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Abstract

Music source separation is the task of extracting individual instrument tracks from a joint
music mixture. State-of-the-art music source separation methods employ neural networks
exclusively. Most current neural network architectures for music source separation do not
contain structural prior knowledge about the sources whose signals are to be extracted
from the musical mix signal. This work examines the topic if it is possible to incorpo-
rate knowledge about the guitar into a neural network for music source separation using a
physical string model. Furthermore it deals with the question if and how an improvement
of guitar string signal separation quality is possible by refining the physical string model
incorporated in the neural network. The proposed method serves as a proof of concept
for introducing differentiable physical modeling synthesis into neural music source sep-
aration, leading to a basis for potential high quality guitar string separation. Even better
source separation methods of musical instruments yield applications in professional audio
production such as remixing, upmixing, extracting stems from single microphone record-
ings, reduction of microphone crosstalk (mic bleed) and finer control of sound objects in
audio tracks. This method is not limited to audio applications and may be extended to
other fields in the future.
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Kurzfassung

Quellentrennung von Musik ist die Separierung einzelner Instrumentenspuren aus einer
gemeinsamen Musikaufnahme. Die aktuell besten Methoden zur Musik-Quellentrennung
verwenden ausnahmslos Neuronale Netze. Aktuell verwendete Netzwerkarchitekturen
enthalten selten strukturelles Vorwissen über die Signalquellen, deren Signale aus dem
musikalischen Mischsignal extrahiert werden sollen. Diese Arbeit behandelt das Thema,
ob es möglich ist, Wissen über die Gitarre in ein neuronales Netzwerk für Musikquellen-
trennung mittels eines physikalischen Saitenmodells einzubringen. Weiters beschäftigt sie
sich mit der Frage, ob und wie eine Verbesserung der Trennung von Gitarrensaitensigna-
len möglich ist, indem das physikalische Saitenmodell verfeinert wird, welches im neuro-
nalen Netzwerk verwendet wird. Die vorgeschlagene Methode dient als proof of concept
für die Einbringung von differenzierbarer Physical Modeling Synthese in die neuronale
Musikquellentrennung. Dies führte zu einer Basis für potentiell qualitativ hochwertiger
Gitarrensaiten-Signaltrennung. Mit noch besseren Methoden zur Quellentrennung von
Musikinstrumenten ergeben sich unter anderem Anwendungen im Bereich der profes-
sionellen Audioproduktion wie Remixing, Upmixing, Einzelspuren aus Aufnahmen mit
einem Hauptmikrofon erhalten, Verminderung von Mikrofon-Übersprechen (mic bleed)
und feinere Kontrolle von Klangobjekten in einer Audiospur. Diese Methode ist nicht
auf Anwendungen im Audiobereich beschränkt und könnte in Zukunft auf andere Felder
erweitert werden.
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Chapter 1

Introduction

This work deals with instrument-specific music source separation using interpretable and
physics-inspired artificial intelligence. It is achieved by encoding prior knowledge about
the instrument into a neural network architecture for music source separation. The knowl-
edge is encoded as a physical instrument model which receives neurally predicted control
signals. These control signals are interpretable in the sense that humans understand the
meaning behind them. From these control signals the source signals from a mixture signal
are synthesized with the physical model given the predicted control signals.

In 2020 [EHGR20] introduced the concept of differentiable digital signal processing. This
lead to a multitude of publications and proved to be beneficial in a number of fields. The
concept is to include traditional digital signal processing elements into neural networks,
leading to the application in [EHGR20] where it was used for singing voice separation.
In this work the method for singing voice separation is adopted for guitar string signal
separation. That is to say, a mixture signal such as a monophonic guitar recording is split
up into individual guitar string signals.

Methods which employ differentiable digital signal processing proved to be data-efficient
and are even able to train unsupervised. Therefor the above mentioned method for music
source separation only needs mixture signals for training. The proposed models in the
experiments are successors of this method and are trained with a preliminary stage of
unsupervised learning. This makes the proposed method’s training process effectively
supervised, but may be improved in the future by building on the results achieved here.

The thesis is structured as follows. Chapter 2 gives an introduction to deep learning and
chapter 3 covers the fundamentals of music source separation, building up to a summary
of state-of-the-art methods in this field. Chapter 4 contains an explanation and a literature
review of differentiable digital signal processing. The conducted experiments are intro-
duced in chapter 5 followed by the results and discussion of these experiments in chapter
6. Finally, the work is concluded in chapter 7 which also gives an outlook for future
research.
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Chapter 2

Deep Learning

Neural networks containing multiple layers are called deep neural networks and belong to
the group of machine learning systems. The process of training such deep neural networks
is referred to as deep learning. Deep learning is currently used to solve new problems and
to improve existing systems in an extremely wide range of fields.

An overview of machine learning can be found in [Bur19] and [PK20]. An informal in-
troduction is found in [Gé19] and a more formal definition is given by [Bis06]. Literature
about deep learning specifically is found in [Nie15]. Overviews on deep learning for au-
dio signal processing, audio generation and music information retrieval can be found in
[PLV+19], [ZXT19] and [CFCS17].

In this chapter first the training process of neural networks is described, treating neural
networks mostly as black-boxes. Subsequently, the neural network layers are defined
which are the building blocks of neural networks. Then, a selection of neural network
architectures are introduced and the chapter concludes with important properties of neural
networks regarding this work.

2.1 The Neural Network as a Black Box

Considering a neural network (NN) as a black box, it is commonly used to map its input
to a certain output with respect to a set of training data. NNs can be viewed as multiple
nested functions with numerous free parameters. These parameters are called weights
and are initialized in a certain way (mostly drawn from a certain random distribution) and
then optimized to map the input data to the desired output data. This iterative optimization
process is called training the NN in which it learns the desired mapping. The optimization
goal is formalized with the loss function or cost function and the weights are optimized
by minimizing this loss.

The usual goal in training a NN is to have it learn patterns from the training data to pro-
duce a desired output for unseen new input data. Hence, a NN is also referred to as model
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because it is a mathematical model fitted to the training data. 1 These two terms, neural
network and model, are used interchangeably in the literature. A model generalizes well
if its performance on new unseen data is comparable to its performance on the training
data.

To assess the models performance commonly a test dataset or abbreviated test set is re-
served from the overall available data. The data used for model training is called the
training set. Often also a validation set is used between training steps for tuning hyperpa-
rameters which are parameters of the overall system employed for training. The training
set normally consists of roughly 70% to 95% of the overall available data [Bur19]. The re-
maining 30% to 5% are either utilized as test set or split between a test set and a validation
set. Model performance is measured either directly via the loss function used for training
or a certain metric is employed, which can measure the quality of the models output for
the given task.

Depending on the models complexity, type, structure and training progression and also
on the loss function, overfitting or underfitting can occur. The model shows underfitting
when it performs bad at the test set. This is indicated by a high training loss produced by
poor predictions. On the other hand the model shows overfitting when it performs well
on the training set but performs poorly on the test set. This is indicated by a low training
loss and a high test loss.

Following [Bis06] and [PK20], data X for machine learning can be either unlabeled data
as defined in eq. (2.1) or labeled data as defined in eq. (2.2) with the number of data
samples N .

X = {x1, · · · ,xN} (2.1)

X = {⟨x1, t1⟩, · · · , ⟨xN , tN⟩} (2.2)

The set of unlabeled data consists only of the data samples xn = [x
(1)
n , · · · , x(Din)

n ]T of
dimension Din with the transpose (·)T . If unlabeled data is used for training exclusively,
the training process is called unsupervised learning. The inputs xn are also referred to as
features in machine learning.

Labeled data consists of tuples with the according targets tn = [t
(1)
n , · · · , t(Dout)

n ]T of
dimension Dout. If labeled data is used for training, the training process is referred to as
supervised learning.

2.1.1 High Level Overview

Figure 2.1 depicts a usual training process for NNs. The NN takes the input data sample
xn and produces from it the neural network output or prediction yn = [y

(1)
n , · · · , y(Dout)

n ]T .

1. This term is also used in statistics.
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When yn = c ∈ Z consists of classes c, the model performs a classification task. Thereby
it outputs a class number c according to its input xn. A regression task is performed when
yn ∈ RDout .

ynxn neural 
network

optimizer

Pn+1

loss 
function

Jn

tn

Figure 2.1 – Block diagram of the neural network training process with input data sample
xn, prediction yn, target data sample tn, loss function J(yn, tn) and the set of learnable
parameters P of the neural network.

The loss function J(yn, tn) ∈ R is calculated after the NN predicted its output according
to its input. This loss is a scalar value Jn.

In certain systems it is desired that the NN is optimized to reproduce its input on the
output in an unsupervised fashion. Hence the target becomes the input tn = xn and
the NN output becomes the input estimation yn = x̂n. In this case the loss function is
J(xn, x̂n).

Jn is then used from the optimizer to update the current NN parameters Pn to the param-
eters Pn+1 in such a way that the loss is reduced. By yielding Pn+1 the learning step n
is finished. The updated network parameters Pn+1 are then used for the next prediction.
In this way the NN is trained multiple times on the whole training set. One such training
pass of the whole training set is called an epoch. After training and testing the model, it
is employed to predict outputs from new unseen data, which is referred to as inference.

The description of the NN training process above serves as an introduction and as an
overview. In this overview the important parts

— neural network,
— optimizer, and
— loss function

were intentionally treated as black boxes to gain a high level understanding. In the follow-
ing sections these elements are clarified in more detail.

2.1.2 The Neural Network

NNs are typically composed of multiple layers. For example a dense layer in eq. (2.3) per-
forms a linear transformation on the input and applies a vectorized non-linear activation
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function f to the result.

yn = f(W lxn + bl) (2.3)

A scalar function f : R → R is vectorized by applying it separately on all vector elements
f(xn) = [f(x

(1)
n ), · · · , f(x(D)

n )]T ∈ RD [Nie15]. The weights matrix W l ∈ RDout×Din

and the bias vector bl ∈ RDout hold the trainable parameters of the layer l. The superscript
l may not be confused with an exponent as it is the layer index of a NN composed of
multiple neural layers.

This dense layer originates historically from the artificial neuron which itself is inspired
by the biological neuron. There are other layer types too which are described below.
Mathematically the artificial neuron is related to linear and logistic regression. In linear
regression as described in [PK20] a linear model yn = wTxn ≈ tn is fitted to the training
set by finding the optimum solution of the weights vector w = [w1, · · · , wD]

T and the
bias b0. The least squares optimum weights vector w∗ and bias b∗0 are obtained via an
analytical solution.

Logistic regression

yn = f(wTxn + b0) ≈ tn (2.4)

is equivalent to the artificial neuron model. Originally the differentiable non-linear activa-
tion function f(x) is given by the sigmoid function σ(x). 2

σ(x) =
1

1− e−x
∈ (0, 1) (2.5)

For logistic regression and the artificial neuron, respectively, no analytical solution for the
optimum weights and bias can be found. Hence the optimization is done via an iterative
gradient descent method. Artificial neurons from eq. (2.4) are stacked to form a dense
layer described in eq. (2.3). For notational convenience all trainable parameters of the
NN with a number of L layers are summarized into the trainable parameters set P =
{W 1, b1, · · · ,WL, bL}.

2.1.3 The Optimizer

Given a NN with multiple dense layers and the training set X an optimum solution is
approached by iteratively updating P according to minimize the loss function J(P ) =
J(y(xn, P ), tn) via the common iterative gradient descent optimization method

Pn+1 = Pn − η∇PJ(P ) (2.6)

2. The historical precursor of the artificial neuron is the perceptron which used a step function as an
activation function f .
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where η denotes the learning rate or step size of the algorithm and ∇PJ(P ) is the gradient
of the loss function with respect to all trainable parameters P of the NN. Picturing the loss
function as error surface above the trainable parameters, gradient descent takes steps of
length η to a minimum of the error surface because the negative gradient points to the
steepest descent at the given point on the surface. If the global minimum would be found,
the algorithm would have successfully optimized the weights of the NN according to the
training set. Although in general the error surface of a NN is not convex. Hence gradient
descent most likely finds a local minimum but not the global minimum. However finding
a local minimum of the error surface is sufficient in many cases. This training technique
requires all parts (layers) of the NN and the loss function to be differentiable.

Plotting the loss over the training steps is referred to as the learning curve of a model.
Usually a learning curve shows the arithmetic mean loss per epoch.

The Backpropagation Algorithm

The error backpropagation algorithm or short backpropagation algorithm is an efficient
method to calculate the gradient ∇PJ(P ) by exploiting the chain rule [Bis06]. As the
name implies the backpropagation algorithm works by taking the error of the last layer
which is the same as the result of the loss function J and successively calculating the
gradient for the output up to the input layer. In this way the loss gradient is propagated
from the last layer back to the first layer of the NN.

Gradient Descent Variants

Gradient descent computes the gradient of the cost function for every single training ex-
ample using the backpropagation algorithm to get the gradient of the cost function. The
NN training process above was outlined in this fashion that every data sample ⟨xn, tn⟩ is
used to update the parameters P of the NN. In practice it is common to alter the optimiza-
tion algorithm to perform

— batch gradient descent,
— stochastic gradient descent or
— mini-batch gradient descent

or others. The gradient descent variants differ in computational efficiency and NN learn-
ing behavior.

Batch gradient descent performs one training step in the direction of the average of the
error gradients according to the full training set [Gé19]. This means, that every epoch the
NN parameters P are updated only once. Hence this method is computationally inefficient.
Learning curves are smooth but tend to get stuck in local minima.

Stochastic gradient descent picks random data samples from the training set. The gradient
is calculated for every single randomly chosen data sample and then a learning step is
taken. Learning curves are noisy but may find a way out of local minima.

For mini-batch gradient descent, the training set is randomly divided into small chunks
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called mini-batches. 3 For every mini-batch of randomly chosen data samples one gradient
descent learning step is performed. This learning step is taken into the direction of the
average gradient of the samples in the mini-batch.

Mini-batch gradient descent is the main method employed for training NNs since cal-
culation of matrix operations are optimized especially when using GPUs [Gé19] and fit
in memory for mini-batches. Usually training is done in several epochs where the mini-
batches contain different randomly selected samples from the training set. The mini-batch
gradient descent method can be viewed as trade-off between batch gradient descent and
stochastic gradient descent in terms of learning behavior and computational efficiency.

In automatic differentiation (auto-diff) libraries such as TensorFlow 4 or PyTorch 5, these
learning algorithms are called optimizers since they iteratively solve the optimization prob-
lem for the weights of neural networks. One of the most used optimizers in the literature
is called Adam [KB14] but there are the classic methods described above and others as
well.

2.1.4 The Loss Function

As described above the loss function J(y(xn, P ), tn) evaluates to a scalar value for ev-
ery training step. The loss function is also called error function or cost function. The
learning process is highly dependent on the choice of the loss function since it defines the
optimization goal for the whole system.

The loss or error can be pictured as a distance from the predicted sample yn to the target
sample tn. Optimizing with batch gradient descent, or as usual with mini-batch gradient
descent, an accumulated error measure has to be calculated to yield a scalar. Hence of-
ten the mean or the sum of the individual distances between predictions and targets in a
batch/mini-batch are calculated. Common generic loss functions are

— the mean absolute error (MAE, L1-distance): 1
N

∑N
n=1 |yn − tn|

— the mean square error (MSE, L2-distance): 1
N

∑N
n=1(yn − tn)

2 and
— the cross-entropy loss.

Considering audio applications [PLV+19] says:

A crucial and creative part of the design of a deep learning system is the
choice of the loss function. The loss function needs to be differentiable with
respect to trainable parameters of the system when gradient descent is used
for training. The mean squared error (MSE) between log-mel spectra can be
used to quantify the difference between two frames of audio in terms of their
spectral envelopes. To account for the temporal structure, log-mel spectro-
grams can be compared. However, comparing two audio signals by taking

3. In the literature the word batch is used for the whole training set and mini-batches are small subsets of
the training set. However mini-batches are in practice mostly referred to in the short form batches especially
in code. Hence the nomenclature is ambiguous and should be interpreted from the context.

4. https://www.tensorflow.org/
5. https://pytorch.org/
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the MSE between the samples in the time domain is not a robust measure.

The MSE or the MAE are not robust measures because small errors in the synthesis of
audio signals produce large errors depending on the phase of the signals. Especially when
the network output yn is audio data like music or speech a phase independent loss function
should be considered.

2.1.5 Activation Functions

To introduce nonlinearity into a NN, nonlinear activation functions such as in Figure 2.2
are used.

5 4 3 2 1 0 1 2 3 4 5
2

1

0

1

2

Logistic

5 4 3 2 1 0 1 2 3 4 5
2

1

0

1

2

Tanh

5 4 3 2 1 0 1 2 3 4 5
2

1

0

1

2

ReLU

5 4 3 2 1 0 1 2 3 4 5
2

1

0

1

2

LeakyReLU (0.3)

Figure 2.2 – Different popular activation functions from [CFCS17].

These are the currently most popular choices for output layers (top) and hidden layers
(bottom). The logistic function which is also called sigmoid function can be used after any
layer but the rectified linear unit (ReLU) showed to have good properties for hidden layers
[Gé19]. Output range and scaling, learning behavior or stability are reasons to employ
other activation functions such as the hyperbolic tangent, the leaky ReLU or others.

2.2 Neural Network Layers

A NN with reasonable performance at a non-trivial task usually consists of multiple layers.
For audio applications "multiple feedforward, convolutional, and recurrent (...) layers are
usually stacked to increase the modeling capability." [PLV+19] In this section different
neural layers are described which are the building blocks of NN architectures in general
and also of neural source separation architectures. Layers are divided into

— an input layer,
— an output layer, and
— multiple hidden layers in between

depending on their position in the NN.
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The input layer receives the input data sample xn and the output layer outputs the NN
prediction yn. In between are the hidden layers connected in series consecutively. Input
and hidden layers in DNNs demand different activation functions than the output layer.
The output layers activation function is determined by the systems task and by the target
value range tn.

