
Sonic Interaction Design
for Websites

A Framework Designed for Simplifying
User Interaction Sounds

Master Thesis
2022

Johannes E Lechner, BSc

Page II

Contents
1. Introduction

2. Sound and Interface Design

 2.1. Sound and Interface Design in Other Media and Systems

 2.1.1. In Games

 2.1.1.1. Counter-Strike: Global Offensive

 2.1.1.2. Grand Theft Auto V

 2.1.2. In Mobile Operating Systems

 2.1.3. In Desktop Operating Systems

3. The Framework

 3.1. The Need for a Framework

 3.2. Development

 3.2.1. The Backend

 3.2.1.1. Different Types of Buttons

 3.2.1.2. Asynchronously Loading Audio Files

 3.2.1.3. Playing Audio

 3.2.1.4. Audio Playing Issues

 3.2.1.5. Mixer and Mute

 3.2.1.6. Saving Settings

 3.2.1.7. Volume Groups

 3.2.1.8. Settings Groups

1

2

5

5

6

8

9

11

17

17

18

18

18

20

23

29

31

33

36

39

Page III

 3.2.1.9. Audio Context Startup and Settings for Site Owners

 3.2.2. Enhancements Through TypeScript

 3.2.3. The Front-End

 3.2.3.1. Usage with CSS Frameworks

 3.2.3.2. Mixer Styling

4. Conclusion

5. Table of Figures

6. Bibliography

41

43

46

46

49

51

52

53

Page IV

Glossary

 CMS Content Management System

 a system to manage creation and modification of website con-

 tents like pages or posts

 TTFB Time To First Byte

 the time it takes for the first byte of a website to arrive after

 clicking a link

 UWP Universal Windows Platform

 a computing platform created by Microsoft to develop apps on

 Windows 10, 11, Xbox One and other Microsoft OS and devices

 Win32 Windows API

 UWP’s predecessor for developing Windows-only programs

Page V

Abstract
Many digital user interfaces are supported by sound. Especially com-

puter games, operating systems like Android, and professional control

panels benefit from this. Websites, however, are largely unaffected by this.

This thesis is about designing and implementing a web framework to coordinate user interface

sounds and make them manageable. While still customizable, the main goal was to provide

an easy-to-work-with framework with predefined sounds and plug-and-play capabilities.

The theoretical part of the thesis builds a foundation for the decisions made during

development and shows how different media deal with sonic interaction design.

Page 1

1. Introduction
As a regular mass transit user, I have often noticed the widespread landscape of

people’s notification sounds. Computer games, regardless of genre, also tend to have a

lot of sonic feedback, whether in menus or directly in the game. Finally, operating sys-

tems on computers also feature sonic feedback; in all three cases, it seems to enhance

the experience for the user. On websites, this is, however, primarily non-existent.

This thesis aims to open up the possibility of adding interaction sounds to any website

by creating a framework that developers can easily add to any existing web project. There

are two central questions that this thesis will answer:

Can websites also use sonic interaction design?

Can a user- and developer-friendly framework be created to accomplish this?

The thesis will answer the two questions above by being split into three parts:

The first chapter will reference other literature to explain the importance of sound in

interface design. Secondly, other media and operating systems will be analyzed and com-

pared to figure out how to approach the framework. Thirdly, I will explain the frame-

work itself with subsections focusing on the individual parts that make the framework

function. Finally, in the conclusion, I will summarise the most significant issues again

and explain what should be done differently by following projects.

Page 2

2. Sound and Interface
Design

Auditory feedback plays a vital role in our daily lives. Feedback like shutting a

door or the sizzling sound of food in a pan indicates valuable information without taking

a deeper look at what is happening. This feedback already plays a significant role in prod-

uct design, where companies consider many factors to get a distinct sound design when

interacting with an object [1]. Rocchesso et al. [1] say this is especially true in areas that: “...

create products with high functional densities, strong design identities, or which address

demanding markets such as car design.” They furthermore state that “prominent indus-

tries that have benefited from it [sound design] include the automobile and cosmetics

industries, but lower profile applications have arisen in diverse other areas, from kitchen

appliances to toys and office equipment. “However, in the digital world, there is no nat-

ural auditory (and haptic) feedback and no properties such as material type and force

that would create sound on interaction. Instead, digital interfaces can have any desirable

audio feedback, including none at all. Though the last option is not advisable, as Stephen

Brewster and Murray Crease [2] found out through an experiment:

“The results have shown that by indicating menu and item slip errors in a salient way

the usability of menus can be significantly improved. Sound was shown to be a very

effective method of providing this feedback. The workload analysis showed that the

overall workload, and in particular effort expended, was reduced significantly when

using the sonically-enhanced menus. Workload was reduced because the sonic enhance-

ments meant that participants needed to expend less effort to notice and recover from

Page 3

ments meant that participants needed to expend less effort to notice and recover from

menu and item slips. This, however, was not at the expense of making the menus more

annoying to use. This, along with previous results from sonifying other graphical wid-

gets (Brewster et al. 1994, Brewster et al. 1995a, Brewster 1998), indicates that earcons

can provide a significant qualitative improvement in a user’s experience with a system.”

Earcons, as mentioned above by Brewster and Crease, are sound icons that either

request a reaction or create auditory feedback on interaction. According to Hereford and

Winn [3], these “can tell you immediately if you have made an error, such as a wrong key-

stroke, or can tell you the status of the system, such as the rich tone that is made when

a disk is put into the drive on a Macintosh computer.” When writing the article in 1994,

Hereford and Winn [3] stated that sound in interfaces was “limited almost exclusively

to [...] arbitrary tones and beeps” which, to a neophyte, are not incredibly informative.

This is still the case today as, e.g., smartphone notification sounds show. The browser

Opera GX for example, as seen in “Figure 2.1: Screenshot of Opera GX Sound Options”,

has numerous options to enable clicks and typing sounds in the browser’s interface. And

while real-world objects such as a typewriter inspired some sounds, the tab closing sound,

for example, seems to have no real-world pendant.

Page 4

Figure 2.1: Screenshot of Opera GX Sound Options

Page 5

2.1. Sound and Interface Design in Other
Media and Systems

Before developing a web framework to quickly implement interaction sounds, a

reference of how to design the framework and its interaction, must be established. For

this, other media and systems are analyzed in the following sections. It is assumed that

the same principles that apply to similar systems, such as operating systems, also apply

to websites, as usability is handled similarly.

2.1.1. Games

The following games have been selected based on three factors: First, a leak from

Steam in 2018 where the top played games could be estimated [4]. The data has been

compared to current statistics using SteamDB [5] as seen in “Figure 2.2: Screenshot of

SteamDB most played games as of 18. August 2022”. Although very similar to other days,

the screenshot below explicitly shows stats from 18. August 2022. Lastly, my preferences

and ownership of the listed games have influenced the selection.

