
Automatic Detection of the Musical Structure
within Pieces of Music

Masters Thesis
Alexander Wankhammer

Supervisor: DI Dr. Alois Sontacchi
Assessor: Univ.-Prof. Dr. Robert Höldrich

Graz, June 2011

Institute of Electronic Music and Acoustics
University of Music and Performing Arts, Graz

Automatic Detection of the Musical Structure within Pieces of Music
Alexander Wankhammer

Supervisor: DI Dr. Alois Sontacchi
Assessor: Univ.-Prof. Dr. Robert Höldrich

Institute of Electronic Music and Acoustics
University of Music and Performing Arts, Graz
June 2011

Abstract
Music Structure Discovery (MSD) for popular music is a well known task in Music Infor-
mation Retrieval (MIR). In this thesis a new approach for finding the musical structure of
a piece of music is proposed. The algorithm is based on the search for repeated vertical
slices inside a modified bar level Self Distance Matrix (SDM) using a template matching
algorithm. After an initial segmentation is found based on the analysis of the template
matching results, a post processing step helps to further investigate the found musical
structure by searching for repeated sub-sequences in the preliminary segmentation.

The new idea of template matching instead of trying to find explicit blocks or off-diagonal
lines inside the SDM is independent of any specific characteristics of the investigated ma-
trix and can therefore be used on a wide range of different songs. The proposed algorithm
has been evaluated on a well known dataset consisting of 13 full albums by The Beatles
and the evaluation results have been compared to five state-of-the-art MSD algorithms. It
could be shown that the segmentation performance of the proposed system on the chosen
testing corpus is significantly better than the performance of any other system included in
the evaluation.

In a complementary experiment, the detected musical structure is used to investigate the
influence of focusing the audio analysis to distinct representative song segments, when
trying to find the genre label for a song. The results indicate that the additional knowledge
can help to significantly improve the results of the classification system when focusing on
representative sections instead of arbitrary parts, if very short excerpts (< 10 seconds)
are used for classification. For longer excerpts, no difference for the classification of
representative and arbitrary parts has been found.

Automatische Erkennung von Liedabschnitten in Musikstücken
Alexander Wankhammer

Betreuer: DI Dr. Alois Sontacchi
Begutachter: Univ.-Prof. Dr. Robert Höldrich

Institut für Elektronische Musik und Akustik
Universität für Musik und Darstellende Kunst, Graz
Juni 2011

Kurzfassung
Die automatische Erkennung von Liedabschnitten ist eine typische Problemstellung im
Forschungsgebiet Music Information Retrieval (MIR). In dieser Diplomarbeit wird ein
neuer Ansatz zur automatischen Bestimmung der inneren Struktur von Musikstücken prä-
sentiert. Über die Detektion wiederkehrender Muster innerhalb einer über Taktabschnitte
berechneten Self Distance Matrix (SDM), wird zunächst ein Profil aller sich wiederho-
lenden Bereiche des untersuchten Musikstückes erstellt. Die finale Segmentierung des
Stückes wird schließlich in mehreren Schritten unter Berücksichtigung aller zeitlichen
Abhängigkeiten der gefundenen Bereiche festgelegt.

Dank der neuartigen Methode, einen Mustererkennungs-Algorithmus zur Detektion wie-
derkehrender Strukturen innerhalb einer SDM einzusetzen, ist der Algorithmus weitestge-
hend unabhängig von spezifischen Charakteristika der untersuchten Matrix und liefert sta-
bile Ergebnisse für ein breites Spektrum von Musikstücken. Das vorgestellte System wur-
de basierend auf einem weit verbreiteten Datensatz bestehend aus 13 Alben der Beatles
evaluiert und die Evaluierungsergebnisse wurden mit fünf state-of-the-art Music Structure
Discovery (MSD) Algorithmen verglichen. Dabei konnte gezeigt werden, dass der vor-
gestellte Algorithmus für den verwenden Datensatz signifikant bessere Segmentierungs-
Ergebnisse liefert als die in die Evaluierung eingebundenen Referenz-Systeme.

In einem die Arbeit ergänzenden Experiment wurde zusätzlich analysiert welchen Ein-
fluss es hat, wenn die zur Genre Klassifikation eines Liedes herangezogenen musika-
lischen Merkmale eines Stückes nur innerhalb repräsentativer Liedabschnitte extrahiert
werden. Dabei konnten bei der Klassifikation sehr kurzer repräsentativer Abschnitte (< 10
Sekunden) signifikant bessere Klassifizierungs-Ergebnisse erzielt werden als bei der Klas-
sifikation zufällig gewählter Abschnitte derselben Länge. In den Klassifizierungsergeb-
nissen längerer repräsentativer und zufällig gewählter Abschnitte zeigten sich hingegen
keine signifikanten Unterschiede.

To my father.

CONTENTS

Contents

1 Introduction 7

1.1 Music Structure Discovery (MSD) . 7

1.1.1 Existing Work . 8

1.1.2 Applications . 9

1.2 Outline of the Thesis . 10

2 Audio Feature Extraction 14

2.1 Mel Frequency Cepstral Coefficients (MFCC) 15

2.2 Fluctuation Patterns (FP) . 16

2.3 Constant Q-Transform (CQT) and Chroma 16

2.4 Beat Detection and Averaging . 19

2.4.1 Meter Induction . 21

3 Recurrence Analysis 23

3.1 Self Distance Matrix (SDM) . 24

3.1.1 SDM Mapping and Combination 26

3.2 Template Matching . 29

3.2.1 Normalized Cross Correlation (NCC) 29

3.2.2 Recurrence Matrix . 31

3.2.3 Repetition Surface . 32

3.3 Novelty Function . 35

4 Time Interval Data 38

4.1 Segment Grouping . 40

4.2 Subset Sequences . 42

4.2.1 Repetition Quality . 43

4.2.2 Prototype Segment . 44

4.3 Segment Combination . 46

4.3.1 Two Overlapping Intervals . 46

4.3.2 Two Overlapping Interval Sequences 48

4.3.3 Multiple Overlapping Interval Sequences 50

4.4 Preliminary Segmentation . 52

4.4.1 Detection of Missed Boundaries 52

2

CONTENTS

5 Temporal Pattern Mining 54

5.1 Substring Patterns . 54

5.1.1 Substring Search . 55

5.2 Quality Measures . 56

5.2.1 Path Search . 58

5.3 Final Segmentation . 60

6 Evaluation and Results 61

6.1 Dataset . 61

6.2 Evaluation Metrics . 62

6.3 Results . 64

6.4 Discussion . 66

7 Segment Related Genre Classification 71

7.1 Automatic Genre Classification . 71

7.2 Selected Classification System . 75

7.3 Classification Experiments . 76

7.3.1 Testing Corpus . 76

7.3.2 Thumbnail Generation . 76

7.3.3 Experiments . 77

7.4 Results . 78

7.5 Discussion . 81

3

LIST OF FIGURES

List of Figures

1 Overview on the main processing stages of the algorithm. 11

2 Mapping function from the linear frequency scale to the Mel Scale (left)
and grouping of DFT bins according to 36 triangular Mel filters (right). . 15

3 Compressed 12 band Mel spectrogram (left) and resulting fluctuation pat-
tern (right) calculated for a combined signal with one 300 Hz tone modu-
lated by a 3 Hz sine (band 5) and a 800 Hz tone modulated by a 7 Hz sine
(band 9). 17

4 Constant Q-spectrogram based on a semitone scale (left) and the related
chromagram (right). The separation of the constant Q-spectrogram into 5
octaves is indicated by horizontal lines. 19

5 Based on a 40 band Mel spectrogram (top), the onset detection function
o(t) (bottom) is computed. 20

6 The raw autocorrelation a(τ) of o(t) and the perceptual weighting win-
dow (left) are combined into a perceptually weighted autocorrelationaw(τ)
(right). 20

7 Based on characteristic maxima inside a(τ), the meter of a song can be
estimated. This example shows a(τ) for a song played in common time.
Therefore, additional correlation maxima (besides the maximum at τmax)
are expected at the following characteristic multiples of τmax: 4, 8 and 16. 22

8 Trajectory of a 2-D sequence and the resulting RP (ε was set to 0.5 in this
example). 24

9 Example for an SDM calculated based on individual vector pairs (upper
triangular matrix) and an SDM calculated based on embedded vectors and
an embedding dimension of 4 (lower triangular matrix). 25

10 Example for the manifestation of characteristic structures (off diagonal
lines, square blocks) in a RP, based on a simple 1-D sequence. 26

11 Based on a histogram (left, top), Otsu’s method finds the optimal thresh-
old to separate the given values into two classes. The found separation
point γ is used as input parameter for the mapping function (Equation 11)
to perform the mapping of the given SDMs. 28

12 The template image (middle, IEM logo) is searched inside the combined
search image (left). The maximum correlation value inside C (right) in-
dicates the detected position of the template. 30

4

LIST OF FIGURES

13 As indicated with dashed boxes, maxima in the cross correlation vector
(left, bottom) mark possible repetitions of the template Tk in the related
search image Ik. The recurrence matrix (right) is created by storing con-
secutive correlation vectors side by side into a matrix. In this example, the
weak off diagonal lines, indicating repeated sequences inside the original
SDM, are nicely represented as horizontal lines in the recurrence matrix. . 32

14 The median-filtered recurrence matrix Rf (left) is binarized based on a
peak detection algorithm, which is column-wise applied to the matrix.
As indicated, the used template width (in this example 8 beats) has to be
incorporated when defining time lags between detected segments. 33

15 Examples for overlapping conflicts of related segment pairs found inside
the repetition surface. 34

16 The final correlation kernel K is calculated starting with a radial Gaus-
sian function (a.) combined with a diagonal weighting matrix D)(b.),
multiplied by a checkerboard kernelKb (c.). 36

17 This Figure shows three different (normalized) versions of the novelty
function: η1 (full SDM + kernel without diagonal weighting); η2 (mapped
SDM + kernel without diagonal weighting); η3 (mapped SDM + kernel
with diagonal weighting). It can clearly be noted that the correlation with
the full SDM only exhibits very strong block structures (eta1), while the
correlation with the mapped SDM reveals much more details (eta2). Ad-
ditionally, the proposed diagonal mapping significantly reduces the over-
all offset in (eta3) and shows very clear peaks at potential segment borders. 37

18 Allen’s interval relations. Each relation can be read as: "A (relation) B". . 38

19 Relations inside the repetitions surface. 40

20 Redundancies and higher order relations inside the repetitions surface. . . 42

21 The time intervals combined into one subset and the resulting sequence
of related time intervals. (For simplicity, only the unique intervals related
to the subset Φ are depicted in this Figure. Identical source or target
segments are ignored.) . 43

22 Basic parameters of a prototype segment (top) and example of interval se-
quence represented by the prototype for a given set of parameters (bottom). 45

23 Operations of the algorithm based on the regions defined inside and out-
side a main interval tm considering potential overlaps of starts ss and
stops es of a sub interval. 47

24 Exemplary processing of two overlapping intervals. 49

25 Exemplary processing of two overlapping sequences (two prototype seg-
ments). 50

26 Exemplary processing of multiple overlapping interval sequences. 51

5

LIST OF FIGURES

27 Segment A is identified as unusually long segment. The first occurrence
of the pattern inside the 4 identically repeated sections is extracted (top,
right) and analyzed using the novelty function. As the maximum inside
η is above tη, it indicates that the detected segment A should be split into
two segments A’ and C. 53

28 Example for a substring of length 4 {A − B − C − D} and all possible
sub sequences based on the deletion of different borders. 55

29 Example for a graph representation of all possible combinations of 4 pat-
terns. The exemplary path {in → AB → CD → out} (indicated by
dashed gray lines) shows the weights included if the patterns A and B
and the patterns C and D are combined. 56

30 Gaussian weighting window defining the quality of different (combined)
pattern lengths for a song played in common time (4/4). 57

31 To find an estimate of the similarity of two or multiple musical patterns,
the respective slices inside the mapped SDM (left) are correlated. In this
example, the patterns C and D should be combined, as they represent
almost identical SDM slices, while the other patterns should remain split
(no correlation). 59

32 Autoamtically detected segmentation (Det.), SDM and reference segmen-
tation (Ref.) of the song "Head Over Feet" by Alanis Morisette. 60

33 Segmentation example: Rr 60%, Pr 62.5%, Fr 61.2%, 1−m 0.66, 1−f 0.75 64

34 Scatterplot of segment fragmentation against missed boundaries for the
TUT Beatles corpus (left) and the Mixed corpus (right). 66

35 (Example 1) The Beatles - I Saw Her Standing There 67

36 (Example 2) The Beatles - Devil In Her Heart 67

37 (Example 3a) Britney Spears - Hit Me Baby One More Time 68

38 (Example 3b) The Beatles - All I’ve Got To Do 68

39 (Example 4) Chicago - Old Days . 69

40 (Example 5) The Clash - Should I Stay Or Should I Go 70

41 As indicated, focusing the classification to selected segments based on a
pre-processing stage, does not modify the basic classification algorithm,
but only provides additional side information. (Dashed lines indicate op-
tional paths.) . 72

42 Homogeneity profiles of all genres. The bars indicate the average cover-
age of each song by different genres (bar 1 → predominant genre, bars
1− 3→ sub-genres). 81

6

1 Introduction

The steadily growing amount of multimedia content (e.g. in online music collections and

other media) calls for the development of entirely new concepts of analysis, classifica-

tion and organization of the available bulk of data. According to this needs, one grow-

ing branch in the field of music-related signal processing is Music Information Retrieval

(MIR).

The main objective of MIR systems may best be described as musical data mining as

these systems allow to automatically extract information from music in digital formats

that otherwise has to be defined by human annotators in a time consuming-process. The

automatic processing does not only help to drastically reduce the afford of maintaining

consistent meta-data for fast-growing song collections, but also provides new ways of

searching, organizing and discovering music.

To accomplish this relatively complex tasks, the research in MIR is often based on the

interaction of multiple techniques from interdisciplinary fields like psychoacoustics, mu-

sicology, signal processing and data mining. Additionally, many MIR systems (e.g. music

recommendation) are based on the interaction of multiple smaller sub systems, all devel-

oped to extract some specific characteristics from an audio file1.

This thesis will focus on the extraction of one specific characteristic of a song: the musical

structure. After a short introduction to the field of music structure discovery, an outline

of the thesis will be given and the the main stages of the proposed algorithm will be

addressed.

1.1 Music Structure Discovery (MSD)

If we listen to music, we are literally surrounded by repetitive structures and varying

patterns. We will hear different combinations of melodic and harmonic progressions,

ongoing rhythmic movements and on a wider time scale changes in the timbre and the

dynamics of the song. As any section of a song with some kind of inner similarity or

consistency may be interpreted as musical segment, the definition of the musical structure

is never unambiguous and strongly depended on the investigated temporal scale.

According to [Dav66], this hierarchical structure within pieces of music can be compared

to the structure of a story: starting with individual notes, one can form phrases from

1A good review on many current content-based MIR techniques is given in [CVG+08]

7

1.1 Music Structure Discovery (MSD)

sequences of notes and sentences from two or more phrases. On a wider time scale,

sentences can again be combined into paragraphs, forming the highest structural level of

the song.

Despite this variety of temporal descriptors, most MSD algorithms aim to detect a spe-

cific high-level musical structure, in music theory referred to as the musical form. The

musical form can be seen as the decomposition of a song into its major building blocks,

corresponding to the previously introduced notion of musical paragraphs. When formally

describing the musical form, every building block has its own label and can occur at var-

ious times throughout the song. Typical labels in popular music are for example intro,

verse, chorus, bridge and outro.

Although the exact determination of the musical form is not always unambiguous, most

people will unconsciously split songs into closely related blocks when listening to music.

Therefore, detecting the musical form has been found to be a reasonable and natural

objective for automatic MSD systems [LS08].

1.1.1 Existing Work

Since the creativity of composers is the only limit for the variety of differences and simi-

larities among song segments, several different approaches to solve the problem of music

structure discovery have been developed. A very detailed overview on existing systems

is given in [PMK10], therefore, only the main concepts will briefly be mentioned at this

point.

Typically, multiple features that have been found to be adequate descriptors for either

one or several different aspects of human cognition of music, are initially derived from

a short time spectral representation of the audio file. Therefore, the most commonly

used features in MSD are often based on timbre [PLBR02], [Foo00], pitch and harmony

[BW05], rhythm or a set of multiple descriptors [LS08], [Pee07], [PK09], [WSS09].

Once the feature sequences are extracted, the search for repetitive parts and related sec-

tions can mainly be focused on two different temporal qualities of the investigated audio

file: sequences and states [Pee07].

Sequence based approaches Sequence-based approaches try to find clear repetitions

of consecutive feature sequences in the audio file [BW05], [Pee07], [Ero07]. Therefore,

these algorithms are sometimes also referred to as repetition-based methods [PMK10].

8

1.1 Music Structure Discovery (MSD)

State based approaches State-based approaches handle the feature sequence as a suc-

cession of different (similar) states and try to find relations, for example, by applying clus-

tering algorithms [ANSS05] or hidden Markov models (HMM) [PLBR02], [AS01]. As

transitions between segments are detected by finding transitions between homogeneous

sections, these methods are sometimes also called homogeneity-based methods [PMK10].

In Section 3 it will be shown in more detail, how these two basic qualities of a feature

sequence (repeated and/or homogeneous sections) become apparent, when a Self Dis-

tance Matrix (SDM) is used to visualize and analyze the temporal structure of the un-

derlying song. Given a feature vector sequence V consisting of single feature vectors

vi, i = 1, 2, . . . , N , each value of the SDM S(i, j) represents the distance between a pair

of feature vectors. Off-diagonal lines inside S correspond to the repetition of a certain

sequence of consecutive feature vectors, whereas rectangular blocks represent the occur-

rence of multiple overall similar feature vectors, potentially belonging to the same state.

More details on these aspects of SDMs are given in Section 3.1.

1.1.2 Applications

Although the development of MSD systems can be motivated by various preliminary con-

siderations, they will basically all aim to focus some action (e.g. data analysis, feature

extraction, similarity estimation, music analysis) to specific sections of a song. Specifi-

cally in MIR, the musical structure offers important side information to other algorithms,

as any further processing of the piece can be bound to specific time intervals.