A deep neural network (DNN) is a neural network with multiple hidden layers [PLV+19].
The more complex the problem is which the network should solve, the more hidden layers
are needed. In the following the three basic NN layer types

— the dense layer,
— the convolutional layer (pooling layer, dilated convolutional layer), and
— the recurrent layer (RNN, GRU)

are described.

Dense layers are general purpose layers, convolutional layers are often used for two-
dimensional inputs with local structures and recurrent layers are often used for time series.

2.2.1 Dense Layer

A dense layer in the literature is also called fully connected layer, linear layer, linear
transform or affine transform. All these names describe a linear map with a subsequent
application of an activation function f .

There are two common notations for a dense layer in the literature which are mathemati-
cally identical. Starting from eq. (2.3) y

(1)
n

...
y
(Dout)
n

 = f


 W l

1,1 · · · W l
1,Din

... . . . ...
W l

Dout,1
· · · W l

Dout,Din


 x

(1)
n

...
x
(Din)
n

+

 bl1
...

blDout


 =

f


 bl1 W l

1,1 · · · W l
1,Din

...
... . . . ...

blDout
W l

Dout,1
· · · W l

Dout,Din




1

x
(1)
n

...
x
(Din)
n




(2.7)

which differs in the position of the bias vector b. In the first expression the bias vector b
is separated from the weights W l

j,i and in the second expression the bias vector is a part
of the weight matrix which requires an extended input vector xn = [1, x

(1)
n , · · · , x(Din)

n ]T .

Due to this notational difference there are also two common graphs to represent a dense
layer which consists of artificial neurons. The first expression in eq. (2.7) leads to a graph
with a separate bias node with an input of 1 for every dense layer and the second expres-
sion includes the bias inside the neuron as depicted in Figure 2.3. The artificial neuron j
applies its weights W l

j,i to its inputs which are all outputs i from the previous layer and
sums the results including its bias blj . One artificial neuron accounts for Din weights and
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1 bias as depicted in Figure 2.3. The resulting sum of the bias and the weighted inputs is
fed through the activation function f which forms the output y(j)n .

W j ,i
l

f ( )Σ

W j ,1
l

b j
l

W j , Din

l

⋮

⋮

1

x n
(1 )

x n
( i)

x n
( Din )

y n
( j )xn y n

( j ) =j

Figure 2.3 – Graph of an artificial neuron with input xn = [x
(1)
n , · · · , x(Din)

n ]T , output y(j)n ,
weights W l

j,i and bias blj . The indices are the data index n, input data dimension Din,
neuron index i in the previous layer and neuron index j of the current layer.

xn
(1) 1

xn
(2) 2

1

2

3

1 yn
(1 )

W j, i
2

l=1 l=2 l=3

W j,i
3

1

2

l=4

W 1,1
4

W 1,2
4

Figure 2.4 – Graph of a simple dense NN with 4 layers, with layer number l and weights
W l

j,i.

Every neuron j in a dense layer l is connected to every neuron in the previous layer i
(hence the term fully connected layer). A simple example of a NN with two hidden layers
is depicted in Figure 2.4. It consists of 4 layers numbered with the index l and the data
flow is from left to right. Layer 1 is the input layer, layer 4 is the output layer and layers
2 and 3 are hidden layers.
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2.2.2 Convolutional Layer

A convolutional layer learns a number of i filter kernels w[i]. The layers input signal x[n]
is successively convolved with all i filter kernels producing i outputs y[i, n] which are also
called feature maps (especially in image processing networks). The linear convolution of
a one-dimensional time signal x[n] = [x[n], x[n − 1], · · · , x[n − N + 1]]T of length N
with the real time-invariant filter kernel w[i] = [wi,0, wi,1, · · · , wi,M−1]

T with length M is
given by

y[i, n] = wi,m ∗ x[n] =
M−1∑
m=0

wi,mx[n−m] = wT [i]x[n] (2.8)

with the convolution operator ∗, the time index n and the filter coefficient index m.

In the most cases M < N . Eq. (2.8) calculates one output sample y[i, n]. To yield the
entire output signal y[i, n] = [y[i, n], y[i, n − 1], · · · , y[i, n − Q + 1]] of length Q =
M +N − 1, the linear convolution can be written as matrix multiplication

y[i, n] = W T [i]x[n] (2.9)

with the convolution matrix defined in eq. (2.10).

W [i] =

w[i] 0
. . .

0 w[i]

 =



wi,0 0 · · · 0

wi,1 wi,0
...

... wi,1
. . . 0

wi,M−1
... . . . wi,0

0 wi,M−1 wi,1
... 0

. . . ...
0 0 wi,M−1


∈ RQ×N (2.10)

Eq. (2.9) gives a compact representation of the convolutional layer and is very similar to
the dense layer in eq. (2.3). The important difference is that weights get shared along a
whole input signal x[n] for every filter kernel w[i] in convolutional layers, whereas dense
layers demand a weight from every input to every neuron.

In practice convolutional layers are implemented as cross correlation with an added bias
[PyT22], mostly followed by an activation function f . Convolutional layers generalize to
higher dimensions and they are invariant to input translations. As described in [DV16],
in contrast to a dense layer the output shape of a convolutional layer along every axis is
dependent on its

— input size (number of input feature maps),
— number of output feature maps i (number of learned filter kernels)
— kernel size,
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— stride,
— zero-padding,
— dilation.

The stride of a convolution is the hop size between two consecutive kernel positions. 6

This can be viewed as a form of subsampling. Zero-padding refers to the number of con-
catenated zeros at the beginning and the end of an axis. Zero-padding types are commonly
valid (full zero-padding) and same (half zero-padding). A dilation spreads out the kernel
elements by skipping input elements to efficiently increase the receptive field of a NN
using covolutional layers [ODZ+16].

A convolutional neural network (CNN) consists of convolutional layers and dense layers
and can be employed for image processing. Additionally it usually includes pooling layers
and possibly transposed convolutional layers. A pooling layer slides a window along its
input much like a convolution but calculates a value such as the maximum or the average.
Max-pooling layers are very common in combination with convolutional layers to reduce
the size of feature maps.

Transposed convolutional layers are commonly used to mirror the operation of convolu-
tional layers in a NN architecture. Based on eq. (2.9) a transposed convolutional layer
computes

y[i, n] = ((W T [i])Tx[n] = W [i]x[n]. (2.11)

A guide for these layers is given in [DV16].

2.2.3 Recurrent Layer (RNNs)

Conceptual, a recurrent layer which is synonymously to a recurrent neural network (RNN)
consists of a NN with a feedback path. Considering a time series x[n] as input to the
RNN, such a recurrent relation enables a limited memory regarding the past states of
the NN. The hidden state h[n] is fed back to form the output or prediction y[n] of the
RNN. Therefor, the output is a function of the input and of the last hidden state y[n] =
f(x[n],h[n − 1]). Hence, the hidden state contains information about all past hidden
states.

As described in [Mas22] the recurrent relation can be unfolded in time as depicted in
Figure 2.5.

At every time step n there are two inputs x[n] and h[n − 1] to the NN, and two outputs
y[n] and h[n] from the NN. The internal structure of the NN is depicted in Figure 2.6 as
a block diagram.

There are three linear layers (linear transformations) depicted as weight matrices Wxh,
Whh and Why. The vectorized tanh() acts as activation function. At every time step n,

6. This refers to the visualization of a 2D convolution operation as the consecutive application of a
kernel on its input by element-wise multiplication of the kernel weights with the current receptive field of
the input. For a rich set of visualizations see [DV16].
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y [2]
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Figure 2.5 – Recurrent neural network feedback unfolded in time.

h [n−1 ]

x [n ]

y [n]

h [n]Whh

W xh

+ tanh ()

Why

Figure 2.6 – RNN internals.

first the internal state is updated with the inputs

h[n] = tanh(W T
hhh[n− 1] +W T

xhx[n]) (2.12)

and then the output

y[n] = W T
hyh[n] (2.13)

is calculated.

RNNs are trained via backpropagation through time by unfolding the RNN like in Figure
2.5 and applying the error backpropagation algorithm. Unlike the feedforward structures
of the dense layers and the convolutional layers, RNNs pose a limitation regarding par-
allelization because of the inherent feedback structure. Furthermore, the basic RNN de-
scribed above can suffer from poor learning behavior due to effects regarding deep neural
networks (dying/exploding gradient) and its memory often does not reach far enough into
the past.

To cure these disadvantages the gated RNNs long short time memory (LSTM) and gated
recurrent unit (GRU) have been developed and are usually employed when RNNs are
needed. However, in the past years the transformer architecture [VSP+17] gradually
replaced feedback RNNs and its variants in many applications. This NN architecture uses
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attention mechanisms and has no feedback path which makes transformers parallelizable
in contrast to RNN variants.

The RNNs described above process input sequences in an unidirectional fashion. Hence
current outputs y[n] are exclusively influenced by past sequence elements x[n − i]. In
non-realtime (offline) applications future sequence elements x[n+ i] are available which
can also be used to form the current output y[n]. RNNs that process the input sequence in
both directions are called bidirectional RNNs [SP97].

Bidirectional RNNs have two separate layers to process the different directions. One layer
Whhf processes the forward direction and the other layer Whhb processes the backward
direction. Thereby a forward hidden state hf [n] and a backward hidden state hb[n] exist
which are both used to compute the output y[n] which is now a function of the whole
input sequence with both past and future samples.

2.3 Training Deep Neural Networks

In the past, multiple techniques and strategies had to be developed to solve the main
problems that occur when training DNNs. These are

— the vanishing/exploding gradients problem,
— underfitting and
— overfitting.

As mentioned above, training NNs works by employing the gradient descent algorithm
using backpropagation. As described in [Gé19, ch.11]

the backpropagation algorithm works by going from the output layer to the
input layer, propagating the error gradient along the way. Once the algorithm
has computed the gradient of the cost function with regard to each parame-
ter in the network, it uses these gradients to update each parameter with a
Gradient Descent step.
Unfortunately, gradients often get smaller and smaller as the algorithm pro-
gresses down to the lower [input] layers. As a result, the Gradient Descent
update leaves the lower layer’s connection weights virtually unchanged, and
training never converges to a good solution. We call this the vanishing gradi-
ents problem. In some cases, the opposite can happen: the gradients can grow
bigger and bigger until layers get insanely large weight updates and the algo-
rithm diverges. This is the exploding gradients problem, which surfaces in
recurrent neural networks (...). More generally, deep neural networks suffer
from unstable gradients; different layers may learn at widely different speeds.

The strategies to solve the vanishing/exploding gradients problem are:

— Using the right weight initialization according to the employed activation function
(i.e. Glorot initialization).

— Using different activation functions like ReLU or its variants (SELU, ELU, leakyReLU)
instead of the sigmoid function because they do not saturate for positive numbers.
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— Using batch normalization or layer normalization, which zero-center and normal-
ize the data.

— Using gradient clipping with RNNs instead of normalization layers to keep the
error gradient inside a defined interval.

Measures against underfitting There are numerous measures to avoid underfitting.
If the learning curve did not converge fully, the network should be trained for more epochs.
Increasing the models complexity (more layers and/or more parameters per layer) or using
a different NN architecture should be considered. Since unlabeled data is commonly
much more available than labeled data, unsupervised pretraining on an auxiliary task can
be done. The lower layers (layers closer to the input layer) are then reused for the original
task. Using the trained weights of a NN in a different context is referred to as transfer
learning. Lower layers of NN architectures learn basic feature extraction and can be
reused for similar tasks than that of the trained NN.

Measures against overfitting Supplying enough training data to a reasonable com-
plex model for the given task is the usual way to conquer overfitting. If it is not possible
to gather more training data, data augmentation techniques can be used to generate more
training data from the available data. The models complexity can be reduced, if overfit-
ting still occurs. However, in the most cases, regularization techniques are employed to
conquer overfitting. These are

— early stopping,
— l1 and l2 regularization in the loss function,
— batch normalization (also acts like a good regularizer),
— dropout (one of the most popular for top layers excluding the output layer).

2.4 Neural Network Architectures

This work focuses on NN architectures for sequence processing such as an audio signal.
Language and time series also fall into this category. Even images can be interpreted as
sequences. There are three types of sequence processing:

1. many-to-one,
2. one-to-many,
3. many-to-many.

The first one, many-to-one, can be used for analysis with a classification or regression
output layer. The second type, one-to-many, essentially generates a sequence from an
input. The third and last one, many-to-many, takes an input sequence and transforms it
into an output sequence. This third type is used for source separation by taking a mix-
ture signal consisting of multiple sources, processing it with the given NN architecture,
and outputting the desired source signals. Many-to-many architectures are also called
sequence-to-sequence architectures ore seq2seq models.
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2.4.1 Basic Architectures

Multi Layer Perceptron

In the literature a NN architecture consisting of multiple dense layers is called a multi
layer perceptron. The perceptron is a historical precursor to the artificial neuron, which
uses a step function as activation function f [Gé19, ch.10]. Although modern MLPs
use different activation functions, they are still called MLP. Sometimes they even include
batch-normalization or layer-normalization layers.

This architecture is universally applicable but does not necessary exploit inherent patterns
of the input data, like local spacial features in images or recurring similarities in time
series. Multi-dimensional input data has to be flattened, that is concatenated in one single
dimension, for processing it with a dense layer. This process may destroy important local
information which can be harnessed with other layers or architectures.

Furthermore dense layers have a big amount of learnable parameters compared to other
layers like a convolutional layer. A dense layer contains a total of Dout · Din + Dout

parameters (weights and biases). For this reason, they are commonly used with inputs
of lower dimensionality. Hence, MLPs are often used as output layers for classification
architectures or in bottleneck sections (see autoencoder below). For inputs with high di-
mensionality, different architectures should be considered, or a dimensionality reduction
method such as principal component analysis may preprocess the input data.

Convolutional Neural Networks

A convolutional neural network (CNN) is a NN architecture which employs convolutional
layers, pooling layers and possibly dense layers. Such architectures can harness local
multi dimensional patterns such as found in images, in the 2D case. Lower layers near
the input learn low level feature detection, and consecutively towards the output, higher
level features can be detected. An image classification CNN may learn to detect lines and
edges of different angles in the lower layers. In the middle layers the network detects
eyes, noses, mouths and ears. Eventually, the top layers can detect whole faces and their
output can be used to classify them in some way.

In contrast to dense layers, convolutional layers can contain lower amounts of learnable
parameters. A 1D convolutional layer has a number of i · M weights and a 2D convolu-
tional layer has i · M1 · M2 weights with the filter kernel lengths M1 and M2 along the
two dimensions. This means, after the first few layers, the dimensionality of the input can
be strongly reduced depending on the layers properties, such as the stride. Pooling layers
are used to further decrease the dimensionality in CNNs.

The WaveNet architecture [ODZ+16] is an example of a convolutional time series process-
ing network. It uses stacked dilated convolutional layers for an exponential receptive field
growth per layer. The receptive field of a CNN is the size of the local input data region
that can influence an output neuron, analogous to the local receptive field in the visual
cortex of the human brain [Gé19, ch.13].
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RNN Variants

As described in section 2.2.3 RNNs are a NN layer which itself employs linear layers and
therefor can be seen as a NN architecture. A common RNN, a LSTM or a GRU can be
employed to process sequences in all three ways mentioned above. They have in common
that they discard the last hidden state h[N − 1].

Figure 2.7 shows a many-to-one RNN which takes a sequence x[n] as input and discards
all outputs y[n] but the last one.

x [0 ]

y [0]

h [0 ]

x [1]

y [1]

h [1]

x [2]

y [2]

h [2 ]

x [3]

y [3]

h [3 ]

Figure 2.7 – RNN in many-to-one configuration as in [Gé19, ch.14]. Grey outputs are
discarded.

Figure 2.8 depicts a one-to-many RNN which takes one input value x[0] and a series of
zeros as input and outputs the sequence y[n].

x [0 ]

y [0]

h [0 ]

0

y [1]

h [1]

0

y [2]

h [2 ]

0

y [3]

h [3 ]

Figure 2.8 – RNN in one-to-many configuration as in [Gé19, ch.14]. Grey outputs are
discarded.

Lastly, Figure 2.9 shows a sequence-to-sequence RNN, which simply transforms the input
sequence x[n] to the output sequence y[n].
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y [0]
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x [1]

y [1]

h [1]

x [2]

y [2]
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x [3]

y [3]

h [3 ]

Figure 2.9 – RNN in sequence-to-sequence configuration as in [Gé19, ch.14]. Grey out-
puts are discarded.

Similarly as other architectures, a deep RNN consists of multiple consecutive RNN layers.
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2.4.2 Architectures for Audio Signal Processing

Architectures for audio signal processing employ generative systems that vary in their
audio signal representation. The audio time signal may be used directly but often it is
a better decision to preprocess the audio signal to yield audio spectra or spectrograms.
Features such as the Mel frequency Cepstral coefficients (MFCC) are also a common
choice. These architectures are mostly encoder-decoder (encoder-bottleneck-decoder) or
sequence-to-sequence architectures.

Autoencoder

The autoencoder (AE) architecture depicted in Figure 2.10 is a NN that is trained to re-
construct its input xn at its output yn ≈ xn. This makes it a structure for unsupervised
learning.

ynxn
encoder decoder

zn

Figure 2.10 – The autoencoder architecture with input xn, latent coding zn and recon-
struction output yn.

While this task may seem trivial for a network with layers with Dout ≥ Din, the encoder of
the AE successively decreases the dimensionality of its input with layers with Dout < Din.
The decoder is often a mirrored version of the encoder and restores the original input
dimensionality at its output with successive layers with Dout > Din. The dimensionality
reduction forces the encoder to learn to produce a latent coding zn containing the essential
information of xn in such a way, that the decoder is able to reproduce xn from zn.

An AE can be constructed from any neural layers. This leads to terms like a dense au-
toencoder or a convolutional autoencoder. Sometime AE architectures feature bottleneck
layers between the encoder and the decoder to further process the latent coding. For
example, this makes sense to introduce a sequence memory with a RNN in a dense or
convolutional AE for sequence processing.

Typical uses of AEs are dimensionality reduction or unsupervised pretraining [Gé19,
ch.15]. In both cases the decoder gets discarded after (pre)training.

