
Lisa Kristina Kerle, BSc

SPEAKER INTERPOLATION BASED
DATA AUGMENTATION FOR

AUTOMATIC SPEECH RECOGNITION

master’s thesis
submitted to

Graz University of Technology

Supervisors

Doz. Mag.phil. Dipl.-Ing. Dr.techn. Michael Pucher
Ass.Prof. Mag.rer.nat. Dr. Barbara Schuppler

Signal Processing and Speech Communication Laboratory

Graz, September, 2022

Affidavit

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly indicated all material which has been
quoted either literally or by content from the sources used. The text document uploaded to
TUGRAZonline is identical to the present master’s thesis.

date (signature)

Acknowledgement

At this point I would like to thank all those who have supported me not only in writing my
Master’s thesis, but also throughout my studies.

First of all, I would like to thank my two supervisors Barbara Schuppler and Michael Pucher,
who have always been available to answer my questions and have made a significant contribu-
tion to the success of this thesis. Furthermore, I thank Julian Linke, who provided me with
his speech recognition recipe, and Lorenz Gutscher for his support in the area of speech synthesis.

I also have to thank the SPSC for the use of the DSP-Lab and Markus Köberl, who helped me
a lot with his knowledge of computer technology.

To my fellow students and friends I also want to say thank you, for making my time as a student
an unforgettable part of my life, not only by learning together, but also by doing things away
from university.

Last but not least, I would like to thank my parents, who have always supported my decisions and
helped me in all situations and thus made it possible for me to complete my studies. Likewise,
my two sisters were a great support to me during my studies, for which I am very grateful.

Danksagung

An dieser Stelle möchte ich mich bei all jenen bedanken, die mich nicht nur beim Anfertigen
meiner Masterarbeit, sondern auch während meiner gesamten Studienzeit unterstützt haben.

Zunächst möchte ich mich bei meiner Betreuerin Barbara Schuppler und meinem Betreuer
Michael Pucher bedanken, welche mir bei Fragen stets zur Verfügung gestanden sind und einen
wesentlichen Teil zum Gelingen dieser Arbeit beigetragen haben. Des Weiteren gilt auch Julian
Linke ein großer Dank, der mir sein Rezept für das Spracherkennungssystems bereitgestellt hat
sowie auch Lorenz Gutscher für seine Unterstützung im Bereich der Sprachsynthese.

Für die Benutzung des DSP-Labs am SPSC möchte ich mich ebenfalls bedanken. Markus Köberl,
der mir vor allem mit seinem computertechnischen Wissen zu Beginn meiner Arbeit sehr weit-
ergeholfen hat, danke ich ebenfalls.

Ein großer Dank gilt auch meinen StudienkollegInnen und FreundInnen, welche die Studienzeit
nicht nur durch das gemeinsame Lernen, sondern auch durch Unternehmungen abseits der Uni-
versität zu einem unvergesslichen Lebensabschnitt gemacht haben.

Nicht zuletzt danke ich meinen Eltern, die meine Entscheidungen stets mitgetragen haben, mich
in jeglichen Lebenslagen unterstützt und mir somit den Studienabschluss ermöglicht haben.
Ebenso waren meine beiden Schwestern während des Studiums eine große Stütze für mich,
wofür ich sehr dankbar bin.

– 5 –

Abstract (English)

The development of speech recognition systems in recent years has ensured their widespread use
in a broad range of areas. This success is mainly due to the integration of sophisticated algo-
rithms in automatic speech recognition (ASR) using deep neural networks (DNN), which have
a strong reliance on their training data. In order to further improve the performance of ASR
systems, this thesis investigates the augmentation of the training data set for ASR by means of
a DNN-based text-to-speech (TTS) synthesis system.
For this purpose, the following approach is used: Speaker-specific information in the form of
speaker embedding vectors is extracted from an existing corpus and the interpolation between
these vectors allows for the generation of new speaker characteristics by passing them to a
speech synthesis system. Speech synthesised with the resulting new voices is then used to train
a GMM/HMM-based ASR system. For the development of the ASR system, the GRASS corpus
has already been used, whose texts are to be synthesised with the newly generated voices in
order to acoustically augment the GRASS corpus. Subsequent experiments with the augmented
corpus investigate how adding utterances from the synthesised voices to the training set affects
the performance of the speech recognition system.
The experiments show, that adding a limited amount of synthesised voices leads to an improve-
ment of the speech recognition system, but with a predominance of synthesised voices in the
training set the performance deteriorates significantly.
Since this work deals exclusively with read speech, where recognition performances reached are
quite high already, it would be interesting to further conduct experiments with conversational
speech, where data sparsity is even more of an issue.

– 7 –

Abstract (German)

Die stetige Weiterentwicklung von Spracherkennungssystemen in den letzten Jahren hat für eine
breite Anwendung dieser in den verschiedensten Bereichen gesorgt. Dieser Erfolg ist vor allem auf
die Integration hochentwickelter Algorithmen in die automatische Spracherkennung (ASR) mit-
tels neuronaler Netzwerke (DNN) zurückzuführen, die stark auf ihre Trainingsdaten angewiesen
sind. Um die Performance der ASR-Systeme weiterhin zu verbessern, untersucht diese Arbeit
die Erweiterung der Trainingsdaten für ein ASR-System mit Hilfe eines DNN-basierten Text-to-
Speech (TTS) Synthesesystems.
Dafür wird folgender Ansatz gewählt: Aus einem bereits existierenden Corpus werden sprecher-
spezifische Informationen in Form von Vektoren extrahiert, deren Interpolation die Erzeugung
neuer Sprechercharakteristiken erlaubt, indem sie dem Sprachsynthesesystem zugeführt werden.
Die Sprache, welche mit den resultierenden Stimmen synthetisiert wurde, wird anschließend für
das Training eines GMM/HMM-basierten ASR-Systems verwendet. Für die Entwicklung des
ASR-Systems wird bereits der GRASS Corpus eingesetzt, dessen Texte mit den neu erzeugten
Stimmen synthetisiert werden sollen, um so den GRASS Corpus akustisch zu erweitern. Nachfol-
gende Experimente mit dem erweiterten Corpus untersuchen, inwiefern sich die Erweiterung des
Trainingsets mit synthetisierten Stimmen auf die Performance des Spracherkenners auswirkt.
Es kann gezeigt werden, dass das Hinzufügen einer begrenzten Anzahl an synthetisierten Stim-
men zu einer Verbesserung des Spracherkenners führt, bei Überwiegen der synthetisierten Stim-
men im Trainingsset verschlechtert sich die Performance jedoch erheblich.
Da sich diese Arbeit ausschließlich mit gelesener Sprache beschäftigt, bei welcher die automa-
tische Spracherkennung bereits recht zufriedenstellende Ergebnisse erzielt, wäre es durchaus
interessant, in weiterführenden Arbeiten Experimente mit spontaner Sprache durchzuführen,
bei welcher die mangelnde Verfügbarkeit an Daten ein noch größeres Problem darstellt.

– 9 –

Data Augmentation for ASR

Contents

Statutory Declaration 3

Acknowledgement 5

Danksagung 5

Abstract (English) 7

Abstract (German) 9

Contents 11

1 Introduction 13

2 Neural Network-based Speech Synthesis 17
2.1 Text-to-Speech (TTS) Synthesis . 17

2.1.1 History . 17
2.1.2 Conventional TTS Synthesis . 17
2.1.3 Development of TTS Synthesis . 17
2.1.4 Neural Network-based Speech Synthesis 18

2.2 Merlin - a Neural Network Speech Synthesis System 19
2.2.1 Model Components . 19
2.2.2 Dataset . 23
2.2.3 Speaker Adaptation . 24

3 Speaker Encoding and Interpolation 27
3.1 Speaker Encoding . 27

3.1.1 Conventional Approaches . 28
3.1.2 Neural Encoding . 29

3.2 Neural Speaker Embedding Extraction based on PyTorch and Kaldi 30
3.2.1 Pipeline Speaker Recognition System . 30
3.2.2 Evaluation Metrics . 34
3.2.3 Experiments . 36
3.2.4 Speaker Embedding . 46

3.3 Interpolation of Speaker Embeddings . 46

4 Speaker Embedding-based Speaker Adaptation and Data Augmentation 49
4.1 Speaker Embedding-based Speaker Adaptation 49

4.1.1 Results . 50
4.2 Data Augmentation . 51

4.2.1 GRASS Corpus . 51
4.2.2 GRASS Corpus Augmentation . 51
4.2.3 Evaluation . 53

5 Automatic Speech Recognition 59
5.1 Introduction to Automatic Speech Recognition (ASR) 59

5.1.1 Field of Application . 59
5.1.2 Challenges . 59
5.1.3 Development of ASR Systems . 60

– 11 –

CONTENTS

5.2 Building a Kaldi-based ASR System . 61
5.2.1 Data Preparation . 61
5.2.2 Feature Extraction . 63
5.2.3 Dictionary . 63
5.2.4 Language Model . 63
5.2.5 Acoustic Model . 65
5.2.6 Hidden Markov Models (HMM) . 65
5.2.7 Evaluation . 66

6 ASR Experiments 67
6.1 Experiment Settings . 67
6.2 Baseline Experiment . 68

6.2.1 Result . 68
6.3 Corpus Augmentation using Synthesised Speech 69

6.3.1 Amount of Synthesised Speech . 69
6.3.2 Selection of Utterances . 69
6.3.3 Results . 69
6.3.4 Optimisation of Data Augmentation . 72
6.3.5 Results . 72

6.4 Replacement using Synthesised Speech . 75
6.4.1 Results . 75

6.5 Using the Synthesised Corpus for Training . 78
6.5.1 Results . 78

6.6 Using the WASS Corpus for Training . 81
6.6.1 Corpus Mismatch . 82
6.6.2 Result . 82

7 Discussion 87
7.1 Lessons learnt from Speech Synthesis . 87
7.2 Lessons learnt from ASR Experiments . 89
7.3 Outlook . 91

8 Conclusion 93

A Appendix 95
A.1 Chapter 6 . 96

A.1.1 Section 6.3 . 96
A.1.2 Section 6.4 . 98
A.1.3 Section 6.5 . 104
A.1.4 Section 6.6 . 105

References 107

List of Figures 111

List of Tables 115

– 12 –

Data Augmentation for ASR

1
Introduction

In recent years, the performance of automatic speech recognition (ASR) has increased signif-
icantly. This improvement led to a broad use of ASR in everyday life, making ASR more in
demand than ever. However, ASR is a highly complex process, that still faces many challenges
and solving them requires knowledge from a wide range of fields. Therefore, continuous devel-
opment of ASR systems is essential in order to further improve their performance.
The state-of-the-art ASR systems are based on neural networks. An essential aspect of the suc-
cess of ASR systems is the training process for which thousands of hours of transcribed speech
data is required [1]. This transcription mainly relies on humans, which makes the collection of
training data for DNN-based ASR systems very time consuming and expensive. Additionally, for
robust speech recognition, lexical and acoustic diversity is necessary, requiring not only hours
of voice recordings with a variety of linguistic features but also a large number of individual
speakers to guarantee the acoustic diversity [2]. Therefore, the collection of training data with
a sufficient acoustic variety is costly and an essential issue of developing neural network-based
ASR systems.
Parallel to the development of ASR systems, speech synthesis systems have also improved their
performance in recent years. Especially the successful integration of neural networks in the
speech synthesis process allowed the generation of more natural-sounding, human-like speech.
State-of-the-art speech synthesis systems at an end-to-end level, e.g., Tacotron 2, generate speech
with high naturalness based on a sequence-to-sequence prediction network with attention mech-
anism [3]. However, more conventional speech synthesis systems using FFDNN for acoustic
modeling still produce intelligible speech at high quality, e.g, Merlin [4].

To combine the progresses made in both fields and to overcome the effort of collecting train-
ing data from numerous real speakers in terms of acoustic diversity for the ASR training, the
training corpus could be augmented with natural-sounding synthesised speech. The aim of this
thesis is to investigate whether the augmentation of an existing ASR training corpus with syn-
thesised voices, i.e., newly generated speakers, leads to an improvement in ASR performance.
This hypothesis is based on previous work from Rosenberg [2] and Fazel [1], which have already
experimented with the use of synthesised speech in training sets, showing promising results.
Rosenberg et al. (2019) [2] tested the hypothesis of improving the performance of speech recog-
nition systems by adding more transcribed training data generated by speech synthesis systems.
For speech synthesis, Tacotron 2 with a multi-speaker speech synthesis model with WaveRNN
vocoder was used, which produced speech from multiple speakers based on a fixed sized speaker
embedding. Besides the acoustic diversity in terms of speaker variability, they also investigated
the inclusion of unseen utterances produced by speech synthesis in the training data, i.e., to
increase the lexical diversity. In Rosenberg [2], speaker information is generated via three dif-
ferent d-vector approaches, based on which speech was synthesised for data augmentation in
terms of acoustic diversity. They found that sampling from observed speaker representations
provided the best results in terms of speaker diversity (gain of 4% WER). By using the sampling
approach to speaker conditioning, the performance of data augmentation was investigated. 960
hours of synthesised material were used in combination with different portions of real speech to
investigate the influence of the reduction of real speech on ASR performance. They showed that

– 13 –

1 Introduction

with less real speech data, data augmentation becomes more effective, although the performance
degrades when the amount of real speech is reduced in the training process.
Fazel et al. (2021) [1] proposed to use synthetic speech for ASR training in order to reduce the
reliance on human transcribed data by training ASR models on production like data synthe-
sised from text-to-speech (TTS) engines. In two experiments the acoustic as well as the lexical
diversity was increased to improve ASR performance. They increased the acoustic diversity by
synthesising input text with randomly selected voice profiles, which provides synthetic speech
with diverse speaker attributes. The system used by Fazel et al. [1] contained a multi-context
TTS engine to synthesise speech and a RNN-T model for speech recognition, which were trained
in a multi-style training using real speech recordings on TTS-based synthetic speech. In order to
generate synthetic speech with diverse speaker attributes, in [1] the speaker identities were con-
trolled with voice profile embeddings obtained from a speaker verification system. Additionally
they followed a variational auto-encoder (VAE) approach to increase the inter- and intra-speaker
variability and furthermore the speaker diversity. They showed that by using synthetic speech
with randomly selected voice profiles in addition to real speech data, the performance of speech
recognition is improved compared to speech recognition using real speech only. Similar to [2],
they showed that using synthetically generated speech in addition to real data, ASR performance
is improved. However there is still a decrease in performance when replacing parts of real speech
by synthetic speech.

For building an ASR system for read Austrian German, a Kaldi-based system was developed
using the GRASS corpus, which is also the corpus to be augmented in this work. The aim of
this thesis is to confirm the hypothesis that an augmentation of the GRASS corpus by means
of synthesised voices leads to an improvement in ASR performance. Therefore, only the read
speech part of the GRASS corpus will be used in this first step and conversational speech includ-
ing cross talk or interaction between speakers is not considered within the scope of this thesis.
Previous research [1, 2] has already shown that by including speaker-specific information in the
synthesis process, speech with diverse speaker attributes can be generated. The speech synthe-
sis in this work is performed by using Merlin, a neural network-based speech synthesis system,
which is described in more detail in Chapter 2 after a brief introduction to conventional text-to-
speech synthesis (TTS). Merlin uses an average voice model (AVM) approach, which contains
information from multiple speakers that allows a speaker adaptation by adding speaker-specific
information to the AVM.
Figure 1.1 illustrates the approach applied in this thesis: Based on a given dataset, speaker-
specific information is obtained by using a speaker recognition system (cf. Chapter 3). This
speaker-specific information is extracted from audio files in form of vectors, called speaker embed-
ding. In order to generate new voices, the obtained speaker embedding vectors are interpolated,
resulting in vectors containing new speaker characteristics. The interpolated speaker embedding
vectors are then used to augment the GRASS corpus (cf. Chapter 4). Therefore, the embedding
is given to the speech synthesis system in addition to the linguistic features extracted from the
GRASS corpus. The synthesised utterances based on the newly generated voices augment the
training set of the ASR system (cf. Chapters 5 and 6). A subsequent discussion analyses the
process of speaker interpolation-based data augmentation and interprets the results of the ASR
system. In addition, the outcome is compared to previous work and an outlook on further re-
search is given (cf. Chapter 7). The final conclusion summarises the relevant parts of this thesis
and points out the most essential findings (cf. Chapter 8).

– 14 –

E2E
speaker

recognition

audio files

WASS
corpus

speaker
embedding interpolation speech synthesis

system

linguistic
features

synthesised
corpus

train ASR
system

evaluation
ASR

speaker ID

interpolated
embedding

GRASS
corpus

Figure 1.1: Process of speaker interpolation-based data augmentation: Extraction of speaker embedding vec-
tors containing speaker-specific information from an end-to-end speaker recognition system based
on the audio files of the WASS corpus. The speaker embedding vectors are interpolated and used
as additional input to the linguistic features for the speech synthesis system, in order to generate
new voices for augmenting the GRASS corpus. The augmented corpus is used as training set
for the ASR system, whose performance is evaluated afterwards.

– 15 –

Data Augmentation for ASR

– 16 –

Data Augmentation for ASR

2
Neural Network-based Speech Synthesis

2.1 Text-to-Speech (TTS) Synthesis

2.1.1 History

The primary task of speech synthesis systems is to generate a corresponding speech signal from
a given text. As early as the second half of the 18th century, science was concerned with the
field of speech synthesis. One of the first speech synthesisers was Kempelen’s voice synthesiser.
The invention of the computer gave rise to the first computer-based speech synthesis systems
leading to the statistical parametric speech synthesis (SPSS) system. This system learnt acous-
tic parameters from linguistic features by using Hidden Markov Models (HMM) [5]. With the
increasing success of neural networks around 2010, the HMM-based acoustic model of the SPSS
was replaced by a neural network which still predicts acoustic features based on linguistic input.
Further improvements in terms of neural networks led to the state-of-the-art end-to-end (E2E)
speech synthesis systems, which predict acoustic features from phoneme sequences rather than
linguistic features [5].

2.1.2 Conventional TTS Synthesis

A conventional TTS system, e.g., a statistical parametric speech synthesis (SPSS) system, con-
sists of the components shown in Figure 2.1.

text
normalisation

grapheme-
to-phoneme
conversion

linguistic
features

acoustic
modeling

acoustic
features

waveform
generationtext waveform

Figure 2.1: Components of a conventional TTS synthesis system to convert a given text into a speech signal
including text normalisation, grapheme-to-phoneme conversion, acoustic modeling and waveform
generation [5].

The first step of conventional TTS systems is the text analysis, the so-called frontend, to produce
linguistic features out of a given text input. This step involves text normalisation, which converts
raw written text into spoken-form words and is mainly used for numbers or abbreviations.
Afterwards the obtained characters (graphemes) are converted into pronunciations (phonemes)
by using for example a look-up dictionary. An acoustic model follows which plays an essential
role in speech synthesis as it generates acoustic features from linguistic features or even from
phonemes or characters. The resulting acoustic features are then passed to a waveform generator
(i.e., a vocoder) to generate the desired speech waveform [5].

2.1.3 Development of TTS Synthesis

Due to the progress made in the field of speech synthesis, the individual components of the
TTS synthesis system have changed over time and as a result different realisations of TTS

– 17 –

2 Neural Network-based Speech Synthesis

synthesis systems exist. Especially the acoustic model has been strongly influenced by improved
approaches. Figure 2.2 shows the development of the contribution of different concepts to
the speech synthesis process. At the end of the 20th century there was an almost balanced
distribution of these concepts. In recent years, HMM have become increasingly popular until
neural network approaches came to dominate speech synthesis around 2019 [6].

1990 1994 1998 2001 2004 2007 2010 2013 2016 2019
0

20

40

60

80

100

year

di
st

rib
ut

io
n

of
co

nc
ep

ts
in

%

Articulatory Synthesis
Formant Synthesis

Di-/Triphone Synthesis
Unit Selection

Hidden Markov Models
Neural Networks

Figure 2.2: Distribution of speech synthesis concepts since 1990 [6].

In this work, the process of speech synthesis is done by means of Merlin [4], a neural network
speech synthesis system (cf. Section 2.2). Therefore, the process of speech synthesis based on
neural networks is described in more detail in Section 2.1.4.

2.1.4 Neural Network-based Speech Synthesis

As early as in the 1990s, neural networks were used to predict acoustic features from linguistic
features. The networks used nowadays differ mainly in their increased complexity in terms of
hidden layers and training algorithms due to more advanced computational resources [4]. This
progress in the field of neural networks led to the use of neural networks in SPSS for acoustic
modeling [5], in which they replaced HMMs to convert linguistic features obtained by text analy-
sis into acoustic features (e.g., fundamental frequency (F0), mel-generalised coefficients (MGC),
band aperiodicity (BAP)). Numerous models still follow this TTS approach (cf. Figure 2.2),
where not only the acoustic model is replaced by neural networks but also other components,
e.g., neural network-based vocoders.
As a next step, end-to-end models were designed (e.g., Tacotron 1/2 [7]) which directly take
characters or phonemes as input, instead of labels. Further development led to fully end-to-end
TTS systems in order to generate waveforms directly from text. The usage of these systems re-
duces the reliance on human contributions and thus the number of possible error sources. Apart
from that the integration of neural networks in speech synthesis yields a higher voice quality in
terms of the naturalness and intelligibility of the synthesised speech, which explains their wide
use in state-of-the-art TTS systems [5].

– 18 –

2.2 Merlin - a Neural Network Speech Synthesis System

2.2 Merlin - a Neural Network Speech Synthesis System
Merlin, an open source neural network toolkit for speech synthesis, provides DNN model build-
ing for statistical parametric speech synthesis (SPSS) [4]. For speech synthesis, a feed-forward
deep neural network (FFDNN) is trained based on linguistic input and acoustic output features.
In contrast to already mentioned end-to-end systems (cf. Section 2.1.4), which allow speech syn-
thesis from raw text input, Merlin requires an external frontend, e.g., Festival, to convert text
into HTS-style labels prior to the speech synthesis process (cf. Section 2.2.2). Merlin transforms
these HTS-style formatted labels into a linguistic feature vector, which is used as input for the
model during training. The acoustic features, which are extracted from the provided audio files,
are used as output to the model to be trained (cf. Figure 2.3, top).
The trained model that has learnt the relation between linguistic and acoustic features is em-
ployed during speech synthesis to predict the corresponding acoustic features based on the given
input labels, which are then passed to a vocoder to produce the desired speech waveform [4] (cf.
Figure 2.3, bottom).

Training

linguistic
features

trained
FFDNN

acoustic
features vocoder synthesised

waveform

Synthesis

linguistic
features FFDNN acoustic

features vocoder audio files

Figure 2.3: Model training and speech synthesis based on Merlin: During training the model learns the
relation between linguistic and acoustic features (top). The linguistic feature vectors are used
as input for the trained model (duration model and acoustic model) to predict acoustic output
features which are passed to a vocoder to generate the speech waveform (bottom).

2.2.1 Model Components
Linguistic Input Features

As the linguistic information must be in the form of labelled text in order to be processed, Merlin
applies an external frontend which produces labels in HTS-style format [8] from a given text.
Labels can be either phone aligned or state aligned, where each phone in state alignment consists
of multiple states. The provided labels are phone aligned and already HTS-style formatted.
These formatted labels were first transformed into feature vectors by using a question file which
outputs a feature vector containing linguistic contextual and positional information. The HTS-
style question file is language dependent and contains questions about the current phoneme to
finally represent this information in compact form. Before using these feature vectors as input
for the neural network, a min-max normalisation was carried out to normalise features to the
interval [0.01 0.99] (cf. Figure 2.4) [4].

vectorisation

question file

feature
vectors normalisation FFDNNlabels

Figure 2.4: Pre-processing of linguistic features: vectorised and normalised HTS-style formatted labels used
as input feature vectors for the FFDNN (duration model and acoustic model).

– 19 –

2 Neural Network-based Speech Synthesis

Acoustic Output Features

While linguistic features are used as input for the neural network, acoustic features represent
the output of the neural network during the training process. The required acoustic features
were extracted from the provided audio files by means of a vocoder. By applying mean-variance
normalisation, the acoustic output features were normalised to zero mean and unit variance (cf.
Figure 2.5). The acoustic output features consist of Mel-Cepstral Coefficients (MCCs), band
aperiodicities (BAPs) and fundamental frequency on log scale (log F0) with their deltas and
delta-deltas. Additionally a voiced/unvoiced (V/UV) binary feature is included in the acoustic
output features.

FFDNN

Training

acoustic
features normalisation vocoder audio

files

trained
FFDNN

Synthesis

acoustic
features normalisation vocoder synthesied

waveform

Figure 2.5: Normalisation of acoustic features: extraction of acoustic features by using a vocoder, which are
normalised (mean-variance normalisation) and given as output features to the FFDNN during
training (top). At the synthesis step the trained FFDNN predicts acoustic features which are
normalised and given to a vocoder in order to generate the corresponding waveform (bottom).