Audio Thumbnailing Audio thumbnailing describes the process of finding an expres-

sive preview sequence of a song, based on one or multiple representative sections. In MIR,

multiple systems for audio thumbnailing have been proposed [MLC06], [BW05], [ZS07],

all depending more or less on the musical structure of the underlying song. Therefore,

audio thumbnailing is a typical MIR task directly profiting from prior knowledge on the

musical structure.

Segment related feature extraction Besides an obvious application like the generation

of thumbnails, almost any algorithm developed to extract some higher-level musical infor-

mation from a piece of music can profit from prior knowledge on the musical structure.

Unrepresentative sections can be ignored and dependencies among sections can be ex-

ploited to improve the individual results, for example, by pairwise comparison of related

9

1.2 Outline of the Thesis

sections.

Based on these considerations, the experiments presented in Section 7 are also motivated

by the aim of focusing a typical MIR task to specific sections of the audio file. The

detected musical structure will be used to investigate the influence of focusing the audio

analysis to distinct representative song segments, when trying to find a genre label for a

song.

Segment related search Algorithms searching for specific sequences inside databases

of audio data like query by humming [WHH+08], could profit from pre-segmented audio

files, as only one occurrence of each repetitive section of the file has to be stored and

processed. This may not only reduce the computational cost for many applications, but

also provide faster and more stable results.

Augmented user interfaces In addition to the proposed MIR applications, the results

from MSD system could also be used to improve the usability of a wide range of existing

audio applications, for example, by allowing a more intuitive navigation within pieces

when using audio players or Digital Audio Workstations [Got06], [BGP06]. Programs

working with labeled sections of an audio file would also allow to easily skip certain

sections, or constrain specific modifications to selected segments or borders within the

file.

Although this is only a short overview on some potential fields of application where MSD

systems could be used as a pre-processing stage, it shows their high potential in various

fields of music related signal processing.

1.2 Outline of the Thesis

In this diploma thesis, a novel approach for the detection of recurring sections within

pieces of music that should be closely related to the musical form is introduced. Most

Sections will represent a major stage of the proposed MSD system and will start with a

short introduction on the techniques used to implement the respective part of the algo-

rithm.

Audio Feature Extraction (Section 2) As already introduced, the search for repeated

sections within an audio file has to be based on sequences of extracted feature vectors.

For the presented approach, the well known Mel frequency cepstral coefficients (MFCC)

10

1.2 Outline of the Thesis

feature
extraction

beat/meter
detection

beat
averaging

SDM
calculation

SDM
mapping

template
matching

overlap
analysis

recurrence
analysis

subset
generation

segment
detection

segment
grouping

“substring”
search

optimal
combination

feature vector sequences

self distance matrix

segment pairs
(related time intervals)

prototype segments
(related time interval sequences)

Section 2

Section 3.1

Section 4

Section 5

pure audio file

segmented audio file

extracted musical structure

A AB B B BC C C C C C

Section 3.2

Figure 1: Overview on the main processing stages of the algorithm.

are used to represent timbral qualities of the audio material, the chroma or pitch class

profile (PCP) as an abstract descriptor for pitch and harmonic progression and the so

called fluctuation patterns (FP) as indicator for rhythmic changes.

Additionally, the extracted features are averaged within the period of one beat, to offer

a tempo-invariant time base for further computations and a stable representation of the

extracted features.

Recurrence Analysis (Section 3) Multiple techniques to search for repetitive patterns

and structures inside feature vector sequences to find the musical structure of a song have

been developed. The proposed system will focus on a representation of the feature vectors

based on Self Distance Matrices (SDM) which are a special form of recurrence plots (RP).

As already mentioned before, MSD systems based on the analysis of SDMs typically

focus on two aspects of repetitions, states and sequences, which can be related to off-

diagonal lines (repeated sequences) and rectangular blocks (areas of high similarity) in-

side the SDM. This may lead to problems, as many SDMs reveal very complex structures

and clear lines or blocks will not always be detectable. Therefore, these algorithms are

11

1.2 Outline of the Thesis

somehow limited and are likely to fail, if no typical structure can be found.

In this thesis it is proposed to directly exploit the inherent symmetry of SDMs, by com-

paring the overall similarity of vertical SDM slices using a template matching algorithm.

This approach is independent of any specific structures inside the matrix and enables the

algorithm to find recurrences even if they are not related to obvious patterns in the original

SDM.

Template Matching (Section 3.2) Before a template matching algorithm is applied to

find repetitions of vertical slices inside the SDMs, noisy information inside the computed

SDMs is further reduced by a mapping operation that helps to enforce areas of high simi-

larity while it suppresses areas of low similarity. The individually mapped SDMs are then

combined to represent the final "image" for the template matching algorithm.

For template matching, Normalized Cross Correlation is applied, a well known template

matching algorithm used for image registration in digital image processing. The corre-

lation results are processed and stored into a matrix, the repetition surface, representing

all segment pairs found by the template matching algorithm. Based on the relations of all

found pairs, segment pairs representing different repetitions of the same section of a song

are grouped into subsets.

Time Interval Data (Section 4) Since the found subsets will typically reveal overlap-

ping parts, an algorithm to resolve conflicts of overlapping time-interval data is designed

and applied to the given subsets. The algorithm aims to exploit all relations of repetitions

throughout the song, as changes to one segment of a subset should have a direct impact on

all subset members. Therefore, each subset is only represented by one prototype segment

and its related starting positions. Changes to this prototype segment automatically modify

all occurrences of the related subset.

Temporal Pattern Mining (Section 5) After a preliminary segmentation has been found

by the proposed algorithm, a post processing step helps to further investigate the prelim-

inary segmentation by searching for repeated sub-sequences, as such sequences indicate

potentially over segmented areas.

The search for an optimal combination of all found sub-sequences can be formulated as a

path search in a weighted graph. By defining quality measures for each vertex and edge of

the graph, based on the lengths as well as the inner and inter similarity of all possible sub-

sequences, an optimal path through the graph (optimal combination of segments inside

12

1.2 Outline of the Thesis

repeated sub-sequences) can be found. After incorporating the found changes into the

preliminary segmentation, the final segmentation of the song can be defined.

Evaluation and Results (Section 6) The boundary detection performance and the seg-

mentation performance of the algorithm have been evaluated on a well known data set of

more than 170 songs from 13 Beatles albums. The quality of the automatically detected

segment boundaries is calculated using classical F-measure and the full segmentation per-

formance of the algorithm, including lengths and relations of all segments, is calculated

using pairwise F-measure. To the best of our knowledge, the obtained F-measures are the

highest ever reported for the used data set.

Segment Related Genre Classification (Section 7) In a complementary experiment,

the detected musical structure is used to investigate the influence of focusing the audio

analysis to distinct representative song segments, when trying to find a genre label for a

song. The results indicate that this additional knowledge can help to significantly improve

the results of the classification system when focusing on representative sections instead

of arbitrary parts, if very short excerpts (< 10 seconds) are used for classification. For

longer excerpts, no difference for the classification of representative and arbitrary parts

has been found.

13

2 Audio Feature Extraction

As mentioned in the introductory Section 1.1.1 on existing work, the search for repeated

or homogeneous sequences within the audio file has to be based on sequences of extracted

feature vectors. This has to be done since not a lot of perceptually relevant information

can be directly extracted from the pure waveform of an audio file.

In the presented approach, the well known Mel frequency cepstral coefficients (MFCC)

are used to represent timbral qualities of the audio material, the chroma or pitch class

profile (PCP) as an abstract descriptor for pitch and harmonic progression and the so

called fluctuation patterns (FP) as indicator for rhythmic changes.

As a pre-processing step, the signal is converted to mono and resampled to 22.050 Hz to

reduce the computational cost for all following processing steps. As the selected features

all rely on a short time spectral representation of the input signal, a Hanning windowed

Short Time Fourier Transform (STFT) of length NSTFT = 1024 is computed. To assure

a constant temporal resolution of ≈ 23ms the hop-size between adjacent frames is set to

kSTFT = 512.

X[m, k] =

NSTFT−1∑
n=0

x[n]w[n−m]e−j
2Πnk
N , k = 0, . . . , NSTFT − 1 (1)

where w[m] is the Hanning window of length NSTFT positioned at time index m.

It is well known that the frequency resolution of the human auditory system is approx-

imately logarithmic in frequency and therefore collides with the linear frequency reso-

lution of the Discrete Fourier Transform (DFT) [FZ07]. Therefore, the calculation of

features designed to mimic the human perception of music typically has to be based on

some auditory scale, representing a mapping from the linear frequency scale to an ap-

proximately logarithmic and perceptually more relevant scale.

In the next short Sections outlining the computation of the used features, it will be shown

that all three features incorporate this discrepancy in frequency resolution: In analogy

to their name, MFCC coefficients are based on the Mel scale [SV40], the FP are calcu-

lated based on a further compressed Mel scale and since chroma vectors are descriptors

for the pitch and harmonic content, they are calculated based on a filterbank resembling

semitones of the equal tempered scale.

14

2.1 Mel Frequency Cepstral Coefficients (MFCC)

2.1 Mel Frequency Cepstral Coefficients (MFCC)

MFCCs have been used in audio and speech applications for many years and have been

found to be relatively simple but powerful descriptors for the timbral qualities of sound

[Ero01], [LWOO08]. Although the definition of timbre is ambiguous due to subjective

ways of interpreting the term, for musical signals it may best be explained as the property

resembling differences of audio signals despite the same pitch and rhythm.

Equation (2) shows the mapping from a linear frequency scale to the Mel scale. The

resulting mapping function is depicted in Figure 2. In the presented approach 36 Mel

filters are applied to transform the linear power spectrum ‖X(m, k)‖2 to a Mel power

spectrum.

Mel(f) = 2595 log10

(
1 +

f

700

)
(2)

25 75 125 175 225

5

10

15

20

25

30

35

1000 3000 5000 7000 9000

500

1000

1500

2000

2500

3000

Frequency [Hz]

Fr
eq

ue
nc

y
 [M

el
]

DFT bin

M
el

 b
an

d

Figure 2: Mapping function from the linear frequency scale to the Mel Scale (left) and

grouping of DFT bins according to 36 triangular Mel filters (right).

The descriptive power of MFCCs is based on the fact that the the computation incorpo-

rates two transformations of the linear spectrum according to important properties of the

human auditory system:

• a mapping from the linear frequency scale to an auditory scale (the Mel scale, re-
sembling the human perception of pitch)

• a representation of the mapped values by their logarithm (following the human
perception of loudness)

15

2.2 Fluctuation Patterns (FP)

As MFCCs are a widely used and extensively discussed feature, no detailed description

of all precessing steps will be given here. For a more detailed description, please refer to

[Sla98]. It may be noted that 10 coefficients are used in the presented algorithm, excluding

the zeroth coefficient (the average energy of a frame).

2.2 Fluctuation Patterns (FP)

Fluctuation Patterns (also called rhythm patterns) have been introduced in [PRM02] to

describe the perceived fluctuation of amplitude modulated tones. The term fluctuation

strength was first mentioned in [Fas82] and describes different sensations, depending on

the modulation frequency. According to [FZ07], the perceived fluctuation strength has

been found to be most intense around ≈ 4Hz and decreases until ≈ 15Hz, where the

notion of roughness starts. In the field of MIR, FPs have been used to cover similarities

among audio files (or within audio files) which are not included in other typical spectral

descriptors.

Although the calculation of FPs was initially based on the ERB scale, where each band

was additionally converted to Sone (perceived loudness), the used system follows an ap-

proach presented in [Pam06], based on a Mel spectrogram. This is done, as the Mel spec-

trogram is readily available from the calculation of the MFCCs. A detailed description of

the calculation of FPs is given in [Pam06].

Since the fluctuation of tones can only be determined by observing longer sequences of

multiple consecutive frames, FPs are not a frame level feature. As all features will later be

averaged over the period of one beat and the distances of features will be calculated over

one bar (see Section 3.1), FPs are directly calculated within windows of one bar. This

leads to observation windows between ≈ 1.5 and ≈ 4 seconds or ≈ 70 and ≈ 200 frames

(see constraints for valid tempos in Section 2.4). To receive the individual modulation

frequencies, a 64 point Fourier Transform is applied to each band.

It may be noted that the resulting fluctuation patterns (see Figure 3) are serialized and

directly stored as column vectors.

2.3 Constant Q-Transform (CQT) and Chroma

The constant-Q spectrogram based on the constant-Q transform of a signal, can be in-

terpreted as the output of a geometrically spaced filterbank, where the ratio Q = f/∆f

of center frequency to bandwidth of each filter is defined to be constant [Bro90]. Con-

16

2.3 Constant Q-Transform (CQT) and Chroma

M
el

 b
an

d
(c

om
bi

ne
d)

50 100 150 200 250 300

2

4

6

8

10

12

M
el

 b
an

d
(c

om
bi

ne
d)

2 4 6 8 10

2

4

6

8

10

12

time [frames] modulation frequency [Hz]

Figure 3: Compressed 12 band Mel spectrogram (left) and resulting fluctuation pattern

(right) calculated for a combined signal with one 300 Hz tone modulated by a 3 Hz sine

(band 5) and a 800 Hz tone modulated by a 7 Hz sine (band 9).

sidering the frequency relations of the equal tempered scale, the center frequencies of

the individual filters can be calculated as follows to represent any division of the musical

octave:

fkcq = 2
kcq−1

B fmin (3)

where fkcq represent the individual center frequencies, B determines the number of bins

per octave and fmin represents the center frequency of the lowest bin of interest. Based

on the tradition of occidental music2, the individual center frequencies have been aligned

to the semitone scale by selecting B = 12 bins per octave and setting fmin to the center

frequency of the lowest semitone, leading to a representation of signal energy distributed

on a semitone scale.

Based on these parameters, the constant-Q transform of a signal x[n] could be directly

calculated as

Xcq[kcq] =

N [kcq]−1∑
n=0

w[n, kcq]x[n]e
−jωkcqn, (4)

where w[n, kcq] describes a windowing function of length N [kcq] that equals a bandpass

filter in the frequency domain, centered at frequency ωkcq . As the bandwidth of the re-

spective filter is inversely proportional to N [kcq] and the Q for all filters should remain

2Even though there do occur notes like the harmonic seventh that are derived from the overtone scale
and would fit a quarter tone scale more tightly [BR87].

17

2.3 Constant Q-Transform (CQT) and Chroma

constant, the window lengths N [kcq] are chosen inversely proportional to the related cen-

ter frequency.

As the direct calculation of the constant-Q transform is computationally expensive, it has

been shown that the Fourier transform of the signal and the corresponding windowing

functions, referred to as the spectral kernels, can be used to efficiently calculate the trans-

form in the frequency domain [BP92].

Additionally, similar to the approach presented in [SK10], octave-wise processing was

implemented. This is done, as very long Fourier transforms would be needed to represent

a semitone resolution in low frequency bands. For octave-by-octave processing, only one

set of spectral kernels representing the constant-Q filters for the highest octave is calcu-

lated. After the highest octave of the entire signal is transformed, the signal is decimated

by a factor of 2 and a new STFT using the same parameters as before is computed.

Since the highest octave of the decimated signal represents the octave below the octave

processed in the previous step, the same spectral kernels are applied, resulting in the

constant-Q transform of the respective octave. This can be repeated, until the lowest

octave of interest has been computed.

As the resulting constant-Q spectrograms are based on different sampling rates, missing

values for lower octaves are simply linearly interpolated, resulting in a constant-Q spec-

trogram with high temporal and spectral resolution.

Chroma The chroma or Pitch Class Profile (PCP) has been demonstrated to be a suc-

cessful basic indicator of the harmonic and melodic progressions of music as it measures

the spectral energy related to the 12 semitones of the well-tempered scale albeit their real-

world frequencies [BW01]. Based on the previously calculated CQT spectrogram, the

chroma vector can be computed by summing the energy of all bins belonging to one tone

c(kcq) = mod(kcq, 12).

18

2.4 Beat Detection and Averaging

time [s]

C
Q

T
bi

n

1 2 30

12

24

36

48

60

0 1 2 3
C

C#
D

D#
E
F

F#
G

G#
A

A#
B

time [s]

Figure 4: Constant Q-spectrogram based on a semitone scale (left) and the related chro-

magram (right). The separation of the constant Q-spectrogram into 5 octaves is indicated

by horizontal lines.

2.4 Beat Detection and Averaging

After feature calculation, the features are averaged over the period of one beat, as beat-

averaging offers a tempo-invariant time base for further computations and therefore offers

a stable representation of the extracted features. The beat is often defined as the rhythm or

tempo, one would intuitively start tapping with a foot or finger while listening to a piece

of music. It can therefore be seen as the elementary temporal unit of a song.

The beat-averaged feature vectors (MFCC, chroma) are computed by calculating the mean

of all frames falling between two beat positions. To avoid a blurring of these beat averaged

results by transient events, an offset of about 45ms (two frames) at the beginning and end

of every beat interval has been defined.

For beat detection, a method proposed by Ellis [Ell07] based on dynamic programming

has been selected. In this approach, beat positions are found by incorporating two con-

straints derived from the human perception of tempo:

• (approximately) constant inter-beat intervals

• beat locations at onsets of audio events

To get an estimate for the overall tempo, an onset strength envelope o(t) based on changes

of energy at the output of a 40 band Mel filterbank is calculated in a first step (see Figure

5). Maxima in o(t) correspond to potential onset positions. An estimate of the overall

19

2.4 Beat Detection and Averaging

time [s]

M
el

 b
an

d

10

20

30

40

0.5

0

1

time [s]

no
rm

al
iz

ed
 o

ns
et

 st
re

ng
th

1 2 3 4 5 6 7

1 2 3 4 5 6 7

τmax

Figure 5: Based on a 40 band Mel spectrogram (top), the onset detection function o(t)

(bottom) is computed.

tempo of the investigated song is then extracted, by calculating the autocorrelation a(τ)

of o(t) (see Figure 6).

a(τ) =
∑
t

o(t)o(t− τ) (5)

As the human perception of tempo is biased towards 120 bpm [MM06], a(τ) is weighted

by a perceptual window. The maximum in this weighted auto correlation functionaw(τmax)

corresponds to the detected tempo period and allows for an estimate of the global tempo

(see Figure 6).