A denoising autoencoder is trained to produce a noise-free output from its input. This is
done by adding noise to the input data and using it as inputs x̃n. The network is trained
to reproduce the original noise free inputs xn.

A variational autoencoder is trained like the original AE but produces a latent coding zn

that is used to sample a probability distribution for reproducing the input. After training,
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the encoder is discarded and the decoder is used to generate samples, which are similar to
the training data, by feeding samples from the probability distribution to its input.

Encoder-Decoder RNN

An encoder-decoder RNN depicted in Figure 2.11 in another sequence-to-sequence model.
As described in [Gé19, ch.14] it is trained to take an input sequence x[n] and to produce
an output sequence y′[n]. Unlike the sequence-to-sequence RNN, the encoder-decoder
RNN consists of an encoder RNN in many-to-one configuration and a decoder RNN in
one-to-many configuration. The outputs of the encoder y[n] are discarded but the last
hidden state hc is used as a context vector representing the input sequence. This context
vector serves as the hidden starting state of the decoder to produce the output sequence
y′[n].

x [0 ]

y [0]

x [1]

y [1]

hc

0

y ' [0 ]

0

y ' [1]

0

y ' [2]

encoder decoder

Figure 2.11 – The encoder-decoder RNN architecture with input sequence x[n], context
vector hc and output sequence y′[n]. Grey outputs are discarded.

The encoder-decoder RNN can be used to transform a given sequence into a different one,
as in machine translation. In this case, the decoder receives the target sequence as input
at training and at inference the decoder feeds back its last output to its current input. The
difference to an AE is that the encoder-decoder RNN is trained supervised while the AE
is normally an architecture for unsupervised learning.

U-Net

The U-Net architecture [RFB15] depicted in Figure 2.12 is essentially an AE with skip
connections. These skip connections can be made by addition or as depicted by concate-
nation. It is a fully convolutional network using convolutional layers and pooling layers
in the encoder on the left side and transposed convolutional layers in the decoder on the
right side. In this way the dimensionality is decreased towards the middle and again in-
creased towards the output. The skip connections from the encoder stages to the mirrored
decoder stages can preserve details from the input that may get lost by abstraction in a
pure AE architecture. Furthermore, they cause gradients to flow directly to lower layers,
preventing the vanishing gradients problem.
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Figure 2.12 – U-Net architecture from [RFB15]. Grey arrows indicate skip connections.

Originally developed as an image processing architecture, the U-Net is a popular choice
for music source separation producing state-of-the-art results [MFUS21]. It is also suc-
cessfully employed in other applications.

Further NN architectures with great potential for audio signal processing and synthe-
sis are generative adversarial networks (GANs) [ZXT19, p31], diffusion models (which
use the U-Net architecture) [HJA20] and the transformer architecture [VSP+17]. GANs
[KLA+20], [Wan22] and diffusion models [RBL+22] achieve state-of-the-art performance
in image generation and the transformer, employed as a large language model [TDFH+22]
[BMR+20], achieves state-of-the-art performance in natural language processing tasks.

2.5 Interpretable and Physics-Inspired AI

The literature about interpretability and explainability of AI systems is highly divers and
no general definitions exist for these terms. Different fields use different definitions or
even use these terms interchangeably. However considering specifically deep neural net-
works as in [GBY+18] the terms can be defined as follows:

"The goal of interpretability is to describe the internals of a system in a way that is under-
standable to humans. (...) for a system to be interpretable, it must produce descriptions
that are simple enough for a person to understand using a vocabulary that is meaningful
to the user" [GBY+18].
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Interpretability is tightly linked to completeness. "The goal of completeness is to describe
the operation of a system in an accurate way. (...) When explaining a self-contained
computer program such as a deep neural network, a perfectly complete explanation can
always be given by revealing all the mathematical operations and parameters in the sys-
tem" [GBY+18]. Meaningful human understanding together with a complete description
in one system representation is not easily manageable for complex systems such as DNNs.
Therefor, interpretability and completeness are in a trade-off relationship.

Explainability in terms of data processing answers the question why a DNN produces its
output from its input and interpretability answers the question how it does so. To explain
a systems decision, further definitions are possible which are included in [GBY+18].

Neural networks are often described as universal function approximators, because they
are able to imitate any function given the right weights and biases [Bis06]. This feature
is good for generality. However, looking at the approximation of the solution towards a
machine-learning problem, the search space is huge. For this reason, big amounts of data
are needed to train ordinary DNNs, to solve sophisticated problems.

Considering training data produced by a physical process such as the recording of a musi-
cal instrument, the NN may be in some way inspired with a model of this physical process
to produce its output. If it is possible to integrate a physical model of the source of the
training data, then the output of the NN is vastly constrained and the search space, there-
for, is strongly reduced. By introducing a physical model into a NN which is capable of
synthesizing outputs according to the available training data, the data demand is strongly
reduced. The NN can then be referred to as being physics-inspired AI.
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Chapter 3

Music Source Separation

In natural environments often multiple signal sources are present, which are combined in
a linear medium such as air. Measuring the physical quantity at a point in proximity of
these sources results in a mixture signal that consists of the sum of the individual source
signals. Source separation is the reversal of this effect by extracting individual source
signals from the observed mixture signal [PLV+19].

In the case of acoustic sound sources these scenarios are experienced in everyday life
through listening to human speakers, musical instruments or environmental sounds. Un-
derstanding a single person in a conversation with multiple simultaneously talking people
and present ambient noise is referred to as the cocktail party problem. Source separa-
tion is then the equivalent of solving this problem by extracting the person’s voice from
the overall perceived sound scene. A similar problem is to aurally perceive individual
instruments distinctly at a concert or while listening to recorded music.

While forming the sum of multiple source signals is a simple mathematical operation, the
source extraction from the mixture signal is in general not trivial. The more similarities
present sources share, the harder it gets to separate them.

Regarding the different audio domains, in speech it is assumed that the
signal is sparse and that different sources are independent from each other.
In environmental sounds, independence can usually be assumed. In music
there is a high dependence between simultaneous sources as well as there
are specific temporal dependencies across time, in the waveform as well as
regarding long-term structural repetitions. [PLV+19, p.9]

The goal of music source separation (MSS) is to extract individual instrument signals
from a musical mixture signal. A popular task in the MSS community is to separate pop
songs into the four tracks: vocals, drums, bass and other [MFUS21]. 1 The difficulty of
MSS depends on the source type to be separated from the mix. Separation of uncorre-
lated sources such as voice and drums usually is an easier problem than the separation of
correlated sources such as the individual strings of a guitar.

1. The track referred to as other consists of all sounds which are not vocals, drums or bass.
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3.1 MSS in the Time Domain

Following [PLV+19] the source separation process in the time domain is described as
extracting the true source signals sc,i[n] from the mixture signal xc[n]. As described
above, the mixture signal

xc[n] =
I∑

i=1

sc,i[n] (3.1)

corresponds to the sum of the individual sources with the time sample index n, the source
index i, the number of sources I and the channel index c. Since multiple microphones
may be used for recording, multiple channels c may be present. The mixture signal xc[n]
is referred to shortly as mix signal or just mix.

MSS methods that work strictly in the time domain are called waveform methods since
their input xc[n] and output sc,i[n] are time domain signals. Another signal representation
rarely used in MSS methods is called complex-as-channels (CaC) which was proposed by
[CKCJ21].

3.2 MSS in the Frequency Domain

Spectrogram methods use a time-frequency transform such as the short-time Fourier trans-
form (STFT) for signal representation. In this case a spectrogram method can either syn-
thesize source estimate spectrograms directly (direct synthesis methods) or it can estimate
a separation mask which is applied to the mix spectrogram, yielding the estimated source
spectrogram (masking methods).

Source separation in the time-frequency domain is often done via estimating a time-
frequency mask. This mask is then used to extract one source from the magnitude spec-
trogram of the mix signal. Without a corresponding phase, the masked magnitude spec-
trograms cannot be transformed back into the time domain. In most masking methods for
MSS the mixture signal’s phase is used to transform the masked spectrograms back into
the time domain to yield the extracted time domain signal of the source instrument. This
method is widely used and produces results with good sound quality. 2

The masking operation is an element-wise multiplication ⊙ (which is also referred to
as the Hadamard product) in the time-frequency domain of the mixture spectrogram
Xc[k,m] = STFT{xc[n]} and the estimated separation mask M̂c,i[k,m] with frequency
bin k and time frame index m and results in the estimated source signal

Ŝc,i[k,m] = Xc[k,m]⊙ M̂c,i[k,m]. (3.2)

2. Additionally there are phase estimation algorithms like the Griffin-Lim algorithm and its successors
to estimate the phase from the magnitude spectrogram.
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Ŝc,i[k,m] implicitly contains the phase of the complex mix signal Xc[k,m] ∈ C, because
the separation mask has exclusively real elements M̂c,i[k,m] ∈ R. As notated above
spectrograms are commonly obtained via the STFT, because it is efficient and has a perfect
inverse transform. Other transforms such as the constant-Q-transform may offer different
advantages and disadvantages than the STFT.

3.3 Single Channel Music Source Separation

The general problem with c > 1 outlined above is called multi channel MSS. Single
channel MSS uses only one channel c = 1 to represent audio material. For single channel
masking methods, eq. (3.2) becomes

Ŝi[k,m] = X[k,m]⊙ M̂i[k,m]. (3.3)

A spectral mask in general (estimated or not) Mi[k,m] can either be a binary mask
Mi[k,m] ∈ {0, 1} or a soft mask Mi[k,m] ∈ [0, 1] which is also called a ratio mask
[VVG18, ch.5]. The best mask an estimation algorithm can obtain is called oracle mask
or ideal ratio mask (IRM) M IRM

i [k,m] in the case of a ratio mask. The IRM acts as an
upper bound for the performance of time-frequency domain MSS methods and is obtained
from the true source spectrogram Si[k,m] (e.g. a separately recorded instrument without
mic bleed) via

M IRM
i [k,m] =

|Si[k,m]|
|X[k,m]|+ ϵ

(3.4)

with a small ϵ to avoid division by zero [LS19]. The division in eq. (3.4) indicates an
element-wise division and is not to be confused with a multiplication of the numerator
with the inverse matrix of the denominator.

In this sense, the goal of masking methods is to estimate source masks M̂i[k,m] that are
as close as possible to the IRM M IRM

i [k,m].

3.4 Current Methods

"Many approaches have been researched in the field of music [source] separation such as
local Gaussian modelling, non-negative matrix factorization, kernel additive modelling
and hybrid methods combining these approaches" [SUTM21]. State-of-the-art music
source separation methods employ neural networks exclusively. Deep learning based ap-
proaches outperform traditional signal processing methods and the separation quality of
such approaches continue to improve [MFUS21].

Many state-of-the-art methods use the time-frequency approach presented in eq. (3.2)
since the "structure of natural sounds is more prominent in the time-frequency domain"
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than in the time domain, "natural sound sources are sparse in the time-frequency domain
which facilitates their separation" and convolution operations are done with a simple mul-
tiplication in the time-frequency domain [PLV+19, p.8]. However, there is a growing
trend in the top performing methods such as [Déf21], [RMD22] and [KCC+21] to employ
both representations, the time domain signal and its time-frequency transform. Accord-
ing to Stöter and Uhlich further current trends in audio source separation [SU20] among
others are

— the move from supervised to universal source separation,
— dealing with imperfect training data,
— and employing perceptual loss functions.

In August 2021 the music demixing challenge (MDX2021) took place "where the task"
was "to separate stereo songs into four instrument stems (Vocals, Drums, Bass, Other)"
[MFUS21]. Participants where ranked in two leader-boards which differed in training set
size. The top methods of leader-board A which "focused on establishing a fair comparison
between models to highlight which one performs best" are:

1. Demucs version 2 [Déf21],

2. KUIELab-MDX-Net [KCC+21],

3. a closed source approach, and

4. a network blending model using X-UMX [SUTM21], a U-Net similar to Spleeter
[HKVM20] and a modification of Demucs [DUBB19].

Open-Unmix [SULM19] and CrossNet-Open-Unmix (also called Open-Unmix improved)
[SUTM21] were used as baseline methods. The sound demixing challenge 2023 3 took
place at the time of writing from January to March 2023 [Son23].

Performance measurement of MSS methods is commonly done with the signal to distor-
tion ratio (SDR) [VGF06] or with its revision, the scale invariant signal to distortion ratio
(SI-SDR) [LRWEH19]. The SDR was used in MDX2021 [MFUS21] and is also currently
employed in SDX2023 [Son23] to rank MSS methods’ performance despite the critique
in [LRWEH19].

As described in [UPG+17], network blending or network fusion is the process of linearly
combining multiple outputs of MSS systems (taking "the weighted average for each esti-
mated source" [KCC+21, p.4]) and then performing a multi-channel Wiener filter (MWF)
post-processing to achieve better results than with the individual outputs. The MWF "en-
sures that the sum of the four estimates gives the original mixture", considerably reducing
artifacts, and hence improving separation performance. Further information on the statis-
tical signal processing of the MWF is given in [UPG+17, p.262].

In the following sections MSS baseline methods and state-of-the-art methods are de-
scribed. This gives an overview of the field of MSS and also gives insight in the use
of deep learning in audio signal processing.

3. https://www.aicrowd.com/challenges/sound-demixing-challenge-2023
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Open-Unmix

In the preceding work [UPG+17] to Open-Unmix, the authors propose a MSS approach
via a feed-forward DNN with MWF post-processing. The use of a bidirectional LSTM
trained with data augmentation has been investigated as well which resulted in better
model generalization. Data augmentation allowed to avoid overfitting effectively. Further
improvement has been achieved with the network blending of the trained feed-forward
DNN and bidirectional LSTM.
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Figure 3.1 – Open-Unmix NN architecture [SULM19] from [SUTM21]. The gray affine +
BN layer describes a linear layer with a subsequent batch normalization layer. These two
layers are followed by a non-linear activation function in green. The gray and green layer
effectively form a dense layer with batch normalization. Inputs and outputs are audio
spectrograms.

Open-Unmix 4 (UMX) is titled "a reference implementation for music source separation"
[SULM19] based on the bidirectional LSTM model described above from [UPG+17]. The
UMX architecture is depicted in Figure 3.1. It consists of a dense layer with batch normal-
ization followed by three bidirectional LSTMs that are bypassed with a skip connection
and two additional dense layers with batch normalization.

For every source type a separate instrument-specific model is trained. Every UMX instru-
ment model receives a mix spectrogram Xc[k,m] as input and outputs the corresponding
separated instrument prediction spectrogram Ŝc,i[k,m]. Training is done supervised using
the MSE loss between predicted sources Ŝc,i[k,m] and target sources Sc,i[k,m].

In [SUTM21] an improved version of UMX is proposed named CrossNet-UMX (X-UMX)
using a new multi domain loss and a new combination loss for bridging network paths of
all instrument models. This multi domain loss is calculated from both the time-frequency
domain output as well as from its inverse transform into the time domain.

As depicted in the X-UMX architecture in Figure 3.2 the network bridging is done for
"information sharing among sources" [SUTM21] by jointly training the whole network

4. https://github.com/sigsep/open-unmix-pytorch
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Figure 3.2 – CrossNet Open-Unmix NN architecture from [SUTM21]. The gray affine +
BN layer describes a linear layer with a subsequent batch normalization layer. These two
layers are followed by a non-linear activation function in green. The gray and green layer
effectively form a dense layer with batch normalization. Inputs and outputs are audio
spectrograms.

on all sources. This is in contrast to the UMX architecture in Figure 3.1 where every
source model is trained independently from the others. The authors show that the bridg-
ing of all separation models is beneficial and "performance improvements can be gained
for most DNN-based source separation methods with introducing almost no additional
computational costs at inference time" [SUTM21].

Demucs

The Demucs v2 waveform/spectrogram hybrid architecture [Déf21] is the successor of the
Demucs waveform architecture [DUBB19]. As depicted in Figure 3.3 it extends a U-Net
architecture [RFB15] with 2 parallel branches. One branch processes the time domain
signal (T) and the other branch processes the time-frequency domain signal (Z) [Déf21].

The encoder blocks consist of two 1D convolutional layers with two residual branches in
between. Two different activation functions are employed after convolutional layers, the
gated linear unit (GLU) [DFAG17] and the Gaussian error linear unit [HG16]. In the time
domain branch 1D-convolutions are applied along the time dimension and in the time-
frequency domain branch the 1D-convolutions are applied along the frequency dimension.
A frequency embedding is injected between the first and second time-frequency domain
encoder blocks. The residual branches are "composed of dilated convolutions, and for the
innermost [blocks], a biLSTM with limited span and local attention" [Déf21, p.5]. Further
details are found in [Déf21] and [DUBB19].

The outputs of the fifth encoder blocks in both branches have the same dimensions. These
outputs are added and then encoded to the latent coding with a shared encoder block. The
decoder blocks are symmetrical to the encoder blocks and decoder block outputs have the
same dimensions as the respective encoder block inputs. After the last decoder blocks
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the time-frequency domain prediction is transformed into the time domain and added to
the time domain prediction. This sum serves as the final network output which is the
predicted source signal from the mix input.

Another advancement of Demucs has been achieved in [RMD22] where the Demucs v2
architecture [Déf21] was updated. The "innermost layers are replaced by a cross-domain
Transformer Encoder, using self-attention within one domain, and cross-attention across
domains" [RMD22]. This model shows slightly better performance compared to Demucs
v2 when trained on MUSDB [RLS+17] and 800 extra songs but performs poorly when
trained exclusively on the MUSDB dataset. This method counts to the top performing
MSS methods according to [Pap23].

KUIELab-MDX-Net

The KUIELab-MDX-Net MSS method employs 3 different NNs:

— a pretrained Demucs v1 [DUBB19],
— a TFC-TDF-U-Net v2 and
— a mixer model.

As depicted in Figure 3.4, one TFC-TDF-U-Net v2 model is trained for every source type
(vocals, drums, bass and other). The TFC-TDF-U-Net v2 source predictions together
with the mix signal are fed to the mixer model which consists of a single convolutional
layer to "further enhance the independently estimated sources" [KCC+21]. The mixer
model predictions and the Demucs predictions are blended (see network blending above)
to form the overall predicted source signals. This architecture blends a time domain model
(Demucs v1) with time-frequency domain models (TFC-TDF-U-Net v2).

