
Self-Localization of Large Aperture
Microphone Arrays

Students Project

Thomas Wilding, BSc

Supervisor: DI Christian Schörkhuber

Graz, April 1, 2015

institut für elektronische musik und akustik



Abstract

The aim of this work is the evaluation of sate-of-the-art self-calibration al-
gorithms for synchronized distributed microphone arrays. Here, self-calibration
refers to the task of estimating microphone positions assuming unsynchronized
source signals emitted from unknown locations. To simplify the whole proce-
dure, it is assumed that the positions of the microphones and of the sources
are stationary and estimates of the time-differences-of-arrival (TDOA) are
available.

Das Ziel dieser Arbeit ist der Vergleich gängiger Algorithmen zur Selb-
stkalibrierung von synchronisierten, räumlich verteilten Mikrofonen. Mit
Selbstkalibrierung ist hier die Bestimmung der Positionen der Mikrofone unter
Verwendung von unsynchronisierten, räumlich verteilten Schallquellen an un-
bekannten Positionen. Zur Vereinfachung der Positionsschätzung werden die
Positionen der Mikrofone und Quellen als stationär angenommen. Des weit-
eren wird von vorhandenen time-difference-of-arrival (TDOA) Schätzungen
ausgegangen.
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1 Introduction

When using microphone arrays in for example hands-free telephoning, they are usually
rather small, due to the space reserved for the application. Thus it is easy to find
the positions of the used microphone with the accuracy needed for the application
when measuring by hand.

When using a large scale microphone array, it can be assumed that measuring the
positions of each microphone can be a complicated and time consuming procedure
for a single person to undertake, either using a tape-measure or an equivalent device.
In some applications, the microphones or sensors may even change their positions
over time, which would include the time as another degree of freedom, which will
not be treated in this project. Furthermore, microphone arrays are usually deployed
in different environments, which also makes it important to know the locations of
the microphones. The whole process could be greatly simplified, if there existed a
simple method which could achieve the same, or at least sufficiently accurate results.

If not measured by hand, usually the time-of-flight (TOF) from the sources to the
sensors (i.e. microphones), which can be reformulated as a cost function and solved
using mathematical solvers, is used for finding the distances between microphones
and sources. The problem that arises here is, that if the problem is not initialized
carefully, it can easily get stuck in a local, rather than the intended global minimum.

The initialization problem is usually solved by introducing additional constraints,
such as using sub-arrays [9] which have a certain geometrical structure (linear,...)
and reduce the number of unknowns, or by positioning all sources on a plane [6],
or using a pyramid shaped structure for the sources surrounding the sensors [13].
When using subarrays, another possibility is to separate the computation process
and estimate the shape of the subarrays in the first step, and then use the results
obtained by these subarrays to estimate the positions of the sources (mentioned
in [4])

1.1 Classification

For the problem of position estimation regarding microphones, there exist a multitude
of different algorithms with varying restrictions, advantages and complexities. They
could be grouped into classes, based on their mathematical approaches, as follows:

— Multidimensional Scaling (MDS): distance between points needed, used in [10]
and [2]

— energy based: assumptions concerning room characteristics (damping, rever-
beration,...) needed, results are shown in [3] and [16].

— statistics based: using a spatial likelihood function [1] or ML estimations [14]
— TOF/LS: hardly any constraints (mainly number of sources/microphones),

no information about room geometry needed, sources usually assumed to be
in near-field. Examples can be found in [4, 5, 7, 11,12,15].
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Figure 1 – The general idea of WiLMA for transcription of an acoustic scene (picture
taken from [8]).

The easiest way to find the spatial locations of microphones would be to measure the
distances and apply a multidimensional scaling algorithm [2, 10], bearing in mind
that measuring many microphones with distances greater than comfortably reachable
by one person can be a very time consuming process.

A use for such algorithms can already be seen in the WiLMA (Wireless Large Scale
Mircophone Array) project performed by the IEM [8]. Other useful applications
could be search robots with mounted microphones, localizing each other and sound
events.

1.2 WiLMA

The aim of the WiLMA project [8] is to analyze an acoustic scene, which could
contain any noise/sound source like birds, cars, or speakers in a conference. Using
such a technique, it would be possible to investigate new recording techniques, which
would adapt to a changing setup of musicians, for example in an orchestra or in
theater or opera recordings, or also at conferences for different speaker positions.

WiLMA uses a wireless sensor network based on sixteen sensor modules (SM) which
each in turn have the ability to record 4 microphone channels. The sensor modules
can thus record the signals from an Oktava 4D-ambient microphone, a first order
ambisonics tetrahedral microphone (a setup type which will specifically be examined
in Section 5). Using these microphones to record the sound scene results in the
benefit, that the transcribed sound scene can be enhanced by additional directional
information captured by the Oktava microphones.

To perform all the above tasks, it is essential to know the precise positions of the
(in this case) sub-arrays (one sub-array consists of the four capsules of one Oktava
microphone), and the orientation of each sub-array, using estimates of the positions
of the microphone capsules.
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2 Problem Description

Before describing the different existing algorithms, a general description of the
problem will be given, together with all the notations needed to describe the whole
setup of sources and microphones. Due to the fact that the source/microphone
setup is independent to rotation, it is sufficient to find the positions of sources and
microphones relative to either one source or one microphone.

The coordinates of the sources and microphones will be defined as sj = [sx,j sy,j sz,j ]
T

and ri = [rx,i ry,i rz,i]
T respectively (in a Cartesian coordinate system). For easier

computations, the coordinates can be written as matrices R = {rTi } of size I × 3
and S = {sTj } of size J × 3 for microphones and sources respectively.

The assumptions that will be used are minimal. The microphones and the sources
are assumed to be in the same volume. To be able to determine the time of flights,
it is furthermore assumed that all the direct paths between the sources and the
microphones are not obstructed by objects that would alter the sound propagation
in any way. Furthermore it is assumed that the recordings of the microphone signals
are synchronized.

The TOA tij of source j at microphone i can be found using correlation methods,
threshold detection, or any other method. Here is a first crucial point, where noise can
possibly be introduced into the measurements, due to the fact that the time of arrival
at the microphones could be masked by noise when using threshold detection, or in
between two samples when using correlation methods, whereas the latter case might
not bet that critical, due to the existence of sub-sample correlation methods. The
first reflections that arrive after the direct sound should therefor also not influence
the detection of the arrival of the respective sound event.

