
Parametric Sound Texture Generator

Diplomarbeit

an der

Universität für Musik und darstellende Kunst, Graz
Technische Universität Graz

vorgelegt von

Gerda Strobl

Institut für Elektronische Musik und Akustik (IEM),
Universität für Musik und darstellende Kunst

A-8010 Graz

8. Jänner 2007

c© Copyright 2007, Gerda Strobl

Diese Arbeit ist in englischer Sprache verfasst.

Begutachter: Prof. Dr. Gerhard Eckel
Mitbetreuender Professor: Prof. Dr. Davide Rocchesso (Università di Verona)

Abstract

Sound texture modeling is a widely used concept in computer music. Although, a concrete definition
of sound texture is elusive, with this thesis I try to determine the scope of the different fields of acoustic
texture. After the report on the current state of different sound texture generation methods I will outline
common problems of the sound texture examples.

From the presented literature two existing algorithms, namely audio texture and natural grains,
which are based on a similar granular analysis /resynthesis approach will be further investigated. Both
algorithms can be used for creating a parametric sound texture generator that allows creating sounds out
of a simple parameter control structure. Starting from a short input texture, different, new sound textures
of variable length are produced. These new textures consist of consecutively connected segments that
are similar to the input texture.

A special characteristic of the selected algorithms is their property of segmenting the original signal
into perceptually meaningful units. Hence, sound textures which are rather associated as soundscapes
that consist of different streams are particularly examined. The analysis and the resynthesis of the algo-
rithms is effectively improved by means of parametric modifications so that soundscapes with distinct
events are broken up only at points that make sense to our auditory perception.

The implementation goal of this thesis is a real-time Pure Data interface for demonstration purposes
allowing the user to manually adjust parameters until the produced sound texture sounds plausible and
realistic with respect to a particular use of the texture. Ideally, the sound textures are not recognized
as a resynthesized version, new sounds are considered as being natural, segments are concatenated in a
natural flow and no disturbing repetitive patterns or artefacts can be heard.

Kurzfassung

Die Modellierung von Klangtextur ist ein bekanntes Konzept in der Computermusik. Den Terminus
Klangtextur (sound texture) in einer klaren Definition zu fassen ist schwierig, dennoch versuche ich in
dieser Arbeit die unterschiedlichen Gebiete von akustischer Textur klar herauszuarbeiten. Nach einem
Überblick über den aktuellen Stand der Forschung von unterschiedlichen Methoden der Klangtexturer-
zeugung, skizziere ich allgemeine Probleme von algorithmisch generierten Klangtexturen.

Zwei Algorithmen, audio texture und natural grains, die jeweils auf einem granularen Analyse/Re-
synthese-Verfahren aufbauen, werden genauer untersucht. Beide Algorithmen können als Grundlage für
einen parametrischen Texturgenerator herangezogen werden. Dabei sollen aus einem kurzen Original-
signal neue Klangtexturen erzeugt werden, die aus Segmenten des Originalsignals bestehen, jedoch in
neuer Ordnung aneinander gereiht werden. Die neuen Texturen sind theoretisch von unbegrenzter Dauer
und dem ursprünglichen Signal ähnlich.

Eine besondere Eigenschaft der ausgewählten Algorithmen ist die Fähigkeit das Originalsignal in
Segmente zu unterteilen, die mit der wahrnehmungsspezifischen Ereignisauswahl unseres Gehörs über-
einstimmen. Es werden somit Klangtexturen untersucht, die sich aus mehreren Schichten von Ereignis-
sen zusammensetzen und eher als Umgebungs- bzw. Hintergrundgeräusche bezeichnet werden. Um eine
klangliche Verbesserung der Texturen zu erreichen, werden die algorithmischen Parameter solange mo-
difiziert, bis die Segmentierung der Signale nur an Stellen erfolgt, die von der auditiven Wahrnehmung
als sinnvoll erachtet werden.

Das Ziel dieser Arbeit ist eine Echtzeit-Implementierung in Pure Data. Ein graphisches Interface für
Demonstrationszwecke wird präsentiert, das den BenutzerInnen ermöglicht Klangtexturen zu erzeugen
und gleichzeitig Analyseparameter solange zu modifizieren bis die Texturen plausibel und natürlich klin-
gen. Idealerweise werden die neu erzeugten Klangtexturen nicht als resynthetisierte Versionen erkannt.
Die Segmente werden so aneinander gereiht, dass es zu einem klanglichen Fluss kommt und keine aku-
stischen Artefakte entstehen.

Contents

Contents i

Acknowledgements vii

Credits ix

1 Introduction to sound textures 1

1.1 Texture . 2

1.2 Textures in the acoustic domain . 4

1.2.1 What is a sound texture ? . 4

1.3 Typology of sound textures . 6

1.3.1 Classes of noisy sounds . 6

1.3.2 Composition of sound scenes . 7

1.4 Textures in music . 7

1.4.1 Music textures . 7

1.4.2 Audio textures . 7

1.4.3 Sonic textures . 7

2 State of the art 9

2.1 Current methods . 9

2.1.1 Methods inspired by visual texture research . 9

2.1.2 Source-filter approaches . 10

2.1.3 Wavelet/Filterbank-based methods . 11

2.1.4 Grain-based methods . 11

2.1.5 Synthesis methods . 12

2.1.6 Physical modeling based methods . 12

2.1.7 Related work and applications . 13

2.2 Sound examples . 14

i

3 Insight in two grain-based algorithms 15
3.1 Creating a natural stream . 15
3.2 Feature vector . 16
3.3 Distance and similarity measure . 17

3.3.1 Distance measure . 17
3.3.2 Similarity measure . 18

3.4 Audio textures . 18
3.4.1 Analysis using perceptual features: MFCCs . 18
3.4.2 Frame similarity . 21
3.4.3 Segmentation based on novelty-structure-analysis 23
3.4.4 Sub-clip similarity . 24
3.4.5 Sequence determination . 26
3.4.6 Concatenation of segments . 26

3.5 Natural grains . 26
3.5.1 Analysis using physical features . 26
3.5.2 Segmentation based on syllable-like audio segments 27
3.5.3 Grading the transitions and resynthesis . 30

4 Algorithmic improvements 31
4.1 An empirical approach to encountering perfect segments 32
4.2 Sound database . 32
4.3 Frame size . 32
4.4 Improving the analysis: Audio textures . 33

4.4.1 Using the parameters proposed by the authors 33
4.4.2 MFCCs . 33
4.4.3 Using a larger kernel size . 33
4.4.4 Getting better segments . 34
4.4.5 Enhancing the similarity measure between sub-clips 37

4.5 Improving the resynthesis: Audio textures . 40
4.5.1 Modification of sub-clip sequencing rules . 40

4.6 New audio texture parameters . 41
4.7 Improving the analysis data: Natural grains . 41

4.7.1 Using the parameters proposed by the authors 41
4.7.2 Wavelet analysis . 41
4.7.3 Choosing a mother wavelet . 41
4.7.4 Increase number of decomposition levels . 42
4.7.5 Euclidean distance function over more frames 43
4.7.6 Getting the sub-clip borders . 44

4.8 Improving the resynthesis: Natural grains . 44
4.8.1 Extending the markov chain . 44

4.9 New natural grain parameters . 45
4.10 Exchange features and methods . 45

4.10.1 Building the novelty score using wavelets . 46
4.10.2 Detecting local troughs in the novelty score . 46
4.10.3 Building the Euclidean distance function using MFCCs 48
4.10.4 Finding local peaks in the Euclidean distance function 48

4.11 Conclusion . 48

ii

5 Real-time Sound Texture Generator 49
5.1 Real-time software Pure Data . 49

5.1.1 Software requirements of the STG . 49

5.2 Two-level system of the algorithmic structure . 50

5.2.1 Analysis: Level 1 . 50

5.2.2 Resynthesis: Level 2 . 52

5.2.3 Informed versus uninformed synthesis . 53

5.3 Interface structure . 55

5.4 Repetition control using sonification . 56

5.5 Constraints of the prototype . 57

6 Reflections upon sound textures 59
6.1 What is a perfect input texture? . 59

6.2 Imperfect sound textures . 62

7 Conclusion 65

A Appendix 67
A.1 Mel scale . 67

A.2 CD-ROM . 67

A.2.1 Matlab files . 67

A.2.2 Pure Data texture generator . 68

A.2.3 praat . 68

Bibliography 73

iii

iv

List of Figures

1.1 Oral texture . 3
1.2 Examples of visual textures . 3
1.3 Texture mapping on a Utah teapot . 3
1.4 Information content of textures . 5

3.1 Algorithmic flowgraph . 16
3.2 Spectrogram of a recording of sounds in a meadow . 17
3.3 MFCC process . 19
3.4 DCT and filterbank . 19
3.5 Spectrogram and MFCCs of fire . 20
3.6 Similarity data . 21
3.7 Simple similarity matrix . 22
3.8 Similarity of traffic . 22
3.9 Similarity of beat . 23
3.10 Novelty score of beat . 25
3.11 STFT vs DWT . 27
3.12 DWT filterbank . 28
3.13 DWT filters . 28
3.14 Distance function over four frames. 28
3.15 Euclidean distance function . 29

4.1 Hamming kernel . 34
4.2 Traffic signal with a small kernel . 35
4.3 Traffic signal with a larger kernel . 35
4.4 Bird chirp with a small kernel . 36
4.5 Bird chirp with a larger kernel . 36
4.6 Spectrogram of a traffic and segments . 38
4.7 Similarity between sub-clips 1 . 39
4.8 Similarity between sub-clips 2 . 39
4.9 Example sequence . 40
4.10 Daubechie versus Symlet . 42
4.11 Euclidean function over 12 frames. 44
4.12 Markov model . 45
4.13 Audio texture using wavelets 1 . 46

v

4.14 Audio texture using Wavelets 2 . 47

5.1 Two level implementation structure . 51

5.2 Screenshot of analysis.pd . 53

5.3 Screenshot of player .pd . 54

5.4 Screenshot of main.pd . 55

6.1 Birds26s: Screenshot of Praat 1 . 61

6.2 Birds26s: Screenshot of Praat 2 . 63

6.3 Wave signal . 63

A.1 Mel Scale . 68

vi

Acknowledgements

Many thanks to my advisor, Gerhard Eckel, for his marvellous ideas for my work whenever he listened
to my sound examples and for supporting me with so many scientific hints.

I especially wish to thank my advisor in Verona, Davide Rocchesso, for his great idea to work on
sound textures, for his ability to motivate me with lots of different ideas and papers and his immediate
attention to my questions. I am indebted to my wonderful colleagues Amalia de Götzen, Antonio de
Sena, Carlo Drioli, Pietro Polotti and Federico Fontana at the VIPS group from the University of Verona
who have provided invaluable help and feedback during the course of my work in their group.

I also like to thank Georg Holzmann for his unconventional help and also Deniz Peters, Johannes
Zmölnig, Alois Sontacchi and Franz Zotter for providing lots of valuable information.

Special mention goes to Hans Pfeiffer, Birgit Gasteiger, Barbara Semmler, Stefanie Greimel, Nils
Peters, Fabien Gouyon, Giuditta Franco, Mnacho Echenim, Fausto Spoto, Christina Leitner, Christoph
Gratl, Roman Sereinig, Katrin Nesper, Brigitte Bergner, Nicola Bernadini, Nils Peters, Rabtaldirndln and
Rosi Degen for correcting the English of this thesis.

Last but not least, without the support of my whole family, who always encouraged my thirst for
knowledge, this thesis would not have been possible.

Gerda Strobl
Graz, January 2006

vii

viii

Credits

For the creation of this thesis I intended to use mainly open-source software. The thesis was written with
the LaTex environment kile1 and plots were made with dia2. The spectrograms were created with praat3.
Furthermore, the sound files for the data base were edited with audacity4 and the sound texture generator
was built with the real-time programming language Pure Data5.

I would like to thank the following individuals and organisations for permission to use their material:
This thesis was written using Keith Andrews’ LaTex skeleton thesis [Andrews, 2006]. The following
figures are used subject to the public domain from Wikimedia Commons:

• Figure 1.3 extracted from:
http://de.wikipedia.org/wiki/Bild:Utah teapot.png (accessed Nov. 15. 2006)

• Figure 3.12 extracted from:
http://en.wikipedia.org/wiki/Image:Wavelets - Filter Bank.png (accessed Nov.
15. 2006)

• Figure 3.13 extracted from:
http://en.wikipedia.org/wiki/Image:Wavelets - DWT Freq.png (accessed Nov. 15.
2006)

• Figure A.1 extracted from:
http://upload.wikimedia.org/wikipedia/en/2/20/Mel-Hz-plot.png (accessed Nov.
15. 2006)

The following figures are used subject to the GNU Free Documentation License 1.2:

• Figure 1.1 extracted from:
http://grotsnik.ogre3d.org/wiki/index.php/Image:Grass.png (accessed Nov. 15.
2006)

• Figure 1.1 extracted from:
http://grotsnik.ogre3d.org/wiki/index.php/Image:Destina.jpg (accessed Nov. 15.
2006)

The sound files for the sounddatabase are used from The Freesound Project6, a collaborative database
of Creative Commons licensed sounds and from Georg Holzmann’s recordings: KlangRausch.

1http://kile.sourceforge.net/(accessed Dec. 12. 2006)
2http://www.gnome.org/projects/dia/ (accessed Dec. 12. 2006)
3http://www.fon.hum.uva.nl/praat/ (accessed Dec. 12. 2006)
4http://audacity.sourceforge.net/(accessed Dec. 12. 2006)
5http://puredata.info/ (accessed Dec. 12. 2006)
6http://freesound.iua.upf.edu/ (accessed Nov. 15. 2006)

ix

http://de.wikipedia.org/wiki/Bild:Utah_teapot.png
http://en.wikipedia.org/wiki/Image:Wavelets_-_Filter_Bank.png
http://en.wikipedia.org/wiki/Image:Wavelets_-_DWT_Freq.png
http://upload.wikimedia.org/wikipedia/en/2/20/Mel-Hz-plot.png
http://grotsnik.ogre3d.org/wiki/index.php/Image:Grass.png
http://grotsnik.ogre3d.org/wiki/index.php/Image:Destina.jpg
http://kile.sourceforge.net/
http://www.gnome.org/projects/dia/
http://www.fon.hum.uva.nl/praat/
http://audacity.sourceforge.net/
http://puredata.info/
http://freesound.iua.upf.edu/

x

Chapter 1

Introduction to sound textures

“ The most obvious property of texture is perhaps its ubiquity. ”

[Fang Liu]

Sound texture modeling is a widely used concept in computer music. Although, a concrete definition
of sound texture is elusive, with this thesis I try to determine the scope of the different fields of ”acoustic”
texture and to group the various generation methods which can be put down from well-known techniques
(e.g. wavelet transform, granular synthesis and source-filtering etc.) found in common computer music
systems.

So far there has been a great interest in developing methods which generate sound textures of un-
determined duration out of very short input textures only. Since most of the commercial applications
(e.g. computer games) have a limited memory capacity, the focus of sound texture generation for these
products is more on compressing the audio data than on sound quality. Scientific attempts of creating
perceptually meaningful sound textures are not very common. Rather artistic approaches focus on the
quality of sound textures but although real world sound samples hereby serve as orientation, realistic
simulation is not necessarily the goal of these compositions.
In the practical part of this thesis two existing algorithms, named audio texture [Lu et al., 2004] and
natural grains [Hoskinson and Pai, 2001], which are based on a similar granular analysis /resynthesis
approach will be further investigated. Both algorithms can be used for creating a parametric sound tex-
ture generator that allows creating sounds out of a simple parameter control structure. Starting from a
short input texture, different, new sound textures of variable length are produced. These new textures
consist of consecutively connected patterns that are similar to the input texture.
In the Matlab programming environment the input parameters which make up the specific properties of
the algorithm, such as frame size, number of feature coefficients, sequencing rules etc, are tested with
respect to the resulting perceptual sound quality.
The implementation goal of this thesis is a real-time Pure Data (PD) higher-level interface for demonstra-
tion purposes allowing the user to manually adjust parameters until the produced sound texture sounds
plausible and realistic with respect to a particular use of the texture. Ideally, the sound textures are
not recognized as a resynthesized version, new sounds are considered as being natural, segments are
concatenated in a natural flow and no disturbing repetitive patterns or artefacts can be heard.

The first part of the thesis (Chapters 1) embeds this work into the context of the various fields of
texture generation and research. Chapter 2 looks at the current state of sound texture creation and related
fields. In this chapter several approaches are presented and the problems of published sound examples
are discussed.

The second part of the thesis (Chapters 3 to 4) describes the technical background and introduces
details of the selected algorithms audio texture and natural grains. Furthermore, solutions for improving
these algorithms are presented.

1

2 1. Introduction to sound textures

In Chapter 5 the real time sound texture generator implemented in PD is introduced, which incor-
porates the algorithmic improvements. In Chapter 6 general reflections upon perfect sound textures are
presented resulting from investigations in this thesis. Finally, Chapter 7 discusses advantages and con-
straints of the algorithms and outlines some ideas for future work and research.

1.1 Texture

The curious thing about texture is that it cannot be associated with one single discipline. Texture (from
Latin textura: fabric [Stowasser et al., 1994]) is a widely used term which characterizes consistence,
structure and composition of complex items. Apart from the Latin denotation, texture can be found in
several aspects of life.

Basically, it is important to mention that texture is a very language specific-term, that is especially
common in English-speaking countries. Although it is a commonly used term in the English literature
on music, it is particularly unclear what texture is supposed to mean in the context of music.1 I shell now
try to give a general idea of different domains and research areas where one comes across texture:

• Texture script: Textura or Gothic bookhand is a script that originated in North France in the
Gothic. Nowadays this script form is associated with Gothic [Schumacher and Balthasar, 2006].

• Crystalline texture: The distribution of the grain orientations of polycrystalline forms refers to
crystallographic texture [Ma et al., 2006].