Page 6

2.1.1.1. Counter-Strike: Global Offensive

In August 2018, Counter-Strike: Global Offensive (CS:GO) received a new User

Interface [6]. The so-called “Panorama UI” modernized CS:GO’s interface and intro-

duced a new sound design. Valve introduced a hierarchy of interaction sounds. These

range from very soft typewriter-like sounds when hovering over settings menu items to

more pregnant versions when hovering over more significant menu items, to deep, airy

explosion mimicking sounds when opening and closing main windows. In addition to

Figure 2.2: Screenshot of SteamDB most played games as of 18. August 2022

Page 7

that, all sounds feature a very soft but noticeable reverb effect. For users on headphones,

audio is locational, meaning menus on the left also generate sound from the left. The last

effect, however, requires a setting to be enabled in the audio options seen below.

Surprisingly CS:GO only offers three non-music volume sliders, one of which is

a master audio slider. Most settings are related to positional audio and voice chat, which

for a game like CS:GO are the most likely the most critical settings. But other sound

settings lack entirely. For example, volumes for sounds in matches like footsteps and

gunshots are not adjustable, as changing these settings can arguably lead to considerable

advantages in competitive games. However, interaction sounds in the menu are also not

editable, which would not modify gameplay [7].

Figure 2.3: Screenshot of Counter-Strike: Global Offensive Sound Settings

Page 8

2.1.1.2. Grand Theft Auto V

Grand Theft Auto V (GTAV) has a very similar modern user interface. The menu,

as seen in , is split into tabs in the top row and submenus on the left. While the inter-

face appears normal through visual inspection, the sonic feedback shows that GTAV was

built for consoles and not PCs. There are no hover sounds, but klicks or navigating with

controllers or a keyboard’s arrow keys do generate sound. There is, however, no hierarchy

detectable between menus and options. The exception is the category row on top, which

produces the same sound when clicking on the tabs. The content, however, has to load

every time. After finishing loading a few milliseconds later, it produces another, different

sound. Like CS:GO, GTAV does not have any settings for interaction sounds and does

not feature much customizability for other sound options. There are three volume slid-

ers, a few options for multichannel audio setup, and settings for music. Both games show

the volume sliders as horizontal bars rather than vertical ones. This is most likely due to

space constraints but seems unintuitive as other digital applications such as DAWs and

hardware all feature up-down sliders, which users can intuitively map to increasing or

decreasing volume [8].

Page 9

2.1.2. In Mobile Operating Systems

Android 11, specifically EMUI 11, has a lot of customizability built-in. First, a

quick toggle for different sound modes can be seen. This toggle changes all sound set-

tings like a master channel’s mute button. As seen in “Figure 2.5: Screenshot of EMUI 11

“Sound & vibration” Settings”, Android also has four different volume sliders for different

types of audio: “Ringer, Notifications”, “Alarms”, “Music, Videos, Games”, and “Calls”.

Button presses like touch sounds fall under the first category. The sub-menu “More set-

tings” reveals on-off switches for these sounds [9]. Different manufacturers change the

layout of these settings. Samsung, for example, does not have a “More settings” menu and

uses multiple sub-menus [10]. The functions, however, are generally very similar among

Android flavors.

Figure 2.4: Screenshot of Grand Theft Auto V Sound Settings

Page 10

Figure 2.6: Screenshot of EMUI 11 “More
settings” Sound Settings

Figure 2.5: Screenshot of EMUI 11 “Sound &
vibration” Settings

Page 11

Apple’s iOS 15 offers much less cus-

tomization than Android. For example,

only one volume slider controls the ringer

and alerts. Apple, however, has integrated

options to change sounds for many interac-

tions, like sent mail tones. In Android, while

having a settable default notification sound

in the system settings, this is generally han-

dled on a per-app basis. Keyboard clicks, for

example, are set in the installed keyboard,

but Apple has an on-off switch for this in its

settings.

2.1.3. In Desktop Operating
Systems

Apple’s macOS 12 shows a very min-

imalistic approach to sound settings (see

“Figure 2.8: Screenshot of macOS 12 Sound

Settings”). For example, several presets that

affect notification tones are available for the

user to choose, but only two volume slid-

ers: one for master volume, which affects

all applications, and one for notification

sounds. Apple also included three switches

Figure 2.7: Screenshot of iOS 15 “Sound &
Haptics” Settings

Page 12

for interaction sounds. Compared to iOS, there are more switches but overall fewer

options [11].

Windows 11’s sound settings appear limited at first sight as well. There is only

a volume slider and the option to combine the left and right channels. Windows, how-

ever, has a few sub-menus presenting the real strength of its sound settings. As seen in

1, the volume mixer allows users to tamper with different apps’ volume settings from a

centralized location and set sound in- and outputs per app. Before Windows 11, users

would open the volume mixer from the tray, but this feature has been moved into the

new UWP Settings app [12]. The “More sound settings” button opens up an older variant

of sound settings from before Microsoft started upgrading their apps to UWP. Users can

still change individual sounds in this window, as seen in 1 [13].

Figure 2.8: Screenshot of macOS 12 Sound Settings

t

Page 13

Figure 2.9: Screenshot of Windows 11 Sound Settings

Page 14

Figure 2.10: Screenshot of Windows 11 Sound Mixer

t

Page 15

Figure 2.11: Screenshot of Windows 11 Win32 Sound Options

Figure 2.12: Screenshot of Windows 11 Win32 Sound Options [13]

Page 16

Ubuntu 22 LTS has very similar options to macOS. There is a system volume

slider and a system sounds volume slider; the latter controls various sounds, like plugging

and unplugging USB devices. The only other option focusing on interaction sounds is the

alert sound selector, which lets the user choose between fi ve diff erent types of sounds [14].

This settings menu resembles macOS’ settings very much. It has to be stated, though,

that this is the default ubuntu confi guration with GNOME as a desktop environment.

GNOME has many resemblances to macOS and works great without much customiza-

tion. However, there are other options like KDE’s Plasma Desktop Environment, which

has a more Windows-inspired approach, giving the user many customization options [15].

Figure 2.13: Screenshot of Ubuntu 22 LTS Sound Settings

Page 17

3. The Framework

3.1. The Need for a Framework

For the entire history of the web, sound was usually not a part of it. But with the

introduction of HTML 5 and the audio tag in 2008, users could load audio files into web-

sites, and browsers would render a simple control UI [16]. The Web Audio API expanded

upon this concept and allowed users to build various web applications with similar fea-

tures to Digital Audio Workstations. The problem, however, is that smaller developers and

smaller web projects usually do not have the time and resources to add audio enhance-

ments to websites. Richard MacManus [17] states: ‘At their best, frameworks make it easy

for developers to create sophisticated web apps.’ Thus, a small framework for basic Sonic

Interaction Design could help many developers quickly add a new component to their

websites.

Page 18

3.2. Development

3.2.1. The Backend

Before starting with anything else, the Web Audio API requires an AudioContext

to be created. The AudioContext is the central processing unit of everything the Web

Audio API offers. It is responsible for controlling and generating nodes and decoding

and playing audio. A single AudioContext is sufficient for a website to handle multiple

streams at once [18].