Figure 3.5 shows the TFC-TDF-U-Net v2 NN architecture which also indicates its train-
ing procedure. This time-frequency domain model receives a mix spectrogram cropped
above the target source type frequency range and outputs the corresponding source predic-
tion spectrogram. The output spectrogram gets zero padded to the input FFT size and is
transformed back into the time domain. Model training is done supervised with a L1-loss
function.

The TFC-TDF-U-Net v2 architecture is based on the U-Net architecture [RFB15]. Three
skip connections are implemented by element-wise multiplications instead of concatena-
tion, as in the original U-Net. As its predecessor TFC-TDF-U-Net v1 [CKC+20] and
[CKCJ21], this architecture is based on time frequency convolutions with time-distributed
fully connected networks (TFC-TDF) which were introduced in [CKC+20]. A TFC-TDF
block consists of a small NN architecture employing a time distributed fully-connected
network (TDF) and a time-frequency convolution (TFC). Further details are found in
[CKC+20].
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Figure 3.3 – Demucs v2 NN architecture from [Déf21]. T denotes the time-domain branch
and Z denotes the time-frequency domain branch. Skip connections as in U-Net are de-
picted as bent arrows at the left/right side of the encoders/decoders from encoder layers
to decoder layers.

Other Relevant Methods

Band-split RNN is "a frequency-domain model that explicitly splits the spectrogram of
the mixture into subbands and perform[s] interleaved band-level and sequence-level mod-
eling" [LY22]. A priori or expert knowledge can be used to determine hyperparameters
such as the subband bandwidths of the model to increase performance for specific source
types. Furthermore a semi-supervised fine tuning pipeline has been proposed to further
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Figure 3.4 – The overall architecture of the KUIELab-MDX-Net from [KCC+21]. The
blue blocks labeled with UNet represent a TFC-TDF-U-Net v2 model for every source
type. The block labeled with blend indicates network blending.

Figure 3.5 – The time-frequency domain NN architecture TFC-TDF-U-Net v2 out of the
KUIELab-MDX-Net from [KCC+21].

increase MSS performance. This model (together with the advancement of Demucs v2
[RMD22]) counts to state-of-the-art methods according to [Pap23].

Previous to the MDX2021 the D3NET [TM21] architecture produced state-of-the-art per-
formance in MSS. It is described as a "densely connected dilated DenseNet" [TM21]
which is "based on dilated convolutions connected with dense skip connections" [Déf21,
p.2]. In [CKCJ21] the LaSAFT architecture was introduced, along with the Complex-
as-Channels (CaC) representation which differs from masking and waveform methods.
Additionally the authors proposed a MSS architecture based on the conditioned U-Net
[MBP19] which employs FiLM layers [PSdV+18] to manipulate a U-Net architecture
with additional input data. They also proposed an attention-based frequency transforma-
tion block called LaSAFT and an extension to FiLM called GPoCM.

30



Like X-UMX 5 [SL23], Spleeter [HKVM20] is another MSS method available as open
source implementation 6 [dee23a]. Similar to other methods it uses a U-Net architecture
and is trained on a large body of closed source data from the streaming platform deezer 7

[dee23b].

Sams-Net is a time-frequency domain MSS method employing an attention based NN
architecture [LCHL21]. In [SHG21] conditioning techniques with video material regard-
ing a conditioned U-Net [MBP19] were explored for the task of classical music source
separation also containing correlated sources. In [MDS21] a method for learning a mu-
sic signal representation is proposed and compared to the STFT. It employs a denoising
autoencoder model including differentiable digital signal processing [EHGR20] which is
trained unsupervised to reconstruct the singing voice. Furthermore the model is used for
singing voice separation with binary masking. In [SFDRB22] a NN architecture contain-
ing differentiable digital signal processing as well is trained unsupervised to perform MSS
on vocal ensemble recordings. This method is described in more detail in chapter 4.

5. https://github.com/sigsep/open-unmix-pytorch
6. https://github.com/deezer/spleeter
7. https://www.deezer.com/
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Chapter 4

Differentiable Digital Signal
Processing

This chapter gives a detailed overview on the topic of differentiable digital signal process-
ing (DDSP). DDSP is a technique which was first proposed in [EHGR20] and is generally
employed to include signal processing techniques directly inside NNs. The authors of
[EHGR20] introduced the DDSP TensorFlow library but DDSP is rather a concept than a
specific implementation. However, this introduction laid the groundwork for a series of
publications with increasing numbers over time.

The DDSP concept enables the use of traditional signal processing blocks such as filters
or oscillators in NN architectures. Every calculation to form the output of a NN has to
be differentiable, since NNs are trained with gradient descent methods. Hence the name
differentiable DSP. The forward pass is defined by the mathematical definition of the
desired signal processing system. Then, the backward pass is handled by the employed
automatic differentiation systems or machine learning libraries such as TensorFlow or
PyTorch. In this way, gradients can flow through the DDSP part and the whole system
can be trained end-to-end.

Currently DDSP is exclusively employed for neural audio signal processing, although
there are no restrictions to this field. This is most likely due to the fact that it was pro-
posed in this field. As in traditional audio signal processing, applications can be divided
into audio synthesis and audio effects. Other neural audio techniques such as WaveNet
[ODZ+16] or SampleRNN [MKG+16] employ standard neural layers such as convolu-
tional layers or RNNs directly to process or synthesize audio signals. In general, systems
employing DDSP, predict control signals with standard neural layers for controlling the
DDSP processing or synthesis part of the network.

A significant difference between these approaches lies in the size of the output space of the
NN. While a generic NN (e.g. an MLP) imposes no restrictions on the form of its output
signal, a NN employing DDSP encodes expert knowledge into the system, restricting its
output to the possible outputs of the signal processing part. In this way, the NN with
DDSP is already informed of the desired output signals’ space before training, whereas
the generic NN has to infer the entire context from the training data. The better the DDSP
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part of a NN is able to model the training data, the less training data and training time is
needed for reaching a certain performance regarding the optimization goal.

Looking at the advantages and disadvantages regarding the employment of DDSP results
in a trade-off as in many areas of engineering. A clear advantage of the use of DDSP is
the potential to reduce the required training data, training cost and training time to reach a
given objective with a NN. Furthermore in many cases it is too costly or even impossible
to gather more training data to achieve a solution with a certain quality.

A disadvantage on the other hand is the requirement of expertise for encoding the expert
knowledge into the system. The output of the DDSP model has to mirror the training
data in such a way, that the entire system is able to effectively learn from it. If the DDSP
model deviates too far from the process, which generated the training data, or the NN is
not able to predict reasonable control signals for an appropriate DDSP model, the trained
model may show poor performance.

For this reason it is very important to have detailed knowledge of

1. the process, which produced the training data,
2. how to model the process mathematically, and
3. how to control the DDSP model in a stable but also capable way

for producing good predictions. Casually this may be expressed as: ’You got to have
the expertise first before encoding it into a neural network.’ Additionally a DDSP model
may restrict the NN output too strong for proper generalization, regarding a specific set
of training data. In this case, a subset of the training data may be modeled effectively by
the DDSP model but the complete set exceeds its capabilities.

This means, the trade-off lies between systems, which use

— big data, very deep NNs with big amounts of parameters, little expert knowledge
requiring little expertise in the field and possibly short development time by using
general purpose architectures, or

— little data, shallow NNs with low amounts of parameters, detailed expert knowl-
edge for developing an appropriate specialized signal model that is able to model
the data effectively.

Most signal processing systems are explainable because humans associate meaning with
their parameters, inputs and outputs and the causality between inputs and outputs is clear.
For this reason, the control signals which are the output of a NN and the input to the DDSP
model are at least interpretable. Many generative NN architectures feature a variation of
a latent coding such as an autoencoder, which is not interpretable. Such an interpretable
latent coding may be not only a problem for debugging but also a design requirement of
the system for some reason. DDSP enables such interpretable latent codings.

4.1 Audio Applications of DDSP

DDSP literature can be broadly categorized into two groups:

33



1. sound (re-)synthesis, and

2. audio effects.

Systems performing neural sound (re-)synthesis with DDSP are trained to synthesize one
or a number of audio signals from an input audio signal, from input controls or from
both. Applications of such systems are source separation, deconvolution, timbre transfer
or speech synthesis.

The task of separating musical sources is handled in detail in chapter 3. Deconvolution
refers to the inverse operation of convolution, yielding the unprocessed input signal to
a convolution. Timbre transfer applies the timbre of one audio signal to another audio
signal, not interfering with pitch and dynamics but adapting playing style. Therefore
timbre transfer is more sophisticated than a vocoder effect which applies the spectral
envelope (filter) of one signal to another signal (source) and ignores idiosyncrasies of the
given instrument.

Neural audio effects are employed in intelligent music production [DM19] [MS19] or
are trained to perform other audio tasks such as virtual analog modeling. In intelligent
music production, neural audio effects perform automatic mixing or automatic mastering
including style transfer. DDSP is one approach of a couple existing methods to build such
neural audio effects.

According to [DM19] intelligent music production systems are in active research for de-
veloping better music production metering and diagnostics, more intuitive interfaces and
controls, intelligent music production assistants, fully autonomous agents for different
audio tasks, and improved interactive audio (as in virtual reality). These systems are de-
veloped for audio engineers but also for the layman to achieve faster or better results in
music production.

4.1.1 Neural Sound (Re-)Synthesis via DDSP

Generative audio systems can be designed with common generative NN architectures
such as the autoencoder or the GAN. Current systems for sound (re-)synthesis employing
DDSP have the overall structure of an autoencoder, although there are no restrictions on
the system architecture. The encoder is built with standard neural layers and the decoder
consists of either just a DDSP signal model or the DDSP signal model with a preceding
neural block. These systems are optimized to synthesize sound according to the training
data for performing a variety of different audio tasks.

The Origin

Engel et al., associated with Google Brain 1 [Goo23d] and the Google Magenta project 2

[Goo23c], proposed DDSP first in [EHGR20]. This publication serves as the basis for

1. https://research.google/teams/brain/
2. https://magenta.tensorflow.org/
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all following DDSP literature. Additionally to the DDSP concept, the authors presented
the DDSP Autoencoder which is a NN architecture trained unsupervised to resynthesize
recordings of a specific musical instrument with a harmonic plus noise signal model. Tim-
bre transfer has successfully been achieved and by adding a reverb module into the signal
model of the DDSP Autoencoder they also achieved deconvolution. An important part for
their success with such a system was to employ the multi scale spectral loss function for
training. This publication is presented below in more detail.

DDSP was then used by Engel et al. for pitch tracking by self-supervised inverse audio
synthesis [ESH+20]. In MIDI-DDSP "detailed control of musical performance" [WMD+21]
has been studied with a musical hierarchy on the levels of notes, performance and syn-
thesis. The authors claim, that the method "can reconstruct high-fidelity audio, accu-
rately predict performance attributes for a note sequence, independently manipulate the
attributes of a given performance, and as a complete system, generate realistic audio from
a novel note sequence" [WMD+21].

Sound Synthesis Techniques

With an established understanding how to incorporate traditional DSP techniques into
neural networks, many major sound synthesis techniques have been studied. These are

— additive synthesis,
— subtractive synthesis,
— frequency modulation,
— waveshaping, and
— wavetable synthesis.

The DDSP Autoencoder [EHGR20] already featured a harmonic plus noise model, which
is a very general signal model capable of synthesizing an extremely wide range of sounds.
On the other hand, such a generic source model does not pose as many restrictions on
the output space of the overall NN like a more restrictive sound synthesis method. The
DDSP Autoencoder signal model can be described as a combination of a restricted form
of additive synthesis and subtractive synthesis.

Subtractive synthesis was studied in [MS21] with the application of synthesizer sound
matching with DDSP. The authors trained a NN containing a basic DDSP subtractive syn-
thesizer to recreate real-world sounds. They considered a two phase training scheme by
first pre-training the system to recreate synthetic sounds with known parameters employ-
ing a parameter loss. Then the system is fine-tuned by training it to minimize a spectral
loss regarding real-world sounds. In a subjective evaluation they found, "that the proposed
method finds better matches compared to baseline models" [MS21].

Neural waveshaping synthesis was explored in [HSF21] by introducing the neural wave-
shaping unit (NEWT). The authors compiled a signal model consisting of the NEWT, a
DDSP "noise synthesizer and reverb and found it capable of generating realistic musical
instrument performances with only 260k total model parameters, conditioned on F0 and
loudness features." [HSF21] The proposed method performed competitively around base-
line methods in terms of sound quality but significantly outperformed them in generation
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speed achieving real-time capability.

Differentiable wavetable synthesis has been studied in [SHC+22] by learning a "dictionary
of one-period waveforms i.e. wavetables, through end-to-end training" [SHC+22]. The
authors claim to achieve high-fidelity sound synthesis by only using a dictionary of 10 to
20 wavetables and to achieve real-time capability with their proposed wavetable synthesis
method. They also give application examples such as high quality pitch-shifting and data-
efficient neural audio sampling.

Frequency modulation (FM) synthesis was studied in [CMS22] by first exploring design
constraints to train a DDSP FM synthesizer. The authors subsequently presented "Differ-
entiable DX7 (DDX7), a lightweight architecture for neural FM resynthesis of musical
instrument sounds in terms of a compact set of parameters." [CMS22] Their work takes
"steps towards enabling continuous control of a well-established FM synthesis architec-
ture from an audio input." The DDX7 with a subsequent DDSP reverb was trained to
resynthesize instruments performing classical music. According to the authors the fea-
tures of this method are the already established interface of FM synthesis for sound de-
sign, the use of a small model with 6 oscillators or less and its possible on-the-fly timbre
manipulation and real-time capability.

In [RMR22] "a polyphonic differentiable model for piano sound synthesis, conditioned
on Musical Instrument Digital Interface (MIDI) inputs" was proposed. The inputs to this
NN architecture employing DDSP are pitch, velocity, a piano ID, pedal data and the target
audio. Similar to the harmonic plus noise signal model with subsequent reverb from the
DDSP Autoencoder [EHGR20] it uses an additive synthesis plus noise model with subse-
quent reverb as a signal model. Acoustic knowledge of the piano was encoded into the
system which was then trained to resynthesize piano performances with recorded MIDI
data. The authors evaluated the trained model in terms of sound quality with a listening
test and found, that their proposed method succeeded a different neural approach but was
still inferior to a physical modeling piano synthesizer. Their polyphonic approach was
inspired by DDSP based music source separation methods [KNK+22] and [SFDRB22].

Music Source Separation (MSS)

MSS is done via resynthesizing the sources from a given mix signal with a DDSP source
model. Currently, there are two independent approaches to MSS with DDSP.

Schulze-Forster et al. performed singing voice separation of choir recordings with a
DDSP source-filter signal model in [SFDRB22]. They developed a NN architecture to
predict control signals for an excitation source and to parameterize an IIR filter for singing
voice synthesis. The system is informed with the fundamental frequencies of the sources
in the mix and is trained unsupervised. The proposed method features high data efficiency
without the need for ground truth data and achieves "good separation quality even when
trained on less than three minutes of audio" [SFDRB22]. This MSS method is described
below in more detail since it is the a central precursor to this work.

Kawamura et al. developed a DDSP "mixture model for synthesis parameter extraction"
from a mix of harmonic sounds [KNK+22]. Their polyphonic model consists of multi-
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ple pretrained DDSP Autoencoders [EHGR20]. This model is then fitted to polyphonic
instrument mixes.

Speech Synthesis

DDSP was also deployed for neural speech synthesis. In [FGKC20] speech was resyn-
thesized intelligibly with a NN architecture similar to the DDSP Autoencoder. The input
speech signal is transformed into a Mel spectrogram and then fed to a NN, similar to the
decoder in [EHGR20] for predicting synthesis controls. The authors synthesized speech
with a DDSP harmonic plus noise model from the ground truth pitch and the predicted
control signals. Although "the quality of the synthesized speech can be improved" the
system offers useful control capabilities due to the interpretable latent coding.

Webber et al. developed the Autovocoder in [WVBW+22] which allows "fast waveform
generation from a learned speech representation using" DDSP. They obtained a frequency
domain representation with a fast inverse transform for replacing the Mel spectrogram.
The authors claim, that their approach is 5 to 14 times faster than comparable methods.

4.1.2 Neural Audio Effects via DDSP

Neural audio effects using DDSP usually contain one or a combination of audio effects
such as a filter (equalizer), nonlinear distortion, a compressor, reverberation, etc. imple-
mented with DDSP. A NN generates control signals for the DDSP effect(s) optimized in
a way to achieve some goal regarding the input audio signal. Inputs to the NN can be
the direct input signal of the audio effect(s), derived features from the input signal, other
inputs with a relation to the optimization goal, or a combination of these.

As outlined in [RWSB21] audio effects can be difficult to use or may not be powerful
enough to accomplish a desired task. In the past, several methods have been proposed to
develop adaptive or intelligent audio effects or to emulate analog audio effects. Recent
methods employ deep learning and can be categorized into

1. end-to-end direct transformation methods,

2. parameter estimators, and

3. DDSP methods.

Therefor, the DDSP methods are a subset of the overall neural audio effects methods.
These neural audio effects using DDSP are outlined in the following.

Kuznetsov et al. explored "differentiable IIR filters for machine learing applications" in
[KPE20]. Analogous to the circumstance that a 1D convolutional layer can be seen as a
form of nonlinear FIR filter, the authors establish the link between IIR filters and RNNs.
Then they present three IIR filter topologies with parameter ranges ensuring stability.
Finally they successfully employ a differentiable IIR filter in a black-box virtual analog
modeling system to emulate an analog guitar distortion effect. Although this publication
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is categorized here as a neural audio effect, IIR filters are often part of a synthesis model
such as in [SFDRB22].