• Textural perception: Texture is an important item of information that humans use for analyzing
a scene [Amadasun and King, 1989]. Visual perception classifies texture in six categories, namely
coarseness, contrast, directionality, line-likeness, regularity and roughness [Tamura et al., 1978].

• Food texture:

Perception of food is the result of food characteristics interacting with the processes in
the mouth, as interpreted by the brain.[Engelen, 2004] (p 2)

Food is usually described by the taste and the flavor. However, subconsciously the texture of food
is of great importance for the appreciation and the recognition of food. In Figure 1.1 numerous
factors are presented that are both product and subject related which influence food texture per-
ception.

The term texture is also used in anglophone language areas in cuisine and wineculture. In [Asimov,
2006] texture is explained by means of Champagne’s effervescence which offers a different textural
experience from that of most wines. Richard Geoffrey who is the cellar master from Dom Perignon
Champagne explains ”...you can feel the difference between a lively vibrant champagne and one
that fatigues the mouth. Its texture!”

• Image texture: Image texture refers to surface. Everything that has a surface has a texture. The
generation of image texture resembling a surface is an important field of research in computer
graphics. Examples of image texture are shown in Figure 1.2 and an example of three dimensional
image texture mapping is depicted in Figure 1.3.

• Textures in composition: [Dunsby, 1989] states that texture probably arose as a feature of the
critical vocabulary spawned by post-tonal music starting in the beginning of the 20th century. It
is an interesting matter of fact that the definition of sound texture is very open and differs from
one approach to the next (compare 1.2.1), whereas different contemporary music composers such

1Dunsby who wrote an essay about music textures says: ”It might [...] be asked what it is that English-speaking musicians
have concerned themselves with while others have not.[Dunsby, 1989]”

1.1. Texture 3

Figure 1.1: Diagrams of factors that can influence food textures. The abbreviation CNS stands for
Central Nervous System. [Image adapted from [Engelen, 2004] .]

Figure 1.2: Examples of visual textures [Image extracted from [OGRE-team, 2006] under the
terms of the public domain copyright.]

Figure 1.3: The Utah teapot (standard reference model in 3-D applications) on which a texture
mapping algorithm is applied. [Image extracted from [Wikipedia/de, 2006] under the
terms of the public domain copyright.]

4 1. Introduction to sound textures

as for example Lachenmann2 have a very precise idea of what a (music) texture is [Lachenmann,
1996]. A detailed exploration into these textures goes beyond the scope of this thesis, since many
elaborations (e.g. Iannis Xenakis: Concrete PH (1958) and György Ligeti: Volumina (1962))
would need to be examined in order to understand what is meant by textures in composition.
Therefore, the reader is referred to [Bernadini, 2004; Dunsby, 1989] for further details.

• Acoustic texture: sound, music, sonic and audio texture. These terms are the main keywords of
this thesis and will be explained further in the following sections.

As can be seen above there are several disciplines focusing on texture. What most of these fields have
in common is that they all investigated some sort of material that can be explored with our human senses.
From an ecological point of view3 they all use real-world stimuli (visual system, haptic system, odour-
taste system and auditory system) to explore the textural environment. In [Neuhoff, 2004] Valkenburg
and Kubovy show the gap between types of modality quoting Gibson’s illustration of the problem with
his description of fire.

A terrestrial event with flames and fuel. It is a source of four kinds of stimulation, since it
gives off sound, odor, heat and light.... One can hear it, smell it, feel it, and see it, or get any
combination of these detections, and thereby perceive a fire...For this event the four kinds of
stimulus information and the four perceptual systems are equivalent. [Neuhoff, 2004]

1.2 Textures in the acoustic domain

1.2.1 What is a sound texture ?

Sound textures are an important class of sounds in interactive applications, video games, immersive
virtual reality environments and web-based applications, movie sound effects, or in art installations. In
video games it is important that sound textures can be used throughout the game without requiring too
much diskspace. Furthermore, in an installation-based scenario the creation of a soundscape from a very
short texture may be required.

As in image processing [Liu, 1997] there is no universally valid definition of a sound texture. Since
the term sound texture is relatively new, several authors come up with their specific sound texture defi-
nition. This is sometimes very vague and spans from baby crying and horse neighing up to background
sounds with simple musical structure [Athineos and Ellis, 2003; Behm and Parker, 2004; Cardle et al.,
2003; Bernadini, 2004; Dubnov and N.Tishby, 1997; Dubnov et al., 2002; Scipio, 1999; Filatriau and

2Lachenmann describes five types of sound (German: Klang): Kadenzklang, Farbklang, Fluktuationsklang, Texturklang
and Strukturklang. About the overall characteristic of texture he states:

Betont sei nocheinmal die Tatsache, dass die Gesamt-Eigenschaft einer Textur nirgends mehr notwendig identisch
ist mit den momentan darin zu hörenden Detail-Eigenschaften, allerdings in dem besonderen Sinn, dass der Kom-
plexitätsgrad des resultierenden Gesamtcharakters, als oft eher statistisch zu bewertendes Resultat von Häufungen,
meist geringer ist als derjenige der im Textur-Inneren eher beiläufig sich zusammenschließenden Gestalten - so
wie eben die Masse meist primitiver ist als ihre einzelnen Komponenten. (It should be pointed out once more,
that the overall characteristic of texture is not at all necessarily identical with the detailed characteristics that
one can hear in them at any given point in time, in the special sense that the level of complexity of the resulting
overall idea (thought of as a statistical result of densities) is often lower than that of the implicit Gestalt forming
itself from within the inside of the texture rather coincidentally - just as the multitude is often more primitive than
the individual components are.)[Lachenmann, 1996] (p 17)

3J. Gibson (1972) [Gibson, 1973] originally introduced the term ecological perception. He explained that what an organism
needs from a stimulus, for the purposes of its everyday life, is obtained directly from invariant structures in the environment.
Ecological psychology was developed primarily for visual perception but it was further explored into the auditory domain by N.
Vanderveer (1979). Hence, also the field of ecological psychoacoustics emerged, which pairs two fields of the study of auditory
perception (ecological perception and psychoacoustics).

1.2. Textures in the acoustic domain 5

Figure 1.4: Sound textures and noise show long-term characteristics. Image adapted from [Saint-
Arnaud and Popat, 1998]

Arfib, 2005; Misra et al., 2006; Hoskinson and Pai, 2001; Miner and Caudell, 2005; Norris and Denham,
2005; Saint-Arnaud and Popat, 1998; Wishart, 1996; Zhu and Wyse, 2004]. My thesis adheres to the
definition from [Saint-Arnaud and Popat, 1998] who define sound texture using two major constraints:
constant long-term characteristics and attention span.

A sound texture should exhibit similar characteristics over time. It can have local struc-
ture and randomness but the characteristics of the fine structure must remain constant on the
large scale. A sound texture is characterized by its sustain. [Saint-Arnaud and Popat, 1998]
(p 294)

This definition implies that pitch should not change dramatically as, for instance an accelerating car,
and rhythm should neither accelerate nor slow down.

Attention span is the maximum time between events before they become distinct. High-
level characteristics must be exposed within the attention span of a few seconds. [Saint-
Arnaud and Popat, 1998] (p 298)

For this thesis especially the second constraint is very interesting regarding the point of how many
events have to happen in order to be able to differentiate between one single event and a continuous
stream of events which we denote as a texture. Illustrative examples include a single car sound versus the
complex soundscape of traffic or a human voice versus a crowd of talking people (compare Section 3.1).

[Saint-Arnaud and Popat, 1998] also segregate sound textures by showing how the ”potential infor-
mation content” of speech, music, sound textures and noise increase over time. According to Figure 1.4
speech and music provide new information at any time and their curve of ”potential information content”
is shown as a continuously increasing function of time. Sound textures as opposed to speech and music
have long term information characteristics. Their curve of information content becomes flat after a short
time. Noise, in the auditory cognitive sense contains somewhat less information than sound textures.

Sound texture examples

When analyzing the examples of sound textures covered in most of the investigations on this subject, the
following classes can be differentiated:
Natural sounds: fire, water (rain, waterfall, ocean) wind, surface impacts
Animal sounds: sea gulls, crickets, humming
Human utterances: babble, chatter

6 1. Introduction to sound textures

Machine sounds: buzz, whir, hammer, grumble, drone, traffic
Activity sounds: chip, sweep, rustle, typing, scroop, rasp, crumple, clap, rub, walking

[Dubnov et al., 2002] also include the sound of a crying baby. According to the above mentioned
definition this sound should not be regarded as a sound texture, as the characteristics of the fine structure
are not constant enough .

For the practical implementation of this thesis a sound database was created containing examples as
listed above. In Chapter 6 it will be explained what results input sound textures produce when the signals
are analyzed, split into segments and concatenated in a new order.

1.3 Typology of sound textures

While doing the literature research, I hardly found works presenting a profound typology about noise or
sound texture classes, which I consider as a great scientific gap. Basically, [Hanna et al., 2004] state that
automatic audio classification systems consider sounds as music, speech, noise or silence. According
to [Filatriau and Arfib, 2005], from a perceptual point of view sound textures are good candidates to
be described by the ecological approach initiated by Gibson [Gibson, 1973]. However, I found two
typologies that fit in the context of sound textures.

1.3.1 Classes of noisy sounds

[Hanna et al., 2004] suggest a set of four classes of noisy sounds which are based on perceptual proper-
ties.

Colored noise

The first category covers the sounds that can be perfectly obtained by filtering white Gaussian noise. The
sound examples cover sounds like a seashore, wind and breathing.

Pseudo-periodic noise

Several natural noisy sounds such as, for example humming insects or machine noise, are characterized
by their pitch. These sounds are considered as a sum of a few sinusoids that imply noise with a perceived
pitch.

Impulsive noise

The third category covers natural noisy sounds which are composed of periodic or aperiodic pulses such
as applause, rain drops and walking. These pulses contained in impulsive noises are similar to transients
(attacks) in instrumental sounds.

Sinusoids with noise

In the last class, real world sounds, such as street soundscapes with horns, wind in trees with singing
birds, seashore etc., are considered. These sounds are assumed as being mixtures of several sound
sources which may also be harmonic.

1.4. Textures in music 7

1.3.2 Composition of sound scenes

A very recent work of [Misra et al., 2006] is based on the notion that environmental sound scenes are
composed of events and background texture. Their findings are intended for a specific software imple-
mentation (compare Section 2.1.7). Nevertheless, it is an intersting issue to examine how they define a
”sound scene”.

Deterministic events

According to the authors deterministic events are composed of sinusoidal components which are often
perceived as pitched events such as a bird’s chirp.

Transients events

are brief stochastic sounds such as footsteps and fire crackles.

Stochastic background

This is the residue remaining after the removal of the deterministic and transients parts. Sound examples
of stochastic background include sounds such as wind, ocean waves or street noise.

1.4 Textures in music

1.4.1 Music textures

A music texture is defined as follows: From a short example clip of music an infinite version is generated
by changing the order of the segments of the original signal [Jehan, 2005]. Due to the preservation of
the rhythmic and the metrical structure the new music texture never seems to repeat. This approach is
essentially based on a metrical representation (downbeat, meter, etc.) and on grouping the segments by
similarity. Originally, music texture is inspired by video texture [Schödl et al., 2000].4

It should also be mentioned that in English speaking countries the term music texture is used in
reference to the overall structure of a piece of music, the number of parts playing at once, the timbre of
the instruments playing these parts as well as the harmony and the rhythmic structure used in a piece of
music. The formal terms that are used, describe the relationships of melodies and harmony, for example
monophony and polyphony.

1.4.2 Audio textures

Audio texture [Lu et al., 2004] is introduced as a means of synthesizing long audio streams from a short
example audio clip. Examples of audio textures include screen saver sounds, lullabies, game music and
background music (see 2.1.4 and Chapter 3 for more details). As opposed to music textures from [Jehan,
2005] the temporal rhythmic structure is ignored.

1.4.3 Sonic textures

The papers of [Filatriau and Arfib, 2005; Filatriau et al., 2006] introduce the term sonic texture. Although
using a different term, I have the impression that sonic texture corresponds to sound texture since these
papers have a similar literature basis as this thesis (compare [Strobl et al., 2006]).

4The sound examples from Jehan cannot be compared with music texture examples presented by [Dunsby, 1989].

8 1. Introduction to sound textures

Chapter 2

State of the art

“Meaningful sounds, however, vary in much more elaborated ways than merely in pitch,
loudness, and duration. Instead of simple duration, they vary [...] in repetitiveness, [...] in
regularity of rate, or rhythm [...]. ”

[James J. Gibson]

2.1 Current methods

Sound texture generation is at the intersection of many fields of research such as signal analysis, sound
synthesis, music information retrieval, sound design and computer graphics. In this chapter, I aim to
present a survey of analysis/resynthesis and synthesis techniques dedicated to sound texture generation.
Finally, in the second part of this chapter common problems of generated sound textures, which are
published by some authors are evaluated.

2.1.1 Methods inspired by visual texture research

There is a crucial difference in the way that humans use acoustic and light energy to
obtain information about the world...For humans, sound serves to supplement vision by
supplying information about the nature of events, defining the ”energetics” of a situation.
[Bregman, 1990] (p 36)

An increase in machine processing power in the last ten years led to the development of numerous
methods like real-time 3D rendering, image modeling and special effects editing in visual computing for
automatic generation of videos. For more in-depth introduction to visual computing the reader is referred
to [Nielsen, 2005].

In order to create soundtracks for videos and computer games the demand of sonifying animated
sequences came up. However, sound data is not analog to image data. Hence, sound texture approaches
that have their background in image processing can never be a simple data mapping.

I think, it is interesting to tell that at the beginning of this work, I had the idea to transpose methods
from computer graphics to audio. However, after doing literature research on sound textures, I decided
to implement two algorithms that are signal-processing orientated.

Synthesizing sound textures through wavelet tree learning

The following presented approach is directly derived from prior work of the authors in texture movie
synthesis [Bar-Joseph et al., 2001]: A statistical learning algorithm is presented for synthesizing sounds

9

10 2. State of the art

that are statistically similar to the original [Dubnov et al., 2002; Bar-Joseph et al., 1999]. The main
task in statistical learning is the estimation of an unknown stochastic source given one or more training
examples, which are ”samples” from the source. A ”sample” can be a sequence of a movie frame, a
texture image or a segment of a soundfile.
An input sound texture is decomposed into wavelet coefficients. Out of the wavelets the algorithm
captures the joint statistics of the coefficients across time and scale. Thereupon, a multiple resolution
analysis tree is created, which is used for the manipulation of sound grains that have a similarity to the
original input texture. In the resynthesis step the inverse wavelet-transform is applied to obtain an output
tree. By the use of a random generator the new grains are resynthesized. This approach is used for
”periodic” (ocean waves) and stochastic (crying baby) sound textures.

Creating audio textures by samples: tiling and stitching

[Behm and Parker, 2004] attempt to create sound textures of undetermined duration from short input
textures . Starting from image processing, existing methods for creating visual textures, such as (tiling1

and stitching2), are transferred to the sound domain. The tiling-based method uses a chaos mosaic3 to
generate a new sequence from a sound texture sample whereas the stitching-based method combines
multiple chunks using a Least Recently Used (LRU)4 algorithm.

2.1.2 Source-filter approaches

Sound texture generation methods based on source filter processing extract the spectral envelope from
an input texture. The retrieval of the spectral envelope is based on an estimation of an all-pole synthesis
filter. This approach is called Linear Predictive Coding (LPC), which is widely used in speech communi-
cation. In order to resynthesize the original signal, a white input signal is used as the source (excitation)
signal that is filtered by the all-pole coefficients that are extracted from the original signal.

Two methods are presented, which aim at modeling sound textures by capturing properties of the
excitation and the filter using linear prediction both in time and frequency domain. These methods are
effective on texture types that primarily contain micro transients like crackling, crumpling or fire sounds,
but do not work well on sounds that consist of different event types, such as for example environmental
soundscapes with chirping birds [Misra et al., 2006].

Sound texture modelling with linear prediction in both time and frequency domains

Apart from music and speech signals, sound textures are considered as a third class of sounds [Athineos
and Ellis, 2003]. In this work texture is modelled as rapidly modulated noise by using two linear predic-
tors in cascade. The first linear prediction operation is applied in the time domain in order to capture the
spectral envelope. The second linear prediction is carried out in the frequency domain using the residual
of the previous LPC analysis to estimate the temporal envelope of the input texture. In the resynthesis
step a filtered Gaussian white noise is used to feed the cascade of filters, which consist of coefficients
that were obtained by the analysis of the original texture sample.

1An output image is tiled together from duplicates of the sample image, in a simple copy-and-paste manner [Nielsen, 2005].
2Stitching images is a method of merging multiple, overlapping images into one continuous image.
3For the creation of a chaos mosaic the following steps have to be executed: The output image is filled completely by tiling,

which results into a repetitive image with visible seams. Consequently, randomly selected parts of random size of the sample
are copied and pasted randomly onto the output image. Finally, the output image is filtered in order to smooth edges.

4The Least Recently Used page replacement algorithm is a cache algorithm, which discards the least recently used items
first [Tanenbaum, 1992].

2.1. Current methods 11

Sound texture modelling and time-frequency LPC

Similar to the approach presented by [Athineos and Ellis, 2003], [Zhu and Wyse, 2004] apply an extended
time frequency LPC method to create new sound textures. The major goal is to synthesize arbitrarily long
audio streams that are perceptually similar to the original sound. After the Frequency Domain (FDLPC)
computation, the event density over the entire frame is calculated as a statistical feature of the sound
texture and is used in the synthesis process to control the occurrence of events. In a further step the
detected events are extracted, leaving a background sound devoid of any events. The individual segments
are concatenated and a Time Domain (TD) LPC filter is applied to the background sound to model it. The
obtained TDLPC coefficients are used to reconstruct the background sound in the resynthesis process.
In a next step the time and the frequency domain LPC coefficients are clustered using k-means to reduce
the amount of analysis data. In the resynthesis process the background sound and the event sequence are
generated separately and mixed subsequently. A noise excited background filter is used to generate the
background sound. Finally, in order to generate the foreground sound the event density number is used
as parameter of a Poisson distribution to determine the onset position event in the resynthesized sound.