The sound events can be either played simultaneously, or consecutively. For the
simultaneous case it has to be somehow possible to know from which source the
sound event originated, for example by using different frequencies for each source.
For consecutive sounds, no restrictions concerning the type of sound are applied. In
turn, all reverberation of a sound event should have subsided, such that the detection
of a new sound event is not influenced by other sound events. The TOD (time of
departure of the sound event at source j) will be denoted using τj throughout this
work.

The estimation of the times of departure would not be needed when using a special
source object as proposed by Khanal [11], consisting of a loudspeaker with a micro-
phone mounted as close to the acoustic center as possible to obtain the emission
times of the sound events (TODs).

Two 2-dimensional diagrams showing a simplified setup containing all essential values
can be seen in figure 2 for the case of using a source object and figure 3 for the
general case without a source object.
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Figure 2 – General setup (simplified to 2D) with a source object proposed by
Khanal [11] to obtain the TODs.
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Figure 3 – General setup (simplified to 2D) used in this and the work of Gaubitch [7],
Crocco [4] and others, without a source object and therefore unknown TODs at the
sources. In turn, no source object needs to be positioned and clapping or else can be
used as source signals.
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3 Algorithms

In this section, the different algorithms for solving the problem described in section 2
will be described briefly.

3.1 MDS (Multidimensional Scaling)

Classical Multidimensional scaling provides a solution for the problem of positioning
points in a N-dimensional space, and can be used on different problems, not only on
metric ones (fitting points into a coordinate system). MDS assumes, that the pairwise
distances between all points (in this problem that would be the microphones/sensors
and the sources) are known, and then computes the coordinates of the specified
points in a non-iterative way. The problem here is, that if not measured by hand,
which can be very time consuming, if not at all impossible when sensors and sources
are far apart or even in locations not reachable for measuring, the pairwise distances
between two sources cannot be obtained by a simple TOF flight measurement alone.

Birchfield [2] describes the classical MDS algorithm and also shows an enhancement
thereof, called BCMDS (basis-point classical MDS), which can be used when some of
the data needed for performing the MDS algorithm (which would be the case when
it is impossible to measure the distances between all points), is missing.

The MDS algorithm for computing the locations of n microphones in a p-dimensional
space using the known, pairwise, noisy distances dij is described by Birchfield as
follows:

In case of missing data, basis points with known locations are used, which could
be speakers attached to a rigid structure where the distances can be measured or
are known already. The distances can be acquired by TOF measurements or using
a tape measure. The MDS and BCMDS algorithms can both be seen as an easier
alternative to nonlinear optimization.

In the method proposed by Ji [10], local maps (described as relative positions of a
number of sensors/sources) are used, which are then fused together to acquire the
global positions of the microphones. Therefore some nodes are needed, which are
sensors with known locations, assuming that the rest of the sensors are at unknown
positions. The more anchors are used, the better the approximation of the true
positions of the sensors in the connected local maps is acquired. The sensors are
furthermore assumed to be connected with each other wirelessly, which also introduces
another restriction, that not all sensors can communicate with each other, due to
the fact that the radio signals are attenuated by propagation.

A big benefit of the method proposed by Ji is, that the area where the sensors are
located can be anisotropic, meaning that also obstacles which shield the sensors from
each other (missing data) do not pose a problem. A little drawback is the fact that
the proposed method only estimates 2D coordinates (although it could be extended
to 3D easily, according to Ji).
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1. Construct the squared-distance matrix D = {d2ij}
2. Compute the inner product matrix B = −1

2
JDJ, with J =

I− 1
n
11T , with 1 being a vector consisting of ones.

3. Decompose B as B = VΛVT , where Λ is a diagonal matrix
Λ = diag {λi} containing the eigenvalues of B in decreasing
order, and V is a matrix containing respective eigenvalues
V = [v1, · · · ,vn]

4. Extract the first p eigenvectors (p is the dimension of the
space, i.e. p = 3 for 3D-coordinates).

5. The microphone coordinates are now a n × p matrix X =

[p1, · · · ,pn]T = VpΛ
1
2
p .

Figure 4 – The classical Multidimensional scaling algorithm as describe by Birchfield
in [2]

3.2 Energy based

An example for an energy-based algorithm for the position estimation is presented
by Chen in [3], which is based on the work by Zicheng [16]. The big advantage
here is, that the synchronization of the different microphones does not have to be
that strict, which results in a probably easier setup for ad-hoc microphone arrays
without much planning. The general problem setup that was tested in [3] was with
human speakers and laptops as sensors, using the built in microphones and a network
connection between these. The improvement compared to [16] is, that the speakers
are no longer assumed to be in the same positions as the microphone, which was an
unlikely scenario to begin with.

While leading to reasonable results, a major drawback of this algorithm concerning
the problem dealt with here (described in 2), is the fact, that speakers and sensors
were assumed to be on the same plane, thus resulting only in a 2D map of the
positions, which is not suitable for the problem proposed in Section 2.

3.3 Spatial Observability Function (SOF) or Maximum Like-
lihood (ML)

An ML style approach is proposed by Aarabi in [1], and used for orientation alignment
by Valente [14]. Aarabi introduces a spatial observability Function (SOF), together
with the assumption that the positions of the sound sources are known, which is
used as an estimator for the positions of the microphone arrays, together with their
orientation, which is an interesting addition, thinking of the fact that this could
maybe improve the positioning of the sensors when using the Oktava microphones,
after estimating the source positions, which can then be used to refine the microphone
array positions and orientation.
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The algorithm uses the sources sending out signals to find the most likely positions
of the microphone arrays with respect to the sound events produced by the sources,
which are assumed to be located at a fixed location. The SOFs can be derived using
different methods, for example array steered response power.

The SOFs for each microphone array are assumed to be scaled to values between
1 and 0, with values close to 1 representing a likely position with a sound source.
Again, only a 2D problem is solved, which leaves three values to estimate: x and y
coordinate, and the orientation as angle Θ.

The SOFs are used to find a measure for the overall observability (OSO) of a source
at all discrete spatial locations in an analyzed area. The OSO value can furthermore
be used to define an instantaneous measure in case the SOFs are changing rapidly,
which is called the Q-observance measure (QOSO). The QOSO then can be used to
find the probability that the spatial likelihood function (SLF) for certain microphone
location and orientation gives the actual sensor probability. The SLF can be found
using for example cross correlation techniques, the results of which (the quality of
the SLF) directly effects the results of the array localization.

The fact that the sources should be known plus the fact that the derivation of the SOFs
is more complex than the TOF based algorithms, also deemed this implementation
undesirable.

