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Abstract

Segmentation of speech into sentences plays an important role as a first step in sev-
eral speech processing fields. Automatic Speech Recognition (ASR) algorithms mostly
produce just a stream of non-structured words without detecting the hidden structure
in spoken language. However, natural language processing devices often have a strong
need for sentence-like units to work properly. Apart from that, hand-labeling is very
time-consuming. Thus, it is reasonable to develop an algorithm which marks sentence
and phrase boundaries using prosodic features. In this project thesis, the Aix-MARSEC
database of BBC radio speech is used for analysis.

The algorithm can be described as following: An adaptive, energy-based voice-activity-
detector (VAD) is used to gather all active regions and calculate the pause lengths and
intensity as first features. These blocks are then used as input for a pitch estimation
algorithm. To assess tendencies at the region boundaries, we calculate an optimal (in the
least-squares sense) piecewise polynomial approximation and derive various prosodic fea-
tures (initial /final intonation, pitch gradient, downdrift...). Consequently, the extracted

features are combined in a decision tree to determine the sentence boundaries.

Zusammenfassung

Automatische Satzsegmentierung von Sprache stellt einen wichtigen ersten Schritt in vie-
len Bereichen der Sprachsignalverarbeitung dar. Spracherkennungsprogramme geben meist
nur die Grenzen von Wortern aus ohne vorhandene Strukturen wie Satzgrenzen zu detektie-
ren. In der linguistischen Sprachverarbeitung werden jedoch genau solche Grenzen benétigt,
damit Programme zuverl3ssig funktionieren. Abgesehen davon ist es sehr zeitaufwendig,
Satzgrenzen per Hand zu labeln. Ziel ist deshalb die Entwicklung eines Algorithmus, der
eine Satzsegmentierung unter Verwendung von prosodischen Merkmalen durchfiihrt. In
dieser Projektarbeit wird dabei die Aix-MARSEC Datenbank, eine Sammlung von BBC
Nachrichten, einer Analyse unterzogen.

Der Algorithmus gliedert sich dabei folgendermaRen: Stimmhafte Regionen werden zu-
nachst mittels eines adaptiven, energiebasierenden Spracherkennungsalgorithmus detek-
tiert und die Pausenlangen bzw. die Intensitat als erste Features berechnet. Die gefundenen
Blocke stellen die Regionen fiir die nachfolgende Tonh&henanalyse dar. An den Grenzen
werden Tendenzen im Tonh6henverlauf mittels linearer Regression (optimal im Sinne eines
kleinsten quadratischen Fehlers) berechnet und daraus verschiedene prosodische Merk-
male (Intonation an Satzgrenzen, Gradient der Intonation, Grundtonabfall...) abgeleitet
werden. In weiterer Folge werden diese Merkmale in einem Entscheidungsbaum kombiniert
und die Satzgrenzen ermittelt.
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1 Introduction

1.1 Motivation and Aims

Segmentation of speech into sentence-like units is used in many areas of speech signal pro-
cessing. Purely applied to spoken language, sentence segmentation is quite complex because
of absent punctuation marks and the lack of other additional typographic indicators. Recent
works showed that hidden structures can be found more efficiently when using prosody-based
features [SSHTTOO].

Text segmentation is needed for several algorithms in natural language processing and thus
incorporates a first crucial step for thorough speech analysis like topic segmentation [XYL'10],
morphological analyis [Jual0], parsing [HPWO04] or various information retrieval algorithms
[GFCPO7].

Based on this micro division, the next logical step is the coalescence of found tokens to big-
ger coherent units such as sentences. Automatic sentence segmentation based on prosody is
not a trivial task, as the speaking style is language dependent (socio-cultural aspects, idioms,
prosody...) [WLL09, KFVT03] and strongly constrained by speech type (broadcast speech, spon-
taneous speech...) [PL97, LIi92] — not considering other challenges (background noise, speaker
turns...) [WLO01,SSRS01, DC11] at this point.

However, given the data amounts of speech corpora (in this case the Aix-MARSEC database is
analyzed), it is obvious that hand labeling consumes way too much time, so the implementation
of an automatic sentence segmentation algorithm suggests itself.

Another future challenge can be found in the real-time extraction of prosodic features (as they

are defined within sentence-like units) to analyze emotion, workload or stress of a speaker.

1.2 Structure of the Project Thesis

After a short introduction to prosodic features (section 2), the most important parts of the
algorithm are summarized (section 3). To go into detail, section 3.1 covers the first major
functional block, an adaptive energy-based voice activity detection algorithm to gather voiced
and unvoiced regions out of a continuous speech stream. The extraction of prosodic features
heavily relies on a fundamental frequency estimator which is described in section 3.2. By using
a modified autocorrelation function which is integrated in the so-called YIN-algorithm, a pitch
track is determined. Hence, with the help of linear regression analysis (appendix A), the prosodic
features are extracted. All derived features are then combined and processed within a decision
tree (section 4) which outputs assessed sentence boundaries. The final chapter (section 5)

evaluates the algorithm by comparing the results with hand-labelled boundaries.
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1.3 The Aix-MARSEC Database

The "Aix-MARSEC" project [ABH04] comprises a collection of spoken British English which
makes up a freely available database. Altogether it consists of five and a half hours of BBC
news material.