0.5 1 1.5 2
−0.5

0

0.5

1

time−lag [s]

τmax ~ 150 bpm

−0.5

0

0.5

1

time−lag [s]
0.4

Figure 6: The raw autocorrelation a(τ) of o(t) and the perceptual weighting window

(left) are combined into a perceptually weighted autocorrelation aw(τ) (right).

Finally, dynamic programming is used to maximize an objective function by positioning

20

2.4 Beat Detection and Averaging

as many beat locations as possible at potential onsets. For more details on the computation

of o(t) and the dynamic programming stage, please refer to [Ell07].

An additional constraint has been incorporated to the tempo estimation step, by restricting

the range of valid beats-per-minute between 50 and 160 bpm. This is done as the following

beat averaging process should lead to relatively uniform temporal resolutions. Values

under the lower threshold are doubled and values above the upper threshold are divided

by 2.

2.4.1 Meter Induction

As not only the beat of the investigated song, but also the underlying meter offers impor-

tant information for the following segment detection stage, the proposed system has been

extended by a simple meter induction algorithm. The search for the meter related to the

song is mainly motivated by the aim of finding musically relevant temporal thresholds for

different stages of the segment detection algorithm.

It is well known that structures of 2, 4 and 8 bars are important building blocks in many

compositions [Dav66]. Therefore, upper thresholds (minimum lengths) and lower thresh-

olds (maximum lengths) for the segment detection algorithm (e.g. defining the minimum

length of "relevant" structures) can be defined based on these durations. To allow devia-

tions from the exact theoretical values, an additional tolerance of ±15% for both types of

thresholds is included.

Example: thresholds related to 8 bars for a song played in common time:

• t8 → plain threshold (exact length): (8 ∗ 4 beats) = 32 beats

• t<8 → upper threshold (minimum length): (8 ∗ 4 beats) ∗ 0.85 ≈ 27 beats

• t>8 → lower threshold (maximum length): (8 ∗ 4 beats) ∗ 1.15 ≈ 37 beats

For meter induction, a relatively simple algorithm, similar to the one presented in [Eck05],

has been developed. Songs will typically not only exhibit periodicities based on the level

of one beat, but also on the level of multiple beats forming one bar and multiple bars form-

ing one phrase. Therefore, one can expect that besides the correlation maximum a(τmax)

related to the found tempo or one beat-period, additional higher-level periodicities reflect-

ing the number of beats per measure a(τ1), two measures a(τ2) and four measures a(τ4)

may also represent prominent peaks in a(τ). For example, the autocorrelation function

21

2.4 Beat Detection and Averaging

calculated for a song played in common time (4/4) will typically show high autocorrela-

tion values for lags related to the period of 1, 4, 8 and 16 beats. Therefore, autocorrelation

functions showing high values at these characteristic lags are very likely to belong to a

song played in common time (see Figure 7).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−0.5

0

0.5

1

time−lag [τmax]

+/- ε4 +/- ε8 +/- ε16

Figure 7: Based on characteristic maxima inside a(τ), the meter of a song can be esti-

mated. This example shows a(τ) for a song played in common time. Therefore, addi-

tional correlation maxima (besides the maximum at τmax) are expected at the following

characteristic multiples of τmax: 4, 8 and 16.

This observation can be generalized by evaluating multiple characteristic lag-combinations

representing a list of candidate meters. In the given approach, the correlation values in

a(τ) according to one, two and four measures for every meter type are evaluated. There-

fore, the types of relevant meters are defined in a vector b = [2, 3, 4, 6], according to the

related beats per measure. Based on this vector, the cumulative sums for each measure

type m = 1, . . . , 4 can be calculated as follows:

µ(m) =
∑

k=[1,2,4]

max{a ([b(m) ∗ k ∗ τmax − εkm , · · · , b(m) ∗ k ∗ τmax + εkm])} (6)

where εkm is an adaptive threshold allowing deviations from exact multiples of the beat

period of ± 5%, to account for small deviations in periodicity. An estimate of the under-

lying meter can then be defined by finding the argument m (measure type) related to the

largest cumulative sum.

mmax = argmax
m
{µ(m)} (7)

22

3 Recurrence Analysis

As already mentioned in Section 1.1.1, multiple techniques to search for repetitive pat-

terns and structures inside feature vector sequences to find the musical structure of a song

have been developed. The presented approach focuses on a representation of the feature

vectors based on Self Distance Matrices (SDM) which are a special form of recurrence

plots (RP).

Recurrence plots have initially been developed for nonlinear data analysis [GC00]. Given

a multi-dimensional feature vector sequence (e.g. data from multiple sensors), the tempo-

ral trajectory evolving from successive measurements of this sequence is observed. The

multi dimensional space traversed by these trajectories is often referred to as the phase

space. Individual segments of the trajectory following a similar path in phase space re-

veal a certain recurrent behavior of the system. If the distance of such paths lies below a

certain threshold over a certain temporal interval, these intervals are defined to be similar

and are marked in a binary matrix. The concept of RPs therefore allows to visualize and

intuitively analyze the recurrent behavior of dynamical systems.

Given a sequence V = {vi|i = 1, . . . , N} the RP can be calculated as

R(i, j) =

1, if ‖vi − vj‖ < ε,

0, otherwise.
(8)

where ε is a threshold distance and ‖ · ‖ denotes the norm between two vectors.

An example showing the relation of a simple 2-dimensional temporal trajectory and its

related RP is depicted in in Figure 8.

An additional parameter in RP analysis is the embedding dimension ρ. It defines how

many time instances of a feature sequence are combined to calculate the RP. If ρ > 1,

R(i, j) is constructed by computing distances between all pairs of embedded vectors ei
and ej .

ei︷ ︸︸ ︷[
vTi ,v

T
i+1, . . . ,v

T
i+(ρ−1)

] ej︷ ︸︸ ︷[
vTj ,v

T
j+1, . . . ,v

T
j+(ρ−1)

]
The simplified idea behind the embedding dimension of recurrence plots states that each

single observed parameter of a dynamic system (e.g. air pressure) contains important

information about the dynamics of the whole system (e.g. weather). By defining an

"adequate" embedding dimension, the behavior of the overall system can be reconstructed

by only using one embedded parameter.

23

3.1 Self Distance Matrix (SDM)

0 2 4 6

2

4

#5

#10

#23

#28

5 11 23 29

3

1

5

time index

tim
e

in
de

x

t

Figure 8: Trajectory of a 2-D sequence and the resulting RP (ε was set to 0.5 in this

example).

3.1 Self Distance Matrix (SDM)

As already mentioned, many MSD systems use a similar representation to find recurrent

parts in feature vector sequences, the Self Distance Matrix (SDM) [Foo00], [BW05],

[PK06]. In contrast to RPs, SDMs do not use a threshold parameter ε, but directly save

the resulting distance between individual pairs of vectors into a matrix, so SDMs are not

binary.

In [PK06] it has been proposed to use measure level similarity matrices instead of frame

or beat based matrices for MSD, as bars are the smallest natural building blocks of a

higher-scale musical structure. The presented approach is inspired by a very similar idea

based on concept of the embedding dimensions known from recurrence plots (RP).

The typical form to calculate an SDM can be outlined as follows:

S(i, j) = ‖vi − vj‖ or embedded S(i, j) = ‖ei − ej‖ (9)

Although music is not a natural dynamic system, its recurring structure reveals clear de-

pendencies on multiples of beats and bars. As one bar may be considered to be the small-

est relevant building block for a musical structure, one can focus the recurrence analysis

to the level of bars by using an embedding dimension according to the found meter. For

example, when analyzing songs written in common time, ρ will be set to 4, corresponding

to the 4 beats forming one bar. Larger values of ρ will tend to suppress too much detail

in the recurrence structures of the investigated sequences, while smaller values may re-

24

3.1 Self Distance Matrix (SDM)

sult in too much noisy, short term structures in S. An example of the effect of using an

embedding dimension ρ > 1 can be found in Figure 9. One can see that increasing the

embedding dimension clearly enhances the clarity of structures in the SDM, while noisy

parts are suppressed.

In the presented system, the Euclidean Distance is used for computing the three bar level

distance matrices SMFCC , Schroma and SFP .

SDM embedding

.

vi vj

.

 ei ej

individual vector pairs

embedded vector pairs

Figure 9: Example for an SDM calculated based on individual vector pairs (upper tri-

angular matrix) and an SDM calculated based on embedded vectors and an embedding

dimension of 4 (lower triangular matrix).

When analyzing SDMs, it is important to know something about the main characteristics
and typical structures these matrices will reveal:

• SDMs are symmetric with respect to their main diagonal

• the axes of the SDMs used in the presented approach are both time axes with the
unit of one beat

• clear repetitions of individual sub-sequences of a feature vector sequence lead to
off diagonal lines

• sub-sequences with a high inner similarity become apparent as square blocks

Figure 10 shows how the mentioned structures (off diagonal lines, square block) can occur

in a RP for a simple 1-D sequence.

Many MSD algorithms focus on one or the both of these structures when analyzing SDMs.

This may lead to problems, as many SDMs reveal very complex structures and clear lines

25

3.1 Self Distance Matrix (SDM)

0

2

4

6

8

10

12

14

A A

B B

C C

A AB BC C
A

B

B

C

A

C

time instance

Figure 10: Example for the manifestation of characteristic structures (off diagonal lines,

square blocks) in a RP, based on a simple 1-D sequence.

or blocks will not always be detectable. Therefore, these algorithms are somehow limited

and are likely to fail, if no typical structure can be found.

To directly exploit the inherent symmetry of SDMs, the presented system is based on the

comparison of the overall similarity of vertical SDM slices [WCB10]. This approach is

independent of any specific SDM structures and enables the algorithm to find recurrences

even if they are not related to obvious patterns in the original SDM. As normalized SDMs

can be interpreted as grayscale images, the search for recurring vertical slices can be

performed by template matching algorithms known from image processing (see Section

3.2).

3.1.1 SDM Mapping and Combination

To improve the "image" for the template matching algorithm, noisy information inside

the matrices SMFCC , Schroma and SFP is further reduced by a mapping operation. The

SDMs are normalized to unit interval [0, 1] and mapped individually based on a contin-

uous function that helps to enforce areas of high similarity while it suppresses areas of

low similarity (see Equation 10 and Figure 11). The individually mapped SDMs are then

combined to represent the final "image" for the template matching algorithm.

Smap = 0.5− 0.5 ∗ tanh [π ∗ λ ∗ (S − γ)] (10)

To find an adequate threshold γ for this mapping operation, an iterative algorithm has

26

3.1 Self Distance Matrix (SDM)

been developed based on Otsu’s method. Otsu’s method is a widely used histogram based

image thresholding technique that tries to minimize the intraclass variance of two classes

of variables to find a good threshold for the separation of data values in grayscale images.

For more detailed information, please refer to [Ots75].

As the thresholding operation should be focused on the relevant range of values in the nor-

malized matrix S (areas representing high similarities), the search for an optimal thresh-

old is initialized based on all values in S smaller than 0.5. A schematic overview of the

following iterative search for an optimal mapping threshold κ is listed in Algorithm 1.

Algorithm 1 Iterative search for mapping threshold
1: r ← 0
2: κ← 0.5
3: µ← 0.01
4: thrmin ← 0.05
5: thrmax ← 0.1
6: while r < thrmin or r > thrmax do
7: γ ← getThreshold [S, κ]
8: Smap ← performMapping [S, γ]
9: r ← evalRecurrence [S]

10: if r < thrmin then
11: κ← κ+ µ
12: else
13: κ← κ− µ
14: end if
15: end while

The algorithm starts with Otsu’s method to find an initial value of γ (Line 7) and performs

the mapping operation (Line 8). To evaluate the quality of the resulting mapped matrix

Smap, a quality measure inspired by the recurrence rate of RPs (a measure known from

quantitative recurrence analysis [GC00]) is computed (Line 9). As SDMs are not binary,

the resulting value r is called overall recurrence

r =
1

N2

N∑
i,j

Smap(i, j), (11)

where N is the number of rows and columns of Smap.

Large values of r indicate (too) many high values in Smap and call for a stricter mapping,

as more non-relevant elements in Smap should be suppressed. In contrast, low values

of r indicate that too many elements in Smap have been suppressed and suggest a more

relaxed mapping. Although the structures in SDMs of different songs can significantly

27

3.1 Self Distance Matrix (SDM)

differ, experiments showed that overall recurrence values between 0.05 and 0.1 lead to

clear matrices, keeping important structures while adequately suppressing noisy areas.

By iteratively adapting κ with a step size µ (Lines 11 and 13), the range of values used to

find the mapping threshold γ is re-defined at every iteration, until the overall recurrence

r of the resulting matrix Smap falls into the previously defined range [0.05 < r < 0.1]

(Line 6).

Depending on the resulting threshold γ, the parameter λ is set automatically to map 0 to

1. Although the resulting matrix looks similar to a binary recurrence plot, the continuous

mapping preserves the fine structure of highly repetitive areas, which is important for

template matching (see Figure 11).

γ

fr
eq

eu
en

cy
 [#

]

range of evaluated SDM values
1

γ

0

input value

m
ap

pe
d

va
lu

e

0 γ 1 SDM before/after mapping

Figure 11: Based on a histogram (left, top), Otsu’s method finds the optimal threshold to

separate the given values into two classes. The found separation point γ is used as input

parameter for the mapping function (Equation 11) to perform the mapping of the given

SDMs.

SDM combination As three different SDMs have been calculated based on the three

feature vector sequences (SMFCC , Schroma and SFP), these individually mapped SDMs

have to be combined into one matrix Scmb. This is done by simple point-wise summation,

again followed by a normalization to unit interval.

Scmb =
Smap,MFCC + Smap,chroma + Smap,FP

max{Smap,MFCC + Smap,chroma + Smap,FP}
(12)

28

3.2 Template Matching

3.2 Template Matching

Based on the combined, mapped matrix Scmb representing the recurrent behavior of all in-

vestigated features, Normalized Cross Correlation (NCC), a template matching algorithm,

can now be used to find repetitive vertical slices inside the matrix. As already mentioned,

by exploiting the inherent symmetry of SDMs, the template matching algorithm compares

different similarity profiles (vertical SDM slices) and makes the detection of repetitions

widely independent of any distinct structures in the matrix.

3.2.1 Normalized Cross Correlation (NCC)

One famous and widely used algorithm in the field of template matching (sometimes

called image registration) is Normalized Cross Correlation (NCC) [Lew95]. Using NCC

for finding a template image T within a search image I results in a cross correlation

matrixC, where locations with high correlation values indicate possible detections of the

template. This can be computationally expensive, as the NCC has to be computed at all

possible positions of the template with respect to the search image.

C(i, j) =

∑
x,y

[
I(x, y)− I i,j

] [
T (x− i, y − j)− T

]√∑
x,y

[
I(x, y)− I i,j

]2∑
x,y

[
T (x− i, y − j)− T

]2 (13)

Equation 13 shows the general form of the NCC. The sums run over x, y in the region

under the template positioned at i, j, I is the mean of the search image in the same region

and T is the mean of the template. A template matching example is given in Figure 12.

Template Image and Search Image
As templates in the presented approach are always simply vertical or horizontal slices of

the search image (due to the inherent symmetry of the SDM, vertical and horizontal slices

represent the same 90◦ shifted pattern), they only need to be shifted into one direction

across the search image. Therefore, the number of necessary computations is drastically

reduced compared to a full two-dimensional evaluation. To find recurring structures inside

the SDM, vertical slices are selected as template images and all horizontal shifts of these

templates across the search image are evaluated. This results in one cross correlation

vector ck per template.

The width of the templates is set to the number of beatsw representing two bars. Although

successive beats within individual bars already represent short musical structures, the

29

3.2 Template Matching

0.8

0.6

0.2

0.4

horizontal shift [px]
100 200 300 400

ve
rti

ca
l s

hi
ft

[p
x]

100

200

300

400

100 200 300 400

100

200

300

400

x-index [px]

y-
in

de
x

[p
x]

Figure 12: The template image (middle, IEM logo) is searched inside the combined search

image (left). The maximum correlation value inside C (right) indicates the detected po-

sition of the template.

combination of two bars can basically be seen as the smallest sequential building block

for song segments. To preserve a temporal resolution on the level of beats, the hop size

between adjacent templates (and search images) is set to 1 (beat).

By defining k as the horizontal starting index of a template slice Tk, one can compute the

individual values of the related correlation vector ck, by iteratively correlating Tk with all

slices of the related search-image. The respective slices representing the template image

Tk and all related search image slices Ik,n can formally be expressed as follows:

Tk =


sk,1 sk+1,1 . . . sk+w−1,1

sk,2 sk+1,2 . . . sk+w−1,2

...
...

sk,N sk+1,N . . . sk+w−1,N

 , Ik,n =


sl,1 sl+1,1 . . . sl+w−1,1

sl,2 sl+1,2 . . . sl+w−1,2

...
...

sl,N sl+1,N . . . sl+w−1,N


where l = k + w + n, as the inner correlation of a template to itself is not evaluated,

and n = 0, 1, . . . , N − k − w is the index of all individual search images related to the

template.

As the detection of structures using NCC should be independent of offsets inside the

search or template image, Tk and Ik,n are converted to zero mean matrices.

T̃k = Tk − T k and Ĩk,n = Ik,n − Ik,n (14)

The final NCC vector is computed by calculating the inner product of the zero mean

30

3.2 Template Matching

template image with all related zero mean search image slices, normalized by their norms.

ck(n) =

〈
T̃k

‖T̃k‖
,
Ĩk,n

‖Ĩk,n‖

〉
(15)

3.2.2 Recurrence Matrix

Performing these operations for all templates, results in a set set of correlation vectors.

These vectors have different lengths, as the horizontal dimension of of the search image

becomes smaller for each new template. Therefore, the length Nc related the longest

correlation vector c1 corresponds to the dimension of the SDM minus the size of one

template (as the first template was not compared to itself). All vectors are zero padded to

length Nc and stored into a lower triangular matrix, referred to as the recurrence matrix

R.

