention," in Messung und Simulation von Raumimpulsantworten für eine realistische Auralisation. Institut für Technische Akustik, RWTH Aachen, 2008. (Zitiert auf den Seiten 9 und 49.)
- [DFSW07] P. Dickens, R. France, J. Smith, and J. Wolfe, "Clarinet Acoustics -Introducing a compendium of impedance and sound spectra," Acoustics Australia, vol. 35, no. 1, pp. 17–23, April 2007. (Zitiert auf Seite 60.)
- [Fan80] W. Fanderl, Annamirl Zuckaschnürl, Altbairisches Liederbuch. Ehrenwirth, 1980. (Zitiert auf Seite 27.)
- [Har96] R. H. Hardin, "McLaren's Improved Snub Cube and Other New Spherical Designs in Three Dimensions," *Discrete and Computational Geometry*, vol. 15, no. 4, pp. 429–441, Sep. 11, 1996. (Zitiert auf Seite 4.)
- [Hoh08] F. Hohl, "Klang- und Abstrahlungsanalyse von mehrkanaligen Gamelan Klangsamples," Institut für Elektronische Musik und Akustik, Universität für Musik und dastellende Kunst Graz, Projektarbeit, Januar 2008. (Zitiert auf Seite 1.)
- [JAS05] R. Jacques, B. Albrecht, and H. Schade, "Forum Acousiticum," in Multichannel source directivity recording in an anechoic chamber and in a studio. Dept. of Audiovisual Technology, Faculty of Electrical Engeneering and Information, Technische Universität Ilmenau, 2005. (Zitiert auf Seite 69.)
- [Kei07] J. Keiner. (2007, June) CSTRIPACK C translation of Voronoi algorithm on the sphere. online. Universität zu Lübeck, Germany. [Online]. Available: http://www.math.uni-luebeck.de/keiner/ sonstiges.shtml (Zitiert auf Seite 10.)

- [KKP07] J. Keiner, S. Kunis, and D. Potts, "Efficient reconstruction of functions on the sphere from scattered data," *The Journal of Fourier Analysis* and Application, vol. 13, no. 4, pp. 435–458, August 2007. (Zitiert auf Seite 4.)
- [LDGD04] Z. Li, R. Duraiswami, E. Grassi, and L. S. Davis, "Flexible layout and optimal cancellation of the orthonormality error for spherical microphone arrays," *IEEE Proc. ICASSP'04*, vol. 4, pp. 41–44, 2004. (Zitiert auf Seite 2.)
- [LPP08] T. Lokki, J. Pätynen, and V. Pulkki, "Acoustics 08 Paris," in *Recording* of anechoic symphony music, 2008. (Zitiert auf Seite 69.)
- [LW09] D. Lichtblau and E. W. Weisstein. (2009, Oktober) Condition Number. Website. From MathWorld – A Wolfram Web Resource. [Online]. Available: http://mathworld.wolfram.com/ConditionNumber. html (Zitiert auf Seite 5.)
- [ME02] J. Meyer and G. Elko, "A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield," *IEEE Proc. ICASSP'02*, vol. 2, pp. 1781–1784, 2002. (Zitiert auf Seite 2.)
- [Mey95] J. Meyer, Akustik und musikalische Aufführungspraxis. Erwin Bochinksy, 1995. (Zitiert auf den Seiten 59 und 69.)
- [Mor06] S. Moreau, "Étude et réalisation d'outils avancés d'encodage spatial pour la technique de spatialisation sonore higher order ambisonics microphone 3d et contrôle de distance," Ph.D. dissertation, École Doctorale de l'Université du Maine, Le Mans, France, 2006. (Zitiert auf den Seiten 2 und 48.)
- [Reu08] S. Reuter, "Simulation of natural sound sources in immersive virtual environments," Master's thesis, Institute of Technical Acoustics, RW-TH Aachen University, 2008. (Zitiert auf den Seiten 2 und 9.)
- [RWB07] B. Rafaely, B. Weiss, and E. Bachmat, "Spatial Aliasing in Spherical Microphone Arrays," *IEEE TRANSACTIONS ON SIGNAL PROCES-SING*, vol. 55, no. 3, pp. 1053–587X, March 2007. (Zitiert auf Seite 58.)
- [Sug02] K. Sugihara, "Laguerre Voronoi diagram on the sphere," J. for Geom. Graphics, vol. 6, no. 1, pp. 69–81, 2002. (Zitiert auf Seite 4.)
- [SWK03] K. Sahr, D. White, and A. Kimerling, "Geodesic Discrete Global Grid Systems," *Cartography and Geographic Information Science*, vol. 30, no. 2, pp. 121–134, 2003. (Zitiert auf Seite 4.)