3.4 Time-of-flight (TOF) based or Least Squares (LS)

The time of flight (TOF) based algorithms are all based on a formula equivalent to

tij − τj =
||ri − sj||

c
, (1)

which connects the TODs τj with the measured TOAs tij to obtain the TOFs, and
the source and microphone coordinates, which solve upper equation. A solution can
be obtained by solving the non-linear least squares problem

r̂i, ŝj = argmin
ri,sj

{(
tij − τj −

||ri − sj||
c

)2
}
, (2)

with a possible additional variable εi, representing the onset times and internal delays
by each individual microphone, resulting in

r̂i, ŝj = argmin
ri,sj

{(
tij − τj −

||ri − sj||
c

− εi
)2
}
. (3)
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While leading to a more realistic representation of the overall problem, the additional
εi complicates the computation, because the onset times for each microphone are in
general not identical. Crocco [4, 5] assumes that the TOAs and TODs are known,
thus assuming that the TOFs are known.

Similar to Crocco [4,5], the Free Source Method (FrSM) proposed by Khanal [11]
needs known TOFs, but also gives a possible solution, describing a special source
object with a sensor attached in the acoustic center (of the loudspeaker), thus
eliminating the need to compute the times of departure (TODs) at the sources (the
start times of the sound events). Using these special sources, the only problem
arising would be the fact that they are not perfectly coincident, thus a small time
correction (distance from the source to the reference microphone attached to it)
would be needed.

Due to the fact that for TOF based position estimation very few constraints lead to
rather good results, a TOF based approach was implemented. The used approaches,
[4, 7, 12] and [5] will be describe in section 4.

4 Implementation

In figure 5 an overview over the problem is given, whereas only the TOD estimation
and the Position estimation algorithm were implemented, assuming that the TOAs
were already retrieved with an error in the magnitude of 4 samples and more at a
sample rate of 48kHz. Although two Algorithms were implemented, only the second
one was used, due to the fact that the first one, proposed by Pollefeys [12] was
yielding results that were not accurate enough to be used in the position estimation
stage.

This might be caused by the fact that only the TOD estimation part was implemented,
and not the computation of the positions, which was different from the one proposed
by Crocco. Still, the final results achieved by Pollefeys [12] were similar to those
achieved by Gaubitch [7] and Crocco [4, 5].

A complete program would also need the first two stages, recording and TOA
estimation. The recoding stage would need to perform a synchronized recording of
all the microphone signals for each source. The TOA estimation stage would then
need to derive the TOAs from these recordings. These TOAs are then fed to the
TOD estimation stage, which tries to find the TODs fitting best to the estimated
TOAs. The last stage performs the actual estimation of the source and microphone
coordinates from the TOFs (the difference between the respective TOAs and TODs).

4.1 TOD estimation

For the TOD estimation two algorithms were tested, one proposed by Pollefeys in [12]
and another proposed by Gaubitch in [7]. The one by Pollefeys was chosen because
it requires very little computation and no iterations, but unfortunately did not lead
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Recording TOA Estimation

Algorithm 1
Pollefeys [12]

Algorithm 2
Gaubitch [7]

Position Estimation
Crocco [4, 5]

TOD Estimation

Figure 5 – Overview over the different blocks that need to be implemented for
acquiring an estimate of microphone and source positions.

to satisfying results (it is still described briefly). The results of the second algorithm
were used for the computations.

4.1.1 Algorithm 1

The solution proposed by Pollefeys uses a vector/matrix representation of equation 1
(without the εi), using the following vectors for the locations of the j-th source and
the i-th microphone respectively,

sj =
[
xj yj zj

]T
(4)

ri =
[
Xi Yi Zi

]T
, (5)

which were then inserted into equation 1 results

tij =
||ri − sj||

c
+ τj (6)

c2(tij − τj)2 = ||ri − sj||2 (7)

c2(tij − τj)2 = (xj −Xi)
2 + (yj − Yi)2 + (zj − Zi)

2 (8)

c2(t2ij − 2tijτj + τ 2i ) = ST
j Ri (9)

c2(t2ij − 2tijτj) = ST
j Ri − c2τ 2j (10)

The right side of equation 8 can be shortened to the form of ST
j Ri, by expanding the

square terms and using Sj and Ri of the following form

Sj =
[
sTj sj −2xj −2yj −2zj 1

]T
(11)

Ri =
[
1 Xi Yi Zi rTi ri

]T
, (12)
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from which the TODs can be retrieved by writing equation 10 in the form of

T = A + DB =
[
I D

] [A
B

]
, (13)

where T = {t2ij − 2tijτj}, A = {t2ij}, B = {−2tij} and D is a diagonal matrix
D = diag {τj}, which is unknown. Due to the fact that the two matrices S and R,
containing the vectors Sj and Ri respectively, are of rank 5, also the product of these
two matrices has to be of rank 5, and thus also T is of rank 5. Using the fact that
the first row of R contains only ones, a linear combination of five rows has to exist to
achieve that. Thus, any five rows of the matrices A, B and D can be used to build
the matrices Ā,B̄ and D̄

Ā =
[
AT

i1
AT

i2
AT

i3
AT

i4
AT

i5

]T
(14)

B̄ =
[
BT

i1
BT

i2
BT

i3
BT

i4
BT

i5

]T
(15)

D̄ =
[
DT

i1
DT

i2
DT

i3
DT

i4
DT

i5

]T
(16)

which then will be inserted into

cT
[
I D̄

] [Ā
B̄

]
= X

[
Ā
B̄

]
=
[
1 · · · 1

]
(17)

where cT is a vector that produces the vector containing only ones on the right
hand side. The matrix X in equation 17 then can be used to compute the TODs τjk
according to

τjk =
Xk+5

Xk

, (18)

The matrix X can be recovered by inverting the matrix
[
Ā B̄

]T
, which leads to the

results for the times of departure for five sources at a time. The rows of the matrices
A and B can (and have to be used more than once when the number of sources is

not divisible by 5) be used more than once to build the matrices
[
Ā B̄

]T
, but that

does not lead to additional information.

Unfortunately, this approach did not lead to results that were accurate enough to
use them with the position estimation stage. This could either be caused by the fact
that the position estimation performed by Pollefeys uses a different approach than
the one that was used for the position estimation in this work.