It is well suited for this project thesis as it is fully annotated (including sentence boundaries)
and labeled on different linguistic levels (phonemes, syllables, words, rhythmic units, intonation
coding...). Additionally, eleven different speaking styles by 17 female and 36 male speakers are
useful to evaluate the implemented algorithm under various conditions. Apart from that, the
database has an evolutionary character meaning that many users contributed to and expanded

the open-source project (GNU General Public License).

1.4 Programming Environment

The realization of this project is carried out offline by use of the software MATLAB™ (R2010b)
by The MathWorks®. It not only offers a wide range of powerful mathematical manipulation
possibilities (optimized for vector and matrix computations) but also enables graphical output

to observe the algorithm’s functionality and parameter changes.
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2 Prosodic Features

Prosodic cues represent an important factor within this work, as they can be consulted as an
indicator for sentence boundaries [SSHTT00].

In linguistics, the term prosody refers to suprasegmental phenomena in speech, meaning that
one has to look at entire utterances rather than just considering phonemes, syllables or words.
From the acoustic viewpoint, prosody means the alteration of syllable length, pitch, rhythm or
loudness [CHJCT06].

Speakers additionally use prosody to impress some sort of emotion and attitude (e.g. sarcasm,
irony...) which is not obviously integrated in the text — in short, the focus lies on "the way we
say something" and not on "what we say". Prosody can also be consulted to classify a sentence
as a question, a command or just a statement by analyzing the interior pitch track progression.
Stressing of certain words or passages leads to a contextual emphasis of what is said, whereas

inter-word pauses or other temporal properties often are hints for syntactic structures.

2.1 Extraction Points

The feature extraction points are determined by inter-word pauses (derived from the VAD-
algorithm, section 3.1) with a length of more than t,,, = 100 ms'. This value has been
determined experimentally and was chosen in order to include any potential sentence boundary
during analysis process. The regions preceding and following the pause are then analyzed by

means of linear approximation (appendix A) to retrieve several pitch features.

In the following, the energy-based (section 2.2) and pitch-related (section 2.3) prosodic features
which are used in this project are described.

2.2 Energy Features
2.2.1 Short-term Intensity

Many perceived prosodic features correlate with measurable signal properties. For short-term
intensity, short-term energy is the accordant attribute. There are mainly three mechanisms that
control energy in speech production: (1) variation of lung pressure, (2) larynx adjustment and
(3) vocal tract adaption [LD98]. As a measure for the short-term signal energy, we calculate
the root mean squared (RMS) value for blocks of N samples? (equation 3.1, page 11).

As a result, we get a time varying intensity track (figure 2.1, upper plot) which is important for

! This parameter is stored in a MATLAB structure array called Advanced.

2 The value for N is commonly chosen such that N/fs; = 20 ms. This value should guarantee that the short-
term energy within one signal period (N/fs < 10 ms) is not tracked, but it is as well short enough to extract
the quasi-periodic part of a speech signal (N/fs < 30 ms) [PR09].
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the voice activity detection algorithm (section 3.1). The representation in [dB] approximates

the perception of the human ear.

2.2.2 Energy Decay

Usually, speakers tend to finish long sentences with less energy, rather than taking an additional
breath towards the end of a sentence. This usually leads to a measurable decay of short-term
energy within voiced regions and is calculated by means of linear approximation (figure 2.1,

appendix A).

Energy Progression, Speech Signal
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Figure 2.1: Above: frame-based energy progression of a speech signal
[dB], Below: energy decay (red) in [dB/s| within potential
sentence boundaries (green)

For proper usage within the decision tree (section 4), the feature is normalized in the following

way:
| EnergyDecay,|

% ZdDzl EnergyDecayd’

(21)

EnergyDecayd,norm =

with D comprising the number of (potential) sentences. A remarkable variation of the energy
decay between two potential sentence boundaries can be well observed and compared by looking
at the normalized feature, given in [dB/s]. Thus, it can be used as an indicator for sentence

boundaries.
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Prosodic Features

2.2.3 Pause Length

Pauses are defined by voiceless regions within a continuous speech stream which additionally
fall below an adaptively found threshold Ejp, (section 3.1) with respect to the RMS level
(figure 2.2). The longer voiceless regions are, the more probably a sentence boundary is found.
This feature is very important on the one hand to define extraction points for further prosodic
feature calculation and on the other hand (in case of a conspicuously long pause®) to detect a

sentence boundary.
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Figure 2.2: Pause lengths p1, p2 (defined by voiceless regions within a
speech signal; inter-word pauses are not marked)

The normalization of this feature is not a trivial task, as pause lengths vary subject to individual

speaking styles and therefore needs to be analyzed independently for each speaker.

2.3 Pitch Features

Pitch is a perceptual parameter that makes it possible to arrange sounds on a frequency-related
scale. In physical terms, the melody of speech originates from a measurable pitch track made
up by the fundamental frequency fy. This definition only exists for periodic or nearly periodic
signals and can be obtained by inverting the signal’s period [KD06].

In the algorithm, the voiced parts of the input signal excerpt are extracted by applying the
VAD algorithm (section 3.1) and analyzed with respect to pitch by a fundamental frequency

estimator (section 3.2).

3 The user is able to tune a parameter called MinPause [s]. If a pause exceeds this length the involved boundaries
will be classified as sentence boundaries in the decision tree (section 4).
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For prosodic analysis, it is important to check the intonation before and after the detected
extraction points (boundary intonation). Hence, a trend line fitting is applied on the last part

of the preceding analysis block and the first part of the consecutive one (250 ms, respectively?).