- [Uni09] (2009, Oktober) Music Acoustics, Physics, UNSW. Website. University New South Wales, Australia. [Online]. Available: http://www.phys. unsw.edu.au/music/ (Zitiert auf Seite 58.)
- [Wei08] S. Weinzierl, *Handbuch der Audiotechnik*, S. Weinzierl, Ed. Springer, 2008. (Zitiert auf Seite 63.)
- [Wei09] E. W. Weisstein. (2009, Oktober) Spherical Harmonic. Website. From MathWorld – A Wolfram Web Resource. [Online]. Available: http:// mathworld.wolfram.com/SphericalHarmonic.html (Zitiert auf Seite 2.)
- [Wil99] E. G. Williams, *Fourier Acoustics*. Academic Press, 1999. (Zitiert auf Seite 2.)
- [Wom09] R. Womersley. (2009, Oktober) Extremal points on the sphere. Website. School of Mathematics and Statistics. University of New South Wales, Australia. [Online]. Available: http://web.maths.unsw. edu.au/~rsw/Sphere/Extremal/index.html (Zitiert auf den Seiten 4 und 6.)
- [WS01] R. S. Womersley and I. H. Sloan, "How Good can Polynomial Interpolation on the Sphere be?" School of Mathematics, University of New South Wales, Sydney, Tech. Rep., 2001. (Zitiert auf Seite 4.)
- [Zot08] F. Zotter, "Sampling Strategies for Acoustic Holography and Holophony on the Sphere," Institute of Electronic Music and Acoustics, University of Music and Performing Arts Graz, Austria., Tech. Rep., 2008. (Zitiert auf den Seiten 2, 4 und 58.)

A. Anhang

A.1. Abstrahlungsmuster für verschiedene Instrumente

In Abbildung A.1 stehen die Abstrahlungsmuster verschiedener Instrumente für eine Dur-Tonleiter der kleinen Oktave in Tabellenform. Es ist zu bemerken, dass sich die Abstrahlungsmuster für den jeweils analysierten Grundton sehr ähnlich sind. Eine mögliche Interpretation dafür ist:

Die im Messraum durchgeführten Aufnahmen weisen trotz umfangreicher schallabsorbierender Maßnahmen Raumreflexionen auf. Für Frequenzen der kleinen Oktave und tiefer f < 250 Hz scheint der Messraum akustisch nicht ganz ideal zu sein.

A. Anhang

A.2. Korrelationsplots aller aufgenommenen Instrumente

In diesem Kapitel des Anhangs werden für alle aufgenommenen Instrumente die Korrelationsplots abgebildet. Für jedes Instrument wird über den Tonraum von einer Oktave für 16 Teiltöne jeweils ein teiltonsortierter und ein frequenzsortierter Plot erstellt. Beide Abbildungen werden auch über den ganzen Tonumfang für 16 Teiltöne des Instrumentes erstellt.