Vocoder

Merlin mainly supports two vocoders: STRAIGHT and WORLD [4]. In this work, the WORLD
vocoder was used. First, the WORLD vocoder acted as speech analyser, which extracted acoustic
features from the provided audio files given as output features to the neural network during
training (cf. Figure 2.5, top). The following acoustic features were extracted from the provided
audio files by using the WORLD vocoder [4]:

• bap: 5-dimensional band aperiodicities; power ratio between speech signal and the aperi-
odic component of the signal

• lf0: fundamental frequency on log scale at 5 ms frame intervals

• mgc: 60-dimensional MCCs (Mel-Cepstral Coefficients)

Second, the vocoder reconstructed the desired speech waveform from the predicted acoustic
output features at the synthesis step (cf. Figure 2.5, bottom).

Training Process

In this work, FFDNN were used for modeling the parameters of the speech synthesis system [4].
Training the speech synthesis system means learning the relationship between input and output
features, i.e., learning how to map linguistic feature vectors onto acoustic vocoder parameters.
The employed FFDNN learns to predict the acoustic output frame by frame using several hidden
layers to perform nonlinear activation functions [4]:

– 20 –

2.2 Merlin - a Neural Network Speech Synthesis System

ht = H(Wxhxt + bh),

yt = Whyht + by,

where H(·) describes the nonlinear activation function in a hidden layer, Wxh and Why are the
weight matrices, bh and by are bias vectors and Whyht is a linear regression to predict target
features from the activations in the preceding hidden layer. An example of a feed forward neural
network is shown in Figure 2.6, in which a neural network with 4 hidden layers predicts vocoder
parameters based on linguistic input vectors.

yt

vocoder parameters

xt

linguistic features

h4

h3

h2

h1

Figure 2.6: A feed forward deep neural network with four hidden layers to predict vocoder parameters from
given linguistic input features [4].

For the training process, a pair <label, audio file> was given to the toolkit in order to provide
the required linguistic input features and acoustic output features. Merlin consists of two main
parts, namely the duration model and the acoustic model, which are both FFDNN-based and
trained separately [4]. Therefore, training the speech synthesis systems means to train the du-
ration model as well as the acoustic model [9].
The duration model was trained on the aligned data, i.e., the labels, which contain alignments
for the phones from the dataset, in order to predict phone-level duration. Additionally, the
acoustic model learnt the relation between acoustic features and the given labels (cf. Figure
2.7).

labels DM

phone
alignment

labels AM acoustic
features

Figure 2.7: Separate training of duration model (DM) and acoustic model (AM): the DM takes phone align-
ments as input in order to learn how to predict phone-level duration (left), likewise the AM
receives the label files as input as well as the acoustic output features to learn their relationship
(right).

– 21 –

2 Neural Network-based Speech Synthesis

To train the duration model and the acoustic model the settings were stored in the corresponding
configuration files. First the ratio between training, validation and test set was determined. The
training set consisted of 80% of the label files, and validation and test set each contained 10% of
the label files. The network to be trained was a 6-layer FFDNN using hyperbolic tangent units
(TANH), where each layer had a size of 1024. Table 2.1 shows the settings for the duration
and acoustic model and the output dimensions of both models are shown in Table 2.2. For the
vocoder, the waveform specifications were defined as shown in Table 2.3.

Table 2.1: Settings regarding the network architecture as stored in the configuration file for the duration
model and the acoustic model.

parameter duration model acoustic model

dropout rate 0.0
batch size 64 256
decay exponential
learning rate 0.002
optimiser stochastic gradient descent
warm-up epochs 10
training epochs 25

Table 2.2: Settings regarding the dimension of the output features as stored in the configuration file for the
duration model and the acoustic model.

parameter duration model acoustic model

dur 1 -
mgc/dmgc - 60/180
bap/dbap - 5/15
lf0/dlf0 - 1/3

Table 2.3: Settings regarding the waveform as stored in the configuration file for the duration model and the
acoustic model.

parameter duration model acoustic model

sampling rate - 48000kHz
frame length - 2048
frequency warping (α) - 0.77
minimum phase order - 1023

Synthesis

For speech synthesis, duration was predicted first by giving HTS-style formatted labels as input
to the previously trained duration model. The predicted duration was used as an input to

– 22 –

2.2 Merlin - a Neural Network Speech Synthesis System

the acoustic model [9] in addition to the linguistic input features, i.e., the labels. The trained
acoustic model then generated acoustic features based on the linguistic features and the duration,
which were then passed to the vocoder to synthesise the desired speech waveform (cf. Figure
2.3, bottom and Figure 2.8). In summary, Merlin only needs HTS-style formatted labels to first
predict the duration and furthermore the acoustic features for generating the corresponding
speech waveform using the previously trained duration and acoustic model.

duration model duration acoustic model acoustic
features vocoder speech

waveformlabels

Figure 2.8: The trained duration model takes labels as input to predict duration, which is further used as
input to the trained acoustic model in addition to the labels in order to produce the corresponding
acoustic features required for the speech waveform generation by means of a vocoder.

2.2.2 Dataset

WASS Corpus

The given dataset, in this work called WASS corpus (Wiener Corpus of Austrian Varieties
for Speech Synthesis), has already been collected in the projects VSDS (Viennese Sociolect
and Dialect Synthesis), AVDS (Adaptive Audio-Visual Dialect Synthesis) and SALB (Speech
synthesis of auditory lecture books for blind children) [10, 11, 12] and consists of 19 different
speakers of which 13 are male and 6 are female. It contains, for example, sentences from the
Berlin-Marburg corpus and the Kiel corpus, resulting in a total of 8293 utterances, of which about
4540 contain a different word sequence (cf. Table 2.4). A professional speaker was recorded,
who constitutes a large part of the dataset (about half of the utterances). The standard for all
speakers was "standard Austrian German" and speakers were recorded individually reading the
utterances, so there is no interaction between speakers.

Labels and Audio Files

For each utterance there was an audio file (.wav) available with matching label files containing
linguistic information (.lab) in HTS-style format using phone alignment [8] (cf. Infobox 2.1).
Audio files were provided to get the acoustic features of the utterance whereas label files give
the temporal boundaries of quinphones (in 10−7s), i.e., a context with a centerphone and 2
phones to the left and 2 phones to the right was taken into account. Additionally the linguistic
context and the positional information were considered when using HTS-formatted labels as well
as prosodic information in terms of stressed syllables.

a

5620000 6060000 GSˆI-s+t=S@3_2/A:0_-1_2/B:1-0-4@1-1&3-7#1-3$1-3!2-1;2-3|0/C:1+0+2/D:content_2/

E:content+1@2+3&2+2#1+1/F:content_2/G:0_0/H:9=4@1=1|L-L%/I:0=0/J:9+4-1

6060000 6400000 Iˆs-t+S=P2h@4_1/A:0_-1_2/B:1-0-4@1-1&3-7#1-3$1-3!2-1;2-3|0/C:1+0+2/D:content_2/

E:content+1@2+3&2+2#1+1/F:content_2/G:0_0/H:9=4@1=1|L-L%/I:0=0/J:9+4-1

a

Infobox 2.1: Provided labels in HTS-style format for two quinphones which are part of an utterance in the
provided dataset. The first two columns describe the temporal boundaries to the corresponding
quinphone and the third column contains linguistic information.

– 23 –

2 Neural Network-based Speech Synthesis

Table 2.4: Proportion of the 8293 utterances per speaker in the WASS corpus and additional information.

speaker ID number of gender description
different utterances

bje-at 89 male little data available
bsc-at 223 female
csc-at 223 male
dsc-at 223 male

esc-at 320 male
fwa-at 89 male little data available
gun-at 223 female
hoi-at 223 male

hpo-at 221 male
ioka-at 223 male strong accent
jage-at 223 female
kep-at 297 male

lsc-at 223 male
mpu-at 223 male
nke-at 223 female
psc-at 223 female

spo-at 4378 male professional speaker
tfe-at 223 female
wke-at 223 male

2.2.3 Speaker Adaptation

Average Voice Model (AVM)

Training speaker-dependent neural networks requires a large amount of data from individual
speakers. To overcome this problem, first a multi-speaker model was generated (average voice
model, AVM), trained by the data from all available speakers in the database (cf. Section
2.2.2). Based on the generated AVM, speaker-dependent models were adapted by sharing all
layers from the average voice model. The use of an AVM as intermediate step made it possible to
train speaker-specific neural networks even with a small amount of speaker data and to generate
speaker-specific models from the average voice model [13].
The Centre for Speech Technology Research (CSTR) in Edinburgh provides a script for speaker
adaptation based on Merlin [14]. In order to build an AVM, the steps 01 to 07 from [14] were
carried out. They include the preparation of the label files, the extraction of acoustic features,
the training of the duration and acoustic model as well as the speech synthesis. The settings
shown in Tables 2.1 - 2.3 have been defined in the configuration file for the duration model and
the acoustic model.
For training the AVM, different combinations of speakers from the given dataset (cf. Section
2.2.2) were tested. Firstly an AVM was trained by using all available speakers in the dataset.

– 24 –

2.2 Merlin - a Neural Network Speech Synthesis System

Additionally, male and female voices were considered separately by generating a male AVM and
a female AVM from which male and female speakers were adapted.

Stand-alone Model

For comparison reasons, stand-alone models were created for all speakers in the dataset. There-
fore steps 01 to 07 from [14] were executed similar to the AVM, but compared to the AVM,
which uses information from all speakers, the stand-alone models were generated by using only
the corresponding speaker.

Speaker Adaptation

Based on the trained AVM, individual speakers were adapted according to steps 08 to 13 from
[14]. These steps are similar to steps 01 to 07 from the AVM process but instead of training
the duration and acoustic models from the beginning, they use the parameters of the previously
trained AVM. As the neural networks for the individual speakers do not have to be trained from
scratch, this method is very efficient.
To train the neural network for the individual speaker, the speaker-specific linguistic input and
acoustic output features were given to the neural network. Additionally, the parameters from
the previously trained AVM were passed to the neural network during training. This allowed
generating a speaker-dependent neural network even with a small number of speaker-specific
data. By passing the acoustic output features of the speaker-dependent model to the vocoder,
a "new speaker" was generated (cf. Figure 2.9).

training FFDNN

Training

AVM

adaptation FFDNN

Adaptation

speaker-specific
model

parameter generation
from FFDNN

Synthesis

synthesised speech

labels

labels

speech signal

labels

speech signal

multi-speaker
speech database

target speaker
speech database

Figure 2.9: Speaker adaptation based on Merlin including the training of the AVM by using multi-speaker
information, the adaptation of the speaker-specific model and the subsequent speech synthesis.

– 25 –

2 Neural Network-based Speech Synthesis

Results

According to the speaker adaptation description in [14], the first steps include building an av-
erage voice model (AVM) over multiple speakers. Therefore, all speakers from the database (cf.
Section 2.2.2) were used to generate an AVM.
Before individual speakers have been adapted from this AVM, stand-alone models were built
in order to compare them to the adapted models. Building these stand-alone models showed
that the amount of training data for training the duration and acoustic model is essential for
the performance of the speech synthesis system. Especially for speakers with little training data
(only about 90 training utterances), the synthesised speech was really noisy and not intelligible,
whereas performance increased for speakers with more training data. This suggested the use of
an AVM instead of stand-alone models.

Afterwards speakers were adapted from the AVM. The adaptation led to more individuality in
speech in contrast to the monotonous average voice.
When comparing the synthesised speech based on speaker adaptation to the speech generated
from stand-alone models, synthesis performance increased mainly for speakers with less training
data. Speakers with an adequate number of training data did not improve by using speaker
adaptation.

In addition, the process of building an AVM was repeated to create separate AVM for male and
female speakers. The comparison of the different AVMs demonstrated that the AVM based on
female speakers has a higher pitch than the mixed AVM and, conversely, the AVM based on male
speakers has a significantly lower pitch than the mixed AVM. As the database contains only a
low number of female speakers, the quality of the AVM based on female speakers was lower than
that based on male speakers. Since the subsequent adaptation indicated that splitting male and
female speakers does not lead to an improvement in overall quality, the mixed AVM was chosen
as basis for further work.

The analysis of the adapted voices from the mixed AVM showed that the quality of the syn-
thesised speech was not sufficient for two speakers, resulting in the exclusion of these speakers
(ioka-at and jage-at). Therefore, the AVM used in this work was trained by using only 17 out
of the provided 19 speakers.

– 26 –

Data Augmentation for ASR

3
Speaker Encoding and Interpolation

3.1 Speaker Encoding

In order to obtain a compact representation of speaker-specific information from a given dataset,
an appropriate extraction and encoding of speaker-specific features is required. Different ap-
proaches on the representation of speaker information have been developed in history, which have
mainly been employed in speaker recognition models. In speaker recognition systems, speaker-
specific information is extracted from a given waveform based on which the speaker recognition
process is performed. The term speaker recognition includes the process of speaker identifica-
tion, i.e., the classification of a speaker to a specific identity, as well as the speaker verification,
which determines whether a speech sample belongs to a specific speaker identity [15].
Conventional speaker recognition systems consist of four main parts [15]:

• local feature description to describe a variable-length input sequence as features, e.g.,
mel-frequency cepstral coefficients (MFCCs),

• a dictionary, which contains several temporal orderless center components to learn and
describe statistics,

• vector encoding to aggregate the variable-length input feature sequence into an utterance-
level vector representation based on the dictionary,

• decision generator for speaker recognition.

This conventional pipeline in speaker recognition systems works well also for a limited amount
of data. As the number of labelled data and the computational capability has increased in
recent years, speaker recognition systems are moving towards an end-to-end learning approach,
which employs a general encoding layer in order to encode variable-length input sequence to
an utterance-level representation [15] (cf. Section 3.1.2). This end-to-end approach allows the
direct modeling from utterances and often reduces the model complexity and the number of
required concepts [16].
For both approaches, the representation of speaker-specific information in a compact form is
essential in the process of speaker recognition. The encoding of speaker information reduces
high-dimensional data into a low dimensional feature vector, which should be ideally independent
of the utterance length. Despite the reduction of the dimension, most of the information is
preserved by using an appropriate encoding method [15].
The timeline in Figure 3.1 gives an overview of the development from conventional speaker
encoding approaches based on Gaussian Mixture Models (GMM) leading to the state-of-the-art
neural encoding (x-vectors) [17].

– 27 –

3 Speaker Encoding and Interpolation

GMM GMM-

UBM GMM-based

i-vect
ors NN-based

x-vect
ors

1990 2000 2010 2018

Figure 3.1: Timeline of automatic speaker recognition: Conventional speaker recognition is based on GMMs
and their adaptations (e.g., GMM-UBM, i-vector approach). More state-of-the-art encoding
techniques employ neural networks for robust speaker recognition using x-vectors [17].

3.1.1 Conventional Approaches

Gaussian Mixture Models (GMM)

The conventional approach of speaker encoding in speaker recognition systems is based on
GMMs. A GMM p(x|λ) consists of a finite sum of Gaussians N (x|µi,Σi) with mean µi and
covariance matrix Σi, weighted by the model weights αi [18]:

p(x|λ) =
N∑

i=1
αiN (x|µi,Σi). (3.1)

In Equation 3.1 the summed and weighted components reflect vocal tract configurations and
therefore, GMMs are useful to model speaker-specific speech by choosing appropriate model pa-
rameters λ = {αi, µi,Σi}. During model training, the model parameters λ have to be estimated
using the so-called maximum likelihood estimation. Given a distribution of feature vectors, i.e.,
mel-frequency cepstral coefficients (MFCCs), the model parameters have to be learned in order
to maximise the likelihood of the GMM [18].

An adapted version of the GMM is used in speaker recognition systems, called Universal Back-
ground Model (UBM). An UBM is a large GMM which is trained on a huge amount of speech
data from several speakers to represent a speaker-independent model, consisting of mixture
weights and a normal distribution with mean and covariance of the Gaussians [18].

GMM Supervector

By using the maximum a posteriori (MAP) adaptation, the means of the UBM are updated
according to a given speaker utterance. The updated mean values yield the so-called GMM
supervector, which represents speaker characteristics in a compact form [19]. The speaker-
independent UBM and the resulting speaker-specific GMM with adapted means are then com-
pared by calculating the log-likelihood ratio between the two models, which is furthermore used
for the speaker verification process [18].

GMM i-vector

Representing speaker information in form of an i-vector is the most recent approach based on
an universal background model (UBM) and is derived from the GMM supervector approach. A
speaker-independent supervector m derived from an UBM is used to form a speaker-specific su-
pervector M including a total variability matrix T (combining speaker and channel variabilities)
and a random vector w containing normal distributed total-variability factors, called i-vector
(identity vector) [18]:

M = m + Tw. (3.2)

– 28 –

3.1 Speaker Encoding

After normalisation and whitening of the resulting i-vector, the score between model and test
i-vectors is calculated and a classifier, e.g., probabilistic linear discriminant analysis (PLDA), is
employed for speaker verification [18].

3.1.2 Neural Encoding
A further development in speaker encoding is the extraction of speaker information from an
end-to-end neural network-based speaker recognition system (cf. Figure 3.2) [15].

encoding
network

pooling layer classificationacoustic
features speaker ID

Figure 3.2: Almost end-to-end neural network speaker recognition system consisting of an encoding network,
a statistical pooling layer and a classifier to identify a speaker based on a given speech segment
[20].

This end-to-end system takes a variable length input sequence, e.g., MFCCs, as input and an
encoding network acts as frame-level feature extractor (TDNN - time delay neural network). A
subsequent layer, the encoding layer or pooling layer, aggregates this frame-level features over
the entire sequence to get an utterance-level result which is passed to the output layer for decision
making (classification). Between the pooling layer and the classification step, the encoded fixed-
dimensional utterance-level representation is extracted, also called speaker embedding, which
describes speaker characteristics in a compact form (cf. Figure 3.3). Therefore, the choice of an
appropriate encoding layer for the representation of speaker information is essential [20].

speaker IDs

pooling layer

. . .

. . .

. . .

. . .

{x1, x2, ..., xT }acoustic feature

utterance-
level feature
extractor utterance-

level feature
y

frame-level feature h

frame-level
feature
extractor

..
.

..
.

Figure 3.3: DNN for extracting an utterance-level speaker representation (speaker embedding) between the
statistical pooling layer and the classifier [21].

One possible encoding layer is the temporal average pooling layer (TAP), which averages the
sequence of extracted frame-level features over time. As not all frames contribute equally to the
utterance-level representation in terms of speaker information, the self-attentive pooling layer
(SAP) is considered. This layer pays attention to more important frames and neglects frames
which do not contribute much (e.g., non-speech frames) by applying a self-attention mechanism
to learn weights for mean and standard deviation vectors over each frame [15].
In order to take a more detailed look at the statistics, the learnable dictionary encoding (LDE)
layer was introduced. Compared to the TAP and SAP layer, which compute mean and standard
deviation of the frame-level representations in form of a single vector, the LDE layer clusters

– 29 –

3 Speaker Encoding and Interpolation

frame-level representations by using soft clustering and determines mean and standard deviation
for each cluster [20]. As the LDE layer was used as encoding layer in this work, the following
section discusses it in more detail.

Learnable Dictionary Encoding (LDE)

The learnable dictionary encoder combines the two steps, dictionary learning and vector en-
coding, from the conventional approach in one single layer [15]. The encoding layer obtains a
variable length feature sequence x1, x2, ..., xL extracted from a temporal input data sequence. In
the LDE layer the dictionary component centers µ1, µ2, ..., µc are trained by stochastic gradient
descent and each frame of features is then assigned to each dictionary component center by using
learnable weights wtc. The difference xt − µc (residual) and the corresponding assigned weights
wtc are aggregated for each component center µc to result in a fixed-dimensional encoded vector
e1, e2, ..., ec, which can be further used for speaker recognition [15] (cf. Figure 3.4).

encoded
vector

aggregate

residuals assign weights

dictionary
components

variable-
length input

E = {e1, ..., eC}

rtc = xt − µc wtc

µ = {µ1, ..., µC} {x1, x2, ..., xL}

Figure 3.4: LDE pooling layer: The variable-length input x = {x1, x2, ..., xL} is related to the learnable
dictionary components µ = {µ1, ..., µC} by the residual rtc = xt − uc and the assigned weight
wtc. The encoding layer applies an aggregation operation in order to obtain the desired fixed-
dimensional encoder output E = {e1, ..., eC} [15].

3.2 Neural Speaker Embedding Extraction based on PyTorch and
Kaldi

Based on the LDE (cf. Section 3.1.2) used in state-of-the-art neural speaker recognition systems,
the utterance-level speaker embedding vectors were extracted from the audio files in the provided
dataset. Therefore, a 12-stage speaker recognition pipeline was used, including feature extrac-
tion, neural network training, network decoding and a post processing step ([22], [20]). Figure
3.5 shows a simplified representation of the pipeline which is used for speaker identification as
well as for speaker verification.

3.2.1 Pipeline Speaker Recognition System
Data Preparation

The audio files from the 19 speakers provided in the dataset (cf. Section 2.2.2) were first
divided into portions of training and test sets (90% training data and 10% test data), with the

– 30 –

3.2 Neural Speaker Embedding Extraction based on PyTorch and Kaldi

neural speaker recognition system

acoustic pre-
processing

training data

CV data

learnable
dictionary
encoding

acoustic pre-
processing

audio files
(train + test)

classification
(A-softmax)

speaker
embedding

similarity
metric

audio files
(train) speaker ID

similarity

Figure 3.5: Utterance-level speaker embedding extraction from an end-to-end neural network speaker recogni-
tion system. The resulting speaker embedding is used for speaker verification (i.e., the similarity
between a speech sample and a speaker ID) and the calculated speaker ID for speaker identifica-
tion.

training data further subdivided into training set and cross-validation set (CV). For the speaker
recognition task, not only the audio files were needed but also additional files, that contain the
path to the corresponding audio files (cf. Infobox 3.1) or the speaker ID of a particular utterance
(cf. Infobox 3.2). The files had to be created in advance, whereby the format of the required
files is described on the Kaldi website [23].

utterance ID audio file

bsc-berlin-035 data_base/test/bsc_berlin_035.wav

bsc-berlin-038 data_base/test/bsc_berlin_038.wav

a

Infobox 3.1: File wav.scp contains the utterance ID and the path to the corresponding audio file.

utterance ID speaker ID

bsc-berlin-035 bsc

bsc-berlin-038 bsc

a

Infobox 3.2: File utt2spk contains the utterance ID and the corresponding speaker ID.

The provided script also offers the possibility of data augmentation for training. For this purpose,
the MUSAN corpus (consisting of music, speech and noise) is used to augment the original
corpus. However, this method of data augmentation was not used in this work, because the
provided dataset already achieved sufficient results.

Acoustic Pre-Processing

In advance of the training process, an acoustic pre-processing step was carried out (cf. Figure
3.6).

filter bank
+ MFCC-
based VAD

CMVN
+ silence
removing

filter by
length

division into
train/cv set

audio files
(train)

training set

cv set

Figure 3.6: Acoustic pre-processing prior to training the speaker recognition system.

– 31 –

3 Speaker Encoding and Interpolation

First, a filter bank analysis was performed, in which the speech signal was divided into filter
bands and the mel frequency cepstral coefficients (MFCCs) were calculated for each filter band.
The MFCCs obtained were used for energy-based speech activity detection.
For the training process, so-called x-vector features were created. The raw feature vectors were
normalised by using cepstral-mean-variance-normalisation (CMVN) and additionally non-speech
frames were removed.
Afterwards utterances were filtered by frame length, i.e., utterances with a frame length below
a certain limit value were excluded from the training process. In order to get an appropriate
limitation of the frame length, different values were tested (cf. Table 3.1 and Section 3.2.3).

Table 3.1: Settings for the acoustic pre-processing regarding the minimum frame length of the utterances
used for the training process.

parameters values description

minimum frame length 200/300/500/800 utterances with less frames are ex-
cluded from training process

number of speakers 16/17/18/19 speakers used for training (depend-
ing on minimal frame length)

The remaining utterances were then divided into training (90%) and cross-validation (CV) (10%)
sets. In order to avoid dominance of individual speakers during training, it was evaluated how
many utterances belong to each speaker. For speakers with a small number of utterances, the
utterances were repeated more often in the training process compared to speakers with a large
number of utterances, resulting in a balanced training process.