3.2.1.1. Different Types of Buttons

Hyperlinks are what defined the internet from the very first time it was used.

These links are usually located inside anchor tags (<a>) and either styled as underlined

text changing color on hovering over them (default browser behavior) or styled like but-

tons. The two other commonly used options for interaction are the input tag and the

button tag. In CSS frameworks, these three types usually fall under one category. Gen-

erally, they are styled as buttons regardless of whether the element is a button tag or an

anchor tag. W3.CSS 4, for example, defines w3-btn as well as w3-button classes, which

are generally used to style any link or button. These can be further styled with a handful

of color classes such as w3-blue and other effects such as border and shadow classes [19].

Bootstrap 5 has a very similar btn class, but instead of dedicated color classes, button

classes serving specific semantic purposes are available. With the default settings, color-

ing a button yellow would require the btn-warning class, for example [20]. Nevertheless,

the semantic differences of these buttons can not only be used to style them visually but

also to have different kinds of audio feedback.

Page 19

In this project, the developer has the option to define classes that correspond to

different audio cues. However, to be as open as possible to any CSS framework or none at

all, the default behavior is not to apply any sounds to any elements. Therefore, the devel-

oper has to assign so-called bsound classes manually. With the default settings, these

classes are bsoundDefault, bsoundImportant, bsoundHover, and bsoundHold. The name

implies the use case, but for clarification, here are the intended uses for each type:

• bsoundDefault:

A short impulse for any actions that require generic sound feedback on interact-

ing; the default trigger is a click.

• bsoundImportant:

A short impulse for actions with higher priority than the generic sounds; the

default trigger is a click.

• bsoundHover:

A short sound that fades in and out; the default trigger is hovering over objects.

• bsoundHold:

A brief and continuously repeated sound; the default trigger is pressing and hold-

ing down on an element (intended for sliders). For this to work correctly, the sound

has to be as short as possible and seamlessly loopable. That implies that the sound

wave has to be cut at zero-crossings and only in whole-numbered multiples of one

cycle. Additionally, it is recommended to use WAV files as MP3 files often contain

silence, thus making the sample not seamlessly loopable anymore [21].

Page 20

These settings only apply to the default behavior. The framework can be used

outside the box or customized to the developer’s preferences. Developers could also add

more types of sound by copying existing code and editing a few lines. Below is an exam-

ple of the default sound types applied to a Bootstrap 5 website.

var defaultSoundSelector = “.btn-close, .btn-primary, .btn-secondary,

 .nav-item”;

var importantSoundSelector = “.btn-warning, .btn-success,

 .btn-danger”;

var hoverSoundSelector = “.bsoundHover”;

var holdSoundSelector = “input[type=’range’]”;

3.2.1.2. Asynchronously Loading Audio Files

Developers can acquire audio in the Web Audio API in several ways. The MDN

lists the following four methods:

• generating it directly in JavaScript by an audio node

• reading it from raw PCM data (e.g., WAV files)

• generating it from HTML media elements exposed in the DOM

• getting a live feed from a WebRTC MediaStream (e.g., webcams, microphones)

[22]

As this project works with audio files, only two options are viable. Usually, for

accessibility, longer audio files are exposed in the DOM and loaded into the AudioCon-

text via audioContext.createMediaElementSource(). Shorter audio files like button

clicks get loaded into buffers via audioContext.createBufferSource(). Therefore

music would be loaded via the first option, while sounds used in this framework rely on

Page 21

the second option. Loading and playing a sample requires three functions and a list of

sounds present on the server to be used in the framework. Developers can specify these

sounds simply as an array like in the following:

const audioUrls = [

 “audio/click.mp3”,

 “audio/click2.mp3”,

 “audio/woosh.mp3”,

 “audio/loop.wav”

];

To avoid modifications to the code, developers must list sounds in a specific order.

The default order is bsoundDefault, bsoundImportant, bsoundHover, and bsoundHold.

Developers can change the order by switching the index in the play function shown

below and changing the order in the audioUrls constant. The play function requires

two other asynchronous functions to be functional. The audioFilesToBuffers(urls)

function loops through the array of audio files and produces an array of AudioBuffers for

use by the Web Audio API. This function is called once on load and is visible below.

Page 22

async function audioFilesToBuffers(urls) {

 const audioBuffers = [] as AudioBuffer[];

 for (let url of urls) {

 const sample = await singleAudioFileToBuffer(url)

 as AudioBuffer;

 audioBuffers.push(sample);

 }

 return audioBuffers;

}

As seen above, the singleAudioFileToBuffer(url) function is called inside

audioFilesToBuffers(urls) and uses the 2015 introduced fetch API to get an audio file

from the specified URL. This API requires using the async and await keywords, sus-

pending operation until fetch() delivers a response. The response is then converted into

an ArrayBuffer; basically, an array of bytes similar to a WAV files PCM stream of data. As

the last step, the array buffer is converted to a Web Audio API compatible AudioBuffer

and returned.

async function singleAudioFileToBuffer(url) {

 const response = await fetch(url);

 const arrayBuffer = await response.arrayBuffer();

 const audioBuffer = await audioContext.decodeAudioData(

 arrayBuffer

);

 return audioBuffer;

}

Page 23

When the browser calls the function audioFilesToBuffers(urls) on load, an

arrow function deals with the response where the array of samples is saved to a variable

previously defined. Inside this function, the event listeners for the different types of but-

tons also get created.

let audioBuffers = audioFilesToBuffers(audioUrls).then((response) => {

 samples = response;

 …

 }

3.2.1.3. Playing Audio

Since playing audio should happen on interaction, event listeners are required.

These require the previously saved samples array where all Web Audio API AudioBuffers

are stored. The individual buttons get collected by the methods explained in 3.2.1.1 on

page 18. The variables storing the DOM elements are now iterated through to apply

different event listeners depending on the button type. Below are two examples. The first

one shows the event listener setup for default buttons, and the second one is for hold

buttons.

for (var i = 0; i < buttonsDefault.length; i++) {

 buttonsDefault.item(i).addEventListener(‘click’, function () {

 startAudioContext();

 playSimpleSample(samples[indexDef], gainNodeDefault);

 }, false)

}

Page 24

for (var i = 0; i < buttonsHold.length; i++) {

 buttonsHold.item(i).addEventListener(‘mousedown’, function () {

 startAudioContext();

 playHoldSample(samples[indexHold], gainNodeHold, 0.1, 0);

 })

}

document.body.addEventListener(‘mouseup’, () => stopHoldSample());

In the two examples above the function startAudioContext() appears. This

includes a statement which is a requirement for the Web Audio API to function prop-

erly and will be further explained in 3.2.1.9 on page 41. The event listeners used to

trigger the different interactions generally worked out of the box as intended. How-

ever, checking the mousedown and mouseup events on sliders proved to be an issue

while testing the framework. Initially, two event listeners, mousedown and mou-

seup, were added to all hold buttons. However, as users could move the mouse out-

side the object while still changing the values, the framework needed another solu-

tion. Replacing the mouseup event with mouseout was unreliable as sometimes the

sound simply would not stop playing and on a second entry would start again, result-

ing in a layered sound. The solution was to add an event listener onto the website’s

body to detect the mouseup event. After testing, this seemed to be a reliable solution.

