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Abstract

This diploma thesis considers the development and testing of methods applicable for
the analysis of radiation patterns from real-world instruments. The goal is the estima-
tion of geometric parameters of the radiation-patterns from instrumental sounds. These
parameters shall be retrieved from sound-radiation data that have been captured by a
surrounding microphone array.

In a first step, solution strategies for different problems are developed that arise in
the recording situation of surrounding microphone arrays. For example, the correct ori-
entation of the analysis data using a spherical microphone array of which the orientation
is known imprecisely. Moreover, a major goal is to find simple measures for detecting the
acoustical center of a sound source inside the microphone array. For a decomposition of
the measured data into spherical harmonics, we assume a limited spatial bandwidth due
to the finite number of discrete angular microphone positions. This assumption yields
problems whenever a sound source is not perfectly located at the center of the array.
A cost function shall be minimized in order to find a center of decomposition that is
superior for decomposition in the analysis.

Furthermore, this work investigates the tracking of a rotating sound source using cor-
relation measures. For this purpose successive sound-radiation data is compared by
rotational matching.
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Kurzfassung

Im Rahmen dieser Diplomarbeit werden Verfahren zur Untersuchung der Abstrahlcharak-
teristik von realen Instrumenten entwickelt und getestet. Ziel ist die Extraktion von
geometrischen Parametern der Schallabstrahlung von Instrumentalklängen. Diese Pa-
rameter sollen aus Abstrahlungsdaten gewonnen werden, die rund um das Instrument
aufgezeichnet wurden.

Zunächst werden Lösungsstrategien für verschiedene Probleme entwickelt, die bei der
Aufnahme mit umgebenden Kugelmikrofonanordnungen auftreten. Dazu gehören die ko-
rrekte (Rotations-)Ausrichtung der Analyse bei verdrehter Kugelmikrofonanordnung und
vor allem der Versuch, ein einfaches Maß der Zentriertheit des akustischen Zentrums
einer Schallquelle innerhalb der Mikrophonanordnung zu finden. Für eine Zerlegung der
Messwerte in Kugelharmonische wird aufgrund der endlich vielen, im Winkel diskreten
Mikrofonpositionen die Annahme einer räumlichen Bandbegrenzung getroffen. Das kann
aber genau dann zu Problemen führen, wenn an sich räumlich bandbegrenzte akustische
Strahler nicht perfekt im Zentrum sitzen. Durch die Minimierung einer Kostenfunktion
wird das Zerlegungszentrum vor der Analyse verschoben, um diese Einschränkung weit-
gehend aufzulösen.

Weiters wird versucht, eine Rotationsverfolgung der Quellsignale mit Hilfe von Kor-
relationsmaßen zu realisieren. Hierbei werden zeitlich aufeinanderfolgende Abstrahlungs-
daten relativ zueinander betrachtet.

Diploma thesis, Daniel Deboy 3



Acknowledgements

My sincere thanks to Franz Zotter for being a superb advisor throughout the whole
period this thesis has been elaborated.

I want to thank Fabian Hohl for providing the recorded samples and additional docu-
mentation material.

I want to thank Nino Skiljic for his implementation of the spherical base-solution trans-
forms.

Thanks to my fellow students and friends for the past terrific years of joy and hard work.
I hope we will stay in touch.

Dedicated to my parents.

Diploma thesis, Daniel Deboy 4



Contents

1 Introduction 8

2 Spherical Exterior Problem 9

2.1 Wave field description in spherical coordinates . . . . . . . . . . . . . . 9

2.2 Spherical harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Spherical base solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Spherical wave spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Boundary value problem . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Surrounding Microphone Arrays 16

3.1 Estimation of the spherical wave spectrum from discrete observations . . 17

3.1.1 Band-limited wave spectrum . . . . . . . . . . . . . . . . . . . . 17

3.1.2 DSHT by hyperinterpolation on the sphere . . . . . . . . . . . . 18

3.1.3 Approximation using SVD . . . . . . . . . . . . . . . . . . . . . 19

3.1.4 Estimation of spherical wave spectrum . . . . . . . . . . . . . . 20

3.2 Spatial aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Array imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Calibrating the orientation of the coordinate system . . . . . . . . . . . 21

4 Discretization Of The Kinematic Space 22

4.1 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Angle axis format . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.2 The special group of rotation matrices SO(3) . . . . . . . . . . . 23

4.1.3 Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.4 Mapping SO(3) to S3 . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.5 Sampling the hypersphere S
3 . . . . . . . . . . . . . . . . . . . 26

Diploma thesis, Daniel Deboy 5



CONTENTS

4.2 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Re-expansion of spherical base solutions . . . . . . . . . . . . . . . . . . 29

4.3.1 Rotation of spherical base solutions . . . . . . . . . . . . . . . . 30

4.3.2 z-Translation of spherical base solutions . . . . . . . . . . . . . . 30

5 Sources In Spherical Microphone Arrays 32

5.1 Spherical multipole expansion . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Higher orders due to shifted sources . . . . . . . . . . . . . . . . . . . . 33

5.3 Examples of multipole expansions and their spectral distribution . . . . . 33

6 Rotational Tracking Of Sound Sources 37

6.1 Rotational matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Simulation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.3 Experimental example . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Translational Tracking Of Sound Sources 40

7.1 Defining the acoustic center of musical instruments . . . . . . . . . . . . 40

7.2 Acoustic centering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.3 Proposed criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.3.1 Squared sum criterion Jssc . . . . . . . . . . . . . . . . . . . . . 41

7.3.2 Low order criterion Jloc . . . . . . . . . . . . . . . . . . . . . . 42

7.4 Examining the cost functions . . . . . . . . . . . . . . . . . . . . . . . 42

7.4.1 Translation comparison . . . . . . . . . . . . . . . . . . . . . . 42

7.4.2 Truncation and aliasing effects . . . . . . . . . . . . . . . . . . 44

7.4.3 Cost functions evaluated for different sources along z-axis . . . . 46

7.4.4 Localization maps . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.5 Optimization and accuracy analysis . . . . . . . . . . . . . . . . . . . . 52

7.5.1 Optimization using discrete volume sampling methods . . . . . . 54

7.5.2 Optimization using simplex search method . . . . . . . . . . . . 55

7.6 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.6.1 Radiation patterns with vs. without acoustic centering . . . . . . 60

7.6.2 Case study on musical instruments . . . . . . . . . . . . . . . . 62

7.6.3 "Tropfenlautsprecher" - Loudspeaker in small enclosure . . . . . 80

7.7 Tangential Intensity Vector Sum Itg,sum . . . . . . . . . . . . . . . . . . 82

Diploma thesis, Daniel Deboy 6



CONTENTS

8 Conclusion 83

A Rotational Calibration Of The Array 84

B Localization Maps Of Simulated Sources 88

Diploma thesis, Daniel Deboy 7



Chapter 1

Introduction

Motivation

A surrounding microphone array consists of several microphones that capture the sound
pressure at certain positions around a musician playing a musical instrument. This kind
of array provides a comfortable and easy way to gather information about the behavior
of musical instruments. A musical instrument consists of one or more oscillating parts
radiating sound to the surrounding air. The radiated wave may be omni-directional or
focused to a certain direction, depending on its wavelength, i.e. the frequency. The
radiated waves form a radiation pattern on a closed surface surrounding the musical
instrument in the far-field.

Since there seem to exist no feasible solutions for recording the sound-pressure at a
continuos spherical surface around sound sources, the sound-pressure on this surface
can only be recorded at discrete angular locations. From discrete observations, we can
describe the sound-pressure continuously at the surface by employing a mathematical
interpolation method. The spherical harmonics decomposition (SHD) provides a suitable
method of interpolation in the special case of the hyperinterpolation method.

One of the main problem arises because of the discrete sampling of the surface. As it is
convenient to assume a limit of the bandwidth before discretization, spherical harmonics
spectra components will be aliased. Fortunately, for most applications the aliasing error is
acceptable as long as the sound source lies in the center of the sphere. However, shifting
the source generates higher order components in the spherical harmonics spectrum and
spatial aliasing cannot be neglected anymore.

Centering the sound source minimizes higher order components in the spherical harmon-
ics spectrum. Different cost functions are proposed to estimate localization maps from
the recorded sound pressure. Minimizing these cost functions intends to yield a precise
translation vector which can be used to center the source signal by simply changing the
coordinate origin of the SHD.
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Chapter 2

Spherical Exterior Problem

This chapter provides a brief overview on continuous wave field theory in spherical co-
ordinates. An intensive study of this theory is necessary for the understanding of the
discrete case we are dealing with when using a spherical microphone array. Details on
the theoretical aspects are found in [Zot09] and [Wil99].