In [RWSB21] DDSP with black-box audio effects was explored. The authors named their
system DeepAFx which enables end-to-end training of NNs containing "arbitrary stateful
third-party audio effects as layers". They trained a deep encoder which analyses the input
signal to generate effect controls in a supervised fashion. The system is optimized to
perform an audio task with this third-party audio effect according to the training data.
They demonstrate the capabilities of their system "with three automatic audio production
applications: tube amplifier emulation, automatic removal of breaths and pops from voice
recordings and automatic music mastering" [RWSB21].

Nercessian et al. studied "lightweight and interpretable neural modeling of an audio dis-
tortion effect using hyperconditioned differentiable biquads" in [NSW21]. Steinmetz et
al. explored "automatic multitrack mixing with a differentiable mixing console of neural
audio effects" in [SPPS21]. Colonel and Reiss managed the "reverse engineering of a
recording mix with" DDSP in [CR21]. Steinmetz, Bryan and Reiss studied "style trans-
fer of audio effects with" DDSP in [SBR22] where they presented "a framework that can
impose the audio effects and production style from one recording to another", yielding
"audio effect control parameters that enable interpretability and user interaction" [CR21].
Automatic DJ transitions have been achieved in [CHL+22] using DDSP audio effects in
GANs.

Lee et al. developed DDSP artificial reverberation models for the use in deep NNs in
[LCL22]. They replaced IIR components with FIR approximations in their models to
enable fast parallelized training. Furthermore they trained a system to recreate recorded
room impulse responses with their parametric reverb model.

Speech Processing

DENT-DDSP [GCC22] was developed to allow performance enhancement of systems
such as automatic speech recognition by explicit distortion modeling for speech. Explicit
distortion modeling serves as a feature compensation step for speech processing. This
system is fully explainable, "requires only 10 seconds of training data to achieve high
fidelity" and the authors claim that their proposed method succeeds all of their baseline
methods in terms of multi-scale spectral loss.

4.2 Precursors

In this section two important precursors to this work are presented in detail. First [EHGR20]
by Engel et al. is introduced to give an understanding of the origin of DDSP literature.
Then the unsupervised MSS method [SFDRB22] by Schulze-Forster et al. is described in
detail, since it was the precursor to this work.
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4.2.1 The Origin of DDSP

Engel et al. first explored differentiable digital signal processing (DDSP) in [EHGR20].
DDSP enables the direct use of classic signal processing techniques in NNs. The au-
thors describe that "DDSP enables an interpretable and modular approach to generative
modeling" [EHGR20].

They argue that the practical success of neural networks "is largely due to the use of strong
structural priors such as"

— convolution,
— recurrence, and
— self-attention.

"These architectural constraints promote generalization and data efficiency to the extent
that they align with the data domain." [EHGR20] DDSP is not limited to the audio domain
but is universally applicable. However it was first used in audio synthesis which inspired
others in this field to employ DDSP in their work.

The majority of neural audio synthesis models generate output signals directly in the
time domain or in the frequency domain with a successive transform to the time domain.
Models with strided convolutional layers suffer from a phase alignment problem, models
employing a Fourier representation suffer from spectral leakage and autoregressive mod-
els are incompatible to loss functions which make use of human perceptions. Furthermore
these are generally large networks with a demand of big amounts of training data.

Analysis-synthesis models such as vocoders are motivated by physics and perception. Sys-
tems have been developed to extract control signals for a synthsis model with hand-tuned
heuristics. However all these systems which contain signal processing elements did not
achieve end-to-end training which is a desirable goal for manageable DNN development.
DDSP makes it possible to build fully differentiable synthesizers and audio effects. In this
way, expert knowledge can be encoded into a NN with a signal model acting as a strong
inductive bias.

Engel et al. proved the capabilities of DDSP by implementing the DDSP Autoencoder NN
architecture. It was trained to resynthesize a specific monophonic musical instrument with
a harmonic plus noise signal model, implemented with DDSP. With this DNN containing
a DDSP signal model they achieved

— independent control over pitch and loudness,
— realistic extrapolation to pitches outside of the training range,
— blind dereverbaration by adding a reverb to the signal model,
— timbre transfer by turning a singing voice into a violin,
— while using fewer parameters than comparable NNs.

Figure 4.1 3 gives an overview on the NN architecture of the DDSP Autoencoder. It is

3. Note that the encoder consists of two parts. A f0 tracker is used to produce f0[m], a deterministic
(not trainable) loudness measure is used to calculate the loudness l[m] and the z encoder depicted in Figure
4.2 produces z[m]. The authors most likely merged the CREPE f0 tracker and the z encoder since they
made one experiment not mentioned here, where they jointly trained f0 tracking with the resynthesis task.
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Figure 4.1 – DDSP Autoencoder NN architecture from [EHGR20, p.6]. Audio signals are
in blue boxes, "red components are part of the neural network architecture", deterministic
DDSP modules are in yellow boxes, the interpretable latent codings are in green boxes.

trained unsupervised by receiving an input x[n] and resynthesizing the output y[n] = x̂[n].
The NN is optimized to achieve similarity x̂[n] ≈ x[n] with a phase-independent loss
function.

From the input x[n] a latent coding (f0[m], z[m], l[m]) is produced where m is the time
frame index, f0[m] is the fundamental frequency of the input signal x[n], l[m] is the
loudness and z[m] is the residual vector which effectively encoded timbre. Hence the
latent coding is interpretable. f0[m] is produced from x[n] with a pretrained CREPE
[KSLB18] pitch tracker. The harmonic oscillators’ fundamental frequency is directly
controlled by the analyzed pitch track f0[m]. l[m] is calculated with a deterministic A-
weighted loudness measure as in [HERG19]. z[m] is derived from the neural encoder
architecture depicted in Figure 4.2

Figure 4.2 – The z encoder NN architecture from [EHGR20, p.16]. MFCC denotes the
mel frequency cepstral coefficients.

The decoder network depicted in Figure 4.3 produces control signals for the DDSP har-
monic plus noise signal model from the latent coding (f0[m], z[m], l[m]). It contains
multilayer perceptron (MLP) blocks depicted in Figure 4.4.
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Figure 4.3 – The decoder of the DDSP Autoencoder NN architecture from [EHGR20,
p.16].

Figure 4.4 – Multilayer perceptron (MLP) NN architecture used in the decoder from
[EHGR20, p.16].

DDSP Components

As depicted in Figure 4.1 the DDSP Autoencoder uses a harmonic plus noise signal model
with a subsequent reverb. Employing this signal model encodes expert knowledge about
the training data into the system. Therefor, the output space is restricted to harmonic
signals with variable filtered noise amounts which corresponds to a wide range of musical
instruments. On the other hand, it would be impossible to effectively model inharmonic
sounds with this approach which may require different signal models such as a frequency
modulation model as in [CMS22], or a generic additive synthesis without the harmonic
restriction. Such an additive synthesis model was used in part in [RMR22] for modeling
string inharmonicity.

The harmonic plus noise signal model consists of the a sine oscillator bank with added fil-
tered noise. The noise filter is parameterized via the frequency sampling method, resulting
in a time variable FIR filter. Reverberation is implemented as convolution reverb.
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Harmonic Oscillator The harmonic oscillator is given by

y[n] =
K∑
k=1

Ak[n]sin(ϕk[n]) (4.1)

with the partial number k ∈ K, the time variable amplitude Ak[n] of the k-th partial and
its instantaneous phase ϕk[n]. This phase is obtained by integration via

ϕk[n] = 2π
n∑

m=0

fk[m] + ϕ0,k (4.2)

with the summation (’integration’) index m, the instantaneous frequency fk[n] of the k-th
partial and the initial phase ϕ0,k which can be fixed, randomized or learned.

A harmonic signal is then obtained by restricting the partial tones to integer multiples of
the fundamental frequency fk[n] = kf0[n]. "Thus the output of the harmonic oscillator is
entirely parameterized by the time-varying fundamental frequency" f0[n] "and harmonic
amplitudes" Ak[n]. [EHGR20, p.4]

FIR Filter Design Parametrization for a time variable FIR filter is achieved with the
frame-wise NN prediction of the FIR transfer function H[k]. In this way filtering is done
according to the optimization goal set with the loss function of the NN. In the case of
the DDSP Autoencoder the lower output of the decoder network in Figure 4.3 is used as
transfer function H[k] for the filter which generates filtered noise. To "control the time-
frequency resolution trade-off of the filter" H[k] is windowed with a Hann window before
filtering. Filtering is done in the frequency domain y[n] = iDFT{H[k]X[k]} with the
transformed input signal X[k] = DFT{x[n]} for every frame m.

The reverb module in Figure 4.2 is implemented as a FIR filter in the same way as the
time-variable FIR filter above. Equally its transfer function is predicted by a NN. The
difference between them is, that the reverb has a much longer impulse response h[n] =
iDFT{H[k]} than the time variable FIR filter and that it is time-invariant.

Multi-scale spectral loss The employed loss function is the multi scale spectral loss
LMSS which is calculated as a sum of losses

LMSS =
J∑

j=1

Lj (4.3)

for a number J of different FFT sizes. The individual losses are given by the sum of the
MAEs

Lj = ||Xj − X̂j||1 + ||log(Xj)− log(X̂j)||1 (4.4)
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with the L1 distance || · ||1, the target spectrogram Xj[k,m] = |STFTj{x[n]}| and the
prediction spectrogram X̂j[k,m] = |STFTj{x̂[n]}| with FFT size index j. Lj reduces
the mean absolute difference of the linear and logarithmic spectrograms to a single scalar
loss value. More specifically it is calculated from the spectrograms by calculating a mean
over the time frames m ∈ M and the frequency bins k ∈ K with

Lj =
1

K

K∑
k=1

1

M

M∑
m=1

|Xj[k,m]−X̂j[k,m]|+ 1

K

K∑
k=1

1

M

M∑
m=1

|log(Xj[k,m])−log(X̂j[k,m])|

(4.5)

as implemented in their repository [Goo23b] 4. It is important to employ such a phase
independent loss function for proper training results. In this way e.g. a slightly delayed
perfect reconstruction x̂[n] = x[n − ϵ] does not produce a big loss which matches the
human perception of sound.

Results

The trained DDSP Autoencoder is capable of high-quality neural audio synthesis and
timbre transfer 5. The authors found, that synthesis had higher quality when using the pre-
trained CREPE f0 tracker compared to jointly learning f0 analysis with sound resynthesis.
They trained the DDSP Autoencoder to resynthesize only 13 minutes of solo violin perfor-
mances, recorded in a consistent room environment. In this configuration the z encoder
was not used but the pretrained CREPE pitch tracker was used.

The trained DDSP Autoencoder achieved high quality violin synthesis with extrapolation
to pitch ranges outside the training data. The interpretable latent coding allows inde-
pendent control over loudness and pitch for either resynthesis to perform timbre transfer
turning singing voice into a violin or by synthesizing audio from MIDI notes via feeding
appropriate envelopes to the input of the decoder network.

Additionally by incorporating the reverb module into the signal model they achieved blind
deconvolution of the solo violin. This was simply done by bypassing the reverb at resyn-
thesis. Furthermore the estimated room impulse response was then available as the im-
pulse response of the reverb module.

Whereas the DDSP Autoencoder with pretrained CREPE has 240k to 7M parameters,
other audio synthesis models have 15M parameters upwards [EHGR20, p.17]. This makes
it lightweight and efficient both in terms of training data (around 10 to 15 minutes of
unlabeled instrument recordings) and model training.

4. https://github.com/magenta/ddsp/blob/main/ddsp/losses.py
5. An overview of the results is given in https://magenta.tensorflow.org/ddsp [Goo23b]

and additional audio examples are given here https://storage.googleapis.com/ddsp/index.html
[Goo23a]. Recently a VST plugin was released here https://magenta.tensorflow.org/ddsp-vst
[Goo23c]
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4.2.2 Unsupervised Audio Source Separation Using Differen-
tiable Parameteric Source Models

Inspired by DDSP [EHGR20], Schulze-Forster et al. proposed a novel unsupervised MSS
method for singing voice separation in [SFDRB22]. They modeled each source with a
DDSP source-filter model and trained a NN to reconstruct the input mixture signal as the
sum of the synthesized sources by predicting control signals for the source models with
known fundamental frequencies. At inference time, separation quality is improved by
soft-masking the mixture signal with the masks obtained from the resynthesized sources.
With this approach they achieved good separation quality as well as high data efficiency
at the task of singing voice separation.

First the authors state that state-of-the-art neural MSS methods (introduced in section 3.4)
are not able to separate homogeneous sources such as multiple instruments of the same
family in one recording. Furthermore these systems require labeled data, namely clean
recordings of the separate target source signals. The creation of these separate stems is
laborious, expensive and in some cases it is even impossible. This fuels the demand for
unsupervised methods requiring only mix signals for training.

Training Procedure The proposed method achieves unsupervised learning by resyn-
thesizing the mixture signal with separate DDSP source-filter models for each source.
The DNN observes the input mix together with the sources fundamental frequencies f0
which are estimated with a polyphonic pitch tracker from the mix. With these inputs, it
generates control signals for the DDSP source models in such a way, that the sum of the
synthesized sources approximates the mix signal according to the loss function.

Figure 4.5 – Training procedure overview from [SFDRB22, p.3].

Figure 4.5 shows an overview of the unsupervised training procedure of this MSS method.
The mixture signal x[n] is fed to a DNN. This DNN estimates control signals for the
separate source models in such a way that they synthesize separate source signals ŝi[n],
forming a mixture signal x̂[n] that minimizes the loss function. From the input mixture
x[n] the fundamental frequencies f0 are estimated with a polyphonic pitch tracker and
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assigned to the corresponding sources. The f0 information is used not only to directly
synthesize source signals with the appropriate pitch but also to inform the DNN. This is a
common approach in DDSP literature, since it enables the creation of source signals with
good pitch accuracy and to predict pitch dependent controls. The employed loss function
is the multi scale spectral loss LMSS as in [EHGR20], which is defined in eq. (4.3) and
(4.4).

Source Model To model the singing voice the authors employed a source-filter sig-
nal model. Such a model is motivated by the physiology of the human speech process.
Thereby the glottis produces an excitation signal e[n] which is filtered by the vocal tract.
The vocal tract is modeled with a time-varying all-pole filter of order O and filter coeffi-
cients ao. The z transform of the source model is given by

Ŝi(z) = Ei(z)
1

Ai(z)
(4.6)

with the z transform of the estimated source Ŝi(z) = Z{ŝi[n]}, the z transform of excita-
tion signal Ei(z) = Z{ei[n]}, the transfer function 1

Ai(z)
of the time-varying IIR all-pole

vocal tract filter, and the source index i. This source model is described in the time domain
as

ŝi[n] = ei[n]−
O∑

o=1

ao,iŝi[n− o]. (4.7)

The excitation signal e[n] is formed with a harmonic plus noise model as defined in eq.
(4.1), which was used in [EHGR20] as an overall signal model for musical instruments.
They notate the harmonic plus noise model as

e[n] = (α[n]h[n]) ∗ r[n] + (w[n] ∗ d[n])g[m] (4.8)

with the convolution operator ∗, the time sample index n, the time frame index m, and
the time-varying amplitude α[n] of the harmonic signal h[n]. r[n] and d[n] are finite im-
pulse responses. w[n] corresponds to white noise and g[m] is the frame-constant noise
amplitude. The harmonic signals partial amplitudes are fixed and r[n] and d[n] are time-
invariant to provide a global spectral shape. Eq. (4.8) only emulates the excitation,
whereas the short time variations produced by articulation of words are entirely modeled
with the all-pole filter 1

A(z)
.

With this complete definition the source model parameters are given by (f0[n], ao[m],
α[n], r[n], g[m], d[n]). The fundamental frequency f0 is provided per frame (f0[m]) to
the model but is then upsampled to audio rate (f0[n]). A visualization of the source model
with intermediate spectrograms is depicted in Figure 4.6.

Regarding this specific source model, the authors claim that their "proposed method is not
specific to any particular source model and any parametric model may be used as long as
it can be formulated in a differentiable way." [SFDRB22, p.3]
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Figure 4.6 – Visualization of the processing steps in the source-filter model taken from
[SFDRB22, p.4]. Model parameters are written in blue. "Although most components
are visualized through magnitude spectrograms, processing is not necessarily done in the
time-frequency domain" [SFDRB22, p.4].

The DNN The control signals for the source models ao[m], α[m], g[m], and d[m]
"are obtained with a DNN and" r[n] "is fixed manually" [SFDRB22, p.6]. This DNN is
depicted in Figure 4.7.

The DNN architecture consists of a mixture encoder which is similar to the z encoder
from [EHGR20] in Figure 4.2 and a decoder to generate a latent source representation
from the mixture signal and the sources’ f0 tracks. The latent source representation is
the equivalent to the latent coding of a standard autoencoder NN architecture. From this
latent source representation, the different control signals or their precursors for further
processing are predicted with simple dense or recurrent layers.

In Figure 4.7 the input mixture signal is present as a logarithmic spectrogram
log(|STFT{x[n]}|) with M time frames and K frequency bins. The mixture encoder first
applies a custom scale and shift operation (custom layer normalization) to the logarithmic
spectrogram for normalization. "Each spectrogram is normalized by subtraction of its
mean and division by its standard deviation. Then, each frequency bin is scaled and
shifted by dedicated learned scalars." [SFDRB22] Such a first step is common in feature
engineering to gain expressive features for the NN to effectively learn from them.

Then three unidirectional GRUs are applied, followed by a linear layer, yielding the latent
mixture representation. This learned representation of the mixture signal spectrogram
may focus on the important parts of the spectrogram for solving the problem at hand. For
the output of the mixture encoder, the latent mixture representation is duplicated I times
for every source i.

The source fundamental frequencies f0[m] are converted to MIDI note numbers and then
scaled to an interval between 0 and 1 to act as a valid neural input. In the decoder both
the duplicated latent mixture representation and the scaled source pitches are processed
separately by a MLP. This MLP "consists of three repetitions of linear layer, layer normal-
ization (...), Leaky ReLU activation" [SFDRB22, p.5]. The MLP outputs are concatenated
to combine mix and f0 information and then fed through a unidirectional GRU and another
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Exp. sigmoid (I, 1, L)

Noise filter magnitudes

Algorithm 1 (I, M, O)

All-pole filter coeff.: 

Window method (I, 1, 2L-1)
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g[m ]

ao[m ] d [m ]

Figure 4.7 – NN architecture. "Transformations with learnable parameters are shown in
green, predefined processing steps in gray, (intermediate) outputs in white boxes. The
output shape of a transformation is shown in the right part of the box." [SFDRB22, p.5]

MLP. The output of the decoder forms the latent source representations.