Interaction with the elements could now trigger all types of interaction sounds, but since

hold buttons also required a second event, the play function had to be modified. The

default play function is visible here:

Page 25

function playSimpleSample(audioBuffer, gainChannel) {

 const source = audioContext.createBufferSource();

 source.buffer = audioBuffer;

 source.connect(gainChannel).connect(gainNodeMaster).connect(

 audioContext.destination

);

 source.start(0);

}

First, the AudioContext creates a new sound source, an AudioBuffer. Next, one

element from the previously generated samples array is passed as an argument and then

passed into the new AudioBuffer. Then, before connecting to the destination (the des-

tination is comparable to virtual cables connecting to speakers), different GainNodes

get connected. The following section will explain these in more detail, but they typi-

cally work like volume sliders. Finally, the start function is called with the parameter 0,

meaning playback should start immediately. This parameter was passed as an argument

in earlier versions of the framework. Regardless, this is unnecessary as a delayed start of

interaction sounds would defeat the purpose of interaction sounds.

When writing the play function(s), there were two options for how it/they would

be called. The first option was to create a single function with multiple arguments pass-

ing at least the correct AudioBuffer from the sounds array and the correct GainNode.

However, hold buttons would require a customized version nonetheless. Thus having

modularity and the hold buttons in mind, creating a function for every type of sound

was the more logical way to go. This way, developers can easily add effects for single

button types like reverb at a later point without creating many type checks inside the

Page 26

play function. Splitting up the functions had the additional benefit of being less code for

a single play and, therefore, easier to understand and most likely faster as there are fewer

lines of code to go through before playing the sound. The AudioBuffer argument stayed,

however, to have the ability to easily change the sounds either via user interaction or a

developer changing the index.

var indexDef = 0;

var indexImp = 1;

var indexHov = 2;

var indexHold = 3;

Contrary to other play functions, the hold function had to use two events. This

is because instead of just playing the sound once, the hold buttons needed a second event

to stop the looping audio again. The modified play function can is visible below.

function playHoldSample(audioBuffer, gainChannel, rampTime, delayTime) {

 holdSampleRampTime = rampTime;

 if (holdSampleSource !+ undefined) {

 stopHoldSample();

 }

 holdSampleSource = audioContext.createBufferSource();

 holdSampleSource.buffer = audioBuffer;

 holdSampleSource.connect(gainNodeFadeInOut).connect(

 gainChannel).connect(gainNodeMaster).connect(

 audioContext.destination);

 gainNodeFadeInOut.gain.setTargetAtTime(1, 0, delayTime + rampTime);

Page 27

 holdSampleSource.start(delayTime);

 holdSampleSource.loop = true;

 holdSampleIsPlaying = true;

}

Since two functions now access the same sound source, the AudioBuffer can no

longer be isolated inside a single function. Therefore new variables are created in the first

few lines.

var holdSampleSource = undefined;

var holdSampleIsPlaying = false;

var holdSampleRampTime = 0.1;

When the page gets loaded, the holdSampleSource variable is set to undefined.

The sound source does not exist yet. On mousedown the playHoldSample() function gets

called. When writing this function, the stop function was not yet called reliably. The

solution was to check if the sound source was undefined. If not, it immediately stops play-

back, mutes audio, and sets the holdSampleSource to undefined. The last step is likely

unnecessary but was added just to be safe. Also, developers could then always check the

state of whether or not the slider was playing sounds or not instead of adding another

event listener. After this check, the sound source connects to the audio context like any

other sound type. The difference is that the gain.setTargetAtTime() function sets a dif-

ferent GainNode’s volume - much like an ADSR curve, or in this case, merely the attack.

In this case, the time argument is still available, as a delayed start could be useful for

fade-ins. Finally, looping is enabled, and the sample starts to play.

Page 28

function stopHoldSample() {

 if (holdSampleSource !+ undefined) {

 if (holdSampleIsPlaying) {

 gainNodeFadeInOut.gain.setTargetAtTime(

 0, 0, holdSampleRampTime

);

 holdSampleSource.stop(holdSampleRampTime + 0.1);

 holdSampleIsPlaying = false;

 } else {

 holdSampleSource.stop(0);

 holdSampleIsPlaying = false;

 }

 }

}

For safety, the stop function checks if the sound source exists. If it does exist,

the setTargetAtTime() function starts a fade-out, and playback is stopped after a delay.

In earlier versions, the sample source was deleted after the stop function, either directly

or within a timeout function. However, this is already done automatically by the Web

Audio API. After being played, it deletes and garbage-collects AudioBufferSourceNodes,

whether they ended playback on their own or were force-stopped via stop().

Page 29

3.2.1.4. Audio Playing Issues

WordPress is a very popular Content Management System which, according to

wordpress.org, 43% of the web uses [23]. The developers of WordPress built upon the abil-

ity to navigate between pages and posts. While single-page websites are possible and do

exist, it is not the intended use of WordPress.

While this framework’s approach generally works very well, handling multiple

pages was a big issue that was not solvable during development. Although many fron-

tend frameworks provide a great single-page experience, many sites rely on numerous

pages, with many running on WordPress and similar CMS. Adding a custom JavaScript

file to WordPress is possible, and WordPress functions for PHP are available to do so.

Nevertheless, on each page change, the JavaScript file gets loaded again. Because the Web

Audio API relies on an active AudioContext before anything is functional, this is a prob-

lem. Changing pages initializes that AudioContext again. Pressing, for example, a link in

the navigation bar generates a sound. However, clicking this link also changes the page

the visitor is viewing. So the sound starts playing but gets cut off as soon as the browser

has received the response from the web server and starts displaying the new page. The

time until the browser gets the response usually only takes around 100ms. This TTFB

depends on many factors, including page size, server and client location, server and client

network, and more. But even assuming an audio length of only half a second, a website’s

TTFB is generally shorter, resulting in the audio being cut mid-play. To clarify, after the

TTFB, the site is fully loaded yet. It just means the browser is starting to load the website

from nothing and replaces the previous one resulting at the end of audio playback.

Page 30

Due to time constraints and simply other functions being more critical, there

have not been any significant attempts to circumvent this. Though there have been a few

ideas:

• Saving the AudioContext

Working with LocalStorage is explained at a later point. The idea, however, was

to save the AudioContext to it. Unfortunately, but unsurprisingly, the same prob-

lem still exists, except now, after loading the page, the AudioContext is retrieved

from LocalStorage instead of being generated. This issue, however, resulted in the

idea of using Web Workers as this technology enables background execution of

JavaScript files, which without ever having worked with it, at least sounds like a

promising solution.