R =


c1,1 0 . . . 0

c1,2 c2,1 . . . 0
...

...

c1,Nc c2,Nc−1 . . . cNc,1


As depicted in Figure 13, sequences of high correlation values form horizontal lines in

the recurrence matrixR. Such sequences occur, if multiple successive templates correlate

with successive slices of the search image. Therefore, they represent potential repetitions

of segments after a certain time lag, similar to the off-diagonal lines inside the original

SDM.

In most casesR will expose a mixture of solid horizontal lines, partially broken lines and

short non-relevant patterns. To remove most of the non relevant structures inside R, a

simple post-processing operation is performed by applying a sliding median filter along

the horizontal axis of R. As only horizontal lines longer than ≈ 2 bars are considered to

represent relevant structures, the length of the median filter is set to nmed = t<4 bars. The

resulting filter removes non-representative structures (shorter than 1/2 nmed) and enhances

the homogeneity of relevant lines.

Rf (i, j) = median{[R
(
i, j − nmed

2

)
, . . . ,R

(
i, j +

nmed
2

)
]} (16)

31

3.2 Template Matching

0

0.5

1

time lag [beats]

N
C

C
 c

oe
ff

ic
ie

nt

time [beats]

tim
e

[b
ea

ts
]

time [beats]

save correlation vector
into recurrence matrix R

search image Iktemplate Tk

50

50

100

100

150

150

200

200

250

250

300

300

50 100 150 200 250 300

50 100 150 200 250

recurrence matrix R

50

100

150

200

250

300

tim
e

la
g

[b
ea

ts
]

correlation vector ck

Figure 13: As indicated with dashed boxes, maxima in the cross correlation vector (left,

bottom) mark possible repetitions of the template Tk in the related search image Ik. The

recurrence matrix (right) is created by storing consecutive correlation vectors side by side

into a matrix. In this example, the weak off diagonal lines, indicating repeated sequences

inside the original SDM, are nicely represented as horizontal lines in the recurrence ma-

trix.

3.2.3 Repetition Surface

To find all valid repetitions, the correlation maxima inside the columns r1,2,...,Nc ofRf are

detected by a peak detection algorithm, using a minimum distance of ≈ 2 bars between

peaks. To decide whether a peak in rj represents a valid detection or not, an individual

threshold for each bar of the song is computed. Although detection thresholds for template

matching methods based on NCC are often set to very high values (e.g. 0.95 to 0.99), it has

to be considered that repetitions within songs are never perfect and the median filtering

will remove peaks of very high correlation values. Therefore, similar as for the mapping

threshold γk, Otsu’s method is applied to each row of Rf , neglecting all values smaller

than 0.5, to find a good threshold for valid peaks.

32

3.2 Template Matching

The detected peaks inside each column are marked as valid detections in binary vectors.

These vectors are stored column-wise into a matrix Rb (see Figure 14), again showing

repetitive sequences as horizontal lines. Short discontinuities within the lines of Rb as

well as line deviations of ±2 beats are adjusted in a last post processing step, resulting in

a clean, well-defined representation of all found repetitions.

tim
e

la
g

[b
ea

ts
]

time [beats]

tim
e

la
g

[b
ea

ts
]

50 150 250 50 150 250

50

150

250

8

time [beats]

50

150

250

8

Figure 14: The median-filtered recurrence matrix Rf (left) is binarized based on a peak

detection algorithm, which is column-wise applied to the matrix. As indicated, the used

template width (in this example 8 beats) has to be incorporated when defining time lags

between detected segments.

This representation is called repetition surface, as each horizontal line describes two time

intervals: the song section which is repeated (horizontal location and length of the line)

and the related repetition after a certain time lag or offset (vertical offset of the line).

Therefore, each line represents a segment pair ϕ and can be characterized as follows:

ϕ = [s, e, o] (17)

where s and e are the horizontal-indices of the start and end of the repeated song section

and o is the time lag between between this section and its repetition. More specifically,

this means that the part played during the time interval ts = [s, e] is repeated after o beats

during another time-interval tr = [s+ o, e+ o]. Therefore, the interval ts is defined as the

source segment related to interval tr, the target segment (or repetition of ts).

As these repetitions will often not readily represent parts of the musical form, but only rep-

etitions of potentially overlapping, similar musical sequences on a lower semantic scale,

these repetitions are called musical patterns. It is important to note, that any segment pair

33

3.2 Template Matching

with an identical source or target segment represents another occurrence of the same part.

In Section 4, all these relations among segment pairs will be investigated and an algorithm

to resolve all conflicts of overlapping intervals will be developed (see Figure 15).

1

2

2

3

3
4

4
5

5
6 6

7

7

1
found segment pairs:

best combination ?
ttime

tim
e

la
g

Figure 15: Examples for overlapping conflicts of related segment pairs found inside the

repetition surface.

34

3.3 Novelty Function

3.3 Novelty Function

One downside when using sequential search algorithms like iterative template matching

to find repeated patterns, is their inability to separate two or more different patterns that

always occur in the exact same order. For example, when trying to detect the pattern

sequence {A → A → B → C → A → B → C}, the split between segment B and C

will not be detected.

One simple but well known method developed to find transitions of patterns in a SDM is

the audio novelty function η, which was initially proposed in [Foo00]. In Section 4.4.1, a

modified version of this function will be used to post-process unusually long segments.3

Basically, η results from correlating a checkerboard-like kernel matrixK along the main

diagonal of a full SDM. Segment borders are then found by detecting peaks inside η.

The presented approach basically follows this main idea, although a few modifications to

enhance the quality of the detected borders will be introduced.

As musical sections of high inner similarity typically form block-like structures along the

main diagonal of the SDM, borders between these sections can be detected by finding

the position where two such blocks diagonally adjoin each other. Considering the previ-

ously presented NCC algorithm, correlating the checkerboard along the main diagonal is

therefore similar to finding good matches of a template image (kernel) and inside a search

image.

The basic, binary checkerboard kernel is constructed by merging 4 sub matrices into one

quadratic matrix. Assuming that C is a binary nxn matrix where all values are set to 1,

the checkerboard can easily be created as

Kb =

(
−C +C

+C −C.

)
(18)

In [Foo00], it has been suggested to apply a radial Gaussian weighting function to the

kernel, to gradually reduce the influence of values lying far away from the center of the

kernel, to focus the correlation result to the currently evaluated position.

G(x, y) = e
−
(

(x−N−1/N)2

2σ2 +
(y−N−1/N)2

2σ2

)
(19)

3Although the novelty function is used much later in the processing chain (after finding a preliminary
segmentation), it is introduced it in the current Section, as it is directly related to the processing of the SDM
and represents an interesting supplement to the proposed method.

35

3.3 Novelty Function

where 2∗N+1 is the dimension of the square kernel. The variance σ is set to 0.5, offering

a good attenuation but not a total elimination of values lying near the margin of the kernel.

20 40 60
20

40
60
0

0.5

1

10 20 30 40 50 6010
20

30
40

50
60
−1
−0.5

0
0.5

1

a.)

c.)

b.) 20 40 60
20

40
60
0

0.5

1

Figure 16: The final correlation kernel K is calculated starting with a radial Gaussian

function (a.) combined with a diagonal weighting matrixD)(b.), multiplied by a checker-

board kernelKb (c.).

In addition to this proposed weighting, high influence of areas representing strong bar

level dependencies, but no real long-term similarities, should be avoided. Therefore, a

negative Gaussian weighting window g of width 2 ∗ B + 1, where B is the number of

beats representing one bar, is applied to the main diagonal of the kernel and the first B

side diagonals.

g(x) = −e
−
(

(x−B−1/B)
2σ2

)
(20)

For this window, σ is set to 1/e.

If Db is a binary matrix, where all values are set to one, values of the main diagonal

and the first B side diagonals can now be multiplied with the respective weighting values

from g. The main diagonal is denoted as diag(D0) and side diagonals as diag(D−1)

diag(D+1) (first left and right side diagonal).

36

3.3 Novelty Function

diag(D)d = diag(D)d · g(d+B + 1) (21)

where d = [−B, . . . , B].

The full kernel (see Figure 16) can therefore be constructed as follows

K =Kb ◦G ◦D (22)

Additionally, the kernel K is correlated with the mapped matrix Scmb instead of using a

full SDM, to obtain clearer peaks in η (see Figure 17). As depicted in Figure 17, the final

border candidates are represented by peaks in the novelty function.

0 50 100 150 200 250 300 350
0

100

200

300

time [beats]

tim
e

[b
ea

ts
]

0

0.2

0.6

time [beats]

(n
or

m
al

iz
ed

) a
ud

io
 n

ov
el

ty

0 50 100 150 200 250 300 350

= η3

= η1
= η2

1

0.4

0.8

Figure 17: This Figure shows three different (normalized) versions of the novelty func-

tion: η1 (full SDM + kernel without diagonal weighting); η2 (mapped SDM + kernel

without diagonal weighting); η3 (mapped SDM + kernel with diagonal weighting). It can

clearly be noted that the correlation with the full SDM only exhibits very strong block

structures (eta1), while the correlation with the mapped SDM reveals much more details

(eta2). Additionally, the proposed diagonal mapping significantly reduces the overall

offset in (eta3) and shows very clear peaks at potential segment borders.

37

4 Time Interval Data

Considering the relations among all segment pairs represented by the repetition surface,

the problem of describing and resolving conflicts of overlapping time-interval data has to

be examined. As each segment pair describes a certain musical pattern, the problem of

overlapping patterns as well as the relations among different patterns have to be investi-

gated.

The analysis and interpretation of time-interval data has intensively been discussed in the

field of temporal pattern mining [MF10]. Although the final segmentation system will

not be directly based on a known time-interval mining method, a short overview on the

basic concepts in the field will be given, to define a common understanding of the used

taxonomies and techniques.

The relations of time-interval data can be quite complex. For example, if one wants to

uniquely describe all potential temporal arrangements of two time intervals, 13 relations

have to be defined. They are known as Allen’s interval relations [All83] (see Figure 18)

and are the basis for many temporal pattern mining systems.

A
B

preceeds

A
B

meets

A
B

overlaps

A
B

finishes

A
B

contains

A
B

starts

A
B

preceeded
by

A
B
met by

A
B

overlapped
by

A
B

finished
by

A
B

during

A
B

started by

A
B

equals

Figure 18: Allen’s interval relations. Each relation can be read as: "A (relation) B".

Before focusing on the implemented segment detection system, a couple of basic formal

descriptions related to time-interval data have to be defined. Following a detailed list of

definitions given in [MF10], the formal definitions relevant for the succeeding segment

detection stage are introduced.

As already denoted in Section 3.2, a simple time interval can be defined by the tuple

t = [s, e], s ≤ e (23)

where s describes the starting position of the interval and e the corresponding ending.

38

Therefore, each interval represents a set of time instances

t = [s, e]← {s, . . . , e}. (24)

Accordingly, the duration of an interval can be computed as

d([s, e]) = e− s+ 1. (25)

An interval related to a label σ selected from a set of unique symbols S (e.g. σ ∈ S =

{A,B}) is called symbolic interval and can be defined by the triple

t = [σ, s, e] (26)

Additionally, when analyzing multiple intervals, a sequence of intervals can be defined as

T = {[σi, si, ei] | i = 1, . . . , N} (27)

and the intervals of the sequence are are non-overlapping if (si < ei < sj < ej)∀ i < j.

Next, the order of two intervals is defined as

ti < tj ⇔ (si < sj) ∨ (si = sj ∧ ei < ej) (28)

and two intervals ta, tb overlap within the intersection interval tab, if

tab = ta ∩ tb = {sm, . . . , em} ∩ {ss, . . . , es} 6= ∅. (29)

Based on this interval, the intervals ta−b and tb−a, representing the parts of ta and tb which

do not overlap, can be defined as follows:

ta−b = ta \ tab, tb−a = tb \ tab (30)

Finally, interval ta partially overlaps interval tb from left (ta < tb) or right (ta < tb), if

ta ∩ tb 6= ∅ ∧ ta \ tb 6= ∅ (31)

and fully overlaps tb, if

tb ⊂ ta (32)

As already mentioned, these definitions will be used in the following Sections to describe

relations and conflicts of overlapping time interval data.

39

4.1 Segment Grouping

4.1 Segment Grouping

Typically, many musical patterns detected inside the repetition surface will be repeated

more than once and will therefore be related to multiple segment pairs inside the repetition

surface. Each group of such pairs forms an individual subset representing all occurrences

of the corresponding pattern. To find all these subsets, the relationships between lines in

the repetition surface have to analyzed and interpreted.

As depicted in Figure 19, the most intuitive way of finding all such related pairs, lies in

the analysis of the geometric relations inside the repetition surface. If one defines two

imaginary lines through any point in the repetition surface, a vertical line and a diagonal

line, the intersections of these imaginary lines with the horizontal-axis form a right-angled

triangle together with the chosen point. Based on this triangle, two important observations

can be made:

• All detections which are located inside the adjacent side of this triangle (vertical

line) represent different repetitions of the same time-instance. Therefore, they are

all related to the same source segment and represent different target segments.

• All detections which are located inside the hypotenuse of this triangle (diagonal

line) represent the same time instance hit by different repetitions. Therefore, they

are all related to different source segments and represent the same target segment.

source target

o

s e s + o e + o

φ = [s,e,o]
o

Figure 19: Relations inside the repetitions surface.

An individual segment pair ϕk = [sk, ek, ok] is represented by a line in the repetition

surface running from index [ok, sk] to index [ok, ek]. Based on the proposed definitions

this pair can be represented by two symbolic time intervals with identical labels.

40

4.1 Segment Grouping

tk,s = [σk, sk, ek], tk,r = [σk, sk + ok, ek + ok] (33)

where the label σk = k indicates the index of the pair, tk,s is the time interval representing

the source segment and tk,r is the time interval related to the repetition of this segment.4

When these observations are expanded to every point of a line in the repetitions surface

(see Figure 19), one can easily define all segment pairs related to a certain repetition.

Considering the previously defined segment pairϕk, it can formally be checked if another

pair is directly related to this pair as follows:

ϕk ← ϕl ⇔ (tl,s ≈ tk,s ∨ tl,s ≈ tk,r ∨ tl,r ≈ tk,s ∨ tl,r ≈ tk,r) (34)

Direct interval relations To evaluate if two time intervals are approximately equal

(tk ≈ tl), their starts and ends are compared. To account for potential detection er-

rors, two time-intervals are defined as approximately equal, if the difference between

their starts and stops is smaller than a given tolerance δ.

tk ≈ tl ⇔ (|sk − sl| < δ ∧ |ek − el| < δ) (35)

Following the concept of musically motivated thresholds, δ is set to t<2 bars. Multiple

experiments proofed that the threshold is typically large enough to compensate devia-

tions introduced by detection errors, while it prevents the merging of musically relevant

sections. The search for related pairs of repetitions can now be performed based on this

definition of identity.

Higher order interval relations As the repetition surface shows all repetitions of a mu-

sical pattern at each occurrence of this pattern, it will reveal a high amount of redundancy.

For example, given a pattern which is repeated four times, four repetitions will be detected

for the first occurrence, three for the second occurrence (which is also the first repetition)

and so on. If a pattern is repeated m times and all of its repetitions are correctly detected,

theoretically n = m(m−1)
2

segment pairs will be related to the pattern. Therefore, without

detection errors, the repetitions found for the first occurrence already accurately define all

occurrences of the corresponding song segment.

In many cases, however, not all repetitions of each occurrence are detected and some

relations between patterns may not be directly detectable using the conditions given in
4Considering the described computations, the temporal units are always beats.

41

4.2 Subset Sequences

Equation 27. In this case, the mentioned redundancy of detections can be exploited by

finding relations of segments via other segments. Figure 20 illustrates this idea. Let ta,s,

tb,s and tc,s be time intervals representing the source segments of three segment pairs and

let ta,r, tb,r and tc,r be their corresponding repetitions. If ta,r ≡ tb,s and tb,r ≡ tc,s all three

pairs are implicitly related to the first source interval (ta,s → tb,s → tc,s → tc,r) and ϕa
will correctly be related to ϕb and ϕc.

time

tim
e

la
g

ta,s tb,s tc,s tc,r

Figure 20: Redundancies and higher order relations inside the repetitions surface.

After finding all related pairs, G subsets Φ1,2,...,G can be defined. Each subset Φi =

{ϕn|n = 1, . . . , Ni}, where Ni is the number of segment pairs related to the subset,

contains all time intervals (repetitions) representing a certain musical pattern.

4.2 Subset Sequences

In the previous Sections a relatively long pre-processing chain has been passed to find

a stable representation of all repeated sections of a song. These sections are now repre-

sented as subsets, containing groups of related segment pairs. If a unique arbitrary label

is defined for each subset, the time intervals related to a subset will form a sequence of

identically labeled, non-overlapping time intervals, a subset sequence.

As the direct combination of all subset sequences will reveal many overlapping parts, the

42

4.2 Subset Sequences

0 5 10 15 20 25 30 35 40 45 50 55 60

t1 = [3, 8]

t2 = [20, 25]

t3 = [36, 41]

Φ = {t1, t2, t3}

time

Figure 21: The time intervals combined into one subset and the resulting sequence of

related time intervals. (For simplicity, only the unique intervals related to the subset Φ

are depicted in this Figure. Identical source or target segments are ignored.)

initial detection process has to be followed by the search for an optimal combination of

these sequences. Before an algorithm to find this optimal combination can be developed,

each sequence has to be related to a quality attribute, allowing to compare the "relevance"

of overlapping sequences.

4.2.1 Repetition Quality

In this Section, the repetition strength κ will be introduced. It will later be used to define

the order in which the found subsets are iteratively compared in the final segment com-

bination algorithm (see Section 4.3). The higher the repetition strength of a subset, the

earlier it is processed and the greater is its influence on the final segmentation.