Neural Network Training

During the pooling process in the LDE layer, a variable-length input sequence was transformed
into a fixed-dimensional representation according to the predefined number of dictionary com-
ponents. Afterwards a linear transformation was carried out that takes the fixed-dimensional
output of the LDE layer as input and outputs a vector with the dimension of the hidden layer.
In this stage, the encoding network is responsible for frame-level feature extraction. The subse-
quent learnable dictionary encoder acts as pooling layer which represents the frame-level features
in form of an utterance-level vector, the so-called utterance-level speaker embedding vector.
Based on the calculated utterance embedding vectors, a softmax function is used as classifier
which outputs the estimated speaker ID (cf. Figure 3.5).
For the training process, several settings had to be adjusted which have a significant influence
on the speaker recognition results. The minimum frame length required for the training utter-
ances was specified to exclude utterances with a frame length that is too short from the training
process. Depending on the minimum required frame length, the length of utterance chunks used
for training was set by the chunk size, which is defined by choosing a minimum and maximum
chunk size. During training, for each batch a chunk size between a given minimum and maximum
chunk size was randomly selected. A random start time was then generated for each utterance,
starting from which samples of the length of the previously randomly determined chunk size
were used for the training process.
The dimension of the input layer (input-dim) was defined as well as the dimension of the hidden
layers (hidden-dim) and the number of LDE dictionary components (C). For the dimension of the
input layer and the number of LDE dictionary components, the values were chosen according to
[20]. The dimension of the hidden layer was determined experimentally because the choice of the
hidden layer dimension is important as it defines the length of the extracted speaker embedding

– 32 –

3.2 Neural Speaker Embedding Extraction based on PyTorch and Kaldi

vector. Again, the values in [20] were taken as reference. The most significant parameters for
training the speaker verification system are shown in Table 3.2. For some parameters, the table
contains multiple possibilities, because the values were determined experimentally (cf. Section
3.2.3).

Table 3.2: Settings for the training process of the speaker recognition system.

parameters values description

chunk size interval xxxx
(in frames)

[150,200]/[150,300]/
[200,200]/[200,300]/
[200,500]/[300,300]/
[500,500]/[800,800]

size of chunks used during train-
ing (depending on minimum
frame length)

model ResNet34 convol. NN used for classification

input-dim 30 input layer size (dimension of x-
vector features)

hidden-dim 32/128/512 hidden layer size (speaker em-
bedding dimension)

C 32 number of dictionary clusters for
pooling layer (LDE)

pooling mean pooling method (mean or mean
and standard deviation) for pool-
ing layer (LDE)

network-type LDE learnable dictionary layer (pool-
ing layer method)

distance-type sqrt sqrt or norm

A-softmax true loss function

m 2 integer to control size of angular
A-softmax

Network Decoding

After training the network a decoding step followed to investigate the performance of the trained
speaker recognition system using the previously defined test set. For testing the speaker veri-
fication task, a trial file is required, which contains pairs of utterances from the test set to be
compared. If utterances of the same speaker are compared, the target is 1, otherwise 0. A
total of 528 utterance pairs were compared in the trial file, with target and non-target occurring
alternately (cf. Infobox 3.3).
For the decoding of the neural network, the same pre-processing as for training the neural net-
work was applied (cf. Figure 3.6). The pre-processed frames were afterwards used for the input
of the previously trained neural network (cf. Figure 3.5). For the neural network, the same set-
tings as before were used (cf. Table 3.2). After the pooling layer, the fixed-dimensional speaker
embedding vectors for train and test set were extracted.

– 33 –

3 Speaker Encoding and Interpolation

utterance ID 1 utterance ID 2 target/non-target

bsc-berlin-031 bsc-berlin-097 1

bsc-berlin-035 csc-marburg-015 0

a

Infobox 3.3: File trial contains the utterance IDs of the utterances that are compared in the speaker verifi-
cation task and the target/non-target information.

Post Processing

centering
x-vector LDA PLDA scoring evaluation

speaker
embedding

mean x-vector

Figure 3.7: Post processing of the calculated utterance-level speaker embedding vectors in order to obtain
pairwise scores based on which the speaker verification is carried out. A subsequent evaluation
shows the performance of the utterance embedding vectors.

The extracted speaker embedding vectors were first centered by computing the mean over all
embeddings and afterwards a linear discriminant analysis (LDA) was carried out to reduce the
dimensionality of the embeddings. A subsequent trained probabilistic linear discriminant anal-
ysis (PLDA) model was applied to calculate the pairwise score between utterances according to
the trial file (cf. Infobox 3.4). The calculated scores gave the log likelihood which was used for
decision same or different speaker depending on a defined threshold and further evaluated to
show the extracted embedding quality.

utterance ID 1 utterance ID 2 score

bsc-berlin-031 bsc-berlin-097 2.5431

bsc-berlin-035 csc-marburg-015 -3.1475

a

Infobox 3.4: File score contains the utterance IDs of the utterances that are compared in the speaker verifi-
cation task according to the trial file and the corresponding pairwise scores.

3.2.2 Evaluation Metrics
The speaker verification process (cf. Section 3.2.1) was carried out using different combina-
tions of parameters (cf. Table 3.2) in order to show their influence on the performance of the
speaker verification system. For performance evaluation, two important performance metrics
were considered: the equivalent error rate (EER) and the minimum detection cost function value
(minDCF). Additionally, performance was evaluated graphically by reducing the dimensionality
of the speaker embeddings using the t-distributed stochastic neighbour embedding (t-SNE) and
plotting the obtained low-dimensional embedding vectors in a 2-dimensional map.

Equal Error Rate (EER)

In the traditional approach of the evaluation of speaker recognition systems, a trial file was
predefined in which a value of 0 or 1 was assigned to each pair to be evaluated (non-target

– 34 –

3.2 Neural Speaker Embedding Extraction based on PyTorch and Kaldi

or target trial). According to the trial file, scores between the test set utterance combinations
(cf. Infobox 3.4) were calculated based on the previously trained speaker recognition system.
A threshold was defined for the scores to distinguish between non-target and target or in other
words between same and different speakers. For defining a threshold, it is essential to minimise
the number of possible errors, whereby a distinction can be made here between false positives
and false negatives. False positives, also called false alarms, classify a non-target trial as target
trial and false negatives, also known as misses, classify a target trial as a non-target trial. To
keep both errors as low as possible, a threshold value is chosen for which the probabilities for
false positives PF A and false negatives Pmiss are equal, as both change in opposite direction
when changing the threshold. The equal error rate (EER) in % is the value of PF A and Pmiss

at this threshold. The lower the EER the higher the accuracy of the speaker recognition system
[24].

Minimum Detection Cost Function (minDCF)

In the evaluation part of the pipeline, the minimum detection cost function (minDCF) is cal-
culated in addition to the EER, which is a common error metric used in speaker recognition.
Compared to equal error rate, which assigns equal weight to false negatives (Pmiss) and false
positives (PF A), the minDCF weights Pmiss and PF A differently, depending on the application.
As in some applications, e.g., achieving a low false positive rate is more important than achieving
a low false negative rate, the minDCF has become an essential metric in the evaluation process
[24]. Equation 3.3 describes the calculation of the detection cost function Cdet [24]:

Cdet(Pmiss, PF A) = CmissPmissPtar + CF APF A(1− Ptar). (3.3)

In this evaluation method, a weighting of the two normalised error rates Pmiss and PF A with
the prior probability of targets is proposed as well as weighting the costs of the two error types.
This results in application dependent parameters Cmiss, CF A and Ptar, which influence the
value of the detection cost function Cdet according to Equation 3.3. Cmiss and CF A describe
the estimated costs of the two error types (false negatives and false positives), whereas Ptar is
the prior probability that a target event occurs in the application. A low value for the minDCF
provides that both EER is low and the threshold has been set well [24].

t-Distributed Stochastic Neighbour Embedding (t-SNE)

The t-SNE is a nonlinear dimensionality reduction method which is widely used in visualising
high dimensional data in a low dimensional map (2- or 3-dimensional). Therefore, similar objects
are modeled by nearby points.
In this algorithm, high-dimensional distances (i.e., Euclidean distances) are transformed into
conditional probabilities to indicate similarities between two objects. This similarity between
data points is expressed by conditional probabilities, where neighbours are picked in proportion
to their probability density function [25]. In order to minimise a data representation that reduces
the mismatch between the similarities (probabilities) for two data points in the high- and low-
dimensional space, the Kullback-Leibler divergence has to be minimised by means of a gradient
descent method. Since the t-SNE is based on probabilities, it is not a deterministic method,
hence the result will vary to some extent even with the same dataset [25].

– 35 –

3 Speaker Encoding and Interpolation

3.2.3 Experiments
Based on the presented evaluation methods, the optimal combination of parameters were to be
determined in order to extract representative speaker embeddings. Especially three parameters
were tuned in this investigation:

• the minimum required frame length of training utterances,

• the chunk size interval of the training utterances,

• and the dimension of the extracted speaker embedding vectors.

For the minDCF evaluation, the parameters shown in Table 3.3 were used. As the cost of missed
detection Cmiss and false alarm CF A was equal, both were set to 1. The prior probability of the
target speaker in a trial Ptar was calculated according to the number of target speakers (same
speakers) divided by the number of all possible speaker pairs.

Table 3.3: Settings for the minDCF evaluation in terms of the estimated costs of misses and false alarms
(Cmiss and CF A) and the prior target probability Ptar.

parameter value description

Cmiss 1 cost of a missed detection
CF A 1 cost of a false alarm
Ptar 0.1 prior probability of the target speaker in a trial

Table 3.4 gives an overview of tested parameter combinations and their influence on the EER
and the minDCF. In the following sections, the experiments and results are discussed in more
detail.

Table 3.4: Influence of the minimum required frame length (and the resulting number of training utterances),
the chunk size interval of the training utterances and the speaker embedding dimension on the
speaker recognition process.

number of utterances chunk size embedding LDA EER in % minDCF
(min. frame length) interval dimension dimension

181 (800) [300, 300] 128 100 28.81 0.86
181 (800) [800, 800] 128 100 27.60 0.85

709 (500) [200, 200] 128 100 19.13 0.66
709 (500) [200, 200] 32 32 22.76 0.78
709 (500) [200, 200] 512 200 19.37 0.72
709 (500) [500, 500] 128 100 22.28 0.87
709 (500) [200, 500] 128 100 19.61 0.75
709 (500) [200, 500] 512 200 22.03 0.81

1776 (300) [200, 300] 128 100 12.59 0.49
1776 (300) [200, 300] 512 200 12.59 0.51
1776 (300) [150, 200] 128 100 12.83 0.47
1776 (300) [150, 300] 128 100 10.90 0.51

4768 (200) [150, 200] 128 100 6.05 0.27

– 36 –

3.2 Neural Speaker Embedding Extraction based on PyTorch and Kaldi

Minimum required Frame Length

The choice of an appropriate minimum required frame length for the training utterances is essen-
tial. On the one hand, previous work has shown that for successful speaker verification, longer
training chunks improve performance which supports the use of longer utterances for the train-
ing process [26]. On the other hand, a high minimum required frame length would exclude quite
a few utterances and even speakers from the training set, since the provided dataset consists of
many short utterances.
In the original pipeline [20] only utterances with a frame length of more than 800 were used
for training which corresponds to a length of 8s. Utterances with less than 8s were therefore
excluded from the training process. When considering the distribution of frame lengths of the
utterances in the dataset (cf. Figure 3.8), this limitation of 800 frames per utterance led to a
drastic reduction of training utterances, as the majority of utterances have a length of less than
400 frames.

0 200 400 600 800 1000 1200 1400
0

500

1000

1500

2000

2500

3000

3500

4000

utterance length in frames

nu
m

be
r

of
ut

te
ra

nc
es

Figure 3.8: Distribution of frame lengths of the train utterances from the WASS corpus.

By choosing a limit value of 800 frames, only 181 utterances out of 7468 total training utter-
ances were kept. When decreasing the minimum frame length per utterance to 500, about 700
utterances maintained for the training process. Furthermore a required frame length of only 300
frames increased the number of training utterances to 1776 and a frame length of 200 frames
resulted in a total of 4768 utterances for training (cf. Figure 3.9).

200 400 600 800
0

2000

4000

minimum required frame length

nu
m

be
r

of
tr

ai
ni

ng
ut

te
ra

nc
es

Figure 3.9: Number of training utterances depending on the minimum required frame length.

– 37 –

3 Speaker Encoding and Interpolation

Table 3.4 shows a clear trend: the smaller the minimum required frame length and thus the
higher the number of training utterances, the smaller the EER and the minDCF, indicating
that the speaker recognition performance increases. With similar intervals of chunk sizes and
embedding dimension, the result seemed to strongly depend on the number of utterances.
To investigate this assumption, a training dataset containing utterances with a frame size above
300 frames was randomly reduced from 1776 to 776 utterances. The result shown in Table
3.5 confirms the dependence of the speaker recognition performance on the number of training
utterances. The minDCF as well as the EER were reduced drastically by increasing the number
of training utterances.

Table 3.5: Influence of the reduction of the training utterances on the EER and the minDCF while keeping
the other parameters constant.

number of utterances chunk size embedding LDA EER in % minDCF
(min. frame length) interval dimension dimension

1776 (300) [150, 300] 128 100 10.90 0.51
776 (300) [150, 300] 128 100 19.13 0.75

Additionally, the graphical comparison shows the benefit of using more training data (cf. Figure
3.10), which results in clearer distinction between individual speakers.

– 38 –

3.2 Neural Speaker Embedding Extraction based on PyTorch and Kaldi

−100 −75 −50 −25 0 25 50 75
tsne-1

−60

−40

−20

0

20

40

60

80

ts
n

e-
2

spkID

bje

bsc

csc

dsc

esc

fwa

gun

hoi

hpo

ioka

jage

kep

lsc

mpu

nke

psc

spo

tfe

wke

(a) t-SNE for 19 speakers from the WASS corpus with the following parameters: minimum frame length: 300; chunk size
interval: [150, 300]; embedding dimension: 128; LDA dimension: 100.

−100 −75 −50 −25 0 25 50 75
tsne-1

−60

−40

−20

0

20

40

60

ts
n

e-
2

spkID

bje

bsc

csc

dsc

esc

fwa

gun

hoi

hpo

ioka

jage

kep

lsc

mpu

nke

psc

spo

tfe

wke

(b) t-SNE for 19 speakers from the WASS corpus with the following parameters: minimum frame length: 300; chunk size
interval: [150, 300]; embedding dimension: 128; LDA dimension: 100.

Figure 3.10: Influence of the number of training utterances on the speaker recognition performance: By
reducing the number of utterances with at least a length of 300 frames from 1776 training ut-
terances (top) to 776 training utterances (bottom), performance of the embedding-based speaker
separation degrades.

– 39 –

3 Speaker Encoding and Interpolation

Chunk Size

According to [26], the chunk size of the training samples has a strong influence on the speaker
recognition performance. Chen et al. [26] investigated the difference when using chunks of
length 2s to 4s and chunks of length 5s to 8s for the training of the speaker verification system.
They showed that by choosing longer chunks for training, performance of speaker recognition
is improved. Therefore, a similar value for the chunk size was initially chosen in this work.
However, the maximum chunk size depends on the minimum required frame length of the train-
ing utterances, because a maximum chunk size of 800 frames requires a minimum frame length
of 800 frames per utterance. As mentioned previously, this limit of 800 frames per utterance
excluded most of the data for the training process (cf. Figure 3.8) which may result in perfor-
mance degradation. This leads to a trade-off between the number of utterances and the chunk
size interval. Therefore, it was investigated experimentally, which combinations of different pa-
rameters (minimum frame length, chunk size) lead to "best" results in terms of the evaluation
(cf. Section 3.2.2).
The experiments (cf. Table 3.4) do not confirm the observation from [26]. For larger chunk sizes,
a tendency towards higher EERs and minDCFs was observed (cf. Table 3.6), while keeping the
number of training utterances and the embedding dimension constant. This tendency is also
shown in Figure 3.11, which shows improved separation when using shorter utterance chunks for
the training process. Apart from that, a better distinction between male and female speakers
was achieved when shorter chunks of the training utterances were used.

Table 3.6: Comparison of different chunk sizes and their influence on the EER and the minDCF when
keeping the minimum required frame length and speaker embedding dimension constant.

number of utterances chunk size embedding LDA EER in % minDCF
(min. frame length) interval dimension dimension

709 (500) [200, 200] 128 100 19.13 0.66
709 (500) [500, 500] 128 100 22.28 0.87
709 (500) [200, 500] 128 100 19.61 0.74
709 (500) [100, 200] 128 100 16.95 0.69

This outcome would support the choice of low values for the minimum required frame length
for the training utterances, resulting in an increasing number of training utterances and further
in an improvement in terms of speaker recognition.

– 40 –

3.2 Neural Speaker Embedding Extraction based on PyTorch and Kaldi

−100 −80 −60 −40 −20 0 20 40 60
tsne-1

−75

−50

−25

0

25

50

75

ts
n

e-
2

spkID

bje

bsc

csc

dsc

esc

fwa

gun

hoi

hpo

ioka

jage

kep

lsc

mpu

nke

psc

spo

tfe

wke

(a) t-SNE for 19 speakers from the WASS corpus with the following parameters: minimum frame length: 500; chunk size
interval: [200, 200]; embedding dimension: 128; LDA dimension: 100.

−100 −75 −50 −25 0 25 50 75
tsne-1

−60

−40

−20

0

20

40

ts
n

e-
2

spkID

bje

bsc

csc

dsc

esc

fwa

gun

hoi

hpo

ioka

jage

kep

lsc

mpu

nke

psc

spo

tfe

wke

(b) t-SNE for 19 speakers from the WASS corpus with the following parameters: minimum frame length: 500; chunk size
interval: [500, 500]; embedding dimension: 128; LDA dimension: 100.

Figure 3.11: Influence of the chunk size of the training utterances on the speaker recognition performance: A
shorter chunk size (200 frames, top) achieves better speaker separation and distinction between
male and female speakers compared to a longer chunk size (500 frames, bottom). The minimum
required frame length is set to 500 (709 training utterances) and speaker embedding dimension
is 128 in both cases.

– 41 –

3 Speaker Encoding and Interpolation

Feature Embedding Dimension

The hidden layer dimension of the neural network in the speaker recognition process is essential
for the dimension of the feature embeddings as the speaker embeddings are the features extracted
from the penultimate layer. Therefore, the dimension of the hidden layer determines that of
the speaker embeddings (cf. Section 3.2.1, Neural Network Training). In the past, different
speaker embedding dimensions have already been tested. The following table gives an overview
of previously used speaker embedding dimensions (cf. Table 3.7), which supports the selection
of an appropriate speaker embedding dimension for this work.

Table 3.7: Speaker embedding dimensions already used in the literature.

literature embedding dimension

Cai et al. [15] 128
Cooper et al. [20] 512/256/200
Chen et al. [26] 400

Cooper et al. [20] have already shown that better results in terms of EER and minDCF are
achieved for smaller speaker embedding dimensions. In order to obtain an adequate dimension
for the speaker embeddings, different dimensions were chosen in this thesis and the influence on
speaker recognition performance was investigated by comparing EER, minDCF (cf. Table 3.8)
and the t-SNE-based visualisation (cf. Figure 3.12).

Table 3.8: Influence of the speaker embedding dimension on the speaker recognition performance (EER and
minDCF) by keeping the minimum frame length and chunk size interval constant and varying
only the speaker embedding dimension {32, 128, 512}.

number of utterances chunk size embedding LDA EER in % minDCF
(min. frame length) interval dimension dimension

709 (500) [200, 200] 32 32 22.76 0.78
709 (500) [200, 200] 128 100 19.13 0.65
709 (500) [200, 200] 512 200 19.37 0.72

The observation in [20] was partially confirmed in this thesis by comparing the results of the
speaker recognition system with the same training and test utterances based on three different
speaker embedding sizes {32, 128, 512} (cf. Table 3.8 and Figure 3.12). For a speaker embedding
dimension of 128, performance increased in terms of EER and minDCF as well as for t-SNE
compared to a dimension of 512. However, decreasing the speaker embedding size to only 32,
the performance was even worse than with an embedding dimension of 512. Furthermore, a
speaker embedding dimension of 128 achieved the best results in separating male and female
speakers in terms of the t-SNE.

– 42 –

3.2 Neural Speaker Embedding Extraction based on PyTorch and Kaldi

−100 −75 −50 −25 0 25 50 75
tsne-1

−60

−40

−20

0

20

40

60

ts
n

e-
2

spkID

bje

bsc

csc

dsc

esc

fwa

gun

hoi

hpo

ioka

jage

kep

lsc

mpu

nke

psc

spo

tfe

wke

(a) t-SNE for 19 speakers from the WASS corpus with the following parameters: minimum frame length: 500; chunk size
interval: [200, 200]; embedding dimension: 32; LDA dimension: 32.

−100 −80 −60 −40 −20 0 20 40 60
tsne-1

−75

−50

−25

0

25

50

75

ts
n

e-
2

spkID

bje

bsc

csc

dsc

esc

fwa

gun

hoi

hpo

ioka

jage

kep

lsc

mpu

nke

psc

spo

tfe

wke

(b) t-SNE for 19 speakers from the WASS corpus with the following parameters: minimum frame length: 500; chunk size
interval: [200, 200]; embedding dimension: 128; LDA dimension: 100.

– 43 –

3 Speaker Encoding and Interpolation

−100 −80 −60 −40 −20 0 20 40
tsne-1

−60

−40

−20

0

20

40

60
ts

n
e-

2

spkID

bje

bsc

csc

dsc

esc

fwa

gun

hoi

hpo

ioka

jage

kep

lsc

mpu

nke

psc

spo

tfe

wke

(c) t-SNE for 19 speakers from the WASS corpus with the following parameters: minimum frame length: 500; chunk size
interval: [200, 200]; embedding dimension: 512; LDA dimension: 200.

Figure 3.12: Influence of the speaker embedding dimension on the speaker recognition performance: Increas-
ing the speaker embedding dimension from 32 to 128 improves performance whereas an increase
from 128 to 512 results in degradation of performance for same minimum frame length (500)
and chunk size interval ([200, 200]).

– 44 –

3.2 Neural Speaker Embedding Extraction based on PyTorch and Kaldi

Discussion

Taking into account the above observations, the quality of speaker embedding strongly depends
on a sufficiently low minimum frame length of utterances to ensure a high number of training
utterances. This parameter had to be chosen in relation to the chunk size interval of the
training utterances, because the maximum chunk size is predefined by the minimum frame
length. According to the distribution of the frame lengths of the utterances used (cf. Figure
3.8), a minimum frame length of 200 would be adequate to prevent excluding a high number
of utterances from the training process. Furthermore this choice allowed a chunk size interval
([150, 200]) that does not differ too much from previously tested intervals in the literature [26],
[20]. A speaker embedding dimension of 128 showed better results in terms of EER, minDCF
and t-SNE compared to the other speaker embedding dimensions tested in this work.
Table 3.4 confirms these observations, because the chosen parameter combination (cf. Table 3.9)
showed best results in terms of the evaluation parameters (EER, minDCF). Apart from that the
visual evaluation (t-SNE) supports these parameter combination (cf. Figure 3.13). Figure 3.13
shows a clear separation of the individual speakers. However, the grouping in male and female
speakers is worse compared to other parameter combinations (cf. Figure 3.12). This is probably
due to the small chunk size, which can no longer represent this property sufficiently well.

Table 3.9: Experimentally derived choice of parameters for the speaker embedding extraction.

number of utterances chunk size embedding LDA
(min. frame length) interval dimension dimension

4768 (200) [150, 200] 128 100

−100 −75 −50 −25 0 25 50 75
tsne-1

−80

−60

−40

−20

0

20

40

60

80

ts
n

e-
2 bje

bsc
csc

dsc

esc

fwa

gun

hoi

hpo

ioka

jage

kep

lsc

mpu

nke

psc

spo

tfe

wke

spkID

bje

bsc

csc

dsc

esc

fwa

gun

hoi

hpo

ioka

jage

kep

lsc

mpu

nke

psc

spo

tfe

wke

Figure 3.13: t-SNE for 19 speakers from the WASS corpus with the following parameters: minimum frame
length: 200; chunk size interval: [150, 200]; embedding dimension: 128; LDA dimension: 100.

– 45 –

3 Speaker Encoding and Interpolation

3.2.4 Speaker Embedding
By running the pipeline with the parameters shown in Table 3.9, the corresponding utterance-
level speaker embeddings were extracted and stored in a file as vectors. So far, utterance-level
representations were created. Therefore, each utterance had its own embedding vector. In order
to represent the speaker characteristics rather than the utterance information, the calculated
utterance embeddings were averaged per speaker [1]. Each resulting fixed-dimensional speaker
embedding vector was then transformed into a vector of type float64 and stored in a separate
binary file. According to the conventional speaker adaptation (cf. Section 2.2.3), two speakers
were not considered in the speaker embedding-based speaker adaptation, resulting in 17 speaker
embedding vectors.

3.3 Interpolation of Speaker Embeddings
The extracted speaker embedding vectors describing 17 speakers from the WASS corpus served
as basis to generate "new" speakers. By applying linear interpolation between two base speaker
embedding vectors v1 and v2, an intermediate speaker v12 was obtained:

v12 = α · v1 + (1− α) · v2. (3.4)

An interpolation factor α ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} was considered to scale the amount of
the two individual speakers. For α = 0.0 and α = 1.0, respectively, the original speakers were
synthesised. All possible combinations between the 17 base speakers were calculated, leading to a
total number of 816 speaker embeddings. Considering for example speakers bjedsc00 and bscdsc00,
which have 0 parts (α = 0.0) from speaker bje and bsc respectively, but 1 part (1−α = 1.0) from
speaker dsc, they both describe the same original speaker dsc:

bjedsc00 = 0.0 · bje + (1.0− 0.0) · dsc = dsc
bscdsc00 = 0.0 · bsc + (1.0− 0.0) · dsc = dsc

... = ...