From this latent source representation, 4 different control signals for the source models
are predicted. The amplitude α[m] of the harmonic signal and the noise amplitude g[m]
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are predicted via a dense layer consisting of a linear layer with an exponential sigmoid

y = ymax · σ(x)log(10) + 10−7 (4.9)

as output activation function. It is a modified version of the standard sigmoid function
from eq. (2.5) also employed in [EHGR20]. The exponential sigmoid is used for predict-
ing logarithmic parameters such as amplitude or frequency.

Like the other outputs, the last frame of the unidirectional GRU output is fed through an
exponential sigmoid activation for obtaining the impulse response of the FIR noise filter
d[m], as in [EHGR20]. By parameterizing the noise filter from the last output frame of
the GRU, it contains information about the whole source signal encoded in the mixture
signal. The noise filter magnitudes are kept time-invariant, hence d[n] = d[m].

Finally the IIR filter coefficients ao[m] are predicted by also applying a linear layer to
the latent source representations, but then using a filter parametrization technique using
line spectral frequencies (LSF). For further information about LSF and the (differentiable)
algorithm (algorithm 1 in Figure 4.7) to obtain the IIR filter coefficients see [SFDRB22,
p.6].

Results The available data consisted of choir recordings of Bach chorals and Barber-
shop quartet with ground truth, which are separate recordings of individual singing voices.
The Bach choral voices are soprano, alto, tenor and bass and the Barbershop voices are
tenor, lead, baritone and bass. These recordings were separated into the full training set
consisting of 91 minutes and 20 seconds of audio material and a full validation set with 9
minutes and 10 seconds of audio material. A small training set and small validation set
has been formed, respectively, with 2 minutes and 40 seconds for training and 2 minutes
and 20 seconds of validation. The test set comprised chorals of a total length of 6 minutes
and 48 seconds which are not included in the previous sets.

Two sets of experiments have been conducted by the authors. The first set of experiments
conducted training for separating a number of 2 sources present in the mix. The second
set of experiments conducted training for separating a number of 4 sources. In each set
4 different training configurations regarding the training set and learning type have been
used:

— US-F: unsupervised training with the full dataset,
— US-S: unsupervised training with the small dataset,
— SV-F: supervised training with the full dataset,
— SV-S: supervised training with the small dataset.

Supervised training was performed by calculating the sum of the MSS loss for every
individual source estimate and its target source.

Mixture spectrograms were computed with a FFT size of 512 and a hop size of 256 result-
ing in 257 frequency bins. The soft masking to produce masked source estimates from the
directly synthesized source estimates was done with a FFT size of 2048 and a hop size of
256 samples.
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r[n] was fixed to a 6dB/octave lowpass characteristic with a cutoff frequency at 200Hz.
The order of the all-pole filter was set to O = 20. Training was done with the ADAM
optimizer, "a batch size of 16 and a learning rate of 0.0001" [SFDRB22] stopping after
200 consecutive epochs.

Evaluating the trained models on the test dataset with the scale invariant signal-to-distortion
ratio (SI-SDR) [LRWEH19] of the masked sources, the authors recognized the following
points.

— Separation quality was higher for 2 sources than for 4 sources in general.
— "The proposed unsupervised method (US-F, US-S) performs better than the base-

lines." 6 [SFDRB22, p.9])
— The proposed unsupervised method "achieves almost the same performance whether

isolated target sources are available for training or not." [SFDRB22, p.9]
— The "performance of the proposed method does not drop drastically when the

amount of training data is decreased by 97% (US-F vs. US-S and SV-F vs. SV-
S)." [SFDRB22, p.9]

In summary, the unsupervised learning approach produced good separation quality with
very high data efficiency trained on less than 3 minutes of audio. It achieved equivalent
performance to the supervised approach. This was achieved by encoding expert knowl-
edge into the source models via DDSP and effective usage of the sources pitch tracks.

Directly synthesized sources performed worse than the baselines but the authors note
that "source estimates generated by parametric models are a worthwhile goal for future
research" for "tasks such as timbre or style transfer, transposition, and melody editing"
[SFDRB22, p.10].

6. Baselines were a learning free non-negative matrix factorization approach and a U-Net approach
trained on the same datasets.
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Chapter 5

MSS of Guitar Recordings Using
DDSP

On the basis of [SFDRB22] (which was described in section 4.2.2), the concept of this
work was to perform MSS employing a new source model. Since a machine learning
systems design always involves the selection of data for training, validation and testing, it
was reasonable to base the decision towards which sources should be modeled on available
data with ground truth. Furthermore, open source or open access datasets are preferable,
since they are free and enable perfect reproducibility for other researchers. For this rea-
sons I decided to use the Guitarset [XBP+18] dataset for training, validation and testing.
This dataset is described in more detail below in section 5.3.2.

In this chapter, first the results from [SFDRB22] with their method for singing voice
separation was recreated. As a preliminary step towards MSS a DDSP physical string
model was used as source model in a modified version of the DNN from [SFDRB22] to
resynthesize signals with one neurally predicted parameter. Subsequently, 3 experiment
series for MSS using DDSP were conducted which are referred to as experiment series
A, B and C. The repository for the preliminary experiment is available on the Git IEM
server https://git.iem.at/s1061531/umss-guitar-prex and the repository for ex-
periment series A, B and C is available on the Git IEM server at
https://git.iem.at/s1061531/umss-guitar. The results of the experiments are pre-
sented in the subsequent chapter 6.

5.1 Recreation of the Original Method

As a first step, the results of [SFDRB22] for singing voice separation have been recre-
ated. Since the authors used proprietary datasets for training and validation a replacement
had to be found. I chose to employ the Choral Singing Dataset 1 [Zen19] introduced in
[CGGMDL18] for training, validation and testing. Originally this dataset was used solely
for testing, but considering the data efficiency of the method at hand, less than 3 min-

1. https://zenodo.org/record/2649950#.Y-jjaRzMKi0
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utes of training data should be sufficient [SFDRB22, p.1] and the performance should
approach the results of the authors of [SFDRB22]. Pitch tracking was done by employing
the CREPE pitch tracker [SFDRB22] on the separate voices.

The three songs of the Choral Singing Dataset have been split:

— Nino Dios with a length of 1min 40sec used as training set.
— Locus Iste with a length of 3min used as validation set.
— El Rossinyol with a length of 2min 20sec used as test set.

Two MSS models have been trained. One model for separating a mixture of 2 voices and
one model for separating 4 voices.

5.2 Preliminary Experiment: Karplus-Strong Resyn-
thesis

As a preliminary step towards MSS employing a DDSP physical guitar model I decided to
employ the physical model first to reproduce a single output signal for a fixed frequency
and one free parameter predicted by the NN.

As the signal model a simple Karplus-Strong physical string model [KS83], [Smi13, Ch.
The Karplus-Strong Algorithm] was used. The Karplus-Strong model is a Waveguide
model [Smi13] as mentioned in [KVT98]. It is the most simple way to implement a rough
physical model of a vibrating string.

+ HLP

z-L

y[n]Xn[n]

fc

Figure 5.1 – The block diagram of a simple Karplus-Strong physical string model. The
neural predicted parameter fc (cutoff frequency) of the lowpass filter HLP is shown in
red.

Figure 5.1 shows a block diagram of a simple Karplus-Strong algorithm. It consists of
a delay line z−L with length L and a lowpass filter HLP inside a feedback loop. The
excitation signal is a white noise burst xn[n]. The length of the delay line L plus the
group delay of the feedback filter determines the fundamental frequency f0 of the output
signal. The note lengths or damping of the string is influenced by the cutoff frequency fc
of the lowpass filter. Since it is a lowpass, high frequencies get damped very quickly and
low frequencies are sustained longer in the output signal.
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Figure 5.2 – Magnitude response of lowpass filter hLP [n] at fsr = 16kHz for different
cutoff frequencies fc.

The output signal y[n] is given by

y[n] = xn[n] + hLP ∗ y[n− L− 1] (5.1)

with the time sample index n, the convolution operator ∗ and the lowpass impulse re-
sponse hLP [n] given by the difference function in eq. (5.2). The lowpass of the source
model is a simple IIR filter from [Wik23b]

y[n] = αx[n] + (1− α)y[n− 1] (5.2)

with the coefficient

α =
2π∆srfc

2π∆srfc + 1

and the sampling interval ∆sr = 1/fsr.

The lowpass transfer function is given by HLP (z) = α
1−(1−α)z−1 and its magnitude re-

sponse is shown in Figure 5.2. For fc < 100Hz at fsr = 16kHz the resulting -3dB cutoff
frequency does not coincide with the set fc and the whole signal is attenuated. However,
such a behavior may be a useful feature as a string damping filter, approximating physical
behavior.
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The Fractional Delay Line

An arbitrary f0 leads to a fractional delay of L = fsr/f0 = T/∆sr ∈ R samples with
the audio sample rate fsr and the fundamental period T . Hence, to synthesize arbitrary
notes from a continuous fundamental frequency interval, a fractional delay line [Smi13,
Ch. Delay-Line and Signal Interpolation] is needed. In this experiment, the fractional
delay line is implemented via a ring buffer with linear interpolating read. The linearly
interpolated fractional sample x̂[τ ] is given by

x̂[n+ η] = (1− η)x[n] + ηx[n+ 1] (5.3)

with the fractional sample η ∈ [0, 1] and τ = n+ η.

Since all these operations are differentiable, the whole Karplus-Strong string model from
eq. (5.1) is differentiable and can be used as a source model in a NN for source separation.

Training Procedure

The goal of this work was to implement unsupervised learning of source separation by
resynthesizing the mix signal [SFDRB22]. However, in this preliminary experiment, the
goal was to resynthesize a single source signal by predicting a single parameter fc for
every input signal. Therefor fc is the only free neural predicted parameter in this experi-
ment.

The input signals are synthesized notes by the Karplus-Strong string model itself, with
fixed f0 and fixed fc. For synthesis also the note onset is fixed. Hence, the system is
informed when to synthesize the note. As in [SFDRB22] the employed loss function is
the multi scale spectral loss [EHGR20] defined in eq. (4.3). Therefor the DNN is trained
to find the fixed cutoff frequency of the generated dataset.

Dataset and Hyperparameters

Two different datasets have been synthesized with the Karplus-Strong source model. One
with a randomly seeded excitation signal and one which used the same excitation signal
for synthesis. The input and output time signals have a length of 1 second at a sampling
rate of fsr = 16kHz. The Karplus-Strong model was set to a fixed fundamental frequency
of f0 = 440Hz and to a fixed loop filter cutoff frequency of fc = 6000Hz to create the
dataset. The training set consisted of 16 examples and the validation set consisted of 4
examples.

— batch size: 4
— optimizer: Adam (as in [SFDRB22])
— learning rate: 1 · 10−3..1 · 10−6

— input FFT size: 512 samples (as in [SFDRB22])
— input FFT hop size: 256 samples (as in [SFDRB22])
— LMSS FFT sizes j: 2048, 1024, 512, 256, 128, 64 samples (as in [SFDRB22])
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The Neural Network Architecture

The NN architecture from [SFDRB22] depicted in Figure 4.7 served as a base architecture.
It has been modified to the architecture depicted in Figure 5.3 for predicting a lowpass
cutoff frequency from the input signal. All GRU layers are unidirectional. The input
signal is fed to the first layer as a logarithmic spectrogram as described in section 4.2.2
with M time frames and K frequency bins. For synthesis the predicted cutoff frequency
fc for the lowpass filter in the source model is retrieved from the last layer.

Mixture (1, M, K)

Scale and shift (1, M, K)

GRU x3 (1, M, 256)

Linear (1, M, 128)

Latent mixture representation

MLP (1, M, 512)

GRU (1, M, 512)
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Latent source representations
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Linear (1, M, 1)

Exp. sigmoid (1, L, 1)

Cutoff frequency: fc

Scaling (1, M, 1)

Exp. sigmoid (1, M, 1)

Arith. Mean (1, 1, 1)

Figure 5.3 – NN architecture for the preliminary experiment (modified from [SFDRB22]).
Layer output dimensions are notated in parantheses with M time frames and K frequency
bins.

As in [SFDRB22] the mixture encoder produces a latent representation of the input signal
for the decoder. Although in this experiment the input is not a source mixture but a single
source signal, the system is intended to be expanded to multiple sources. Hence, the
labeling in parantheses with a leading 1 in Figure 5.3. The decoder and the output layers
produce the predicted value of fc corresponding to the input signal.
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The scaling of the neural prediction p ∈ [0, 1] is done as follows

fc = p(
fsr
2

− fmin) + fmin

with a minimum frequency fmin = 20Hz. The last operation in the NN is an arithmetic
mean across all time frames M to yield a single fc value for synthesizing one output
prediction y[n] from one input example x[n].

5.3 Experiment A Series

In this experiment series, guitar string signals are separated by synthesizing source esti-
mates with a simple Karplus-Strong physical string model. Again, the cutoff frequency
fc is predicted by the DNN according to its mixture input. Two experiments have been
conducted in this series. One experiment has been conducted with a physical modeling
sampling rate of 16kHz (the same as the dataset sampling rate) and experiment with the
double sampling rate of 32kHz. This was due to the need for an extended range of fc
for sound synthesis, producing notes with longer sustain. Since the maximum cutoff
frequency of the lowpass is bounded by the Nyquist frequency, a higher sampling rate
enables the simulation of lower string damping and hence longer sustain than at lower
sampling rates.

5.3.1 Training Procedure

The goal of this experiment series is to approach unsupervised music source separation by
resynthesizing the mix signal as in [SFDRB22]. This procedure is depicted in Figure 5.4.
The deep neural network (DNN) is fed with the mix signal x[n] and it is informed with
the sources fundamental frequency f0,i, which was analyzed with the pretrained CREPE
[KSLB18] monophonic pitch tracking network. From these inputs the NN predicts the
synthesis control signals ci for a physical string model for every string i. Note onsets
are analyzed with a simple algorithm from f0 and its confidence, obtained from the pitch
tracker.

The physical source model produces the synthesized sources ŝi[n] from the neurally pre-
dicted control signals ci. These sources are summed to form the predicted mixture signal
x̂[n]. This mix is then used to calculate the cost function LMSS for training the DNN.
Since the network is informed with f0 information tracked by CREPE [KSLB18] from
the target sources si[n] as in [EHGR20] this is not true unsupervised learning but it is an
approach to it.

5.3.2 Dataset: Guitarset

The Guitarset [XBP+18] is a dataset of single string classical guitar recordings featuring

55



Σ

f0 analysis

DNN

diff’able
Physical
Modeling

cost
function

Σ
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Figure 5.4 – Block diagram of the overall training procedure. With the source (guitar
string) index i, the target sources si[n], the (predicted) directly synthesized sources ŝi, the
fundamental frequencies f0,i, the target mix signal x[n], the synthesized mix signal x̂[n],
and the predicted control signals ci for source synthesis.

— 5 different musical genres: Bossa Nova, Funk, Jazz, Rock, Singer Songwriter
— 2 different playing styles: Comping and Soloing

There are 36 recordings per style and genre, which makes a total of 360 recordings with
a varying duration of 20 to 30 seconds. Debleeded hexaphonic pickup recordings have
been used for the experiments. This guitar recording dataset provides the ground truth
(monophonic single string recordings) to generate polyphonic mixture signals for train-
ing, validation and testing. Pitch tracking was performed using the CREPE pitch tracker
[KSLB18] on the individual string signals as in [EHGR20].

Consecutive recordings are loaded for training without shuffling batches. Therefor the
recordings are presented to the model in the original musical order. Every epoch the
recordings order of the training set is randomized. For these experiments a subset of the
Guitarset [XBP+18] is compiled with the following settings.

— dataset: Guitarset
— sample rate: 16kHz
— training set: 8 audio files
— validation set: 2 audio files
— test set: 2 audio files
— playing style: comping
— genres: Bossa Nova
— allowed-strings: all 6 guitar strings
— example-length: 2s (length of 1 training example in a batch)
— pitch tracker: CREPE
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5.3.3 Source Model

As in the preliminary experiment above, a simple Karplus-Strong string model as depicted
in Figure 5.5 is used as source model. The lowpass was transferred to the feedback path
and it was extended with a highpass to mitigate DC offsets. The highpass cutoff frequency
is fixed to 5Hz.

xe[n] +

HLP HHP z-L

y[n]

fc

Figure 5.5 – Block diagram of the Karplus-Strong physical string model. The lowpass
cutoff frequency fc is the only neurally predicted control signal for this source model.

The excitation signal xe[n] is a white noise burst of 5ms triggered by the note onsets. The
output signal is given by

y[n] = xe[n] + hLP [n] ∗ hHP [n] ∗ y[n− L− 1]. (5.4)

The same fractional delay line z−L as above defined in eq. (5.3) was used in this exper-
iment. Also the lowpass filter from eq. (5.2) is used as hLP [n]. The highpass hHP [n] is
given by a simple IIR filter with difference equation

y[n] = αy[n− 1] + α(x[n]− x[n− 1]) (5.5)

from [Wik23a] with the coefficient

α =
1

2π∆srfc + 1
. (5.6)

The highpass transfer function is given by HHP (z) =
α−αz−1

1−αz−1 and its magnitude response
is shown in Figure 5.6.

5.3.4 Onset Detection

For triggering notes, a note onset detection method was developed. The idea behind this
method was to rely not on the target source signals, but rather on pitch information, which
may later be provided from a polyphonic pitch tracker for achieving true unsupervised
learning. The f0 and f0 confidence obtained from CREPE [KSLB18] served as basis
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Figure 5.6 – Magnitude response of the highpass hHP [n] at fsr = 16kHz for different
cutoff frequencies fc.

for the onset detection. The following algorithm has been developed and used in the
experiments 2.