The first attribute that can directly be extracted from each subset, is the average length of

all related segment pairs. As longer repetitions tend to represent more stable detections,

the mean segment length λ can be defined based on the length of all Ni segment pairs of

a subset Φi = {ϕn|n = 1, . . . , Ni}:

λi =
1

Ni

Ni∑
n=1

(d(tn,s) + d(tn,r))

2
(36)

Additionally, the recurrence matrix R (see Section 3.2.2) can be used to define another

quality measure for all individual segment pairs. Based on the overall mean µall of all

correlation vectors formingR

µall = mean{[cT1 , . . . , cTNc]} (37)

43

4.2 Subset Sequences

and the mean µn of the correlation values related to segment pair ϕn

µn = mean{[R(on, sn), . . . ,R(on, en)]}, (38)

the following quality measure for each pair inside a subset can be computed.

qn =
µn − µall
1− µall

(39)

This measure can be interpreted as a probability value. Pairs related to high probabilities

represent stable recurrences which are likely to be relevant for the final segmentation,

while pairs with a very low quality measure (e.g. below zero) are likely to represent

mis-detections.

Based on the mean of the quality measures of all segment pairs related to a subset, a

combined repetition quality υi for the subset can be defined.

υi =
1

Ni

Ni∑
n=1

qn (40)

By combining the mean segment length λi and the repetition quality υi, the overall repe-

tition strength κi of subset Φi can finally be calculated as follows:

κi = υi · λi (41)

4.2.2 Prototype Segment

As the individual intervals of subset sequences all represent the same musical pattern,

changes to any interval of the sequence must have a direct impact on every other interval

inside the subset. These inner dependencies can easily lead to very complex relations and

confusing data structures when comparing sequences of intervals.

Therefore, a new representation for interval sequences with inner dependencies, based on

individual prototype intervals tp (see Figure 22) has been developed. This representation

is much more intuitive and easier to handle than multiple dependent intervals, as any

change to the prototype interval will directly change all its shifted versions.

A nice analogy to such a prototype interval is a loop extracted from a song, when working

with a typical audio sequencer. The bare loop (e.g. labeled "part 1") represents a certain

time interval of the song, without any temporal information on its relative positioning

44

4.2 Subset Sequences

εin εout

l

ε = {[0 0], [2 0], [0 2]}
o = {2, 18, 36}
l = 8

P = [l, o, ε]

0 5 10 15 20 25 30 35 40 45 50 55 60
time

prototype segment

Figure 22: Basic parameters of a prototype segment (top) and example of interval se-

quence represented by the prototype for a given set of parameters (bottom).

inside the song. If this loop is copied to all positions where similar parts occur (similar

enough to talk about a repetition of the respective segment), the resulting loops inside the

sequencer will represent a sequence of non-overlapping time intervals related to the same

label: a subset.

As tp is only defined by its length, its start can be ignored and only the length of the

longest related segment pair is needed. Based on a vector l containing all lengths of

segments inside a subset

l(n) = max{d(tn,s), d(tn,r)}, n = 1, . . . , N, (42)

where N is the number of segment pairs inside the respective subset Φ, the maximum

length inside the set can easily be computed as lmax = max{l}.

Again, considering multiple occurrences of a loop in a sequencer, the lengths of these

occurrences may slightly differ. Therefore, one can typically use a cursor to trim the start

or stop of each occurrence to correctly fit the underlying segment. Following this analogy,

each repetition can be related to an individual skip in and skip out value to allow slightly

later starts or earlier stops of the respective occurrence. By combining each prototype

time interval with all its related starting positions and skips, a full prototype segment P

describing N segment pairs can be defined as follows (see Figure 22):

45

4.3 Segment Combination

P = (l,o, ε) (43)

where o = {on|n = 1, . . . , N} represents a set of shifts and ε = {[εin,n, εout,n]|n =

1, . . . , N} represents a set of skip in εin,n and skip out εout,n, values.

4.3 Segment Combination

In this Section, initially the simple problem of resolving overlapping conflicts of two

intervals will be addressed. The findings from this simple two-interval case will then be

used to describe the problem to overlapping interval sequences with inner dependencies.

This final problem will represent the current situation of the processing chain - a set of

overlapping subset sequences.

4.3.1 Two Overlapping Intervals

For this example, the interval related to the stronger repetition quality κ (see Section

4.2.1) is called the main interval tm and its start and endpoints [ss, es] main borders. The

weaker interval and its borders are called sub interval ts and sub borders [sm, em].

Assuming that these intervals overlap, an ordered list sort[sm, em, ss, es] describing the

boundaries of three intervals can be created. One of them represents the overlapping area

ta+b = ta ∩ tb

and the others the non-overlapping parts:

ta−b = ta \ ta+b , tb−a = tb \ ta+b

Depending on the actual relative positions of ts and tm, some of these intervals could

either be empty (e.g. if sm = ss) or too short to represent valid intervals. Based on a

given minimum length δ for valid intervals, the overlapping conflict can be resolved by

applying a couple of rules:5

• The positions of the main borders are static and cannot be removed or shifted, nor
can the borders change their type (e.g. a start remains a start).

5The number behind each rule indicates the line in Algorithm 2, where the rule is applied.

46

4.3 Segment Combination

• A sub border can be inserted between the main borders to split the main interval
into two intervals, if the distance to the closest main border is larger than δ. (→7)

• A sub border lying inside the main interval, but too close (< δ) to a main border of
the same type, is considered to represent a shifted version of this border. (→5)

• A sub borders lying inside the main interval, but too close (< δ) to a main border
of a different type is ignored. (→9)

• A sub border lying outside the main interval forms the border of a new interval, if
the distance to the closest main border is larger than δ. (→13, 15)

• A sub border lying outside the main interval, but too close (< δ) to a main border
is ignored. (→17)

A schematic depiction of the rules defined above is given in Figure 23.

tm

splitss:

es:

δ δ δδ

ignore

ignore

ignore

ignore

skip in

sm em

split skip out

Figure 23: Operations of the algorithm based on the regions defined inside and outside a

main interval tm considering potential overlaps of starts ss and stops es of a sub interval.

Additionally, the individual processing steps are summarized in Algorithm 2.

It is important to note that the area of the sub interval overlapping with the main interval

is processed completely independent from its parts lying outside the main interval. For

example, if the sub interval partially overlaps the main interval from left, the interval

can be interpreted as two intervals: one non-overlapping interval lying in front of the

main interval followed by an interval that is totally overlapped by the main interval. This

observation will be useful when dealing with multiple overlapping intervals, as it allows

to process the individual parts of a sub interval overlapping with different main intervals

independently.

Although the areas outside the main interval are fully processed after running through

this algorithm, the remaining borders inside the main interval that have been marked as

related (→ 5) to a main border or found to indicate a split (→ 7) of the main interval have

to be further processed.

47

4.3 Segment Combination

Algorithm 2 Processing of Sub Borders
1: for k = 1 to 2 do
2: b← ts(k)
3: if sm < b < em then
4: if |d([tm(i), b])| < δ then
5: mark border to be related to tm(i)
6: else if min{|d([sm, b])|, |d([em, b])|} > δ then
7: mark border to represent a split for tm
8: else
9: ignore border

10: end if
11: else
12: if b < sm and d([b, sm]) > δ then
13: new segment← [b, sm − 1]
14: else if b > em and d([em, b]) > δ then
15: new segment← [em + 1, b]
16: else
17: ignore border
18: end if
19: end if
20: end for

For the simple two interval case, borders marked as related can be ignored, as they simply

indicate that a repetition of the interval related to the respective border would start or end a

little bit earlier than the investigated interval. These borders will later be used to define the

skip in and skip out values, when defining interval sequences based on prototype segments

(see Section 4.3.2).

If one or two borders of the sub interval are marked as splits, the main interval will be

separated into a new set Tm of two or three new segments, created as follows:

Tnew ←


{[sm, ss − 1], [ss, es], [es + 1, em]} if splits← ss ∧ es,
{[sm, ss − 1], [ss, em]} if split← ss,

{[sm, es], [es + 1, em]} if split← es,

A schematic representation of the described segmentation process is given in Figure 24.

4.3.2 Two Overlapping Interval Sequences

The found solution can now be extended to repeated intervals or interval sequences. For

this example, two interval sequences with one or multiple partially overlapping intervals

are assumed. As introduced in Section 4.2.2, interval sequences can be described by

48

4.3 Segment Combination

+/-δ +/-δ

ignore es

ignore ss

skip in [ss]

split [es]

[ss - sm - es - em]

[ss - sm - es - em]

[ss - sm - es - em]

[sm - ss - es - em]

[sm - sm - em - es] split [ss,es]

overlapping
intervals

ordered
borders

necessary
operation

clean
intervals

Figure 24: Exemplary processing of two overlapping intervals.

prototype segments. Therefore, following the notation of the previous Section, the two

investigated prototypes are called main prototype Pm and sub prototype Ps. It will be

shown that not too much has to be changed in the proposed processing when dealing with

prototype segments instead of single intervals.

Each overlap of segment pairs is automatically projected onto the two prototype segments.

Prototypes can therefore be treated like individual intervals and the found interval borders

are iteratively processed with the proposed algorithm. As the relative overlapping posi-

tions of all interval pairs of two prototypes have to be identical, overlaps that would lead

to ambiguous (different) segmentations of one of the prototypes are ignored.

Similar as for the two interval case, the initial main and sub prototypes can be split into

multiple new prototypes, but now not only the borders of the respective intervals have to

be changed, but also the shifts or positions of repetitions need to be updated (see Figure

25).

For example, let us assume two interval sequences, where one interval of the sub sequence

overlaps one interval of the main sequence from the left. By projecting these overlaps

onto the two related prototypes Pm and Ps, one can see that the sub prototype is cut at the

relative position cs (indicating the start of overlapping area with the main prototype) and

the main prototype is cut at the relative position cm (the end of the overlapping area).

Given the two original prototype segments,

49

4.3 Segment Combination

Pm = (lm,om, εm)

Ps = (ls,os, εs)

the three new prototype segments can be defined as follows (0 denotes a zero-vector):

P1 = (ls − cs,os, εs) εs,out ← 0

P2 = (cm,om, εm), εm,in ← 0

P3 = (lm − cm,om + cm, εm) εm,in ← 0

Note that the first new prototype is based on the sub prototype, while the others are based

on the main prototype. The skip out values of the first and second new prototype as well

as the skip in values of the third prototype are set to a zero vector, as all related intervals

are cut at the same position. Additionally the lengths of all prototypes are adapted and the

shift of the third prototype has been increased.

Pm = [lm, om, εm]

0 5 10 15 20 25 30 35 40 45 50

0 5 10 15 20 25 30 35 40 45 50
time

Ps = [ls, os, εs]

P1 = [l1, o1, ε1]

P2 = [l2, o2, ε2]

split Pm

Figure 25: Exemplary processing of two overlapping sequences (two prototype seg-

ments).

4.3.3 Multiple Overlapping Interval Sequences

In this Section, the example is extended to the evaluation of multiple interval sequences

with arbitrary overlaps. Since the relations of more than two sequences have to be ob-

served, each pair of sequences is processed in descending order, following the respective

50

4.3 Segment Combination

repetition strengths κi. Besides this extension, no real modifications regarding the pro-

cessing of two prototypes presented in the previous example have to be introduced.

As depicted in Figure 26, the processing of the first sequence pair is identical to the

processing of two sequences and will result in a preliminary segmentation, representing

the new main sequence. Although the intervals are now based on different prototypes, one

can again project all overlaps of the sub sequence with any interval of the main sequence

onto the respective prototype segment and iteratively resolve all overlapping conflicts.

preliminary segmentation

segments to combine

segments to combine

process combination 1

PA
PB

PA’
PAB
PB’

PC

PC

0 10 20 30 40 50
t

0 10 20 30 40 50
t

PA’’
PAC
PAB
PB’
PC’

0 10 20 30 40 50
t

0 10 20 30 40 50
time

split PA

split PA’ skip out PC’process combination 2

A’’B’ AB AC C’ C’ACAB ABB’A’’

Figure 26: Exemplary processing of multiple overlapping interval sequences.

51

4.4 Preliminary Segmentation

4.4 Preliminary Segmentation

Based on the subsets found in Section 4.1 and the algorithm introduced in the previous

Section, a final set of non overlapping prototypes can be found. These prototypes will

form a non-overlapping, labeled interval sequence - the preliminary segmentation Γ of

the investigated song.

The threshold δ, defining the minimum length for a valid segment as well as the skip in

and skip out areas of found segments (see Algorithm 2) is set to t<4 beats. This threshold

guarantees that any segment included in the preliminary segmentation is long enough to

represent a musically relevant section of the song.

Γ = {Pi| i = 1, . . . , NP} = {[sk, ek, σk] | k = 1, . . . , Nt} (44)

where NP is the number of found prototype segments and Nt is the total number of inter-

vals represented by all prototype segments.

4.4.1 Detection of Missed Boundaries

As already mentioned in Section 3.3, one downside of the proposed sequential algorithm

is its (theoretical) inability to separate two or more different patterns that always occur

in the exact same order. Practically, most of these patterns will still be detected, as they

are typically not perfectly repeated and "cross-detections" can be found by exploiting

all relations of segments inside the repetition surface. Still, if a long musical pattern

covers two or more always identically repeated sub patterns, these sub patterns will be

represented by only one prototype in the preliminary segmentation.

Missed borders between sub patterns will typically lead to unusually long time intervals in

the preliminary segmentation. Therefore, a post processing on all prototypes longer than

a given threshold δs is performed, to reveal potentially missed borders. The threshold δs
used to identify unusually long segments is set to t>12 beats.

The modified novelty function introduced in Section 3.3 is now applied to the first occur-

rence of each found prototype longer than δs. The size of the used kernel is set to 4 bars.

As only specific, repeated sections are investigated, the kernel only has to be shifted along

the part of the main diagonal in the respective area.

η(k) =
N∑

m=−N

N∑
n=−N

K(m,n)Scmb(r + k +m, r + k + n), k = [1, . . . , l] (45)

52

4.4 Preliminary Segmentation

where r is the positions of the section within the song, k is the investigated position inside

this section, and l is the length of the repetition.

Since no wrong borders should be introduced at this stage, only very high peaks in the

novelty function (see Figure 27) are considered to indicate additional borders. Therefore,

an empirical threshold tη = N/2 based on the size of the used kernel is introduced. Despite

its simplicity, tη turned out to be a good threshold for relevant detections. If a peak above

this threshold is found, the prototype representing the investigated time interval is split at

the respective position and the preliminary segmentation Γ is updated.

no
ve

lty
 v

al
ue

A

A’ C A’ C A’ C A’ C

A A AB

B B

B

preliminary segmentation

updated segmentation

tη

Figure 27: Segment A is identified as unusually long segment. The first occurrence of

the pattern inside the 4 identically repeated sections is extracted (top, right) and analyzed

using the novelty function. As the maximum inside η is above tη, it indicates that the

detected segment A should be split into two segments A’ and C.

53

5 Temporal Pattern Mining

Now that a preliminary segmentation of the investigated song has been found, a post

processing step helps to further investigate the segmentation by searching for repeated

sequences in the preliminary segmentation.

If the exact temporal structure of the individual intervals is ignored, a simplified repre-

sentation of the segmentation, only based on their temporal ordering, can be defined. In

addition to the found, labeled time intervals, each time interval not related to any label

is denoted as structural gap G. This simplified depiction of the musical structure can be

represented as a sequence S of labels or symbols.

S = {G→ A→ B → C → G→ A→ B → C → C}

When analyzing this sequence, always identically repeated sub-sequences (e.g. A → B)

represent the repeated sequential occurrence of certain prototypes and therefore indicate

potentially over segmented areas. According to [Moe10], such sequences are called sub-

string patterns as they could be replaced by single super-strings (merged prototypes)

AB = {A↔ B}.6

To investigate if such an over segmentation may have occurred, the found substring pat-

terns inside the given preliminary segmentation have to be further processed.

5.1 Substring Patterns

Let us assume N consecutive musical patterns forming one repeated sequence. By re-

moving different borders between these patterns, one can form multiple new sequences,

all describing a different segmentation of the initial sequence. All (new) sub sequences

that could be included is such a segmentation are shown in Figure 28, for a given sequence

of 4 patterns.

To decide which of these segmentations optimally represents the underlying musical pat-

tern(s), the quality of each potential segmentation has to be evaluated. This quality can be

based on two factors: the length of the combined patterns and the similarities among all

patterns that have to be combined to form a specific segmentation (see Section 5.2).

Finding the optimal combination of all sections forming a subsequence can be formulated

6Although some of these patterns may just have been generated by applying the novelty function, most
of them originate from operations resolving overlapping conflicts of intervals.

54

5.1 Substring Patterns

S = { ... - A - B - C - D - E - F - E - A - B - C - D - ... }

A B C D {ABCD}
{A - BCD}
{A - B - CD}
{A - B - C - D}
{A - BC - D}
{AB - CD}
{AB - C - D}
{ABC - D}

Figure 28: Example for a substring of length 4 {A − B − C − D} and all possible sub

sequences based on the deletion of different borders.

as a path search in a weighted graph7 G(V,E), where V is a set of vertices vi represent-

ing all possible combinations of neighboring sections (see Figure 29) and E is a set of

directed edges between adjacent vertices ei. By defining adequate quality measures for

each vertex and edge, the vertices traversed by the minimum-cost path through this graph

will represent the optimally combined-sections of the investigated subsequence.

Therefore, an algorithm to find all relevant substring patterns in the given segmentation

as well as quality measures for the vertices and edges of the graph G(V,E) have to be

defined.

5.1.1 Substring Search

Starting with the first symbol in S, the search for substrings is performed by iteratively

comparing all positions of individual symbols. As long as all positions of two (or multi-

ple) symbols always follow each other, a substring is generated (see Algorithm 3).

The resulting set sall will contain all substrings (longer than one symbol) found for the

given symbol sequence. To find the final set of relevant substrings, all substrings in the

set are compared. Starting with the most frequent substring, which is naturally relevant,

all other substrings are compared to the symbols included in the relevant string and sub-

strings containing any of the symbols are deleted. This procedure is repeated for all other

substrings in the order of their number of occurrences.

7More precisely, the graph representing all possible combinations of segments is a directed acyclic
weighted graph, as the direction of the edges in the graph is defined and no path starting at a certain vertex
will lead back to this vertex.