2.1.3 Wavelet/Filterbank-based methods

Analysis and synthesis of sound textures

[Saint-Arnaud and Popat, 1998] describe sound texture as a two-level phenomenon, having a low-level
(atoms) and a high-level basis (distribution and arrangement of the atoms) (compare the sound texture
definition from the authors in Section 1.2.1). In this implementation the input signal is analyzed using
a Quadrature Mirror Filterbank (QMF). The input signal is split in six-octave wide frequency bands.
Consequently, the energy level in each band of every frame make up a feature vector. A cluster-based
probability model (k-means) that encodes the most likely transitions of feature vectors, is used to char-
acterize the high-level of sound textures. Finally, the resynthesis is again performed by a binary tree
structured QMF bank.

Stochastic based sounds for immersive environments

[Miner and Caudell, 2005] divide stochastic sounds in two basic classes: continuous sounds, such as
motors, fan and wind and impulsive sounds, such as doors, gun firing and glass knocks. Their analy-
sis/resynthesis approach uses wavelet decomposition. Analysis coefficients are transformed (manipula-
tion of the high-and low-frequency parameters) according to the perceptual effects of the various models
(rain, brook, footsteps etc.) Model parameters manipulation translates into a new set of wavelet coeffi-
cients. The synthesis employs an Inverse Discrete Wavelet Decomposition (IDWT).

2.1.4 Grain-based methods

Granular synthesis

In granular synthesis Roads defines a grain as a microacoustic event, which has a typical grain length
between 1 and 100 milliseconds. The envelope of every grain is shaped by a specific amplitude envelope.
A single grain serves as a building block for sound objects so that by combining thousands of grains over
time a sonic atmosphere can be created [Roads, 2004]. There is a long tradition in the electro-acoustic
music of splitting sound samples into portions and manipulating them to generate new sounds. Granular
synthesis represents probably one of the oldest approaches in computer music to create texture like
sounds. On purpose, I say ”texture like sounds” because with grain based methods not every type of
sound texture can be (re)-synthesized and it is also not intended to create recognizable variations of the
original signal.

12 2. State of the art

Manipulation and resynthesis with natural grains

[Hoskinson and Pai, 2001] present a method for extracting parts of an audio signal in order to construct
a similar signal of indeterminate length. The used natural sounds correspond with the sound examples
from other investigations in sound texture modeling. A six-level wavelet decomposition is performed on
windowed frames of the input signal so that feature vectors are obtained. With these vectors a Euclidean
distance measure over four frames is performed in order to detect natural transition points. These points
indicate parts where the least energetic changes in the signal appear. The sound in between these tran-
sition points is not broken up any further. Hence, these segments are called natural grains. For each
segment a table of similarity between it and all the other segments is constructed. After the segmentation
a first-order Markov chain is used where each segment is corresponding to a state of the chain. The tran-
sition probabilities from one state to the other are estimated based on the smoothness of the transition
between it and all the other segments. Then the segments are arranged in a continuous stream with the
next segment being chosen from the other segments, which best follow from it. There is a Java Applet5

available that demonstrates this method.

Audio textures

[Lu et al., 2004] synthesize long audio streams using short audio clips as input signals. From an audio
clip Mel frequency cepstral coefficients are computed in order to get a feature vector for every frame.
A similarity measure is computed between any two frames. These measures are correlated with a ker-
nel matrix in order to get a novelty score. Local peaks in the novelty correspond to the borders of the
segments. Based on the transition probability between the extracted segments the sequences are concate-
nated in a new order. According to their definition audio textures includes sounds like lullabies, screen
saver music and natural sounds (e.g. horse neighing, roar of the sea).

2.1.5 Synthesis methods

There are several filtering techniques colorizing white noise in order to create sound textures. However,
in the context of sound texture generation based on sound synthesis only the work of Di Scipio based on
Functional Iteration Synthesis (FIS) can be found in the literature. 6

Synthesis of environmental sound textures by iterated nonlinear functions

Di Scipio [Scipio, 1999] uses nonlinear functions to synthesize environmental sound textures. The pre-
sented system is based on FIS, which is a derivative of the wave terrainy synthesis, where wave terrains
are generated by iterations of nonlinear functions. Sounds like rain, cracking of rocks, burning materials
etc. are considered as sonic phenomena of textural nature that are synthesized with FIS.

2.1.6 Physical modeling based methods

According to [Fontana and Bresin, 2003] sound synthesis based on physical modeling has its roots in
paradigms for the generation of traditional instrument sounds. Therefore, a traditional synthesis model is
specified by understanding the physical generation process and its effects on sound production. Recently,
some models for sound textures were developed, which are physical-model based but focus on dealing
with the cause that produces a signal and not with the effect [Rocchesso and Fontana, 2003].

5http://www.cs.ubc.ca/∼reynald/applet/Scramble.html (accessed Nov. 15. 2006)
6I particularly investigated literature that describe ”sound textures”.

http://www.cs.ubc.ca/~reynald/applet/Scramble.html

2.1. Current methods 13

However, physical based models are always designed for very specific sounds only. No general sound
texture model is possible with physical models and generated sounds are basically very ”pure and clean”
meaning that there are no foreground sound events (eg. bird, car horn etc.).

Models for liquid sounds

The acoustic emission of single bubble sounds is identified as the fundamental mechanism for liquid
sound production. [van den Doel, 2005] developed a sound synthesis model for a single bubble sound.
Consequently, he applies a stochastic model on the bubble for the real-time interactive synthesis of
complex sounds in order to generate liquid sounds such as produced by streams, pouring water and rain.

Crumpling sounds

Ecological sounds describe higher-level events such as crushing or walking [Fontana and Bresin, 2003].
Crumpling sound occurs whenever a source emission can be modeled as a superposition of crumpling
events. For example the sound of aluminum cans that are crushed is a composition of single crumpling
events. Generally, [Sethna and Houle, 1996] found out that crumpling paper emits sound in the from
of a stationary process made of single impulses, whose individual energy can be described by Pois-
sons’s processes. Based on these findings [Fontana and Bresin, 2003] modeled ecological events like
crushing walking and running, starting from an existing impact model that is superimposed by temporal
stochastic characteristics. Moreover, they created real-time demonstration patches in Pure Data where
the crumpling sound can be controlled and listened to.

Sound textures based on computational fluid dynamics

[Dobashi et al., 2003, 2004] developed methods for real-time rendering of aerodynamic sounds and
turbulent phenomena, such as swinging swords and fire. Vortex sounds are simulated corresponding to
the motions of fluids obtained by the simulation. First numerical fluid analysis is used to create the sound
textures. Then the texture samples are used for rendering the vortex sound corresponding to the motion
of the fluids. As these sounds do not only consist of vortices (e.g. combustion, reverb), a combination of
synthetic vortex and recorded sounds is used.

2.1.7 Related work and applications

Tapestrea

Techniques and Paradigms for Expressive Synthesis, Transformation and Rendering of Environmental
Audio (TAPESTREA)7 is a novel software framework by [Misra et al., 2006] for analysis, transformation
and synthesis of environmental sound scenes. A ”sound scene” is described as an environmental sound
that is composed of foreground events and a background texture. Spectral modeling is used for extraction
of deterministic events, transient events (Compare Section 1.3) are detected by time domain analysis and
the background texture is generated by a wavelet tree learning algorithm similar to [Dubnov et al., 2002].

Instrumental gestures and sonic textures

[Filatriau and Arfib, 2005] construct a mapping between instrumental gestures and sonic textures. They
developed the ”texture scratcher”, which is a digital music instrument employing a gesture-based explo-
ration of visual space. It consists of a MAX/MSP adaption of the FIS algorithm presented by [Scipio,

7http://taps.cs.princeton.edu/ (accessed Nov. 15. 2006)

http://taps.cs.princeton.edu/

14 2. State of the art

1999]. Another application is the sonic fern [Filatriau et al., 2006], a graphical object generated by FIS
that drives a sonic process at the same time.

2.2 Sound examples

From [Behm and Parker, 2004; Dubnov et al., 2002; Athineos and Ellis, 2003] listening examples were
provided on the internet. In all cases only the resynthesized versions are available. Unfortunately an ob-
jective comparison is not possible because the sound files differ to a great extent concerning the sampling
rate (8000-44100), the file length and the type of file.

The most important listening observations are:

• Without having any information tag the type of sound texture can be recognized.

• The synthesized textures contain audible repetitions: evident repetition of blocks (e.g. crowd
[Behm and Parker, 2004]8) and implausible accentuations that create an undesired rhythmical
pattern (e.g. waves) [Dubnov et al., 2002]9

• The important events are very well synthesized but the background sounds appear blurred (e.g. fire
[Athineos and Ellis, 2003]10)

• In some sound examples gaps of silence can be heard, that make the textures sound unnatural and
disturb the notion of homogeneity, which is typical for the original recording (e.g. traffic [Behm
and Parker, 2004]).

Actually, these listening observations emphasize the core motivation of my thesis: the improvement
of the acoustic quality of sound textures. Currently, no scientific approach can be found that offers a
broad range of qualitative sound texture examples. Since several acoustic problems, as presented above,
are evident, I try to put special strength on avoiding these points in my work (see Chapter 4).

8http://pages.cpsc.ucalgary.ca/∼parker/AUDIO/ (accessed Nov. 15. 2006)
9 http://www.cs.huji.ac.il/labs/cglab/papers/texsyn/sound/ (accessed Nov. 15. 2006)

10 http://www.ee.columbia.edu/∼marios/ctflp/ctflp.html (accessed Nov. 15. 2006)

 http://pages.cpsc.ucalgary.ca/~parker/AUDIO/
http://www.cs.huji.ac.il/labs/cglab/papers/texsyn/sound/
 http://www.ee.columbia.edu/~marios/ctflp/ctflp.html

Chapter 3

Insight in two grain-based algorithms

“ [...] the still largely undiscovered world of the fabric of sound [...] ”

[Jonathan Dunsby]

From the presented literature I selected two methods for being implemented namely audio textures
[Lu et al., 2004] and natural grains [Hoskinson and Pai, 2001]. The audio texture approach is intended
for signals with simple musical structure, such as game and screen saver music, whereas the natural
grain approach focuses on environmental soundscapes, such as crickets, birds chirping and bubbling of
brooks. Although, these methods are designed for different signals, they are both analysis/resynthesis
approaches. They deal with the question of which parameters to extract from the sample, how to perform
the best segmentation and how to do the best resynthesis in order to create a new sample longer in
duration but with similar quality to the original signal (see Figure 3.1).

Since no sound is synthesized, theoretically these two approaches can be used with almost any input
signal. It seems clear that these methods need a parametric adaption in order to work also on sound
textures, since they are originally designed for divers signals. However, with these methods it should
be possible to cover many types of sound texture because the sound output always consists of segments
taken from the input signal. This is a great advantage as opposed to synthesis methods like FIS (2.1.5),
physical modeling (2.1.6) or source-filtering approaches (2.1.2), which are based on modeling a complete
new sound and are thus constrained to the production of one group of sound only.

This Chapter is divided into three major parts. The first part covers Section 3.1 to Section 3.2. In
these Sections I try to introduce concepts and terms that are necessary for a comprehensive understanding
of the algorithms. The second part is dedicated to a detailed introduction to the audio texture algorithm
and accordingly the third part introduces the details of the natural grain algorithm.

3.1 Creating a natural stream

In both algorithms the term stream is of fundamental importance. [Lu et al., 2004] define audio textures
”[...]as a means of synthesizing long audio streams according to a short audio input[...]” and [Hoskin-
son, 2002] explains that ”[...]A technique is presented to facilitate the creation of constantly changing,
randomized audio streams from samples of source material[...]”.

As the handling of this term in these approaches is very open I would like to show the original
meaning of Bregman, who introduced that term. According to [Bregman, 1990], a perceptual unit that
represents a single happening is referred to as an auditory stream. A series of footsteps can form a
single experienced event, despite the fact that each footstep is a separate sound and also a singer with a
piano accompaniment can be heard as a coherent happening, despite being composed of distinct sounds.

15

16 3. Insight in two grain-based algorithms

Figure 3.1: General algorithmic flowgraph for both natural grains and audio texture. Due to the
analysis and the similarity measurements the original soundfile is split into sub-clips.
Further computations calculate the similarity between any two sub-clips. Finally, a
transition probability matrix is computed, which is used for generating a new sub-clip
sequence order.

Bregman reserves the word stream for a perceptual representation and the phrase ”acoustic events” or the
word ”sound” for the physical cause. Moreover, he states that a stream serves the purpose of clustering
related sound qualities.

In this work the term ”natural stream of sound texture” is used very often. This should refer to the
idea that even though the original signal, which consists of several short continuous streams, is split and
concatenated in a new order, the resulting texture should still be considered as a continuous texture, which
contains the same streams as the input sound file but arranged in a new order. It is also important that
short streams within a soundfile, such as a car horn or a bird chirp, have to be preserved. In Figure 3.2 the
spectrogram of a recording of sounds in meadow with lots of birds and insects can be seen. This special
soundscape is made up of several streams (crickets, insects, bees and birds). Hence, it is important to
detect all these streams as a whole and not to break them in between.

The adjective ”natural” is used to emphasize that the goal is not a simple concatenation of clips but
a smooth sequence order of sounds that fit together and that support the perceptual notion of separate
streams belonging together.

3.2 Feature vector

A feature vector is a n-dimensional vector of numerical features representing an audio file. Both methods
are based on the calculation of short-time feature vectors. For each frame some form of audio analysis,
Mel Frequency Coefficients (see Section 3.4.1) or Wavelet analysis (see Section 3.5.1), is performed and
according to that analysis a feature vector for every frame is obtained.

3.3. Distance and similarity measure 17

Figure 3.2: Spectrogram of several streams (bird and insect sounds) in the recording of sounds in
a meadow. Without listening to the signal it can already be seen in the spectrogram
that several streams build the entire sound and each visible group represents a single
happening.

3.3 Distance and similarity measure

The basic idea of both algorithms is to find perceptually meaningful points in the signal where to cut.
First the signal is analyzed. Owing to a special analysis a feature vector for every frame is obtained and
consequently either a measure of distance or similarity is performed in order to find out how similar the
frames are with each other.

The distance and the similarity measure can be used in order to quantify the similarity between two
variables or two frames. Both measures investigate how close the distance is between two variables.
Using a similarity measure, a strong similarity is expressed as a large value whereas the same fact is
expressed by a small value from a distance measure. It can be concluded that a distance measure tries to
quantify the dissimilarity between two variables [Brosius, 2002].

The detection of music similarity is a very common issue in music information retrieval and au-
dio classification applications. Having a proper model of similarity enables automatic structuring and
organization of digital music. The similarity data can be used for genre classification and play list rec-
ommendation [Flexer et al., 2005].

In Section 1.2.1 it was stated that a sound texture should exhibit similar characteristics over time.
Since the audio texture and the natural grains approach are based on restructuring a sound file, similarity
measures are performed in order to find out similar regions and transition points where segments can be
combined in new order.

3.3.1 Distance measure

The Euclidean distance is a very common measure between two points. Moreover, there are other dis-
tance measures, which can be used as well, such as the Tschebyscheff, Manhattan and the Minkowski
distance.

Euclidean distance

The Euclidean distance examines the root of square differences between coordinates of a pair of objects.

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (3.1)

18 3. Insight in two grain-based algorithms

Quadratic Euclidean distance

d(x, y) =
n∑

i=1

(xi − yi)2 (3.2)

A quadratic Euclidean distance is used for the natural grain approach.

3.3.2 Similarity measure

The cosine distance represents the most common similarity measure in music information retrieval. The
similarity values range from -1 to 1. A similarity value of 1 reprents the highest similarity, meaning
the distance of a variable with itself. On the other hand -1 represents complete dissimilarity. Moreover,
another measure that also ranges from -1 to 1 is the Pearson correlation measure.

Cosine distance

di,j =
∑n

i=1(xi · yi)√∑n
i=1(xi)2 ·

∑n
i=1(yi)2

(3.3)

The cosine distance is applied for the audio texture algorithm to find out how similar frames are. .

3.4 Audio textures

The audio texture approach is derived from findings in rhythm analysis and music information retrieval
[Foote, 1999]. In order to get a compact sound data representation for the similarity measurements Mel
Frequency Coefficients (MFCCs) are computed for every frame.

3.4.1 Analysis using perceptual features: MFCCs

MFCCs are the most popular feature sets used in automatic speech recognition because they provide
a concise representation of spectral characteristics [O’Shaughnessy, 2000]. [Logan, 2000] showed that
MFCCs are also well suited for music analysis. Moreover, it is very common to use MFCCs in music
information retrieval [Aucouturier and Pachet, 2004] when timbre similarity is measured. These co-
efficients provide a low-dimensional version of the logarithmic spectrogram, and thus are a good and
compact representation of the spectral evelope. The process for computing the MFCCs is depicted in
Figure 3.3.

The standard implementation comprises the following stages:

• First the signal is divided into frames by applying a windowing function at fixed intervals. Typi-
cally a Hanning window is used as windowing function, since it tapers towards zero and removes
edge effects.

• For each frame a Short Time Fourier Transform (STFT) is computed:

S(ejω) =
n∑

n=0

st(n) ∗ w(n)e−jωn (3.4)

• The magnitude is converted to a logarithmic scale to get a dynamic compression because the
perceived loudness of a signal is approximately logarithmic.

3.4. Audio textures 19

Figure 3.3: Computation of MFCC features. [Image extracted from [Logan, 2000]]

Figure 3.4: The upper plot shows the filterbank of triangular filters. The lower plot depicts the
Discrete Cosine Transform matrix.

20 3. Insight in two grain-based algorithms

Figure 3.5: Spectrogram, RGB plot of the MFCCs and the original signal, 7 seconds of a recording
of a fire sound.

• The next step is to smooth the spectrum and to emphasize perceptually meaningful frequencies.
The perceptual weighting is based on the Mel Scale (See Appendix A.1 for details). The frequency
bands of the filter bank can be seen in Figure 3.4.