• Delaying site loading

In JavaScript, developers can prevent the default click behavior of links. But a

timer could start loading the site after the audio sample finishes. The issue is that

this makes the website feel unresponsive for the user and generates extra time

where clicking on other buttons is possible. This, in turn, leads to the browser

cutting off audio yet again.

• Having a container page

Instead of reloading the Web Audio API on multiple pages, a container page could

load the JavaScript file where an iframe shows the website content. However, it

has not been tested as part of this project if the Web Audio API can use buttons in

iframes with the Web Audio API.

Page 31

• Back-End implementations

JavaScript can not only be used on the Front-End but also as a Back-End via node.

js. However, the most likely issue with this idea is that the Web Audio API was

built to be used in the user’s browser, not on a server. Therefore, saving Audio-

Contexts to the Back-End is most likely not a possibility.

• No multipage websites

Although not a desirable solution to the problem, this is how it has been dealt

with in this project. It will also be the solution for developers that want to use this

framework without having to do many modifications. Again, while not ideal, the

problem does not exist if the site is only a single-page site.

3.2.1.5. Mixer and Mute

At a very early point in development, it became clear that users should be given

control over the sounds played through the framework. While desktop browsers generally

provide options to mute individual tabs, adding settings directly to the site was a much

cleaner solution. At first, a simple GainNode (a virtual fader) was added to allow users to

change the site’s volume without having to modify system sounds. However, since there

are multiple types of sound, numerous GainNodes made sense. There is also an added

benefit of having an extra mixer channel dedicated to hover sounds, which section 3.2.1.9

on page 41 will describe in more detail. Just like an AudioContext, GainNodes are one

of the first things to be created, as much of the following code relies on them.

const gainNodeMaster = audioContext.createGain();

gainNodeMaster.gain.value = 0.8;

Page 32

The script above creates such a GainNode; in this case the master GainNode.

Additionally, another GainNode has to be generated for every category of sound. All these

GainNodes get set to a default volume of 0.8 or 80%. This value is based on the settings

of the DAW FL Studio, where the default volume for virtual instruments is 78% and 80%

for mixer channels. The 78% stem from the MIDI standard, where 128 values are possible

for volume information. Volume sliders often get assigned to a value of 100 per default

which corresponds to 78.125%. Because websites do not have constraints like MIDI’s 7

bits of information, the value is rounded to a “better looking” 80%.

Working with GainNodes, however, requires some kind of user interface

to change the volume. Thus HTML code is necessary for the functionality of this

framework. It is possible to embed this in the JavaScript file, but keeping ease of use

in mind, it ultimately made more sense for the HTML file to store all the HTML.

Developers can already create and style the volume settings before ever touching this

framework’s JavaScript file. Additionally, changing color classes, for example, on

all elements, is simplified when everything styleable is present inside the same file.

In addition to volume sliders, users can directly mute all sounds or specific types of

sounds. The JavaScript file stores two values other than the GainNode’s gain value: the

slider’s float value and a boolean for the mute button. The GainNode’s gain value is now

calculated on any value change by multiplying the slider value with either zero or one,

depending on whether the user toggled the mute button on or off. The calculation can be

seen here, and the assignment of the event listener after that.

gainNode.gain.setTargetAtTime(volume * Number(!muted), 0, 0);

Page 33

if (!+slider) {

 slider.addEventListener(‘input’, function () {

 if (!+slider) volume = Number(slider.value);

 if (!+sliderValue) sliderValue.innerHTML = String(volume);

 volume.updateLocalStorage();

 });

}

In the case shown above, the gainNode.setTargetAtTime() function is preferred

over directly setting gainNode.gain.value to a specific value as the function has higher

priority than assigning the value directly. The variable masterVolSliderExists is a bool-

ean value calculated when gathering all event listener input triggers on value change.

3.2.1.6. Saving Settings

While a big issue was the inability to make multipage websites work correctly,

another case was re-opening the site. For example, setting the volume of a sound cate-

gory would be saved while visiting the site. But upon reloading, the browser reset every-

thing to the default 80% by reloading the JavaScript file. A well-working solution for

this is LocalStorage. LocalStorage is a simple JavaScript object that gets saved to a user’s

browser. Reloading pages and clearing the cache does not clear LocalStorage thus, set-

tings saved to LocalStorage would generally be safe from auto-cleaning browser exten-

sions and users troubleshooting pages.

Saving to LocalStorage is done by adding variables to the LocalStorage object.

Here is an example using the master volume:

Page 34

localStorage.volMaster = 0.8;

localStorage.volMasterMuted = false;

When this is first run, LocalStorage is empty. However, by assigning a value to a

non-existent variable inside the LocalStorage object, the variable is also created. How-

ever, checking if the variable exists is still necessary because settings should also be read

from and not only saved to LocalStorage. The example below shows how this project does

this.

volMaster = localStorage.volMaster =++ undefined ? 0.8 :

 parseFloat(localStorage.volMaster);

volMasterMuted = localStorage.volMasterMuted =++ undefined ? false :

 parseStringToBoolean(localStorage.volMasterMuted);

In both cases above, the conditional or ternary operator is an elegant and fast

way to check if the value exists. In essence, it is a shorter version of an if-else statement.

The first section performs the if statement - in this case localStorage.volMaster =++

undefined. After the question mark and separated by the colon, two values get returned

following the result of the condition; the first one if the condition is true, and the second

one if it is false. Since a value gets returned, developers can assign the result to a variable.

The statement could also be written as a function like the following:

Page 35

volMasterMuted = getFromLocalStorage();

function getFromLocalStorage() {

 var value;

 if (localStorage.volMasterMuted =++ undefined) {

 value = 0.8;

 } else {

 value = localStorage.volMasterMuted;

 }

 return value;

}

In both cases, it is necessary to parse the data because variables saved to LocalStor-

age are stored as strings. The function parseFloat is already available in JavaScript. For

booleans, however, there is no built-in function as JavaScript has a different system to

deal with any type of data to convert it into a boolean. MDN writes the following [24]:

“In JavaScript, a truthy value is a value that is considered true when encountered in a

Boolean context. All values are truthy unless they are defined as falsy. That is, all values

are truthy except false, 0, -0, 0n,””, null, undefined, and NaN. “

As the MDN wrote, only empty strings (“”) are falsy. Thus, booleans returned

inside strings are always true. The following custom function circumvents this issue:

function parseStringToBoolean(s) {

 if (s =++ “true”) return true;

 else return false;

}

Page 36

The function above could, in theory, be passed a different string, and it would

return false. However, since the only usage is getting the information on whether a

single type of audio was muted or not, and changing that value requires users to tamper

with LocalStorage via the console, the decision was made that this is not an issue.