Abbildung A.2.: Frequenzsortierter Korrelationsplot über eine Oktave des Cornet – Tonraum von c' bis c" für 16 Teiltöne

Abbildung A.3.: Teiltonsortierter Korrelationsplot über eine Oktave des Cornet – Tonraum von c' bis c'' für 16 Teiltöne

Abbildung A.4.: Frequenzsortierter Korrelationsplot über den ganzen Tonumfang des Cornet – Tonraum von f bis b" für 16 Teiltöne

Abbildung A.5.: Teiltonsortierter Korrelationsplot über den ganzen Tonumfang des Cornet – Tonraum von f bis b" für 16 Teiltöne

A.2.2. Korrelationsplots Trompete

Abbildung A.6.: Frequenzsortierter Korrelationsplot über eine Oktave der Trompete – Tonraum von c' bis c'' für 16 Teiltöne

Abbildung A.7.: Teiltonsortierter Korrelationsplot über eine Oktave der Trompete – Tonraum von c' bis c" für 16 Teiltöne

Abbildung A.8.: Frequenzsortierter Korrelationsplot über den ganzen Tonumfang der Trompete – Tonraum von f bis b" für 16 Teiltöne

Abbildung A.9.: Teiltonsortierter Korrelationsplot über den ganzen Tonumfang der Trompete – Tonraum von f bis b" für 16 Teiltöne

Abbildung A.10.: Frequenzsortierter Korrelationsplot über eine Oktave der Posaune – Tonraum von c bis c' für 16 Teiltöne

Abbildung A.11.: Teiltonsortierter Korrelationsplot über eine Oktave der Posaune – Tonraum von c bis c' für 16 Teiltöne

Abbildung A.12.: Frequenzsortierter Korrelationsplot über den ganzen Tonumfang der Posaune – Tonraum von F bis d" für 16 Teiltöne

Abbildung A.13.: Teiltonsortierter Korrelationsplot über den ganzen Tonumfang der Posaune – Tonraum von F bis d" für 16 Teiltöne

A.2.4. Korrelationsplots Klarinette in B

Abbildung A.14.: Frequenzsortierter Korrelationsplot über eine Oktave der Klarinette in B – Tonraum von c' bis c" für 16 Teiltöne

Abbildung A.15.: Teiltonsortierter Korrelationsplot über eine Oktave der Klarinette in B-Tonraum von c' bis c'' für 16 Teiltöne

Abbildung A.16.: Frequenzsortierter Korrelationsplot über den ganzen Tonumfang der Klarinette in B – Tonraum von d bis d‴ für 16 Teiltöne

Abbildung A.17.: Teiltonsortierter Korrelationsplot über den ganzen Tonumfang der Klarinette in B – Tonraum von d bis d‴ für 16 Teiltöne

A.2.5. Korrelationsplots Bassklarinette

Abbildung A.18.: Frequenzsortierter Korrelationsplot über eine Oktave der Bassklarinette – Tonraum von c bis c' für 16 Teiltöne

Abbildung A.19.: Teiltonsortierter Korrelationsplot über eine Oktave der Bassklarinette – Tonraum von c bis c' für 16 Teiltöne

Abbildung A.20.: Frequenzsortierter Korrelationsplot über den ganzen Tonumfang der Bassklarinette – Tonraum von Des bis f" für 16 Teiltöne

Abbildung A.21.: Teiltonsortierter Korrelationsplot über den ganzen Tonumfang der Bassklarinette – Tonraum von Des bis f" für 16 Teiltöne

Abbildung A.22.: Frequenzsortierter Korrelationsplot über eine Oktave des Altsaxofons – Tonraum von c' bis c'' für 16 Teiltöne

Abbildung A.23.: Teiltonsortierter Korrelationsplot über eine Oktave des Altsaxofons – Tonraum von c' bis c'' für 16 Teiltöne

Abbildung A.24.: Frequenzsortierter Korrelationsplot über den ganzen Tonumfang des Altsaxofons – Tonraum von es bis as" für 16 Teiltöne

Abbildung A.25.: Teiltonsortierter Korrelationsplot über den ganzen Tonumfang des Altsaxofons – Tonraum von es bis as" für 16 Teiltöne