2.3.1 Initial and Final Intonation

A first pitch-related feature is the intonation at the beginning of a sentence (initial rise / fall)
and towards the end (final lowering / rise), respectively; measured in [Hz] (figure 2.3). In
broadcast corpora, we are mostly dealing with statements without questions, so it is expected
that most sentences end with a final lowering. The melody at the beginning of a sentence
strongly depends on speaking style and does not necessarily stick to general rules.

Subsequent gradient calculation (in [Hz/s]) shows the tendency and the variation amount of
the observed boundary intonation and can be consulted as an indicator for sentence boundary

validation.

Pitch track (YIN), speech signal

T T

s X |
200 \ /\

! ! ! ! !

4 6 8 10 12 14 16
Time in [s]

f0 in [Hz]

Figure 2.3: Intonation at potential sentence boundaries;

light blue: pitch track, blue: initial intonation,
red: final intonation, green: potential sentence boundaries

2.3.2 Pitch Reset, Gradient Change

When analyzing pitch tracks (and the initial and final intonation at extraction points), it can
be observed that speakers tend to jump to higher fundamental frequency values at the start of
a new sentence. This phenomenon, which is called pitch reset (pr), is even more distinct when
a paragraph (or in broadcast issues, a new topic) arises. It may also go along with a gradient
change (gc) (section 2.3.1, figure 2.4).

These features (specified in [Hz]) can be directly gathered out of the final and initial intonation

at detected extraction points by means of subtraction.

* The region for trend line analysis can be adjusted by tuning the parameter Settings.range.
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Pitch track (YIN), speech signal
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Figure 2.4: Pitch reset (pr) and gradient change (gc) at potential
sentence boundaries;

light blue: pitch track, blue: initial intonation, red: final
intonation, green: potential sentence boundaries

2.3.3 Downdrift

A general decline of pitch within a sentence is also called downdrift (dd). An explanation for
this pitch trend can be found in lacking air in the lungs towards the end of a phrase, but also
speaker intention could be seen as a possible reason (figure 2.5).

Within the pitch track, this feature can be again analyzed by using linear approximation between
potential sentence boundaries and is quoted in [Hz/s]. Usually, smaller sentence-like phrases

go along with steeper decays.

Pitch track (YIN), speech signal
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Figure 2.5: Downdrift (dd) within sentences with different durations;

light blue: pitch track, red: downdrift, green: potential sentence
boundaries

To get a comparable quantity, this feature is normalized for decision tree processing:

| Downdrift|
% Zfl):l Downdrift,

Downdrifty porm = (2.2)

for all D (potential) sentences.
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2.4 Feature Summary

In total, we end up with three energy-based and five pitch-related features which are summarized
in table 2.1%. The behavior (and the importance in the decision process) of some features can
be altered via tunable parameters. Section 4 explains the combination of these features and

parameters in a decision tree.

Table 2.1: Summary of features and tunable parameters

Feature Tunable parameter
Pause length MinPause
energy- .
based Sentence length | MinSentencelLength
Energy decay MinDecay
Initial intonation | -
A Final intonation | -
itch-
P! Pitch reset MaxAlt
related
Gradient change | -
Downdrift MaxAlt

5 All features are stored in a MATLAB structure array called Features.
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3 The Algorithm

This section describes the elementary stages of the implemented algorithm (figure 3.1). First of
all, the input signal s[n] is split into Hanning-windowed half-overlapping frames with a length
of N samples (see footnote 2, page 3).

For the subsequent VAD algorithm (described in detail in section 3.1), it is necessary to cal-
culate the frame-based energy track, which is then used as input stream. The output of
the VAD identifies voiced segments within the input signal excerpt s’(n). It is not just
consulted to determine the extraction points for further calculations of prosodic features by
means of pause-length analysis, but also introduces first sentence boundaries in case of suspi-
ciously long pauses®. Additionally, the already mentioned energy-based features (PauseLength,
SentencelLength, EnergyDecay, section 2.2) can be calculated. Another advantage is the re-
duction of complexity, as the fundamental frequency estimator (section 3.2) merely deals with
'active’, i.e. voiced frames.

The resulting pitch track comprises the origin for all pitch-related prosodic feature computa-
tions (Initiallntonation, Finallntonation, PitchReset, GradientChange, Downdrift, section 2.3).
As we are dealing with a fO-estimation, we use a slightly different constraint for the frame size:
a signal's fundamental frequency can be reliably obtained when the analyzed excerpt contains
at least three periods of the signal; thus the minimal frame length is determined by the lowest
frequency to be tracked by the YIN-algorithm (section 3.2.1) with unchanged hop size between
the frames.

All the obtained features are then combined in a decision tree (section 4) and processed to

determine the correct sentence boundaries.

3.1 Voice Activity Detection

Voice activity detection (VAD) can be realized in several forms ranging from energy-based
approaches [MK02] to algorithms in the spectral [PSJ*02] and cepstral domain [HM93] just to
name a few.

In this project thesis, an energy-based VAD approach with an adaptive threshold based on energy
dynamics is used to classify speech into "active’ (voiced) and 'inactive’ (unvoiced) segments of
a continuous speech stream. Subsequently, the short-time VAD is smoothed and the potential
extraction points (section 2.1) or sentence boundaries are determined. Benefits of the algorithm
are sufficient functionality and low computational costs. Other main advantages lie in the fact
that the algorithm can be implemented easily and is not topic or language dependent, but
rather based on signal properties [PR09]. Robustness on a high level can be achieved by tuning

few parameters.