3.2.1.7. Volume Groups

Saving volume settings quickly became a lot of work because the same lines of

code had to be written with minor variations for each type of sound, all being a potential

source of error. As prevention, a custom class was created to store volume data and easily

access it. The class is visible here:

class VolumeGroup {

 volume;

 muted;

 type;

 constructor(volume, muted, type) {

 this.volume = volume;

 this.muted = muted;

 this.type = type;

 }

 get Volume() { return this.volume; }

 set Volume(v) { this.volume = v; }

Page 37

 get Muted() { return this.muted; }

 set Muted(v) { this.muted = v;

 getCurrentVol() { return this.volume * Number(!this.muted) }

 .++

 }

An individual VolumeGroup object always corresponds to a volume slider and a

mute button. Currently, the project uses five VolumeGroup objects for the sound types

previously described. Getters and setters have been defined for the volume and the mute

variable, which get triggered on the “input” event in case of the sliders and the “change”

event in case of the mute buttons. The event listeners will be described further in the

next section when SettingsGroup objects have been introduced. A getCurrentVol()

function is also present. However, this is currently not used anymore as the calculations

for the GainNodes are done in the next function:

class VolumeGroup {

 .++

 updateLocalStorage() {

 switch (this.type) {

 case “master”:

 localStorage.volMaster = this.volume;

 localStorage.volMasterMuted = this.muted;

 gainNodeMaster.gain.setTargetAtTime(

 this.volume * Number(!this.muted), 0, 0);

 break;

 .++

Page 38

This function updates LocalStorage and the corresponding GainNode. The

volume gets directly sent to LocalStorage, but the GainNode has to handle both the

mute and the volume variables. Multiplying the volume with either 0 or 1, depending on

whether muted is true or false, makes it possible to use it in a single GainNode. Luckily,

in JavaScript, this does not rely on any custom functions. As mentioned before, all data

types are either truthy or falsy. While this can be used for numbers and strings as logi-

cal operators, another option is to turn it the other way around, converting booleans to

different data types. In the case of this project, the boolean value of muted gets turned

into a number. This number is 0 for the boolean false and 1 for true. First, the muted

value has to be negated, though, as a muted signal should correspond to a value of zero.

This negation was preferred over a more complicated variable name such as notMuted or

volumeEnabled as these versions are less understandable.

Creating a VolumeGroup is now easily done by the following statement:

var volMaster = new VolumeGroup(0.8, false, “master”);

This also replaces the ternary operator statement from the section before with

the use of getters and setters:

volMaster.Volume = localStorage.volMaster =++ undefined ? 0.8 :

 parseFloat(localStorage.volMaster);

Page 39

3.2.1.8. Settings Groups

Similar to VolumeGroup objects, settings are condensed into one object. The

custom SettingsGroup class can be seen below:

class SettingsGroup {

 slider

 sliderValue

 mute

 constructor() {

 this.slider = undefined;

 this.sliderValue = undefined;

 this.mute = undefined;

 }

 get Slider() { return this.slider; }

 get SliderValue() { return this.sliderValue; }

 get Mute() { return this.mute; }

 set Slider(v) { this.slider = v; }

 set SliderValue(v) { this.sliderValue = v; }

 set Mute(v) { this.mute = v; }

}

Contrary to VolumeGroup objects, SettingsGroup objects do not get assigned in

the constructor. While the volume settings can exist without the means to modify them,

SettingsGroup objects refer to HTML elements in the DOM; thus, an undefined state

Page 40

has to be possible if a developer chooses not to implement, for example, mute buttons.

Getters and setters exist for all variables. While setters generally only get called once,

getters are called whenever the settings change. Creating, for example, settingsMaster

can look like this:

var settingsMaster = new SettingsGroup();

settingsMaster.Slider = document.getElementById(‘volSliderMaster’);

settingsMaster.SliderValue = document.getElementById(

 ‘volSliderMasterValue’);

settingsMaster.Mute = document.getElementById(‘volMuteMaster’);

Here is the function responsible for linking a VolumeGroup to a SettingsGroup:

function addVolumeSettingsEventListeners(settingsGroup, volumeGroup) {

 if (!+settingsGroup.Slider) {

 settingsGroup.Slider.addEventListener(‘input’, function () {

 if (!+settingsGroup.Slider) volumeGroup.Volume = Number(

 settingsGroup.Slider.value);

 if (!+settingsGroup.SliderValue) settingsGroup.

 SliderValue.innerHTML = String(volumeGroup.Volume);

 volumeGroup.updateLocalStorage();

 });

 }

 .++

Page 41

 if (!+settingsGroup.Mute) {

 settingsGroup.Mute.addEventListener(‘change’, function () {

 if (this.checked) volumeGroup.Muted = true;

 else volumeGroup.Muted = false;

 volumeGroup.updateLocalStorage();

 });

 }

}

As seen above, event listeners will only get applied if the if statements are true.

The double quotation mark is a double negation. It relies on the concept of truthy and

falsy values again, as one quotation mark negates the input and changes the datatype to

boolean. The second one negates again, resulting in two negations (or no negation). This

is used to check if the element even exists. Suppose it does not, settingsGroup.Slider

returns undefined, which is a falsy value, thus resulting in false after the double nega-

tion. The event listeners, therefore, do not get applied if the element does not exist. Inside

the event listener, there is another check if the elements exist, though at least the slider

should exist at that point. After moving the project to TypeScript, this, however, was

marked as an error. Another check was implemented to get rid of this error.

3.2.1.9. Audio Context Startup and Settings for Site Owners

A significant limitation of this framework is that browsers block audio before user

interaction with the website. So when loading a site with the Web Audio API enabled, the

AudioContext gets disabled until a user has clicked somewhere on the site. This is, in

many cases, a welcome feature, for example, when opening YouTube tabs in the back-

Page 42

ground. For this framework, however, it is a problem. When freshly loading a site, press-

ing buttons can have a noticeable delay, and hover sounds do not work at all. Thus a

notice is necessary which catches the first interaction with a user before the main site

with all types of interaction sounds is working. This notice can be any shape or form

as long as the user has to click once before visiting the site’s content. For example, with

W3.CSS, this could look like the following:

<+++ Trigger/Open the Modal -->

<button id=”openModal” onclick=”document.getElementById(

 ‘w3-modal’).style.display=’block’” class=”w3-button w3-hide”>Open

 Modal <+button>

<+++ The Modal -->

<div id=”w3-modal” class=”w3-modal”>

 <div class=”w3-modal-content”>

 <div class=”w3-container”>

 <span onclick=”document.getElementById(‘w3-modal’).style.

 display=’none’” class=”w3-button w3-indigo

 w3-display-topright”>×<+span>

 <p>Unfortunately, browsers block a site’s sound until a

user has interacted with it.
Thus, for full functionality of this

site, this popup is a requirement.

You can change sound settings

at any time by visiting the settings menu.<+p>

 <+div>

 <+div>

<+div>

Page 43

The w3-hide class on the button element sets its display prop-

erty to none. Thus users will not see it on the website. In JavaScript, how-

ever, it can be referenced via its id and open with the click() function.