Furthermore, the number of sources for this approach is also given by the matrices
R and S, which have to be of full rank (i.e. rank{R} = rank{S} = 5)
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4.1.2 Algorithm 2

Compared to the TOD estimation by Pollefeys in section 4.1.1, Gaubitch uses the
complete equation 1 for the computation of the TOFs from each source to each
microphone, with εi containing the onset times δi for each microphone and additional
measurement noise νij.

tij =
||ri − sj||

c
+ τj + δi + νij (19)

The measurement noise is assumed to be zero for the derivations, but will be included
in the simulations. The onset times are the times before the first source sound event
starts, which will also be assumed to be equal, which is only true for the case of
perfectly synchronized microphones.

Pollefeys uses a matrix notation for equation 19, which results in matrices containing
the coordinates of the sources and the microphones

R̂, Ŝ = argmin
R,S

{
I∑

i=1

J∑
j=1

(
||ri − sj||

c
− tij

)2
}
, (20)

where the matrices R, R̂, S and Ŝ have the form

R =



rT1
rT2
...

rTi
...

rTI−1
rTI


R̂ =



r̂T1
r̂T2
...

r̂Ti
...

r̂TI−1
r̂TI


S =



sT1
sT2
...

sTj
...

sTJ−1
sTJ


Ŝ =



ŝT1
ŝT2
...

ŝTj
...

ŝTJ−1
ŝTJ


, (21)

where matrices or vectors with a hat are the estimated coordinate vectors, or the
matrices containing the respective estimated coordinate vectors.

To estimate the onset times for the sound events (assuming c = 1 for simplification),
the right hand side of equation 20 can be expanded to

rTi ri + sTj sj − 2rTi sj = t2ij + τ 2j + δ2i − 2(tijτj + tijδi − δiτj), (22)

then, subtracting upper equation 22 with i = 1 inserted leads to
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rTi ri − rT1 r1 − 2(ri − r1)
T sj = t2ij − t21j + δ2i − δ21 − 2(tij(δi + τj)+

+ 2t1j(δ1 + τj) + 2(δi − δ1)τj, (23)

and by again subtracting the last equation 23 with j = 1 leads to

−2(ri − r1)
T (sj − s1) = t2ij − t21j − t2i1 + t211

− 2δi(tij − ti1) + 2δ1(t1j − t11)
− 2τj(tij − t1j) + 2(δi − δ1)τj (24)

The final equation 24 can be expressed as

−2R̄S̄T = T + A(p) + Γ = T̂, (25)

where T = {t2ij−t21j−t2i1+t211}i,j with i = 2, ..., I and j = 2, ...,J contains the squared

Γij = {2(δi− δ1)}ij , and A(p) = C−1I−1×J−1 {W · p}, where C−1I−1×J−1 is equivalent to

the Matlab command A p = reshape(W*p,I-1,J-1). T̂ would contain the TOFs
relative to the first sound event.

The vector p is the vector containing the onset times δi for each microphone and
the times of departure τj for each source, which are relative to the TOD of the
first source τ1 = 0 (which is assumed to be zero). The whole p-vector has the form
p =

[
δ1 δ2 · · · δI τ2 τ3 · · · τJj

]
. Due to the assumption that all the onset

delays are equal, the vector p can be shortened by using only a single δ, which helps
enforcing the equality of all the delays such that δ = δ1 = δ2 = ... = δI . The used
vector p =

[
δ τ2 τ3 · · · τJj

]
, which also reduces the computational time for the

estimation of the microphone and source locations, by forcing the individual δi to be
equal.

Using the fact that the multiplication of the two matrices containing the microphone
and source coordinates R̄S̄T results in a rank-3 matrix, also the right side of equa-
tion 25 has to be of rank-3. Thus, rank approximation of the right hand side can be
used to achieve a LS solution for the estimation of the vector p, p̂. This estimated
vector can be used to compute an estimate of the matrix T̂ = T + A(p̂) + Γ̂.

A rank approximation can be performed by using a singular value decomposition,
truncating the diagonal matrix containing the singular values, such that only the
three largest singular values (the matrix turns into a 3× 3 matrix) remain.

The rank approximation is then used to minimize cost function

p̂(n+1) = argmin
p̂(n)

{
||E(n)−A(p̂n)− Γ̂||2F + λ||T̂(n)||2F

}
, (26)
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iteratively, where the error matrix E(n) = T̃(n) − T, with T̃(n) being the rank-3
approximation of the matrix T at iteration n. λ is a Lagrange multiplier, which,
according to Gaubitch [7], has to be set to zero for the solution to fully converge.
This has to be done after the update T̂(n) from one iteration to the next falls below
a threshold (the change is computed using the Froebenius norm ||T̂(n)||F ). After
setting λ to zero, a least squares solution can be used to compute p̂ iteratively,

p̂(n+1) = W+e(n), (27)

with W+ being the pseudo inverse of W, and e(n) being the vectorized Matrix
E(n), which would be the inverse C{· · · }-operator, which represents the reshape()

function of Matlab. When using the LS equation for the optimization, a certain
number of iterations should be used as stop condition. Another possibility would be
to again compute the Froebenius norm of the matrix T̂(n).

4.2 Position Estimation

The estimation was reformulated into a closed form solution in [4, 5] which does
not require an iterative approach. This was shown by Crocco by introducing the
additional constraint that one source and one microphone have to coincide (this can
be relaxed a little for a better applicability as shown in section 5). These coinciding
microphones are then used to define the coordinate origin, and all the other positions
will be in respect to these two. The solution shown by Crocco will be described in
this section.

Crocco starts with the equation for the TOF from the j-th source to the i-th
microphone

||ri||2 + ||sj||2 − 2ri · sj = d2ij (28)

which can be transformed into a bilinear form with the same steps as shown in
section 4.1.1 and finally results in

−2RST = D, (29)

which is the same as equation 25, with D = T̂ · c2 and T̂ being the matrix containing
the corrected TOFs, and D containing the squared distances {D}ij = d2ij − d21j −
d2i1 + d211 for the ij-th element of the matrix D, with i denoting the row index and j
the column index.

Again, equation 29 can be solved using singular value decomposition and the fact,
that D has to have rank-3, caused by R and S being of rank-3.
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D = UVW (30)

In the case of no measurement noise, the diagonal matrix V containing the singular
values, should only contain three singular values which are not zero. For the real
case with measurement noise, rank approximation has to be used again (truncating
the matrix containing the singular values). Equation 30 is then used to derive a
cost function that should be minimized with respect to a certain invertible matrix
C, from which the matrices R for the microphone coordinates and S for the source
coordinates can be retrieved. In equation 30, the matrix C can be inserted, which
would result in the following equations for R and S

D = UCC−1VW = −2RST (31)

where

R = UC (32)

−2ST = C−1VW (33)

holds.