% j.e. pauses whose length exceed the user parameter MinPause.
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Figure 3.1: Functional blocks of the implemented algorithm
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The Algorithm 11

The VAD algorithm consists of two main stages: In the first stage, a frame-based short-time
VAD is applied. In the second stage (post-processing), we use long-time frames by smoothing

the initial detection output.

3.1.1 Basic Voice Activity Detection

To go into detail, the input signal firstly is split into frames of length 20 ms which are then
Hanning-windowed and arranged half-overlapping”. The RMS-values can be easily calculated
by using the relationship

N-1

1
E(i) = | % > sli- M +n)? (3.1)
n=0
where E(i) denotes the root mean square value of the i-th frame, N is the frame size and M
the hop size between concatenated frames (figure 2.1, page 4, upper plot).
From the value of this parameter, we can set a threshold to analyze a signal with respect to

voice activity. In general, short-term speech activity is defined as

VAD(Z) _ 17 if E(Z) 2 Ethr(i) (3 2)
0, if E(5) < Epli). '

Since a fixed threshold mostly leads to unsatisfying results with too many short-term errors in
such VAD definitions, an adaptive one based on updated RMS dynamics is proposed, i.e.

B (1) = Epin(i) + 1%  (Emas (1) — Emin(9)), (3.3)

energy dynamics

with p comprising the dynamic amount which should be added to the adaptively set minimum
RMS power. The values of all parameters used in the VAD algorithm are listed in table 3.1.

Both FEyq: (i) and E,uun (i), respectively, are updated based on exponential averaging:

Gmazt Emaz (i — 1) + (1 = gmaa1 ) E(7)

if E(i) > Ema(i — 1),
Era (i) = (3.4)
Gmaz2Emaz (i — 1) + (1 = Gmaz2) E(9)

if E(i) < Ema(i — 1),

" A hop size of 10 ms ensures the tracking of the shortest phonemes (plosives) [Kuw96].

Institute for Electronic Music and Acoustics Graz
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Gmint Emin (i — 1) + (1 = @min1 ) E(4)

if E(i) < Epin(i—1),
Emin(i) = (3.5)
Gmin2Emin (1 — 1) + (1 = gmin2) E(7)

if E(i) > Epin(i — 1).

The constants ¢maz1, @maz2: minl, dmin2 iN (3.4) and (3.5) are responsible for the update
speed within the adaptive process (used values are listed in table 3.1). Whereas there should
be a fast adaption on new situations, the "forgetting’-process must be slower (¢mnaz1 and gmin1
are commonly chosen smaller than their counterparts). The energy minimum E,,;, has to be
updated particular slowly (see figure 3.2) [PR09].

Adaptive threshold computation
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Figure 3.2: Adaptive threshold computation, p = 25;

light blue: intensity progression, black: E,qz,
red: E,.in, magenta: Fyp,., green: potential sentence boundaries

To overcome the problem that arises within speech pauses when energy dynamics get very
small, a parameter Eg,;, which requests minimum dynamics is introduced, so that noise (or

breaths before a new sentence) is not classified as speech, meaning that

VAD(i) =0, if Epmez(i) — Emin(i) < Edgmin- (3.6)

3.1.2 Post-processing Stage

A typical problem of energy-based VAD algorithms is the over-alertness to very short speech
parts or other short-time impulses within the signal. As we are interested in sentences with a
certain utterance length (which is definitely longer than the frame size), these short-time errors
can be effectively reduced by buffering the detected active frames into long-time frames. The
buffer length T is chosen to be 0.1 s — a long-time buffer thus comprises K = T'/M frames.
If the energy inside a buffer-frame exceeds a defined threshold value thr,,s¢ (table 3.1), the
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The Algorithm 13

whole buffer will be defined as 'active’. To express these constraints for the m-th buffer, we
can write

buffy(j) = VAD(m - K + §) for j=0,1...K — 1, (3.7)

;

1 K-1
Loif Z;buffm(j) > thry, st
p=

VADbuff; = (38)

1 K-1
0, if z%buffm(j) < thry,y-
p=

\

With the results of this analysis process (figure 3.3), we can use the long-time buffer to set

extraction points as candidates for sentence boundaries.

RMS based VAD
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Figure 3.3: Detection process with post-processing steps;

light blue: input signal excerpt, red: short-time VAD,
black: long-time VAD, green: start-/end-point detection

It is reasonable to establish a minimum utterance length® (which could be just one word) and
extract the beginning of it with the help of the following definition:

VAD; = VADbuff; if VADbuff; =1, (3.9)

hence the start point is defined by the start of the respective buffer frame.

The end-point detection goes along with a minimum pause length® whose preset value can
also be altered by the user (table 3.1). Once an "active” frame has been detected, subsequent
long-time buffers are set "active’ until the minimum of P buffers, defined by the minimum pause
length (typically between 0.4 - 1.5 s), is reached, i.e.

8 The user is able to tune the parameter MinSentenceLength [s] to ignore too short utterances.
9 By tuning the parameter MinPause [s], inter-word pauses are disregarded as they are much shorter than
pauses that separate two utterances.
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The Algorithm 14

VAD; =1, if VAD; =1,

VAD; =0, for k=0,1...P—1 (3.10)
if VADbuff,_j, = 0.