55

5.2 Quality Measures

in

A

AB

ABC

ABCD

B

BC

BCD

C

CD

D

out

w(eAB,CD)
w(vAB) w(vCD)

Figure 29: Example for a graph representation of all possible combinations of 4 patterns.

The exemplary path {in → AB → CD → out} (indicated by dashed gray lines) shows

the weights included if the patterns A and B and the patterns C and D are combined.

5.2 Quality Measures

The conditions to evaluate if and how prototypes and their related musical patterns form-

ing a substring should be combined, can be based on the following basic rules:

• A high similarity between two patterns (prototypes) indicates that the patterns should
be combined, while a low similarity indicates that the patterns should better remain
separated.

• Based on a desired length λd, combined patterns (e.g. AB) leading to a combined
length λAB close to λd should be merged, while combined patterns which would be
too long (e.g. λAB � λd) should better remain split.

Desired Length The definition of a desired length λd is relatively easy. Based on music

theoretical considerations, this length can be set to 8 bars (a typical length for musical

segments). A Gaussian weighting function, whose center point is defined by the number

of beats representing λd, can then be constructed. If the length λc of a combined prototype

is exactly λd bars, the weighting related to this length will be 1, while longer and shorter

56

5.2 Quality Measures

Algorithm 3 Search for Substrings
1: sall ← {}
2: for k = 1 to l − 1 do
3: scur ← S(k)
4: i← 1
5: while find(S = S(k)) + i = find(S = S(k + i)) do
6: scur ← [scur,S(k + i)]
7: i← i+ 1
8: end while
9: if length(scur > 1) then

10: sall ← {sall, scur}
11: end if
12: end for

combinations are weighted according to the respective values of the Gaussian function

(see Figure 30)

g(λc) = e
−
(

(λc−λd−1)/λd
2σ2

)
, (46)

where λc is the combined length of two or more patterns and σ is set to 1/2.5. Values falling

outside this window (longer than ≈ 2 · λd) are set to zero.

8 16 24 32 40 48 56 64
0

0.25

0.5

0.75

1

duration [beats]

le
ng

th
 w

ei
gh

t

Figure 30: Gaussian weighting window defining the quality of different (combined) pat-

tern lengths for a song played in common time (4/4).

Segment Similarities For the definition of the similarities of two or more prototypes,

the template matching method introduced in Section 3.2.1 can be used. Previously in

the algorithm, NCC has been applied to compare the repetitions of 2 bar slices inside

the SDM to find all segment candidates. Similarly, NCC can now be used to compare

longer slices of the SDM, representing the individual prototypes of a repeated sequence.

57

5.2 Quality Measures

To compute the inter similarity of two prototypes Pi and Pj of a repeated sequence, the

respective slices of the SDM have to be compared.

The first occurrence of each prototype inside the SDM, related to the time interval ti,1 =

[si, ei], is selected to represent the prototype. Therefore, the SDM slice will start at column

si and end at column ei. As two prototypes will typically not have the same length,

the slice related to the shorter prototype is considered as template image and the longer

slice as search image. The similarity of the prototypes is then defined by the maximum

correlation value in the resulting correlation vector cij (see Figure 31).

Combined Quality Measures As each vertex vi represents one possible combination of

prototypes, the weight related to the vertex w(vi) is defined by the inner similarity and the

combined length of the merged sections. Assuming a vertex representing the combination

ofN sections (defined byN prototypes {P1, . . . ,PN}, where ln is the length of prototype

Pn) , the following weights can be computed:

The average inner similarity

ws =
1

N − 1

N−1∑
n=1

max(cn,n+1), (47)

the weight of the combined lengths

wl = g

(
N∑
n=1

ln

)
(48)

and the final combined weight of the vertex vn

w(vi) = 1− ws + wl
2

. (49)

(If a vertex represents only an individual section, its weight is simply defined by its length:

w(vi) = wl)

Accordingly, the weight of an edge w(eij) is defined by the inter similarity of the (com-

bined) prototypes connected by the respective edge.

5.2.1 Path Search

Considering the graph G(V,E) (see Figure 29) representing all possible combinations

of subsets and all the weights that have been defined for the edges and vertices of the

58

5.2 Quality Measures

A B C D
0.6

0.4

0.2

0

-0.2
2 4 6 8 10 12 14 16

50

150

250

350

450

64 108 142
NCC shift [beats]

N
C

C
 c

oe
ffi

ci
en

t

w(eCD)
cA,B cC,D

time [beats]

tim
e

[b
ea

ts
]

cB,C

w(eAB)
w(eBC)

= cC,D

= cA,B
= cB,C

Figure 31: To find an estimate of the similarity of two or multiple musical patterns, the

respective slices inside the mapped SDM (left) are correlated. In this example, the patterns

C and D should be combined, as they represent almost identical SDM slices, while the

other patterns should remain split (no correlation).

grap, all paths through the graph can now be evaluated, to find the optimum combination

of subsets. A complete path P represents one possible way from the origin (v0) to the

destination (vN), by traversing the respective edges inside the graph. Therefore, given

an ordered list L of length Np with the indices of all vertices belonging to a possible

segmentation, the related path can be represented as a list of all vertex pairs.

P = {(v0, vL(1), . . . , v(L(NP)), vN} (50)

The cost of the path is the combined cost of all traversed vertices and edges.8

c(P) =

Np−1∑
n=1

w(vL(n)) + w(eL(n),L(n+1)) (51)

By finding the minimum cost path in the set of all paths, P = {Pk|k = 1, . . . , Nk}, the

path representing the optimum segmentation of the related subsequence can be found.

Popt = argmin
P
{c(P)} (52)

8As v0 and vN and their related edges only represent the origin and ending of the graph, these vertices
and related edges are not related to any weights.

59

5.3 Final Segmentation

5.3 Final Segmentation

After incorporating the information regarding potential sub-sequences into the prelimi-

nary segmentation, the musical structure of the investigated song is almost completely

defined. In a last step, short gaps < 2 bars are simply filled by the segment following the

gap and larger gaps > 2 bars are defined as non repeated segments and are provided with

a unique symbol. Figure 32 shows an example for a typical segmentation found by the

algorithm (more example segmentations are given in Section 6.4).

1

intro intro

1 2

verse verse verse mod

3

chorus chorus chorus
instru chorus chorus chorus

final

2 3 4 2 3 3 5 61 1 1Det.:

Ref.:

Figure 32: Autoamtically detected segmentation (Det.), SDM and reference segmentation

(Ref.) of the song "Head Over Feet" by Alanis Morisette.

60

6 Evaluation and Results

Defining a ground truth for musical segmentation is a very crucial task as people tend to

define transitions between segments very differently. For example, repetitions within a

verse or any other section can be annotated as one large or two smaller parts, depending

on the subjective interpretation of temporal structures of the annotating person. Therefore,

multiple segmentations of one and the same song could be considered as right or wrong,

depending on which ground truth is used to evaluate the results.

Another problem are repetitions of parts which are not exactly identical to prior occur-

rences of the part (e.g. new instrumentation). Some people may tend to assign a new

label to such a modified repetition, while others may not. Therefore, the musical form of

a song is rarely unambiguous and basically only the composers could ultimately define

the true musical form of their compositions. Still, every evaluation of musical structure

has to be based on a pre defined ground truth. A detailed discussion on the problem of the

ambiguity of ground truth annotations and the topic of evaluating structuring algorithms

can be found in [Pei07].

In literature, many different evaluation metrics for MSD algorithms have been proposed.

To allow for a direct comparison to other evaluation results published in literature, the

performed evaluation is based on the most commonly used metrics for the respective tasks

(standard and pairwise F-measure). Additionally, the evaluations have been performed on

one of the most frequently deployed datasets in the field.

6.1 Dataset

For the main evaluation of the system, a famous dataset consisting of 174 songs from The

Beatles (in literature often referred to as TUT Beatles) was selected.9 This dataset has

widely been used before by other authors to evaluate MSD systems.

Additionally, an extensive evaluation of 5 well known MSD algorithms (Peiszer [PLR08],

Levy [LS08], Barrington [BCL10], Paulus [PK08]) has been conducted in [Smi10] based

on this dataset and the published results allow for a direct comparison of the presented

approach to the algorithms evaluated in this test. In addition to these algorithms, an-

other recently published result on the same test set (Kaiser [KS10]) was included to the

comparison.

9http://www.cs.tut.fi/sgn/arg/paulus/structure.html

61

6.2 Evaluation Metrics

The 174 songs represent 13 full albums and offer a range of different types of songs, al-

though they have all been composed and played by the same band. As already mentioned,

the annotations are publicly available at and have been applied without any modifications.

Besides the main testing corpus, another small dataset (Mixec corpus) has been added to

the evaluation, to include a little more variety of musical styles. This second, smaller body

has been labeled by either professional musicians and/or musicologists for the MPEG-7

working group.10 The corpus is similar to the one used in [LS08] and consists of 20 pop

songs by artists like Alanis Morisette, Björk, Madonna or The Spice Girls. Although the

annotations for the selected songs are also publicly available at, a direct comparison to

other systems is not possible, as our selection of songs was mainly based on the availabil-

ity of songs and has not been used in other publications before.

Since the labeling in both sets was done in seconds, all found segment borders had to be

converted back from beat-level to seconds, granting a common time base for the automat-

ically detected segmentation and the annotated ground truth.

6.2 Evaluation Metrics

When evaluating MSD system, mainly two qualities of the systems are of interest: the

boundary detection performance and the segmentation performance.

Boundary Detection The boundary detection performance of an algorithm is typically

evaluated by standard F-measure. This measure does not evaluate any relations of bound-

aries or found sections, but simply compares the positions of the automatically detected

boundaries to the boundaries inside the annotations. As the detections will (almost) never

be perfect, most authors allow deviations of ±3 seconds from the true boundaries.

Based on this threshold, one can define true positives (detected border→ reference bor-

der), false positives (detected border→ no reference border) and false negatives (missed

reference border). By the relations of the resulting values, the recall r, precision p and

the F-measure f for the related segmentation can be calculated.

r =
truePos

truePos+ falseNeg
(53)

p =
truePos

truePos+ falsePos
(54)

10http://www.elec.qmul.ac.uk/digitalmusic/downloads

62

6.2 Evaluation Metrics

f =
2pr

p+ r
(55)

A high recall shows that most of the reference borders have been found (but maybe other

found borders are wrong), while a high precision indicates that most found borders cor-

respond to positions of reference borders (but maybe some reference borders have been

missed). Therefore, a high F-measure corresponds to a balanced relation of found and

missed borders and indicates an overall successful boundary detection performance.

Segment Detection For the evaluation of the segmentation performance, two differ-

ent evaluation metrics which have already been used in musical structure detection be-

fore [LF08] have been selected: the pairwise F-measure and the directional Hamming

distance.

The pairwise F-measure F is a standard evaluation metric for clustering algorithms and

represents the harmonic mean of the pairwise precision Pr and recall rate Rr. Given a set

of identically labeled pairs of beats in the reference segmentation Gr and the same type

of set in the automatically detected segmentation Gd, the measures are defined as follows:

(|· | denotes the cardinality of the respective set)

Pr =
|Gd ∩Gr|
|Gd|

(56)

Rr =
|Gd ∩Gr|
|Gr|

(57)

F =
2 · Pr ·Rr

Pr +Rr

(58)

A low pairwise precision rate is an indicator for under segmentation, while a low pairwise

recall rate indicates over segmentation. The pairwise F-measure therefore describes an

overall quality of the found segmentation (see Figure 33).

The second metric is the directional Hamming distance [ANSS05]. Given the reference

segmentation as a sequence of n segments R = {S1
R, S

2
R, . . . , S

n
R} and the automatically

detected segmentation as a sequence of m segments D = {S1
D, S

2
D, . . . , S

m
D }, the direc-

tional Hamming distance is denoted by DH(R ⇒ D). For each segment SiD from the

detected segmentation, a segment SjR from the reference segmentation is associated so

that the overlap of the segments SiD ∩ S
j
R is maximal. The directional Hamming distance

is then defined as:

63

6.3 Results

DH(R⇒ D) =
∑
SiD

∑
SkR 6=S

j
R

|SiD ∩ SkR| (59)

Similarly, the inverse directional Hamming distance can be symmetrically computed for

DH(D ⇒ R). Normalizing the resulting distances by the number of beats N of the

underlying track allows us to derive two error rates: the missed boundaries (or miss rate)

m = DH(R⇒ D)/N and the segment fragmentation (or false alarm rate) f = DH(D⇒
R)/N . High values of m (low values of 1 −m) indicate under segmentation, while high

values of f (low values of 1− f) indicate over segmentation (see Figure 33).

C C C EDA B B B

C C C ADA B B B
Ref.:

Det.:

Figure 33: Segmentation example: Rr 60%, Pr 62.5%, Fr 61.2%, 1−m 0.66, 1−f 0.75

6.3 Results

Table 1 shows the overall boundary detection performance as well as the overall seg-

mentation performance of the system presented in this thesis on the TUT Beatles dataset.

The results are based on standard F-measure (Boundaries) and pairwise F-measure (Seg-

ments). They may be of particular interest, as they can directly be compared to other

results published in literature.

To the best of our knowledge, Table 2 shows all previously reported evaluation results

based on the same evaluation metrics and the same testing corpus. The direct comparison

to Table 1 shows that the presented system outperforms all other systems in terms of

the achieved F-measures for both, the boundary detection as well as the segmentation

performance.

Although the increase in performance for the boundary detection does not show a signifi-

cant difference (p < 0.05) to the best priorly reported result, the performance increase for

the segmentation is significant and proofs the stability of the presented system.

As already mentioned, in addition to the main evaluation, another small test on a second

dataset (Mixed corpus) has been performed. The results for this set are summarized in

Table 3. The evaluation results on the full segmentation are almost identical to the results

64

6.3 Results

Table 1: Segmentation Results (TUT Beatles)

R (%) P (%) F (%) ⊥ CI

Boundaries 69.8 62.8 64.2 ⊥ 3.5

Segments 72.3 67.6 67.9 ⊥ 2.3

Table 2: Previously reported results (TUT Beatles)

Boundaries (F%) Segments (F%)

Peiszer 61.7 59.6

Levy 58.1 59.6

Barrington 55.5 57.2

Paulus 55.0 59.9

Kaiser - 62.1

based on the TUT Beatles corpus, indicating the stability of the segment detection perfor-

mance of the system. At the same time it is interesting to note that the boundary detection

results are significantly worse.

In the next Section, the reasons for the diverging boundary detection results for the two

testing corpora will be discussed based on a selected segmentation example. It will also

be shown, why the boundary detection results do not always influence the segmentation

performance of the system.

Table 3: Segmentation Results (Mixed)

R (%) P (%) F (%) ⊥ CI

Boundaries 62.8 58.3 57.1 ⊥ 9.7

Segments 70.1 65.9 65.6 ⊥ 6.2

As additional song-based evaluation metrics, the missed boundaries (1 − m) and the

segment fragmentation (1 − f) based on the Directional Hamming distance have been

computed. The scatter plots in Figure 34 based on these two metrics indicate a relatively

well balanced relation between slightly over- and under-segmented songs. This shows

that the algorithm does not suffer from a tendency to generate over- or under-segmented

descriptions of the musical structure (see Section 6.4).

65

6.4 Discussion

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 − f

1
−

m

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1 − f

1−
 m

Figure 34: Scatterplot of segment fragmentation against missed boundaries for the TUT

Beatles corpus (left) and the Mixed corpus (right).

6.4 Discussion

The results presented in the previous Section proof that the concept of template based

SDM analysis followed by the proposed processing chain is an interesting and promising

alternative to other SDM based methods. To outline some of the strengths and problems

of the algorithm, a short list of example segmentations will now be presented. The re-

spective SDMs are included in the examples to show which patterns of the SDM have

been selected by the algorithm to represent relevant sections of the song.

The following examples always show the detected segmentation (Det.:), the reference

segmentation (Ref.:) and the related SDM. Additionally, a summary of the individual

evaluation results related to each example is given in Table 4.

Example 1: Perfect Segmentation The first example shows the (almost) perfect seg-

mentation of a Beatles song. Although the main patterns found by the algorithm are

relatively obvious, a method based on the pure detection of off diagonal lines may not

have been able to correctly detect the correct verse sections. An algorithm only based on

the detection of rectangular blocks obviously would have failed.

Example 2: Typical Segmentation The second example shows a more or less typical

segmentation produced by the algorithm. Although this time the patterns inside the SDM

are not as obvious as before, most of the segment borders have been detected correctly

66

6.4 Discussion

1

intro

2 2 223 3

verse verse versebridge versebridge outroverse S

4 5Det.:

Ref.:

Figure 35: (Example 1) The Beatles - I Saw Her Standing There

(slightly shifted related to the ground truth). When looking at the patterns inside the

SDM, the found segmentation is reasonable, although it does not perfectly match the

given ground truth segmentation. The pattern representing the second verse has been

identified as individual segment and the final refrain section has been split into a refrain

section and an individual outro section.

As already mentioned, this result is typical for content based segmentation algorithms.

Even if a good representation of repetitive sections based on the pure musical content can

be found, there is no guarantee that the found sections also perfectly represent the musical

form of the song, as many other important characteristics influencing the musical form,

like lyrics or the musical style, can not be incorporated into the found representation.

21 23 2 234

intro refrain verse refrain verse refrain verse refrain L out

5Det.:

Ref.:

Figure 36: (Example 2) The Beatles - Devil In Her Heart

Example 3: Over- and under-segmentation The following two examples show two

typical cases of over- and under-segmented songs. The first example (under-segmentation)

shows that the main repetitive structure inside the SDM has correctly been detected by

the algorithm, but the fine-structure given by the reference segmentation has been missed.

67

6.4 Discussion

Although this specific example also shows some inconsistencies in the reference segmen-

tation (the different segmentation of verses and refrains), the results show that sequential

structures which are always identically repeated (and do not represent a concatenation of

two vertical blocks) can not be separated by the presented algorithm.