These new definitions of R and S can be inserted into the cost function obtained in
the rest of this section, using equation 28

argmin
ri,sj

{
I∑

i=1

J∑
j=1

(
||ri||2 + ||sj||2 − 2risj − d2ij

)2}
, (34)

which leads to

argmin
ri,sj

{
I∑

i=2

J∑
j=2

(
||ri||2 − ||r1||2 + ||sj||2 − 2(ri − r1)sj − d2ij + d21j

)2}
, (35)

by subtracting the equation for i = 1 and then to

argmin
ri,sj

{
I∑

i=2

J∑
j=2

(
||ri||2 − 2(ri − r1) · (sj − s1)− 2 · ri,x · s1,x − d2ij + d21j

)2}
, (36)

by expanding the term
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−2(ri − r1)sj = −2(ri − r1) · (sj − s1)− 2 · (ri − r1) · s1 (37)

= −2(ri − r1) · (sj − s1)− 2 · ri,x · s1,x (38)

and inserting the constraints (mentioned above) that the first source and microphone
with coordinates

s1 =

s1,xs1,y
s1,z

 =

s1,x0
0

 (39)

r1 =

r1,xr1,y
r1,z

 =

0
0
0

 (40)

are concident up to a shift along the x-axis by t1,x.

To achieve the closed form solution, also s1,x = 0 is assumed. The cost function can
thus be reduced to

argmin
ri,sj

{
I∑

i=2

J∑
j=2

(
||ri||2 − 2(ri − r1) · (sj − s1)− d2ij + d21j

)2}
. (41)

Now the vectors for the coordinates of the sources and microphones can be replaced
by those obtained using the SVD (equation 32 and 33), to achieve the cost function
depending on only the 3× 3-matrix C to minimize,

argmin
C

{
I∑

i=2

J∑
j=2

(
{UC}2i,x + {UC}2i,y + {UC}2i,z + {UVW}ij − d2ij + d21j

)2}
.

(42)

Due to the fact that the matrix C is a real square matrix, a QR-decomposition can
be performed in it, resulting in a C = QR. The rotation matrix Q can be chosen to
be the identity matrix I (a rotation of the resulting coordinates does not effect the
relative positions of microphones and sources) and an upper triangular matrix R of
the form

R =

r1 r2 r3
0 r4 r5
0 0 r6

 , (43)
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which has to be obtained by minimizing the cost function equation 42, with C =
QR = IR = R inserted.

The final cost function is

argmin
R

{
I∑

i=2

J∑
j=2

(
{UR}2i,x + {UR}2i,y + {UR}2i,z + {UVW}ij − d2ij + d21j

)2}
.

(44)

which can be expanded into

R̂ = argmin
R

I∑
i=1

J∑
j=1

{(r1ui1)2 + (r1ui1 + r4ui2)
2 + (r3ui1 + r5ui2 + r6ui3)

2 (45)

+ {UVW}ij − d2i+1,j+1 + d21,j+1}2, (46)

and simplified by using the following vectors and matrices,

ξi =
[
u2i1 u2i2 u2i3 2ui1ui2 2ui1ui3 2ui2ui3

]T
(47)

f =
[
r21 + r22 + r23 r24 + r25 r26 r2r4 + r4r5 r3r6 r5r6

]T
(48)

k =
[
k1,1 k2,1 ... kI−1,1 k1,2 ... kI−1,J−1

]T
(49)

Ξ =
[
ξ1 ξ2 ... ξI−1

]T
(50)

P =


Ξ
Ξ
...
Ξ

 (51)

with

ki,j = −{UVW}ij + d2i+1,j+1 − d21,j+1. (52)

The resulting linear least squares problem in f is

f̂ = argmin
f

{
|Pf − k|2

}
(53)

can be solved easily by using the pseudo inverse,

f̂ = (PTP)−1PTk. (54)
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from which the elements of the triangular matrix R can be retrieved as follows.

r6 = ±
√
f3 r5 = f6/r6

r4 = ±
√
f2 − r25 r3 = f5/r6

r2 = (f4 − r3/r5)/r4) r1 = ±
√
f1 − r22 − r23

Due to the square roots, eight different variations of R can be retrieved, which only
differ in terms of a rotation. Thus any result for R can be chosen which results in
the local coordinates for microphones and sources. The global coordinates could be
recovered by using the microphone array to determine the direction of additional
sources which are positioned on the global axis.

5 Simulation Results

In the following section, the results obtained by the implementations of the algorithms
mentioned above will be presented and analyzed. The two simulation cases imple-
mented were the case solvable by the closed form solution by Crocco [4] in section 5.1,
and the more general solution, on which Gaubitch [7] focuses, in section 5.2, but
which is also described by Crocco [4, 5].

To test the algorithms, different shapes of microphone and the source setups can be
created for use in Matlab:

— croc: original setup used by Crocco [4].
— rand: random Gaussian distributed x-,y- and z-coordinates within a certain

volume for sources and microphones.
— octa: dimensions of the Oktava microphones as used in the WiLMA project

(sec.1.2) are used to group four microphones together, no assumptions of
the phase of the received microphone signals are included, the centers of
each Oktava microphone are at Gaussian random distributed x-, y- and
z-coordinates.

For all cases, the TOFs between microphones and sources are estimated using the
method proposed by Gaubitch in [7].

The parameters needed for creating the setups are the xm/s,ym/s and zm/s-Dimensions
of the Volume in which the microphones (subscript m) and sources (subscript s) are
distributed, and a possible displacement xd, yd and zd of the Volume of the sources
with respect to the microphones. Both Volumes in which the x,y and z-coordinates
of the microphones/sources are created uniformly distributed, are centered around
zero.

In all simulation plots, the same conventions where used. A box 2 represents the
estimates of the microphones and + the real microphone position. Similarly, a
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circle # was chosen for the source position estimates, and × for the real microphone
positions, thus using the more accurate symbols for the real positions and the symbols
introducing some kind of uncertainty to the results for the estimated positions.