• Finally, the Inverse Discrete Cosine Transform IDCT is computed in order to reduce the number
of parameters. If M cepstral coefficients are desired they can be expressed as follows:

cn =
N∑

k=0

Xkcos[n(k − 1
2
)
π

N
] for n = 1, 2 · · · ,M (3.5)

Xk denotes the log-energy output after the perceptual weighting and N represents the number of
triangular filters.

The initial coefficient c0 represents the average energy in each frame. c1 reflects the energy balance
between low and high frequencies. For i > 1, the coefficients ci represent increasingly fine spectral
detail [O’Shaughnessy, 2000].

3.4. Audio textures 21

Figure 3.6: The panel depicts the embedding of the cosine distance measure between any two
frames into the two dimensional similarity matrix. The similarity is an n×n matrix. n
is the number of frames in the input texture. Image adapted from [Foote, 1999]

3.4.2 Frame similarity

After the computation of a MFCC vector for every frame the cosine distance between any two vectors is
calculated.

si,j =
xi • xj

||xi||.||xj ||
1 (3.6)

si,j represents the similarity between frame i and j. After the similarity between any two vectors is
computed, the two-dimensional similarity matrix S is constructed (see Figure 3.6). According to [Cooper
et al., 2006] the similarity matrix is a general method for visualizing musical structure via its acoustic
self-similarity across time, rather than by absolute characteristics. This matrix contains the quantitative
similarity between all pairwise combinations of frame vectors. The diagonal values of S are one, since
every frame is maximally similar to itself and so the cosine distance is one. As can bee seen in the
grayscale plots (see Figure 3.7, 3.8), where each pixel is given a greyscale value proportional to the
similarity measure (the higher the similarity, the brighter the pixel), the diagonal is a white line. The
brightness is proportional to the similarity. Similar regions appear bright whereas dissimilar appear in
dark.

If a sound file, such as a cuckoo call, consists only of two extremely different sound objects, having
two successive notes of different pitch, the simplified similarity matrix exhibits a 2×2 checkerboard
pattern (see Figure 3.7) and can be defined as:

S =
(
J −J
−J J

)
(3.7)

J denotes a n×n all-ones matrix. The point where the notes change, corresponds to the center of the
checkerboard. More generally, the boundary between two audio segments also generates a checkerboard
pattern. The two segments exhibit high within-segment (self) similarity, producing adjacent square re-
gions of high similarity along the main diagonal of S. The two segments produce rectangular regions of
low between-segment (cross) similarity off the main diagonal. The boundary is the crux of this ”checker-
board” pattern.

Figure 3.8 shows the similarity matrix of a traffic soundscape (cars passing by) with an acoustically
striking car horn. Since the car horn consists mainly of high frequencies the dissimilarity to the other
frames can be clearly seen as a dark stripe in frames 75-80. Another interesting visualization is the

1The formula is the same as in Section 3.3, just the notation is simplified.

22 3. Insight in two grain-based algorithms

Figure 3.7: Ideal similarity visualization of two opposed sound objects.

Figure 3.8: Greyscaleplot of a traffic signal with a horn.

3.4. Audio textures 23

Figure 3.9: The rhythmic pattern can be seen very clearly. Time goes from left to the right as well
as from the top to the bottom. Repeated themes are visible as diagonal lines parallel to
the white main diagonal by the time difference between repetitions.

similarity matrix of a musical signal with a striking beat (see Figure 3.9). The rhythmic pattern is visible
and the bright off diagonal stripes show repeated instances [Foote and Uchihashi, 2001].

3.4.3 Segmentation based on novelty-structure-analysis

Novelty detection is the identification of new or unknown data or signal that a machine
learning system2 is not aware of during training. [Markou and Singh, 2003]

The objective is to select meaningful segments in the original signal. Segments are detected due peaks
in the novelty score. Basically peaks represent frequency changes of the input texture. Novelty detection
in this thesis refers to the detection of novel audio that corresponds to frequency changes. Therefore, S
is correlated (see Formula 3.10 below) with a kernel3 matrix in order to get the frame indexed novelty
score. Peaks in the novelty score indicate audio segment boundaries. These local peaks are excellent
candidate segment boundaries, because the audio is similar between maxima and significantly different
across them.

To identify the patterns in S a ”checkerboard” kernel is correlated along the main diagonal of the
similarity matrix. A kernel matrix K basically looks like S but has a smaller dimension:

K =
(

1 −1
−1 1

)
(3.8)

2Machine learning refers to a system capable of the autonomous acquisition and integration of knowledge. This capacity
to learn from experience, analytical observation, and other means, results in a system that can continuously self-improve and
thereby offer increased efficiency and effectiveness. [Hamilton, 2006]

3According to [Fisher et al., 2003] a kernel is a matrix of numbers that is used in image convolutions

24 3. Insight in two grain-based algorithms

K can be easily decomposed into a ”coherence” and ”anticoherence” kernel.

K =
(

1 −1
−1 1

)
=

(
1 0
0 1

)
−

(
0 1
1 0

)
(3.9)

The first term measures the self-similarity on either side of the center point. The second term mea-
sures the cross-similarity between the two regions. The difference between the two values estimates the
novelty of the signal at the center point [Foote, 2000].

Peaks in the novelty score indicate locally novel audio, thus the correlation of S and K is referred to
as a novelty score. The frame indexed novelty score N is computed as follows:

N(i) =
m=w/2∑

m=−w/2

n=w/2∑
n=−w/2

Km,nSi+m,i+n (3.10)

w indicates the width of the kernel, which is centered at (0,0) [Foote, 2000]. Generally it can be said
that the correlation process between S and the kernel is similar to an edge detection process in image
processing. For computation with real signals the unitary matrix of the kernel is replaced by a two-
dimensional Hamming window, which avoids edge effects because it tapers towards zero at the edges.

As mentioned above, local maxima correspond to perceptually significant changes in the soundfile
and are thus being chosen as sub-clip boundaries. In Figure 3.10 it can be seen that local peaks of the
novelty score correspond to the onsets of the rhythmical soundfile (compare Figure 3.9).

3.4.4 Sub-clip similarity

After the sub-clip extraction the similarity between any two sub-clips is calculated. Due to the novelty
score the extracted sub-clips have a different frame count. Therefore, the similarity measurement is
modified using a simplified time warping4 method. If sub-clip i contains M and sub-clip j contains N
frames and M < N , then the similarity between these two sub-clips can be expressed by

S′i,j =
M∑

k=1

wksi+k,j+[kN/M] (3.11)

w denotes a symmetric rectangle window, which is used for frame weighting and [kN/M] is the time
warping factor.

In a next step the neighboring sub-clips are considered when the similarity between two clips is
measured.

S′i,j =
k=m∑

k=−m

w′kS
′
i+k,j+k (3.12)

The transition probability from the ith sub-clips to the jth sub-clip is determined by S′′i+1,j . The
more similar these two frames are, the higher the transition probability is. Consequently, the transition
proability is defined as:

Pij = Aexp(
S′i+1,j

σ
) (3.13)

A is the normalizing constant so that the the sum of each row in the the probability matrix P is unity.
σ is a scaling parameter.

4Dynamic time warping is a method for measuring similarity between two sequences, which may vary in time or speed.

3.4. Audio textures 25

Figure 3.10: At the local peaks of the frame indexed novelty score, the signal is split into sub-
lips. The plot depicts the novelty score of a rhythmic signal where the local peaks
correspond to the onsets.

26 3. Insight in two grain-based algorithms

3.4.5 Sequence determination

The sub-clips are concatenated according to the maximum transition propability. Since Pi,i+1 always
has the maximum probability the original sequence order would be kept. Thus, several constraints are
defined in order to avoid the original sequence and repetition of sequences.

j ∈ {j|Pij > p0} ∩ j 3 (l − r, l + r) (3.14)

To introduce more stochastic variation in the generated sub-clip sequence, a random clip j is selected.
The clip is only taken if its probability is bigger than a threshold p0. Furthermore, the new selected
clip is always tested whether it is in the adjacent range r of the previous sub-clip in the sequence. This
constraint avoids the repetition of the original sequence order.

3.4.6 Concatenation of segments

The final output texture consists of segments taken from the input texture, which are concatenated in
a new order. Therefore, in order to avoid clicks, the segments are concatenated using crossfades. A
Hanning window is selected as a fading function since its amplitude ranges from 0 to 1, providing a
smooth crossfade between adjacent sub-clips.

3.5 Natural grains

The algorithm is inspired by a work in speech segmentation from [Alani and Deriche, 1999] who seg-
mented speech into phonemes using a six level wavelet decomposition. In contrast to the speech segmen-
tation algorithm where energy maxima in the signal are detected in order to find phonemes5, the natural
grain algorithm focuses on the detection of natural transition points in the sample, ”[...]where events of
some kind start or end[...]”. Segments which cannot be broken up further are called ”natural grains”.
Thus, the basic idea is, as opposed to the speech segmentation algorithm, to split the original signal into
syllable-like6 audio signals.

Once more the natural points are detected using a similarity measure. Now a wavelet decomposition
is used to get a compact feature representation of the original signal.

3.5.1 Analysis using physical features

Wavelets are used because they produce a flexible signal decomposition and have the property of ac-
centuating points in the signal where there are frequency changes. They can also be used to analyze
the temporal and the spectral properties of non-stationary signals [Tzanetakis et al., 2001]. For every
frame a six-level wavelet decomposition is computed and consequently for every level the energy of the
difference coefficients is calculated. Therefore, every frame is parameterized as a six-level feature vector.

The Wavelet Transform

A wavelet (coming from the French ondolette, meaning ”small wave”) is a waveform with very specific
properties, such as an average value of zero in the time domain and a limited duration. Wavelet analysis
involves breaking up a signal into translated and scaled versions of the original (mother) wavelet to match
the input signal. The Continuous Wavelet Transform (CWT) is defined as:

5A phoneme is the smallest contrastive unit in the sound system of a language [Grassegger, 2004].
6A word can be divided into syllables. Each syllable is a sound that can be said without interruption. Typically a syllable

is made up of a syllable nucleus, most often a vowel, with optional initial and final margins, which are typically consonants
[Grassegger, 2004].

3.5. Natural grains 27

Figure 3.11: Comparison of the STFT and the DTFT; their different time and frequency resolution
can be seen. dn represents the detail coefficients and an the approximation coeffi-
cients.

W (a, b) =
1√
a

∞∫
−∞

x(t)ψ(
t− b

a
)dt (3.15)

a is the scale factor, b is the translating factor and ψ(t) is referred to as the mother wavelet. Common
continuous wavelets are Haar, complex Mexican hat, Morlet and Hermitian [Strang and Nguyen, 1997].

The Wavelet Transform (WT) was developed as an alternative to the Short Time Fourier Transform
(STFT) to overcome the problems related to its time and frequency resolution problems. The STFT
provides a uniform time resolution for all the frequencies. In contrast to the STFT the Discrete WT
(DWT) yields high time resolution and low frequency resolution for high frequencies and low time
resolution but high frequency resolution for low frequencies. A comparison of the STFT and the WT can
be seen in Figure 3.11.

However, the STFT and the DWT are linear transforms. The DWT is analogous to the CWT but uses
discrete values for the scaling and the translating parameters.

The DWT can be seen as analogous to multirate filterbanks and as well related to a constant Q
filterbank7 with octave spacing between the centers of the filters. Each subband contains half the samples
of the neighboring higher subband (see Figure 3.12). Hence, the signal is analyzed at different frequency
bands with different resolutions by decomposing the signal into coarse approximation a and detail d
coefficients. The coarse approximation is then decomposed further by successive highpass and lowpass
filtering:

yhigh =
∑

n

x[n]g[2k − n] (3.16)

ylow =
∑

n

x[n]h[2k − n] (3.17)

yhigh and ylow represent the output of the highpass (g) and lowpass (h) filters, respectively after
subsampling by a factor 2 [Tzanetakis et al., 2001].

3.5.2 Segmentation based on syllable-like audio segments

A six-level wavelet decomposition is performed on every frame of the original signal. Consequently,
the energy is computed in each scale of every frame. After the computation of the feature vectors, a
Euclidean distance function over four frames is used (see Figure 3.14).

7A constant Q transform is a bank of filters that have geometrically spaced center frequencies.

28 3. Insight in two grain-based algorithms

Figure 3.12: A 3 level filterbank [Image extracted from [Wikipedia, 2006a] under the terms of the
public domain copyright.]

Figure 3.13: 3 Level frequency representation of the DWT [Image extracted from [Wikipedia,
2006a] under the terms of the public domain copyright.]

Figure 3.14: Distance measure for transition between frames 2 and 3. Image adapted from [Alani
and Deriche, 1999]

3.5. Natural grains 29

Figure 3.15: Euclidean distance function and local troughs were clips are segmented.

D(f2, f3) =
1
4

2∑
i=1

4∑
j=3

m∑
k=1

(Xi,k −Xj,k)2 (3.18)

Xi,k and Xj,k correspond to the energies of wavelet difference coefficients and m is the length of
the feature vector. In order to show the correspondence between Figure 3.14 and the formula of the
Euclidean distance over four frames, the sigma signs are dissolved, therefore D can be expressed as:

D(f2, f3) =
1
4
(

m∑
k=1

(‖X1,k−X3,k‖)2+
m∑

k=1

(‖X1,k−X4,k‖)2+
m∑

k=1

(‖X2,k−X3,k‖)2+
m∑

k=1

(‖X2,k−X4,k‖)2)

(3.19)

Thus, for every frame boundary a number is obtained representing how similar its neighbors are on
each side.

The new sub-clips8 boundaries correspond to the local minima in the frame indexed distance func-
tion. Too short sub-clips do not make sense for the auditory perception. Therefore, points are only
detected when they lie beneath an adaptive threshold. Moreover, a minimum frame number defines the
minimum number of frames in a subclip. If two minimum distance measure values appear in two ad-
jacent frames, one of them is neglected, since the minimum frame size number does not permit short
sub-clips.

8Natural grains are referred to as sub-clips in this thesis in order to use the same description of the extracted sound segments
like the audio texture approach.

30 3. Insight in two grain-based algorithms

3.5.3 Grading the transitions and resynthesis

Now that the sub-clips are defined, the sub-clips are compared against each other to determine the most
natural transitions. This is again done using a Euclidean distance measure. To calculate the Euclidean
distance between two sub-clips, always the distance between the last two frames of a clip and the first
two frames of another clip is computed. Out of these values a transition probability matrix is constructed.
Since lower scores denote a smooth transition and high similarity between sub-clips, the inverse of the
distance matrix Di,j is taken in order to orient the probability weights in their favor. Pi,j = 1/D(i, j)
indicates the likelihood that sub-clip i is followed by sub-clip j. In a further step the probability Pi,j is
converted to a probability pi,j , where constant noise C is added to give values with smaller similarities
more chance to be selected.

pi,j =
Pi,j + C∑n

j=0 Pi,j + nC
(3.20)

Finally, the probability matrix is normalized so that the sum in every row is one. The transition
probability is used to construct a first-order Markov chain. Each state corresponds to a sub-clip. The next
sub-clip to be played is chosen by a random sample of the probabilities and the smoother the transition
between the current sub-clip and the next, the higher the probability that this sub-clip is chosen.

To conclude, the same crossfade resynthesis, as presented above in Section 3.4.6, is performed on
the subclips.

Chapter 4

Algorithmic improvements

“ Real-world sounds are complex, but they are also physically constrained. ”

[W. A. Yost]

As the title of my thesis says, ”parametric sound texture generator”, it is obvious that the parameters for
the generation of sound textures are very important. Therefore, the parameters composing the introduced
algorithms are examined further in the following sections. Moreover, concrete solutions for parametric
modifications are presented so that the quality of a sound texture is improved.

Special attention is paid to the improvement of the quality of the sound results, in order to create
sound textures that can be used in practical applications. Repetitions should not be audible and sound
textures should be targeted of sounding perceptually ”meaningful”, in the sense that the synthesized
texture is perceptually comparable to the input texture. In the ideal case, no difference is noticeable so
that the generated textures still sound naturally and comprise no artefacts.

The improvements of the algorithms especially focus on sound textures and sound scapes where
a segmentation would also be possible with the segregation properties of our auditory system. Con-
sequently, it is tried to determine perceptual meaningful segments and to create a sequence order that
makes sense to our auditory perception.

I think, it is an interesting issue that both selected algorithms are derived from different signal pro-
cessing areas. The audio texture approach uses findings from music information retrieval and rhythm
analysis, whereas the natural grain algorithm directly adopts a method for speech phoneme detection.
Once more, I have to emphasize that sound textures neither have the characteristics of music nor of
speech signals. Therefore, it has to be examined how these algorithms have to be changed in such a way
that they fulfill the requirements of sound textures.

The parametric improvements concern both the analysis of the input textures and the resynthesis of
the sub-clips. First it is tried to find the optimal analysis parameters, such as for example framesize,
number of MFCC coefficients or Wavelet decomposition level. Thereupon, it is investigated, which
parameters influence the generation of the novelty score and the Euclidean distance function respectively
and especially how these functions are analyzed so that single streams are fully covered in a segment
(sub-clip). Finally, the generation of the output sequence is optimized so that repetitions can be avoided.

The testing software environment is Matlab1. For the computation of the MFCCs the MA toolbox
from [Pampalk, 2004] is used.

The organisation of this chapter is presented almost in the same manner as Chapter 3. Sections 4.1-
4.3 examine general aspects and improvements for both algorithms. Sections 4.4- 4.6 deal with the
parametric improvements for the audio texture algorithm and Sections 4.7- 4.9 deal with the same for

1http://www.mathworks.com/products/matlab/(accessed Dec. 18. 2006)

31

http://www.mathworks.com/products/matlab/

32 4. Algorithmic improvements

the natural grain algorithm. Finally, Section 4.10 presents considerations of exchanging features and
methods.