To avoid redundancy, only one representation of the original speakers was retained (cf. Table
3.10), reducing the number of 816 speakers to 561 different speakers. The exclusion of the
synthesised base speakers (α = 0.0 and α = 1.0) led to a total number of 544 "new" speakers.

Table 3.10: Assignment of the original speaker ID to the respective synthesised speaker ID.

original respective
speaker speaker

bje bjebsc10
bsc bjebsc00
csc bjecsc00
dsc bjedsc00
esc bjeesc00
fwa bjefwa00
gun bjegun00
hoi bjehoi00
hpo bjehpo00

placeholder

original respective
speaker speaker

kep bjekep00
lsc bjelsc00
mpu bjempu00
nke bjenke00
psc bjepsc00
spo bjespo00
tfe bjetfe00
wke bjewke00

– 46 –

3.3 Interpolation of Speaker Embeddings

The obtained speaker embedding vectors were stored in separate files, for which the file name
consisted of the embedding ID including the two combined speaker IDs and the interpolation
factor α. In order to generate speech from the newly created speakers, the interpolated speaker
embedding vectors were integrated in the speech synthesis process as described in the following
chapter.

– 47 –

Data Augmentation for ASR

– 48 –

Data Augmentation for ASR

4
Speaker Embedding-based Speaker Adaptation

and Data Augmentation

4.1 Speaker Embedding-based Speaker Adaptation
In Section 2.2.3 the process of speaker adaptation based on an average voice model (AVM)
was described. This approach uses an AVM trained on labels and audio files from all available
speakers in the dataset. In order to adapt speaker-specific models from the AVM, speaker-
specific data was given to the trained AVM, which allowed the training of a speaker-specific
model used for the generation of speaker-specific speech (cf. Figure 4.2, left). This method
has the advantage that speaker-specific models can also be adapted for speakers with a small
amount of data. However, the generation of speaker-specific speech requires speaker-specific
models, which not only demand a large amount of storage space, but also take some time to
train.
To overcome this problem, a modified AVM approach was used for speech synthesis in this
thesis. According to the calculation in Section 2.2.3 an AVM was trained based on the 17
speakers from the dataset. In addition to the linguistic input features, the previously calculated
speaker embedding vectors were used as input for training the AVM. Therefore, the vector
describing the linguistic features was concatenated with the speaker embedding vector and the
resulting vector was given as input to the neural network during training (cf. Figure 4.1).

linguistic
feature vector

speaker
embedding vector

speaker
embedding

linguistic
features

speech synthesis
system

Figure 4.1: Concatenation of the linguistic feature vector and the speaker embedding vector, resulting in the
input vector for the speech synthesis system.

Based on the concatenated input vector, the AVM learnt not only the relation between the lin-
guistic input features and the acoustic output, but also the relation between speaker information
and the acoustic output. The trained AVM was able to synthesise speaker-specific speech by
having access to the labels and the speaker embedding of the desired speaker (cf. Figure 4.2,
right).

– 49 –

4 Speaker Embedding-based Speaker Adaptation and Data Augmentation

training FFDNN

AVM

adaptation FFDNN

speaker-specific
model

parameter generation
from FFDNN

synthesised speech

labels

labels

speech signal

labels

speech signal

multi-speaker
speech database

target speaker
speech database

training FFDNN

AVM

AVM

parameter generation
from FFDNN

synthesised speech

labels

speaker
embedding

labels

speech signal

speaker
embedding

Figure 4.2: Comparison between the conventional speaker adaptation method including the training of the
AVM, the adaptation of the speaker-specific model and the subsequent speech synthesis (left) and
the speaker embedding-based speaker adaptation that allows speaker-specific speech synthesis by
using only a single AVM trained with speaker embedding vectors (right).

By integrating the speaker embedding vectors in the training process, a subsequent speaker
adaptation was performed without the need of individual trained models. In contrast to the
speaker adaptation in Section 2.2.3, where each speaker required its own trained speaker-specific
model, the integration of speaker embedding vectors in the AVM training process allowed a
subsequent speaker adaptation based on a single AVM.
For the speaker-specific speech synthesis, the speaker embedding of the desired speaker had to
be given to the trained AVM in addition to the corresponding label file. As in the training
process, the linguistic information and the embeddings were combined to a single vector and
passed on to the previously trained AVM to generate the corresponding acoustic features used
for speaker-specific speech synthesis (cf. Figure 4.2, right).

4.1.1 Results
The resulting speaker-specific speech waveforms were compared to the generated speech wave-
form obtained from the conventional speaker adaptation method (cf. Section 2.2.3) in order to
validate the use of speaker embeddings for speaker adaptation. The speakers synthesised with
the speaker embedding-based AVM and the speakers synthesised with the conventional speaker
adaptation method are very close, although the conventional approach used individual AVMs
for the adaptation of each speaker. This result validates the speaker adaptation based on a
single AVM using speaker embedding vectors as additional input during training.

– 50 –

4.2 Data Augmentation

4.2 Data Augmentation

4.2.1 GRASS Corpus
The ASR system at the SPSC was developed using the Graz corpus of Read And Spontaneous
Speech (GRASS) from the SPSC [27]. The GRASS corpus is a large scale speech database for
Austrian German consisting of speech of 38 speakers (male and female) from similar social and
different regional backgrounds. Not only read speech and elicited commands were recorded but
also a large number of spontaneous conversations, which makes the GRASS corpus appealing
for linguistic and phonetic studies. In addition to the audio files, the GRASS corpus contains
corresponding orthographic transcriptions, including hesitations, repetitions and disfluencies as
well as laughter, breathing, dialect words and overlapping talk.
This work mainly deals with the question, if increasing the acoustic variability of a training
corpus leads to an improvement of the ASR performance. In this first step, only read speech
was investigated and conversational speech with for example cross talk was not considered.
Therefore, only the part of the GRASS corpus that contains recordings of read speech was
covered in this thesis.

4.2.2 GRASS Corpus Augmentation
In this work, the GRASS corpus was to be augmented acoustically. The question arose, as to
which utterances should be augmented from the corpus. For the recent development of the ASR
system, the GRASS corpus has already been divided into train, development and test set, as
is shown in Table 4.1. Therefore, it seemed quite reasonable to augment only the training set
acoustically and to keep development and test set as they are.

Table 4.1: Separation of the utterances from the read speech part of the GRASS corpus into training, evalu-
ation and test set. The values in brackets show the number of different utterances in each set.

overall train evaluation test

4323 3820 249 254
(802) (548) (127) (127)

The speaker embedding interpolation generated a total of 561 voices. Synthesising the training
set of the GRASS corpus, which contains 548 individual utterances, with all generated speakers
would result in about 300.000 newly generated utterances. The high amount of data may lead
to some challenges in terms of memory limitations and training duration. Therefore, it had
to be clarified in advance whether sufficient storage space is available. In addition, an amount
of data should be selected with which the training of the ASR system can be carried out in a
realistic time. Apart from that it was interesting to investigate, if the performance of the ASR
system reaches saturation at some point where ingesting more amount of training data would
be unnecessary.

Text to Label Conversion

To perform speech synthesis by means of Merlin, the system needs corresponding label files to
generate speech out of a given text (cf. Section 2.2.2). Therefore, the frontend Festival [28]
was employed to generate label files from the text of the GRASS corpus. Festival is trained
by having access to text and the corresponding audio files in order to align the audio with the
text. But it is also possible to use a pre-trained model to get labels by only providing text
utterances. A pre-trained Austrian German (AT) voice model can be found at ([11], [29]), which
is a voice model based on Hidden Markov Models (HTS). This voice model was used in this work

– 51 –

4 Speaker Embedding-based Speaker Adaptation and Data Augmentation

to obtain label files from the training utterances of the GRASS corpus (cf. Section 4.2.1), which
were either mono labels or full-context labels (cf. Infobox 4.1). The full-context labels represent
contextual information of phonemes, which are formatted in HTS style [30] (cf. Section 2.2.2).

0 1000000 sil

1000000 2000000 h

2000000 3000000 a

3000000 4000000 l

4000000 5000000 oh

5000000 6000000 v

6000000 7000000 E

7000000 8000000 l

8000000 9000000 t

9000000 10000000 sil

0 1000000 xˆx-sil+h=a@x_x/A:0_0_0/B:x-x-x@x-x&x-x#x-x$x-x!x-x;x-x|x/C:0+-1+2/D:0_0/

E:x+x@x+x&x+x#x+x/F:content_2/G:0_0/H:x=x@1=1|0/I:3=2/J:3+2-1

1000000 2000000 xˆsil-h+a=l@1_2/A:0_0_0/B:0–1-2@1-2&1-3#1-3$1-1!0-1;0-0|0/C:1+0+2/D:0_0/

E:content+2@1+2&1+1#0+1/F:content_1/G:0_0/H:3=2@1=1|NONE/I:0=0/J:3+2-1

2000000 3000000 silˆh-a+l=oh@2_1/A:0_0_0/B:0–1-2@1-2&1-3#1-3$1-1!0-1;0-0|0/C:1+0+2/D:0_0/

E:content+2@1+2&1+1#0+1/F:content_1/G:0_0/H:3=2@1=1|NONE/I:0=0/J:3+2-1

3000000 4000000 hˆa-l+oh=v@1_2/A:0_-1_2/B:1-0-2@2-1&2-2#1-2$1-1!0-1;0-0|0/C:1+0+4/D:0_0/

E:content+2@1+2&1+1#0+1/F:content_1/G:0_0/H:3=2@1=1|NONE/I:0=0/J:3+2-1

4000000 5000000 aˆl-oh+v=E@2_1/A:0_-1_2/B:1-0-2@2-1&2-2#1-2$1-1!0-1;0-0|0/C:1+0+4/D:0_0/

E:content+2@1+2&1+1#0+1/F:content_1/G:0_0/H:3=2@1=1|NONE/I:0=0/J:3+2-1

5000000 6000000 lˆoh-v+E=l@1_4/A:1_0_2/B:1-0-4@1-1&3-1#2-1$1-1!1-0;0-0|0/C:0+0+0/D:content_2/

E:content+1@2+1&2+0#1+0/F:0_0/G:0_0/H:3=2@1=1|NONE/I:0=0/J:3+2-1

6000000 7000000 ohˆv-E+l=t@2_3/A:1_0_2/B:1-0-4@1-1&3-1#2-1$1-1!1-0;0-0|0/C:0+0+0/D:content_2/

E:content+1@2+1&2+0#1+0/F:0_0/G:0_0/H:3=2@1=1|NONE/I:0=0/J:3+2-1

7000000 8000000 vˆE-l+t=sil@3_2/A:1_0_2/B:1-0-4@1-1&3-1#2-1$1-1!1-0;0-0|0/C:0+0+0/D:content_2/

E:content+1@2+1&2+0#1+0/F:0_0/G:0_0/H:3=2@1=1|NONE/I:0=0/J:3+2-1

8000000 9000000 Eˆl-t+sil=x@4_1/A:1_0_2/B:1-0-4@1-1&3-1#2-1$1-1!1-0;0-0|0/C:0+0+0/D:content_2/

E:content+1@2+1&2+0#1+0/F:0_0/G:0_0/H:3=2@1=1|NONE/I:0=0/J:3+2-1

9000000 10000000 lˆt-sil+x=x@x_x/A:1_0_4/B:x-x-x@x-x&x-x#x-x$x-x!x-x;x-x|x/C:0+0+0/D:content_1/

E:x+x@x+x&x+x#x+x/F:0_0/G:3_2/H:x=x@1=1|0/I:0=0/J:3+2-1

Infobox 4.1: Conversion of the input utterance "Hallo Welt" to the corresponding mono labels (top) and
full-context labels (bottom) by using the frontend Festival and the pre-trained Austrian German
(AT) voice model.

Speech Synthesis

The previously trained AVM obtained by integrating the 17 original speaker embedding vectors
as additional input during training (cf. Section 4.1 and Figure 4.2, right) was used as trained
model in order to generate speech from the interpolated speaker embeddings. By giving the
generated labels and the interpolated speaker embedding vectors (cf. Section 3.3) as input to
the trained AVM, the acoustic features of the "new" speakers were calculated and further passed
to a vocoder to synthesise the desired speaker-specific speech waveform (cf. Figure 4.3).

– 52 –

4.2 Data Augmentation

trained AVM

linguistic
features

speaker
embeddings

acoustic
features vocoder speech

waveform

Figure 4.3: Generation of speaker-specific speech by passing the interpolated speaker embedding vectors in
addition to the linguistic features to the previously trained AVM. A vocoder takes the obtained
acoustic features as input and generates the new voice.

4.2.3 Evaluation
An efficient method to investigate the quality of the interpolated speaker embedding vectors and
the resulting synthesised utterances is the evaluation based on the speaker recognition system
discussed in Section 3.2. Therefore, the steps of the pipeline in Section 3.2.1 were performed.
These steps include the extraction of the speaker embedding vectors from the synthesised speech
waveforms and the subsequent evaluation by means of EER, minDCF and t-SNE (cf. Section
3.2.2).
In order to validate the quality of the speaker embedding vectors, four experiments were per-
formed using the synthesised utterances based on the interpolated speaker embeddings. The first
experiment analysed the speaker embeddings which represent the 17 speakers from the WASS
corpus (base speakers), i.e., α = 0.0 and α = 1.0 respectively. In three subsequent experiments
the other interpolation factors were investigated, for which three base speaker combinations and
their interpolation were examined to show the transition between two base speakers and their
separability (cf. Table 4.2).

Table 4.2: Base speaker combinations (bscwke, keplsc and fwaspo) and their interpolations used to evaluate
the interpolated speaker embeddings.

base xxxxx interpolated
speakers speakers

bsc, wke bscwke00 bscwke02 bscwke04 bscwke06 bscwke08 bscwke10
kep, lsc keplsc00 keplsc02 keplsc04 keplsc06 keplsc08 keplsc10
fwa, spo fwaspo00 fwaspo02 fwaspo04 fwaspo06 fwaspo08 fwaspo10

Pre-Processing

After the generation of the files containing information from the audio files (e.g., wav.scp, utt2spk),
the acoustic pre-processing was carried out. In this step, the MFCCs and the VAD were calcu-
lated, the features were normalised and silence was removed. The filtering by length was per-
formed to exclude utterances with less frames than a predefined limit value. For this purpose,
the frame lengths of the audio files for the 17 base speakers and for three speaker combinations
(cf. Table 4.2) were examined and graphically represented in terms of histograms (cf. Figures
4.4a - 4.4d). The analysis showed that the distribution of frame lengths per utterance strongly
depends on the speaker combination, because the duration for each phone varies for each speaker.
As a result the minimum frame length had to be defined for each speaker individually, which
is shown in Table 4.3. An appropriate choice ensured that enough utterances remained for the
training process and yet that utterances that were too short were excluded.

– 53 –

4 Speaker Embedding-based Speaker Adaptation and Data Augmentation

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

utterance length in frames

nu
m

be
r

of
ut

te
ra

nc
es

(a) base speakers

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

1600

utterance length in frames

nu
m

be
r

of
ut

te
ra

nc
es

(b) speaker combinations for bscwke

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

utterance length in frames

nu
m

be
r

of
ut

te
ra

nc
es

(c) speaker combinations for keplsc

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

1600

utterance length in frames

nu
m

be
r

of
ut

te
ra

nc
es

(d) speaker combinations for fwaspo

Figure 4.4: Distribution of frame lengths of the train utterances for different speaker combinations.

– 54 –

4.2 Data Augmentation

Neural Network Training and Decoding

Based on the parameter settings for the speaker recognition system discussed in Section 3.2.3
(cf. Table 3.2), the settings for training and decoding the neural network were chosen, with
most of the parameter combinations taken over. However, the frame length distribution for the
speaker combination keplsc (cf. Figure 4.4c) supported the reduction of the minimum required
frame length and hence a modified chunk size interval (cf. Table 4.3).

Table 4.3: Parameter setting for the speaker embedding extraction depending on the speaker combination.

speaker minimum utterances left/ chunk size embedding
combinations frame length original utterances interval dimension

base speakers 200 5812/8398 [150, 200] 128
bscwke 200 2213/2964 [150, 200] 128
keplsc 150 2485/2964 [130, 150] 128
fwaspo 200 1980/2964 [150, 200] 128

Post Processing

The post processing step included the centering of the x-vectors and the dimensionality reduction
by using LDA with dimension 100, as well as the scoring based on PLDA and a predefined trial
file (cf. Section 3.2.1 and Figure 3.7).

Results

A final evaluation was performed based on the evaluation metrics shown in Section 3.2.2:
the equivalent error rate (EER), the minimum detection cost function (minDCF) and the t-
distributed stochastic neighbour embedding (t-SNE). The cost of the missed detections Cmissed

and false alarms CF A were set to 1 and the prior target probability Ptar was calculated for each
experiment separately (cf. Section 3.2.3).
Table 4.4 shows the EER and the minDCF of the four different experiments, whereas the outcome
of the t-SNE is illustrated in Figures 4.5 - 4.8. When comparing the outcome of the base speaker
experiment to the result from the experiment with the original WASS corpus (cf. Section 3.2.3
and Table 3.4), similar values were achieved in terms of the EER and the minDCF. Additionally
the graphical evaluation confirmed a good separability between the individual speakers. The
performance of the speaker recognition system degraded when considering the additional inter-
polation factors of three base speaker combinations. However, the transition of the interpolation
factor from α = 0.0 to α = 1.0 is clearly visible in Figures 4.6 - 4.8.

Table 4.4: Performance of the speaker recognition system for different speaker combinations.

speaker EER (in %) minDCF(Ptar)combinations

base speakers 5.23 minDCF(0.110) = 0.37
bscwke 19.14 minDCF(0.287) = 0.53
keplsc 16.05 minDCF(0.287) = 0.53
fwaspo 26.54 minDCF(0.287) = 0.79

– 55 –

4 Speaker Embedding-based Speaker Adaptation and Data Augmentation

−100 −75 −50 −25 0 25 50 75
tsne-1

−80

−60

−40

−20

0

20

40

60

80
ts

n
e-

2

bje

bsc

csc

dsc

esc

fwa

gun

hoi

hpo

kep

lsc

mpu

nke

psc

spo

tfe

wke

spkID

bje

bsc

csc

dsc

esc

fwa

gun

hoi

hpo

kep

lsc

mpu

nke

psc

spo

tfe

wke

Figure 4.5: t-SNE for 17 base speakers representing the original speakers from the WASS corpus with the
following parameters: minimum frame length: 200; chunk size interval: [150, 200]; embedding
dimension: 128; LDA dimension: 100.

−80 −60 −40 −20 0 20 40 60
tsne-1

−60

−40

−20

0

20

40

ts
n
e-

2

spkID

bscwke00

bscwke02

bscwke04

bscwke06

bscwke08

bscwke10

Figure 4.6: t-SNE for speaker combination bscwke with the following parameters: minimum frame length:
200; chunk size interval: [150, 200]; embedding dimension: 128; LDA dimension: 100.

– 56 –

4.2 Data Augmentation

−80 −60 −40 −20 0 20 40 60
tsne-1

−40

−20

0

20

40

60

ts
n
e-

2

spkID

keplsc00

keplsc02

keplsc04

keplsc06

keplsc08

keplsc10

Figure 4.7: t-SNE for speaker combination keplsc with the following parameters: minimum frame length:
150; chunk size interval: [130, 150]; embedding dimension: 128; LDA dimension: 100.

−80 −60 −40 −20 0 20 40 60
tsne-1

−60

−40

−20

0

20

40

60

80

ts
n
e-

2

spkID

fwaspo00

fwaspo02

fwaspo04

fwaspo06

fwaspo08

fwaspo10

Figure 4.8: t-SNE for speaker combination fwaspo with the following parameters: minimum frame length:
200; chunk size interval: [150, 200]; embedding dimension: 128; LDA dimension: 100.

– 57 –

Data Augmentation for ASR

– 58 –

Data Augmentation for ASR

5
Automatic Speech Recognition

5.1 Introduction to Automatic Speech Recognition (ASR)
Karat, Yankelovich and Lai [31] describe automatic speech recognition (ASR) as process of
decoding and transcribing spoken language. In more detail, a common ASR system receives
acoustic input from a speaker, analyses it using some pattern, model, or algorithm, and produces
an output, usually in the form of a text [31] (cf. Figure 5.1).

ASR systemspeech
waveform

transcription

Figure 5.1: Conceptual ASR system: The incoming speech waveform is converted into a sequence of text
hypotheses by the ASR system [32].

5.1.1 Field of Application
Due to performance improvements of ASR systems, they are finding ever broader areas of ap-
plication and are increasingly being integrated into everyday life. Many people associate voice
recognition with state-of-the-art consumer products such as voice control in mobile phones, car
navigation systems and household appliances to make everyday life easier. Apart from these
applications, automatic speech recognition is also used in healthcare to assist, for example, blind
and visually impaired people. In education, ASR is used in the field of translation as well as in
various language learning softwares. In addition, approved ASR systems are increasingly taking
the place of people when it comes to information services for banking services or flight booking
services [33], for which the ASR system is integrated into a dialogue system.
It is likely that with performance increases of ASR systems also for more naturalistic speech the
fields of application for ASR systems will continue to grow in the future.

5.1.2 Challenges
The success of ASR is mainly due to the integration of machine learning in the ASR training
process. The largest advancements in ASR in the last 10 years have come due to DNNs [34].
However, training highly complex models requires a large amount of transcribed speech record-
ings, which are often challenging to obtain.
Furthermore, in state-of-the-art ASR systems, various components are combined for which
knowledge from disciplines such as linguistics or computer science is necessary, but also ex-
pertise in the fields of acoustics, communication theory or physiology is beneficial [33].
This multidisciplinary viewpoint is required to deal with the challenges that ASR faces. These
challenges mainly concern linguistics, as there arises the question which units (words, syllables,
phonemes, etc.) should be used for recognition. Furthermore, syntactic and semantic ambi-
guities as well as the complexity of language influence ASR. But speech variability also plays
an important role, including different voices, accents, styles or speech rates. In addition to the
linguistic challenges already mentioned, environmental conditions such as background noise or
simultaneous speech are an important issue in ASR [33].

– 59 –

5 Automatic Speech Recognition

5.1.3 Development of ASR Systems

As mentioned previously, an ASR system converts an incoming speech waveform into a corre-
sponding text representation. This process is based on a statistical model that infers a text
sequence W = w1, w2, ..., wm from a sequence of acoustic features vectors X = x1, x2, ..., xn (cf.
Equation 5.1) [35, 36]:

W ∗ = argmax
W

P (W |X) = argmax
W

P (X|W)P (W), (5.1)

where P (X|W) describes the likelihood of the observed feature vector X given the word se-
quence W and P (W) represents the probability for a string of words W in a specific language
[35]. In order to recognise the input speech, three main components have to be considered.
For speech recognition it is not only important to analyse the acoustic input waveform but to
take a language model into account as well, which contains linguistic information, e.g., n-gram
language modeling. Additionally a lexicon is used to build the relation between words and their
corresponding pronunciation. This interaction of several components is evident in Equation 5.1,
which consists of a first part P (X|W) representing the lexicon and the acoustic model and a
second part P (W) describing the language model.
Figure 5.2 shows the flowchart of a conventional ASR system, in which the main components
are considered separately. It includes a pre-processing step as well as a frontend for feature
extraction and the following three main parts [37]:

• a lexicon, also called pronunciation model is a mapping between words and their corre-
sponding phones,

• an acoustic model models a sequence of feature vectors given a sequence of phones,

• a language model gives the likelihood of a word sequence based on an underlying gram-
mar.

signal processing feature
representation ASR system

acoustic
model

lexiconlanguage
model

speech
signal

recognised
words

Figure 5.2: Conventional ASR system including a preprocesssing step and three main components (lexicon,
acoustic model and language model) [38].

The conventional approach according to [39] uses Gaussian Mixture Models (GMM) to model
the feature distribution for a phone and a Hidden Markov Model (HMM) models the transition
between phones and the observed features. Based on the statistics an optimal state sequence
is to be determined for a sequence of input features, which requires information from three
separately trained models, namely the language model, the acoustic model and the lexicon.
Around 2006, Li Deng and Hinton ([39], [40]) suggested to integrate deep learning in the speech
recognition process. Hybrid HMM/DNN systems show great performance regarding the speech
recognition performance. However, the separate training of the three individual models make
them quite time-consuming, which leads towards an end-to-end (E2E) approach. This reduces

– 60 –

5.2 Building a Kaldi-based ASR System

the needed knowledge of the user regarding the single components because E2E ASR systems
only require extracted features as input and output the desired transcription [39]. Since E2E
systems are not used for the experiments presented in this thesis, the reader is referred to [41]
for an overview on current developments in the field of E2E ASR systems.