5.1 Special Case [4]

The first simulations that were performed used the same microphone and source setup
as the one used by Crocco, which can be downloaded from Alessio Del Bue’s Website 1.
The results for those coordinates can be seen in the following plots, figure 7 and 6,
to have a reference for the quality of the implementation. In general, εp represents
the error of the vector pest, which contains the onset time δ = δ1 = δ2 = ... = δI and
the TODs τj for j = 1...J , with respect to the optimal result popt, representing the
actual solution of the setup (εp = |popt − pest|).
To simulate possible errors when estimating the TOAs, uniformly distributed noise
was added to the TOAs in samples. For the simulations, the values τ0 = 30 and
pi = (i − 1) · 3 (a sound event every 3 seconds) were used, which should then be
found by the algorithm estimating p.
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Figure 6 – setup: croc, noise: 0 samples.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

entries in p

|e
rr

or
| [

m
s]

individual final estimation errors

(a) εp

−1
0

1
2 −2

−1
0

1

−1

−0.5

0

0.5

1

 

y [m]

estimated positions using LS

x [m]

 

z 
[m

]

1st mircophone (origin)
estimated sources
real sources
estimated microphones
real microphones

(b) estimated positions in [m]

Figure 7 – setup: croc, noise: 2 samples.

1. http://users.isr.ist.utl.pt/~adb/code/

http://users.isr.ist.utl.pt/~adb/code/
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Simulations using positions from [4]

As can be seen in figure 7, despite of the significantly larger error with εp in the
magnitude of 0.7 ms for the worst case, the positions of the microphones and
the sources are still estimated accurately. The only really noticeable difference
between figure 7 and figure 6 (both using Croccos original data) are the slightly
off-center estimated positions of the sources, whereas the estimated positions for the
microphones are well centered around the signs representing the real positions.
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Figure 8 – setup: rand, noise: 0 samples, size: xR × yR × zR = 10× 10× 10 m.
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Figure 9 – setup: rand, noise: 0 samples, size: xR × yR × zR = 10× 10× 3 m.

Simulations for congruent array shapes

In figures 8-11 the results for different microphone/source setups where the volumes
in which the microphones and sources are places are congruent can be seen, always
with 0 samples noise. The achieved results were similar for all different volume sizes,
although it can be seen in fig. 10 that the convergence of pest cannot be assumed
in general, as shown in fig.10/a, where the TOD estimate of the 11th source is off
by over 12 ms ; 4.08 m, resulting in a source estimate being very far off the real
position. Additionally, fig. 10/c shows that the error worsened towards the end of
the iteration of the TOD-estimation.

Comparing this with the results of the simulation using what could be seen as a long
narrow ”corridor” in fig. 11, the results of the accurate estimates obtained for the
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Figure 10 – setup: rand, noise: 0 samples, size: xR × yR × zR = 10× 10× 3 m.
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Figure 12 – setup: rand, noise: 0 samples, size: xR × yR × zR = 10 × 3 × 1 m,
xdisp = 5 m.
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Figure 13 – setup: rand, noise: 0 samples, size: xR × yR × zR = 10 × 3 × 1 m,
xdisp = 5 m.
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Figure 14 – setup: rand, noise: 0 samples, size: xR × yR × zR = 10 × 3 × 1 m,
xdisp = 5 m.

cubic volume show an interesting convergence behavior of the TODs, which decrease
in accuracy before actually converging and were at times worse than the ones which
could not reach convergence. Thus it can be assumed that the instantaneous error
at a certain iteration might not give information about the convergence behavior. It
can furthermore be seen that the chosen number of iterations has direct influence of
whether good results can be achieved: too few iterations might let the algorithm stop
before converging, whereas too much iterations might lead to a deterioration of the
results, all of which can be expected when dealing with any optimization problem.

Simulations for non-congruent array shapes

In figures 12-14 the results for not-congruent volumes (the displacement was 5 m in
x-direction, resulting in 50% overlap of sources and microphones) in which micro-
phones and sources are distributed are shown, again for different volume dimensions
(microphone and source volumes have the same dimensions for every plot). Already
in fig. 12 it can be seen that the displacement has no real effect on the estimated
positions for the cubic room, but a slowing effect on the speed of convergence when
estimating the TODs (compare fig. 12/c and 13/c). By further increasing the dis-
placement, the positions of the sources cannot be estimated in a meaningful way, but
the estimated microphone positions seem somewhat inclined to be in the vicinity of
the real positions.

Simulations using Oktava microphones

The next set of simulations was performed to determine whether it would be possible
to locate the Oktava microphones that are used with in the WiLMA project mentioned
in section 1.2. What the reader has to note here is that only the ability to estimate
microphones that are so close together was examined, without using any of the
directional information that could be extracted from the Oktava microphone signals.
Furthermore, using additional information from the Oktava microphones would also
require an adaption of the used algorithms, which will later be discussed in section 7.
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The used model of a possible Oktava microphone with the four capsules indicated by
a dot at the edges and the center of the capsules by a dot in the origin can be seen
in fig. 15. The positions of the capsules are just estimates derived from a picture,
but since no real microphone recordings were used perfectly accurate positions of
the capsules were not deemed necessary.
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Figure 15 – Model of the Oktava 4D Ambient microphone used for the Matlab
simulations in the octa-setup (dimensions in [m]).

The results in fig. 16 show that also if microphones are grouped closely together, the
positions can be estimated with accuracy, with the results being very close to the
real positions. The source estimates are again a little off concerning the real position,
although there seems to be room for improvement with the mean of εp showing a
clear downward trend before the maximum for the iterations is needed.
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Figure 16 – setup: rand, noise: 0 samples, size: xR × yR × zR = 3× 3× 3 m.
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Random and pseudo-random pinit

Concerning p, an initialization pinit has to be found to begin the optimization process
with. Here, four ways of initializing the elements of p were implemented:

— informed
— zero
— random, elements are Gaussian random numbers ranging from 0 to 2 · J
— pseudo-random, the first elements is a Gaussian random number from 0 to 1,

the other elements are random integers from 0 to 2 · J plus some Gaussian
noise.

The sorting for the pseudo-random pinit was intended to achieve a similar initialization
compared to the real p vector, which contains the ascending TODs τi of the sources
with respect to the TOD of the first source τ1. The range for the random values of
the last two initializations of p are based on the assumption that sound events might
occur at intervals of approximately 2 seconds, which could be adapted in case of a
final implementation.

For the informed initialization, the smallest TOA was assumed to be the δ (onset
time), and the difference between this δ and the next smallest TOA (for each source)
is assumed to be the interval of the sound events, which results in a starting point
that adapts to the surroundings. For random intervals between the sources, an
initialization for the whole pinit could be found by looking at the spacing between the
TOAs at one microphone (for the free-field case, i.e. no reflections). This informed
initialization was used for the simulations, first because it led to the best results, and
second because it does not need any additional information or assumption (only the
TOAs), and would therefore also be the variant of choice for a possible real-world
implementation.