The detected boundaries are stored in a matrix with two columns containing the start- and end-
points respectively with a discretization interval defined by the buffer length T'. Start-points
are dedicated to the buffer start, while end-points coincide with the end of a buffer (figure 3.3).

It can be observed that the VAD algorithm is prone to detect the boundaries with a certain

delay. As a countermeasure, a "safe band” is introduced to shift the utterance enclosures a
bit1©.
3.1.3 Chosen Settings for the VAD algorithm

Table 3.1 displays the range of all settings®! used for the VAD algorithm which were determined
experimentally. At least, the parameters MinSentencelLength and MinPause have to be tuned

speaker-related. A full listing of all values can be found in appendix C.

Table 3.1: Chosen settings for the VAD algorithm

Type Parameter Range / Value
SafePre 0-0.1s
Settings SafePost 0.05-0.1s
MinSentenceLength 0.1
MinPause 0.48 - 0.7
Gminl 0.5
Qmin2 0.9989
Gmax1 0.7
Advanced | g¢n022 0.99
P 25
Egmin 6 dB
Lanal 0.1s

10 For this purpose, two parameters, SafePre and SafePost, are introduced and allow an independent boundary
disclosure of start- and end-points (table 3.1).

11 All settings are stored in two MATLAB structure arrays: Settings for basic settings and Advanced for advanced
settings, each of them being predefined by default values. The VADprosody.m help file can be consulted for
further information.
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3.2 Fundamental Frequency Tracking

Pitch is defined as the perceived fundamental frequency of a periodic signal which can be
obtained by taking the inverse of its period (fo = 1/T). This is true as long as a sound is
perfectly periodic, but the results of pitch detection algorithms (PDA) vary significantly when
applied to real-life signals (speech or music) with time-varying and non-stationary characteris-
tics [BSHO7,vdKZ10]. In speech signals, the fundamental frequency is produced in the glottis
and can be equated with the rate of vocal fold vibration (which is not perfectly periodic because
of movements of the vocal tract and certain superimposed aperiodicities [dCK02]).

Since a robust fundamental frequency (fy) estimation algorithm is essential for a reliable deriva-
tion of pitch-related prosodic features, several pitch detection approaches have been studied in-
depth. A realization is possible in time- or lag-domain (using auto-correlation functions [Boe93])
as well as in the spectral [ZH08] or cepstral domain [AS99] not to forget approaches based on
auditory models [CPZ98]. Comparing the results in [vdKZ10], the YIN-algorithm (based on a
modified autocorrelation), developed by de Cheveigné and Kawahara [dCK02] seemed to be the

most promising.

3.2.1 The YIN-Algorithm

The YIN-algorithm (deduced from yin and yang to symbolize interaction between autocorrela-
tion and its triggered partial cancellation) used in this project thesis is based on an autocorrela-
tion function but improved by several modifications [dCKO02]. Just a few parameters have to be
set by the user, what makes this algorithm very robust against different speakers and speaking
styles.

In this section, the implemented algorithm with all its modifications and enhancements is de-

scribed step by step. The notation used by the authors will be maintained.

Step 1: Difference Function The definition for a slightly modified autocorrelation function
(ACF) r(7) at time index t with window size W

t+W

ri(r) = Y @i (3.11)

j=t+1

has the advantage not to decrease in comparison to the standard notation of the ACF, where the
window W gets smaller when increasing the lag 7. If we take a periodic input signal and insert
it into equation (3.11), we can choose the first non-zero-lag peak to compute the fundamental
frequency by taking its inverse. Herein lies the fundamental problem of autocorrelation-based
approaches, because the algorithms are prone to select either the zero-lag or too high lags in

case of wrong adjustment of range parameters, which inevitably leads to so-called octave errors.
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Therefore, the authors of [dCKO02] suggest a different approach to obtain the period 7" within

a periodic signal, the already mentioned difference function

dy(r) =) () — wjir)*. (3.12)

j=1

The roots of this function determine the signal period 7 and its integer multiples, including the

zero-lag (figure 3.4, upper plot).

Step 2: Cumulative Mean Normalized Difference Function Unless there are no range
restrictions for the minimum retrieval, the algorithm will always choose the undesired zero-lag.
To overcome this drawback, a slightly modified difference function is introduced, the cumulative

mean normalized difference function (CMNDF)

1, if =0,

dj(r) = (3.13)

di(7) / Eédt(j)], otherwise.

The values of the difference function d;(7) (equation 3.12) are divided by some sort of average
value that is determined by the lag 7. This approach has some beneficial effects: d}(7) starts at
the value "1" and remains high-valued in lower lag regions, until it drops below the average and
defines the period by the lowest dip in the CMNDF (figure 3.4, lower plot). As a consequence,
the need for a restriction of the upper frequency search range to avoid the zero-lag dip can be

disregarded.

Step 3: Absolute Threshold In addition to the normalization of the CMNDF in step 2, there
is another improvement to refine the algorithm’s error rate. The CMNDF may show a global
minimum at higher-order dips within the search range. Octave errors due to this phenomenon
can be reduced by the introduction of a small threshold value and to take the first lag 7 that
falls below it. The authors suggest a threshold value of 0.1 (figure 3.4, green dashed line in the

lower plot).