5.2 Building a Kaldi-based ASR System

This work addresses the challenge of speaker variability, especially with regard to different voices
(cf. Section 5.1.2). By augmenting the training corpus with interpolated voices, the ASR system
was to be trained for individual voice characteristics in order to improve its performance.
Therefore, the already developed ASR system at the SPSC Graz was applied in this work, which
employs a recipe developed by Julian Linke ([42]). The ASR system is based on Kaldi, a widely
used state-of-the-art speech recognition toolkit [43] that follows the conventional GMM/HMM
approach (cf. Section 5.1.3) and consists of three main components, namely the lexicon, the
language model and the acoustic model (cf. Figure 5.2). The training of the individual com-
ponents was performed according to the conventional method, i.e. each component was trained
separately (cf. Section 5.1.3). The Kaldi-based ASR system also has the option of GMM/DNN
acoustic modeling, but for read speech the GMM/HMM approach already yielded good results,
therefore this approach was used in this work.
Figure 5.3 gives an overview of the individual steps which were performed in order to train and
evaluate the ASR system. A detailed description of these steps is given in the following sections,
which include the file preparation and the feature extraction, the creation of the lexicon and the
language model as well as the training and evaluation of the acoustic model.

audio transcriptions speaker IDs dictionary text corpus

feature
extraction

ngram
model

monophone triphone evaluate
triphone

evaluate
monophone

...

Figure 5.3: An illustration of the proceeding showing the individual steps during the ASR training and eval-
uation. It includes the basic elements and pre-processing step that are necessary for the training
and evaluation process as well as the main components, namely the language model, the acoustic
model and the lexicon [44].

5.2.1 Data Preparation

Prior to training the individual components of an ASR system, the required data had to be
prepared. According to the description of the Kaldi toolkit, three files needed to be generated
in advance to the training process, namely wav.scp, text and utt2spk. The pre-processing in this
work included the generation of the information for the newly created speech waveforms as well
as the subsequent combination with the already existing information. Since in this work the

– 61 –

5 Automatic Speech Recognition

training set of the GRASS corpus was augmented while development and test sets remained
unchanged, only the training set was considered in the pre-processing.

Audio files

The first step concerned indexing all newly created audio files with the corresponding utterance
IDs. As shown in Infobox 5.1 the first column represents the utterance ID, containing not
only the utterance but also the speaker ID separated by a dash, and the second column gives
the absolute path to the audio file. Therefore, the utterance ID in the first row in Infobox 5.1
tfewke02-BE_001 includes the utterance BE_001 and the speaker ID tfewke02, where the latter indicates
that the utterance was spoken by a speaker obtained from the interpolation between speaker tfe

and speaker wke with an interpolation factor of α = 0.2.

utterance ID path to audio file

tfewke02-BE_001 /clusterFS/[...]/data/train/corpus-synth/tfewke02-BE_001.wav

gunwke10-SC_014 /clusterFS/[...]/data/train/corpus-synth/gunwke10-SC_014.wav

a

Infobox 5.1: File wav.scp contains the utterance ID and the absolute path to the corresponding audio file,
whereby the utterance ID contains the speaker information in form of a speaker ID.

Transcriptions

Each audio file was then related to its corresponding transcription for the train, evaluation and
test set. This information is described in the file text (cf. Infobox 5.2), where the first column
shows the utterance ID and the second column contains the corresponding transcription.

utterance ID transcription

tfewke02-BE_001 HEUTE IST SCHÖNES FRÜHLINGSWETTER

gunwke10-SC_014 DREH DAS LICHT ÜBER DER ABWASCH AB

a

Infobox 5.2: File text contains the utterance ID and the corresponding transcription, whereby the utterance
ID contains the speaker information in form of a speaker ID.

Speaker Information

To train speaker-specific models it was necessary to assign each utterance to its corresponding
speaker. This information was stored in the file utt2spk. But the inverse information was required
as well, which summarised the utterances that belong to the same speaker and was stored in
the file spk2utt. Infobox 5.3 and 5.4 show the content of file utt2spk and spk2utt.

utterance ID speaker ID

tfewke02-BE_001 tfewke02

gunwke10-SC_014 gunwke10

a

Infobox 5.3: File utt2spk assigns the utterance ID with the corresponding speaker ID.

– 62 –

5.2 Building a Kaldi-based ASR System

speaker ID utterance ID

tfewke02 tfewke02-BE_001 tfewke02-BE_002 tfewke02-BE_003 tfewke02-BE_004 tfewke02-BE_005 ...

gunwke10 gunwke10-SC_001 gunwke10-SC_002 gunwke10-SC_003 gunwke10-SC_004 gunwke10-SC_005 ...

a

Infobox 5.4: File spk2utt summarises the utterances that belong to the same speaker and assigns them to the
corresponding speaker ID.

5.2.2 Feature Extraction

The feature extraction in form of MFCCs from the audio file is an essential step in ASR, as
they describe the sequence of observations, based on which the ASR process was performed. For
details on the settings, the reader is referred to Section 6.1. The MFCCs were stored in a file
which described the utterance ID followed by the MFCCs in form of a m × n matrix where m
is the number of features and n is number of frames. Then a normalisation step followed (mean
and variance normalisation) for each speaker, because of high variability of the speech signal.

5.2.3 Dictionary

One of the main components in an ASR system is the dictionary or lexicon, which contains
all words appearing in the corpus with their corresponding pronunciation, whereby each word
should be unique. The canonical representation of the words was obtained by using a grapheme-
to-phoneme (G2P) conversion.
A very popular G2P conversion tool is the Munich Automatic Segmentation, called MAUS,
which was developed by the Institute of Phonetics and Speech Processing in Munich [45]. In
order to generate the lexicon, a word list that contained all words from the corpus was uploaded
to the MAUS web service [46] and the corresponding list of phonemic representations was re-
turned. This process gave the pronunciation for a word according to statistical rules leading to
a pronunciation dictionary.
The G2P conversion is based on rules appearing in standard German German, which are slightly
different compared to the rules in standard Austrian German. Therefore the generated dictio-
nary was corrected according to phonological rules for Austrian German, including especially
the conversion from voiced /z/ to unvoiced /s/ and the typical pronunciation of the final <g>
in German German /C/ was changed into the Austrian German version /k/:

f ′E6 + tIC −→ f ′E6 + tIk
fo : 6zICt −→ fo : 6sICt

InZ@nj2 : 6 −→ InS@nj2 : 6

Additionally noise and silence phones were defined in order to describe sounds that do not
correspond to speech. These noise and silence phones prevent the ASR system from assigning
noise or silence with phones from the phone list, resulting in a dictionary containing silence and
nonsilence phones as well as noise (cf. Infobox 5.5).

5.2.4 Language Model

The language model provides the ASR system with information from the underlying language.
It models the transition between words and defines probabilities of certain word sequences on
a symbolic level. In this work a so-called n-gram model was used, where n-gram describes a
sequence of n words [47]. The n-gram model is a probabilistic language model for predicting
the next word based on a (n− 1)-th order Markov model. The Markov model assumes that the

– 63 –

5 Automatic Speech Recognition

unique words canonical pronunciation

!SIL SIL

<NOISE> NSN

<SPOKEN_NOISE> SPN

<UNK> SPN

AB a p

ABDREHEN a p d r e: @ n

ABDUNKELN a p d U N k @ l n

a

ÜBERRAGTEN y: b 6 r a: k t @ n

ÜPPIGEN Y p I g @ n

Infobox 5.5: File lexicon.txt is a list of all spoken words with their corresponding canonical pronunciation
and additionally silence phones, noise and unknown words (SIL, NSN, SPN) are considered in
the dictionary.

probability of a word depends only on the previous (n− 1) words [47]:

P (wn|w1:(n−1)) ≈ P (wn|w(n−N+1):(n−1)), (5.2)

i.e., the probability of the n-th word conditioned on the entire context P (wn|w1:(n−1)) is approxi-
mated with the probability of the n-th word considering only the last N − 1 words
P (wn|w(n−N+1):(n−1)), where N describes the n-gram size. Based on the bigram assumption
the sequence of words w1:n can be further simplified as [47]:

P (w1:n) ≈
n∏

k=1
P (wk|wk−1), (5.3)

where P (wk|wk−1) is the probability of a bigram. Bigrams are estimated using the maximum
likelihood estimation (MLE). This approach counts the bigram probability C(wn−1wn) of a word
wn given a previous word wn−1 and normalises the count by the unigram count C(wn−1) of the
word wn−1 [47]:

P (wn|wn−1) = C(wn−1wn)
C(wn−1) . (5.4)

The SRI International’s Speech Technology and Research (STAR) Laboratory provides a Lan-
guage Modeling Toolkit (SRILM) that includes a method to count n-grams and estimate lan-
guage models from them based on a text input [48]. Training the SRI language model required
the utterance transcriptions from the training set, which were stored in a separate file, one
utterance per line (cf. Infobox 5.6). Based on the given utterance transcriptions (corpus.txt)

corpus utterances

HEUTE IST SCHÖNES FRÜHLINGSWETTER

DIE SONNE LACHT

AM BLAUEN HIMMEL ZIEHEN DIE WOLKEN

a ...

Infobox 5.6: File corpus.txt: Collection of all spoken utterances obtained from the transcription file.

and the predefined language model order lm_order = 3, the SRILM generated a n-gram count and
estimated a n-gram language model. The language model was used to prepare a grammar which
was converted into a FST (finite state transducer) format.

– 64 –

5.2 Building a Kaldi-based ASR System

5.2.5 Acoustic Model

Gaussian Mixture Models (GMM)

The acoustic model builds the relationship between the observed acoustic feature vectors (MFCCs)
extracted from a speech waveform and the underlying phones. In the conventional approach the
acoustic model is based on Gaussian Mixture Models (GMMs), in which the distribution of
feature vectors for a given phone are modeled by a weighted sum of Gaussians (cf. Equation
5.5):

P (x|h) =
∑

i

piN (µi,Σi), (5.5)

where P (x|h) describes the likelihood of a feature vector x given the phone h. Based on the
training data, the parameters of the Gaussians are to be estimated, i.e., the means µi and
standard deviations Σi. The trained GMMs are used to model the acoustic feature vectors,
based on which the underlying phone is to be predicted [36].

5.2.6 Hidden Markov Models (HMM)

By employing GMM, only short frames are analysed without including the temporal depen-
dencies and transitions between phones. The temporal dependencies can be modeled using a
Hidden Markov Model (HMM). Similar to a Markov Model, that models a sequence of observable
random variables (states), in a Hidden Markov Model these states are unknown, i.e., hidden.
The HMM has only access to an observation sequence based on which a HMM should infer the
hidden state sequence [36],[49].
An HMM is mainly characterised by emission probabilities and transition probabilities. The
previously mentioned likelihood of the acoustic feature vectors given a phone modeled by the
GMM (cf. Equation 5.5) is considered in the HMM by means of emission probabilities. In or-
der to consider the temporal structure of phones, the HMM uses transition probabilities, which
include the information obtained from the lexicon and the language model to describe the tran-
sition between phones [36],[49]. The combination of emission and transition probabilities allows
to calculate the probability of the observed feature vector P (x) by considering all phones h that
lead to the observation x:

P (x) =
∑

h

P (h) · P (x|h), (5.6)

where P (h) describes the probability of a phone and P (x|h) is the likelihood of features given a
phone modeled using a GMM [36, 49].

Training HMM

Training an HMM means to learn the emission and transition probabilities from the given data.
During the training process, the HMM has access to the observation sequence, i.e. the feature
vectors, and to the underlying hidden state sequence, i.e., the phones. As can be seen in Equa-
tion 5.6, information from the acoustic model, but also from the lexicon and the language model
is required for determining the emission and transition probabilities of the HMM.
The training of the acoustic model was divided into two parts. Firstly a monophone model was
trained by considering only one single phone, in which any contextual information, i.e., neigh-
bouring phones were neglected. In each training iteration, the parameters of the HMM were
estimated. For refining the model parameters each training step was followed by an alignment
step, that aligned the audio and the transcript according to the current acoustic model. The
trained monophone model was used as basis for the triphone model, which considered neigh-
boring phones, i.e., integrated the effect of co-articulation. With the triphone model, different
phoneme variants were represented, depending on the left and right phoneme [50].

– 65 –

5 Automatic Speech Recognition

Decoding HMM

During decoding, the performance of the ASR system was evaluated. In this step the previously
trained models (monophone models and triphone models) received a sequence of feature vec-
tors extracted from an unknown speech waveform. Based on the learnt emission and transition
probabilities, the model calculated the most likely state sequence, i.e., the most likely phone
sequence that had produced the given feature vectors [36, 49].

5.2.7 Evaluation
The most commonly used method for evaluating ASR performance is to compare the recognised
string of words to a reference transcription, resulting in an evaluation metric called Word Er-
ror Rate (WER). This approach counts the differences between the two strings, distinguishing
between insertions, deletions and substitutions. The number of insertions describes how often
a word is recognised although not being present in the reference string. In contrast, a deletion
occurs when a word is not recognised but in the reference transcription and for a substitution
the wrong word was recognised compared to the reference string. Insertions, deletions and
substitutions count equally, resulting in the equation for the WER in %:

I +D + S

N
, (5.7)

where I, D and S describe the number of insertions, deletions and substitutions and N describes
the total number of words in the reference transcript [51].
Based on the comparison between the recognised string and the reference string a second eval-
uation metric was considered, the Sentence Error Rate (SER), which is given in % and counts
the number of incorrectly recognised utterances compared to the reference utterances.

– 66 –

Data Augmentation for ASR

6
ASR Experiments

This chapter describes the ASR experiments carried out with the augmented training corpus
by means of speaker interpolation (cf. Chapter 4). The augmented training corpus offered the
possibility to train the ASR system with different data combinations and to compare the results
afterwards. Based on these experiments, a training dataset was determined in order to improve
the performance of the ASR system.
The subsequent sections document the experiments performed in this work, which followed the
same approach described in Section 5.2 and differed only in the composition of the training,
development and test sets. The experiments included the data and file preparation as well
as the generation of a language model and an acoustic model, the latter being trained based
on monophones and triphones. For evaluation the results of the experiments are presented by
means of the WER and the SER in tabular and in graphical form.

6.1 Experiment Settings
An overview of the most relevant settings for the ASR system, which remained unchanged for
all experiments, is given in this section. For the extraction of the MFCCs from the audio files
(sample frequency of 48kHz) a frame length of 20ms and a frame shift of 12.5ms (while setting
use-energy to false) was used. These settings showed the best performance in earlier experiments
by J. Linke. The configurations of the language model and the training of monophone and
triphone model are given in Table 6.1. For the decoding, a first-beam of 10.0 and a regular
beam of 13.0 was used, while the lattice beam was set to 6.0.

Table 6.1: Experimental setup of the general parameters, including the settings for the language model and
the acoustic model (monophone and triphone model).

parameters values description

language model lm_order 3 order of the language model

acoustic model num_iters 40 number of training iterations
(monophone) initial_beam 6 beam used in the first iteration

regular_beam 10 beam used after first iteration
retry_beam 40 beam used after retry
totgauss 1000 target number of Gaussians
boost_silence 1.0 boost silence likelihoods in alignment

acoustic model num_iters 35 number of training iterations
(triphone) beam 10 regular beam

retry_beam 40 beam used after retry
totgauss 11000 target number of Gaussians
numleaves 2000 number of leaves
boost_silence 1.0 boost silence likelihoods in alignment

– 67 –

6 ASR Experiments

6.2 Baseline Experiment
In the first experiment, the ASR system was trained, developed and tested with utterances from
the original training set of the GRASS corpus. This experiment was intended to reproduce the
initial results of the ASR system and served as basis for further experiments. Table 6.2 shows
the distribution of the GRASS corpus into train, development and test set.

Table 6.2: Division of the utterances from the GRASS corpus into training, development and test set: The
total number of utterances as well as the number of different utterances per set is shown, separately
for female and male speakers.

GRASS

id set utterances speakers

total different m f

train 3820 1248 17 16
baseline dev 249 154 1 1

test 254 162 1 1

6.2.1 Result
The results for the baseline experiment are shown in Table 6.3. For the monophone model as well
as for the triphone model, the ASR system showed promising results if being trained, developed
and tested with the original GRASS corpus. For both models a WER around 1% was achieved,
which served as a basis for further experiments.

Table 6.3: Performance of the ASR system in terms of the WER and the SER based on the original training,
development and test set of the GRASS corpus. The results of the monophone model and the
triphone model are shown separately.

id train dev/test monophone model triphone model

WER (%) SER (%) WER (%) SER (%)

baseline GRASS GRASS 1.12 4.33 0.88 3.54

– 68 –

6.3 Corpus Augmentation using Synthesised Speech

6.3 Corpus Augmentation using Synthesised Speech
The following experiments dealt with the augmentation of the original GRASS training set us-
ing the synthesised utterances based on the speaker interpolation (cf. Figure 6.1). Different
experiments were conducted regarding the amount of synthesised speech and the way the syn-
thesised utterances were selected for augmentation. These experiments investigated how these
conditions affect the performance of the ASR system. For development and testing, the origi-
nal development and test sets from the GRASS corpus were used according to the sets in the
baseline experiment (cf. Section 6.2).

training
- GRASS

- GRASS(s)

development
- GRASS

test
- GRASS

Figure 6.1: Composition of the training, development and test set in the experiments with the augmented
GRASS training corpus, with development and test set from the original GRASS corpus.

6.3.1 Amount of Synthesised Speech
An essential parameter that was adjusted when augmenting the training set was the amount of
synthesised utterances added to the original training set. For this purpose, the synthesised speech
was successively added to the original training corpus in order to find the optimal ratio between
original and synthesised speech for training the ASR system. Table A.1 shows the different
training set compositions for the experiments conducted at a varying amount of synthesised
speech added to the (constant sized) GRASS training set.

6.3.2 Selection of Utterances
The synthesised utterances used for augmenting the training set were, in separate experiments,
either chosen per speaker or randomly. If the training set was chosen per speaker, all utterances
from chosen speakers were selected. Therefore a first experiment investigated the performance
of the ASR system when taking utterances from a fixed set of randomly chosen speakers whereas
in a subsequent experiment the same amount of utterances were randomly chosen from a set
including all speakers and utterances. The distribution of the sets for training, development and
testing are listed in Table A.1, which compares the results for speaker-specific selection (spk)
and the results when randomly choosing the same amount from all speakers and utterances
(rand).

6.3.3 Results
Table 6.4 shows the results which indicate that a ratio of 50% between original and synthesised
utterances in the training set improved the performance of the ASR system. Apart from that it
was observed that for this range of utterances, the random selection mode led to better results
compared to the speaker-specific selection mode.

– 69 –

6 ASR Experiments

Table 6.4: Performance of the ASR system in terms of the WER and the SER based on the training set of
the GRASS corpus augmented by using utterances from the synthesised GRASS corpus (s). The
results of the monophone model and the triphone model are shown separately.

id train dev/test monophone model triphone model

WER (%) SER (%) WER (%) SER (%)

baseline GRASS GRASS 1.12 4.33 0.88 3.54

1 GRASS GRASS 1.28 4.72 0.96 3.54
GRASS(s)spk,2740

2 GRASS GRASS 1.28 4.72 0.96 3.54
GRASS(s)rand,2740

3 GRASS GRASS 1.04 3.94 0.80 3.15
GRASS(s)spk,3836

4 GRASS GRASS 0.88 3.54 0.64 2.36
GRASS(s)rand,3800

5 GRASS GRASS 1.36 4.72 0.80 3.15
GRASS(s)spk,7672

6 GRASS GRASS 1.60 5.91 0.80 3.15
GRASS(s)rand,7672

7 GRASS GRASS 1.44 5.12 0.88 3.15
GRASS(s)spk,11508

8 GRASS GRASS 1.52 5.51 0.88 3.54
GRASS(s)rand,11508

9 GRASS GRASS 2.40 7.48 1.36 3.94
GRASS(s)spk,18084

10 GRASS GRASS 2.96 8.27 1.36 5.51
GRASS(s)rand,18084

– 70 –

6.3 Corpus Augmentation using Synthesised Speech

0 50 100
0

1

2

3

4

amount of synthesised utterances in %

W
E

R
in

%
baseline

rand
spk

(a) WER based on the monophone training

0 50 100
0

2

4

6

8

10

amount of synthesised utterances in %

SE
R

in
%

baseline
rand
spk

(b) SER based on the monophone training

0 50 100
0

1

2

3

4

amount of synthesised utterances in %

W
E

R
in

%

baseline
rand
spk

(c) WER based on the triphone training

0 50 100
0

2

4

6

8

10

amount of synthesised utterances in %

SE
R

in
%

baseline
rand
spk

(d) SER based on the triphone training

Figure 6.2: Performance of the ASR system depending on the amount of utterances from the synthesised
GRASS corpus, with the number of utterances from the original GRASS corpus remaining con-
stant. The development and test set are based on the original GRASS corpus. The dashed line
represents the result of the baseline experiment.

– 71 –

6 ASR Experiments

6.3.4 Optimisation of Data Augmentation
Based on the previous experiments regarding the amount of data augmentation using synthesised
utterances and the experiments concerning the selection mode of training data, the optimal ratio
between original and synthesised utterances is around 50%. In this data range it is advantageous
to randomly select the training data. Therefore the following experiments only considered the
random selection mode and the amount of data augmentation is variable (cf. Table A.2).

6.3.5 Results
Table 6.5 shows the results indicating that the data augmentation using synthesised speech
yields a reduction in WER and SER and thus an improvement in the performance of the ASR
system. The optimal amount of data augmentation using synthesised speech is in the range of
the amount of utterances from the original GRASS dataset. When interpreting the results, it is
important to take into account that due to the random selection of the training data, the results
may vary within a small range and cannot always be reproduced exactly.

– 72 –

6.3 Corpus Augmentation using Synthesised Speech

Table 6.5: Performance of the ASR system in terms of the WER and the SER based on the training set of
the GRASS corpus augmented by using utterances from the synthesised GRASS corpus (s). The
results of the monophone model and the triphone model are shown separately.

id train dev/test monophone model triphone model

WER (%) SER (%) WER (%) SER (%)

baseline GRASS GRASS 1.12 4.33 0.88 3.54

11 GRASS GRASS 1.44 5.91 0.88 3.54
GRASS(s)rand,1000

2 GRASS GRASS 0.96 3.94 1.04 4.33
GRASS(s)rand,2740

12 GRASS GRASS 1.20 4.72 0.88 3.15
GRASS(s)rand,3100

13 GRASS GRASS 0.96 3.54 0.72 2.76
GRASS(s)rand,3500

4 GRASS GRASS 0.96 3.94 0.64 2.36
GRASS(s)rand,3800

14 GRASS GRASS 1.36 5.12 0.88 3.15
GRASS(s)rand,4000

15 GRASS GRASS 1.44 5.12 1.04 3.94
GRASS(s)rand,5000

6 GRASS GRASS 1.60 5.91 0.80 3.15
GRASS(s)rand,7672

8 GRASS GRASS 1.52 5.51 0.88 3.54
GRASS(s)rand,11508

10 GRASS GRASS 2.96 8.27 1.36 5.51
GRASS(s)rand,18084

16 GRASS GRASS 4.17 10.63 2.08 6.30
GRASS(s)rand,30000

17 GRASS GRASS 1.68 5.91 1.20 4.33
GRASS(s)rand,50000

– 73 –

6 ASR Experiments

0 50 100
0

1

2

3

4

amount of synthesised utterances in %

W
E

R
in

%

baseline
rand

(a) WER based on the monophone training

0 50 100
0

2

4

6

8

10

amount of synthesised utterances in %

SE
R

in
%

baseline
rand

(b) SER based on the monophone training

0 50 100
0

1

2

3

4

amount of synthesised utterances in %

W
E

R
in

%

baseline
rand

(c) WER based on the triphone training

0 50 100
0

2

4

6

8

10

amount of synthesised utterances in %

SE
R

in
%

baseline
rand

(d) SER based on the triphone training

Figure 6.3: Performance of the ASR system depending on the amount of utterances from the synthesised
GRASS corpus, with the number of utterances from the original GRASS corpus remaining con-
stant. The development and test set are based on the original GRASS corpus. The dashed line
represents the result of the baseline experiment.

– 74 –

6.4 Replacement using Synthesised Speech

6.4 Replacement using Synthesised Speech
In the previous experiments, all utterances and speakers were taken from the original GRASS
training dataset and synthesised utterances were added to the existing training dataset. As a
next step, the speakers from the original training set were successively replaced by speakers from
the synthesised GRASS corpus. For this purpose a set of speakers was randomly selected and
replaced by another random set of synthesised speakers, keeping the utterance IDs the same.