2.1 Wave field description in spherical coordinates

The Helmholtz equation (eq. 2.1) can be used to describe sound pressure fields p(r, ω)
in the frequency domain. It is derived from the wave equation in time domain and can
be written as

(△+ k2)p(r, ω) = 0. (2.1)

In order to solve this equation in spherical coordinates, the cartesian coordinates in R3

have to be transformed according to

r =





x
y
z



 = rθ, r̊ =





r
ϕ
ϑ



 =







√

x2 + y2 + z2

arctan( y
x
)

arctan

√
x2+y2

z






, θ =





cos(ϕ)sin(ϑ)
sin(ϕ)sin(ϑ)

cos(ϑ)



 ,

(2.2)

where k = ω/c is the wave number and r, ϕ ϑ are called the radius, azimuth, respectively
zenith angle. The vector θ describes a unit sphere and is proposed for a more concise
notation [Zot09].
Throughout this thesis, the Fourier coefficient of sound-pressure at a certain frequency
ω is denoted as

p(kr, θ) = p(r, ω) = p(r, t)eiωt. (2.3)
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CHAPTER 2. SPHERICAL EXTERIOR PROBLEM

2.2 Spherical harmonics

The spherical harmonic functions can be seen as the modes of vibration on a spherical
surface. Fig. 2.1 shows the real-valued spherical harmonic functions up to an order of
N = 2. We write Y m

n (θ) for the real-valued spherical harmonic function with n being
the order and m the degree of the spherical harmonic

Y m
n (θ) =

√

(2n+ 1)(2− δm)

4π

(n−m)!

(n+m)!
Pm
n (cos(ϑ)) ·

{

sin(mϕ), for m < 0,
cos(mϕ), for m ≥ 0.

(2.4)

Figure 2.1: Real valued spherical harmonic functions for n=0...2

The spherical harmonics are orthonormal and are the basis of the spherical harmonics
domain. The orthonormality is shown by the integral

∫

S2

Y m
n (θ)Y m′

n′ (θ)dθ = δnn′δmm′ . (2.5)

Pm
n are the associated Legendre functions

Pm
n (x) = (−1)m(1− x2)m/2 d

m

dxm
Pn(x). (2.6)

With the Legendre polynomials Pn(x) which can be determined by recurrence relations.

2.3 Spherical base solutions

Several solutions of the Helmholtz equation in spherical coordinates are known. However,
not all of them are physical. According to [Wil99] the solution for standing waves is
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CHAPTER 2. SPHERICAL EXTERIOR PROBLEM

written as

p(kr, θ) =

∞
∑

n=0

n
∑

m=−n

(anmjn(kr) + bnmyn(kr))Y
m
n (θ), (2.7)

and the solution for traveling waves is written as:

p(kr, θ) =

∞
∑

n=0

n
∑

m=−n

(cnmh
(2)
n (kr) + dnmh

(1)
n (kr))Y m

n (θ), (2.8)

where anm, bnm, cnm, dnm are coefficients, jn, yn are the spherical Bessel and Neumann
functions and h(1)n , h

(2)
n are the spherical Hankel functions, cf. fig. 2.2,

jn(x) = (−x)n( 1
x

d

dx
)n(

sin(x)

x
), (2.9)

yn(x) = −(−x)n( 1
x

d

dx
)n(

cos(x)

x
), (2.10)

h(1)n (x) = (−x)n( 1
x

d

dx
)n(

eix

ix
), (2.11)

h(2)n (x) = h(1)n (x)∗. (2.12)

It is easy to see that h(1)n is a complex valued composite of the spherical Bessel functions

h(1)n (x) = jn(x) + iyn(x). (2.13)

Regarding singularities and the Sommerfeld radiation condition we may state the physical
solutions as [Zot09]

p(kr, θ) =

∞
∑

n=0

n
∑

m=−n

(anmjn(kr) + cnmh
(2)
n (kr))Y m

n (θ), (2.14)

and I will refer to the coefficients anm and cnm as the wave spectra in this work. The
spherical Bessel functions describe standing waves whereas traveling waves that are
singular at r = 0 are characterized by the spherical Hankel functions of the second kind.
From the spherical Hankel functions, a condition for the far-field depending on the order
of the spherical harmonic can be derived,

kr′ ≫ n(n + 1)

2
. (2.15)
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CHAPTER 2. SPHERICAL EXTERIOR PROBLEM
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Figure 2.2: Spherical Bessel, Neumann and Hankel function for n=0...4

2.4 Spherical wave spectrum

The spherical wave spectrum as introduced in [Wil99] describes the spherical harmonics
decomposition of a sound particle velocity on a spherical surface. It allows us to describe
spherical boundary values.
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CHAPTER 2. SPHERICAL EXTERIOR PROBLEM

Spherical harmonics transform

The spherical harmonics transform is a decomposition of a continuous distribution g(θ)
given at a unit sphere S2 into its components of spherical harmonics

SHTnm{g(θ)} = γnm =

∫

S2

g(θ)Y m
n (θ)dθ. (2.16)

The expansion of γnm is complete, we can write the inverse transform as

ISHT =
∞
∑

n=0

n
∑

m=−n

γnmY
m
n (θ) = g(θ). (2.17)

The expansion fulfills Parseval’s theorem
∫

S2

|g(θ)|2dθ =
∞
∑

n=0

n
∑

m=−n

|γnm|2. (2.18)

Spherical wave spectrum of the sound-pressure

Decomposing a continuous sound-pressure distribution of a sphere into spherical har-
monics yields the spherical wave spectrum [Wil99]

ψm
n (kr) = SHT{p(kr, θ)}. (2.19)

With the expansion we can regain the sound-pressure distribution at the sphere

p(kr, θ) =
∞
∑

n=0

n
∑

m=−n

ψm
n (kr)Y m

n (θ). (2.20)

Note that the coefficients of spherical wave spectra still feature a radial weighting by
the spherical Bessel and Hankel functions and can be further decomposed into the wave
spectra anm, cnm.

ψm
n (kr) = anmjn(kr) + cnmh

(2)
n (kr). (2.21)

2.5 Boundary value problem

SS

S

S
S

S

S

S

Figure 2.3: Exterior problem
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CHAPTER 2. SPHERICAL EXTERIOR PROBLEM

A given sound pressure distribution on a closed surface S of a Volume V is called Dirich-
let boundary condition [Zot09] for the Helmholtz equation. Since every sound source
of a surrounding microphone array should be located inside of V , the solutions of this
boundary value problem are valid outside the array. Therefore it is referred to as "ex-
terior" problem in [Zot09]. The divergence theorem proves that the sound field outside
of the Volume V is fully determined by the distribution on the closed surface . Note
that even if a source free field outside of the array is ensured, reflections of surrounding
surfaces can form mirrored sources and the assumption of an exterior problem becomes
invalid. Hence the exterior problem needs an anechoic environment to be evaluated
properly, or must separate between exterior and interior solutions using either two layers
of microphones or the velocity and pressure distribution [WA80].

If we know the sound-pressure distribution on a sphere S2 with radius r we can ap-
ply the SHT. The outmost sound source at radius r0 therefore defines the smallest
possible sphere surrounding all sound sources by r > r0.

In terms of a pure exterior problem, the spherical wave spectrum reduces to (anm ≡ 0)

ψm
n (kr) = cnmh

(2)
n (kr) = SHT{p(kr, θ)}. (2.22)

Physically, anm ≡ 0 means that there are no incident waves superimposed to the free-field
outside r.

Spherical acoustic holography

If the purpose of a measured spherical sound-pressure distribution is the evaluation of
the wave field at other radii, we refer to this as acoustic holography [Zot09]. Acoustic
holography for the spherical exterior problem extrapolates from the spherical wave spec-
trum at radius r to the spherical wave spectrum at any other radius r′ that still encloses
all sound sources:

ψm
n (kr

′) = ψm
n (kr)

h
(2)
n (kr′)

h
(2)
n (kr)

. (2.23)

The sound-pressure distribution at r′ extrapolated by spherical acoustic holography be-
comes:

p(kr′, θ) =

∞
∑

n=0

n
∑

m=−n

ψm
n (kr

′)Y m
n (θ) =

∞
∑

n=0

n
∑

m=−n

ψm
n (kr)

h
(2)
n (kr′)

h
(2)
n (kr)

Y m
n (θ). (2.24)

Deriving radiation patterns

We can derive a far-field radiation pattern of the sources located inside r by extrapolating
the sound-pressure distribution p(kr, θ) to a new radius r’>r that lies in the far-field, cf.
eq. (2.15).
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CHAPTER 2. SPHERICAL EXTERIOR PROBLEM

Figure 2.4: Example of a far-field radiation pattern: Trumpet playing A5, observed
partial at 888Hz, shown is the extrapolated sound-pressure distribution within a dynamic
range of the top 20dB.
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Chapter 3

Surrounding Microphone Arrays

A surrounding microphone array captures the sound pressure p(t) or particle velocity
v(t) at spatial sampling points on a sphere surrounding the sound source.
For this thesis, recordings have been taken using the 64 channel surrounding microphone
array at IEM Graz, Austria. The array frame has a radius of about Ra = 1.35m at which
it mounts 64 omni-directional microphones. Omni-directional microphones produce a
voltage proportional to the sound pressure p(rch, t) at the position rch of their capsule
depending on the time instant t. In the discrete-time domain, the Fourier coefficients
p(r, ω) can be derived according to eq. (2.3).
Simulations for estimating the performance of the algorithms are based on the structure
of this array. A detailed description of the array can be found in [Hoh09].