4.1 An empirical approach to encountering perfect segments

The algorithmic improvements that I am presenting in the following sections are all based on findings in
signal processing research. However, the process of testing and finding the improvements was empirical.
Only after listening to the (single) segments it was possible to start the modifications of the algorithms.
Almost every parametric improvement in this work is the outcome of a concrete listening notion. There-
fore, the working process was accompanied by listening permanently to individual segments, verifying
for instance the spectrogram of the segment and changing a parameter if the result was not satisfying,
according to the terms, defined in the introduction of this chapter. Usually textures that could rather be
called soundscapes or textures including one distinct event (traffic environment with a car horn; compare
Section 4.4.5) were the most helpful for findig deficits of the original algorithms. Taking the striking car
horn as an example, the question was - how can we change the parameters so that the car horn is captured
in a single segment? As a matter of course this is a very subjective task. Moreover, denoting a certain
segment as ”disturbing” as done here (compare Section 4.5.1) might differ between individual listeners.
However, I hold the opinion, that this empirical analysis/listening process is a specialty of my work,
which provided new sound textures that can be considered as ”natural” as defined in the introduction of
this thesis.

4.2 Sound database

In order to test the algorithms a sound database was created. As the main goal of this thesis is the
improvement of the perceptual quality of the generated textures, I decided to use a high sampling rate of
44.1 kHz. The sample size is 16 Bit and the signals are mono. According to the sound texture groups
presented in 1.2.1, sound files of 25 or 60 seconds are created in each case. The sound files consist of
different recordings downloaded from the Freesound Project2 and from the KlangRausch3 recordings of
Georg Holzmann. The sound files are available on the accompanied CD-ROM.

4.3 Frame size

In order to take advantage of the computational efficiency of the FFT algorithm that is included in the
MFCC computation, the frame size N has to be a power of 2. For the Wavelet decomposition the frame
size must be as well a multiple of 2n, since n is the number of filterbank levels.
In this thesis several frame sizes are tested namely: 512, 1024, 2048 and 40964. Although, the signals
from the sound database are all considered as sound textures, they all have different properties. In order
to test the long term characteristics of sound textures or soundscapes large frame sizes are used, which
are ideally corresponding to the minimum time amount of sound that is necessary so that a particular
sound stream (e.g. car horn) can be fully covered. Whereas for sound textures, which have a very fine
structure like rain and fire short frame sizes are sufficient. A hop size of half the frame size is used for
both algorithms.

2http://freesound.iua.upf.edu/
3A collection of noisy pitched everyday life sounds: car engine, coffee machine, fridge etc.
4In the real-time sound texture generator all these frame sizes can be tested for any input texture (see Chapter 5).

4.4. Improving the analysis: Audio textures 33

4.4 Improving the analysis: Audio textures

4.4.1 Using the parameters proposed by the authors

According to the Paper [Lu et al., 2004] the following parameters are used by the authors:

• Sampling frequency: 8-32 kHz

• Frame size: 256 samples

• MFCCs: 16 (no information about the use of 0th coefficient available) coefficients

• Duration of the original sound files: 2-15 seconds

In a first testing step these analysis parameters were used. As long as sound textures whose charac-
teristic of the fine structure remained constant over time, the quality of the output texture was satisfying.
However, as soon as sound textures were used that are composed of several streams, the parameters
proposed by [Lu et al., 2004] did not produce convincing results (compare Chapter 5). Since the audio
texture algorithm is not only determined by the parameters mentioned above, but also from others, such
as for example the kernel size, I tried to investigate the impact of other components on the segmentation
of the input textures.

4.4.2 MFCCs

When the MFCCs are computed the 0th coefficient represents the average energy in each frame. This
means that including the 0th coefficient in the computation involves including signal energy values in
the novelty score. The segmentation of the input texture results from local peaks in the novelty score.
Thus, large energy values would produce peaks in the novelty score. Since the detection of frequency
and timbre changes is more important than energy changes (amplitude), the use of 0th coefficient is
neglected.

For music genre classification [Tzanetakis and Cook, 2002] propose the use of 5 MFCCs (at a sam-
plingrate of 22,05 kHz)5, according to the review of [Aucouturier and Pachet, 2004] in timbre similarity
measurements the MFCC parameters vary between 8 and 20 and in automatic speech recognition it is
common to use between 8 and 14 coefficients [O’Shaughnessy, 2000]. Sound textures have a very broad
frequency range therefore the number of 16 coefficients, as proposed by [Lu et al., 2004] is kept.

4.4.3 Using a larger kernel size

According to [Foote, 2000] the width of the kernel directly affects the properties of the novelty measure.
A small kernel detects novelty on a short scale only. Whereas large kernels average over short-time
novelty and detect longer structures such as musical transitions and musical keys. Sound textures are
not musical signals. However, after testing different frame sizes and kernel sizes, I found out that only
a kernel having a size of at least 13 × 13 is able to detect single streams in the sound texture examples.
This is easy to explain since a larger kernel implicates a correlation over more frames. Furthermore, the
novelty score gets smoother when the kernel size is large, which makes it easier to detect local peaks.

In Figure 4.2 a part of a traffic signal with a striking car horn can be seen. Because of a 5× 5 kernel
the car horn is not detected as an entire event. It is cut into two pieces. The consequences of a small
kernel can be heard in the resynthesis. ”Two car horns” will appear, which disturb the homogeneous
notion of a traffic environment. As a comparison the detected segment borders, which result from a
13 × 13 two-dimensional Hamming kernel can be seen in Figure 4.3. Now the car horn is detected as

5From the other authors the samplingrate is not known.

34 4. Algorithmic improvements

Figure 4.1: Two-dimensional Hamming kernel centered at (0,0).

a single event. Another example is shown in Figure 4.46 and Figure 4.5 where the effects of different
kernel sizes can be seen on the segmentation of a bird chirp. Also in this case it is obvious that using a
large kernel facilitates the detection of an entire stream. A 13 × 13 two-dimensional Hamming kernel
looks like Figure 4.1.

4.4.4 Getting better segments

The sub-clip borders correspond to the local peaks in the novelty score. The local peak detection algo-
rithm is dependent on two input parameters: the input signal (novelty score) and a ”delta” variable, a
number between 1 and 9 in oder to get rid of small peaks around the local peak; the number refers to
frames.
When listening to the resynthesized versions often very clear environmental background signals lose
their natural smoothness due to different clip lengths and due to very short segments, which have their
origins in small local peaks in the novelty score. Even though the peaks are correctly detected, if the fre-
quency or energy change of the signal at some points is not strong enough the resulting sub-clip borders
do not make sense to the auditory perception.
Testing the peak detection with a Gaussian white noise, which is interrupted in-between by a 440 Hz-
sine, I discovered, that there are several detected peaks in the novelty score of the white noise signal,
which are unwanted. Ideally three segments are expected: the white noise, the sinusoidal part and again
the white noise. To get these logical segment borders a threshold in the peak detection algorithm is in-
troduced so that local peaks are only used as segment borders if they exceed a certain threshold (a value
between the minimum of all the local peaks and the absolute maximum of the novelty score). Using
peaks above a certain threshold emphasizes that only points of strong spectral changes in the signal are
used as new segment borders.

6The successive plots are snapshots from Praat. Gerhard Eckel developed an awk script that transforms the segment borders
computed by Matlab to the required Praat format *.TextGrid (See Appendix A.2.3).

4.4. Improving the analysis: Audio textures 35

Figure 4.2: Traffic signal with a 5 × 5 kernel using a frame size of 1024. The car horn is split in
the middle in such a way that it appears in sub-clip 12 and 13.

Figure 4.3: Traffic signal with a 13×13 kernel using a frame size of 1024. The car horn is detected
as a single event and can be found only in the sub-clip number 9. Furthermore, it is
visible that a larger kernel size produces larger and less sub-clips

36 4. Algorithmic improvements

Figure 4.4: Bird chirp with a 5 × 5 kernel using a frame size of 1024. The chirp is cut into four
sub-clips (see segment 18 - 21).

Figure 4.5: Bird chirp with a 13 × 13 kernel using a frame size of 1024. The chirp is cut in two
clips only (see segment 21, 22)

4.4. Improving the analysis: Audio textures 37

1 %%%
2 %transfer the peaks of the novelty score−>to peaks from original signal%
3 %−−−from frames−−−> to samples
4 [locMax , value] = localPeak (Novelty ,delta) ;
5
6 [val , ind] = max (value) ; % find the maximum of the local peaks
7 [valm , indm] = min (value) ; % find the minimum of the local peaks
8 for i = 1 :length (value)
9 if value (i) <= (factor∗ (val−valm)) +valm % check if the local peak is above a

threshold
10 locMax (i) = 0 ;
11 value (i) = 0 ;
12 end
13 end
14
15 value = nonzeros (value) ;
16 locMax = nonzeros (locMax) ;
17
18
19 Peak = zeros (1 ,length (locMax)) ;
20
21 for i = 1 :length (locMax) %index of a local Maximum
22 Peak (i) = hop size∗locMax (i) + 1 + fft_size / 2 ;
23 end
24
25 %%%
26]

Listing 4.1: Matlab code for transferring peaks in the novelty score to the peaks in the original
signal.

Before converting the peak values of the frame indexed novelty score back, to the input signal, the
hop size has to be considered [Zölzer, 2002]. The Matlab code for the peak detection and for transferring
the peaks (frame indices in the novelty score) to samples in the input texture, looks like Listing 4.1.
locMax indicates the frame index of a local maximum and factor is a value between zero, and one,
scaling the threshold. Due to windowing, the maximum is always in the middle of a frame, therefore
always half the frame size is added to the computed sample number.

4.4.5 Enhancing the similarity measure between sub-clips

Since the extracted sub-clips never have the same length a time warping has to be performed for finding
an optimal match between two given sub-clips. Once again, I would like to present the formula that
incorporates the warping (compare Section 3.4.2):

S′i,j =
M∑

k=1

wksi+k,j+[kN/M] (4.1)

w represents the rectangle window, which is used for frame weighting, [kN/M] is the time warping
factor and M or N respectively indicate the lengths of the sub-clips (i and j). If the sub-clips have the
same length (the similarity of a sub-clip to itself) no warping has to be applied.

S′i,j =
M∑

k=1

wksi+k,j+k (4.2)

38 4. Algorithmic improvements

Figure 4.6: Spectrogram of a traffic signal with a car horn (segment 9). Sub-clip 9 and 4 contain
frequencies that are different from the other segments. The displayed spectrum ranges
from 0 to 5000Hz.

Definitely it can also be the case that sub-clip i contains M and sub-clip j contains N frames and
M > N , then the similarity between these two sub-clips can be expressed by

S′i,j =
N∑

k=1

wksi+[kM/N],j+k (4.3)

The problem of the above cited formulas is that owing to the summing up over k frames the similarity
matrix does not have values, which range between -1 to 1. Thus, S′i,j does not define a cosine distance
between two frames anymore but the sum over k (cosine) distances. Consequently, when a sub-clip is
compared to itself the diagonal of the matrix now consists of the number of frames within a sub-clip
and is not one anymore. This leads to the problem that the distance computation of a short sub-clip
with another short sub-clip produces a small distance value, whereas a large sub-clip with another large
sub-clip produces a large value. From the frame similarity the transition probability is computed. Owing
to the frame summation in the sub-clip similarity matrix the transition probability matrix gets heavily
distorted. According to formula 4.1 longer sub-clips automatically have a higher probability and short
clips are denoted very dissimilar. In Figure 4.6 the spectrogram and the sub-clips of the traffic signal
with the car horn can be seen. Sub-clip 9 contains the car horn and sub-clip 4 contains another event that
is different from the other sub-clips. Although, these two sub-clips are different, this ”property” - the
dissimilarity - cannot be seen in the similarity matrix anymore (see Figure 4.7).

Therefore, I propose the introduction of an averaging factor 1/M or 1/N respectively so that the
formulas for computing the similarity between clips look like the following:

S′i,j =
1
M

M∑
k=1

wksi+k,j+[kN/M] M < N (4.4)

S′i,j =
1
M

M∑
k=1

wksi+k,j+k M = N (4.5)

4.4. Improving the analysis: Audio textures 39

Figure 4.7: In this plot it cannot be figured out which sub-clips are dissimilar from the others.

Figure 4.8: Due to the introduction of an averaging factor, dissimilar sub-clips (4 and 9) can be
seen very well.

40 4. Algorithmic improvements

Figure 4.9: Clipnumber 9 succeeds shortly after one intermediate clip again.

S′i,j =
1
N

N∑
k=1

wksi+[kM/N],j+k M > N (4.6)

Now the self-similarity is again expressed as a diagonal vector of S’ that is one. Moreover S’ resem-
bles S from Section 3.4.2 and the improvement is depicted in the grayscale plot of Figure 4.8. The values
range between -1 and 1, the diagonal is one (white) and the two sub-clips that are different from the other
clips appear, as expected, dark.

4.5 Improving the resynthesis: Audio textures

4.5.1 Modification of sub-clip sequencing rules

When testing the sound files from the database one major observation was, that when very continuous,
fine grained sound textures such as fire crackling, liquid or noisy kitchen sounds were used, no repetition
of the sub-clips in the resynthesis was noticeable. However, as soon as sound textures were used where
the events that make up the texture can be sorted out and remembered from our auditory perception,
unnatural repetition could be noticed. Due to these observations the constraints for successive sub-clips
need to be stricter in order to avoid audible sub-clip repetitions when sound textures are constant on
a large scale. Therefore, I also suggest to compare the new selected sub-clip with sub-clips that were
recently used in the ”past”. Considering the following sequence from Figure 4.9, it can be seen that sub-
clip number 9 is repeated shortly after its first occurrence. Thus, a further constraint 4.8 is now added to
the sequencing rules:

j ∈ {j|Pij > p0} ∩ j 3 (l − r, l + r) (4.7)

P defines the transition probability matrix, p0 is a threshold probability.

j 3 Seq(n− v) v = 1, 2, · · · , N (4.8)

Seq represents the produced sequence, n is a counter index and v is a user defined value, which determines
up to how recently used values are checked.

There is also the idea of rescaling the probability matrix (decrease the transition probability of sub-
clips following after a disturbing sub-clip) when disturbing elements are noticed. The rescaling of the
matrix is possible, but the difficulty is, that segregating the disturbing element when listening to resyn-
thesized version is almost impossible. Within this work this suggestion could only be executed when
very short (3-7 seconds) input signal were used, but this process involved the listening of every single
sub-clip and the careful ”reading” of the spectrogram together with the sub-clip borders of the original
signal.

Another idea is to disable a disturbing sub-clip for a certain time (actually a certain number of sub-
clips). Disabling means that a counter is established, which checks how many events are different from
the disturbing clip that already passed. If a certain value (number of sub-clips passed that do not comprise
the disturbing sub-clip) is exceeded, the disturbing sub-clip can be used in the output sequence. Once
more, this is a solution that is possible for short-time input textures only.

4.6. New audio texture parameters 41

4.6 New audio texture parameters

Summing up, I decided to use the following parameters so that the output texture of the audio texture
algorithm are significantly improved:

• Sampling rate: 44.1 kHz

• Frame size/FFT-size: 512, 1024, 2048 and 4096 samples

• Hop size: Frame size/2

• MFCCs: 16, without the 0th coefficient

• Kernel: Kernelsize ≥ 13× 13

• Delta for the peak detection: 2-9 (dependent on the frame size)

• Threshold for the peak detection: 0.00-0.2

4.7 Improving the analysis data: Natural grains

4.7.1 Using the parameters proposed by the authors

According to the papers of [Hoskinson and Pai, 2001; Hoskinson, 2002] the following parameters are
used by the authors:

• Sampling rate: 44.1 kHz

• Frame size: 1024 samples

• Hop size: 256 samples (1/4 of the frame size)

• Wavelet decomposition level: 6

• Euclidean distance measure over 4 frames

• Mother wavelet: not specific, various wavelets are mentioned

Once more, in a first testing step the analysis parameters suggested by the authors were used. As I
already mentioned above, I noticed that the sound examples from the sound database worked well also
with the natural grain algorithm as longs as no textures were used that are made up of several streams. In
a similar empirical approach I tried to decompose the parameters of the natural grain algorithm in order
to improve the segmentation and the resynthesis of the sound textures.

4.7.2 Wavelet analysis

Since the Wavelet decomposition is performed frame wise, the same frame sizes are used as proposed
for the audio texture algorithm above. As opposed to Section 4.7.1 the use of a bigger hop size (1/2 of
the frame size) is suggested in order to have the same base of operations as the audio texture algorithm.

4.7.3 Choosing a mother wavelet

In the Java applet of [Hoskinson and Pai, 2001] miscellaneous wavelet functions such as Daubechie,
Haar, Spline, Coiflet etc. can be selected. However, there are no general considerations available from
[Hoskinson and Pai, 2001] about which mother wavelet should be used.7 [Twicken, 1998] emphasizes

7Various wavelet filters can be chosen in the corresponding Java applet.

42 4. Algorithmic improvements

Figure 4.10: Daubechie 10 wavelet (upper two plots) and Symlet 10 wavelet (lower plots)

that a wavelet function should closely match the signal to be processed. This statement raises the ques-
tion, which wavelet function matches best the input textures. There is no general wavelet function fulfill-
ing the needs for all different sound textures. Even if a wavelet function was found that resembles a single
water drop, there are so many different drops within an example of a rainfall that no wavelet function can
be found, which fully covers that task. First, a Daubechie 10 wavelet was used (also in [Bar-Joseph et al.,
1999]), which provided convincing results concerning the energy levels (see Figure 4.10). In a further
step the natural grain algorithm was compared with the audio texture approach using beat signals (see
Section 4.10 for more details). Using the Daubechie wavelet, which is asymmetric, always produced
a small systematic offset when the local peaks in the novelty score generated by MFCCs and wavelets
were compared. Due to this observation, I decided to use a Symmlet 10 wavelet (see Figure 4.10), which
is the least asymmetric wavelet within the wavelet types that have compact support.8

4.7.4 Increase number of decomposition levels

In [Hoskinson and Pai, 2001] it is suggested to use a 6 level wavelet decomposition. When working with
a sampling rate of 44.1kHz this leads to the following frequency bands:

1. 11025 - 22050 [Hz]

2. 5512.5 - 11025 [Hz]

3. 2765.25 - 5512.5 [Hz]

4. 1378.13 - 2765.25 [Hz]

8A function has compact support if it is zero outside of a compact set [Todd, 2006].