6.4.1 Results
Table 6.6 contains the results for the monophone and triphone model. As the "speakers to be
replaced" and the synthesised speakers were selected randomly, the performance of the ASR
system varies. Therefore the experiments were conducted multiple times (cf. Tables A.3 - A.9)
and the average of these experiments led to the final result in Table 6.6 and Figure 6.4. An
analysis of the WER and the SER showed that especially the replacement of speakers up to
15 speakers led to an improvement in the monophone model, however for a replacement of
more than 15 speakers the performance degraded. When considering the triphone model it was
observed that the replacement of speakers increased the WER and the SER.

– 75 –

6 ASR Experiments

Table 6.6: Performance of the ASR system in terms of the WER and the SER based on the training set of
the GRASS corpus where a number of speakers from the original GRASS corpus were replaced by
speakers from the synthesised GRASS corpus (s). The results of the monophone model and the
triphone model are shown separately.

id train dev/test monophone model triphone model

WER (%) SER (%) WER (%) SER (%)

baseline GRASS GRASS 1.12 4.33 0.88 3.54

18 GRASS GRASS 1.09 4.25 0.96 3.78
GRASS(s)spk(1)

19 GRASS GRASS 0.83 3.23 0.85 3.31
GRASS(s)spk(5)

20 GRASS GRASS 0.98 3.78 1.12 4.25
GRASS(s)spk(10)

21 GRASS GRASS 0.94 3.70 1.00 3.94
GRASS(s)spk(15)

22 GRASS GRASS 1.24 4.73 1.14 4.33
GRASS(s)spk(20)

23 GRASS GRASS 1.79 5.64 1.52 4.98
GRASS(s)spk(25)

24 GRASS GRASS 3.53 12.00 5.61 15.75
GRASS(s)spk(30)

– 76 –

6.4 Replacement using Synthesised Speech

0 5 10 15 20 25 30
0

1

2

3

4

number of replaced speakers

W
E

R
in

%

baseline
spk

(a) WER based on the monophone training

0 5 10 15 20 25 30
0

5

10

15

number of replaced speakers

SE
R

in
%

baseline
spk

(b) SER based on the monophone training

0 5 10 15 20 25 30
0

2

4

6

8

number of replaced speakers

W
E

R
in

%

baseline
spk

(c) WER based on the triphone training

0 5 10 15 20 25 30
0

5

10

15

20

number of replaced speakers

SE
R

in
%

baseline
spk

(d) SER based on the triphone training

Figure 6.4: Performance of the ASR system depending on the number of speakers replaced by speakers from
the synthesised GRASS corpus, with the number and ID of utterances remaining constant. The
development and test set are based on the original GRASS corpus. The dashed line represents
the result of the baseline experiment.

– 77 –

6 ASR Experiments

6.5 Using the Synthesised Corpus for Training
The previous experiments (cf. Section 6.3) showed that augmenting an existing corpus containing
original voices with utterances from synthesised voices decreased the WER and SER of ASR
systems. Additionally it was interesting to investigate the performance of the ASR system
when being trained only with utterances from the synthesised GRASS corpus. Therefore the
synthesised voices obtained by speaker interpolation were used as training set for the ASR
system. The utterances for the development and test set were either from the original GRASS
corpus (cf. Figure 6.5) or from the synthesised GRASS corpus (cf. Figure 6.6). The exact
distribution of utterances into training, development and test set is shown in Table A.10. For
all experiments in this section the training data was selected randomly from all synthesised
utterances.

training
- GRASS(s)

development
- GRASS

test
- GRASS

Figure 6.5: Composition of the training, development and test set in the experiments with the synthesised
GRASS training set, with development and test set from the original GRASS corpus.

training
- GRASS(s)

development
- GRASS(s)

test
- GRASS(s)

Figure 6.6: Composition of the training, development and test set in the experiments with the synthesised
GRASS training set, with development and test set from the synthesised GRASS corpus.

6.5.1 Results
The results in Table 6.7 show a clear mismatch between the synthesised GRASS corpus in the
training set and the original GRASS corpus in the development and test set. Regardless of the
number of utterances, the WER and SER for both models were around 100%.
If the same training set was used but the development set and test set were made up with
utterances from the synthesised voices, the achieved results were excellent, i.e., below 1% WER.
An increasing number of synthesised utterances led to an improvement of the ASR performance.
However, the improvement saturated at around 40000 utterances, where including more training
data did not decrease WER and SER remarkably.

– 78 –

6.5 Using the Synthesised Corpus for Training

Table 6.7: Performance of the ASR system in terms of the WER and the SER based on the training set with
utterances from the synthesised GRASS corpus (s). For development and testing, both corpora
were used. The results of the monophone model and the triphone model are shown separately.

id train dev/test monophone model triphone model

WER (%) SER (%) WER (%) SER (%)

25 GRASS(s)rand,5000 GRASS 72.92 100.00 95.03 100.00

26 GRASS(s)rand,20000 GRASS 73.32 100.00 97.36 100.00

27 GRASS(s)rand,1000 GRASS(s) 0.54 1.60 1.34 2.88

28 GRASS(s)rand,5000 GRASS(s) 0.34 0.96 0.81 1.92

29 GRASS(s)rand,20000 GRASS(s) 0.40 1.28 0.27 0.64

30 GRASS(s)rand,40000 GRASS(s) 0.34 0.96 0.34 0.96

31 GRASS(s)rand,60000 GRASS(s) 0.34 0.96 0.27 0.64

– 79 –

6 ASR Experiments

0 20000 40000 60000
0

1

2

3

4

amount of synthesised utterances

W
E

R
in

%

rand

(a) WER based on the monophone training

0 20000 40000 60000
0

1

2

3

4

amount of synthesised utterances

SE
R

in
%

rand

(b) SER based on the monophone training

0 20000 40000 60000
0

1

2

3

4

amount of synthesised utterances

W
E

R
in

%

rand

(c) WER based on the triphone training

0 20000 40000 60000
0

1

2

3

4

amount of synthesised utterances

SE
R

in
%

rand

(d) SER based on the triphone training

Figure 6.7: Performance of the ASR system depending on the amount of utterances from the synthesised
GRASS corpus. The development and test set are based on the synthesised GRASS corpus.

– 80 –

6.6 Using the WASS Corpus for Training

6.6 Using the WASS Corpus for Training
For these experiments the training corpus consisted of the utterances from the WASS corpus,
based on which the AVM and the speaker embeddings were calculated (cf. Section 2.2.2).
The WASS corpus contains 17 speakers for which 12 are male and 5 are female, leading to a
total number of 7847 utterances. The corpus was divided into train, development and test set
according to Table 6.8, which also shows the total number of utterances and the duration in
seconds for each set. One female and one male speaker were selected for development and test
set.

Table 6.8: Division of the WASS corpus into training, development and test set with the corresponding
number of utterances and duration in seconds.

set speakers utterances duration (s)
m f

train 10 3 6955 20483.80
dev 1 1 446 1433.49
test 1 1 446 1395.67

Similarly to the experiments in Section 6.3, the utterances from the original WASS corpus were
used for training and augmented by utterances from the synthesised WASS corpus. To generate
the synthesised WASS corpus, the interpolated speaker embedding vectors calculated in 3.3 were
integrated in the speaker adaptation process in order to create a synthesised WASS corpus based
on interpolated speakers.
The utterances for development and test set were either from the original WASS corpus (cf.
Figure 6.8) or from the original GRASS corpus (cf. Figure 6.9), the latter used to investigate
the mismatch between both corpora. Furthermore, the performance of the ASR system was
examined exclusively with utterances from the original WASS corpus or from the synthesised
WASS corpus. The influence of the amount of utterances on the ASR performance was not
analysed, therefore a fixed number of training utterances was used in all experiments.

training
- WASS

development
- WASS

test
- WASS

training
- WASS

- WASS(s)

development
- WASS

test
- WASS

training
- WASS(s)

development
- WASS

test
- WASS

Figure 6.8: Composition of the training, development and test set in the experiments with the WASS corpus.
The training set consisted either of the original WASS corpus, the synthesised WASS corpus or
a composition of both with development and test set from the original WASS corpus.

– 81 –

6 ASR Experiments

6.6.1 Corpus Mismatch
It has been shown in Section 6.5, that a mismatch between the synthesised utterances based on
the voices in the WASS corpus and the utterances from the GRASS corpus occurred. Therefore
an experiment was performed that uses the original voices from the WASS corpus as training
set and the original voices from the GRASS corpus as development and test set. Synthesised
voices were successively added to the training set to investigate its influence.

training
- WASS

development
- GRASS

test
- GRASS

training
- WASS

- WASS(s)

development
- GRASS

test
- GRASS

training
- WASS(s)

development
- GRASS

test
- GRASS

Figure 6.9: Composition of the training, development and test set in the experiments with the WASS corpus.
The training set consisted either of the original WASS corpus, the synthesised WASS corpus or
a composition of both with development and test set from the original GRASS corpus.

6.6.2 Result
When using the original WASS corpus as training, development and test set, the performance of
the ASR was exceptionally good in terms of the WER (0.55%) and the SER (2.69%). However,
adding the same amount of interpolated voices to the training set, decreased the WER and SER
of the triphone model even further (WER = 0.33%, SER = 1.57%). Training the ASR system
only with synthesised voices led to acceptable results (cf. Figure 6.10).
The same observations were made when using the utterances from the original GRASS corpus as
development and test set. The experiments show, that the mismatch between different corpora
was smallest when using the original corpus for training, development and test set and was
highest if the ASR system was trained only with synthesised voices (cf. Figure 6.11). The same
trend as in Section 6.3 was visible here: adding the same proportion of synthesised utterances
to the original utterances slightly improved the performance for the triphone model while the
performance for the monophone model remained almost the same.

– 82 –

6.6 Using the WASS Corpus for Training

Table 6.9: Performance of the ASR system in terms of the WER and the SER based on the training set
of the WASS corpus augmented by using utterances from the synthesised WASS corpus (s). For
development and testing, the WASS corpus and the GRASS corpus are used. The results of the
monophone model and the triphone model are shown separately.

id train dev/test monophone model triphone model

WER (%) SER (%) WER (%) SER (%)

32 WASS WASS 0.18 1.12 0.55 2.69

33 WASS WASS 0.29 1.57 0.33 1.57
WASS(s)

34 WASS(s) WASS 2.77 8.97 13.85 36.55

35 WASS GRASS 5.21 12.60 8.09 25.20

36 WASS GRASS 6.01 12.99 5.29 15.35
WASS(s)

37 WASS(s) GRASS 19.95 36.22 74.20 85.83

– 83 –

6 ASR Experiments

0 50 100

0

5

10

15

20

amount of synthesised utterances in %

W
E

R
in

%

rand

(a) WER based on the monophone training

0 50 100

0

10

20

30

40

amount of synthesised utterances in %

SE
R

in
%

rand

(b) SER based on the monophone training

0 50 100

0

5

10

15

20

amount of synthesised utterances in %

W
E

R
in

%

rand

(c) WER based on the triphone training

0 50 100

0

10

20

30

40

amount of synthesised utterances in %

SE
R

in
%

rand

(d) SER based on the triphone training

Figure 6.10: Performance of the ASR system depending on the amount of utterances from the synthesised
WASS corpus. The development and test set are based on the original WASS corpus.

– 84 –

6.6 Using the WASS Corpus for Training

0 50 100

0

20

40

60

80

100

amount of synthesised utterances in %

W
E

R
in

%
rand

(a) WER based on the monophone training

0 50 100

0

20

40

60

80

100

amount of synthesised utterances in %

SE
R

in
%

rand

(b) SER based on the monophone training

0 50 100

0

20

40

60

80

100

amount of synthesised utterances in %

W
E

R
in

%

rand

(c) WER based on the triphone training

0 50 100

0

20

40

60

80

100

amount of synthesised utterances in %

SE
R

in
%

rand

(d) SER based on the triphone training

Figure 6.11: Performance of the ASR system depending on the amount of utterances from the synthesised
WASS corpus. The development and test set are based on the original GRASS corpus.

– 85 –

Data Augmentation for ASR

– 86 –

Data Augmentation for ASR

7
Discussion

A big challenge in training state-of-the-art ASR systems is the data acquisition, as training
highly complex ASR systems requires hours of speech including acoustic and lexical diversity.
This issue was the motivation behind this work, that deals with the augmentation of an existing
training corpus for an ASR system by using synthesised speech. More precisely, new speaker
characteristics were to be generated using a provided corpus by means of interpolation. The
created speaker information was integrated in the speech synthesis process in order to create new
voices which were furthermore used for data augmentation of the training set of an ASR system.
The aim of this work was to test the hypothesis whether increasing the acoustic diversity of
the training dataset of the ASR system developed at the SPSC by means of synthesised voices
improves its performance.

7.1 Lessons learnt from Speech Synthesis

Merlin, a neural network-based speech synthesis toolkit was employed in this work for speech
synthesis. Based on an average voice model including the speakers from the WASS corpus, a
speaker adaptation process was carried out to show the quality of the AVM. It was shown that
an AVM based on male and female speakers outperforms the AVM trained by exclusively using
male and female speakers. Apart form that, 2 speakers were excluded from the AVM, as the
speaker adaptation resulted in bad sound quality for 2 speakers.
Since the speaker adaptation showed promising results, the AVM including 17 speakers was used
further for the speaker embedding-based speaker adaptation. The speaker embedding-based
speaker adaptation included speaker information in form of vectors in the training process of
the AVM, why the model learnt the mapping between speaker information and audio file. As a
result, speaker-specific speech was generated based on the trained AVM by having access to the
speaker information in addition to the linguistic features. This has the advantage that speaker
embedding-based speaker adaptation requires only a single trained AVM. However, compared
to the speech synthesised using the conventional speaker adaptation method, no noticeable dif-
ference was observed in speech quality.
Cooper et al. [20] investigated the role of speaker embeddings for speaker adaptation in zero-shot
TTS. In their work, Tacotron was used to generate speech based on speaker embedding vectors,
which were extracted from a speaker recognition system similar to this work (cf. Chapter 4).
By applying different similarity metrics they showed, that speaker adaptation using speaker
embeddings showed good results in terms of speaker similarity and naturalness of synthesised
speech.

In order to obtain speaker-specific information in form of speaker embedding vectors from a given
dataset, a speaker recognition system was used, that created the speaker embedding vectors from
audio files. The speaker embedding extraction was performed by using the LDE approach, where
speaker information was extracted after the learnable dictionary encoding layer.
This way of speaker extraction allowed the adjustment of different parameters. It was shown in
Section 3.2.3 that especially the number of utterances and the length of the audio chunks used

– 87 –

7 Discussion

for training as well as the dimension of the speaker embedding vectors influence the quality of
the speaker embedding vectors. By choosing appropriate parameters, the speaker embedding
vectors contained the most relevant information to describe the individual speakers.

The number of utterances used for the training process depends on the minimum required frame
length for the training utterances. Since a high value for the minimum required frame length
excludes utterances with a small frame length, it seemed to be advantageous to choose a small
value to include as many utterances as possible. However, another parameter is important,
namely the size of the chunks used for the training process. This value depends as well on the
minimum required frame length, because the maximum possible chunk size is defined by the
minimum required frame length. Previous work has shown that a larger chunk size leads to
better results in terms of speaker recognition [26].
To investigate this trade-off, different combinations of minimum required frame length and chunk
size interval were tested in various experiments. It was shown that a larger minimum required
frame length and hence a decreased number of training utterances leads to performance degra-
dation (cf. Table 3.5). Concerning the chunk size it was expected, that a smaller chunk size
degrades performance as well. However this expectation was not confirmed, because smaller
chunk sizes yielded acceptable results as shown in Table 3.6. But there was a limit to making
the value arbitrarily small: at a chunk size below 200, the grouping into male and female speak-
ers deteriorated, indicating that speaker information has been lost by reducing the chunk size
(cf. Figure 3.13).
Additionally different dimensions of the speaker embedding vectors were investigated accord-
ing to previous analysis in recent work and their influence on the performance of the speaker
recognition system was analysed. The outcome of previous work can be confirmed to a certain
extent: In [20] better results for smaller speaker embedding dimensions were achieved and in
this work, similarly, better values were achieved for a dimension of 128 than for a dimension of
512. However decreasing the dimension to 32, the performance of the speaker recognition system
was worse than with a dimension of 512 (cf. Table 3.8). The aforementioned observations led
to a specific combination of parameters for speaker embedding extraction, which were used for
speaker interpolation and furthermore for the generation of new voices.

For the generation of new speaker characteristics, the extracted speaker embedding vectors were
interpolated according to Equation 3.4. The newly generated speaker embedding vectors were
integrated in the speech synthesis process, i.e., speaker embedding-based speaker adaptation, to
synthesise the utterances from the GRASS corpus with new voices. Therefore, an AVM trained
on speaker embedding vectors was used, which took the interpolated vectors as input for the
synthesis and generated the utterances from them. The synthesised utterances were analysed
using the evaluation metrics (cf. Section 3.2.2), the results of which can be seen in Table 4.4 and
Figures 4.5 - 4.8. Compared to the analysis of the original WASS corpus, it was shown that the
synthesised corpus also has good separability for the base speakers, which is evident from the
low values for EER and minDCF. Figures 4.6 - 4.8 show a transition from one base speaker to
another for the interpolated speakers. This evaluation demonstrates the successful generation
of new voices by means of interpolated speaker embedding vectors.
The comparison with previous work shows a similar outcome. Korostik et al. [52] applied linear
interpolation between the learned speaker embeddings of a CNN network in order to create new
voices. A subsequent objective and subjective evaluation led to good results in terms of speaker
similarity.

– 88 –

7.2 Lessons learnt from ASR Experiments

7.2 Lessons learnt from ASR Experiments

With the help of the synthesised GRASS corpus, numerous experiments with the ASR system
were carried out and the performance was evaluated.
For the baseline experiment the original training, development and test set of the ASR system
were used, which consist of utterances from the original GRASS corpus (cf. Table 6.2). This
experiment was used as a reference for further experiments and shows the good performance of
the ASR system, as a WER below 1% was achieved for the triphone model.

In the first step, the influence of the training data augmentation on the ASR performance was
investigated, in which the original training set was augmented with different amounts and com-
positions of the synthesised GRASS corpus (cf. Section 6.3). The training set consisted of
utterances from the original GRASS corpus and the synthesised GRASS corpus, whereby the
utterances from the synthesised GRASS corpus were chosen randomly or per speaker and the
amount of added utterances varied. For development and testing the original GRASS corpus
was used. The results (cf. Table 6.4) indicate that adding a small amount of synthesised utter-
ances decreases performance (cf. experiments 1 and 2). If the amount of synthesised utterances
was increased further (experiments 3 - 5), performance was increased compared to the baseline
experiment. However if the amount of synthesised utterances dominated, performance degraded
again. Additionally the performance of the ASR system in terms of SER and WER is depicted
in Figure 6.2. This representation allows the comparison between the speaker-specific selection
and the random selection. The rough evaluation showed that best results were achieved when
the number of synthesised utterances was in the same order as the number of original utterances,
i.e., the amount of synthesised utterances was about 50%, whereby a random selection mode
showed slightly better results.
Generally it was shown in previous work from Fazel et al. and Rosenberg et al. [1, 2] that
augmenting an existing corpus using synthesised voices improves ASR performance. This obser-
vation can be confirmed based on the results in this work. Section 6.3 shows that the WER and
the SER of the triphone model were reduced when the amount of synthesised utterances added
is in the range of the amount of the original utterances.

The assumption that keeping the ratio between synthesised and original utterances around 50%
was investigated further in subsequent experiments (cf. Table 6.5). Indeed it was shown in
experiments 4 and 13, that the WER and SER of the triphone model can be increased when
adding utterances from the synthesised GRASS corpus. The WER was decreased from 0.88%
to 0.64% and the SER from 3.54% to 2.36% when considering the triphone model. The results
for the monophone model were improved as well to some extent.
Concerning the amount of synthesised utterances to be added to an original training corpus in
order to improve ASR performance, Rosenberg et al. [2] used a fixed amount of synthesised
speech and reduced the amount of utterances from the original corpus. It was shown that best
results were achieved when the amount of synthesised and original utterances were equal (at
50%). However, as the proportion of original utterances decreased, the performance of the ASR
system degraded, which is also consistent with the results of this work.

In Fazel et al. [1] the replacement from original utterances with synthesised utterances was ex-
amined and thus also tested in this work. For this purpose, also in this thesis, different amounts
of speakers from the original training corpus were replaced by synthesised speakers, whereby
the utterance ID remained the same. Since the results showed to be strongly dependent on
the speaker combinations, multiple experiments were carried out (cf. Tables A.3 - A.9). The
analysis of the experiments showed that the more original speakers were replaced by synthesised
speakers, the higher the WER and SER was. However, for some experiments, performance was
improved by the replacement (cf. experiment 19), but the trend shows a clear degradation by

– 89 –

7 Discussion

replacing original speakers.
The results in [1] indicate that a replacement from original speech using synthesised speech de-
grades ASR performance. These results are only partly consistent with the results of this work
(cf. Section 6.4). For a certain amount of replaced speakers, the WER and SER were improved,
which was not the case in [1]. But it has to be mentioned here that the amount of synthesised
utterances used by [1] was significantly higher than that of the original speech. If the amount
of synthesised speech was increased considerably, performance also degraded in this work.

In the previous experiments different amounts of the original training set remained. Additional
experiments were conducted using only the synthesised utterances from the GRASS corpus as
training set. The development and test set consisted either of synthesised GRASS utterances
or of the original GRASS utterances (cf. Table 6.7). When training the ASR system with ut-
terances from the synthesised GRASS corpus and developing and testing the performance using
the original GRASS corpus, the performance of the ASR system is really poor with a WER and
SER around 100% for the triphone model (cf. experiments 25 and 26). Compared to the results
in Rosenberg et al. [2], in which ASR performance was investigated when using only synthesised
utterances, the WER was around 32% for clean test data.
Additionally the experiments were carried out using the synthesised GRASS corpus as devel-
opment and test set (cf. experiments 27 - 31). The evaluation of the monophone and triphone
model shows quite good results with a trend towards better results the more training data is used
(cf. Figure 6.7). This is probably due to the higher acoustic and linguistic diversity resulting
from the higher amount of data. However, the performance improvement saturated, meaning
that adding more training data no longer reduced the WER. Compared to the experiment with
the original GRASS corpus, the ASR performance was significantly better. An analysis of both
experiment showed a mismatch between the original and the synthesised GRASS corpus. When
the system was trained with the synthesised GRASS corpus but developed and tested using the
original GRASS corpus, not only nonsilence phones were detected incorrectly but also silence
phones, which indicated problems in the alignment process during training the ASR system,
which were not analysed further in this work.

According to the previous experiments carried out using the GRASS corpus, the WASS corpus
was used for ASR. One part of the experiments used the WASS corpus as training set and as
development and test set. The other part used the WASS corpus for training but was developed
and tested with the original GRASS corpus.
For training, three different compositions of training sets were investigated: one system was
trained on the original WASS corpus, one on the synthesised WASS corpus and a third exper-
iment used the combination of both for training (cf. Table 6.9). The evaluation based on the
WASS corpus showed promising results when adding a part of the synthesised utterances to the
original corpus, leading to an improvement of the WER and SER of the triphone model (cf. ex-
periments 32 and 33). Training the ASR system exclusively with the synthesised WASS corpus
(cf. experiment 34) degraded performance drastically. Again the results are similar to those
obtained from the results in Rosenberg et al. [2]. Adding a fixed amount amount of synthesised
speech to the original corpus improves performance. The WER when using only synthesised
utterances are in the range of this work.
The evaluation using the original GRASS corpus however showed a clear mismatch between
both corpora, which was smallest for the original WASS and GRASS corpus. The same trend as
in the previous experiments was observed: adding synthesised utterances to the original WASS
set during training, decreased the WER and SER for the triphone model remarkably (cf. ex-
periments 35 and 36). Again, performance was worst when training the ASR system only with
synthesised utterances (cf. experiment 37) and for these experiments the WER was significantly
higher than the WER obtained in the work from Rosenberg et al. [2].

– 90 –

7.3 Outlook

7.3 Outlook
Since this work deals exclusively with read speech, it is intended to give an overview of whether
an acoustic augmentation of the training corpus by means of synthesised voices provides any
improvement at all. However, since conversational speech in particular poses great challenges
to the field of automatic speech recognition, experiments with conversational speech would also
be interesting. A subsequent comparison with the results of this work is appreciated.

Furthermore, it would also be beneficial to use more state-of-the-art speech synthesis systems
for the generation of new voices and utterances and to compare the results with those obtained
from the FFDNN-based speech synthesis toolkit Merlin.
In addition, when interpolating the speaker embedding vectors, there is the possibility of using
different interpolation factors α and investigating their influence on speech recognition. In par-
ticular, it would be interesting to see how a finer grid between the interpolated speakers, e.g.,
α = 0.1, affects speech recognition.

As already shown, training the speech recognition system with only synthesised voices did not
lead to good results in automatic speech recognition. The discrepancy between the training cor-
pus of synthesised voices and the development and test set of original voices led to problems in
speech recognition. For the future, it would be beneficial to address this issue, because training
an ASR system with only synthesised voices achieving acceptable results significantly reduces
the effort of training data acquisition.