Figure 3.1: Picture of the surrounding spherical microphone array at IEM Graz, Austria
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CHAPTER 3. SURROUNDING MICROPHONE ARRAYS

3.1 Estimation of the spherical wave spectrum from

discrete observations

In order to preserve as much information as possible when discretizing a spherical distri-
bution, it is convenient to assume it having a finite-resolution, i.e. angular band-limit.
The following sections describe how to obtain wave spectra from discrete observation
utilizing this assumption.

3.1.1 Band-limited wave spectrum

In vector notation the spherical wave spectrum

p(kr, θ) =
N
∑

n=0

n
∑

m=−n

(anmjn(kr) + cnmh
(2)
n (kr))Y m

n (θ)

can be expressed briefly as:

ψN(kr) = JNbN +HNcN . (3.1)

Truncating the spherical wave spectrum at the order N generates a truncation error
which can be expressed by:

ǫtrunc = ψ∞ −ψN =H∞c∞ −HNcN . (3.2)

This kind of error is important when regarding sources which produce high-order com-
ponents N′ > N, or when dealing with translation, cf. section 4.2 and eq. 5.4.

Vector and matrix notation

To fill the coefficients bnm into vectors and matrices, the following conventions are useful:

idx = n2 + n +m+ 1, (3.3)

bidx = bnm, (3.4)

bN = vec{bidx} =















b1
b2
b3
...

b(N+1)2















, (3.5)
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CHAPTER 3. SURROUNDING MICROPHONE ARRAYS

diagN{bnm} = diagN{bidx} =



















b0,0 0 0 0 · · · 0
0 b1,−1 0 0 · · · 0
0 0 b1,0 0 · · · 0

0 0 0 b1,1
. . . 0

...
...

...
. . . . . .

...
0 0 0 0 · · · bN,N



















, (3.6)

mtx{b(L)N } =
(

b
(1)
N , · · · , b(L)N

)

. (3.7)

If bidx is independent of m, we can use the above description and replace m with zero,

HN := diagN{h(2)n (kr)}, (3.8)

JN := diagN{jn(kr)}. (3.9)

3.1.2 DSHT by hyperinterpolation on the sphere

According to [Zot09], angular sampling nodes for hyperinterpolation on the sphere S2

use quadratic matrices YN and require good condition of YN . [WS01] gives a detailed
description of how to derive L = (N + 1)2 angular sampling nodes

YN := mtx{y(l)
N

T
} =













y
(1)
N

T

y
(2)
N

T

...

y
(L)
N

T













, (3.10)

where y(l)
N is a vector of the spherical harmonics evaluated at sampling node l:

y
(l)
N =





















Y
(l)
0,0

Y
(l)
1,−1

Y
(l)
1,0

Y
(l)
1,1
...

Y
(l)
n,n





















. (3.11)

The computation of the discrete spherical harmonics transform (DSHT) requires an in-
version of the spherical harmonics matrix YN . Thus the matrix has to be of full rank
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CHAPTER 3. SURROUNDING MICROPHONE ARRAYS

to be invertible [Bög03]. The order N determines the number of rows of the spherical
harmonics matrix with (N + 1)2, and the number of sampling nodes L directly yields
the number of columns.

DSHTN{gL} = γN = Y −1
N gL, (3.12)

DISHTN{γN} = YNγN = gL. (3.13)

Only a quadratic matrix of ((N + 1)2 × L) with L = (N + 1)2 can have full rank.
The determinant det(YN) must not become zero (det(YN) 6= 0) and for numerical
computations should not even get close to zero. The determinant of a matrix Y is
defined as the product of its eigenvalues λi. Another possible measure of numerical
invertibility is the condition number defined as the relation between the largest and the
smallest eigenvalue of YN .

3.1.3 Approximation using SVD

It is due to the invariance of the resolution of spherical harmonics decompositions with
respect to rotation that the condition number won’t be affected by rotations. However,
translating the coordinate system by a vector d =

[

dx dy dz
]T

distorts the angular
positions and may hereby yield a bad condition number. In such cases, hyperinterpola-
tion becomes numerically infeasible. Nevertheless, an approximation of the inverse by
regularization can be achieved. Hereby, linear combinations of spherical harmonics are
omitted that become linearly dependent because they are weakly sampled.

The singular value decomposition transforms the spherical harmonics matrix into a di-
agonal matrix SN and two unitary matrices U and V ∗. The entries of SN are called
singular values of Y

YN = USNV
∗, (3.14)

SN =















s0 0 0 · · · 0
0 s1 0 · · · 0
0 0 s2 · · · 0
...

...
. . . . . .

...
0 0 0 · · · sN















. (3.15)

Commonly SVD algorithms sort the singular values in descending order. Setting all sin-
gular values that fall below a certain threshold relative to the largest s0 to zero forms
a new diagonal matrix S̃N of rank (N −#si < level). The hereby obtained matrix Ỹ
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CHAPTER 3. SURROUNDING MICROPHONE ARRAYS

approximates YN as

ỸN = Ũ S̃N Ṽ
∗, (3.16)

and allows us to calculate the so called pseudo-inverse of YN

Y +
N = Ṽ S̃−1

N Ũ
∗. (3.17)

3.1.4 Estimation of spherical wave spectrum

Using eq. (3.12) to obtain the spherical wave spectrum from pL for the exterior problem
(anm = 0), we find ψ̂N as

ψ̂N(kr) = Y
−1
N pL. (3.18)

The coefficients cN are obtained by inversion of eq. (3.18),

cN =H−1
N ψ̂N(kr) =H

−1
N Y

−1
N pL. (3.19)

3.2 Spatial aliasing

In general, an unlimited wave spectrum c∞ of a sound source can be expanded to the
measured discrete sound-pressure distribution pL. Hence, estimating the spherical wave
spectrum up to order N using discrete observations pL can be expressed by

ψ̂N = Y −1
N pL = Y −1

N Y∞H∞c∞, (3.20)

whereas a band-limited truncated spherical wave spectrum could be derived from the
unlimited wave spectrum by truncation

ψN =HNcN =
[

I 0
]

H∞c∞. (3.21)

In eq. (3.20), higher order components of c∞ may be misinterpreted (aliased) as com-
ponents of orders equal or below N due to sparse observation by the discrete sampling
nodes. A spatial aliasing error is generated and can be expressed by

ǫsa = ψ̂N −ψN (3.22)

= (Y −1
N Y∞ −

[

I 0
]

)H∞c∞.

Diploma thesis, Daniel Deboy 20



CHAPTER 3. SURROUNDING MICROPHONE ARRAYS

The aliasing component coefficients are depicted in the matrix multiplication Y −1
N Y∞.

Fig. 3.2 shows an example of the matrix product. The first (N + 1)2 components are
correctly mapped while components of higher orders are aliased.

A similar aliasing effect is well known from discrete time sampling of signals having
frequency components above the Nyquist frequency.

20 40 60 80 100 120 140 160

10

20

30

40

50

60

Figure 3.2: Example for matrix product Y −1
N Y∞ (Y∞ is of finite size here due to nu-

merical calculation, a small value was chosen for illustration purpose) [Ple09]

3.3 Array imperfections

Several errors may influence the analysis of wave spectra in a surrounding spherical
microphone array including diffraction, reflection, noise, gain mismatch and microphone
displacement. The effects of these errors on the tracking algorithms are not investigated
in this thesis.
However, the gain mismatch of the signal paths including microphone, preamplifier and
analog-digital converter have been adjusted using a level calibrating tool.
As examined in [Hoh09] the structure of the microphone array leads to comb filter effects.
The comb filter effect is minimized by installing concentric foam absorbers around the
microphone locking.

3.4 Calibrating the orientation of the coordinate

system

The orientation of the coordinate system sometimes may not match the orientation of
the real-world coordinate system or sometimes one may chose an arbitrary coordinate
system. A robust method how to achieve a rotation matrix that matches the coordinate
systems has been adopted from optical tracking systems and can be found in appendix
A.
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Chapter 4

Discretization Of The Kinematic

Space

This chapter describes ways of discretization for displacements (translation, rotation) in
a near-uniform way. In particular, this facilitates rotational and translational tracking
tasks by providing a smaller number of discrete nodes with good coverage of the regarded
kinematic space.

4.1 Rotation

In cartesian coordinates a rotation in R3 has three degrees of freedom. This section
intends to provide a better understanding of rotations and their application and presents
different formats thereby.

4.1.1 Angle axis format

We can fully describe a rotation by an rotation axis n and a rotation angle α.