4.7. Improving the analysis data: Natural grains 43

5. 689 - 1378.13 [Hz]

6. 0 - 689 [Hz]

The 6 level wavelet decomposition is directly adopted from a work in speech recognition [Alani and
Deriche, 1999]. In their paper the authors argue that using a sampling rate of 16kHz, a 6 level wavelet
decomposition provides a useful representation of speech. Sound textures do not have the character-
istics of speech signals and spectral analysis shows that several sound textures bear information in the
frequency domain below 689 Hz.

The Euclidean distance function represents the similarity between successive frames. Basically, the
similarity measure is defined by the frequency changes in each Wavelet decomposition level. Thus, the
higher the frequency resolution, accordingly the more Wavelet decomposition levels, the better segments
can be detected in the Euclidean distance function. Therefore, it is necessary to perform a wavelet
decomposition using more than 6 levels. A 9 level decomposition9 seems much more appropriate for
theses signals:

1. 11025 - 22050 [Hz]

2. 5512.5 - 11025 [Hz]

3. 2765.25 - 5512.5 [Hz]

4. 1378.13 - 2765.25 [Hz]

5. 689 - 1378.13 [Hz]

6. 344 - 689 [Hz]

7. 172 - 344 [Hz]

8. 86 - 172 [Hz]

9. 43,5 - 86 [Hz]

4.7.5 Euclidean distance function over more frames

The novelty score, described in Section 3.4.3, is obtained correlating the similarity matrix of the input
texture with a two-dimensional kernel so that the score corresponds to frequency changes of the input
signal. However, the quadratic Euclidean distance measure, which detects the similarity between frames
is used over four frames only. It can be seen that there is a visual correspondence between the Euclidean
distance function and the spectral changes of an input texture, but the distance function does not seem to
be very significant. Thus, I modified and abstracted the parameters of the quadratic Euclidean distance
function over four frames so that a weighting over more frames can be performed.

D(fb, fc) =
1
n

n/2∑
i=1

n∑
j=n/2

m∑
k=1

(Xi,k −Xj,k)2 (4.9)

The variable n, which has to be an even number, represents the number of frames that are weighted and
m denotes the decomposition scales of a frame. Consequently it can be argued that the higher m and n
the more the distance function corresponds to the frequency changes of the input signal and the more
accurately the sub-clips are determined. Since the new distance function is smoother, the detection of
the local troughs becomes easier and longer sub-clips are detected. In Figure 4.11 a Euclidean distance
function over 4 and over 12 frames respectively can be seen. Weighting over 12 frames makes the
function smoother and the detection of events on a larger time scale becomes easier.

9The DWT consists of log2(N) stages at most. N represents the frame size: log2(512)=9 stages, log2(1024)=10 stages,
log2(2048)=11 stages.

44 4. Algorithmic improvements

Figure 4.11: The Euclidean distance function computed over four (Plot 2) and twelve (Plot 3)
frames respectively.

4.7.6 Getting the sub-clip borders

The local minimum detection is performed as described in Chapter 3. Merely the variable minframe
is introduced as a user defined parameter to control the minimum of frames in a new sub-clip. The
conversion from frames corresponding to local troughs in the Euclidean distance function to samples in
the input texture is performed as described in Section 4.4.3.

4.8 Improving the resynthesis: Natural grains

4.8.1 Extending the markov chain

In [Hoskinson and Pai, 2001] the transition probability is computed from the Euclidean distance measure
over the last two frames of any sub-clip and the first two frames of any other sub-clip. The common
quadratic Euclidean distance between two vectors is defined as:

d(x, y) =
n∑

i=1

(xi − yi)2 (4.10)

If vector x equals vector y, the distance d would be zero. However, when the distance function for
all the sub-clips is computed, the diagonal (distance of a sub-clip withitself) never gets zero, because the
distance function is computed over four frames (the first two frames and the last two frames in a sub-
clip). Consequently, there is a non-zero probability that sub-clip n follows itself. In a markov model the
transition probability Pi,j , the probability from state i to state j, is given from every possible combination
of i and j, including i=j, (see Figure 4.12). Thus, if a first order markov chain is used, repetitions of the

4.9. New natural grain parameters 45

Figure 4.12: A simple markov model. The transition probability Pi,j is given for every possible
combination of i and j (including i=j).

same sub-clips are possible, because the transition probability is defined for that case. The audio texture
algorithm and the extensions from Section 4.5.1 already provide various constraints for generating a
sub-clip sequence that avoid repetitive patterns. In principle, these sequencing rules can be regarded
as a markov model of a higher order. Therefore, I suggest to use the sequencing rules described in
Section 4.5.1 also for the natural grain algorithm.

4.9 New natural grain parameters

Summing up, I decided to use following parameters:

• Sampling rate: 44.1 kHz

• Frame size: 512, 1024, 2048 and 4096 samples

• Hop size: Frame size/2

• Wavelet decomposition levels: 9

• Wavelet type: Symmlet 10

• Euclidean distance function over 12 frames

• Minimum frames of a sub-clip (minframes): 2-6 (frame size dependent)

4.10 Exchange features and methods

The introduced algorithms are very similar although they use different concepts for segmenting the orig-
inal signal and different feature vectors. This fact gave me the idea to test whether the feature vectors
could be exchanged and whether the principle ideas (finding the points where the signal changes dramat-
ically versus detecting local troughs in the signal) of these methods can be used in both algorithms.

Actually, a comparison of these features (MFCCs and Wavelets) can only be approximated because
the feature units are totally different. The energy of the detailled coefficients in each scale is represented
in percent relative to the overall frequency of a frame whereas the MFCCs are cepstral coefficients, which
reflect the energy balance in a frequency band.
However, the crucial difference between these methods is their different temporal synchronysation point
of analysis. The MFCC computation is based on the linear Fast Fourier Transform (FFT). The point of
analysis is always at the same time and due to the effect of windowing the absolute maximum in a frame
is always in the center of a frame [Poli et al., 1991].
The wavelet coefficients on the other side are scaled and translated in every decomposition stage so that
there is no temporal point of synchronization.

46 4. Algorithmic improvements

Figure 4.13: Most of the peaks are accurate to a sample block. The novelty score, depicted in
plot 2, was built using wavelet coefficients. Plot 1 shows the original signal with the
sub-clip borders from the wavelet analysis whereas the last plot shows the borders
that are derived from the MFCC analysis.

4.10.1 Building the novelty score using wavelets

Since the generation of the similarity computation and the peak detection in the novelty score is originally
developed for rhythmic audio signals by [Foote, 2000; Foote and Uchihashi, 2001], it seems obvious to
use simple rhythmic signals for testing. The feature detection methods can be exchanged and although
the methods are different, it is possible to detect mainly the same peaks accurate to an analysis frame.
Basically, I found out that the result could be significantly improved when a Symmlet wavelet is used
instead of the asymmetric Daubechie wavelet. In Figure 4.13 the sub-clip borders that result from the
novelty score using either MFCCS or Wavelets can be seen.

Sound textures do not have a rhythmic structure. However, using input textures with distinct events
shows that using Wavelets produces similar results (see Figure 4.14). The segment boundaries are not
accurate to an analysis frame anymore because frequency and amplitude changes do not emerge that
abruptly.

4.10.2 Detecting local troughs in the novelty score

The audio texture algorithm can also be changed in such a way that local minima are detected in the
novelty score. This possibility is working but cannot be compared with the results of the natural grain
algorithm. The novelty score is the result of a frame similarity measurement, which is correlated with a
two-dimensional kernel in order to detect regions of changes in the signal.

4.10. Exchange features and methods 47

Figure 4.14: Chirping birds: Peaks are not detected in the same frames of the novelty score any-
more but still produce similar results because the frequency changes in the signal are
smoother.

48 4. Algorithmic improvements

4.10.3 Building the Euclidean distance function using MFCCs

The natural grain algorithm can also be built using MFCCs. However, due to different units and the spe-
cialty of the sub-clip generation (a local minimum has to lie beneath a certain threshhold and a minimum
is only selected if it is at least n frames apart from the previous one), the sub-clipborders are not exactly
the same.

4.10.4 Finding local peaks in the Euclidean distance function

The whole concept of the natural grain algorithms can be reversed of course so that local peaks are
detected. However, as explained above, the distance function cannot be used as a measure of novelty
and therefore a comparison with the audio texture approach does not make sense. Reversing the concept
would also contradict with the idea of a natural grain, which refers to points in the signal ”where some
kind of events start or end that cannot be broken up further”.

4.11 Conclusion

In this chapter I demonstrated that the audio texture and the natural grain were successfully modified for
the segregation of perceptually perfect segments of input textures. Furthermore, the resynthesis could be
successfully improved so that no repetitions can be heard and so the output texture seems natural.

Although, focusing on the parametric improvements of both algorithms, the audio texture algorithm
turned out to be the preferred method.

• The novelty score more precisely represents the spectral changes of the input texture since it orig-
inates from the two-dimensional correlation of the similarity matrix and the Hamming-kernel.

• The transition probability is derived from similarity measures between any two entire sub-clips
(and not only between the first two and the last two frames between any two sub-clips as proposed
by the natural grain algorithm). This is very important, since sub-clips might get very long, due to
the usage of a threshold for the peak detection in the novelty score.

• Listening to single sub-clips showed, that the audio texture approach more likely produces seg-
ments that correspond with our auditory segregation.

Chapter 5

Real-time Sound Texture Generator

“ C’est le rhythm qui fait la texture ”

[Pour une rhétorique de l’image, Seuil 1992]

The main idea of the Sound Texture Generator (STG) is to facilitate an easy generation of sound
textures without getting into coding details. Moreover, the real-time generator, as opposed to the offline
Matlab implementation, is not CPU expensive, so that sounds can easily be tested and saved for further
applications.

As a proof of my concept, as presented in Chapter 4, a high-level Pure Data interface is provided
demonstrating both presented algorithms and incorporating the parametric improvements. The graphical
interface is intended as an application for demonstration purposes. Furthermore, several parameters and
functions for controlling the concatenation of the segments and as well for testing the sequence patterns
are provided.

5.1 Real-time software Pure Data

The demonstration prototype is built using the graphical real-time graphical programming environment
Pure Data (PD).
PD is a real-time graphical programming environment for audio, video, and graphical processing, which
is available for all platforms.1

PD represents a major branch of the family of patcher programming languages known as Max origi-
nally developed by Miller Puckette and his team at IRCAM. PD is an example of a dataflow programming
language. In such a language, functions or ”objects” are linked or ”patched” together in a graphical en-
vironment modeling the flow of the control and audio. In this chapter several technical terms are used,
which might be new to a reader who is not familiar with PD. For a more in-depth introduction to the PD
environment and its programming objects the reader is referred to [Puckette, 2006].

PD was selected as a building software for the sound texture protype because, in contrast to the
numerical computing Matlab environment, it is designed for real-time processing and allows for a fast
and interactive modification of the parameters and methods.

5.1.1 Software requirements of the STG

In order to run the STG the following conditions are required:

1www.puredata.org (accessed Nov. 17. 2006)

49

www.puredata.org

50 5. Real-time Sound Texture Generator

• PD version 0.40

• zexy2

• iemlib3

• iemmatrix4

• shell and stripdir5

• Matlab 7.0

5.2 Two-level system of the algorithmic structure

On the basis of the available Matlab analysis functions, I decided to construct the STG as a two-level
system. This means that the implementation of the STG prototype incorporates an offline analysis (Level
1, performed in Matlab) and the real-time resynthesis (Level 2, implemented in PD) (see Figure 5.1).
However, both levels can be controlled from the interface (see Section 5.2.1 and 5.3).

Level 1

The first level comprises the following steps:

• Feature extraction of the input texture (either MFCC or Wavelet)

• Similarity measures

• Creation of the sub-clips (due to the novelty score or the Euclidean distance function)

• Transition probability of sub-clips

From Level 1 the borders of the sub-clips and the transition probability of the sub-clips are passed to
Level 2 (see Section 5.2.1 for more details).

Level 2

In the second level the following steps are performed;

• Sequencing based on the transition probability

• Concatenative synthesis of the sub-clips

5.2.1 Analysis: Level 1

Since the analysis data (sub-clip borders and transition probability of the sub-clips) from Level 1 is
passed to Level 2, the data must be saved in such a way that PD can interpret it. For reading the Matlab
data the PD iemmatrix library is used, which is able to deal with matrices saved as textfiles that are
created by an external program. Therefore, the borders for the sub-clips and the transition probabilities
are saved in Matlab as textfiles with the suffix *.mtx so that the iemmatrix objects can access these files.

5.2. Two-level system of the algorithmic structure 51

Figure 5.1: Two level implementation structure for building the real-time STG.

1 #matrix n 2
2 a11 a12
3 a21 a22
4 .
5 .
6 an1 an2

Listing 5.1: Example matrix for the sub-clip borders

52 5. Real-time Sound Texture Generator

1 # ! /bin /sh
2
3 echo ”starting matlab from PD executing audiotexture analysis”
4
5 . / matlab −nosplash −nodesktop −r ”audiotexturePD (${filename} ,${fft_size} ,${delta} ,

${threshold) ,quit”
6
7 echo ”bang ; ” | pdsend 6666 localhost udp

Listing 5.2: Parts of the shell script: matlab1 start.sh.

Consequently, a matrix that is read by PD, such as for example the matrix representing the n sub-clip
borders of an input texture, looks like Listing 5.1.

The first entry, starting with a hash character, defines a matrix with n rows and two columns (the first
row defines the start point of a sub-clip, the second row the end point). The entries for the values of the
matrix start in the second line of the textfile.

Starting Matlab from PD

Already in the introduction of this chapter I mentioned that the generation of sound textures with the
STG should be simple and coding details should be avoided. Now that the implementation structure
of the STG incorporates an offline analysis with Matlab, I decided to develop a script that enables the
starting of Matlab from the PD interface. Thus, Matlab is controlled from PD and no programing code
has to be checked. Only the control parameters for the analysis have to be inserted in the PD function
call. With this solution I provided an easy access to the offline analysis from PD that enables also users
having no programming knowledge to use the STG.

In the analysis abstraction (see Section 5.3) the analysis data (sub-clipborders and transition prob-
ability matrix) for the audio texture and the natural grain algorithm can be computed. Basically, the
prototype already includes the analysis data for several example textures. Thus, the idea of the analysis
abstraction is to use it on the one hand when a new soundfile is loaded and on the other hand when the
user is not satisfied with the quality of the output textures. Two shell scripts (matlab1 start.sh(A) and
matlab2 start.sh(NG))6 have been developed that can be executed via the shell object7 (see Figure 5.2).
The shell scripts need parameter values, such as frame size, decomposition levels etc. in order to run
properly. These parameters can be directly inserted as arguments in the shell script call within the PD
patch. To accelerate the program compilation, Matlab is started without a GUI (see Listing 5.2) and the
program is closed after the function call. If the execution of the Matlab function is finished, PD receives
a bang message via a user datagram protocol (udp) socket. Hence, the new analysis data can be used for
the sound texture generation.

5.2.2 Resynthesis: Level 2

As soon as the analysis data is available as an input from Level 1 the whole resynthesis can be performed
in real-time corresponding to the algorithmic approach introduced in Chapter 4. The creation of the

2 from pd-cvs/externals/iem/zexy/
3 from pd-cvs/externals/iem/iemlib/
4 from pd-cvs/externals/iem/iemmatrix/
5 from pd-cvs/externals/ggee/control/
6In the patch audio texture is abbreviated with the letter A and natural grain with NG respectively.
7The shell object in PD enables the connection of another program. This object needs the name of a shell script as argument.

5.2. Two-level system of the algorithmic structure 53

Figure 5.2: Screenshot of the analysis abstraction. The parameter values for the shell scripts are
user defined. If no values are provided default values are used.

sequence patterns based on the transition probability is implemented in the patch named Probability.pd8.
Since the implementation of this patch corresponds with the sequencing rules presented in Section 3.4.5,
no more details are given here.

Concatenative synthesis of segments

While testing the algorithms in Matlab the crossfading of the sub-clips could be implemented accurately
to a sample. The algorithmic approach was simple because in an offline computation the algorithm does
not need to wait until a clip is played and every procedure is executed sequentially.
In PD on the other hand the solution is different because every selected sub-clip can be heard immedi-
ately. Hence, in the player abstraction two tabplay˜ objects9 are used which alternate (see Figure 5.3).
Whenever a sub-clip is selected the length of the sub-clip in milliseconds is computed. While the sub-clip
is played by the first tabplay˜ object a delay object counts the time of the current sound file length minus
the fade time. When this time is reached the first sub-clip is faded out. At the same time a new sub-clip
is triggered, the other tabplay˜ object starts and the sub-clip is faded in. This procedure continues until
the process is switched off by the user.

5.2.3 Informed versus uninformed synthesis

Very fine grained, stochastic sound textures, such as fire, rain and applause obviously work well with
every algorithm, and parameter modifications do not seem to have a great influence on the acoustic
result. Therefore, it is doubtable whether the algorithmic analytical process is necessary for these types

8The patch is located in the abs-folder (see Appendix A.2).
9A tabplay object plays part of a soundfile taking the begin and the end point of a subclip as input arguments.

54 5. Real-time Sound Texture Generator

Figure 5.3: Screenshot of the player .pd abstraction where sub-clips are concatenated.

of signals. Since this assumption can be easily tested in PD, two abstractions are created. Both can be
started from the main patch in the select method unit (see Section 5.3).