Define a confidence threshold cth ∈ [0, 1] and get the fundamental frequency f0[m] and
its confidence c[m] for every frame m of the current training example. Set f0 to zero if
the confidence is below the threshold

f0out[m] =

{
f0[m] c ≥ cth
0 else

. (5.7)

Restrict the signal to an interval of [0, 1]

xonoff [m] =

{
1 f0out[m] > 0
0 else

. (5.8)

Take the backward difference xdiff [m] = xonoff [m] − xonoff [m − 1] and distinguish
between note onsets and offsets by clipping the signal

xon[m] =

{
xdiff [m] xdiff [m] ≥ 0
0 else

. (5.9)

2. In hindsight this algorithm was not an ideal choice for this problem, since more sophisticated methods
exist.
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Finally get the onset frame indices mon = arg(xon[m] ̸= 0). In the experiments a confi-
dence threshold of cth = 0.4 has been used.

5.3.5 Neural Network Architecture

The NN architecture from preliminary experiment 2 in Figure 5.3 is extended with f0
information as in [SFDRB22]. This NN architecture is depicted in Figure 5.7. The target
mixture magnitude spectrogram along with the fundamental frequency f0 of every target
source is fed to the first layers. From this input, fc is predicted for every frame of the
source estimate. fc is scaled to a range from 0Hz to the Nyquist frequency fsr/2. Again
the multi scale spectral loss LMSS is employed as loss function.

5.3.6 Source Masking

The directly synthesized sources ŝi[n] can also be used for masking the mix signal x[n]
to obtain higher quality masked sources s̃[n]. This is done by obtaining soft masks from
ŝi[n].

The signals are transformed into the frequency domain Ŝi[k,m] = STFT{ŝi[n]}, X̂[k,m] =
STFT{x̂[n]} with frequency bins k and time frames m. The mask is obtained from the
source estimates magnitude spectrogram and the magnitude spectrogram of the estimated
mix by element-wise division

maski[k,m] =
|Ŝi[k,m]|∑

i |Ŝi[k,m]|+ ϵ

[SFDRB22, p.6] with ϵ = 10−12 to avoid dividing by zero. The masked source spectro-
gram S̃i[k,m] is computed via

S̃i[k,m] = maski[k,m]⊙X[k,m]

with the element wise product ⊙, implicitly containing the phase information of the mix
signal. Finally the time signal is retrieved s̃[n] = iSTFT{S̃i[k,m]}.

In this experiment source masking is exclusively used at inference for producing the
masked sources s̃[n]. Only the synthesized source estimates ŝi[n] are used in training
for forming the predicted mixture signal and computing the loss from it.
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Figure 5.7 – NN architecture (adapted from [SFDRB22]). M is the number of time frames,
K is the number of frequency bins and I is the number of sources (strings). "Transforma-
tions with learnable parameters are shown in green, predefined processing steps in gray,
(intermediate) outputs in white boxes. The output shape of a transformation is shown in
the right part of the box." [SFDRB22]

5.4 Experiment B Series

As a next step the simple Karplus-Strong string model from above is extended as described
in [JS83]. The experiment B series contains 5 experiments with successive extensions to
the physical source model. The dataset was the same as in the experiment A series. Since
validation losses in Figure 6.11 did not significantly drop after the second epoch in the
previous experiments, the models of the B series were only trained for 2 epochs. This was
done due to training time efficiency for yielding results which enable an estimation of the
models performances.
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Experiment Overview

— ExB0: Baseline without neural predictions.
— ExB1: a . . . excitation amplitude and false onset filtering.
— ExB2: a and ρ . . . feedback coefficient.
— ExB2.1: Follow up experiment to ExB2 with non-linear feedback clipping for

stability.
— ExB3: a, b . . . stretching factor (coefficient for the feed-forward filter).
— ExB4: a, b, r . . . excitation dynamics (coefficient for the excitation filter).

+ Ha

HHP z-L

y[n]Xn[n]

Figure 5.8 – Block diagram of the signal model employed in ExB0.

+ Ha

HHP z-L

y[n]Xn[n]
x

a

Figure 5.9 – Block diagram of the signal model employed in ExB1.

+ Ha

HHP z-L

y[n]Xn[n]
x

a

xρ

Figure 5.10 – Block diagram of the signal model employed in ExB2.

+ Ha

HHP z-L

y[n]Xn[n]
x

a

xρ

Figure 5.11 – Block diagram of the signal model employed in ExB2.1.
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Figure 5.12 – Block diagram of the signal model employed in ExB3.
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Figure 5.13 – Block diagram of the signal model employed in ExB4.

Experiment B0 Figure 5.8 shows the simple Karplus-Strong signal model employed
in experiment ExB0. It is the same model as in ExA but with a different string damping
lowpass filter Ha. In this experiment the time invariant lowpass Ha is implemented with
the difference equation

y[n] = 0.5x[n] + 0.5x[n− 1] (5.10)

as defined in the original Karplus-Strong algorithm [KS83].

Experiment B1 In experiment ExB1 the baseline was extended with a neurally pre-
dicted control signal a as shown in Figure 5.9. a is multiplied with the excitation signal
xn[n] to control the excitation amplitude of played notes. Furthermore the NN may be
capable of filtering out wrong onsets generated by the onset detection.

Experiment B2: ExB2 in Figure 5.10 is extended with the neurally predicted feedback
coefficient ρ, which is used for note decay shortening and causing note ends.

Experiment B2.1: ExB2.1 depicted in Figure 5.11 is the follow up experiment to Ex2
which showed stability problems at training time. Hence to guarantee stability the feed-
back path values are clipped 3 to [−1, 1]. Since experiments involving the feedback factor
ρ showed worse performance than ExB1, ρ has been omitted in the following experiments.

Experiment B3: In ExB3 the signal model in Figure 5.12 receives the neurally pre-
dicted excitation amplitude a and the neurally predicted decay stretching coefficient b.

3. Clipping is done with a "hard tanh function" [PyT23] which is differentiable in the practical Autodiff
sense like the ReLU function that is used excessively in DNNs. Hereby, the gradient of the constant parts
of the function is set to zero including the two mathematically non-differentiable points.
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Figure 5.14 – Magnitude response of the original string damping filter Ha(z) from [KS83]
at fsr = 32kHz for different coefficients b.

Additionally the feedback coefficient is fixed to ρ = 0.99. The decay stretching one-
zero FIR lowpass filter Ha is time variant in this experiment and is implemented with the
difference equation

y[n] = (1− b)x[n] + bx[n− 1] (5.11)

as proposed in [JS83]. Ha influences the note decay and timbre. Its transfer function is
given by Ha(z) = (1− b) + bz−1 with magnitude response

|Ha(e
jθ)| =

√
((1− b) + bcos(θ))2 + (bsin(θ))2. (5.12)

It has unit magnitude at b = 0, since |Ha(e
jθ)| =

√
1 = 1 and at b = 1, since |Ha(e

jθ)| =√
cos2(θ) + sin2(θ) = 1, which is also identifiable from the difference equation in eq.

(5.11). Hence, b = 0 and b = 1 are avoided for ensure stability of the Karplus-Strong
Feedback loop. The magnitude response of is shown in Figure 5.14. Since it is a one-zero
FIR filter, the attenuation is subtle above 1kHz at a sampling rate of fsr = 32kHz.

Experiment B4: ExB4 extends the signal model of ExB3 with the excitation dynamics
filter Hd as depicted in Figure 5.13. The one-pole IIR lowpass filter Hd is given by the
difference equation

y[n] = (1− r)x[n] + ry[n− 1] (5.13)

63



as proposed in [JS83].

Figure 5.15 shows the NN architecture used for the experiment B series. Again it is an
extension of the NN architecture used in experiment series A.
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Exp. sigmoid (I, M, 1)

Feedback coefficient: 
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ExB1 ExB2

ExB3

Linear (I, M, 1)

Exp. sigmoid (I, M, 1)

Excitation dynamics factor: r

ExB4

ρ

Figure 5.15 – NN architecture for the experiment B series. The experiments introducing
the neural control signal are indicated in green text.
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5.5 Experiment C Series

In this experiment series, the same training procedure and dataset as in experiment series
A and B were used. The goal was to improve the model from ExB4.

+ Ha

HHP z-L

y[n]Xn[n]
x

a

x0.99

b

Hd

r

Figure 5.16 – Block diagram of the signal model used in ExC1.

The source model for ExC1 is depicted in Figure 5.16. It is the same source model used in
ExB4. However in ExC1 the fundamental frequency f0 at the time of the onset was held
constant up to the next onset. The idea behind this strategy was that fast f0 changes after
the excitation may result in the strong note amplitude decrease, observed in experiment
series A and B. Since the Karplus-Strong model is essentially a comb filter, a fast detuning
after the excitation of this filter may cause a loss of excitation energy.

+ Ha

HHP z-L

y[n]Xn[n]
x
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x0.99

b

Hd

r

Figure 5.17 – Block diagram of the signal model used in ExC2.

The source model for ExC2 is depicted in Figure 5.17. Here the multiplication with a
and the filter Hd are swapped. In this experiment the onset detection was deactivated but
the model was excited with constant white noise xn[n] of amplitude 1. The excitation
amplitude a was predicted with 64 samples per time frame m and not like previously with
one sample per time frame. This is an attempt for the DNN to neurally predict note onsets
by its own.

The neurally predicted control signal a may contain discontinuous parts which do not
correspond to the physical actuality. Hence, to smooth these potential discontinuities, the
lowpass for excitation dynamics was also used to smooth a.

Figure 5.18 shows the NN architecture used in experiment series C. For ExC1 the param-
eter A = 1 and for ExC2 A = 64.
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Figure 5.18 – NN architecture of the experiment C series.
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5.6 Metrics

As performance measures the metrics scale invariant signal-to-distortion-ratio (SI-SDR)
and the Mel Cepstral distance (MCD) have been used. The SI-SDR was used in [SFDRB22]
as a MSS performance measure and the MCD serves as a timbre similarity measure.

As defined in [LRWEH19] the SI-SDR is given via

SI-SDR =

∑
n

(αx[n])2∑
n

(αx[n]− x̂[n])2
(5.14)

and in dB

SI-SDRdB = 10log10(SI-SDR) (5.15)

with the parameter

α =

∑
n

x[n]x̂[n]∑
n

x2[n]
. (5.16)

The MCD as defined in [Kub93] is the arithmetic mean over all time frames of the eu-
clidean distance of the Mel frequency Cepstral coefficients (MFCC) between two signals.
The MCD per time frame m of signals x[n] and y[n] is given via

MCDx,y[m] =

√∑
k

(MFCCx[m, k]−MFCCy[m, k])2 (5.17)

with the time frame index m and the coefficient index k. The MCD is then calculated
with

MCDx,y =
1

M

∑
m

MCDx,y[m] (5.18)

with the number of time frames M .
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Chapter 6

Results

In this chapter, the results of the conducted experiments are presented which are described
above, in chapter 5. Every section is closed with an interpretation of these results.

6.1 Recreation of the Original Method

0 10 20 30 40 50 60
Epochs

7

8

9

10

11

12

Lo
ss

2 voice train loss
2 voice validation loss
4 voice train loss
4 voice validation loss

Figure 6.1 – Learning curves for recreating the results from [SFDRB22]. The best epoch
with minimal validation loss is indicated with a red circle.

Model configurations have been the same as described in [SFDRB22]. The models have
been trained until early stopping was triggered with a patience of 15 epochs. Batch sizes
were chosen as 16 for the two-voice-model and 14 for the 4-voice-model to max out
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available RAM. The two-voice-model was trained longer (50 epochs) than the 4-voice-
model (35 epochs) and accomplished a lower validation loss in its best epoch. This was to
be expected since the separation of 2 voices poses a simpler problem than the separation
of 4 voices from a mix. Figure 6.2 shows the resulting SI-SDR for the trained models.

Figure 6.2 – Box plot of the SI-SDR of the trained models separating the test set for
recreating the results in [SFDRB22].

Overall the masked sources performed better than the directly synthesized sources, which
was to be expected from theory. The recreated 2-voice-masking model achieved a mean
SI-SDR of 14.1dB whereas the supervised and unsupervised 2-voice-masking models
from [SFDRB22] achieved a mean SI-SDR of 13.5dB. The recreated 4-voice-masking
model achieved a mean SI-SDR of 7.3dB whereas, from [SFDRB22], the supervised
4-voice-masking model reached 6.5dB SI-SDR and the original unsupervised 4-voice-
masking model had 6.7dB SI-SDR.

Hence, the results of [SFDRB22] have been successfully recreated. There are at least two
reasons why the recreated models show a higher SI-SDR of approximately 1dB than the
original models, which suggests a slightly better separation performance.

1. Better pitch information has been used in the recreation by tracking monophonic
sources with CREPE instead of performing multiple f0 analysis as in [SFDRB22].

2. The same dataset has been used for training and testing. Although different songs
were used for training and testing, they share common features such as musical
style, recording style, room impulse response and others.

For that reason the performance of the recreated models and the models of the original
publication [SFDRB22] can be estimated as equal, although using different datasets and
f0 trackers.
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6.2 Preliminary Experiment: Karplus-Strong Resyn-
thesis

For the synthetic string sound resynthesis, the first models have been trained with ran-
domly seeded white noise as excitation signal. This lead to not exactly reproducible
sounds, since the form of the excitation signal has a major impact on the timbre of the
synthesized string sound. For this reason also a reproducible Karplus-Strong model has
been implemented which uses always exactly the same excitation signal for sound syn-
thesis. The excitation signal always consists of white noise which is a random signal,
but the random excitation is randomly seeded whereas the reproducible excitation signal
stays always the same. Both model variants were used to create a dataset for resynthesis.
Models have then been trained with the following configurations.

— Random excitation dataset with random excitation synthesis model.
— Reproducible excitation dataset with random excitation synthesis model.
— Reproducible excitation dataset with reproducible excitation synthesis model.

In the following, the learning curves are shown. Furthermore the average predicted cutoff
frequency fc per epoch for the validation data is depicted (right y-axis). The target fc =
6000Hz is indicated as a green horizontal dashed line. Models have been trained with
different learning rates, because this had a big influence on training behaviour. The model
names are numbered in the arbitrary order they were trained.

Random Excitation for Input and Output

The models in this section used the random excitation dataset for training as well as ran-
domly seeded excitations for synthesis.

The first models training result is depicted in Figure 6.3. This model has been trained
with a learning rate of 1 ·10−3 and shows an erratic training behavior. The training loss of
Model 1 shows a decreasing trend and its validation loss decreases at the beginning, but
increases at the end. The predicted fc overshoots at the beginning and continues around
an offset from the target value.

Model 9 was trained with a learning rate of 5 ·10−6, which turned out to be an appropriate
value for this configuration. Its training loss in Figure 6.4 decreases fast in the first epochs
and continues around a limit. The validation loss decreases first but increases later. The
predicted fc approaches the target value in the first epochs and settles around an offset
from it.

Reproducible Excitation for Input and Random Excitation for Output

The models in this section used the reproducible excitation dataset for training, but ran-
domly seeded excitation signals for synthesis.

Model 8 has been trained with a learning rate of 1 · 10−3. Training and validation loss in
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Figure 6.5 decrease at the beginning and fluctuate around a limit. Also the fc prediction
approaches the target value and fluctuates around it.

The next three models are trained with decreasing learning rates. Model 4 (Figure 6.6)
has a learning rate of 1 · 10−5, model 6 (Figure 6.7) has a learning rate of 5 · 10−6 and
model 5 (Figure 6.8) has a learning rate of 1 · 10−6.

Reproducible Excitation of Input and Output

The models in this section used the reproducible excitation dataset for training and repro-
ducible excitation for synthesis. Model 7 has a learning rate of 1 · 10−3 and model 10 has
a learning rate of 5 · 10−6. Model 7’s losses in Figure 6.9 drop to an intermediate value
and then drop to a final value. Its predicted fc overshoots the target value and settles at
an offset of about 900Hz from it. Model 10’s losses in Figure 6.10 drop immediately to
a limit and the predicted fc does not overshoot but also settles at an offset from the target
value at about 700Hz from it.
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Figure 6.3 – Model 1 training (random in, random out), lr = 10−3.
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Figure 6.4 – Model 9 training (random in, random out), lr = 5 · 10−6.
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Figure 6.5 – Model 8 training (reproducible in, random out), lr = 1 · 10−3.
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Figure 6.6 – Model 4 training (reproducible in, random out), lr = 1 · 10−5.
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Figure 6.7 – Model 6 training (reproducible in, random out), lr = 5 · 10−6.
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Figure 6.8 – Model 5 training (reproducible in, random out), lr = 1 · 10−6.
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Figure 6.9 – Model 7 training. reproducible in, reproducible out, lr = 1 · 10−3.
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Figure 6.10 – Model 10 training (reproducible in, reproducible out), lr = 5 · 10−6.

Models 1 and 9 using random excitation signals for input and output show a similar be-
havior. Both predicted fc stay at an offset from the target value. A noticeable feature in
these graphs is that a good prediction of fc does not lead to a small validation loss. This
indicates, that the output signal of the model can not reproduce the dataset signals with the
right fc prediction. Therefor, the reproducible excitation signal has been implemented to
eliminate a sound influencing factor which is not accessible to the Karplus-Strong model.

Models 8, 4, 5, and 6 used reproducible excitation for input and random excitation for
output. The strong fluctuations between epochs of model 8 around a target value are
a sign of a too high learning rate. In a gradient descent based learning procedure the
model parameters are updated according to the gradient on the error surface multiplied
with the learning rate or step size to find a minimum. When this step size is too big, the
steps overshoot the optimal solution (the minimum) and perform a random walk around it.
This behavior is visible as performance fluctuations which can be decreased by choosing
a smaller learning rate (step size).

Model 4, 5 and 6 show a similar behavior using smaller learning rates than model 8. The
training and validation losses look like typical learning curves settling at a loss of about
2. Model 4 and 6 show an overshoot of the predicted fc target value and model 5 slowly
approaches the target value. The best performing model from this section is model 6 since
it settles at the closest fc predictions.
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Models 7 and 10, using reproducible excitation for input and output, settle both at an fc
offset. This is an interesting result, since exactly the same excitation signal was used for
creating the dataset and synthesizing the predictions.