α

n

Figure 4.1: Angle axis representation of rotations

A clockwise rotation g = α n and its counter-clockwise foil g = −α − n describe
the same movement. Since we are only interested in the resulting rotation, we can
limit α to {0...π}=̂{0...180◦} without any restrictions. This reduces ambiguities only to
α = π=̂180◦.
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CHAPTER 4. DISCRETIZATION OF THE KINEMATIC SPACE

4.1.2 The special group of rotation matrices SO(3)

In R3 it is obvious that any rotation linearly transforms an orthonormal basis to another
orthonormal basis. Thus we can represent rotations with an orthogonal 3× 3 matrix
Q. Matrices of proper rotations have the determinant det = +1 (those of the improper
rotations have the determinant det = −1 due to a succeeding inversion operation). All
proper rotations form the special group of rotation matrices SO(3), and fulfill

QTQ = I. (4.1)

The cartesian coordinates are rotated using

r′ = Qr. (4.2)

A distance measure of two rotation matrices Q1 and Q2 is defined as [Mit07]

αdist = acos
(1

2
(T r(Q1Q

−1
2 )− 1

)

. (4.3)

4.1.3 Euler angles

An arbitrary rotation g = α n can be decomposed in three rotations, one rotation
gz = α1 ez around the z-axis, followed by a rotation gy = α2 ey around the y-axis and a
third rotation gz = α3 ez around the new z-axis. The angles α1, α2, α3 are named Euler
angles [Wei10].
In cartesian coordinates, the rotation is represented by three 3 × 3 rotation matrices
Qz(α1),Qy(α2) and Qz(α3).

Qz =





cos(α1) − sin(α1) 0
sin(α1) cos(α1) 0

0 0 1



 , Qy =





cos(α2) 0 − sin(α2)
0 1 0

sin(α2) 0 cos(α2)



 . (4.4)

4.1.4 Mapping SO(3) to S3

Rotations can be represented as points on a hypersphere S3. A coordinate system
analogue to the spherical coordinate system for the R3 can be defined for the R4 by
adding another angular component. Hence the cartesian coordinates can be expressed
using the angular components [Wik10]:

w = cos(φ1),

zh = sin(φ1) cos(φ2) cos(φ3),

yh = sin(φ1) sin(φ2) cos(φ3),

xh = sin(φ1) sin(φ2) sin(φ3), (4.5)
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where φ1, φ2 = {0...π} and φ3 = {0...2π}.

Sampling the hypersphere with sampling nodes distributed uniformly may yield a set
of rotations that have equally spaced distance relations. A sampling method is shown in
section 4.1.5.

Representation on w- and x-axis

For an easier understanding of this representation, we consider a unit circle on the w-
and xh-axis in cartesian coordinates. The projection of v onto w describes the rotation
angle α = 2 arccos(vw) and the projection onto xh embodies the rotation axis by

n =
vx
|vx|

ex.

No rotation is described at w = {−1/1}. The above representation only formulates
rotations around the positive or negative x-axis in R3. According to section 4.1.1 it is
still achievable to formulate all possible rotations around ex if we reduce the unit circle
to the upper half. As in eq. (4.5) we can scale the normalized rotation axis by cos(φ1)
with φ1 = {0...π}.

w

x
h

Φ1 v

(a) 2 dimensions of the hypersphere repre-
sentation

x

α

n

(b) Angle axis format in R1

Figure 4.2: Rotation representation on w- and xh-axis

Representation on w-axis and xh-yh-plane

If we extend the representation to another axis yh we consider a unit sphere. Again
the projection of v onto w describes the rotation angle and the projection onto the
xh-yh-plane formulates the normalized rotation axis to

n =
vxex + vyey
√

v2x + v2y
.
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The north- and the south-pole of the unit sphere describe no rotation at all. Therefore
we do not need to differentiate between different orientations of the rotation axis. At
all other positions the rotation axis lies in the x-y-plane in R3. Reducing the unit sphere
to a half sphere still allows us to describe every possible rotation around an axis on the
x-y plane. The normalized rotation axis can be scaled with cos(φ1) with φ1 = {0...π}.

w

v

yh

xh

Φ1

(a) 3 axes of the hypersphere representation

x

y

α

n

(b) Angle axis format in R2

Figure 4.3: Representation on w-axis and xh-yh-circle

Representation on w-axis and xh-yh-zh-sphere

Finally, we add another axis zh and consider a unit hypersphere. Now, all rotation axes
in R3 are allowed

n =
vxex + vyey + vzez
√

v2x + v2y + v2z
.

Again, we can reduce the unit hypersphere to positive w only and still gather all possible
rotations in R3. The normalized rotation axis can be scaled with cos(φ1) with φ1 =
{0...π}.
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w=cos(Φ1)

v

zH

xh

yh

(a) 4 axes of the hypersphere representation
(w not shown)

α

n

z

x

y

(b) Angle axis format in R3

Figure 4.4: Representation on w-axis and xh-yh-zh-sphere

4.1.5 Sampling the hypersphere S3

The representation of rotations on a hypersphere becomes useful if we want to obtain
a set of rotations which are uniformly distributed in the sense of the distance between
rotation matrices. The longitudes represent different rotation axes. They converge at
the north- and south-pole and diverge towards the equator. By uniformly sampling the
hypersphere representation, rotation-axes directions are discretized using more finely-
resolved directions for large rotations than for small ones.

Equal area partitioning

Equal area partitioning provides a near-uniform sampling of a sphere Sn. It follows the
objective of partitioning the sphere in equal area rectangular compartments. The Sn

sphere can be partitioned into a freely chosen number of sampling points. [Leo06]. Fig.
4.1.5 shows an example of equal area partitioning of a S

2 sphere.
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Figure 4.5: Example of equal area partitioning using the recursive zonal equal area
partitioning toolbox for Matlab offered under the MIT license [Leo10]

Rotational testset

With the above representation we can illustrate a set of rotations in R3:

Figure 4.6: Example rotational test set (three layers representing α = {0, π
2
, π}, the

layers have an increasing number of sampling nodes representing rotation axes)
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4.2 Translation

A translation is a simple shift of the coordinate system by a vector d in cartesian coor-
dinates. A position vector in the shifted coordinate system is denoted by:

r′ = r + d (4.6)

Sampling spherical volumes

In order to sample the inner volume of the microphone array we need to choose a suitable
sampling method. The preferable method may depend whether we need linear distances
in cartesian coordinates or in spherical coordinates. Therefore a few methods have been
chosen to fulfill the demands of different applications.

Linear sampling in cartesian coordinates

The most obvious method seems to be the cubic grid obtained by sampling a volume
with discrete incremental distances dx, dy, dz from the origin (0,0,0).

Linear discretization of z-axis and rotation with equally spaced distance

Every position r on the sphere S2 can be rotated to the z-axis of the coordinate system
by a rotation axis on the x-y-plane being orthogonal to the z-axis and the position vector
r. It is therefore sufficient to linearly sample the radius r of the sphere by a given dz on
the z-axis.

dz =
(

dz 2dz 3dz . . . sdz
)

(4.7)

A set of rotation axes can be obtained with the equal area partition method for S2

described in section 4.1.5. To achieve uniformly distribution of sampling nodes of the
volume V , the number of rotations has to grow with dz.

Cubic close sphere packing

There are different possibilities for packing spheres [Mat10b]. The tightest sphere pack-
ings are the cubic and the hexagonal close packing illustrated in fig. 4.7. Both yield a
density of 74.048 percent. Fig. 4.8 shows an example of the sampling nodes obtained
by cubic tightest sphere packing of a spherical volume.
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(a) first layer (b) second layer (c) third layer

Figure 4.7: Layers of cubic close sphere packing (2 layers) and hexagonal close sphere
packing (3 layers)

Figure 4.8: Example of cubic tightest sphere packing of a spherical volume.

4.3 Re-expansion of spherical base solutions

A detailed description of the numerical computation of transformed spherical base solu-
tions can be found in [Zot09]. The following recurrence relations are adopted without
detailed explanation,

amn =

{
√

(n−|m|+1)(n+|m|+1)
(2n+1)(2n+3)

, for n ≥ 0 and −n ≤ m ≤ n,

0, else,
(4.8)

bmn =















√

(n−m−1)(n−m)
(2n−1)(2n+1)

, for n ≥ 0 and 0 ≤ m ≤ n,

−
√

(n−m−1)(n−m)
(2n−1)(2n+1)

, for n ≥ 0 and −n ≤ m ≤ 0,

0, else.

(4.9)
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4.3.1 Rotation of spherical base solutions

Rotations can be decomposed into a combination of rotations around the z-axis and
π
2
-y-axis according to

r′ = Qz(α1 + π/2)Qy π

2
Qz(α2 + π)Qy π

2
Qz(α3 + π/2)r. (4.10)

This decomposition simplifies the transforms of the spherical base solutions. The two
types of rotations are expressed below.