Since only hover sounds are majorly affected by browsers disabling sounds, a small extra

feature was developed:

if (hoverSoundsAcitvated) {

 if (!volHover.Muted) {

 if (!+modalButton) modalButton.click();

 }

}

The constant hoverSoundsActivated is set at the beginning of the settings file

and completely disables hover sounds and the popup. If hover sounds are activated, then a

check is performed if they are muted. Then, the modal informing users about the brows-

er’s sound blocking is shown if they are not muted.

3.2.2. Enhancements Through TypeScript

While developing the framework, many minor errors occurred, which individu-

ally would be far too insignificant to write about in this thesis. However, combined, they

made up a considerable amount of time spent with the framework. While restructur-

ing code numerous times was helping with clarifying what each function and each sec-

tion actually does to be able to re-write it, many errors stemmed from other issues like

wrong types being set in functions. These errors were not easily solvable before running

the code on the website, and even then, they could have been from anywhere as many

Page 44

functions are interconnected. Adding TypeScript to the project was a huge help in figur-

ing out these issues. Types in classes were predominantly already working out of the box,

and for all other instances, only minor adjustments had to be made to show and elimi-

nate all type errors. For example, parsing from boolean to string was overlooked entirely,

but TypeScript helped figure this issue out before even testing it.

type BooleanString = “true” | “false”;

function parseStringToBoolean(s: BooleanString): boolean {

 if (s =++ “true”) return true;

 else return false;

}

As visible above, a new type was declared to convert booleans inside of quotes

into real booleans. Another instance where TypeScript had a significant impact on bug

fixing was the SettingsGroup class, as there was the possibility of HTML elements

not being added. TypeScript allows multiple types to be assigned to a single variable.

This helped solve issues where functions or variables returned something other than an

HTMLInputElement or undefined.

class SettingsGroup {

 private slider: HTMLInputElement | undefined

 private sliderValue: HTMLElement | undefined

 private mute: HTMLInputElement | undefined

 .++

Page 45

 constructor() {

 this.slider = undefined;

 this.sliderValue = undefined;

 this.mute = undefined;

 }

 public get Slider(): HTMLInputElement | undefined {

 return this.slider;

 }

 public get SliderValue(): HTMLElement | undefined {

 return this.sliderValue;

 }

 public get Mute(): HTMLInputElement | undefined {

 return this.mute;

 }

 public set Slider(v: HTMLInputElement | undefined) {

 this.slider = v;

 }

 public set SliderValue(v: HTMLElement | undefined) {

 this.sliderValue = v;

 }

 public set Mute(v: HTMLInputElement | undefined) {

 this.mute = v;

 }

}

Page 46

3.2.3. The Front-End

3.2.3.1. Usage with CSS Frameworks

As explained before, one of the essential features of this framework was its fl ex-

ibility to be used with virtually any other technology except multipage websites. There-

fore, a small site was created showcasing all framework features three times with three

diff erent CSS frameworks demonstrating the before-mentioned fl exibility.

The fi rst choice was W3.CSS. Unlike the other two frameworks, this was purely a

personal choice. I have often chosen W3.CSS in past projects because building basic lay-

outs was always a joy and was accomplished quickly.

The second choice was Bootstrap, as, according to GitHub, it is the most popular

CSS framework available. Furthermore, as of August 2022, it is the ninth most starred

repository on GitHub [25] and by far the most starred CSS framework [26]. These statis-

tics greatly infl uenced the decision to include a version for Bootstrap and the third and

fi nal framework.

Because Bootstrap and W3.CSS are both frameworks with many pre-built compo-

nents, for the third implementation, I was looking for something diff erent. Tailwind CSS

is a newer approach to CSS frameworks providing classes to build components instead of

pre-built components. This approach is popular: As of August 2022, Tailwind CSS is the

second most starred CSS framework on GitHub [26].

Page 47

Fi
gu

re
 3

.1
: S

cr
ee

ns
ho

t o
f C

SS
 F

ra
m

ew
or

k
Se

le
ct

io
n

Page 48

Fi
gu

re
 3

.2
: S

cr
ee

ns
ho

t o
f W

3.
C

SS
 Im

pl
em

en
ta

ti
on

Page 49

Fi
gu

re
 3

.3
: S

cr
ee

ns
ho

t o
f B

oo
ts

tr
ap

 5
 Im

pl
em

en
ta

ti
on

Page 50

Fi
gu

re
 3

.4
: S

cr
ee

ns
ho

t o
f T

ai
lw

in
d

C
SS

 Im
pl

em
en

ta
ti

on

Page 51

3.2.3.2. Mixer Styling

The HTML part simply consists of a slider and a checkbox. CSS Frameworks

can style these in any way. However, the elements have to have unique ids assigned. Per

default configuration, these are called volSlider or volMute with an ending depending

on the type. For the master channel, this would be volSliderMaster and volMuteMaster.

While setting the ids is sufficient, a better approach would be to add labels for users to

understand what the individual intractable object changes. Below are two examples of

how these sliders could look. The left image shows default browser styling without any

CSS. The right image shows a version with Bootstrap 5 styling.

Figure 3.5: Screenshot of Default Styling for
Inputs of Type Range and Checkbox

Figure 3.6: Screenshot of Bootstrap 5 Styling for
Inputs of Type Range and Checkbox

Page 52

 <div>

 <input type=”range” min=”0” max=”1” step=”0.01”

 value=”0.8” orient=”vertical” id=”masterVolSlider” /+

 <label for=”masterVolSlider”>Master Volume<+label>

 <label for=”muteMasterVol”>Mute<+label>

 <input type=”checkbox” role=”switch” id=”muteMasterVol” /+

<+div>

<div>

 <label for=”masterVolSlider” class=”form-label text-secondary”>

 Master
Volume

 <+label>

 <input type=”range” min=”0” max=”1” step=”0.01” value=”0.8”

 orient=”vertical” id=”masterVolSlider” /+

 <div class=”form-check form-switch”>

 <input class=”form-check-input” type=”checkbox” role=”switch”

 id=”masterVolMute” /+

 <label class=”form-check-label” for=”masterVolMute”>Mute

 <+label>

 <+div>

<+div>

Page 53

4. Conclusion
Interaction sounds on websites are currently not yet widely used. Therefore, this

thesis tried to answer the following two questions:

Can websites also use sonic interaction design.

Can a user- and developer-friendly framework be created to accomplish this?

The theory shows that sound can add much value to interfaces, which is certainly

also true for websites. Moreover, I believe this project has accomplished this, but I am

also convinced that there is much more potential for sound on websites.

As more and more programs get moved to the cloud, and entire operating systems

(e.g., ChromeOS) rely on web apps, website interfaces play a more vital role. Currently,

however, browsers disabling sound output until a user interaction has occurred limits

how sound can be used. For example, I can imagine administrative panels for home serv-

ers that send notifications enriched by sonic feedback. Such a panel could be left running

in the background to catch necessary alerts - but unfortunately, restarting the browser

requires users to interact with the site again, taking its toll on productivity. Another issue

is multipage support. If AudioContexts were saved per site, sounds could still be played

while loading other pages.