Most learning curves in these experiments look rough. This is due to a small training set
and even smaller validation set for fast training and validation.

These three experiments regarding the form of the excitation signal resulted in different
learning behaviors. By taking the distance of predicted fc as a performance measure, in-
terestingly the models with reproducible input and output signals performed worst. They
show smooth learning curves since the amount of randomness in the overall system is
minimized but they may tend to get stuck in a local minimum of the error surface.

The models using reproducible input signals and randomly seeded output signals perform
best with model 6 being the best model overall. The introduced randomness of the ran-
domly seeded excitation signal may help the overall system to not get stuck in a local
minimum but approaching the global minimum of the error surface and converge to the
optimum solution to the stated problem.

None of the trained models shows diverging or unstable training behavior and all average
predicted lowpass cutoff frequencies approach the target value in some kind. The re-
sults for this preliminary experiment show that the simple Karplus-Strong physical string
model is differentiable. Furthermore the results show that it is possible to employ the
DDSP signal model in a NN architecture such as in [SFDRB22] which can effectively
learn from the training data.

6.3 Experiment A Series

The described models of the experiment A series have been trained for 5 epochs with the
Adam optimizer and a learning rate of 10−4 using a batch size of 2 and loss FFT sizes j =
2048, 1024, 512, 256, 128, 64. For the input mixture transform a FFT size of 512 with a
hop size of 256 was used. The resulting learning curves are depicted in Figure 6.11.

Two metrics have been used to evaluate the performance of the trained model on the test
set . These are the scale independent source-to-distortion ratio (SI-SDR) [LRWEH19]
as in [SFDRB22] and the Mel Cepstral distance (MCD) [Kub93]. White noise source
estimates have been used as a lower baseline and masking the mix signals with the ideal
ratio mask (IRM) as described in section 3.3 has been used as an upper baseline. The
resulting SI-SDR is depicted in Figure 6.12 and the MCD is depicted in Figure 6.13.
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ŝi[n] and masked: masked sources s̃i[n].
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and ExA2: 32kHz physical modeling sampling rate. synth: directly synthesized sources
ŝi[n] and masked: masked sources s̃i[n].

Synthesized Sources and Predicted fc Synthesized and masked source estimates
were computed from a song of the test set 1. These output source signals ŝi[n] and s̃i[n]
are depicted in Figure 6.14 and 6.15 together with the target sources si[n] for all strings.
In this figure and all following the first 5 seconds of the file
02_BN1-129-Eb_comp_hex_cln.wav from the test set is used for visualization. String
numbering is done in the common guitar string numbering scheme from the highest string
1 (e), to string 2 (b), to string 3 (g) up to the lowest string 6 (e).

In Figure 6.16 and 6.17 the pitch tracker outputs f0,i and f0,i confidence are depicted
together with the synthesized sources ŝi[n] and the interpretable control signal for the
cutoff frequency fc,i and the target source si[n]. For better scaling the predicted fc,i are
depicted on a logarithmic scale in Figures 6.18 and 6.19 together with ŝi[n].

Training and validation loss of ExA1 is generally higher than for ExA2. Both learning
curves decrease rapidly from the first to the second epoch. The training loss of ExA1 is
steadily decreasing whereas the training loss of ExA2 stays around the limit of the second
epoch.

The SI-SDR suggests equal performance of the IRM and the masked sources for ExA1
and ExA2. The median of the masked source estimates lies above the IRM median. As
expected, the masked sources s̃i[n] achieve higher SI-SDR than the directly synthesized
sources ŝi[n].

1. The file 02_BN1-129-Eb_comp_hex_cln.wav has been used for inference.
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Figure 6.14 – ExA1 (16kHz) source estimate comparison for all strings. Target source
(top), synthesized source estimate (middle) and masked source estimate (bottom).
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Figure 6.15 – ExA2 (32kHz) source estimate comparison for all strings. Target source
(top), synthesized source estimate (middle) and masked source estimate (bottom).
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Figure 6.16 – ExA1 control signals and synthesized source estimate with comparison to
the target source for all strings. f0 in blue, f0 confidence in red and the confidence thresh-
old cth = 0.4 in magenta (top), predicted fc in green with synthesized source estimate in
blue (middle), target source (bottom).
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Figure 6.17 – ExA2 control signals and synthesized source estimate with comparison to
the target source for all strings. f0 in blue, f0 confidence in red and the confidence thresh-
old cth = 0.4 in magenta (top), predicted fc in green with synthesized source estimate in
blue (middle), target source (bottom).
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Figure 6.18 – ExA1 fc at a logarithmic scale in green with the synthesized source estimate
in blue.
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Figure 6.19 – ExA2 fc at a logarithmic scale in green with the synthesized source estimate
in blue.
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The MCD suggests that synthesized and masked source estimates have better performance
than the lower baseline (noise) and lower performance than the upper baseline (IRM).
Again s̃i[n] achieve higher MCD than ŝi[n] and show similar results for ExA1 and ExA2.

Looking at the source signal comparisons it is noticeable overall that the onset detection
produces a lot of false onsets (especially in silent parts where the f0 detection is difficult)
and sometimes skips true onsets. This is clearly visible for string 1, 2 and 6 which all
have low volume across this example. For string 3, 4 and 5 the onset detection works
reasonably well.

The synthesized sources show that ExA2 is capable of producing notes with longer sustain
than ExA1 due to the extended fc range up to 16kHz. The masked sources are similar to
the target signals. However, especially at passages with low amplitude note signals are
synthesized due to the false onsets. The results of the low quality onset detection are false
note triggering and occasionally missed notes. This shows that the onset detection is not
ideal and has a major impact on synthesis quality.

Looking at the control signals it is visible that due to the onset detection the synthesized
source estimate gets excited every time the f0 confidence passes the confidence threshold
from a low to a high confidence, as intended. At low confidence parts, the f0 track tends
to deviate from the surrounding high confidence parts.

The neurally predicted fc controlling the lowpass in the feedback path of the Karplus-
Strong string model switches mostly between the minimum (0Hz) and maximum (ExA1:
8kHz, ExA2: 16kHz) value. Overall fc is low at the excitation times and high at the steady-
state oscillation part of the notes. It looks like the DNN learned to soften the excitation
by reducing fc and sustaining the string oscillation by increasing fc. By looking at fc on a
logarithmic scale, it is visible that fc never falls below 100Hz for all strings. fc fluctuates
around 150Hz at parts where it is low for strings 1 and 6 whose target sources have low
volume and low f0 confidence. Otherwise fc is clipped at the maximum fc and forms
short notches at the excitations.

Overall it can be observed that this simple DDSP Karplus-Strong string model can be
successfully employed inside a DNN for MSS. Furthermore the DNN is able to learn
from the data to predict a reasonable control parameter for synthesizing source signals
from the mixture signal. This is a proof of concept for employing a DDSP physical string
model inside a NN for MSS.
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6.4 Experiment B Series

Table 6.1 shows the mean epoch losses for all experiments in the experiment B series, with
ExB2 and ExB2.1 having the highest losses. Figure 6.20 shows the batch losses for all
experiments with ExB2 and ExB2.1 having high spikes at the beginning batches. Figure
6.21 shows a SI-SDR box plot and Figure 6.22 shows a MCD box plot for all experiments
of the B series.

Table 6.1 – Mean epoch training and validation losses for all models in the experiment B
series, trained for two epochs.
Model train. loss ep. 1 val. loss ep. 1 train. loss ep. 2 val. loss ep. 2
ExB1 16.1 16.3 15.1 15.2
ExB2 38.2 37.4 36.6 37.0
ExB2.1 30.4 31.7 30.6 31.1
ExB3 16.3 15.6 14.7 15.7
ExB4 15.7 15.5 14.5 15.1
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Batch
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Figure 6.20 – Training batch losses for experiments B 1 to 4.

Figure 6.23 shows a section of the directly synthesized sources ŝi[n] in comparison to
the target sources si[n] for all experiments of the B series. ExB0 shows many wrong
onsets and high amplitude since it is not neurally controlled but has exclusively fixed
parameters. All other models with neural controls produce synthesized sources with very
small amplitude compared to the target sources.
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Figure 6.21 – SI-SDR box plot for the experiment B series.

The neurally predicted control signals are depicted in the appendix from Figure 8.1 to
8.10. The amplitudes of these control signals are overall very small. Furthermore it is
visible that controls for different strings are very similar. Correlation coefficient matrices
for the predicted control signals excluding the ones from ExB2 and ExB2.1 are depicted
in Figure 6.24.

The correlation coefficient matrix (or Pearson product-moment correlation coefficients)
R is calculated as described in [Num23] via

Rij =
Cij√
CiiCjj

(6.1)

with covariance Cij = Cov(ci[m], cj[m]) and variance Cii = Var(ci[m]), given control
signals ci[m] and cj [m] with instrument indices i and j. Rij ∈ [−1, 1] quantifies the linear
dependence of ci[m] and cj [m] modeled as realizations of random vectors. A high positive
correlation with Rij ≈ 1 expresses a high linear statistical relashionship between the two
random vectors and hence quantifies the similarity of the control signals ci[m] and cj[m]
for different strings i and j.

Neurally predicted control signals for different strings are highly correlated with corre-
lation coefficients above 0.9. This indicates that the DNN is not able to learn to control
the source models of the individual strings effectively, but rather controls them in a very
similar way.
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Figure 6.22 – Mel Cepstral Distance box plot for the experiment B series.

The learning curves of the models in the experiment B series show that the models contain-
ing a neurally controlled feedback factor ρ (ExB2 and ExB2.1) have stability problems
at training and reach the worst performance. An explanation for this is that the time in-
variant predictions for ρ introduce energy into the feedback loop of the Karplus-Strong
model leading to instability. Overall, neurally controlled models in the experiment B
series produced synthesized sources with very low amplitude.

The SI-SDR and MCD metrics do not show an improvement of neurally controlled models
over the uncontrolled model ExB0. However, the learning curves suggest that ExB4 is a
candidate for further improvement, since it produces the lowest losses.

6.5 Experiment C Series

ExC1 training resulted in a learning curve with mean training losses of 16.1 (epoch 1)
and 15.0 (epoch 2), with mean validation losses of 15.4 (epoch 1) and 15.9 (epoch 2).
The ExC2 training produced an extremely high training loss at batch index 1 which raised
the mean training loss of epoch 1 significantly. Hence, it was removed from mean loss
calculation. ExC2 batch losses are depicted in Figure 6.25. The corrected mean training
losses for ExC2 stayed at 82.0 for both epoch 1 and 2 and the mean validation loss stayed
at 84.3 for both epochs.

The training and validation losses of ExC1 are comparable to ExB1 and ExB3. Training
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Figure 6.23 – Synthesized sources ŝi[n] in orange with target sources si[n] in blue for the
experiment B series.
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Figure 6.24 – Correlation coefficient matrices for neural control signals of stable models
of experiment B series.
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Figure 6.25 – ExC2 batch losses. The batch loss at index 1 has a value of
82340395089920.

of ExC2 was unstable with different seeds and had to be aborted repeatedly. This was
recognizable through a training loss of NaN (not a number) which occurs at invalid oper-
ations like underflows or overflows. However it was possible to finish training with the
depicted high training loss at batch index 1.

Figures 6.26 and 6.27 show the directly synthesized sources ŝi[n] in comparison to the
target sources si[n] for ExC1 and ExC2 respectively. ExC1 produces sources with very
small amplitude whereas ExC2 is constantly excited producing maximum signal level,
constrained by the nonlinearity in the feedback path of the physical model. Correlation
coefficient matrices for the predicted control signals are depicted in Figure 6.30. Again,
the predicted controls are highly correlated with all correlation coefficients above 0.8 and
most above 0.9. The neurally predicted control signals for ExC1 and ExC2 are depicted
in the appendix from Figure 8.11 to 8.16. Box plots for the SI-SDR and the MCD are
depicted in Figure 6.28 and 6.29.

The unsuccessful training passes of ExC2 were most likely produced due to an overflow
since the training loss at batch index 1 has a unusually high value. Its learning curve stays
on constant loss values indicating that the DNN is not able to learn from the data with this
source model. Mean training and validation losses are about a factor 5 higher than ExC1.

Since ExC1 failed to increase the synthesized source amplitudes and ExC2 showed unsta-
ble training behavior with source estimates profoundly deviating from the target sources,
the experiment C series did not improve on the experiment B series.
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Figure 6.26 – Synthesized sources ŝi[n] in orange with target sources si[n] in blue for
ExC1.
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Figure 6.27 – Synthesized sources ŝi[n] in orange with target sources si[n] in blue for
ExC2.
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Figure 6.28 – SI-SDR box plot for experiment C series.
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Figure 6.29 – MCD box plot for experiment C series.
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Figure 6.30 – Correlation coefficient matrices for neural control signals of experiment C
series.
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Chapter 7

Conclusion and Outlook

In this work instrument-specific music source separation was examined using interpretable
and physics-inspired artificial intelligence. Unlike many state-of-the-art music source
separation methods which separate different instruments, the proposed method achieved
separation of guitar string signals. This was done by encoding knowledge about the in-
strument with a physical string model into the neural network, extending a method for
singing voice separation.

A differentiable Karplus-Strong physical string model has successfully been integrated
in a neural network architecture. It has been shown that it is in fact differentiable and
that gradients can flow through the physical model. This enabled the neural network to
effectively learn from data, predicting interpretable synthesis controls for the physical
model to synthesize source signals from the mixture signal.

A preliminary stage of unsupervised guitar string separation has been achieved by inform-
ing the method with fundamental frequencies analyzed from the target signals. It was able
to successfully separate guitar string signals from a mixture signal using a single neurally
predicted control by synthesizing source signals with the physical model. The results
were refined by masking the mixture signal with masks obtained from the synthesized
sources.

The proposed method serves as a proof of concept for introducing differentiable physical
modeling synthesis in neural music source separation. To the knowledge of the author this
is the first time differentiable physical modeling synthesis was used in a neural network
for music source separation.

Achieving high quality source separation with systems based on this work would enable
a multitude of applications. In music production it enables to make numerous changes
to monophonic sources in a polyphonic mixture, extending existing workflows. This en-
ables improvements and new applications in postproduction, upmixing, remixing, new
recording strategies, audio restoration and enhancement. Furthermore this concept can be
generalized and applied in different fields. Examples are medical diagnostics and imaging
procedures, image processing in the context of physical objects (mechanics, astronomy,
etc.), navigation, weather forecasts, and seismic predictions.
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Although the separation of guitar string signals was successful, it was not possible to
improve the separation quality by using extended versions of the physical model. Exper-
iments with extended models produced source estimates with very low amplitude or had
stability issues. Therefor, the research question could not be completely answered. It has
been shown that a differentiable physical string model can successfully be used for music
source separation. However, how to achieve better separation quality by extending the
physical model remains an open question.

Looking at the results from the conducted experiments, it poses the question why exper-
iment series B and C did not improve music source separation quality over experiment
series A, by extending the simple Karplus-Strong string model. There are multiple rea-
sons why this is the case.

Firstly the crude note onset detection with the simple algorithm which uses f0 and f0
confidence is not an ideal solution. Since the f0 data is analyzed frame-wise the time
resolution is limited and produced deviations from the true note onsets of the target source
signals. Having inaccurate onset timing and also wrong onsets leads to bad learning
behavior. This might be the reason why the optimization of the DNN leads to trained
models that produce very low amplitude synthesized source estimates.

Secondly the models in experiment series B and C have been trained for only two epochs
to assess the performance tendency of different implementations in short periods of time.
This was done due to timely constraints in the development of this work. Two epochs
is the minimal amount of training for such an assessment and models trained for more
epochs may perform better. Furthermore the amount of training data was also reduced to
a minimum following the work of [EHGR20] and [SFDRB22] which suggest very high
data efficiency of these systems.

Thirdly neurally predicted control signals have not been smoothed with the exception of
a in ExC2. Time variant dynamic systems with feedback such as the employed Karplus-
Strong physical string model are inherently prone to instability. Although the excitation
of the system with the intended excitation signal may not reach the stability limit, insta-
bility may occur due to control signal changes. These instability inducing control signal
changes can be caused by the form of the neural prediction or even due to the frame-wise
predictions.

Fourthly the employed pitch tracking with the CREPE pitch tracker [KSLB18] may not
have sufficient quality for this system. By using inaccurate f0 data for synthesis, there is
no way the DNN may improve MSS quality since the loss function penalizes detuning.
Furthermore the onset detection was based on this f0 data.

Fifthly the DNN architecture adopted from [SFDRB22] may not be able to control the
extended physical string models. Although the DNN was able to achieve good results in
[SFDRB22] it may not be ideal for this work. A fundamental difference of the systems
is that in this work source models with a larger memory, representing the internal state,
are used. The delay line in the Karplus-Strong model uses more memory then the 20th
order IIR filter in [SFDRB22]. Therefor, in this work neurally predicted control signal
changes cause effects that reach longer into the future than in [SFDRB22]. This poses
higher requirements on the RNNs (GRUs) employed in the NN architecture.
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There are multiple ways for future research based on this work. Note onset detection may
be improved by employing better algorithms or jointly learning this task with a neural
network. Smoothing neurally predicted control signals may improve separation quality.
Since the source model does not pose any limitation on the neural network architecture,
different architectures can be employed and may achieve better results. It is also desirable
to achieve true unsupervised learning with the use of a polyphonic pitch tracker or jointly
learning pitch tracking together with the music source separation task.

Differentiable digital signal processing proved to be a fruitful concept for future research.
This work extended this concept with the use of physical modeling synthesis inside neural
networks with the application of guitar string separation.
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Chapter 8

Appendix

In the appendix predicted control signals from experiment series B and C are depicted.
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Figure 8.13 – ExC1 parameter b.
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Figure 8.14 – ExC2 parameter a.
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Figure 8.15 – ExC2 parameter r.
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Figure 8.16 – ExC2 parameter b.
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