Transform for z-rotation:

cnm = eimθzc′nm. (4.11)

Transform for y π
2
-rotation:

cnm =

N
∑

n=0

n
∑

m′=−n

Tm′,m
n,n (Qy π

2
)c′nm′ , (4.12)

with the generating equation of the coefficients

Tm′,m+1
n−1,n−1(Qy π

2
) =

√

2− δm+1

2bmn
√
2− δm

{

√

2− δm′

{

bm
′−1

n
√

2− δm′−1

Tm′−1,m
n,n (Qy π

2
)

− b−m′−1
n

√

2− δm′+1

Tm′+1,m
n,n (Qy π

2
)

}

+ 2am
′

n−1T
m′,m
n,n (Qy π

2
)

}

, (4.13)

using the initial values

Tm′,0
n,n =

√

4π

2n+ 1
N |m′|

n P |m′|
n (0). (4.14)

4.3.2 z-Translation of spherical base solutions

Performing translations of spherical base solutions is not as trivial as translations are in
cartesian coordinates. It turns out that a single spherical base solution in the original
coordinate system is an expansion of an infinite number of spherical base solutions in the
dislocated coordinate system. Translations along the z-axis can be performed according
to the following recurrence relations. An arbitrary translation vector d can easily be

rotated onto the z-axis by a rotational transform d = Q(ϕd, ϑd, 0)





0
0
1



 ‖d‖ of the

coordinate system.
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cnm =

N ′

∑

n′=0

n
∑

m′=−n

Tm′m
n′n (dz)c

′
n′m′ , (4.15)

(

Tm+1,m+1
n′,n+1

Tm,m
n′,n+1

)

=





1
b−m−1

n+1

[

− bmn′+1T
mm
n′+1,n(dz) + b−m−1

n′ Tmm
n′−1,n(dz) + bmn T

m+1,m+1
n′,n−1 (dz)

]

1
amn

[

− am
′

n′ Tmm
n′+1,n(dz) + amn′−1,nT

mm
n′−1,n(dz) + amn−1T

mm
n′,n−1(dz)

]



 ,

(4.16)

using the initial values for dz

T 00
n′0(dz)I =

√
2n′ + 1jn(kdz). (4.17)
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Chapter 5

Sources In Spherical Microphone

Arrays

As we deal with musical instruments, we have no exact idea of how the wave spectrum
is distributed. However, we may assume a set of distributions that are likely for certain
characteristics of different instruments. For example, most brass instruments have a
focused radiation in the direction of their cone, a flute exhibits a dipole-like radiation
pattern because of two effective points of radiation and string instruments a more com-
plex distribution since they have more parts radiating sound [Mey72].
For the evaluation of tracking algorithms it is essential to have sound sources of known
positions. It is a difficult task to mount radiating sound-sources at a certain position in
the surrounding microphone array, therefore we will use simulated sound-sources for this
purpose.

5.1 Spherical multipole expansion

We can describe the radiation from bodies of finite extent with an expansion of multi-
poles [Wil99]. According to [GD04] multipoles are defined as derivatives of the Green
function of the fundamental solution of the Helmholtz equation. Using the differentiation
theorems for spherical elementary solutions, multipoles can be related to the spherical
harmonics functions Y m

n . Thus, an expansion of multipoles is similar to the spherical
harmonics expansion written as [Wil99]

p(kr, θ) =

∞
∑

n=0

n
∑

m=−n

cnmh
(1)
n (kr)Y m

n (θ). (5.1)

In a manner, the above equation may be used to generate different multipole sources
which are believed to resemble the behavior of musical instruments. Examples of such
sources are given in section 5.3.
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5.2 Higher orders due to shifted sources

The multipole coefficients of a source located at the origin of the coordinate system
denotes as

Mm
n (r) = h(1)n (kr)Y m

n (θ). (5.2)

With the recurrence relations given in section 4.3.2 a displacement of the multipole
expansion can be performed with

Mm
n (r) =

∞
∑

n′=0

n′

∑

m′=−n′

Tm′m
n′n (d)M ′m

n (r
′). (5.3)

The translation of multipole coefficients again is a linear combination of an infinite sum of
spherical harmonics. According to [GD04] the additional orders required for an accurate
resolution of a shifted multipole is roughly estimated by

Nanalyze ≥ Ns + kd. (5.4)

5.3 Examples of multipole expansions and their

spectral distribution

In order to simulate the performance of acoustic centering algorithms, some types of
sources shall be represented applicable as test set.
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Figure 5.1: Comparison of phase relations in coefficient vector (left: constant phase,
right: random phase)
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Figure 5.2: Monopole radiation pattern and its spectral distribution
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Figure 5.3: Dipole on z-axis, radiation pattern and its spectral distribution
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Figure 5.4: Example of a real-valued multipole radiation pattern with a distribution
∼ 1/n and its spectral distribution
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Figure 5.5: Example of a real-valued multipole radiation pattern with random coefficients
and its spectral distribution
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Figure 5.6: Example of a complex-valued multipole radiation pattern with a distribution
∼ 1/n and its spectral distribution
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Figure 5.7: Example of a complex-valued multipole radiation pattern with random coef-
ficients and its spectral distribution
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Figure 5.8: Example of a focusing multipole radiation pattern and its spectral distribution

Diploma thesis, Daniel Deboy 36



Chapter 6

Rotational Tracking Of Sound

Sources

This chapter deals with the practical tests of rotational tracking of moving sound sources.
The assumption that musical instruments do not move fast allows to divide the recorded
time-signal into multiple successive blocks of a constant time period. The Fourier co-
efficient pb(kr, θ) for one block can be used for discrete spherical harmonic transform.
A spherical correlation function is used to compare the spherical harmonics magnitude-
patterns of two successive blocks. Rotational matching is achieved by rotating the older
spherical harmonics magnitude-pattern and maximizing its spherical correlation to the
newer pattern. The approach is first evaluated with a simulated complex-valued mul-
tipole source and finally an evaluation is demonstrated using real-world data from a
recorded musical instrument.

6.1 Rotational matching

Rotational matching is done with a set of rotations obtained by the hypersphere sampling
method described in section 4.1.5. At first a reference block needs to be found that
can be used for comparison of its pattern to the patterns of subsequent blocks. Once
calculated the estimated spherical harmonics decomposition of the reference block in
all discrete rotations, the spherical harmonics decomposition of a subsequent block can
be matched. Both spherical harmonics decompositions are compared by evaluating the
correlation function

c(n, θ) =
γH
N γ

′
N(n, θ)

‖ γN‖‖γ ′
N‖

(6.1)

If the correlation function becomes maximal, the estimated rotation between both blocks
has been found. This procedure is continued for every block of the recorded signal.
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6.2 Simulation example

(a) dt=0 (b) dt=1

(c) dt=2 (d) dt=3

Figure 6.1: Example of rotational tracking, simulated complex valued multipole source
rotating around z-axis (f = 1000Hz)
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6.3 Experimental example

(a) Video dt=0 (b) Tracking dt=0

(c) Video dt=1 (d) Tracking dt=1

(e) Video dt=2 (f) Tracking dt=2

Figure 6.2: Example of rotational tracking, trumpet rotating around z-axis while playing
Bb4, partial at 718Hz
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Chapter 7

Translational Tracking Of Sound

Sources

Using the prototypical sources described in chapter 5, novel translational tracking ap-
proaches are being evaluated in this chapter for the static case.

7.1 Defining the acoustic center of musical instru-

ments

As becomes clear in the previous chapter, radiating sound sources of finite extent can be
expressed by a multipole expansion at the origin. The simplest form is an omnidirectional
radiating source, i.e. a point source.
Defining an acoustic center can easily be done for loudspeakers radiating low frequencies
where they become omnidirectional as long as the wavelength is considerably larger than
the diameter of its baffle [Van07].
We may define the acoustic center of a radiating source as the position a at which higher
order components become small. For a dislocated point source the acoustic center will
then coincide with the point of its origin.
However, defining the acoustic center of musical instruments is not a simple task if
not impossible. Musical instruments have lots of different vibrating parts which radiate
sound to the air. We assume that the multipole expansion of a musical instrument may
be quite complex.

7.2 Acoustic centering

Since a dislocated source outside the origin of the coordinate system can be represented
by translation of its wave spectrum, we may transform back the acoustic center of a
source by applying the so-called multipole-translations of the wave spectrum by −a.
We will use the term acoustic centering for this procedure. Fig. 7.1 illustrates this

Diploma thesis, Daniel Deboy 40



CHAPTER 7. TRANSLATIONAL TRACKING OF SOUND SOURCES

approach starting from the discrete pattern pL of a dislocated source that is translated
back to the origin of a surrounding microphone array.

S

S

Figure 7.1: Scheme for acoustic centering

7.3 Proposed criteria

We will examine two different approaches to find the unknown acoustic center a within
the surrounding microphone array. The first one takes into account the measured sound
pressure and its phase relations. The second one directly implies the above-mentioned
definition of the acoustic center. Cost functions will help us to evaluate the performance
of these approaches.

7.3.1 Squared sum criterion Jssc

A point source produces spherical waves radiating from its origin. We can see spheres of
coherent phase for the sound pressure. Fig. 7.2 shows a monopole source being shifted
out of the origin. The array will cut through different shells of coherent phase. Summing
up the sound-pressure of all microphones can therefore lead to phase cancellations so
the complex sum of the sound-pressures becomes smaller than in the original position.
We assume the normalized sum of sound-pressures becomes maximal at the position a
of the acoustic center.