Random sequence order

In the first abstraction the sub-clip borders computed in Level 1 are used, but all the sequencing rules
based on the transition probability from Section 4.5.1 are neglected. The sequence is only determined by
a pseudo random number generator that emits random values in the range of the available sub-clips.10

It was observed that as long as the random numbers are uniformly distributed no difference can be no-
ticed in comparison with an algorithmically determined sequence. However, there is no control that value
x must not follow itself and also neighboring sub-clips can be selected which often produces disturbing
repetitive patterns that can be heard. The random sequence order was also tested with signals that have
noticeable forground events, for example environmental sounds with significant bird chirps. With these
signals the sound quality is significantly lower. Repetitions can be heard owing to the uncontrolled ran-
dom generator. Furthermore, the same sub-clips are repeated one after the other so that the resynthesized
version is not considered to be natural anymore.

Random texture synthesis

The second abstraction ignores the analysis data from level 1. Thus, this approach generates random
sub-clips borders. According to a user defined average clip length11, ranging between 13 and 130 mil-
liseconds, a random sub-clip border matrix is created. Again the pseudo random number generator is
used to define the sequence order. Now the results are very dependent on the average clip length. Below

10Actually this number is defined by the size of the sub-clip border matrix, which has n rows and 2 columns.
11Always some jitter is added to the average length to simulate an altered sub-clip length. The corresponding patch is called

randomClipBorders.pd.

5.3. Interface structure 55

Figure 5.4: Screenshot of main.pd, the sound texture control interface. All the functions can be
controlled from the main patch.

50 milliseconds the resynthesized output textures versions do not convince for any input texture mate-
rial. Using a longer average clip length improves the sound quality but still, due to the randomness of
the sub-clip borders forground events get cut somewhere in between, which proves that for these kind of
signals the informed synthesis produces output textures that are to a great deal better than the results of
the random texture synthesis.

5.3 Interface structure

The whole interface can be controlled from the Graphical User Interface (GUI) in the file main.pd (see
Figure 5.4).

The control GUI contains the following graphical units:

• select algorithm: Either the audio texture or the natural grain algorithm can be selected. After the
selection of an algorithm a dialog box pops up where a soundfile has to be loaded. In a next step
also the frame size has to be selected. In order to access all the matrix data (sub-clip borders and
transition probability) the name of the sound file (e.g. fire.wav) is extracted as a string without the
”.wav” extension so that the matrix suffices (*.mtx) for corresponding matrices are created (e.g.
1024fireP AT.mtx) and so the data is automatically loaded.

56 5. Real-time Sound Texture Generator

In this unit the analysis is not computed anymore and the user only selects the data that was
generated in Level 1 before.

• switch method (sequence concatenation): Three methods can be selected. The first method starts
the analysis/resynthesis approach introduced in this thesis using the parameters calculated in the
offline analysis. The second method again uses all the analysis data, but performs a random se-
quence concatenation. Finally, the third method permits the real-time generation of random length
clips and random sequencing.
The second and the third method are fully explained in Section 5.2.3 above.

• fade time: According to a chosen frame size a corresponding fade time in milliseconds, that is half
the frame size, is set (512: 6ms, 1024: 12ms, 2048: 23ms and 4096: 46ms). The use of a higher
fade time is suggested when working on a larger frame size in order to get smoother cross fades.
As a matter of course, every fade time can be used with any frame size.

• control: The range factor r and the threshold P0 described in Section 3.4.5 can be modified with
the respective slider. Pushing the button12 past leads to a comparison of the current selected clip
number with previous clip numbers. If the button is deactivated all the values are allowed to pass
even though they were just selected. The underlying idea of this function is fully explained in
Section 4.5.1.

• play original: The original sound file can be played.

• audio control functions: This unit contains the general audio control functions, such as master
volume, vu-metres and Digital Signal Processor (DSP).

• analysis: Opening the analysis abstraction enables the user to start the offline Matlab analysis
from a PD patch (see Section 5.2.1 for more details).

• sonification: If the first method in the sequence concatenation unit is selected the index of each
sub-clip can be sonified with a sine tone. The frequency specifies the index number in semitones.
Changing the values of the Segment Speed, which correspond to milliseconds, inserts a delay
between successive sub-clips so that each sub-clip can be heard alone if a long delay is selected
(see Section 5.4 for more details).

5.4 Repetition control using sonification

Since it is difficult to control the sub-clip sequence order of sound textures which are longer in duration,
an easy way of checking the appearance of repetitive patterns is to use a sonification of every sub-clip. In
the current implementation sub-clips are consecutively numbered and so the index numbers correspond
to semitones.

With the sonification it can be demonstrated that owing to the strict sequencing rules no repetitive
patterns can be heard. Furthermore, it can also be proved acoustically that the past function perfectly
avoids sub-clips that appear too often successively because as soon as the past button is deactivated
undesired semitones can be heard in the sonification.

Generally, I noticed that the longer the duration of the input sound texture the better the quality and
the vivacity of the output texture. The best results were achieved with input texture lengths longer than
25 seconds. This observation seems logic but has to be mentioned in that context since common input
sound textures lengths in the literature are not longer than maximally 15 seconds.

12In PD the ”button” is called toggle.

5.5. Constraints of the prototype 57

5.5 Constraints of the prototype

As I explained above in Section 5.1, the signal analysis is performed offline. Even though the analysis
can be started from PD, this is not the most elegant solution. So far the prototype has run on a Linux13

system only, but might be easily ported to other platforms. As the installation of all the externals can
be difficult, I considered to intergrate the whole patch on a Linux Live-CD. Unfortunately this cannot
be done since Matlab is not an open-source program. I also tried using octave14 instead, but the MFCC
computation is extremely slow and unfortunately the wavelet toolbox commands from Matlab are not
integrated into octave yet.

Changing the threshold and range parameters for the sequence generation sometimes produces a stack
overflow error, which freezes the program. Since this is not intended, a loop controller is implemented
which stops the program as soon as the loop index exceeds a certain threshold. Due to that a warning
message is printed on the PD console. Thus, the sequence control parameters have to be changed and the
whole process has to be reset with the start button.

Pressing the start button always resets the sequencing control parameters. If this button is not acti-
vated when different frame sizes are tested one after the other it can happen that the control parameters do
not fit with the new transition probability matrix anymore so that the process also gets stuck. Therefore,
it is suggested to always start and stop a process before going on.

13In this case the prototype was built on a debian system.
http://www.debian.org (accessed Nov. 18. 2006)

14www.octave.org (accessed Nov. 2. 2006)

http://www.debian.org
www.octave.org

58 5. Real-time Sound Texture Generator

Chapter 6

Reflections upon sound textures

“ Whatever may come, the world keeps revolving,... that is all just a little bit of history
repeating. ”

[Propellerheads, History Repeating 1998]

Right at the beginning of this work, before investigating the details of the algorithmic parameters,
it could be heard, that very stochastic, fine grained sound textures, such as fire and liquid sounds, work
perfectly with both algorithms. This could be simply proved by listening to every single sub-clip1 in
the real-time prototype (compare Section 5.3). Due to the stochastic structure every segment boundary
seemed to be valid, and as stated in Section 5.2.3, it was even hard to notice any difference when compar-
ing the informed synthesis (each segment is statistically dependent on its predecessor) with the random
sub-clip selection. These sound textures comprise mostly natural sounds and some machine sounds that
are perceived not as single events, but as a continuous dense stream. Attributes for describing these
sounds include: crackling, crumpling, droning, rustling and buzzing.

As soon as sounds, which contain several streams that can be easily segregated by a listener (compare
Section 3.1) were used, the algorithms produced unsatisfying results. Moreover, the same listening
observations that were also found in the literature (compare Section 2.2) could be noticed.
Fortunately, due to the parametric improvements presented in Chapter 4, the sound quality of the output
textures could be significantly improved in such a way that also soundscapes can be used as input textures.

6.1 What is a perfect input texture?

Just as explained in Chapter 4 several parametric improvements were made so that the sound quality of
textures consisting of several streams could be significantly improved and noticeable repetitions were
removed. However, I discovered that there are still some recordings that work better than others.

A sound texture that works very well is the recording of chirping birds in a summer garden (see
Figure 6.1). Without knowing the signal it can be seen that the bird chirps are very well distributed
over the whole spectrum. Furthermore, when listening to that sound file, it can be heard that there is a
very good ”ratio” between foreground sound events and background sounds. Moreover, the background
noise is very smooth and clear. Due to this special structure very long sub-clips are detected and when
listening to the single sub-clips the segment borders make sense. An extract of the 26 second sound file
and its segment borders is depicted in Figure 6.2. The resynthesized version just sounds natural, and

1Setting the segment speed to 1000 milliseconds, inserts a 1 second delay between every sub-clip so that a single sub-clip
can be heard alone.

59

60 6. Reflections upon sound textures

it is of particular importance that the events seem to be placed perfectly in time and the peaceful, slow
impression of the soundfile is preserved.

However, choosing the threshold for the peak detection in the novelty score is a crucial step (compare
Section 4.4.4). Even though the presented bird signal seems perfect, the segmentation is further improved
using a threshold so that only significant streams are segregated and the rest of the segments contain the
noisy background sound.

6.1. What is a perfect input texture? 61

Fi
gu

re
6.

1:
Sc

re
en

sh
ot

of
th

e
sp

ec
tr

um
an

d
th

e
or

ig
in

al
si

gn
al

.
A

lr
ea

dy
fr

om
th

e
sp

ec
tr

um
it

ca
n

be
se

en
th

at
th

e
so

un
d

ev
en

ts
ar

e
ve

ry
w

el
ld

is
tr

ib
ut

ed
ov

er
th

e
w

ho
le

sp
ec

tr
um

an
d

ov
er

di
ff

er
en

tf
re

qu
en

cy
ra

ng
es

.

62 6. Reflections upon sound textures

6.2 Imperfect sound textures

In search of perfect sound texture input signals the following types and characteristics produced nonsat-
isfying results:

• Waves and wind: A rolling wave lasts several seconds and every wave involves an increasing
and decreasing envelope as can be seen in Figure 6.3. Wave signals were tested in the Matlab
environment only. Even though large frame sizes were used, single waves were not captured
as an entire stream. Hence, the waves were cut into pieces. Due to the changing envelope the
resynthesized version always sounded like a noise signal which has constant blocks of different
changing envelopes.
The same applies analogously for ”howling wind” signals. The undulating amplitude envelope
of these signals cannot be resynthesized. Therefore, the new sequences sound like a chopped
concatenation of sequences.

I still consider ocean waves and wind signals as sound textures. However, using the parameters
proposed in this thesis, the algorithms do not capture the properties of these signals. I am sure that
using very large analysis parameters might succeed but this was not tested in the context of my
work.

• Speech background with single words: Speech background sound works well when a large
frame size is used and as longs as single words are not intelligible.
As soon as a single word can be retrieved, it still happens that the word is cut into two pieces.
This might happen because the word contains a prominent spectral change which results in a local
peak in the novelty score, thus, the word is split. Furthermore, as soon as a single word can be
understood and remembered, the more often it reappears in the resynthesized version, the more it
sounds like an illogical repetition.

In my opinion it should really be questioned if human utterances are considered as textures. I think
this question involves more than just asking: How many people have to talk so that we perceive
a texture. I would also ask - how much do we have to comprehend that we consider speech as
texture and is a single intelligible word comparable to a bird chirp that appears again and again?

• Quasi-rhythmic textures: Sounds such as applause, periodic engine noise et cetera are considered
as sound textures in Section 1.2.1. Usually these sounds do not cross one’s mind when thinking
about rhythmic sounds. But listening to theses signals over some time makes it evident that there
is some rhythmic structure.

Rhythm is not considered in the presented algorithmic resynthesis structure. Furthermore, seg-
ments cannot be concatenated in a rhythmical order. Therefore, I rather suggest to exclude quasi-
rhythmical signals from the definition of sound textures.

6.2. Imperfect sound textures 63

Figure 6.2: Due to the perfect distribution of events in different frequency ranges, the segment
borders just follow frequency changes of the events.

Figure 6.3: Wave signal: The undulated envelope of a single wave which lasts some seconds can
already be seen in a simple audio editor. With the current parameters these long-term
changes cannot be captured.

64 6. Reflections upon sound textures

Chapter 7

Conclusion

A primary goal of my thesis was to give a general idea on the current state of the art of sound texture
modeling in computer music. I tried to determine the scope of different fields of acoustic texture and
starting from the literature research I investigated two algorithms (audio texture and natural grains) for
creating a sound texture generator that creates output textures of undetermined length out of a short
input texture. By an empirical approach I tested and modified these algorithms so that the quality of the
output textures could be successfully improved. While modifying the parameters, I discovered that these
algorithms can be used for segregating the input texture into perceptually meaningful units. Therefore, a
major contribution is that due to the parametric changes, segments are only created at points that make
sense to our auditory perception. As a proof for my investigations I created a real-time sound texture
interface where both algorithms can be tested.

In the first chapter of this thesis I enumerated common sound texture examples, which were tested
in the algorithmic environment. Owing to the different signal properties the finding of a general para-
metric analysis setup was not possible. However, with the parametric modifications of my work, I could
particularly improve the construction of output textures consisting of significant foreground sounds that
are rather associated as soundscapes or environmental sounds. Thus, after all the investigation on sound
textures I still have to ask: What is a sound texture? In my opinion there is the need for a clear typology
of sound textures. Precise constrictions have to be made so that the scope of these signals gets smaller
which would simplify the analysis for these types of sounds. We can define speech and we can define
music, therefore, also a distinct definition for sound textures should be constructed.

Apparently, there is the known issue that texture is a language-related term. In English it seems clear
that the sound of burning wood, ”fire”, is considered as a sound texture, whereas denoting the same
happing in German as ”Textur” might astonish a native German speaker. Hence, it would be interesting
to find out if there is a linguistic equivalent in other languages.

It may also be intersting to have more fundamental resarch on perception based signal research
that incorporates aesthetic aspects so that terms like sound quality or perceptually meaningful could be
clearlier defined.

Since the generation of sound and music textures is very common in contemporary music composi-
tion, I would like to modify the real-time STG so that it can also be used as a composition tool.

As stated in the introduction, several 20th century composers have a very precise idea of what a
texture is. Perhaps findig parallels between music and computer music research literature could enable a
better understanding for these sound classes. Thus, one of the open points would be to find out if these
disciplines are consistent in terms of texture.

65

66 7. Conclusion

Appendix A

Appendix

A.1 Mel scale

In 1937 the Mel scale was proposed by Stevens, Volkman and Newman. The Mel is a perceptual scale
of pitches judged by listeners to be equal in distance from one another. The reference point between
this scale and normal frequency measurement is defined by equating a 1000 Hz tone, 40 dB above the
absolute threshold of hearing, with a pitch of 1000 Mel (see Figure A.1).

Above about 500 Hz, larger and larger intervals are judged by listeners to produce equal pitch incre-
ments. The name Mel comes from the word melody indicating that the scale is based on pitch comparison
[Wikipedia, 2006b].

The frequency in Hertz can be converted to the Mel scale using the following equation :

m = 1127.01048 ∗ log(1 + f/700) (A.1)

And vice versa, from Mel to Hertz:

f = 700(em/1127.01048 − 1) (A.2)

A.2 CD-ROM

The accompanying CD-ROM contains the following items:

A.2.1 Matlab files

The folder Matlab contains the following files:

• audiotexture.m (Implementation of the improved audio textures algorithm) and audiotextureOld.m
(original implementation without improvements)

• naturalwavgrain.m (Implementation of the improved natural grains algorithm) and naturalwav-
grainOld.m (original implementation without improvements)

The following extra functions are required by the algorithms:

• get wav.m (GUI for selecting a sound file)

• localPeak.m (local peak detection)

• lmin.m (local minimum detection)

• ma mfcc.m (MFCC computation)

67

68 A. Appendix

Figure A.1: Mel/Hertz Scale [Image extracted from [Wikipedia, 2006b] under the terms of the
public domain copyright.]

A.2.2 Pure Data texture generator

The folder texturePD contains the following files and directories:

• start pd.sh (startup shell script for the generator)

• main.pd
The main patch is automatically started by the startup script See Section 5.3 for details.

• samples (sound files)

• abs (PD abstractions required by main.pd)

• at (*.mtx data of the audio texture algorithm)

• ng (*.mtx data of the natural grains algorithm)

• data (textfiles containing the analysis information about the created matrix data from the folders at
and ng)

• matlabfiles (audiotexturePD.m and naturalPD.m)

• matlab1 start.sh (shell script for starting the audio texture Matlab algorithm from PD, compare
Section 5.2.1)

• matlab2 start.sh (shell script for starting the natural grain Matlab algorithm from PD, compare
Section 5.2.1)

A.2.3 praat

• mtx2TextGrid.awk (convert PD-mtx-Files to Praat-TextGrid-Files)

• TextGrid2mtx.awk (convert Praat-TextGrid-Files to PD-mtx-Files)

Bibliography

A. Alani and M. Deriche [1999]. A Novel Approach To Speech Segmentation Using The Wavelet Trans-
form. In Fifth International Pocessing and its Applications, ISSPA 99’, pages 127–130. Brisbane,
Australia. (Cited on pages 26, 28 and 43.)

M. Amadasun and R. King [1989]. Textural features corresponding Textural Properties. In IEEE Trans-
actions on Systems, Man and Cybernetics, pages 1264–1274. (Cited on page 2.)

K. Andrews [2006]. Writing a Thesis: Guidelines for Writing a Master’s Thesis in Computer Sci-
ence. Graz University of Technology, Austria. http://ftp.iicm.edu/pub/keith/thesis/.
Accessed on 1th Aug. 2006. (Cited on page ix.)

E. Asimov [2006]. The indiscribable texture of wine. The New York Times. (Cited on page 2.)

M. Athineos and D. Ellis [2003]. Sound Texture Modelling with Linear Prediction in both Time and
Frequency Domains. In Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing ICASSP ’03, pages 648–51. (Cited on pages 4, 10, 11 and 14.)

J.-J. Aucouturier and F. Pachet [2004]. Improving Timbre Similarity: How high’s the sky? Journal of
Negative Results in Speech and Audio Sciences, 1. (Cited on pages 18 and 33.)