A.2.7. Korrelationsplots Tenorsaxofon

Abbildung A.26.: Frequenzsortierter Korrelationsplot über eine Oktave des Tenorsaxofons – Tonraum von c bis c' für 16 Teiltöne

Abbildung A.27.: Teiltonsortierter Korrelationsplot über eine Oktave des Tenorsaxofons – Tonraum von c bis c' für 16 Teiltöne

Abbildung A.28.: Frequenzsortierter Korrelationsplot über den ganzen Tonumfang des Tenorsaxofons – Tonraum von B bis es" für 16 Teiltöne

Abbildung A.29.: Teiltonsortierter Korrelationsplot über den ganzen Tonumfang des Tenorsaxofons – Tonraum von B bis es" für 16 Teiltöne

A.2.8. Korrelationsplots Bassblockflöte

Abbildung A.30.: Frequenzsortierter Korrelationsplot über eine Oktave der Bassblockflöte – Tonraum von c' bis c" für 16 Teiltöne

Abbildung A.31.: Teiltonsortierter Korrelationsplot über eine Oktave der Bassblockflöte-Tonraum von c' bis c'' für 16 Teiltöne

Abbildung A.32.: Frequenzsortierter Korrelationsplot über den ganzen Tonumfang der Bassblockflöte – Tonraum von f bis f" für 16 Teiltöne

Abbildung A.33.: Teiltonsortierter Korrelationsplot über den ganzen Tonumfang der Bassblockflöte – Tonraum von f bis f" für 16 Teiltöne

A.2.9. Korrelationsplots Violoncello

Abbildung A.34.: Frequenzsortierter Korrelationsplot über eine Oktave des Violoncellos – Tonraum von c bis c' für 16 Teiltöne

Abbildung A.35.: Teiltonsortierter Korrelationsplot über eine Oktave des Violoncellos – Tonraum von c bis c' für 16 Teiltöne

Abbildung A.36.: Frequenzsortierter Korrelationsplot über den ganzen Tonumfang des Violoncellos – Tonraum von E bis f' für 16 Teiltöne

Abbildung A.37.: Teiltonsortierter Korrelationsplot über den ganzen Tonumfang des Violoncellos – Tonraum von E bis f' für 16 Teiltöne

A.3. Tabelle der Stangenlängen

Stange	Startpunkt	Endpunkt	Länge [mm]	Winkel $[^{\circ}]$
1	8	37	443.6	13.62
2	37	42	394.5	12.56
3	42	8	449.9	13.76
4	42	31	469.6	14.19
5	31	17	422.6	13.17
6	17	42	613.5	17.37
7	31	37	531.0	15.54
8	37	50	399.4	12.66
9	50	31	435.8	13.46
10	63	31	506.1	14.99
11	50	63	371.1	12.05
12	21	11	407.4	12.84
13	11	64	557.4	16.12
14	64	21	407.2	12.83
15	63	11	448.9	13.74
16	21	63	372.9	12.09
17	15	26	453.0	13.83
18	26	34	394.7	12.56
19	34	15	397.0	12.61
20	26	33	613.5	17.37
21	33	34	401.3	12.70
22	26	24	469.6	14.19
23	24	33	422.6	13.17
24	9	19	371.1	12.05
25	19	59	506.1	14.99
26	59	9	435.8	13.46
27	48	9	421.7	13.15
28	9	2	406.9	12.83
29	2	48	509.2	15.06
30	48	19	497.6	14.81
31	19	40	514.6	15.18
32	40	59	452.2	13.81
33	9	54	399.4	12.66
34	54	2	432.4	13.38
35	59	54	531.0	15.54
36	43	51	469.6	14.19
37	51	29	422.6	13.17
38	29	43	613.5	17.37
39	61	43	394.7	12.56