S S
Centering

Figure 7.2: Different shells of coherent phase radiated from an omni-directional source
(left: dislocated, right: centered)

For multipole expansions with real-valued coefficients that may have a common com-
plex multiplier we can assume that the sum of the complex-squared sound pressure will
become maximal at the acoustic center. As shown later, arbitrarily complex weighted
multipoles may cause the criterion to fail in detecting a sensible acoustic center.
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A cost function considering the sum of complex-squared sound pressure at all microphone
positions can be written as

Jssc(d) = 1−
∣

∣

∣

∣

∣

p′
T
Lp

′
L

p′HL p
′
L

∣
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∣

∣

∣

∑

p′
2
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∑ |p′L|2

∣

∣

∣

∣

∣

. (7.1)

7.3.2 Low order criterion Jloc

The coefficients cnm of a wave spectrum express a weight for each order n and its degree
m. Regarding the definition of the acoustic center, higher orders should be increasingly
penalized in a cost function. Eq. (7.3) is a cost function in which each weight of the
wave spectrum is multiplied by its order n. This corresponds to the concept of the
actuarial expectation value and can be seen as the centre of mass of the order n. Its
value should become minimal at the position a of the acoustic center.

wn = n (7.2)

J(d) =
c′

H
NdiagN{wn}c′N

c′HNc
′
N

(7.3)

7.4 Examining the cost functions

In this section we will examine the behavior of the cost functions using simulated mul-
tipole sources presented in chapter 5 at different positions a. The cost functions will
be evaluated at different displacements d. For a better readability only displacements
along one axis of the coordinate system have been chosen. We would like to assume
that the different structure of aliasing artifacts for other displacements are similar due to
the uniform (however not regular) structure of the investigated spherical array geometry.

7.4.1 Translation comparison

This section presents two ways of obtaining an estimation of the spherical wave spectrum
at a displaced origin.

Estimation of spherical wave spectrum at translated observation nodes As
displacements are expressed as an addition in cartesian coordinates, it might look favor-
able to estimate the wave spectrum at translated cartesian coordinates.

Diploma thesis, Daniel Deboy 42



CHAPTER 7. TRANSLATIONAL TRACKING OF SOUND SOURCES

pL(r',θ') c'
N

H
-1(r') YN

+
(θ') 

Figure 7.3: Scheme for translation in cartesian coordinates

The displacement of the cartesian coordinates affects the angular coordinates,

r̊ =





r′

ϕ′

ϑ′



 =









√

(x+ dx)2 + (y + dy)2 + (z + dz)2

arctan( (y+dy)
(x+dx)

)

arctan

√
(x+dx)2+(y+dy)2

(z+dz)









, (7.4)

and hyperinterpolation might become infeasible. In fact, the geometric distortion of the
angular discretization nodes for hyperinterpolation no longer guarantees a good condition
number. Thus we have to be careful with the matrix inversion.
Regularization using singular value decomposition as described in section 3.1.3 can be
used to achieve a pseudo-inverse Y +

N .

Translated spherical wave spectrum from estimate at original observation

nodes The second approach operates directly on the wave spectrum and preserves
hyperinterpolation at its designated sampling nodes. It applies the multipole translations
for the displacement d.

pL(r,θ) c
N

H
-1(r) YN

-1(θ) 

c'
N'

Tn'n (d)
m'm

Figure 7.4: Scheme for translation method in the wave spectrum

In the following example singular-values si 20dB below s0 have been cut off for the
translation in spherical coordinates. The artifacts this regularization produces in the
cost function is clearly observable for larger displacements d, cf. fig 7.5. The example
shows a displacement along the z-axis. For this purpose the cost functions are evaluated
step-wise for translations reaching from {−1.35...1.35}m along the z-axis. As the source,
a monopole was placed at the origin. For large displacements dz → 1.35m the number
of omitted singular values nearly approaches (N + 1)2. For this extreme case, the cost
function loses its validity.
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Figure 7.5: Effects on the cost function due to the regularization of the wave spectrum
estimation

7.4.2 Truncation and aliasing effects

Truncation of acoustically centered coefficients

Obviously, the translation approach in the wave spectrum outperforms the translation
of the cartesian coordinates. From section 4.3 we know that shifting in wave spectra
is done by a linear combination of an infinite number of spherical base solutions. The
coefficient vector c′N therefore becomes infinitely large and must be truncated for nu-
merical computations. The following example shows the effect of this truncation on the
cost functions. If we truncate the coefficient vector c′N at order N the translated wave
spectrum c′N lacks the components at higher orders generated through translation. This
inaccuracy has much more influence on Jloc than on Jssc because Jloc is mainly based
on penalizing the higher order components. Thus, a large order N ′ is advisable the
larger displacements and the higher the frequencies become according to eq. (5.4). The
example in fig. 7.6 shows the results on the cost functions for a monopole source at the
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origin.
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(a) Jssc with vs. without truncation in displacement calculation

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

5

10

15

displacement d
z
 (m)

J lo
c

Cost function J along z−axis [0 0 r
z
]

f=1000 Hz
 

 

none
truncation

(b) Jloc with vs. without truncation in displacement calculation

Figure 7.6: Cost functions with vs. without truncation in the calculation of the displace-
ment, N′ ≫ N

Truncation of source coefficients

An aspect we cannot get rid of in real recordings of the array is the spatial aliasing error
in the discrete wave spectrum estimation. However, the aliasing error can be avoided in
simulations in order to investigate the effect of aliasing on the cost functions. Aliasing
emerges from higher order components (Ns > N) that cannot be correctly identified.
In the following example, a dislocated monopole source has been used to illustrate the
aliasing error. Since the coefficient vector of the dislocated source can also be truncated
in the simulation, the effect of truncation is also visible in the example, cf. fig. 7.7.
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(a) Jssc aliasing error of a dislocated source
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(b) Jloc aliasing error of a dislocated source

Figure 7.7: Simulated dislocation of the source with Ns ≫ N , truncation at N , and
aliasing effect

7.4.3 Cost functions evaluated for different sources along z-
axis

Now that we have seen different effects of errors influencing the cost functions we can
take a closer look at the behavior for different sources located at the origin of the array.
Displacements have been calculated ranging up to a radius of r = 1.3m which is nearly
the whole diameter of the array frame. If the translation approaches the array boundary
we sometimes observe that the sound-pressure based cost function Jssc becomes minimal.
This may occur if a sampling node comes close to the near-field of the sound-source
(see Fig. 2.2).
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Monopole source
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(a) Jssc cost function for a monopole source
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(b) Jloc cost function for a monopole source

Figure 7.8: For a monopole source the Jssc function becomes very sharp at the origin
with a lot of wiggles whereas the Jloc remains convex over the whole displacement range.
On the other hand the Jloc criterion seems to be shallower as the Jssc criterion.

Dipole source
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(a) Jssc cost function for a dipole source along
z-axis
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(b) Jloc cost function for a dipole source along
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Figure 7.9: In both cost functions one can guess the dipole-like radiation of the sound-
source. Jssc becomes minimal at three positions of which one is located at the origin,
whereas Jloc has two minima, both at a small displacement. It can be assumed that
both plots show the positions where two monopoles with an inverse phase may yield a
dipole-like radiation pattern. In the case of Jssc the minimum at the origin should vanish
of we evaluate the sum of pL instead of the complex-squared sum of pL. This may be
beneficial for the purpose of monopole-source synthesis.
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Real-valued multipole source
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(a) Jssc cost function for real-valued multipole,
Ns = 4
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(b) Jloc cost function for real-valued multipole,
Ns = 4

Figure 7.10: For real-valued multipoles both criteria work pretty well and become minimal
at the origin. A small displacement of the Jloc function can be guessed that is assumed
to arise because of a directionally radiating source.

Complex-valued multipole source
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tipole Ns = 4
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Figure 7.11: For a complex-valued multipole with random phase distribution we see the
Jssc fail, whereas the Jloc criteria still has a convex behavior and the minimum seems to
be located exactly at the origin.

Cost functions for different frequencies

When calculating the cost functions at higher frequencies of the sound source we can
see that in both cases the curves become steeper, cf. fig. 7.12
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Figure 7.12: Cost functions at different frequencies (centered monopole source)

Cost functions for different positions az

The fig. 7.13, and 7.14 respectively, show cost functions for two different frequencies of
a monopole source positioned at different centers a. Since spatial aliasing depends on
kRa, we can assume that both criteria fail due to aliasing effects at certain displacements
depending on the frequency. For f = 500Hz the criteria begin to fail between 0.5 and
0.7 meters, whereas at f = 1000Hz the radial boundary lies below 0.5 meter.
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Figure 7.13: Cost functions for different source positions az (centered monopole source
at 500 Hz)
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Figure 7.14: Cost functions for different source positions az (centered monopole source
at 1000 Hz)

7.4.4 Localization maps

Evaluating the cost functions at displacements along other axes than the z-axis can be
done by rotating the displacement vector d onto the z-axis. This rotation needs to be
computed on the wave spectrum in advance of the translation.

Using this decomposition, a three dimensional localization map can be derived with the
formula for z-translations. For numerical computation we need to sample the sphere
within the array with a volume sampling method. Suitable sampling methods are intro-
duced in section 4.2.