Following this research, the next logical step for me would be to look at accessi-

bility which I have not touched on yet. I believe that sonic feedback could provide helpful

information for visually impaired people. First, however, research is necessary to discover

how to incorporate this into existing technologies like screen-readers and if this is even

necessary, as there are other options like Braille readers.

Page 54

4

6

7

9

10

10

11

12

13

14

15

15

16

47

47

48

48

49

49

5. Table of Figures
2.1: Screenshot of Opera GX Sound Options

2.2: Screenshot of SteamDB most played games as of 18. August 2022

2.3: Screenshot of Counter-Strike: Global Offensive Sound Settings

2.4: Screenshot of Grand Theft Auto V Sound Settings

2.6: Screenshot of EMUI 11 “More settings” Sound Settings

2.5: Screenshot of EMUI 11 “Sound & vibration” Settings

2.7: Screenshot of iOS 15 “Sound & Haptics” Settings

2.8: Screenshot of macOS 12 Sound Settings

2.9: Screenshot of Windows 11 Sound Settings

2.10: Screenshot of Windows 11 Sound Mixer

2.11: Screenshot of Windows 11 Win32 Sound Options

2.12: Screenshot of Windows 11 Win32 Sound Options [13]

2.13: Screenshot of Ubuntu 22 LTS Sound Settings

3.1: Screenshot of CSS Framework Selection

3.2: Screenshot of W3.CSS Implementation

3.3: Screenshot of Bootstrap 5 Implementation

3.4: Screenshot of Tailwind CSS Implementation

3.5: Screenshot of Default Styling for Inputs of Type Range and

Checkbox

3.6: Screenshot of Bootstrap 5 Styling for Inputs of Type Range and

Checkbox

Page 55

6. Bibliography
[1] D. Rocchesso et al., “Sonic interaction design: sound, information and experience,”

in CHI ’08 Extended Abstracts on Human Factors in Computing Systems, New

York, NY, USA, Apr. 2008, pp. 3969–3972. doi: 10.1145/1358628.1358969.

[2] S. Brewster and M. Crease, “Correcting menu usability problems with sound,”

Behav. Inf. Technol., vol. 18, May 1999, doi: 10.1080/014492999119066.

[3] J. Hereford and W. Winn, “Non-Speech Sound in Human-Computer Interaction:

A Review and Design Guidelines,” J. Educ. Comput. Res., vol. 11, no. 3, pp. 211–233,

Oct. 1994, doi: 10.2190/MKD9-W05T-YJ9Y-81NM.

[4] K. Orland, “Valve leaks Steam game player counts; we have the numbers,” Ars

Technica, Jun. 07, 2018. https://arstechnica.com/gaming/2018/07/steam-data-

leak-reveals-precise-player-count-for-thousands-of-games/ (accessed Aug. 18,

2022).

[5] SteamDB, “Steam Charts and Stats · Most Played Games on Steam,” SteamDB.

https://steamdb.info/graph/ (accessed Aug. 18, 2022).

[6] Valve Corporation, “A New Horizon,” Counter-Strike: Global Offensive Blog, Aug.

01, 2018. https://blog.counter-strike.net/index.php/2018/08/20738/ (accessed Aug.

18, 2022).

Page 56

[7] Valve Corporation, “Counter-Strike: Global Offensive.” Valve Corporation,

Bellevue, Washington, US, Aug. 21, 2012.

[8] Rockstar Games, Inc., “Grand Theft Auto V.” Rockstar Games, Inc., New York

City, US, Sep. 17, 2013.

[9] Huawei Technologies Co., Ltd., “EMUI 12.” Huawei Technologies Co., Ltd.,

Shenzen, China, Aug. 26, 2021.

[10] Samsung Electronics Co., Ltd., “One UI 4.” Samsung Electronics Co., Ltd., Seoul,

South Korea, Nov. 2021.

[11] Apple Inc., “macOS 12 Monterey.” Apple Inc., Cupertino, California, U.S., Oct. 25,

2021.

[12] W. Glenn, “How to Adjust the Volume for Individual Apps in Windows,” How-To

Geek. https://www.howtogeek.com/244963/how-to-adjust-the-volume-for-

individual-apps-in-windows/ (accessed Aug. 19, 2022).

[13] Microsoft Corporation, “Windows 11.” Microsoft Corporation, Albuquerque, New

Mexico, U.S., Oct. 2021.

[14] Canonical Foundation and Ubuntu Community, “Ubuntu 22.04 LTS.” Canonical

Foundation, London, UK, Apr. 21, 2022.

Page 57

[15] Canonical Foundation, “Ubuntu PC operating system,” Ubuntu. https://ubuntu.

com/desktop (accessed Aug. 20, 2022).

[16] M. Smith, “HTML 5 Publication Notes,” W3C, Jun. 10, 2008. https://www.w3.org/

TR/2008/NOTE-html5-pubnotes-20080610/ (accessed Jul. 27, 2022).

[17] R. MacManus, “Web Frameworks: Why You Don’t Always Need Them,” The

New Stack, Feb. 15, 2021. https://thenewstack.io/case-against-web-frameworks/

(accessed Jul. 27, 2022).

[18] MDN contributors, “AudioContext - Web APIs | MDN,” MDN Web Docs. https://

developer.mozilla.org/en-US/docs/Web/API/AudioContext (accessed Jul. 27, 2022).

[19] W3Schools, “W3.CSS Buttons.” https://www.w3schools.com/w3css/w3css_

buttons.asp (accessed Jul. 27, 2022).

[20] M. Otto, J. Thornton, and Bootstrap, “Buttons.” https://getbootstrap.com/

docs/5.0/components/buttons/ (accessed Jul. 27, 2022).

[21] M. Taylor, “LAME Technical FAQ,” LAME Technical FAQ. https://lame.

sourceforge.io/tech-FAQ.txt (accessed Jul. 28, 2022).

[22] MDN contributors, “Basic concepts behind Web Audio API - Web APIs | MDN,”

MDN Web Docs. https://developer.mozilla.org/en-US/docs/Web/API/Web_

Audio_API/Basic_concepts_behind_Web_Audio_API (accessed Jul. 27, 2022).

Page 58

[23] WordPress.org, “Blog Tool, Publishing Platform, and CMS,” WordPress.org.

https://wordpress.org/ (accessed Jul. 29, 2022).

[24] MDN contributors, “Truthy - MDN Web Docs Glossary: Definitions of Web-

related terms | MDN.” https://developer.mozilla.org/en-US/docs/Glossary/Truthy

(accessed Aug. 10, 2022).

[25] GitHub, Inc, “GitHub Search Top Repositories.” https://github.com/

search?o=desc&q=stars%3A%3E1&s=stars&type=Repositories (accessed Aug. 12,

2022).

[26] GitHub, Inc, “css-framework · GitHub Topics · GitHub.” https://github.com/topics/

css-framework?o=desc&s=stars (accessed Aug. 12, 2022).