5.2 General Case

If the special case of first source and microphone being coincident cannot be fulfilled, it
is interesting to solve the general formulation of the problem, according to equation 42,
using a nonlinear least-squares solver (NLSQ). A problem here will be the influence
of the initialization of the 3 × 3 matrix C on the convergence in general and the
convergence time, although no tests of this were performed in this work.

In the cases shown here, C was initialized with Gaussian random values, ranging
from 0 to 1, based on converged solutions. Another initialization that was tried
was based on the dimensions of the room, because some kind of dependency of the
maximum values of the was observed, but this type of initialization was not pursued
any further, because no real improvement was apparent. Another possibility would
be to use an eye matrix, being equivalent to a scalar multiplication with 1.

The problem with the closed form solution is the assumption that the first source
and the first microphone have to be coincident. By increasing this distance, also the
mean position error (MPE) of the microphones and the sources increase, although
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the MPE of the sources increases by much more than the one of the microphones.
Thus it might be a possibility to use the closed form solution if the positions of the
sources are not important, probably because they are only used for initialization
purposes (clapping,...) thus not containing needed information. In the following
section, the results for the general solution using a NLSQ solver will be shown, often
compared to the solution obtained as a closed form solution (LS), with the knowledge
that the LS solution will always contain an error. The comparison is used to obtain
information about the robustness of the LS algorithm with respect to the coincidence
condition.

5.2.1 Simulations for congruent array shapes

In this section, the same simulations as for the special solution are performed, but
this time for dx = 4 m, in differently shaped volumes (seen in figure 17, 18, 19 and 17)
and with more or less overlap of the volume of the sources and microphones. The
results that are achieved are similar to those obtained by the LS algorithm, but what
should be noted is that this time noise levels of 0 and 10 samples were used, to
increase the visible changes. Additionally, a comparison of the MPEs of the LS and
the NLSQ solution are compared in one plot, to give some measure of the quality
improvement when using the correct algorithm.
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Figure 17 – setup: rand, noise: 0 samples, size: xR × yR × zR = 10× 10× 10 m.

Especially when looking at figure 20/c, it can again be seen that the convergence of
the TOD estimation can not be guaranteed. The estimated TODs clearly decrease,
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Figure 18 – setup: rand, noise: 10 samples, size: xR × yR × zR = 10× 10× 10 m.
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(d) MPE of the NLSQ solution.

Figure 19 – setup: rand, noise: 10 samples, size: xR × yR × zR = 10× 10× 3 m.
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(d) MPE of the NLSQ solution.

Figure 20 – setup: rand, noise: 10 samples, size: xR × yR × zR = 10× 3× 1 m.

but the NLSQ solution still achieves results, although this was not always the case
for this shape of volumes.

What seems to be the case here, is that when the directions from the sources to
the microphones become more and more parallel, the performance of the algorithms
decreases rapidly, thus calling for a reduction of the dimensions of the problem to
a 2-dimensional estimation problem. The 2D solution could then again be rotated
arbitrarily in the 3-dimensional space to find the best fit for the given setup, thus
being restricted only in such a way, that sources and microphones should be close to
or on a plane in the 3-dimensional space.

5.2.2 Simulations for non-congruent array shapes

The simulations for non-congruent array shapes for a TOA error of 10 samples did
not converge consistently, therefor the error was decreased to 5 samples and the
volumes enlarged in the z dimension to xR × yR × zR = 10× 3× 3 m, which resulted
in a more stable performance. The displacement in this case was 5 m in x direction,
resulting in 50% overlap (depending on the distribution of sources and microphones).
What is again apparent when looking at fig. 21/a, is the fact that the sources are
estimated much worse than the microphones (fig. 21/d).
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Figure 21 – setup: rand, noise: 5 samples, size: xR × yR × zR = 10× 3× 3 m and
a displacement in x direction by 5 m.

5.2.3 Simulations using Oktava microphones

When simulating Oktava microphones, more microphones (8 Oktava microphones)
were used for these simulations. Without TOA error the estimation works perfectly,
resulting in an error in the magnitude of 10−8 (figure 22), which is essentially zero.
When increasing the error to 4 samples (seen in fig.23), although the centers of the
Oktava microphones are not estimated very accurately, the error behavior seems
to be similar to the one without the Oktava microphones, although the error when
using Oktava microphones is slightly larger.

5.2.4 Mean position error and computation time comparison

To determine the quality of the estimated positions, the measure of the mean position
error (MPE) will be introduced here, which can be used to describe the estimated
positions of sources and microphones with a single value. When plotting the MPE for
more setups, the standard deviation will be added, to further increase the information
shown in the plots. The MPE can be computed by

MPE =
1

N

√√√√ N∑
n=1

(
D∑
i=1

(
posi,true − posi,est

)2)
, (55)
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Figure 22 – setup: okta, noise: 0 samples, size: xR × yR × zR = 10× 10× 10 m.
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Figure 23 – setup: okta, noise: 4 samples, size: xR × yR × zR = 10× 10× 10 m.
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where N is the number of sources or microphones, depending on the MPE needed,
and D is the dimension of the coordinates (3 in this case). When using more setups,
the mean of the MPEs of each setup has to be computed, using

MPEmean =
1

#Setups

#Setups∑
S=1

MPES, (56)

where MPES is the mean position error of setup S and #Setups the number of
setups evaluated. When using more setups to compute the MPE, only setups that
led to real coordinates were used.

In figure 24 a comparison of the normal LS based position estimation, which relies
on the first source and microphone being coincident, and the solution obtained by
the NLSQ algorithm can be seen. Figures 24(a,c,d) show the estimated results with
perfect TOAs (no noise), representing the best possible estimation of the positions,
figures 24(b,d,f) show the results with 4 samples TOA noise. The setup to estimate
was not ideal for the LS estimation, with the coincidence condition not being fulfilled
(dx = 0.5 m), but the LS algorithm still leads to results for the estimates of the
microphones, when comparing the 3D plots of the LS and NLSQ results in fig.24,
and the MPEs in figure 25/a. The sources are usually estimated worse than the
microphones, independent of using the LS or NLSQ algorithm. Still, the overall
performance of the LS algorithm decreases very fast for increasing dx (with constant
volume dimensions), as expected because of the ignored breach of the coincidence
condition.

Due to the fact that the computation time of the NLSQ solution can be even lower
than the time needed for the LS algorithm (fig. 25/b), a use of the LS algorithm is
generally not merited when the coincidence condition is not full filled.