1 2

intro intro

3 35 33

verse verse trans transverse verse
softref 1 ref

trans ref 1 ref 1ref 2 ref 2ref
trans

ref
trans

1 4Det.:

Ref.:

2

Figure 37: (Example 3a) Britney Spears - Hit Me Baby One More Time

The second example shows the over-segmentation of the verse of a song. Again, the

structures inside the SDM have correctly been detected by the algorithm (this time, also

an algorithm based on the detection of off-diagonal lines and vertical blocks would pre-

sumably have succeeded), but they are not in-line with the given reference segmentation.

Additionally, the intro of the song has not been detected correctly.

When listening to the song, the errors made by the algorithm can easily be explained as the

intro is musically almost identical to the second part of the verse and the verse consists

of two musically significantly different parts. This example again shows that reference

segmentations representing the musical form of a song are often influenced by additional

factors besides the pure musical similarity.

1 1 12 122 3 3

intro verse versebridge bridge verse out

4Det.:

Ref.:

Figure 38: (Example 3b) The Beatles - All I’ve Got To Do

68

6.4 Discussion

Example 4: Border Detection and Structure Detection As mentioned in the previous

Section, the border detection results for the Mixed corpus are significantly worse than the

results achieved for the TUT Beatles corpus. This difference may be explained based on

the following observation.

Most songs played by The Beatles do not show a strong "inner" similarity of individual

sections. In contrast, the verses and choruses of pop-songs are often composed by two or

more repetitions of basically identical parts. In such cases, the algorithm often identifies

all parts as individual repetitions of the same section, leading to too many borders in the

segmentation and poor boundary detection results (see Figure 39).

The evaluation results for the full segmentation do not indicate this over-segmentation, as

all sections belong to the same part. Comparing the labels related to each beat with ground

truth labels (see Section 6.2) does not reveal borders between identical parts. Therefore,

this "inner" over-segmentation of segments can only be identified by looking at the border

detection results.

The following example shows a typical case of multiple "inner" over-segmented parts.

In particular the final section based on the repetition of multiple identical parts (often

slightly modified repetitions of the chorus) is typical for many pop songs. The algorithm

separates these sections into individual repetitions, although they are only represented as

one section in the annotated ground truth.

1 1

intro

2 2 2 2 33

verseA verseB verseC verseA verseB verseCinstru intro coda

4 41 1 6 6 66Det.:

Ref.:

5

Figure 39: (Example 4) Chicago - Old Days

Example 5: Repeated Sequences The last example shows a song which is mainly com-

posed of one repeated musical sequence (except for the chorus sections). Although the

algorithm is able to find this repeated sequence, the sequence is split at a position which

does not represent the real musical structure of the song. This happens, as a part of the

69

6.4 Discussion

sequence already occurs in the second half of the intro. The algorithm detects this part

and as a consequence interchanges the first and second half of the sequence.

Although the segmentation performance is acceptable (see Table 4), the boundary detec-

tion performance is extremely bad, as all found boundaries (expect for the boundaries of

the chorus sections) are mis-aligned with respect to the reference boundaries.

This example was also chosen to show that segmentation algorithms purely based on

repetitive structures will always fail on songs, where individual sections do not musically

differ. As already mentioned, in these cases, new approaches incorporating the detection

of a singing voice or even the lyrics would probably be the only way to select the right

borders.

1

intro

2 2 2 2 22

verse verse verse verse instruchorus chorus

2 3 2 3 5 54 44Det.:

Ref.:

Figure 40: (Example 5) The Clash - Should I Stay Or Should I Go

Table 4 shows the individual evaluation results for all example segmentations. It may be

interesting to note that some results may be worse than expected while others may be

better than they should "intuitively" be. This shows that the chosen evaluation metrics

will not always be able to perfectly describe the segmentation performance of a system,

but still give a (strong) indication, if a system generally produces reasonable results or

not.

Table 4: Evaluation results for the example segmentations

Song T itle r p f Rr Pr Fr 1−m 1−f
1. I Saw Her Standing . . . 1.00 1.00 1.00 0.96 0.95 0.96 0.98 0.98

2. Devil In Her Heart 0.87 0.87 0.87 0.62 0.68 0.64 0.80 0.74

3a. Hit Me Baby. . . 0.53 0.89 0.66 0.40 0.79 0.54 0.54 0.87

3b. All I’ve Got To Do 0.80 0.44 0.57 0.78 0.52 0.62 0.80 0.66

4. Old Days 1.00 0.50 0.66 0.89 0.75 0.81 0.94 0.86

5. Should I Stay Or. . . 0.33 0.13 0.19 0.61 0.68 0.64 0.78 0.76

70

7 Segment Related Genre Classification

As already mentioned in Section 1.1.2, knowing the musical structure of a song can be

useful in many applications, in particular in the field of MIR. It has also been stated that

the most obvious applications profiting from such prior knowledge are automatic thumb-

nail generation and improved inter section navigation for music players. Both applications

can directly use the information extracted by the MSD system without any sophisticated

post processing.

Besides such obvious fields of applications, the musical structure could also be used to

improve or modify other higher level MIR systems, as it enables them to focus their

processing on specific parts of the song. For example, systems for automatic instrument

recognition could process each part separately and exploit the dependencies of parts - as

identically labeled parts will typically have similar instrumentations.

In this Section, another potential area of application that may profit knowledge about

the musical structure of songs is investigated: automatic genre classification. Since most

genre classification systems use feature vectors which are computed either from the whole

audio file or from short arbitrary excerpts to find an adequate genre label [SZM06], these

systems may profit from restricting this excerpt to representative parts.

Although no explicit detection of the most representative part(s) (e.g. a chorus detection)

has been performed in the segment detection system presented in this thesis, one may still

state that the most representative parts are also the most frequent parts (which will often

be the chorus sections).

Based on this idea, three experiments have been performed to investigate the influence of

knowing something about the internal structure of a song (extracted with the presented

algorithm) when aiming to extracts its genre label [WS11]. After a short introduction

to the field of musical genre classification, the performance of a state of the art genre

classification system based on different types of input data (generated with and without

prior knowledge on the underlying song structures) will be evaluated.

7.1 Automatic Genre Classification

Due to the constant growth of music data archives, the automatic classification and or-

ganization of large song collections has become a prominent issue. Genre classification

is of particularly great importance, since the genre label is still one of the most relevant

descriptors when organizing and browsing large music collections.

71

7.1 Automatic Genre Classification

Musical genres evolved over the years as categories to describe certain common simi-

larities and characteristic of different types of music. Therefore, the musical genre does

not represent an immanent attribute of a song like its tempo or melody. Additionally,

the on-going evolving process led to many blurred boundaries among different genres

and varying genre taxonomies [PC00]. Considering this problematic concept, automatic

genre classification purely based on the audio content of a song without any additional

cultural information, is a very complex task with a lot of ambiguities.

Despite this problems, a lot of different systems for automatic genre classification have

successfully been developed during the last decade. Therefore, a short review on the

principle task of genre classification will be given, before the conducted experiments are

presented in Section 7.3. This overview may help to better understand the positioning of

the proposed pre-processing step as a part of a complete genre classification system.

segment
selection

feature
extraction

audio
file

short term
aggregation

song level
generalization

genre
classification

SDM
system

pre-processing classification system

Figure 41: As indicated, focusing the classification to selected segments based on a pre-

processing stage, does not modify the basic classification algorithm, but only provides

additional side information. (Dashed lines indicate optional paths.)

Feature Extraction
Similar to most pattern classification systems, a set of appropriate features has to be

extracted from the audio file in a first step. Typically, the audio file is split into short

(e.g. ≈ 50ms) (overlapping) frames (sometimes called analysis windows) and multiple

features are computed within each frame. A large amount of frame-based features have

been suggested for automatic genre detection [TC02], [Pee04], [LR05], but typically low-

level descriptors based on a spectral representation of the investigated audio frame are

used.

If higher-level features are used, aiming to describe certain long-term characteristics of

the file, like rhythmic, harmonic or timbral movements, the corresponding analysis frames

72

7.1 Automatic Genre Classification

have to be expanded to longer windows (e.g ≈ 1 − 3s), as short analysis windows can

not capture any information on the temporal evolution (rhythm) or tonal stability (har-

mony) of an audio file. Therefore, either longer analysis windows are directly applied, or

the evolution of certain features is observed over multiple time frames (see Short Term

Aggregation).

Each feature vector x extracted in this first stage, is composed of the individual feature

values xi and describes a point in a d-dimensional feature space χ.

x = (x1, . . . , xd)
T , x ∈ χ

Short Term Aggregation (optional)
As already mentioned, depending on the used set of features, it may be necessary or at

least beneficial, to observe certain features over multiple frames, to compute a perceptu-

ally relevant description of the investigated audio file. The temporal dimension of such

an aggregation window can either be based on a fixed length (texture windows) [TC02]

or on specific characteristics of the song (e.g. inter onset intervals [Wes05], beat inter-

vals [SZ05]). Typically, the aggregation is either performed by using the low order statis-

tics (mean, variance) of individual features over multiple time frames, or by defining a

feature extraction process which directly covers the respective amount of frames.

Song Level Generalization (optional)
Most approaches generalize the sequence of individual (aggregated) feature vectors

into a single, song-level feature representation, before the final classification is performed.

This can be done by applying a summarization function to the individual dimensions of

the extracted feature vector sequence. Typical summarization functions are the mean,

variance, median or certain percentiles. The resulting values can either be used to de-

scribe a statistical model of the temporal distribution of features (e.g. individual Gaus-

sians [LS01], Gaussian Mixture Models [TC02]) or, if the statistical descriptors are un-

wrapped they can directly be interpreted as one new, song-level feature vector [ME05].

Classification
At this point, either multiple frame level feature vectors, multiple aggregated feature

vectors, or a song level representation (song level vector/distribution) will form the input

of a classifier. Basically any known classification scheme can now be applied to the

provided features.

73

7.1 Automatic Genre Classification

The two main approaches to classify the given data into genres are based on supervised

and unsupervised classification. While supervised classification systems are trained based

on a certain genre taxonomy, unsupervised systems cluster the data in a non-supervised

way and the resulting classes will emerge purely from the objective similarities of fea-

tures. Since the genre label is not really an immanent attribute of a song, but influenced

by cultural factors, supervised classification methods, have been found to perform in a

more stable way than unsupervised systems [SZM06], as they profit from the cultural

information provided by a given set of genre labels.

Depending on the type (vectors, distributions) of feature representation, the main classifi-

cation techniques used for genre classification may be outlined as follows:

• distances between aggregated vectors

– K-nearest neighbors (K-NN), e.g. [TC02]

• distances between statistical models

– Earth mover’s distance (EMD) e.g. [AP02]

• decision boundaries between aggregated vectors

– Support Vector Machines (SVM), e.g. [SWP10]

– Artificial Neural Networks (ANN), e.g. [SZ05]

• statistical classifiers

– Gaussian mixture models (GMM), e.g. [TC02]

If not one generalized representation over the whole song is used for classification, but

individual representations on the level of frames or aggregation windows, the individual

classification results have to be combined. One simple but famous technique to perform

this operation is majority voting, where the class assigned to the majority of related frames

or windows is considered to be the class for the respective song.

Pre-Processing: Segment Selection
The advantages and disadvantages of different combinations of features, aggregation

techniques and classification schemes have extensively been discussed in literature [SZM06],

[TL08]. Still, it is important to note that despite their differences, all systems have one

major thing in common: the set of feature vectors (no matter what features are used),

has to be extracted from certain section of the investigated song. Some approaches ex-

tract the features from the whole song, while many other approaches use a 30 second

74

7.2 Selected Classification System

window of each song starting 30 seconds after the beginning of the song (to exclude non-

representative intro) to extract the different features.

Based on this observation, the influence of focusing the section(s) used for feature extrac-

tion to representative parts of a song will now be investigated based on a state-of-the-art

genre classification system. It has to be noted that the following experiments do not di-

rectly aim to improve or modify of the given classification system, but they have been

designed to investigate the influence of an additional pre-processing stage (see Figure 41)

on the resulting classification performance.

7.2 Selected Classification System

The genre classification system selected for the presented experiments was developed by

Klaus Seyerlehner et al. [SWP10]11 and ranked in the top positions of the MIREX 2009

genre classification task.12 It is based on a block processing framework and uses a set of

spectral descriptors (Spectral Pattern, Delta Spectral Pattern, Variance Delta Spectral Pat-

tern, Logarithmic Fluctuation Pattern, Correlation Pattern, Spectral Contrast Pattern) ex-

tracted within windows of different lengths. To get a final representation of the extracted

features, all features are generalized over the whole file using different generalization

functions. A detailed description of the block processing framework is given in [SS09]

and a detailed description of the used features can be found in [SWP10].

The feature vector resulting from the generalized spectral descriptors, is then fed into a

Support Vector Machine (SVM). The SVM implementation provided by the WEKA tool-

box [HFH+09], a powerful open source classification toolbox based on the Java program-

ming language, has been used to perform the classification task. Following the settings of

the selected reference system, the standard parameters of the WEKA SVM are used.

11We would like to thank the authors for kindly offering their prototype system to perform our experi-
ments.

12http://www.music-ir.org/mirexwiki

75

7.3 Classification Experiments

7.3 Classification Experiments

7.3.1 Testing Corpus

The songs selected for the experiements have been randomly drawn from a publicly avail-

able dataset.13 A subset of 8 genres was choosen from the set, aiming to include a wide

range of different styles: Alternative & Punk, Classical, Dance, Easy Listening, Hip-Hop,

Jazz & Blues, R&B, Rock & Pop. For the experiments, 40 songs per genre have been

selected, leading to a total corpus of 320 songs.

It has to be mentioned that some "ill-defined" or potentially overlapping genres (e.g. Rock

& Pop, Alternative & Punk) have intentionally been included into the selected list, as the

task should mimic a real world situation, where no selection on the used genre taxonomies

may be possible. Although the problem of overlapping genre taxonomies and ambiguities

within genres was proofed when listening to individual songs, no modifications on the

given genre labels have been performed, as the original labels have directly been selected

by the respective artists.

7.3.2 Thumbnail Generation

Naturally, the musical structure of a song can directly be used to generate representa-

tive previews or thumbnails of the respective song. Assuming that the most frequently

repeated parts also represent the most characteristic sections, thumbnail generation will

typically focus on these parts.

For the experiment, the following thumbnails of different lengths have been generated:

• 30s section, consisting of a concatenation of the most frequent segments (max. 3,

where always the first occurrence of each segment is used)

• 10s section, consisting of the most frequent segment

• 5s section, consisting of the most frequent segment

Individual parts of composite thumbnails are concatenated by beat synchronous cross

fading, to allow salient transitions between the parts. As typically only sections of a

musical segment are used for the thumbnails, these sections are extracted from the center

of the respective part.

13http://www.seyerlehner.info

76

7.3 Classification Experiments

In particular the 30 second parts turned out to be excellent song previews that could di-

rectly be used as classical thumbnails in a music library, although such an implementation

was not the goal of the experiment. The 10 and 5 second thumbnails may be too short

to use them as classical music previews, but they are generated to evaluate how much

information of a song is really needed to perform an automatic classification of its genre.

In addition to these thumbnails, a special version of the song excluding all non-repetitive

parts has been generated, consisting of a concatenation of all repeated segments. The

proposed list of thumbnails including this representation form Set 1 of the experiment.

The second set, Set 2, consists of segments of the same lengths as the thumbnails, but

in contrast to Set 1, they are simply extracted 30 seconds after the beginning of each

song. Therefore, they form more or less arbitrary sections that may - or may not include

representative parts. Also the non-modified, full song is included into this set.

7.3.3 Experiments

In a first step, the segmentations of all 320 files are extracted using the segment detection

system presented in this thesis. The resulting segments are then individually saved into

sub-files. Based on these files, the proposed set of thumbnails is generated, resulting

in 7 additional files per song (3 representative thumbnails, 3 arbitrary segments and the

complete song without non-repetitive parts).

Next, the feature extraction stage of the selected genre classification system is applied to

extract one feature vector from each available representation of the song: the full song,

all individual song parts (for repeated parts, only the first occurrence of each part is used)

and the 7 additional thumbnails. The stored feature vectors are then converted into the

ARFF file format, as this format is the standard input format for the WEKA classification

toolbox [HFH+09].

Based on this set of feature vectors, the following classification experiments have been

conducted:

Experiment 1 The aim of the first experiment was to investigate how the classification

performance changes, if the features used for classification are extracted from represen-

tative sections of the song instead of arbitrary parts. Therefore, all files of the previously

defined sets (Set 1 and Set 2) are classified into genres, allowing a direct comparison of

all pairwise results (e.g. 30 second parts from both sets).

77

7.4 Results

The experiment was conducted using the option of 10 times 10 fold cross validation pro-

vided by the WEKA toolbox, to retain statistically meaningful estimates of the achieved

classification accuracies.

Experiment 2 In the second experiment all segments of a song are individually clas-

sified into a genre.14 Based on the individual classification results, an extended majority

voting rule is applied to find a common genre label for the song.

To incorporate the duration of all labeled segments, not only the number of detections

related to each genre is evaluated (e.g. 3 parts → genreA, 2 parts → genreB), but the

durations of all song parts covered by each genre are compared. Naturally, the predomi-

nant genre covering the largest proportion of the song is applied as common genre label

to the investigated song.

Each run of the experiment was conducted using simple 10 fold cross validation, as the

train and test sets of each run had to be manually selected to avoid that parts of the same

song occur in the test and training set.

Experiment 3 The main intention of the last experiment was to investigate the inner

(genre) homogeneity of files. The individual classification results from the second ex-

periment are analyzed to see if mis-classifications are mainly caused by too much inner

diversity of songs, making it difficult to select one genre label for the song (e.g. individ-

ual genre labels for each part), or if the main problem is based on the inherent problem of

blurry or ill-defined borders among certain genres.

7.4 Results

Experiment 1 The results of experiment 1 are summarized in Table 5. Results show-

ing significant differences between pairs of thumbnails according to the pairwise t-test

included in the WEKA toolbox (based on a confidence level of p = 0.05), are marked

with an asterisk (∗).

Based on this measure, the tests on the given datasets show a significant difference in

classification performance for all thumbnails ≤10 seconds, but no significant differences

for the 30 second thumbnails and the whole song (with and without non repetitive parts).