– 91 –

Data Augmentation for ASR

– 92 –

Data Augmentation for ASR

8
Conclusion

The aim of this work was the augmentation of an existing training corpus for an ASR system
by using synthesised speech. In the context of this work, the successful use of a FFDNN-based
speech synthesis system with spectral feature and duration models was shown. Although nu-
merous systems with more advanced methods already exist, the generation of an average voice
model and the subsequent speaker adaptation using speaker embedding vectors works remark-
ably well with the FFDNN used by Merlin, since this method shows good speaker interpolation
properties.
The speaker embedding vector extraction prior to the speech synthesis process was based on a
speaker recognition system. It was shown that appropriate parameters for the speaker recogni-
tion system allow a good separation between individual speakers.
By interpolating the speaker embedding vectors from the original speakers, new voice character-
istics were generated and by passing the resulting interpolated vectors to the speech synthesis
system, natural sounding new voices were created. Based on the newly generated voices, the
original GRASS corpus was synthesised in order to increase the acoustic diversity of the training
corpus for the ASR system.
Due to the high number of new voices, experiments with different compositions of the training
dataset were carried out. The results show that augmenting an original corpus with the same
amount of synthesised utterances, performance of the ASR system was improved. However,
increasing the amount of synthesised voices further, the WER and the SER of the ASR sys-
tem deteriorated considerably. In further experiments, the influence on ASR performance was
investigated when replacing the original speakers from the training set with synthesised voices,
and it was found that the replacement worsens the ASR performance. If the ASR system was
trained exclusively with synthesised voices, ASR becomes almost impossible.

A comparison with the results from previous work shows a similar outcome: augmenting an
existing corpus with real speech with synthesised utterances leads to an improvement in ASR
performance if both speech corpora are in the same order of magnitude. However, if the amount
of synthesised speech dominates the amount of real speech, ASR performance degrades.

– 93 –

Data Augmentation for ASR

– 94 –

Data Augmentation for ASR

A
Appendix

– 95 –

A Appendix

A.1 Chapter 6
A.1.1 Section 6.3

Table A.1: Division of the utterances from the GRASS corpus into training, development and set and the
successive augmentation of the training set using the synthesised GRASS corpus (s). Utterances
were selected either per speaker (spk) or randomly (rand). The total number of utterances as well
as the number of different utterances per set is shown, separately for female and male speakers.

GRASS

id set selection utterances speakers

total different m f

1

train 3820 1248 17 16
train(s) spk (5) 2740 720 5 0
dev 249 154 1 1
test 254 162 1 1

2

train 3820 1248 17 16
train(s) rand 2740 700 393 164
dev 249 154 1 1
test 254 162 1 1

3

train 3820 1248 17 16
train(s) spk (7) 3836 755 4 3
dev 249 154 1 1
test 254 162 1 1

4

train 3820 1248 17 16
train(s) rand 3800 753 396 165
dev 249 154 1 1
test 254 162 1 1

5

train 3820 1248 17 16
train(s) spk (14) 7672 899 7 7
dev 249 154 1 1
test 254 162 1 1

6

train 3820 1248 17 16
train(s) rand 7672 890 396 165
dev 249 154 1 1
test 254 162 1 1

7
train 3820 1248 17 16
train(s) spk (21) 11508 974 18 3
dev 249 154 1 1
test 254 162 1 1

8

train 3820 1248 17 16
train(s) rand 11508 959 396 165
dev 249 154 1 1
test 254 162 1 1

9

train 3820 1248 17 16
train(s) spk (33) 18084 1080 22 11
dev 249 154 1 1
test 254 162 1 1

10

train 3820 1248 17 16
train(s) rand 18084 1064 396 165
dev 249 154 1 1
test 254 162 1 1

– 96 –

A.1 Chapter 6

Table A.2: Division of the utterances from the GRASS corpus into training, development and set and the
successive augmentation of the training set with synthesised speech (s). Utterances were selected
randomly (rand). The total number of utterances as well as the number of different utterances
per set is shown, separately for female and male speakers.

GRASS

id set selection utterances speakers

total different m f

11

train 3820 1248 17 16
train(s) rand 1000 518 319 143
dev 249 154 1 1
test 254 162 1 1

12

train 3820 1248 17 16
train(s) rand 3100 740 392 165
dev 249 154 1 1
test 254 162 1 1

13

train 3820 1248 17 16
train(s) rand 3500 755 395 165
dev 249 154 1 1
test 254 162 1 1

14

train 3820 1248 17 16
train(s) rand 4000 756 396 165
dev 249 154 1 1
test 254 162 1 1

15

train 3820 1248 17 16
train(s) rand 5000 823 396 165
dev 249 154 1 1
test 254 162 1 1

16

train 3820 1248 17 16
train(s) rand 30000 1149 396 165
dev 249 154 1 1
test 254 162 1 1

17

train 3820 1248 17 16
train(s) rand 50000 811 395 165
dev 249 154 1 1
test 254 162 1 1

– 97 –

A Appendix

A.1.2 Section 6.4

Table A.3: Division of the utterances from the GRASS corpus into training, development and set and the
replacement of 1 speaker with 1 speaker from the synthesised GRASS corpus. The total number
of utterances as well as the number of different utterances per set is shown, separately for female
and male speakers.

GRASS triphone model

id set selection utterances speakers WER in % SER in %
total different m f

18a

train 1225 16 16

1.04 3.94train(s) spk 120 1 0
dev 249 154 1 1
test 254 162 1 1

18b

train 1229 17 15

0.88 3.54train(s) spk 108 1 0
dev 249 154 1 1
test 254 162 1 1

18c

train 1232 16 16

0.96 3.54train(s) spk 106 0 1
dev 249 154 1 1
test 254 162 1 1

18d

train 1237 16 16

0.88 3.54train(s) spk 120 1 0
dev 249 154 1 1
test 254 162 1 1

18e

train 1224 16 16

1.04 4.33train(s) spk 115 1 0
dev 249 154 1 1
test 254 162 1 1

– 98 –

A.1 Chapter 6

Table A.4: Division of the utterances from the GRASS corpus into training, development and set and the
replacement of 5 speakers with 5 speakers from the synthesised GRASS corpus. The total number
of utterances as well as the number of different utterances per set is shown, separately for female
and male speakers.

GRASS triphone model

id set selection utterances speakers WER in % SER in %
total different m f

19a

train 1153 13 15

0.80 3.15train(s) spk 380 4 1
dev 249 154 1 1
test 254 162 1 1

19b

train 1148 14 14

1.04 3.94train(s) spk 359 2 3
dev 249 154 1 1
test 254 162 1 1

19c

train 1164 13 15

0.72 3.15train(s) spk 475 4 1
dev 249 154 1 1
test 254 162 1 1

19d

train 1148 14 14

0.88 3.54train(s) spk 384 5 0
dev 249 154 1 1
test 254 162 1 1

19e

train 1180 15 13

0.80 2.76train(s) spk 339 4 1
dev 249 154 1 1
test 254 162 1 1

– 99 –

A Appendix

Table A.5: Division of the utterances from the GRASS corpus into training, development and set and the
replacement of 10 speakers with 10 speakers from the synthesised GRASS corpus. The total
number of utterances as well as the number of different utterances per set is shown, separately
for female and male speakers.

GRASS triphone model

id set selection utterances speakers WER in % SER in %
total different m f

20a

train 1050 13 10

0.88 3.94train(s) spk 572 6 4
dev 249 154 1 1
test 254 162 1 1

20b

train 1070 12 11

0.80 3.15train(s) spk 664 7 3
dev 249 154 1 1
test 254 162 1 1

20c

train 1032 12 11

1.92 5.91train(s) spk 627 10 0
dev 249 154 1 1
test 254 162 1 1

20d

train 1042 13 10

1.20 5.12train(s) spk 605 7 3
dev 249 154 1 1
test 254 162 1 1

20e

train 1055 13 10

0.80 3.15train(s) spk 615 8 2
dev 249 154 1 1
test 254 162 1 1

– 100 –

A.1 Chapter 6

Table A.6: Division of the utterances from the GRASS corpus into training, development and set and the
replacement of 15 speakers with 15 speakers from the synthesised GRASS corpus. The total
number of utterances as well as the number of different utterances per set is shown, separately
for female and male speakers.

GRASS triphone model

id set selection utterances speakers WER in % SER in %
total different m f

21a

train 924 8 10

0.88 3.15train(s) spk 786 13 2
dev 249 154 1 1
test 254 162 1 1

21b

train 887 8 10

0.88 3.94train(s) spk 709 12 3
dev 249 154 1 1
test 254 162 1 1

21c

train 933 7 11

1.20 4.33train(s) spk 729 9 6
dev 249 154 1 1
test 254 162 1 1

21d

train 960 8 10

0.96 3.94train(s) spk 756 11 4
dev 249 154 1 1
test 254 162 1 1

21e

train 907 8 10

1.12 4.33train(s) spk 813 10 5
dev 249 154 1 1
test 254 162 1 1

– 101 –

A Appendix

Table A.7: Division of the utterances from the GRASS corpus into training, development and set and the
replacement of 20 speakers with 20 speakers from the synthesised GRASS corpus. The total
number of utterances as well as the number of different utterances per set is shown, separately
for female and male speakers.

GRASS triphone model

id set selection utterances speakers WER in % SER in %
total different m f

22a

train 808 5 8

0.96 3.94train(s) spk 908 11 9
dev 249 154 1 1
test 254 162 1 1

22b

train 787 8 5

1.12 4.72train(s) spk 898 17 3
dev 249 154 1 1
test 254 162 1 1

22c

train 754 5 8

0.96 3.54train(s) spk 909 11 9
dev 249 154 1 1
test 254 162 1 1

22d

train 723 6 7

1.52 5.12train(s) spk 886 17 3
dev 249 154 1 1
test 254 162 1 1

Table A.8: Division of the utterances from the GRASS corpus into training, development and set and the
replacement of 25 speakers with 25 speakers from the synthesised GRASS corpus. The total
number of utterances as well as the number of different utterances per set is shown, separately
for female and male speakers.

GRASS triphone model

id set selection utterances speakers WER in % SER in %
total different m f

23a

train 540 3 5

0.88 3.54train(s) spk 975 18 7
dev 249 154 1 1
test 254 162 1 1

23b

train 508 5 3

1.60 4.72train(s) spk 955 22 3
dev 249 154 1 1
test 254 162 1 1

23c

train 508 5 3

2.08 6.69train(s) spk 953 17 8
dev 249 154 1 1
test 254 162 1 1

– 102 –

A.1 Chapter 6

Table A.9: Division of the utterances from the GRASS corpus into training, development and set and the
replacement of 30 speakers with 30 speakers from the synthesised GRASS corpus. The total
number of utterances as well as the number of different utterances per set is shown, separately
for female and male speakers.

GRASS triphone model

id set selection utterances speakers WER in % SER in %
total different m f

24a

train 293 2 1

5.77 13.78train(s) spk 1001 19 11
dev 249 154 1 1
test 254 162 1 1

24b

train 309 1 2

5.45 17.72train(s) spk 1019 20 10
dev 249 154 1 1
test 254 162 1 1

– 103 –

A Appendix

A.1.3 Section 6.5

Table A.10: Division of the utterances from the synthesised GRASS corpus and the original GRASS corpus
into train, development and test set. Utterances were selected randomly (rand). The total
number of utterances as well as the number of different utterances per set is shown, separately
for female and male speakers.

GRASS

id set selection utterances speakers

total different m f

25
train(s) rand 5000 798 396 165
dev 249 154 1 1
test 254 162 1 1

26
train(s) rand 20000 1087 396 165
dev 249 154 1 1
test 254 162 1 1

27
train(s) rand 1000 507 332 136
dev(s) 312 184 1 1
test(s) 312 190 1 1

28
train(s) rand 5000 798 396 165
dev(s) 312 184 1 1
test(s) 312 190 1 1

29
train(s) rand 20000 1087 396 165
dev(s) 312 184 1 1
test(s) 312 190 1 1

30
train(s) rand 40000 1206 396 165
dev(s) 312 184 1 1
test(s) 312 190 1 1

31
train(s) rand 60000 1232 396 165
dev(s) 312 184 1 1
test(s) 312 190 1 1

– 104 –

A.1 Chapter 6

A.1.4 Section 6.6

Table A.11: Division of the utterances from the original WASS corpus into training, development and test
set and the successive augmentation of the training set using the synthesised WASS corpus (s).
Utterances were selected randomly (rand). The total number of utterances as well as the number
of different utterances per set is shown, separately for female and male speakers.

WASS

id set selection utterances speakers

total different m f

32
train rand 6955 4328 10 3
dev 446 223 1 1
test 446 223 1 1

33

train rand 6955 4328 10 3
train(s) rand 6955 4328 396 165
dev 446 223 1 1
test 446 223 1 1

34

train(s) rand 6955 4328 396 165
dev 446 223 1 1
test 446 223 1 1

Table A.12: Division of the utterances from the original WASS corpus into training, development and test
set and the successive augmentation of the training set using the synthesised WASS corpus (s).
Utterances were selected randomly (rand). The total number of utterances as well as the number
of different utterances per set is shown, separately for female and male speakers.

WASS GRASS

id set selection utterances speakers utterances speakers

total different m f total different m f

35
train rand 6955 4328 10 3 - - - -
dev - - - - 249 154 1 1
test - - - - 254 127 1 1

36

train rand 6955 4328 10 3 - - - -
train(s) rand 6955 4328 396 165 - - - -
dev - - - - 249 154 1 1
test - - - - 254 127 1 1

37
train(s) rand 6955 4328 10 3 - - - -
dev - - - - 249 154 1 1
test - - - - 254 127 1 1

– 105 –

Data Augmentation for ASR

– 106 –

Data Augmentation for ASR

Bibliography

[1] Amin Fazel, Wei Yang, Yulan Liu, Roberto Barra-Chicote, Yixiong Meng, Roland Maas,
and Jasha Droppo. “SynthASR: Unlocking Synthetic Data for Speech Recognition.” June 14,
2021. arXiv: 2106.07803v1 [cs.LG].

[2] Andrew Rosenberg, Yu Zhang, Bhuvana Ramabhadran, Ye Jia, Pedro Moreno, Yonghui
Wu, and Zelin Wu. “Speech Recognition with Augmented Synthesized Speech.” Dec. 2019,
pp. 996–1002. doi: 10.1109/ASRU46091.2019.9003990.

[3] Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike Schuster, Navdeep Jaitly, Zongheng
Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, RJ Skerry-Ryan, Rif A. Saurous, Yannis
Agiomyrgiannakis, and Yonghui Wu. Natural TTS Synthesis by Conditioning WaveNet on
Mel Spectrogram Predictions. 2017. doi: 10.48550/ARXIV.1712.05884. url: https://arxiv.org/abs

/1712.05884.
[4] Zhizheng Wu, Oliver Watts, and Simon King. “Merlin: An Open Source Neural Network

Speech Synthesis System.” Sept. 2016, pp. 202–207. doi: 10.21437/SSW.2016-33.
[5] Xu Tan, Tao Qin, Frank Soong, and Tie-Yan Liu. “A Survey on Neural Speech Synthesis.”

June 2021. arXiv: 2106.15561 [eess.AS].
[6] Carina Lozo, Jan Luttenberger, and Michael Pucher. “The thought collective behind thirty

years of progress in speech synthesis.” 3rd Workshop of History of Speech Communication
Research (2019).

[7] Yuxuan Wang, R. J. Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J. Weiss, Navdeep
Jaitly, Zongheng Yang, Ying Xiao, Z. Chen, Samy Bengio, Quoc V. Le, Yannis Agiomyr-
giannakis, Robert A. J. Clark, and Rif A. Saurous. “Tacotron: Towards End-to-End Speech
Synthesis.” INTERSPEECH. 2017. doi: 10.21437/INTERSPEECH.2017-1452.

[8] Heiga Zen. An example of context-dependent label format for HMM-based speech synthesis
in English. Mar. 2006. url: https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/F0parametrisation/hts_lab_f

ormat.pdf (visited on 01/25/2022).
[9] Srikanth Ronanki, Zhizheng Wu, Oliver Watts, and Simon King. “A Demonstration of the

Merlin Open Source Neural Network Speech Synthesis System.” SSW. 2016.
[10] Michael Pucher, Markus Toman, Dietmar Schabus, Cassia Valentini-Botinhao, Junichi

Yamagishi, Bettina Zillinger, and Erich Schmid. “Influence of speaker familiarity on blind
and visually impaired children’s perception of synthetic voices in audio games.” Sept. 2015.
doi: 10.21437/Interspeech.2015-376. url: https://sociolectix.org/papers/2015_is_voiceperc.pdf.

[11] Markus Toman and Michael Pucher. “An Open Source Speech Synthesis Frontend for
HTS.” Proceedings of the 18th International Conference on Text, Speech, and Dialogue -
Volume 9302. 2015, pp. 291–298. doi: 10.1007/978-3-319-24033-6_33. url: https://sociolectix.o
rg/papers/2015_tsd_salb.pdf.

[12] Michael Pucher, Michaela Rausch-Supola, Sylvia Moosmüller, Markus Toman, Dietmar
Schabus, and Friedrich Neubarth. “Open data for speech synthesis of Austrian German
language varieties.” 12. Tagung Phonetik und Phonologie im deutschsprachigen Raum.
2016, pp. 147–150. url: https://sociolectix.org/papers/opendata_pp2016.pdf.

[13] Shan Yang, Zhizheng Wu, and Lei Xie. “On the training of DNN-based average voice model
for speech synthesis.” 2016 Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA). 2016, pp. 1–6. doi: 10.1109/APSIPA.2016.7820818.

[14] The Centre for Speech Technology Research (CSTR) Edinburgh. Speaker adaptation. 2017.
url: https://github.com/CSTR-Edinburgh/merlin/tree/master/egs/speaker_adaptation/s1 (visited on
12/10/2021).

– 107 –

https://arxiv.org/abs/2106.07803v1
https://doi.org/10.1109/ASRU46091.2019.9003990
https://doi.org/10.48550/ARXIV.1712.05884
https://arxiv.org/abs/1712.05884
https://arxiv.org/abs/1712.05884
https://doi.org/10.21437/SSW.2016-33
https://arxiv.org/abs/2106.15561
https://doi.org/10.21437/INTERSPEECH.2017-1452
https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/F0parametrisation/hts_lab_format.pdf
https://wiki.inf.ed.ac.uk/twiki/pub/CSTR/F0parametrisation/hts_lab_format.pdf
https://doi.org/10.21437/Interspeech.2015-376
https://sociolectix.org/papers/2015_is_voiceperc.pdf
https://doi.org/10.1007/978-3-319-24033-6_33
https://sociolectix.org/papers/2015_tsd_salb.pdf
https://sociolectix.org/papers/2015_tsd_salb.pdf
https://sociolectix.org/papers/opendata_pp2016.pdf
https://doi.org/10.1109/APSIPA.2016.7820818
https://github.com/CSTR-Edinburgh/merlin/tree/master/egs/speaker_adaptation/s1

Bibliography

[15] Weicheng Cai, Jinkun Chen, and Ming Li. “Exploring the Encoding Layer and Loss Func-
tion in End-to-End Speaker and Language Recognition System.” Apr. 2018. doi: 10.21437

/Odyssey.2018-11.
[16] Georg Heigold, Ignacio Moreno, Samy Bengio, and Noam Shazeer. End-to-End Text-

Dependent Speaker Verification. 2015. doi: 10 . 48550 / ARXIV . 1509 . 08062. url: https : / / arxiv

.org/abs/1509.08062.
[17] Finnian Kelly, Anil Alexander, Oscar Forth, and David van der Vloed. “From i-vectors

to x-vectors –a generational change in speaker recognition illustrated on the NFI-FRIDA
database.” IAFPA conference, Istanbul. July 2019.

[18] Ðorđe Grozdić, Slobodan Jovičić, Zoran Saric, and Irina Subotić. “Comparison of GM-
M/UBM and i-vector based speaker recognition systems.” International Conference on
Fundamental and Applied Aspects of Speech and Language, Belgrade. Oct. 2015.

[19] William Campbell, Douglas Sturim, Douglas Reynolds, and A. Solomonoff. “SVM Based
Speaker Verification using a GMM Supervector Kernel and NAP Variability Compen-
sation.” Proceedings of IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2006. Vol. 1. June 2006, pp. I–I. doi: 10.1109/ICASSP.2006.1659966.

[20] Erica Cooper, Cheng-I Lai, Yusuke Yasuda, Fuming Fang, Xin Wang, Nanxin Chen, and
Junichi Yamagishi. “Zero-Shot Multi-Speaker Text-To-Speech with State-of-the-art Neu-
ral Speaker Embeddings.” 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing. Oct. 23, 2019. doi: 10.1109/ICASSP40776.2020.9054535. arXiv: 1910.10838v2

[eess.AS].
[21] Koji Okabe, Takafumi Koshinaka, and Koichi Shinoda. “Attentive Statistics Pooling for

Deep Speaker Embedding.” Interspeech 2018. Mar. 2018. doi: 10.21437/Interspeech.2018-993.
arXiv: 1803.10963 [eess.AS].

[22] Jesús Villalba, Nanxin Chen, David Snyder, Daniel Garcia-Romero, Alan McCree, Gregory
Sell, Jonas Borgstrom, Leibny Paola García-Perera, Fred Richardson, Réda Dehak, et al.
“State-of-the-art speaker recognition with neural network embeddings in nist sre18 and
speakers in the wild evaluations.” Computer Speech & Language (2019), p. 101026. doi:
10.1016/j.csl.2019.101026.

[23] Daniel Povey. Kaldi Data Preparation. Aug. 2015. url: https://kaldi-asr.org/doc/data_prep.h
tml (visited on 06/03/2022).

[24] David Van Leeuwen and Niko Brummer. “An Introduction to Application-Independent
Evaluation of Speaker Recognition Systems.” Speaker Classification I: Fundamentals, Fea-
tures, and Methods. Vol. 4343. Jan. 2007, pp. 330–353. isbn: 978-3-540-74186-2. doi: 10.1

007/978-3-540-74200-5_19.
[25] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE.” Journal

of Machine Learning Research 9.86 (2008), pp. 2579–2605. url: http://jmlr.org/papers/v9/v

andermaaten08a.html.
[26] Nanxin Chen, Jesús Villalba, and Najim Dehak. “Tied Mixture of Factor Analyzers Layer

to Combine Frame Level Representations in Neural Speaker Embeddings.” Interspeech
2019. Sept. 2019, pp. 2948–2952. doi: 10.21437/Interspeech.2019-1782.

[27] Signal Processing and Speech Communication Laboratory, Graz University of Technology;
Inffeldgasse 16c/EG; A-8010 Graz. GRASS: the Graz corpus of Read And Spontaneous
Speech. url: https://www.spsc.tugraz.at/databases-and-tools/grass-the-graz-corpus-of-read-and-spo

ntaneous-speech.html (visited on 07/14/2022).
[28] The Centre for Speech Technology Research (CSTR). The Festival Speech Synthesis Sys-

tem. June 2022. url: https://www.cstr.ed.ac.uk/projects/festival/ (visited on 07/02/2022).

– 108 –

https://doi.org/10.21437/Odyssey.2018-11
https://doi.org/10.21437/Odyssey.2018-11
https://doi.org/10.48550/ARXIV.1509.08062
https://arxiv.org/abs/1509.08062
https://arxiv.org/abs/1509.08062
https://doi.org/10.1109/ICASSP.2006.1659966
https://doi.org/10.1109/ICASSP40776.2020.9054535
https://arxiv.org/abs/1910.10838v2
https://arxiv.org/abs/1910.10838v2
https://doi.org/10.21437/Interspeech.2018-993
https://arxiv.org/abs/1803.10963
https://doi.org/10.1016/j.csl.2019.101026
https://kaldi-asr.org/doc/data_prep.html
https://kaldi-asr.org/doc/data_prep.html
https://doi.org/10.1007/978-3-540-74200-5_19
https://doi.org/10.1007/978-3-540-74200-5_19
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.21437/Interspeech.2019-1782
https://www.spsc.tugraz.at/databases-and-tools/grass-the-graz-corpus-of-read-and-spontaneous-speech.html
https://www.spsc.tugraz.at/databases-and-tools/grass-the-graz-corpus-of-read-and-spontaneous-speech.html
https://www.cstr.ed.ac.uk/projects/festival/

Bibliography

[29] SourceForge Headquarters. Austrian German Voices for Festival. Aug. 2015. url: https:

//sourceforge.net/projects/at-festival/ (visited on 03/11/2022).
[30] Computer Science Department. Creating Label Files for Training Data. June 2017. url:

http://www.cs.columbia.edu/~ecooper/tts/labels.html (visited on 03/11/2022).
[31] Clare-Marie Karat, Nicole Yankelovich, and Jennifer Lai. “Conversational Speech Inter-

faces and Technologies.” The Human-Computer Interaction Handbook. 2007. doi: 10.1201

/9781410615862.CH19.
[32] Cristian Tejedor-García. “Design and Evaluation of Mobile Computer-Assisted Pronunci-

ation Training Tools for Second Language Learning.” PhD thesis. Sept. 2020. doi: 10.3537
6/10324/43663.