Step 4: Parabolic Interpolation So far, it is possible to detect a signal period that is
a multiple of the sampling period. This means that the dip may be displaced up to half
the sampling period, which can lead to unacceptable pitch errors (gross errors). To achieve
sub-sample accuracy, it is thus necessary to apply a parabolic estimation (appendix B) with

subsequent selection of the accordant minimum (value of the abscissa).
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Difference function, speech signal
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Figure 3.4: Above: difference function,
Below: cumulative mean normalized difference function;

green: absolute threshold, red dot: detected signal period

Step 5: Best Local Estimate Up to this point, the YIN-algorithm sometimes delivers
strongly fluctuating pitch values (i.e. mostly too-high values). To obtain a stable pitch track,
a largest expected time lag Tynq Which defines a refined search interval is introduced as a
countermeasure. More precisely, the algorithm searches a minimum of dj(Ty) for 6 at time ¢
within the interval [t — Thna2/2,t + Tinaz/2]). The authors use a value of T4, = 25 ms for

this 'dynamic programming’ approach and affirm an additional error rate reduction.

Applying Step 1-5 leads to satisfying results when comparing the YIN-algorithm to other fun-
damental frequency estimators [dCK02,vdKZ10]. In addition to, the results can be achieved

fast by tuning just a few parameters and the occurrence of octave errors is quite rare.
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3.2.2 Chosen Parameters for the YIN Algorithm

Table 3.2 displays the most important parameters'? used for the YIN algorithm which were

determined experimentally by selecting sample files from the "Aix-MARSEC" library.

Table 3.2: Chosen parameters for the YIN algorithm

Gender | Parameter | Value
minf0 100 Hz
female maxf0 290 Hz
thresh 0.1
minf0 80 Hz
male maxf0 250 Hz
thresh 0.1

12 All YIN parameters are stored in a MATLAB structure array P. It is possible to tune additional parameters.

The yin.m help file (in the YIN directory) can be consulted for further informations.
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4 Decision Tree Processing

4.1 Structure of the tree

All found prosodic features are combined in an experimentally determined binary decision tree
which consists of three stages. Tests with independent feature usage resulted in a feature
hierarchy that is represented by the structure of the tree. The individual stages comprise the

following type of features:
e STAGE 1: basic features: MinSentencelLength, MinPause
e STAGE 2: features related to interior structure: EnergyDecay, Downdrift
e STAGE 3: features related to boundary intonation: FinalLowering, PitchReset,

GradientChange.

As top features, MinSentencelLength and MinPause became tangible and thus make up STAGE 1
within the tree. In this first step, not only too short utterances but also negligibly short pauses
(inter-word pauses) are ignored in the input signal excerpt. Additionally, an exit criterium is
introduced comprising the occurrence of conspicuously long pauses which exceed a length of
0.7 s (the value has been determined experimentally). All involved boundaries are locked and no
longer can be erased in the consequent stages of the tree (figure 4.1 with details for STAGE 1).

Sentence Boundaries

STAGE 1
< MinSentencelLength > MinSentencelLength
ERASE
> MinPause < MinPause
"""" ERASE

+ interior
' structure

ERASE . boundary i
STAGE 2 ' progression'!

SET  STAGE3

Figure 4.1: Structure of the used decision tree: details for STAGE 1
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After this basic processing, the remaining sentence boundaries are passed on to STAGE 2 (fig-
ure 4.2, light-lavender shaded area). In this part of the tree, features that are related to the
interior sentence structure are evaluated. The combination is realized through logical connec-
tives (conjunction and disjunction).

To go into detail, the normalized energy decay (EnergyDecay, ;.. €quation 2.1, page 4) and
the normalized downdrift (Downdrift orm,. €quation 2.2, page 7) of the d-th sentence, respec-
tively, is compared to the tunable parameter MaxA/t'3. If one of these features exceeds MaxAlt
the OR gate will return a TRUE. This condition should include the observed phenomenon of
excessive pitch and intensity variation within (too) short utterances.

It has become manifest through experiments that the combination of rather less reliable fea-
tures (features of STAGE 2 and 3) with highly trustworthy ones (features of STAGE 1) leads
to better results. So the output of the OR gate is linked to an additional AND gate with the

1% as second input.

feature SentencelLength being compared to a parameter thr
As a result, only the sentence boundaries (not being locked in STAGE 1) that fulfill one of the

two conditions are erased within this stage, the others are handed on to STAGE 3.

EnergyDecay > MaxAlt[ =1 basic features
Downdrift > MaxAlt —1 &
SentencelLength < thrl
True
False
interior structure ERASE
& adjacent Sentencelength < thr2
>1 & NoFinalLowering
| PitchReset < MinReset
True i
False & NoGradientChange
& H— PitchReset < MinReset
ERASE .
adjacent Sentencelength < thr2
SET boundary intonation

Figure 4.2: Structure of the used decision tree: details for
STAGE 2 and 3

13 All decision tree-related parameters are stored in the MATLAB structure array Advanced.
14 See footnote 13.
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The final stage of the decision tree (figure 4.2, light-amber shaded area) primarily deals with
boundary-related pitch features. To achieve a higher reliability of the found features, the combi-
nation is executed in a more stringent way — features are almost exclusively combined by means
of AND gates.

In case of a detected true sentence boundary, a final lowering of pitch values and a pitch reset
that exceeds the tunable parameter MinReset'® is expected. This is implemented by conjuncting
the features Finallntonation and PitchReset.