Still, the maximum of the computation time when using the NLSQ algorithm is
usually larger than the constant computation time of under 1 second of the LS
problem (fig. 25(b)). Still, the NLSQ solution has a much lower MPE for the all
estimated positions.

In figure 26 the MPEs of 10 setups for each noise level, all fulfilling the coincidence
condition dx = 0 m can be seen. When comparing the MPEs, it can be seen that
the NLSQ solution yields better results for all simulated noise levels, and when
comparing the NLSQ results to those of figure 25, not much change in the MPE can
be observed, with the MPEs being linearly (or weak quadratic) dependent on the
TOA error.

When looking at much higher TOA errors (0 to 90 samples, equal to 0 to ≈ 2 ms)
simulated in figure 27, the MPE is still linearly (or weak quadratic) dependent on
the TOA error, with slowly increasing standard deviations for all plotted MPEs.
For the special and the general case, the standard deviations are slowly increasing
towards higher TOA errors, together with an increase in computation time for the
algorithm estimating the TODs, seen in both fig. 27 for the LS and fig. 28 for the
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Figure 24 – For the simulation data of the above plots (a-f) dx = 0.5 m was used, with
different noise levels. Comparing (c) to (e) and (d) to (f) illustrates the improvement
achieved by the NLSQ algorithm compared to the LS algorithm. The size of the
volume was xR × yR × zR = 10× 10× 10 for all above simulations.
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(b) computation times needed for the different algorithms

Figure 25 – Different MPEs for the respective solver over the TOD error ranging
from 0 to 4 samples (0 to 0.083 ms for a sample rate of 48kHz), with a volume size
of xR × yR × zR = 3× 3× 3 and dx = 0.5. On average the computation time of the
NLSQ is slightly higher than the LS computation, whereas the MPE of the NLSQ is
much better.
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Figure 26 – MPE over 10 setups (xR, yR, zR = 10 m, I = 16, J = 20), TOA error
ranging from 0 to 4 samples, with the coincidence condition fulfilled. The MPE
seems to be linearly dependent of the TOA error.

NLSQ algorithm. What also becomes apparent is the fact that the NLSQ algorithm
is also likely to suffer an increased computation time. Still, the NLSQ results for
the special and the general case are in the same magnitude, with the general case
seeming to be a little more inclined to vary more when comparing different setups
(i.e. larger variance).

As expected, without the coincidence condition being fulfilled, the MPE of the source
positions when using the LS algorithm (which would require the coincidence condition
to be fulfilled) is much larger than for the NLSQ algorithm.

It should be noted, that if a few setups could not be estimated correctly, they were
removed from the evaluations to be able to determine the quality of the correctly
estimated results. This did not occur very often, but more often for higher noise
levels, especially for the plots simulating TOA errors up to 90 samples.
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(b) computation times needed for the different algorithms

Figure 27 – Computation times of 10 setups (xR, yR, zR = 10 m, I = 10, J = 21),
with TOA error ranging from 0 to 90 samples, with the coincidence condition fulfilled.
The computation time can vary rather much.
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(b) computation times needed for the different algorithms

Figure 28 – Computation times of 10 setups (xR, yR, zR = 10 m, I = 10, J = 21),
with TOA error ranging from 0 to 90 samples, with the coincidence condition fulfilled.
The computation time was not corrected, and, as can be seen, can vary rather much.
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Figure 29 – MPE for a each setup (for every source number/noise level combination
only one simualtion was performed), with xR, yR, zR = 10 m, dx = 1 m,I = 16, with
TOA error ranging from 0 to 10 samples in steps of 2 samples, for different number
of source numbers (#src). As can be seen, the source positions estimated by the
NLSQ algorithm have a higher MPE (0.1 to 0.2 m), compared to the microphone
MPEs ranging from 0.06 to 0.14 m. A general decreasing trend of the MPE for
microphones and sources when increasing the number of sources can be observed.

6 Conclusion

As can be seen from the results in the previous chapters, it is in fact possible to
obtain the relative positions (under certain restrictions) of an unknown microphone
array and of the sources used to calibrate the microphone array simultaneously
with reproducible results concerning the mean position error (MPE). The MPE
furthermore seems to be dependent on the error of the TOA detection, with errors
of up to 20 samples still leading to a reasonable MPE of under 0.5 m for microphone
and source estimates in a 10× 10× 10 room.

When comparing the general solution (NLSQ solver) to the special solution (source
and microphone coincidence using LS solver), it was shown that the LS solver is more
inclined to produce better results for the microphone positions when the coincidence
condition is not fulfilled (no microphone and source coincident), but still to much
worse results than the NLSQ solver with for in general the same computation times.
The computation time on the other hand was shown to be dependent on the TOA
error magnitude (for LS and NLSQ).

What can be said about the results in general is, that microphones and sources can
be estimated much better, when they are evenly distributed within each other, and
when the volumes in which they are distributed are not very long and flat.

What also becomes obvious is an increase of the accuracy of microphone and source
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positions alike when increasing the number of sources. Therefore the NLSQ algorithm
can be assumed to yield more and more accurate results when increasing the numbers
of sources used to calibrate the arrays.

Concerning the simulations, only a rather low number of trials was used when
computing an average MPE over samples (10 at maximum), due to the long compu-
tation times that would be needed for a 500 trials, a number used in the paper by
Crocco [4, 5].

7 Future Work

Additional work could be done concerning a possible use of the above algorithms for
the WiLMA array, which was shown to correspond to a much more difficult simulation
environment. Furthermore, directional information of the Oktava microphones can
be used to acquire additional information concerning the distribution of the sources.

Furthermore, also the general possibility of increasing the accuracy by fixing certain
microphone and source constellations is interesting. Future implementations might
also include the possibility of using moving source, moving microphones or an overall
microphone/source constellation that is not fixed and changing shape constantly,
increasing the need for a fast solution to minimize the lag of the estimated system
with respect to the actual system at a given time.

Probably the first step that should be done would be the real implementation of the
system, to examine the relation between the simulations and real tests. For such
an implementation, some problems need to be countered first: the TOAs need to
be extracted as good as possible, with respect to echoes or masking of the sound
events arriving at the microphones (missing data), and a way to find the orientation
of the estimated positions with respect to the real positions has to be determined.
This could for example be done when using moving sources (walking person, car,...)
which can be assumed to move in a certain plane (xy/xz/yz-plane).

When trying to locate moving sources, it would be interesting to determine the
needed interval of updates to be able to track a source moving around.

Another interesting area of use for such an array would be the measuring of a room,
concerning its size,geometry and impulse response.
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