[33] John Levis and Ruslan Suvorov. “Automatic Speech Recognition.” Encyclopedia of Applied
Linguistics. Nov. 2012. doi: 10.1002/9781405198431.wbeal0066.

[34] William Song and Jim Cai. “End-to-end deep neural network for automatic speech recog-
nition.” Standford CS224D Reports (2015).

[35] Frederick Jelinek. Statistical Methods for Speech Recognition. Cambridge, MA, USA: MIT
Press, 1998. isbn: 0262100665.

[36] Jonathan Hui. Speech Recognition — GMM, HMM. Jan. 2021. url: https://jonathan-hui.me
dium.com/speech-recognition-gmm-hmm-8bb5eff8b196 (visited on 04/20/2022).

[37] Jonathan Hui. Speech Recognition — Acoustic, Lexicon & Language Model. Nov. 2020. url:
https://jonathan-hui.medium.com/speech-recognition-acoustic-lexicon-language-model-aacac0462639

(visited on 04/20/2022).
[38] William Goldenthal and James Glass. “Statistical trajectory models for phonetic recogni-

tion.” ICSLP. Jan. 1994.
[39] Song Wang and Guanyu Li. “Overview of end-to-end speech recognition.” Journal of

Physics: Conference Series 1187.5 (Apr. 2019), p. 052068. doi: 10.1088/1742- 6596/1187/5

/052068. url: https://doi.org/10.1088/1742-6596/1187/5/052068.
[40] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep

Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian
Kingsbury. “Deep Neural Networks for Acoustic Modeling in Speech Recognition: The
Shared Views of Four Research Groups.” IEEE Signal Processing Magazine 29.6 (2012),
pp. 82–97. doi: 10.1109/MSP.2012.2205597.

[41] Jinyu Li. Recent Advances in End-to-End Automatic Speech Recognition. 2021. doi: 10.48

550/ARXIV.2111.01690. url: https://arxiv.org/abs/2111.01690.
[42] Julian Linke. ASR Script. unpublished. 2020.
[43] Daniel Povey. Kaldi. July 2015. url: https://kaldi-asr.org/doc (visited on 07/15/2022).
[44] Tobias Schrank and Saskia Wepner. “Speech Communication Laboratory, Automatic Speech

Recognition.” Signal Processing and Speech Communication Laboratory, Graz University
of Technology. 2021.

[45] Florian Schiel. The Munich Automatic Segmentation System MAUS. Apr. 2016. url: http
s://www.bas.uni-muenchen.de/Bas/BasMAUS.html (visited on 07/25/2022).

[46] Institute of Phonetics and Speech Processing. BAS Web Services. Apr. 2020. url: https:

//clarin.phonetik.uni-muenchen.de/BASWebServices/interface (visited on 06/20/2022).
[47] Daniel Jurafsky and James H. Martin. Draft: Speech and Language Processing - N-gram

Language Models. Dec. 2021. url: https://web.stanford.edu/~jurafsky/slp3/3.pdf (visited on
07/25/2022).

– 109 –

https://sourceforge.net/projects/at-festival/
https://sourceforge.net/projects/at-festival/
http://www.cs.columbia.edu/~ecooper/tts/labels.html
https://doi.org/10.1201/9781410615862.CH19
https://doi.org/10.1201/9781410615862.CH19
https://doi.org/10.35376/10324/43663
https://doi.org/10.35376/10324/43663
https://doi.org/10.1002/9781405198431.wbeal0066
https://jonathan-hui.medium.com/speech-recognition-gmm-hmm-8bb5eff8b196
https://jonathan-hui.medium.com/speech-recognition-gmm-hmm-8bb5eff8b196
https://jonathan-hui.medium.com/speech-recognition-acoustic-lexicon-language-model-aacac0462639
https://doi.org/10.1088/1742-6596/1187/5/052068
https://doi.org/10.1088/1742-6596/1187/5/052068
https://doi.org/10.1088/1742-6596/1187/5/052068
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.48550/ARXIV.2111.01690
https://doi.org/10.48550/ARXIV.2111.01690
https://arxiv.org/abs/2111.01690
https://kaldi-asr.org/doc
https://www.bas.uni-muenchen.de/Bas/BasMAUS.html
https://www.bas.uni-muenchen.de/Bas/BasMAUS.html
https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface
https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface
https://web.stanford.edu/~jurafsky/slp3/3.pdf

Bibliography

[48] SRI International’s Speech Technology and Research Laboratory. Ngram-Count. May 2008.
url: http : / / www . speech . sri . com / projects / srilm / manpages / ngram - count . 1 . html (visited on
05/25/2022).

[49] Daniel Jurafsky and James H. Martin. Draft: Speech and Language Processing - Hidden
Markov Models. Dec. 2021. url: https://web.stanford.edu/~jurafsky/slp3/A.pdf (visited on
07/25/2022).

[50] Eleanor Chodroff. Kaldi Tutorial. July 2015. url: https://www.eleanorchodroff.com/tutorial/ka

ldi/index.html (visited on 08/10/2022).
[51] Ahmed Ali and Steve Renals. “Word Error Rate Estimation for Speech Recognition: e-

WER.” Proceedings of the 56th Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers). Melbourne, Australia: Association for Computational
Linguistics, July 2018, pp. 20–24. doi: 10.18653/v1/P18-2004. url: https://aclanthology.org/P18

-2004.
[52] Roman Korostik, Javier Latorre, Sivanand Achanta, and Yannis Stylianou. “Assessing

Speaker Interpolation in Neural Text-to-Speech.” Speech and Computer. Ed. by Alexey
Karpov and Rodmonga Potapova. Springer International Publishing, 2021, pp. 360–371.
isbn: 978-3-030-87802-3.

– 110 –

http://www.speech.sri.com/projects/srilm/manpages/ngram-count.1.html
https://web.stanford.edu/~jurafsky/slp3/A.pdf
https://www.eleanorchodroff.com/tutorial/kaldi/index.html
https://www.eleanorchodroff.com/tutorial/kaldi/index.html
https://doi.org/10.18653/v1/P18-2004
https://aclanthology.org/P18-2004
https://aclanthology.org/P18-2004

Data Augmentation for ASR

List of Figures

1.1 Process of speaker interpolation-based data augmentation: Extraction of speaker
embedding vectors containing speaker-specific information from an end-to-end
speaker recognition system based on the audio files of the WASS corpus. The
speaker embedding vectors are interpolated and used as additional input to the
linguistic features for the speech synthesis system, in order to generate new voices
for augmenting the GRASS corpus. The augmented corpus is used as training set
for the ASR system, whose performance is evaluated afterwards. 15

2.1 Components of a conventional TTS synthesis system to convert a given text into
a speech signal including text normalisation, grapheme-to-phoneme conversion,
acoustic modeling and waveform generation [5]. 17

2.2 Distribution of speech synthesis concepts since 1990 [6]. 18
2.3 Model training and speech synthesis based on Merlin: During training the model

learns the relation between linguistic and acoustic features (top). The linguistic
feature vectors are used as input for the trained model (duration model and
acoustic model) to predict acoustic output features which are passed to a vocoder
to generate the speech waveform (bottom). 19

2.4 Pre-processing of linguistic features: vectorised and normalised HTS-style for-
matted labels used as input feature vectors for the FFDNN (duration model and
acoustic model). 19

2.5 Normalisation of acoustic features: extraction of acoustic features by using a
vocoder, which are normalised (mean-variance normalisation) and given as output
features to the FFDNN during training (top). At the synthesis step the trained
FFDNN predicts acoustic features which are normalised and given to a vocoder
in order to generate the corresponding waveform (bottom). 20

2.6 A feed forward deep neural network with four hidden layers to predict vocoder
parameters from given linguistic input features [4]. 21

2.7 Separate training of duration model (DM) and acoustic model (AM): the DM
takes phone alignments as input in order to learn how to predict phone-level
duration (left), likewise the AM receives the label files as input as well as the
acoustic output features to learn their relationship (right). 21

2.8 The trained duration model takes labels as input to predict duration, which is
further used as input to the trained acoustic model in addition to the labels
in order to produce the corresponding acoustic features required for the speech
waveform generation by means of a vocoder. 23

2.9 Speaker adaptation based on Merlin including the training of the AVM by using
multi-speaker information, the adaptation of the speaker-specific model and the
subsequent speech synthesis. 25

3.1 Timeline of automatic speaker recognition: Conventional speaker recognition is
based on GMMs and their adaptations (e.g., GMM-UBM, i-vector approach).
More state-of-the-art encoding techniques employ neural networks for robust
speaker recognition using x-vectors [17]. 28

3.2 Almost end-to-end neural network speaker recognition system consisting of an
encoding network, a statistical pooling layer and a classifier to identify a speaker
based on a given speech segment [20]. 29

3.3 DNN for extracting an utterance-level speaker representation (speaker embed-
ding) between the statistical pooling layer and the classifier [21]. 29

– 111 –

LIST OF FIGURES

3.4 LDE pooling layer: The variable-length input x = {x1, x2, ..., xL} is related to the
learnable dictionary components µ = {µ1, ..., µC} by the residual rtc = xt − uc

and the assigned weight wtc. The encoding layer applies an aggregation operation
in order to obtain the desired fixed-dimensional encoder output E = {e1, ..., eC}
[15]. 30

3.5 Utterance-level speaker embedding extraction from an end-to-end neural network
speaker recognition system. The resulting speaker embedding is used for speaker
verification (i.e., the similarity between a speech sample and a speaker ID) and
the calculated speaker ID for speaker identification. 31

3.6 Acoustic pre-processing prior to training the speaker recognition system. 31
3.7 Post processing of the calculated utterance-level speaker embedding vectors in

order to obtain pairwise scores based on which the speaker verification is carried
out. A subsequent evaluation shows the performance of the utterance embedding
vectors. 34

3.8 Distribution of frame lengths of the train utterances from the WASS corpus. . . . 37
3.9 Number of training utterances depending on the minimum required frame length. 37
3.10 Influence of the number of training utterances on the speaker recognition per-

formance: By reducing the number of utterances with at least a length of 300
frames from 1776 training utterances (top) to 776 training utterances (bottom),
performance of the embedding-based speaker separation degrades. 39

3.11 Influence of the chunk size of the training utterances on the speaker recognition
performance: A shorter chunk size (200 frames, top) achieves better speaker
separation and distinction between male and female speakers compared to a longer
chunk size (500 frames, bottom). The minimum required frame length is set to
500 (709 training utterances) and speaker embedding dimension is 128 in both
cases. 41

3.12 Influence of the speaker embedding dimension on the speaker recognition per-
formance: Increasing the speaker embedding dimension from 32 to 128 improves
performance whereas an increase from 128 to 512 results in degradation of per-
formance for same minimum frame length (500) and chunk size interval ([200,
200]). 44

3.13 t-SNE for 19 speakers from the WASS corpus with the following parameters: min-
imum frame length: 200; chunk size interval: [150, 200]; embedding dimension:
128; LDA dimension: 100. 45

4.1 Concatenation of the linguistic feature vector and the speaker embedding vector,
resulting in the input vector for the speech synthesis system. 49

4.2 Comparison between the conventional speaker adaptation method including the
training of the AVM, the adaptation of the speaker-specific model and the subse-
quent speech synthesis (left) and the speaker embedding-based speaker adaptation
that allows speaker-specific speech synthesis by using only a single AVM trained
with speaker embedding vectors (right). 50

4.3 Generation of speaker-specific speech by passing the interpolated speaker embed-
ding vectors in addition to the linguistic features to the previously trained AVM.
A vocoder takes the obtained acoustic features as input and generates the new
voice. 53

4.4 Distribution of frame lengths of the train utterances for different speaker combi-
nations. 54

4.5 t-SNE for 17 base speakers representing the original speakers from the WASS
corpus with the following parameters: minimum frame length: 200; chunk size
interval: [150, 200]; embedding dimension: 128; LDA dimension: 100. 56

– 112 –

LIST OF FIGURES

4.6 t-SNE for speaker combination bscwke with the following parameters: minimum
frame length: 200; chunk size interval: [150, 200]; embedding dimension: 128;
LDA dimension: 100. 56

4.7 t-SNE for speaker combination keplsc with the following parameters: minimum
frame length: 150; chunk size interval: [130, 150]; embedding dimension: 128;
LDA dimension: 100. 57

4.8 t-SNE for speaker combination fwaspo with the following parameters: minimum
frame length: 200; chunk size interval: [150, 200]; embedding dimension: 128;
LDA dimension: 100. 57

5.1 Conceptual ASR system: The incoming speech waveform is converted into a
sequence of text hypotheses by the ASR system [32]. 59

5.2 Conventional ASR system including a preprocesssing step and three main com-
ponents (lexicon, acoustic model and language model) [38]. 60

5.3 An illustration of the proceeding showing the individual steps during the ASR
training and evaluation. It includes the basic elements and pre-processing step
that are necessary for the training and evaluation process as well as the main
components, namely the language model, the acoustic model and the lexicon [44]. 61

6.1 Composition of the training, development and test set in the experiments with
the augmented GRASS training corpus, with development and test set from the
original GRASS corpus. 69

6.2 Performance of the ASR system depending on the amount of utterances from
the synthesised GRASS corpus, with the number of utterances from the original
GRASS corpus remaining constant. The development and test set are based on
the original GRASS corpus. The dashed line represents the result of the baseline
experiment. 71

6.3 Performance of the ASR system depending on the amount of utterances from
the synthesised GRASS corpus, with the number of utterances from the original
GRASS corpus remaining constant. The development and test set are based on
the original GRASS corpus. The dashed line represents the result of the baseline
experiment. 74

6.4 Performance of the ASR system depending on the number of speakers replaced
by speakers from the synthesised GRASS corpus, with the number and ID of
utterances remaining constant. The development and test set are based on the
original GRASS corpus. The dashed line represents the result of the baseline
experiment. 77

6.5 Composition of the training, development and test set in the experiments with the
synthesised GRASS training set, with development and test set from the original
GRASS corpus. 78

6.6 Composition of the training, development and test set in the experiments with
the synthesised GRASS training set, with development and test set from the
synthesised GRASS corpus. 78

6.7 Performance of the ASR system depending on the amount of utterances from
the synthesised GRASS corpus. The development and test set are based on the
synthesised GRASS corpus. 80

6.8 Composition of the training, development and test set in the experiments with
the WASS corpus. The training set consisted either of the original WASS corpus,
the synthesised WASS corpus or a composition of both with development and test
set from the original WASS corpus. 81

– 113 –

LIST OF FIGURES

6.9 Composition of the training, development and test set in the experiments with
the WASS corpus. The training set consisted either of the original WASS corpus,
the synthesised WASS corpus or a composition of both with development and test
set from the original GRASS corpus. 82

6.10 Performance of the ASR system depending on the amount of utterances from the
synthesised WASS corpus. The development and test set are based on the original
WASS corpus. 84

6.11 Performance of the ASR system depending on the amount of utterances from the
synthesised WASS corpus. The development and test set are based on the original
GRASS corpus. 85

– 114 –

Data Augmentation for ASR

List of Tables

2.1 Settings regarding the network architecture as stored in the configuration file for
the duration model and the acoustic model. 22

2.2 Settings regarding the dimension of the output features as stored in the configu-
ration file for the duration model and the acoustic model. 22

2.3 Settings regarding the waveform as stored in the configuration file for the duration
model and the acoustic model. 22

2.4 Proportion of the 8293 utterances per speaker in the WASS corpus and additional
information. 24

3.1 Settings for the acoustic pre-processing regarding the minimum frame length of
the utterances used for the training process. 32

3.2 Settings for the training process of the speaker recognition system. 33
3.3 Settings for the minDCF evaluation in terms of the estimated costs of misses and

false alarms (Cmiss and CF A) and the prior target probability Ptar. 36
3.4 Influence of the minimum required frame length (and the resulting number of

training utterances), the chunk size interval of the training utterances and the
speaker embedding dimension on the speaker recognition process. 36

3.5 Influence of the reduction of the training utterances on the EER and the minDCF
while keeping the other parameters constant. 38

3.6 Comparison of different chunk sizes and their influence on the EER and the
minDCF when keeping the minimum required frame length and speaker embed-
ding dimension constant. 40

3.7 Speaker embedding dimensions already used in the literature. 42
3.8 Influence of the speaker embedding dimension on the speaker recognition perfor-

mance (EER and minDCF) by keeping the minimum frame length and chunk size
interval constant and varying only the speaker embedding dimension {32, 128,
512}. 42

3.9 Experimentally derived choice of parameters for the speaker embedding extraction. 45
3.10 Assignment of the original speaker ID to the respective synthesised speaker ID. . 46

4.1 Separation of the utterances from the read speech part of the GRASS corpus
into training, evaluation and test set. The values in brackets show the number of
different utterances in each set. 51

4.2 Base speaker combinations (bscwke, keplsc and fwaspo) and their interpolations
used to evaluate the interpolated speaker embeddings. 53

4.3 Parameter setting for the speaker embedding extraction depending on the speaker
combination. 55

4.4 Performance of the speaker recognition system for different speaker combinations. 55

6.1 Experimental setup of the general parameters, including the settings for the lan-
guage model and the acoustic model (monophone and triphone model). 67

6.2 Division of the utterances from the GRASS corpus into training, development
and test set: The total number of utterances as well as the number of different
utterances per set is shown, separately for female and male speakers. 68

6.3 Performance of the ASR system in terms of the WER and the SER based on the
original training, development and test set of the GRASS corpus. The results of
the monophone model and the triphone model are shown separately. 68

– 115 –

LIST OF TABLES

6.4 Performance of the ASR system in terms of the WER and the SER based on
the training set of the GRASS corpus augmented by using utterances from the
synthesised GRASS corpus (s). The results of the monophone model and the
triphone model are shown separately. 70

6.5 Performance of the ASR system in terms of the WER and the SER based on
the training set of the GRASS corpus augmented by using utterances from the
synthesised GRASS corpus (s). The results of the monophone model and the
triphone model are shown separately. 73

6.6 Performance of the ASR system in terms of the WER and the SER based on the
training set of the GRASS corpus where a number of speakers from the original
GRASS corpus were replaced by speakers from the synthesised GRASS corpus (s).
The results of the monophone model and the triphone model are shown separately. 76

6.7 Performance of the ASR system in terms of the WER and the SER based on
the training set with utterances from the synthesised GRASS corpus (s). For
development and testing, both corpora were used. The results of the monophone
model and the triphone model are shown separately. 79

6.8 Division of the WASS corpus into training, development and test set with the
corresponding number of utterances and duration in seconds. 81

6.9 Performance of the ASR system in terms of the WER and the SER based on
the training set of the WASS corpus augmented by using utterances from the
synthesised WASS corpus (s). For development and testing, the WASS corpus
and the GRASS corpus are used. The results of the monophone model and the
triphone model are shown separately. 83

A.1 Division of the utterances from the GRASS corpus into training, development
and set and the successive augmentation of the training set using the synthesised
GRASS corpus (s). Utterances were selected either per speaker (spk) or ran-
domly (rand). The total number of utterances as well as the number of different
utterances per set is shown, separately for female and male speakers. 96

A.2 Division of the utterances from the GRASS corpus into training, development and
set and the successive augmentation of the training set with synthesised speech
(s). Utterances were selected randomly (rand). The total number of utterances as
well as the number of different utterances per set is shown, separately for female
and male speakers. 97

A.3 Division of the utterances from the GRASS corpus into training, development
and set and the replacement of 1 speaker with 1 speaker from the synthesised
GRASS corpus. The total number of utterances as well as the number of different
utterances per set is shown, separately for female and male speakers. 98

A.4 Division of the utterances from the GRASS corpus into training, development
and set and the replacement of 5 speakers with 5 speakers from the synthesised
GRASS corpus. The total number of utterances as well as the number of different
utterances per set is shown, separately for female and male speakers. 99

A.5 Division of the utterances from the GRASS corpus into training, development
and set and the replacement of 10 speakers with 10 speakers from the synthesised
GRASS corpus. The total number of utterances as well as the number of different
utterances per set is shown, separately for female and male speakers. 100

A.6 Division of the utterances from the GRASS corpus into training, development
and set and the replacement of 15 speakers with 15 speakers from the synthesised
GRASS corpus. The total number of utterances as well as the number of different
utterances per set is shown, separately for female and male speakers. 101

– 116 –

LIST OF TABLES

A.7 Division of the utterances from the GRASS corpus into training, development
and set and the replacement of 20 speakers with 20 speakers from the synthesised
GRASS corpus. The total number of utterances as well as the number of different
utterances per set is shown, separately for female and male speakers. 102

A.8 Division of the utterances from the GRASS corpus into training, development
and set and the replacement of 25 speakers with 25 speakers from the synthesised
GRASS corpus. The total number of utterances as well as the number of different
utterances per set is shown, separately for female and male speakers. 102

A.9 Division of the utterances from the GRASS corpus into training, development
and set and the replacement of 30 speakers with 30 speakers from the synthesised
GRASS corpus. The total number of utterances as well as the number of different
utterances per set is shown, separately for female and male speakers. 103

A.10 Division of the utterances from the synthesised GRASS corpus and the original
GRASS corpus into train, development and test set. Utterances were selected ran-
domly (rand). The total number of utterances as well as the number of different
utterances per set is shown, separately for female and male speakers. 104

A.11 Division of the utterances from the original WASS corpus into training, develop-
ment and test set and the successive augmentation of the training set using the
synthesised WASS corpus (s). Utterances were selected randomly (rand). The
total number of utterances as well as the number of different utterances per set
is shown, separately for female and male speakers. 105

A.12 Division of the utterances from the original WASS corpus into training, develop-
ment and test set and the successive augmentation of the training set using the
synthesised WASS corpus (s). Utterances were selected randomly (rand). The
total number of utterances as well as the number of different utterances per set
is shown, separately for female and male speakers. 105

– 117 –

	Statutory Declaration
	Acknowledgement
	Danksagung
	Abstract (English)
	Abstract (German)
	Contents
	1 Introduction
	2 Neural Network-based Speech Synthesis
	2.1 Text-to-Speech (TTS) Synthesis
	2.1.1 History
	2.1.2 Conventional TTS Synthesis
	2.1.3 Development of TTS Synthesis
	2.1.4 Neural Network-based Speech Synthesis

	2.2 Merlin - a Neural Network Speech Synthesis System
	2.2.1 Model Components
	2.2.2 Dataset
	2.2.3 Speaker Adaptation

	3 Speaker Encoding and Interpolation
	3.1 Speaker Encoding
	3.1.1 Conventional Approaches
	3.1.2 Neural Encoding

	3.2 Neural Speaker Embedding Extraction based on PyTorch and Kaldi
	3.2.1 Pipeline Speaker Recognition System
	3.2.2 Evaluation Metrics
	3.2.3 Experiments
	3.2.4 Speaker Embedding

	3.3 Interpolation of Speaker Embeddings

	4 Speaker Embedding-based Speaker Adaptation and Data Augmentation
	4.1 Speaker Embedding-based Speaker Adaptation
	4.1.1 Results

	4.2 Data Augmentation
	4.2.1 GRASS Corpus
	4.2.2 GRASS Corpus Augmentation
	4.2.3 Evaluation

	5 Automatic Speech Recognition
	5.1 Introduction to Automatic Speech Recognition (ASR)
	5.1.1 Field of Application
	5.1.2 Challenges
	5.1.3 Development of ASR Systems

	5.2 Building a Kaldi-based ASR System
	5.2.1 Data Preparation
	5.2.2 Feature Extraction
	5.2.3 Dictionary
	5.2.4 Language Model
	5.2.5 Acoustic Model
	5.2.6 Hidden Markov Models (HMM)
	5.2.7 Evaluation

	6 ASR Experiments
	6.1 Experiment Settings
	6.2 Baseline Experiment
	6.2.1 Result

	6.3 Corpus Augmentation using Synthesised Speech
	6.3.1 Amount of Synthesised Speech
	6.3.2 Selection of Utterances
	6.3.3 Results
	6.3.4 Optimisation of Data Augmentation
	6.3.5 Results

	6.4 Replacement using Synthesised Speech
	6.4.1 Results

	6.5 Using the Synthesised Corpus for Training
	6.5.1 Results

	6.6 Using the WASS Corpus for Training
	6.6.1 Corpus Mismatch
	6.6.2 Result

	7 Discussion
	7.1 Lessons learnt from Speech Synthesis
	7.2 Lessons learnt from ASR Experiments
	7.3 Outlook

	8 Conclusion
	A Appendix
	A.1 Chapter 6
	A.1.1 Section 6.3
	A.1.2 Section 6.4
	A.1.3 Section 6.5
	A.1.4 Section 6.6

	References
	List of Figures
	List of Tables