A similar approach is chosen for the second branch within this stage: for a true sentence
boundary, there is a demand for a gradient change and a pitch reset exceeding MinReset (the
accordante features GradientChange and PitchReset are again linked via an AND gate).

To raise reliability, it is once more reasonable to connect these two conditions with a basic
feature — the SentencelLength of adjacent utterances (exceeding the second threshold value
thr21°). If one of the two described branches turn out to be TRUE (disjunction) the involved
sentence boundaries will be erased.

Finally, we obtain assessed sentence boundaries which are much more trustworthy than those

that were detected during the analysis process before the decision tree.

4.2 Chosen Parameters for the Decision Tree

The range of all experimentally found tunable parameters can be found in table 4.1.

Table 4.1: Chosen advanced parameters for the decision tree

Type Parameter Range
MaxAlt 8-10dB
MinReset 70 -100 H

Advanced fnivese z
thrl 05-3s
thr2 0.7-25s

15 See footnote 13.
16 See footnote 13.
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5 Evaluation

To evaluate the algorithm under various conditions (gender, speaking style...), we choose 6 dif-
ferent speakers of the Aix-MARSEC database (four male and two female speakers, respectively)
who should be representative for the whole database.

The algorithm is tuned by setting the most important speaker-related parameters (VAD set-
tings: tables 3.1, section C.1, YIN settings: table 3.2 and decision tree settings in table 4.1).
The algorithm is optimized in a way that rather too many boundaries than too less are detected
— obviously leading to some additional false positives.

The corresponding label files (which contain hand-labelled sentence boundaries) of the "Aix-
MARSEC" database are loaded and compared with found sentence boundaries. The label files
also determine the beginning and the end of the signal excerpts by searching the first and the
last sentence boundary sign (||) and applying the found times to Settings.ExcerptStart and
Settings. ExcerptEnd, respectively.

5.1 Definitions for the Evaluation

To facilitate the notation for the system performance analysis, it is necessary to introduce some
symbols (similar to [MKSW99]), i.e.

TD = totally detected
total number of hand-labelled sentence boundaries
TP = true positives
number of correctly detected sentence boundaries that lie
in a pre-defined area around the manually labelled boundaries (£ 100 ms)
FP = false positives
number of incorrectly detected sentence boundaries that lie
outside all pre-defined areas around the manually labelled boundaries
F'N = false negatives

number of hand-labelled sentence boundaries not found by the algorithm.

Using these symbols, we can derive some significant evaluation measurements:

TP ..
P = m - 100 [%] ... precision, (51)
TP
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While precision gives information about how many of the detected boundaries are true, the

measurement recall tells us how many true boundaries have been found.

These values can be combined to obtain the algorithm's efficiency with reference to its hit rate.
The so-called F-measure, a metric to rate the system performance by a single value, is defined
as the weighted harmonic mean of P and R [MKSW99]:

_2.P-R

-5 R 100 [%]...F-measure. (5.3)

For the sake of completeness, there is another popular measurement to assess the algorithm'’s
performance:

g TP
TP+ FN+FP

100 [%] .. .score. (5.4)

5.1.1 Evaluation Note

To put the evaluation into perspective, it is fair to note that not all false positives are based on
imprecisions of the algorithm. In fact, some sentence boundaries were labelled quite inexactly.

To undermine this drawback, figure 5.1 should serve as an example.

Evaluation of sentence boundaries

0.6 d

041

breathing|

0.2F

346 348 35 352 354 356 358 36 362 364 36.6
Time in [s]

Figure 5.1: Deflection of hand-labelled and auto-detected sentence
boundaries

green: hand-labelled sentence boundaries, red: auto-detected
sentence boundaries, light blue: input signal excerpt
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5.2 Speaker-related Results for the Aix-MARSEC Database

In total, 18min35s of speech containing 407 sentences were analyzed and evaluated. Table 5.1

lists the values of all involved symbols and evaluation quantities.

Table 5.1: Speaker-related evaluation results, A = +100 ms

Speaker (Gender) | TD | TP | FP | FN || P [%] | R [%] | F [%] | S [%]
AOL (f) 8 | 70 | 18 | 2 | 798 | 97.6 | 87.2 | 777
A03 (m) 76 52 20 4 75.7 93.8 83.3 72.6
A5 (m) 108| 8 | 24 | 6 | 765 | 95 | 841 | 730
A1l (m) 62 45 31 0 58.9 100 73.4 58.9
C01 (m) 408 | 308 | 128 | 12 71.1 96.2 80.3 69.1
HO04 (f) 72 54 28 6 68.8 91.7 76.3 61.9
Sum / Mean 814 | 617 | 249 | 30 | 71.8 | 95.7 | 80.8 | 68.9

The last row contains the sum and the mean of all involved quantities and gives information
about the overall performance of the algorithm. It becomes evident that the algorithm has
some drawbacks with respect to Precision and Score, respectively. This fact is certainly based

on three main reasons:

1. Tuning aspect: the algorithm is tuned to detect rather too many existing boundaries
which leads to a higher quota of false positives.

2. Inexact hand-labelling: cf. section 5.1.1 and figure 5.1.

3. Discretization of sentence boundaries: The VAD (section 3.1, page 9) only delivers
sentence boundaries discretely arranged on a time grid with 100 ms steps which sometimes

are outside the tolerance area (A = £100 ms).