Stange	Startpunkt	Endpunkt	Länge [mm]	Winkel [°]
40	29	61	401.3	12.70
41	25	21	387.7	12.41
42	64	25	448.6	13.73
43	27	42	394.7	12.56
44	17	27	401.3	12.70
45	18	27	406.3	12.81
46	17	18	423.9	13.20
47	5	18	480.7	14.44
48	18	29	488.4	14.60
49	29	5	392.5	12.51
50	5	51	452.2	13.81
51	51	12	506.1	14.99
52	12	5	514.6	15.18
53	31	7	452.2	13.81
54	7	17	392.5	12.51
55	25	7	478.7	14.39
56	7	21	434.8	13.43
57	7	63	514.6	15.18
58	11	3	450.5	13.77
59	3	64	434.9	13.44
60	3	48	485.0	14.53
61	48	64	408.3	12.86
62	3	19	448.9	13.74
63	11	1	434.9	13.44
64	1	3	557.4	16.12
65	14	63	497.6	14.81
66	50	14	421.7	13.15
67	14	11	485.0	14.53
68	14	1	408.3	12.86
69	14	15	422.3	13.16
70	15	1	488.4	14.60
71	37	44	432.4	13.38
72	44	50	406.9	12.83
73	44	26	449.9	13.76
74	15	44	485.1	14.53
75	44	14	509.2	15.06
76	48	41	422.3	13.16
77	41	64	488.4	14.60
78	41	25	499.4	14.85
79	41	61	397.0	12.61
80	61	25	431.7	13.37
81	41	43	453.0	13.83

A. Anhang

Stange	Startpunkt	Endpunkt	Länge [mm]	Winkel [°]
82	2	41	485.1	14.53
83	2	43	449.9	13.76
84	15	58	499.4	14.85
85	58	1	448.6	13.73
86	34	58	431.7	13.37
87	38	33	423.9	13.20
88	33	56	488.4	14.60
89	56	38	466.4	14.12
90	38	34	406.3	12.81
91	38	58	467.9	14.16
92	38	40	480.7	14.44
93	40	58	478.7	14.39
94	40	53	392.5	12.51
95	53	59	422.6	13.17
96	6	53	401.3	12.70
97	53	56	423.9	13.20
98	56	6	406.3	12.81
99	53	38	488.4	14.60
100	60	39	485.0	14.53
101	39	12	448.9	13.74
102	12	60	497.6	14.81
103	39	46	450.5	13.77
104	46	49	434.9	13.44
105	49	39	557.4	16.12
106	55	6	394.7	12.56
107	6	45	397.0	12.61
108	45	55	453.0	13.83
109	55	54	394.5	12.56
110	59	55	469.6	14.19
111	53	55	613.5	17.37
112	55	10	449.9	13.76
113	10	54	443.6	13.62
114	60	10	509.2	15.06
115	10	45	485.1	14.53
116	45	60	422.3	13.16
117	47	8	485.1	14.53
118	42	47	453.0	13.83
119	27	47	397.0	12.61
120	4	5	434.8	13.43
121	12	4	372.9	12.09
122	39	4	407.4	12.84
123	49	4	407.2	12.83

A. Anhang

Stange	Startpunkt	Endpunkt	Länge [mm]	Winkel [°]
124	32	25	467.9	14.16
125	61	32	406.3	12.81
126	32	7	480.7	14.44
127	32	17	488.4	14.60
128	32	18	466.4	14.12
129	29	32	423.9	13.20
130	23	3	407.4	12.84
131	1	23	407.2	12.83
132	23	19	372.9	12.09
133	58	23	387.7	12.41
134	23	40	434.8	13.43
135	8	28	432.4	13.38
136	28	37	522.2	15.35
137	28	44	443.6	13.62
138	28	26	394.5	12.56
139	8	36	406.9	12.83
140	36	28	399.4	12.66
141	24	28	531.0	15.54
142	36	24	435.8	13.46
143	46	16	485.0	14.53
144	16	49	408.3	12.86
145	16	47	422.3	13.16
146	47	49	488.4	14.60
147	8	16	509.2	15.06
148	16	36	421.7	13.15
149	62	24	506.1	14.99
150	36	62	371.1	12.05
151	16	62	497.6	14.81
152	46	62	448.9	13.74
153	30	46	557.4	16.12
154	39	30	434.9	13.44
155	30	60	408.3	12.86
156	45	30	488.4	14.60
157	43	57	394.5	12.56
158	57	51	531.0	15.54
159	2	57	443.6	13.62
160	54	57	522.2	15.35
161	10	57	432.4	13.38
162	5	52	478.7	14.39
163	52	18	467.9	14.16
164	4	52	387.7	12.41
165	52	27	431.7	13.37