Z. Bar-Joseph, D. Lischinski, S. Dubnov M. Werman, and R. El-Yaniv [1999]. Granular Synthesis
of Sound Textures using Statistical Learning. In Proceedings of the International Computer Music
Conference (ICMC), pages 178–181. Beijing. (Cited on pages 10 and 42.)

Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman [2001]. Texture Mixing and Texture Movie
Synthesis Using Statistical Learning. In IEEE Trans. Visualization and Computer Graphics, pages
120–125. (Cited on page 9.)

B. Behm and J.R. Parker [2004]. Creating Audio Textures by Samples: Tiling and Stitching. In Pro-
ceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing ICASSP ’04,
pages 317–320. (Cited on pages 4, 10 and 14.)

N. Bernadini [2004]. Sound Textures and Expressiveness. Workshop on Sound Textures, Canazei. (Cited
on page 4.)

A. Bregman [1990]. Auditory Scene Analysis. The MIT Press. (Cited on pages 9 and 15.)

F. Brosius [2002]. SPSS11. mitp Verlag, Bonn. (Cited on page 17.)

M. Cardle, S. Brooks, and P. Robinson [2003]. Directed Sound Synthesis with Natural Grains. Proceed-
ings of the Cambridge Music Processing Colloquium 2003 (CMPC 2003). (Cited on page 4.)

M. Cooper, J. Foote, E. Pampalk, and G. Tzanetakis [2006]. Visualization in Audio Based Music Infor-
mation Retrieval. Computer Music Journal, 30(2), pages 42–61. (Cited on page 21.)

69

http://ftp.iicm.edu/pub/keith/thesis/

70 Bibliography

Y. Dobashi, T. Yamamoto, and T. Nishita [2003]. Real-time Rendering of Aerodynamic Sound using
Sound Textures based on Computational Fluid Dynamics. In ACM Transaction on Graphics, pages
732–740. (Cited on page 13.)

Y. Dobashi, T.Yamamoto, and T. Nishita [2004]. Synthesizing Sound from Turbulent Field using Sound
Textures for Interactive Fluid Simulation. In Proceedings of Eurographics, pages 539–546. (Cited on
page 13.)

S. Dubnov and N.Tishby [1997]. Analysis of Sound Textures in Musical and Machine Sounds by means
of Higher Order Statistical Features. In Proceedings of the International Conference on Acoustics
Speech and Signal Processing. Munich. (Cited on page 4.)

S. Dubnov, Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman [2002]. Synthesizing Sound
Textures through Wavelet Tree Learning. In IEEE Computer Graphics and Applications, pages 38–48.
(Cited on pages 4, 6, 10, 13 and 14.)

J. Dunsby [1989]. Considerations of Texture. Music & Letters, 70(1), pages 46–57. (Cited on pages 2,
4 and 7.)

L. Engelen [2004]. A rough guide to texture: oral physiology and texture perception of semi solids.
Proefschrift Universiteit Utrecht. (Cited on pages 2 and 3.)

J.-J. Filatriau and D. Arfib [2005]. Instrumental Gestures and Sonic Textures. In Proceedings of the
International Sound and Music Computing Conference SMC’05. Salerno, Italy. (Cited on pages 4, 6,
7 and 13.)

J.-J. Filatriau, D. Arfib, and J.-M. Couturier [2006]. Using Visual Textures for Sonic Textures Production
and Control. In Proceedings of the International Conference on Digital Audio Effects (DAFx-06),
pages 31–36. Montreal, Quebec, Canada. (Cited on pages 7 and 14.)

R. Fisher, Perkins, A. Walker, and E. Wolfart [2003]. Hypermedia Image Processing Reference. http:
//homepages.inf.ed.ac.uk/rbf/HIPR2/kernel.htm. Accessed on 27th Dec. 2006. (Cited
on page 23.)

A. Flexer, E. Pampalk, and G. Widmer [2005]. Novelty detection for spectral similarity of songs. In
Proceedings of the 6th International Conference on Music Information Retrieval (ISMIR’05). (Cited
on page 17.)

F. Fontana and R. Bresin [2003]. Physics-Based Sound Synthesis and Control: Crushing, Walking and
Running by Crumpling Sounds. In Proceedings on the XIV Colloquium on Musical Informatics (XIV
CIM 2003). Firenze, Italy. (Cited on pages 12 and 13.)

J. Foote [1999]. Visualizing Music and Audio using Self-Similarity. In Proceedings of ACM Multimedia
’99, pages 77–80. Orlando, Florida. (Cited on pages 18 and 21.)

J. Foote [2000]. Automatic Audio Segmentation Using A Measure of Audio Novelty. In Proceedings of
International Conference on Multimedia and Expo, ICME 2000, pages 452–455. New York. (Cited
on pages 24, 33 and 46.)

J. Foote and S. Uchihashi [2001]. The Beat Spectrum: A New Approach To Rhythm Analysis. In Pro-
ceedings of International Conference on Multimedia and Expo, ICME 2001, pages 881– 884. Tokyo,
Japan. (Cited on pages 23 and 46.)

J. Gibson [1973]. Die Sinne und der Prozesse der Wahrnehmung. Verlag Hans Huber. (Cited on pages 4
and 6.)

http://homepages.inf.ed.ac.uk/rbf/HIPR2/kernel.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/kernel.htm

Bibliography 71

H. Grassegger [2004]. Phonetik Phonologie. Schulz Kirchner Verlag. (Cited on page 26.)

C. M. Hamilton [2006]. Machine Learning. http://www.aaai.org/AITopics/html/machine.html. Accessed
on 16th Oct. 2006. (Cited on page 23.)

P. Hanna, N. Lois, M. Desainte-Catherine, and J. Benois-Pineau [2004]. Audio features for noisy sound
segmentation. In Proceedings of International Conference on Music Information Retrieval (ISMIR).
Barcelona. (Cited on page 6.)

R. Hoskinson [2002]. Manipulation and Resynthesis of Environmental Sounds with Natural Wavelet
Grains. Master’s thesis, The University of British Columbia. (Cited on pages 15 and 41.)

R. Hoskinson and D. Pai [2001]. Manipulation and Resynthesis with Natural Grains. In Proceedings of
the International Computer Music Conference ICMC’01. Havana, Cuba. (Cited on pages 1, 5, 12, 15,
41, 42 and 44.)

T. Jehan [2005]. Creating Music by Listening. Phd thesis, Massachusetts Inst. Technology, Cambridge.
(Cited on page 7.)

H. Lachenmann [1996]. Klangtypen der neuen Musik. Breitkopf und Härtel. (Cited on page 4.)

F. Liu [1997]. Modeling Spatial and Temporal Texture. Phd thesis, Massachusetts Inst. Technology,
Cambridge. (Cited on page 4.)

B. Logan [2000]. Mel Frequency Cepstral Coefficients for Music Modeling. In Proceedings of the First
International Symposium on Music Information Retrieval (ISMIR). Plymouth, Massachusetts. (Cited
on pages 18 and 19.)

L. Lu, L. Wenyin, and H. Zhang [2004]. Audio Textures: Theory and Applications. In IEEE Transactions
on Speech and Audio Processing, pages 156–167. (Cited on pages 1, 7, 12, 15 and 33.)

A. Ma, F. Roters, and D. Raabe [2006]. Simulation of textures and Lankford values for face centered
cubic polycrystalline metals by using a modified Taylor model. http://www.mpie.de/1909/?tx
jppageteaser pi1&type=1. Accessed on 16th Oct. 2006. (Cited on page 2.)

M. Markou and S. Singh [2003]. Novelty detection: A Review: Part 1: Statistical approaches. Signal
Processing, 12, pages 2481–2497. (Cited on page 23.)

N. E. Miner and T. P. Caudell [2005]. Using Wavelets to Synthesize Stochastic Based Sound for Immersive
Virtual environments. In ACM Transactions on Applied Perception, pages 521–528. (Cited on pages 5
and 11.)

A. Misra, P. R. Cook, and G. Wang [2006]. A New Paradigm for Sound Design. In Proceedings of
the International Conference on Digital Audio Effects (DAFx-06), pages 319–324. Montreal, Quebec,
Canada. (Cited on pages 5, 7, 10 and 13.)

J. G. Neuhoff [2004]. Ecological Psychoacoustics. Elsevier Academic Press, California, London. (Cited
on page 4.)

F. Nielsen [2005]. Visual Computing. Charles River Media Inc, Massachusetts. (Cited on pages 9
and 10.)

M. J. Norris and S. Denham [2005]. A sound texture detection algorithm. In JASA, page 2613. (Cited
on page 5.)

OGRE-team [2006]. Materials-Ogre Wiki. http://grotsnik.ogre3d.org/wiki/index.php/

Materials. Accessed on 16th Oct. 2006. (Cited on page 3.)

http://www.mpie.de/1909/?tx_jppageteaser_pi1&type=1
http://www.mpie.de/1909/?tx_jppageteaser_pi1&type=1
http://grotsnik.ogre3d.org/wiki/index.php/Materials
http://grotsnik.ogre3d.org/wiki/index.php/Materials

72 Bibliography

D. O’Shaughnessy [2000]. Speech Communications. IEEE Press, New York. (Cited on pages 18, 20
and 33.)

E. Pampalk [2004]. A Matlab Toolbox To Compute Music Similarity From Audio. In Proceedings of
the First International Symposium on Music Information Retrieval (ISMIR 04). Barcelona. (Cited on
page 31.)

G. De Poli, A. Piccialli, and C. Roads [1991]. Representations of Musical Signals. MIT Press, Mas-
sachusetts. (Cited on page 45.)

M. Puckette [2006]. The Theory and Technique of Electronic Music. (Cited on page 49.)

C. Roads [2004]. Microsound. The MIT Press. (Cited on page 11.)

D. Rocchesso and F. Fontana [2003]. The Sounding Object. Mondo Estremo. (Cited on page 12.)

N. Saint-Arnaud and K. Popat [1998]. Computational Auditory Scene Analysis. D. F. Rosenthal and H.
G. Okuno, Lawrence Erlbaum Association, New Jersey. (Cited on pages 5 and 11.)

A. Schödl, R. Szeliski, D. H. Salesin, and I. Essa [2000]. Video textures. In Siggraph 2000, Computer
Graphics Proceedings, page 3342. ACM SIGGRAPH, Addison Wesley Longman. (Cited on page 7.)

A. Schumacher and N. Balthasar [2006]. Gotik Schrift Textur. http://demo.sfgb-b.ch/TG05/

mittelalter/gotik/schrift/gotik schrift textur.htm. Accessed on 16th Oct. 2006.
(Cited on page 2.)

A. Di Scipio [1999]. Synthesis of Environmental Sound Textures by Iterated Nonlinear Functions. In
Proceedings of the 2nd COST g-6 Workshop on Digital Audio Effects DAFX’99. Trondheim, Norway.
(Cited on pages 4, 12 and 13.)

J. P. Sethna and P. A. Houle [1996]. Acoustic Emission from crumpling paper. In Physics Review E,
pages 278–283. (Cited on page 13.)

J. M. Stowasser, M. Petschenig, and F. Skutsch [1994]. Stowasser, lateinisch deutsches Schulwörterbuch.
öv et hpt, Vienna. (Cited on page 2.)

G. Strang and T. Nguyen [1997]. Wavelets and Filterbanks. Wellesley-Cambridge Press, Wellesley.
(Cited on page 27.)

G. Strobl, G. Eckel, and D. Rocchesso [2006]. Sound Texture Modeling: A survey. In Proceedings
of Sound an Music Computing (SMC) International Conference, pages 61–65. Marseille. (Cited on
page 7.)

H. Tamura, S. Mori, and T. Yamawaki [1978]. Textural features corresponding to visual perception. In
IEEE Transactions on Systems, Man and Cybernetics, pages 460–473. (Cited on page 2.)

A. S. Tanenbaum [1992]. Modern Operating Systems. Internals and Design Principles. Prentice-Hall,
International. (Cited on page 10.)

R. Todd [2006]. Compact Support. http://mathworld.wolfram.com/CompactSupport.html.
Accessed on 15th Dec. 2006. (Cited on page 42.)

J. Twicken [1998]. Wavelet Basics. http://nova.stanford.edu/projects/sswrg/basics.

html. Accessed on 16th Oct. 2006. (Cited on page 41.)

G. Tzanetakis and P. Cook [2002]. Musical Genre Classification of Audio Signals. In IEEE Transactions
on Speech and Audio Processing,, volume 10, pages 293–302. (Cited on page 33.)

http://demo.sfgb-b.ch/TG05/mittelalter/gotik/schrift/gotik_schrift_textur.htm
http://demo.sfgb-b.ch/TG05/mittelalter/gotik/schrift/gotik_schrift_textur.htm
http://mathworld.wolfram.com/CompactSupport.html
http://nova.stanford.edu/projects/sswrg/basics.html
http://nova.stanford.edu/projects/sswrg/basics.html

Bibliography 73

G. Tzanetakis, G. Essl, and P. Cook [2001]. Audio Analysis using the Discrete Wavelet Transform.
In Proceedings of WSES International Conference Acoustics and Music: Theory and Applications
(AMTA 2001). Skiathos, Greece. (Cited on pages 26 and 27.)

K. van den Doel [2005]. Physically-based Models for Liquid Sounds. In ACM Transactions on Applied
Perception, pages 534–546. (Cited on page 13.)

Wikipedia [2006a]. Discrete wavelet transform. http://en.wikipedia.org/wiki/Discrete

wavelet transform. Accessed on 16th Oct. 2006. (Cited on page 28.)

Wikipedia [2006b]. Mel Scale. http://en.wikipedia.org/wiki/Mel scale. Accessed on 16th
Oct. 2006. (Cited on pages 67 and 68.)

Wikipedia/de [2006]. Utah-Teekanne. http://de.wikipedia.org/wiki/Utah-Teekanne. Ac-
cessed on 16th Oct. 2006. (Cited on page 3.)

T. Wishart [1996]. On Sonic Art. Contemporary Music Studies. Harwood Academic. (Cited on page 5.)

X. Zhu and L. Wyse [2004]. Sound Texture Modelling and Time-Frequency LPC. In Proceedings of the
7th International Conference on Digital Audio Effects DAFX’04. Naples. (Cited on pages 5 and 11.)

U. Zölzer (Editor) [2002]. Dafx: Digital Audio Effects. John Wiley & Sons, Inc., New York, USA.
(Cited on page 37.)

http://en.wikipedia.org/wiki/Discrete_wavelet_transform
http://en.wikipedia.org/wiki/Discrete_wavelet_transform
http://en.wikipedia.org/wiki/Mel_scale
http://de.wikipedia.org/wiki/Utah-Teekanne

	Contents
	Acknowledgements
	Credits
	1 Introduction to sound textures
	1.1 Texture
	1.2 Textures in the acoustic domain
	1.2.1 What is a sound texture ?

	1.3 Typology of sound textures
	1.3.1 Classes of noisy sounds
	1.3.2 Composition of sound scenes

	1.4 Textures in music
	1.4.1 Music textures
	1.4.2 Audio textures
	1.4.3 Sonic textures

	2 State of the art
	2.1 Current methods
	2.1.1 Methods inspired by visual texture research
	2.1.2 Source-filter approaches
	2.1.3 Wavelet/Filterbank-based methods
	2.1.4 Grain-based methods
	2.1.5 Synthesis methods
	2.1.6 Physical modeling based methods
	2.1.7 Related work and applications

	2.2 Sound examples

	3 Insight in two grain-based algorithms
	3.1 Creating a natural stream
	3.2 Feature vector
	3.3 Distance and similarity measure
	3.3.1 Distance measure
	3.3.2 Similarity measure

	3.4 Audio textures
	3.4.1 Analysis using perceptual features: MFCCs
	3.4.2 Frame similarity
	3.4.3 Segmentation based on novelty-structure-analysis
	3.4.4 Sub-clip similarity
	3.4.5 Sequence determination
	3.4.6 Concatenation of segments

	3.5 Natural grains
	3.5.1 Analysis using physical features
	3.5.2 Segmentation based on syllable-like audio segments
	3.5.3 Grading the transitions and resynthesis

	4 Algorithmic improvements
	4.1 An empirical approach to encountering perfect segments
	4.2 Sound database
	4.3 Frame size
	4.4 Improving the analysis: Audio textures
	4.4.1 Using the parameters proposed by the authors
	4.4.2 MFCCs
	4.4.3 Using a larger kernel size
	4.4.4 Getting better segments
	4.4.5 Enhancing the similarity measure between sub-clips

	4.5 Improving the resynthesis: Audio textures
	4.5.1 Modification of sub-clip sequencing rules

	4.6 New audio texture parameters
	4.7 Improving the analysis data: Natural grains
	4.7.1 Using the parameters proposed by the authors
	4.7.2 Wavelet analysis
	4.7.3 Choosing a mother wavelet
	4.7.4 Increase number of decomposition levels
	4.7.5 Euclidean distance function over more frames
	4.7.6 Getting the sub-clip borders

	4.8 Improving the resynthesis: Natural grains
	4.8.1 Extending the markov chain

	4.9 New natural grain parameters
	4.10 Exchange features and methods
	4.10.1 Building the novelty score using wavelets
	4.10.2 Detecting local troughs in the novelty score
	4.10.3 Building the Euclidean distance function using MFCCs
	4.10.4 Finding local peaks in the Euclidean distance function

	4.11 Conclusion

	5 Real-time Sound Texture Generator
	5.1 Real-time software Pure Data
	5.1.1 Software requirements of the STG

	5.2 Two-level system of the algorithmic structure
	5.2.1 Analysis: Level 1
	5.2.2 Resynthesis: Level 2
	5.2.3 Informed versus uninformed synthesis

	5.3 Interface structure
	5.4 Repetition control using sonification
	5.5 Constraints of the prototype

	6 Reflections upon sound textures
	6.1 What is a perfect input texture?
	6.2 Imperfect sound textures

	7 Conclusion
	A Appendix
	A.1 Mel scale
	A.2 CD-ROM
	A.2.1 Matlab files
	A.2.2 Pure Data texture generator
	A.2.3 praat

	Bibliography