A slice through the sphere can be done at the x-y, x-z and y-z plane (or arbitrary)
to illustrate localization maps in two dimensions. For this purpose the computation
can be reduced to a linearly sampled plane (for example dx = {−r...0...r} and dy =
{−r...0...r}). Fig. 7.15 shows an example of a localization map in the x-y plane for a
monopole source at the origin at a frequency of 1000 Hz.
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Note that the illustrated localization maps depict small values in dark and big values of
the cost functions in bright pixels. Dark spots of the cost function therefore indicate the
estimated position of the acoustic center. Localization maps for examples of simulated
multipoles at the origin can be found in appendix B.
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Figure 7.15: Example localization map - centered monopole source, slice at z = 0

7.5 Optimization and accuracy analysis

Optimization

Essentially, assuming the cost function indicates correct positions, the goal of acoustic
centering is to find a displacement d where the cost function has its global minimum.
This displacement can be seen as the acoustic center (dmin = −a for Jloc or Jssc →
min). An optimization by a simple search algorithm evaluates the cost function in a
given radial bound using discrete sampling of the volume. However, sampling nodes of
a volume do not necessarily hit the global minimum of the cost functions. Especially in
the case of Jssc the narrow minimum may be overseen by the optimization. Therefore, a
sophisticated unconstrained nonlinear optimization using fminsearch from the optimiza-
tion toolbox in MATLAB is probably more accurate [Mat10a]. The fminsearch function
uses the simplex search method.

Accuracy

The aliasing artifacts of a dislocated source mark bounds the optimization may accurately
work within. It depends on kRa, and since the radius is a fixed construction parameter
of the array, it in fact only depends on the frequency. Furthermore, they are assumed
to depend on the wave spectrum of the source. Higher orders tend to produce more
spatial aliasing inherently. Thus, another bound is given by eq. (5.4) as Nanalyze should
not exceed N = 7. This bound depends on the amount of translation and the frequency.
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We examine the accuracy for monopole, real-valued (0/180◦ phase) and complex-valued
(random phase for each Y m

n ) sources of order Ns = 4 at different dislocations and
frequencies.

Error measure

For the analysis of the accuracy the absolute error of the displacement vector

verror = |a− dmin| (7.5)

is plotted in fig. 7.16 - fig. 7.22.
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7.5.1 Optimization using discrete volume sampling methods

The following example shows the absolute error for a monopole source with a dislocation
of az = {−0.7...0.7} using a simple optimization by discrete search based on cubic
tightest sphere packing volume sampling with approximately 10000 sampling nodes. In
fig. 7.16, the Jssc criteria shows large errors even in the central region of the array. The
global minimum of the cost function is not reached for all dislocations due to the fixed
sampling nodes that do not hit the global minimum and indicate erroneous positions
instead. It is assumed that a higher resolution of sampling nodes has an increased
accuracy but requires much more computational effort. Discrete search using Jloc seems
to yield oscillating errors, but delivers much better results due to its shallower convex
steep. A radial bound may be set at approximately 0.5m.
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(a) Absolute Error of centering result for Monopole source Jssc
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(b) Absolute Error of centering result for Monopole source Jloc

Figure 7.16: Centering error for a monopole source using cubic tightest sphere packing
(10000 pts), f = 1000Hz.
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7.5.2 Optimization using simplex search method

The simplex algorithm obviously yields a good estimate of the center of a dislocated
source, as long as it stays within the radial bound of approximately 0.3m. Then small
distortions of the cost functions due to aliasing effects, as seen in fig. 7.13 may evoke
errors. At a certain dislocation, the error strongly increases, this may be the bound
where aliasing renders the cost function useless, see fig. 7.14. In the case of a complex-
valued multipole source, the Jssc criterion fails as seen in fig. 7.11. The initial values
for the optimization algorithm have been linearly varied along the z-axis to avoid the
optimization detecting local minima instead of the global minimum.
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(b) Jloc

Figure 7.17: Absolute centering error for a monopole source using fminsearch
optimization,f = 1000Hz. Both criteria perform well in the case of a monopole source.
A radial bound of confidence can be estimated.
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(b) Jloc

Figure 7.18: Absolute centering error for a real-valued source using fminsearch opti-
mization, f = 1000Hz. In case of Jssc, the criterion fails at a smaller bound than with
a monopole source. An error bias can be observed when using the Jloc cost function,
maybe due to the directional sound radiation.
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(b) Jloc

Figure 7.19: Absolute centering error for a complex-valued multipole source, f =
1000Hz. The Jssc criterion fails throughout all shifts except for a small range. A statis-
tical analysis is assumed to show random results since the phase relations are randomly
chosen. The Jloc crierium still performs well in a certain radial bound.

Frequency bounds for optimization of Jloc

Due to the robust performance of Jloc, the dependency of the error on frequency is only
regarded for Jloc. As seen in fig. 7.17-7.19, a radial bound for a certain frequency can
be estimated from the results of the optimization error. In the following examples the
absolute error has been calculated for different frequencies at a certain dislocation to
obtain an estimate on the frequency range within the optimization may find the correct
acoustic center. The results have been found to correspond to the theoretical bound
given by eq. (5.4) with N = 7. At low frequencies a small error occurs. This may be
due to numerical issues that arise when the product jnhn is calculated at the translation
of the wave spectrum, with jn ≪ and hn ≫.
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Figure 7.20: Centering error for a monopole source. The upper frequency bound corre-
sponds to the values examined by eq. 5.4 (1893Hz for az = 0.2m, 1263Hz for az = 0.3m,
947Hz for az = 0.4m and 758Hz for az = 0.5m)
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Figure 7.21: Centering error for a real-valued multipole source of order Nmult = 4.
Corresponding to eq. 5.4, the frequency bound is assumed to fall due to higher-order
components of the source. However, the strong increase of the error stays at the bounds
of the above plot
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Figure 7.22: Centering error for a complex-valued multipole source of order Nmult = 4.
The result is similar to the case of a real-valued multipole as expected. However, the
error seems to be more arbitrary
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7.6 Experimental evaluation

The following simulation examples have been made by using the unconstrained nonlinear
optimization algorithm to determine dmin. As before, the optimizations are based on
optimization using fminsearch with the Jloc criterion.

7.6.1 Radiation patterns with vs. without acoustic centering

Shifted monopole

(a) Before centering (b) After centering

Figure 7.23: Radiation pattern comparison (monopole source dislocated at az = 0.3m,
f = 1000Hz). The centering by −dmin yields a coherent phase distribution on the
surface.
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Shifted dipole

(a) Before centering (b) After centering

Figure 7.24: Radiation pattern comparison (dipole source dislocated at az = 0.3m,
f = 1000Hz). The centering by dmin yields the dipole-like phase distribution.

Directional source

(a) Before centering (b) After centering

Figure 7.25: Radiation pattern comparison (directional source at the origin, f =
1000Hz). A directional source may be centered by the optimization algorithm even
if the source has not been dislocated.

7.6.2 Case study on musical instruments

To perform a test in the real-world environment, several recordings of different musical-
instruments are evaluated. The optimization algorithm is used to determine the assumed
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acoustic centers of different partials of the note C4 (262 Hz). The frequencies have been
estimated in the total power spectrum of all 64 channels of the microphone array. The
localization maps are sliced at the supposed acoustic center estimated by the simplex
algorithm using Jloc.
On the localization maps we can see in general that the first partial may be covered by
room modes and will not be reliably centered.

Bassflute

The dipole-like radiation pattern of the bass flute can be recognized in the localization
map having in mind the one of a simulated dipole source (see appendix B). It is prominent
in the map of the second partial.

x
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−x

Figure 7.26: Bass flute player and position of the instrument [Hoh09]
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Figure 7.27: Spectrum and partials of bass flute playing C4
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Figure 7.28: Bass flute C4, position of partials 1 to 4.

Diploma thesis, Daniel Deboy 63



CHAPTER 7. TRANSLATIONAL TRACKING OF SOUND SOURCES

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6  

x

 

y

0

1

2

3

4

5

6

7

(a) x-y view of Jloc

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6  

x

 

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) x-y view of Jssc

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6  

x

 

z

0

1

2

3

4

5

6

7

(c) x-z view of Jloc
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(e) y-z view of Jloc
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(f) y-z view of Jssc

Figure 7.29: Bassflute, C4, partial at 262 Hz, slices at (0.07,−0.30, 0.04)m
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(c) x-z view of Jloc
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(e) y-z view of Jloc
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Figure 7.30: Bassflute, C4, partial at 526 Hz, slices at (0.04, 0.07,−0.16)m
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(c) x-z view of Jloc

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6  

x

 

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) x-z view of Jssc
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(e) y-z view of Jloc
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Figure 7.31: Bassflute, C4, partial at 788 Hz, slices at (0.03, 0.05,−0.35)m
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Figure 7.32: Bassflute, C4, partial at 1053 Hz, slices at (0.11, 0.09, 0.18)m

Diploma thesis, Daniel Deboy 67



CHAPTER 7. TRANSLATIONAL TRACKING OF SOUND SOURCES

Violoncello
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Figure 7.33: Violoncello player and position of the instrument [Hoh09]
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Figure 7.34: Spectrum and partials of violoncello playing C4
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Figure 7.35: Violoncello C4, positions of partials 1-4
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(c) x-z view of Jloc
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(e) y-z view of Jloc
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(f) y-z view of Jssc