14More precisely, not all individual segments of the song are classified, but only the first occurrence of
each repeated section. The classification of this segment is assumed for all other occurrences of the segment.

78

7.4 Results

Therefore, the results indicate that the classification performance of the selected genre

classification system is not very sensitive to the selection of test and training data, as long

as the "hit by chance" of a representative section is relatively large (e.g. 30 seconds).

(This assumption is qualitatively proofed in experiment 3.) Still, it could be shown that

focusing feature extraction to representative parts may be an important strategy when

aiming to reduce the area selected for feature extraction.

Table 5: Classification Accuracies (%) |mean(std)

Section Set 1 Set 2

Full Song 59.16 (1.39) 60.13 (1.32)

30 sec 58.69 (1.35) 58.13 (1.44)

10 sec 56.91 (1.55)∗ 52.75 (1.28)

5 sec 51.06 (1.69)∗ 47.63 (1.15)

Experiment 2 In the second experiment, the individual parts of each song have been

classified into individual genres. Based on these detections, a single genre label for each

song has been found using an extended majority voting rule (see introduction to experi-

ment). The overall classification accuracy for this test was 58.8%, showing no significant

difference to the results achieved by the direct classification of the full song or the con-

catenation of all repeated parts of a song (see Table 5). This again indicates that focusing

the classification on specific parts when trying to find a common genre label does not

automatically help to improve the overall classification accuracy.

As expected, the majority of songs related to well defined genres like Classical or Hip-

Hop has been labeled correctly, while the results of vague genres like Pop & Rock or

Easy Listening show a high amount of mis-classifications (see Table 6). For example, only

27% of the segments related to songs of the category Rock & Pop are marked according

to their reference genre.

To investigate, if the found mis-classifications are mainly caused by too much inner di-

versity of songs, making it difficult to assign one genre label to the song (e.g. too many

individual genre labels inside a song), or if the main problem is the inherent problem

of blurry or ill-defined borders among certain genres, it has been decided to perform an

additional experiment on the dataset.

Experiment 3 In this last experiment, the average inner homogeneity of all songs in the

test set has been evaluated, by analyzing how many percent of each song are in average

79

7.4 Results

Table 6: Confusion matrix for Experiment 2
Alt./Punk Classical Dance Easy List. Hip-Hop Jazz/Blues R&B Rock/Pop

Alt./Punk 25 1 0 3 0 2 1 8

Classical 1 35 0 4 0 0 0 0

Dance 0 0 30 1 2 2 2 3

Easy List. 1 9 1 19 1 3 2 4

Hip-Hop 1 0 4 0 31 0 3 1

Jazz/Blues 2 2 2 8 3 16 4 3

R&B 2 0 1 3 5 3 23 3

Rock/Pop 17 0 0 6 1 3 4 9

covered by the pre-dominant genre, compared to the percentages covered by other genres

detected inside the same song. For example, if 70% of a song are covered by genre "A",

20% by genre "B" and 10% by genre "C", the homogeneity profile of the song (considering

a maximum number of 4 genres) would be [70, 20, 10, 0].

This investigation is performed individually for each genre as well as for the whole testing

corpus. It is important to note that the reference genre of each song is ignored, as the

predominant genre is not automatically the reference genre (see experiment 2).

The results listed in Table 7 and Figure 42 show that in average the pre-dominant genre

of a song typically clearly covers the largest proportion of the song. As this is not only

true for "strong" genres like Classical, but also for "problematic" genres like Rock & Pop,

the results indicate that mis-classifications, at least when considering the used dataset, are

not primarily caused by a too high variety of different styles within songs, but by poorly

defined borders between genres.

Table 7: Homogeneity profiles of songs (%) |mean(std)
main genre sub-genre 1 sub-genre 2 other-genres

Alt./Punk 74.4 (4.2) 19.2 (3.7) 4.8 (2.3) 1.6
Classical 85.7 (4.2) 12.0 (3.4) 1.8 (1.2) 0.5
Dance 78.2 (4.4) 15.5 (3.5) 5.2 (2.8) 1.1
Easy List. 70.1 (4.7) 20.5 (3.7) 7.6 (3.0) 1.8
Hip-Hop 81.8 (4.3) 14.4 (3.8) 3.0 (2.1) 0.8
Jazz/Blues 70.9 (4.2) 21.0 (3.5) 6.1 (2.6) 2.0
R&B 76.8 (4.3) 18.0 (3.8) 3.8 (2.1) 1.4
Rock/Pop 73.8 (4.1) 20.6 (3.6) 4.6 (2.4) 1.0

Overall 76.2 (4.3) 17.6 (3.7) 4.6 (2.4) 1.6

These observations may also explain the relatively low influence on the genre classifi-

cation performance, when integrating knowledge about the musical structure to the clas-

sification process. The chance of mainly including "representative" segments of a song

is very high, if ≈ 76% of a song represent the same genre characteristics and a 30 sec-

80

7.5 Discussion

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

Alternative & Punk Classical Dance

Easy Listening Hip-Hop Jazz & Blues

R&B Rock & Pop Overall

Figure 42: Homogeneity profiles of all genres. The bars indicate the average coverage of

each song by different genres (bar 1→ predominant genre, bars 1− 3→ sub-genres).

ond part (see experiment 1) is extracted as template of the song. This is in particular

true, if such a part is extracted 30 seconds after the beginning of the song, as potentially

unrepresentative sections like the intro and outro are automatically excluded.

7.5 Discussion

The presented results strongly support the notion that genre labels are problematic cate-

gories when trying to organize music collections - especially if only one genre label per

song is allowed.

The conducted experiments indicate that incorporating knowledge about the musical struc-

ture of a song is a good and important strategy, when only short excerpts of songs need

to be classified into individual genres. For systems allowing multiple genre labels per

song, the classification of individual parts can provide important information, as any clas-

sification system can directly be used to find all genres related to a song. Besides, the

individual homogeneity profiles of each song song could be useful indicators when trying

to identify non representative songs in large databases and may help to better understand

certain genre ambiguity problems when analyzing classification results.

81

REFERENCES

References

[All83] J. Allen, “Maintaining knowledge about temporal intervals,” Communica-
tions of the ACM, vol. 26, no. 11, pp. 832–843, 1983.

[ANSS05] S. Abdallah, K. Noland, M. Sandler, and M. S, “Theory and evaluation of a
bayesian music structure extractor,” in Proc. of the 6th International Confer-
ence on Music Information Retrieval (ISMIR), 2005, pp. 420–425.

[AP02] J. Aucouturier and F. Pachet, “Music similarity measures: What’s the use,”
in Proceedings of the 3rd International Conference of Music Information
Retrieval (ISMIR), 2002, pp. 157–163.

[AS01] J. Aucouturier and M. Sandler, “Segmentation of musical signals using hid-
den markov models,” Preprints-Audio Engineering Society, 2001.

[BCL10] L. Barrington, A. Chan, and G. Lanckriet, “Modeling music as a dynamic
texture,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 18, no. 3, pp. 602–612, 2010.

[BGP06] G. Boutard, S. Goldszmidt, and G. Peeters, “Browsing inside a music track,
the experimentation case study,” in Proc. of the 1st Workshop on Learning
Semantics of Audio Signals, 2006, pp. 87–94.

[BP92] J. Brown and M. Puckette, “An efficient algorithm for the calculation of a
constant q transform,” Acoustical Society of America, vol. 92, pp. 2698–
2698, 1992.

[BR87] R. Bosanquet and R. Rasch, An elementary treatise on musical intervals and
temperament. Diapason Press, 1987, vol. 4.

[Bro90] J. Brown, Calculation of a constant Q spectral transform. Vision and
Modeling Group, Media Laboratory, Massachusetts Institute of Technology,
1990.

[BW01] M. Bartsch and G. Wakefield, “To catch a chorus: Using chroma-based rep-
resentations for audio thumbnailing,” in IEEE Workshop on the Applications
of Signal Processing to Audio and Acoustics. IEEE, 2001, pp. 15–18.

[BW05] ——, “Audio thumbnailing of popular music using chroma-based represen-
tations,” IEEE Transactions on Multimedia, vol. 7, no. 1, pp. 96–104, 2005.

[CVG+08] M. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney,
“Content-based music information retrieval: current directions and future
challenges,” Proc. of the IEEE, vol. 96, no. 4, pp. 668–696, 2008.

[Dav66] C. Davie, Musical structure and design. Dover Publications Inc, 1966.

82

REFERENCES

[Eck05] D. Eck, “Finding meter in music using an autocorrelation phase matrix and
shannon entropy,” in Proc. of the 6th International Conference on Music
Information Retrieval (ISMIR, 2005, pp. 504–509.

[Ell07] D. Ellis, “Beat tracking by dynamic programming,” Journal of New Music
Research, vol. 36, no. 1, pp. 51–60, 2007.

[Ero01] A. Eronen, “Comparison of features for musical instrument recognition,”
in IEEE Workshop on the Applications of Signal Processing to Audio and
Acoustics. IEEE, 2001, pp. 19–22.

[Ero07] ——, “Chorus detection with combined use of mfcc and chroma features
and image processing filters,” in Proc. of the 10th International Conference
on Digital Audio Effects (DAFx-07), 2007, pp. 229–236.

[Fas82] H. Fastl, “Fluctuation strength and temporal masking patterns of amplitude-
modulated broadband noise,” Hearing Research, vol. 8, no. 1, pp. 59–69,
1982.

[Foo00] J. Foote, “Automatic audio segmentation using a measure of audio novelty,”
in Proc. of IEEE International Conference on Multimedia and Expo, vol. 1,
2000, pp. 452–455.

[FZ07] H. Fastl and E. Zwicker, Psychoacoustics: facts and models. Springer-
Verlag New York Inc, 2007.

[GC00] J. Gao and H. Cai, “On the structures and quantification of recurrence plots,”
Physics Letters A, vol. 270, no. 1-2, pp. 75–87, 2000.

[Got06] M. Goto, “A chorus section detection method for musical audio signals and
its application to a music listening station,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 14, no. 5, pp. 1783–1794, 2006.

[HFH+09] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten,
“The weka data mining software: an update,” ACM SIGKDD Explorations
Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[KS10] F. Kaiser and T. Sikora, “Music structure discovery in popular music using
non-negative matrix factorization,” in Proc. of the11th International Confer-
ence of Music Information Retrieval (ISMIR), 2010, pp. 429–434.

[Lew95] J. Lewis, “Fast normalized cross-correlation,” in Vision Interface, vol. 10,
1995, pp. 120–123.

[LF08] H. Lukashevich and I. Fraunhofer, “Towards quantitative measures of eval-
uating song segmentation,” in Proc. of the 9th International Conference of
Music Information Retrieval (ISMIR), 2008, pp. 375–380.

83

REFERENCES

[LR05] T. Lidy and A. Rauber, “Evaluation of feature extractors and psycho-acoustic
transformations for music genre classification,” in Proc. of the 6th Interna-
tional Conference on Music Information Retrieval (ISMIR), 2005, pp. 34–41.

[LS01] B. Logan and A. Salomon, “A music similarity function based on signal anal-
ysis,” in IEEE International Conference on Multimedia and Expo (ICME),
2001.

[LS08] M. Levy and M. Sandler, “Structural segmentation of musical audio by con-
strained clustering,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 16, no. 2, pp. 318–326, 2008.

[LWOO08] R. Loughran, J. Walker, M. ONeill, and M. OFarrell, “The use of mel-
frequency cepstral coefficients in musical instrument identification,” in Proc.
of the International Computer Music Conference (ICMC), 2008.

[ME05] M. Mandel and D. Ellis, “Song-level features and support vector machines
for music classification,” in Proc. of the 6th International Conference on
Music Information Retrieval (ISMIR), 2005.

[MF10] F. Mörchen and D. Fradkin, “Robust mining of time intervals with semi-
interval partial order patterns,” in Proc. of the SIAM Conference on Data
Mining (SDM), 2010, pp. 315–326.

[MLC06] M. S. Mark Levy and M. Casey, “Extraction of high-level musical structure
from audio data and its application to thumbnail generation,” in IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
vol. 5, 2006, pp. V–13–V–16.

[MM06] M. McKinney and D. Moelants, “Ambiguity in tempo perception: What
draws listeners to different metrical levels?” Music Perception, vol. 24, no. 2,
pp. 155–166, 2006.

[Moe10] F. Moerchen, “Temporal pattern mining in symbolic time point and time
interval data,” in Proc. of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2010.

[Ots75] N. Otsu, “A threshold selection method from gray-level histograms,” Auto-
matica, vol. 11, pp. 285–296, 1975.

[Pam06] E. Pampalk, “Computational models of music similarity and their applica-
tion in music information retrieval,” Ph.D. dissertation, Vienna University of
Technology, 2006.

[PC00] F. Pachet and D. Cazaly, “A taxonomy of musical genres,” in Proc. on
Content-Based Multimedia Information Access (RIAO), 2000, pp. 1238–
1245.

84

REFERENCES

[Pee04] G. Peeters, “A large set of audio features for sound description (similarity and
classification) in the cuidado project,” IRCAM, Analysis, Synthesis Team,
2004.

[Pee07] ——, “Sequence representation of music structure using higher-order simi-
larity matrix and maximum-likelihood approach,” in Proc. of the 8th Inter-
national Conference on Music Information Retrieval (ISMIR), 2007.

[Pei07] E. Peiszer, “Automatic audio segmentation: Segment boundary and structure
detection in popular music,” Masters thesis, Vienna University of Technol-
ogy, 2007.

[PK06] J. Paulus and A. Klapuri, “Music structure analysis by finding repeated
parts,” in Proc. of the 1st ACM workshop on Audio and music computing
multimedia. ACM, 2006, p. 68.

[PK08] ——, “Music structure analysis using a probabilistic fitness measure and an
integrated musicological model,” in Proc. of the 9th International Confer-
ence of Music Information Retrieval (ISMIR), 2008, pp. 369–374.

[PK09] ——, “Music structure analysis using a probabilistic fitness measure and a
greedy search algorithm,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 17, no. 6, pp. 1159–1170, 2009.

[PLBR02] G. Peeters, A. La Burthe, and X. Rodet, “Toward automatic music audio
summary generation from signal analysis,” in Proc. of the 3rd International
Conference on Music Information Retrieval (ISMIR), 2002, pp. 94–100.

[PLR08] E. Peiszer, T. Lidy, and A. Rauber, “Automatic audio segmentation: Segment
boundary and structure detection in popular music,” in Proc. of the 2nd In-
ternational Workshop on Learning the Semantics of Audio Signals (LSAS),
2008.

[PMK10] J. Paulus, M. Müller, and A. Klapuri, “Audio-based music structure anal-
ysis,” in Proc. of the 11th International Conference on Music Information
Retrieval (ISMIR), 2010, pp. 625–636.

[PRM02] E. Pampalk, A. Rauber, and D. Merkl, “Content-based organization and vi-
sualization of music archives,” in Proceedings of the 10th ACM international
conference on Multimedia. ACM, 2002, pp. 570–579.

[SK10] C. Schörkhuber and A. Klapuri, “Constant-q transform toolbox for music
processing,” in Proc. of the 7th Sound and Music Conference (SMC), 2010.

[Sla98] M. Slaney, “Auditory toolbox, version 2, technical report no: 1998-010,”
1998.

[Smi10] J. Smith, “A comparison and evaluation of approaches to the automatic for-
mal analysis of musical audio,” 2010.

85

REFERENCES

[SS09] K. Seyerlehner and M. Schedl, “Block-level audio feature for music genre
classification,” online Proc. of the 5th Annual Music Information Retrieval
Evaluation eXchange (MIREX-09), 2009.

[SV40] S. S. Stevens and J. Volkman, “The relation of pitch to frequency: A revised
scale,” Am. J. Psychol., 1940.

[SWP10] K. Seyerlehner, G. Widmer, and T. Pohle, “Fusing block-level features for
music similarity estimation,” in Proc. of the 13th Int. Conference on Digital
Audio Effects (DAFx-10), 2010, pp. 225–232.

[SZ05] N. Scaringella and G. Zoia, “On the modeling of time information for au-
tomatic genre recognition systems in audio signals,” in Proc. of the 6th In-
ternational Conference on Music Information Retrieval (ISMIR), 2005, pp.
666–671.

[SZM06] N. Scaringella, G. Zoia, and D. Mlynek, “Automatic genre classification of
music content: a survey,” IEEE Signal Processing Magazine, vol. 23, no. 2,
pp. 133–141, 2006.

[TC02] G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,”
IEEE transactions on Speech and Audio Processing, vol. 10, no. 5, pp. 293–
302, 2002.

[TL08] A. P. Thomas Lidy, Andreas Rauber, “Audio music classification using a
combination of spectral, timbral, rhythmic, temporal and symbolic features,”
online Proc. of the 4th Annual Music Information Retrieval Evaluation eX-
change (MIREX-08), 2008.

[WCB10] A. Wankhammer, I. Clarkson, and A. Bradley, “Music structure discovery
based on normalized cross correlation,” in Proc. of the 13th International
Conference on Digital Audio Effects (DAFx-10), 2010, pp. 488–493.

[Wes05] K. West, “Finding an optimal segmentation for audio genre classification,”
in Crawford and Sandler, 2005, pp. 680–685.

[WHH+08] L. Wang, S. Huang, S. Hu, J. Liang, and B. Xu, “An effective and efficient
method for query by humming system based on multi-similarity measure-
ment fusion,” in Proc. of the International Conference on Audio, Language
and Image Processing (ICALIP), 2008, pp. 471–475.

[WS11] A. Wankhammer and A. Sontacchi, “Segment related classification for au-
tomatic genre detection,” in 37. Deutsche Jahrestagung für Akustik: DAGA
2011. DAGA, 2011.

[WSS09] A. Wankhammer, P. Sciri, and A. Sontacchi, “Chroma and mfcc based pat-
tern recognition in audio files utilizing hidden markov models and dynamic
prgramming,” in Proc. of the 12th International Conference on Digital Audio
Effects (DAFx-09), 2009, pp. 401–407.

86

REFERENCES

[ZS07] T. Zhang and R. Samadani, “Automatic generation of music thumbnails,” in
IEEE International Conference onMultimedia and Expo, 2007, pp. 228–231.

87