Nevertheless, the evaluation is satisfying when looking at the good F-measure (> 80 %) results
and very good results concerning Recall (> 95 %), which means that the better part of all
existing sentence boundaries have been detected.
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6 Summary and Conclusion

This project thesis suggests a simple but robust algorithm for automatic sentence segmentation
of speech relying upon prosodic features. The two main functional blocks during the analysis
process — the adaptive, energy-based voice activity detection and the fundamental frequency
estimator (YIN) — both can be implemented with low computational costs and are optimized
with the help of just a few parameters. Noticeable error rate reduction is achieved by a combi-
nation of the found prosodic features in a decision tree which leads to assessed and much more

reasonable sentence boundaries.

Concerning functionality, the algorithm in the current state is only applicable for "well condi-
tioned" speech (recited texts) but cannot analyze spontaneous spoken word because of mani-
fold reasons (filled pauses, fillers, false starts, repetitions, hesitations...) and is not adapted for
speaker turns (dialogs, interviews...) or background noise. Languages similar to British English
(which was used for test and evaluation) may be compatible as long as the discussed prosodic

features may be utilized analogously.

The algorithm can be used for rough pre-labelling of long recordings or speech databases. For
refinement, it is recommended to examine the found sentence boundaries, erase erroneously

chosen ones and render the correct boundaries more precisely (application dependent).

Improvements of the algorithm’s overall performance can be achieved by using a more pre-
cise voice activity detection that delivers potential sentence boundaries on a more acute time
grid. Furthermore, the embracement of duration features (syllable-based features, pre-boundary
lengthening...) that affect the speaking rate as well as other features like speaker turns or
speaker overlaps would augment the application area of the algorithm. Another challenge lies
in the implementation of a pre-processing noise estimation and reduction stage to overcome

the problem of time-varying background noise.

Future works may also concern the real-time analysis of prosodic features within sentence
boundaries to analyze emotion, stress or workload of a speaker in critical working environments

with a high level of responsibility.
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Appendix

A Linear Approximation

In linear approximation, a set of given data points y; is estimated by a straight line that optimally
represents a tendency. This approach finds application in several different scientific fields like
statistics, finance, economics or epidemology and usually is used as a meaningful tool for trend
line computation.
With a given data set {z;,v;} (i = 1,2,3... R ), the goal is to find a simple first-order polynom
defined by the equation

v =kax; +d (A.1)

and to estimate the parameters k and d, respectively.

To minimize the sum of squared residuals (equation A.2), we use a quadratic approach; i.e. the

error is optimized in the least-square (LS) sense. The error samples of the regression model

R

ei =Y (yi—§:)° (A2)

i=1

are defined by the difference between the data points y; and the estimated data points ;. In

vector / matrix notation we can write

Y1 1 xp 1
2 AQ i) 1 k
y=|" T . X= . a=
[221]
0 1
YRJ (Rat) YRJ (R TR (R22]
(A3)

with x; marking the range of the straight line and « containing the optimal coefficients (slope

and offset) to be calculated.

The error function now takes the form |le|| = ||(y — Xa)||, with y comprising the values that
should be estimated. Consequently, a cost function is derived for further computations, i.e.

J(a) = ele = (y — Xa)T(y — Xa) =
—y'y - (Xa)Ty - (Xa)Ty + "X Xa =
=yTy - 2y"Xa + o' X Xav. (A.4)
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The next step to receive the optimal coefficients aipg is to calculate the gradient of the cost

function, which is set to zero afterwards:

- . - - -
o N S (o2} @

Data points y
o)

Figure A.1:

VadJ(@)) = 2 {J(@) =
= 2y'X +2XTXa =0
XT"Xa =y'X
ars = (XTX)"1xTy.

Trend Line Estimation

5 10 15 20 25
Range x, alpha = [0.79, —1.53]"

[llustrative example for an optimal trend line estimation
using least-squares
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B Parabolic Interpolation

With three given abscissae {z1,x2, 23} and their corresponding merits {f(z1), f(x2), f(z3)}
we can apply a parabola to find a minimum z,,;, that lies in the vicinity of xo. It can be

calculated by using the relationship [Del99]

e =y (2 — 21)?[f(22) — fla3)] — (w2 — x3)*[f(22) — f(z1)] (B.1)
e 2 (w2 —x1)[f(x2) = f(23)] = (w2 — w3)[f(w2) — fl21)] '

Parabolic Interpolation

2500 [

2000 [

1500

Merits

1000

500 [

1 02 0 1

X xmin X, X3
Abscissa

Figure B.1: Finding an exact minimum by parabolic interpolation



C Entire List of VAD-related Parameters

Table C.1: Speaker-related VAD settings

Speaker (sex) | Settings Value
MinSentenceLength [s] 0.1
AO1 (f) MinPause [s] 0.5
SafePre [s] 0.1
SafePost [s] 0.1
MinSentencelLength 0.1
A3 (m) MinPause [s] 0.6
SafePre [s] 0.1
SafePost [s] 0.1
MinSentencelength 0.1
A0S (m) MinPause [s] 0.55
SafePre [s] 0
SafePost [s] 0.05
MinSentenceLength 0.1
A11 (m) MinPause [s] 0.48
SafePre [s] 0
SafePost [s] 0
MinSentencelength 0.1
co1 () MinPause [s] 0.7
SafePre [s] 0
SafePost [s] 0.05
MinSentencelength 0.1
Ho4 (f) MinPause [s] 0.48
SafePre [s] 0
SafePost [s] 0.06

29
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