Figure 7.36: Cello, C4, partial at 262 Hz, slices at (−0.02,−0.07,−0.42)m
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(e) y-z view of Jloc
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(f) y-z view of Jssc

Figure 7.37: Cello, C4, partial at 526 Hz, sliced at (0.07,−0.11,−0.20)m
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(c) x-z view of Jloc
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(d) x-z view of Jssc
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(e) y-z view of Jloc
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Figure 7.38: Cello, C4, partial at 788 Hz, sliced at (0.13,−0.01,−0.17)m
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(c) x-z view of Jloc
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(e) y-z view of Jloc
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Figure 7.39: Cello, C4, partial at 1050 Hz, sliced at (−0.04, 0.08,−0.14)m
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Figure 7.40: Trombone player and position of the instrument [Hoh09]
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Figure 7.42: Trombone C4, positions of partials 1 to 4.
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Figure 7.43: Trombone, C4, partial at 265 Hz, sliced at (0.09,−0.15, 0.20)m
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Figure 7.44: Trombone, C4, partial at 529 Hz, sliced at (0.13, 0.16, 0.23)m
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Figure 7.45: Trombone, C4, partial at 794 Hz, sliced at (0.11, 0.01, 0.23)m
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Figure 7.46: Trombone, C4, partial at 1061 Hz, sliced at (0.12, 0.14, 0.23)m
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7.6.3 "Tropfenlautsprecher" - Loudspeaker in small enclosure

In order to evaluate the optimization algorithm in terms of its accuracy a loudspeaker
in a small enclosure was positioned at several places within the array, cf. picture 7.48.
The relative distance between two locations was determined with a measuring tape. The
impulse response has been recorded using the exponential sweep method. Reflections
of the reverberant room are cut in the post processing of the analysis. With the small
enclosure of the loudspeaker it should radiate as a point source and we should be able
to track the acoustic center of the speaker. Within a bound of 0.50m we see a well
performing localization of the acoustic center. All positions have been calibrated to the
first one which was meant to be at the origin of the array.

Figure 7.47: Picture of the "Tropfenlautsprecher"
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Position a([axayaz]cm) −dmin([dxdydz]cm) verror(cm)

1
[

0 0 0
] [

0 0 0
]

N.A.
2

[

0 0 5
] [

1 0 4
]

1.41

3
[

0 0 10
] [

1 1 10
]

1.41
4

[

0 0 20
] [

1 0 20
]

1

5
[

0 0 30
] [

2 2 29
]

3
6

[

0 0 40
] [

1 0 38
]

2.23

7
[

0 0 50
] [

1 0 45
]

5.01
8

[

0 0 60
] [

2 1 54
]

6.4

9
[

20 0 0
] [

18 1 0
]

2.23
10

[

20 0 20
] [

19 1 22
]

2.45

11
[

−20 0 20
] [

−20 2 21
]

2.23

Table 7.1: Positions of the loudspeaker
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Figure 7.48: Loudspeaker positions found with centering (side-view), exponential sweep
measurement, centering frequency 600 Hz
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7.7 Tangential Intensity Vector Sum Itg,sum

Another concept which may yield a measure for the shift of a source within a surrounding
spherical microphone array is to derive only the tangential parts of the acoustic intensity
at each sampling node. The sum of the tangential intensity vector may indicate the
direction in which the source has been shifted.

The tangential acoustic intensity is given by

Itg =

∫

S

p∗vtgdθ, (7.6)

and the tangential derivative of the sound-pressure is proportional to the tangential veloc-
ity vector. Thus, the intensity can be obtained from the sound-pressure (the impedance
is neglected) and a tangential component can be written

∫

S

p∗∇tgpdθ =
∑

nm

∑

n′m′

cmn
∗µm′

n′

∫

S

Y m
n (θ)Y m′

n′ (θ)dθ =
∑

nm

cmn
∗µm

n . (7.7)

Due to an unidentified mistake in a lengthy derivation, the approach could not be finished
and evaluated. Related investigations remain subject to future work.
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Chapter 8

Conclusion

This thesis has investigated new methods of tracking displaced sources in spherical sur-
rounding microphone arrays. An in-depth study based on newly proposed cost functions
has been performed to obtain a profound understanding of the capacity of algorithms
that detect dislocated sound sources within the array.

The presented simulations show that a cost function penalizing higher-order wave-
spectral components is robust and outperforms a measure based on interference of a
complex-squared sum of sound-pressures. A case study on musical instruments showed
that even dealing with complex radiation patterns, reasonable results can be achieved.

Moreover, discretization of rotations has been investigated for the purpose of rotational
tracking. This work demonstrates that robust results can be obtained when using such
an approach on absolute sound-pressures even without acoustic centering.

The task of acoustic centering in surrounding spherical microphone arrays is important for
a more compact description of radiation patterns from musical instruments. Moreover,
compact spherical loudspeaker arrays with low resolution benefit from the simplified
radiation patterns obtained by acoustic centering. The performance of the developed
centering algorithm depends on the spatial aliasing error. As expected, limitations that
are evident in the analytic descriptions have been shown to predominate the simulations
as well.

Future work should investigate ways of making the robust centering methods computa-
tionally efficient so that they can be applied in realtime applications. One proposition,
the derivation of the tangential intensity vector as a prospectively robust approach is
subject to future research.

Note that the herein presented results are not determined to obtain highly accurate
estimations of the location of one or more acoustically effective sources of vibration.
For that purpose, other measures instead of the herein presented centers for a multipole
decomposition should be discussed as well.

For example, the less robust interference based measure might be considered again
preferable, if the goal is to accurately locate superposed individual source positions in a
spherical sound field, cf. monopole source synthesis [Gir96].

Diploma thesis, Daniel Deboy 83



Appendix A

Rotational Calibration Of The

Array

This chapter describes a concept how to calibrate the spherical coordinates of the analysis
to a set of absolute points of the array. To achieve this at least three known directions
are needed and a measurement of their absolute coordinates in the analysis grid. These
coordinates can be obtained by directing a focusing sound-source to the known absolute
directions at the array and extracting the sound pressure maxima at the analysis sphere
grid. We have to take into account that these measured positions will all be superimposed
by an error vector. The method will yield the mean of the error vectors and gives us a
3× 3 rotation matrix which rotates the measured positions to the known absolute array
positions

x2i = Qcalx1i. (A.1)

The method has been adopted from optical tracking systems [Kwo98].

Least-Squares Approach

1

P

P
∑

i=1

(x2i −Qcalx1i) ⇒ min (A.2)

1

P

P
∑

i=1

xt
2iQcalx1i ⇒ max (A.3)

1

P

P
∑

i=1

xt
2iQcalx1i = tr

(

Qt
cal

1

P

P
∑

i=1

x2ix
t
1i

)

(A.4)
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C =
1

P

P
∑

i=1

x2ix
t
1i (A.5)

SVD Decomposition

Singular Value Decomposition of C:

C = UWV t (A.6)

Trace

tr(Qt
calC) ⇒ max (A.7)

tr(Qt
calUWV t) = tr(V tQt

calUW ) (A.8)

= tr((V tQt
calU)W ) (A.9)

= tr(C ′W ) ⇒ max (A.10)

C ′ = V tQt
calU (A.11)

Since matrix W is a diagonal matrix and C is orthogonal since it is composed from
three orthogonal matrices the trace tr(C ′W ) reaches its maximum if C ′ is the Identity
matrix:

V tT tU = I (A.12)

Deriving a calibrating rotation matrix

Qcal = UV
t (A.13)

Qcal = U





1 0 0
0 1 0
0 0 det(UV t)



V t (A.14)
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Figure A.1: Example calibration with three peak positions
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Diploma thesis, Daniel Deboy 87



Appendix B

Localization Maps Of Simulated

Sources

Diploma thesis, Daniel Deboy 88



APPENDIX B. LOCALIZATION MAPS OF SIMULATED SOURCES

monopole at origin

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6  

x

 

y

0

1

2

3

4

5

6

7

(a) x-y view of Jloc

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6  

x

 
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) x-y view of Jssc

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6  

x

 

z

0

1

2

3

4

5

6

7

(c) x-z view of Jloc

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6  

x

 

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) x-z view of Jssc

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6  

y

 

z

0

1

2

3

4

5

6

7

(e) y-z view of Jloc

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6  

y

 

z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) y-z view of Jssc

Figure B.1: monopole source, centered
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Figure B.2: dipole source on z-axis, centered
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Real-valued multipole expansion
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(b) x-y view of Jssc
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(c) x-z view of Jloc
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(d) x-z view of Jssc
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(e) y-z view of Jloc
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(f) y-z view of Jssc

Figure B.3: Multipole source with real-valued coefficients, centered
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APPENDIX B. LOCALIZATION MAPS OF SIMULATED SOURCES

Complex-valued multipole expansion with random phase
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(b) x-y view of Jssc
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(c) x-z view of Jloc
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(d) x-z view of Jssc

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6  

y

 

z

0

1

2

3

4

5

6

7

(e) y-z view of Jloc
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(f) y-z view of Jssc

Figure B.4: Multipole source with complex-valued coefficients, centered
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