A. Anhang

Stange	Startpunkt	Endpunkt	Länge [mm]	Winkel $[^{\circ}]$
166	49	52	448.6	13.73
167	47	52	499.4	14.85
168	24	35	452.2	13.81
169	35	33	392.5	12.51
170	62	35	514.6	15.18
171	35	56	480.7	14.44
172	20	62	372.9	12.09
173	46	20	407.4	12.84
174	30	20	407.2	12.83
175	20	35	434.8	13.43
176	51	13	435.8	13.46
177	13	12	371.1	12.05
178	57	13	399.4	12.66
179	10	13	406.9	12.83
180	13	60	421.7	13.15
181	35	22	478.7	14.39
182	22	56	467.9	14.16
183	20	22	387.7	12.41
184	22	6	431.7	13.37
185	30	22	448.6	13.73
186	22	45	499.4	14.85

A. Anhang

Tabelle A.1.: Tabelle mit Stangennummer, Anfangs- und Endpunkt, der Länge der Alustange und dem am Sternelement zu montierenden Winkel

A.4. Zeichnungen

- A.4.1. Baugruppe
- A.4.2. Sternelement
- A.4.3. Halbkugelmutter
- A.4.4. Klemmung
- A.4.5. Muffe

Zust.								Verwend									
Aenderung								ingsbereich	Pos		2	ω	4	J	6	Ţ	∞
Datum Name E		Ko	No	6e,	Be			0	Menge			2					
lektronische Musik	U GRAZ	mm Nr:	rm		arb.	Datum Name	Masse ohne Toleranzangabe nach "mittel DIN 7168"	ber í læche	Benennung	D126_M8	D913_M4X8	D934_M8	HALBKUGEL	HALTERUNG	KLEMMUNG_	M8_GEWIND	MUFFE
Ers. I.: Ers. d.:	BAUGRUPPE					Benennung	- Werkstoff/Halbzeug	Masstab 000 Genicht					MUTTER	_ M I KROFONKUGEL	GERADE)E	

	R17 $R17$ $R17$ $R17$ $R14$ $R17$
Alle eingezeichneten Fasen sind mit 2 x 45 auszuführen ! Verrendungsberreich der lierte Massie ohne folgtengegebe aus funltet DN 7168 	

Ма	ße	f	ΰr	geboge	nen	Zust	and:
Kr	ūmm	U	ngs	länge	auße	n =	46,43
Kr	ūmm	U	ngs	länge	inne	n =	4 , 5 4

KLEMMUNG_GERADE

Verwa	endungsbereich			Oberflo	neche		Masstab 1.000 Gewicht			
			Mass na	e ohne Tole ch "mittel D	ranzangabe IN 7168"	Werkstoff/Halbzeug S † 37				
					Datum	Name	Варарина			
				Bearb.						
				Gepr.			_			
				Norm						
				Komm N	r.:		_			
				тп	Gran		Zeichnung/Sach-Nr.:		Blatt	
			TU Uraz			Mikrofonkugel			 	
Zust.	Aenderung	Datum	Name	Institut für Elektronische Musik			Ers. f. :	Ers.d.	l	

Deutsche Fassung: Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008 Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am

(Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than the declared sources / resources, and that I have explicitly marked all material which has been quoted either literally or by content from the used sources.

date

.....

(signature)