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Abstract

Automatic music content analysis is an importaiteide and challenging research field. In
this field, automatic (singing voice) melody trangtion is of special interest being the key
to many applications like music structure analys@re-following, query-by-humming and
karaoke like applications (voice removal). The bder this wide field of applications is the

robust and reliable estimation of the singing vdioedamental frequency (FO) trajectory.

This thesis deals with the detection of singingceosignals in polyphonic popular music
recordings. The main challenges are to somehowgrepe individual sound sources from the
complex music mixture signal and to classify thesnvacal or non-vocal. To do so we
propose analysis of the musical content on theshagpitch tracks. These are extracted from
the audio signal applying frame wise multi pitctiragtion followed by a tracking algorithm
which uses cubic interpolation to improve correauping of the estimates across frames.
Auditory motivated preprocessing is applied to aluglio signal reinforcing weak or missing
fundamental frequency components before multi pistimation and tracking is performed.
From the pitch tracks a set of features is deriad has been found to bear discriminability
between vocal and instrumental sounds and whidinaly used for identification of the

singing voice FO trajectory.

The proposed method has been evaluated using thREXI 2005 — Training data set —
vocal“. The pure pitch accuracy of the algorithmyocal FO’s in polyphonic music mixtures
yields 90.4% while classification between singingice and instrumental sounds reaches
79.1%.
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Kurzfassung

Die automatisierte Analyse des musikalischen lishadtlyphoner Audiosignale ist ein immer
wichtiger werdendes Forschungsgebiet. Von groReterdase sind vor allem (Gesangs-)
Melodie Extraktionsalgorithmen welche die Basisdiite Reihe interessanter Anwendungen
bilden. Zu diesen z&hlen Strukturanalyse von Mugidsen, score-following
(Synchronisation zwischen Notentext und akustisch&ignal), query-by-humming
(Durchsuchen digitaler Musikdatenbanken durch Sif§igmmen einer markanten Passage)
sowie Anwendungen im Karaoke Bereich, wie das Em¢fie der Gesangstimme aus einem
Musiksignal. Ausgangspunkt flr eine zuverlassigaekti@on der Gesangsmelodie ist die

korrekte Schatzung des Zeit-Frequenzverlaufs daadions der Gesangsstimme.

Ziel dieser Arbeit ist das Auffinden von Gesangsalgn in polyphonen Popmusik
Aufnahmen. Die Herausforderung besteht darin, dieednen gleichzeitig auftretenden
Klangqguellen im komplexen Musiksignal zu erkennexa gie aufgrund lhrer Eigenschaften

als Gesang oder Instrumentalklang zu klassifizieren

Der vorgeschlagene Ansatz beruht auf der Analyse @oundtontrajektorien, welche in
einem zweistufigen Verfahren aus dem Musiksignakchétzt werden. Dazu wird das Audio
Signal einer mehrfachen segmentweisen Tonhdhetzsoigi(Multi Pitch Estimation, MPE)
unterzogen, gefolgt von einem ,Tracking“ Algoritheyuder die Tonhdhenkandidaten tber
Segmentgrenzen hinweg zu kontinuierlichen Frequenjektorien verbindet. Der
Tracking“-Algorithmus verwendet kubische Intergada um eine genauere Vorhersage des
tatsachlichen Gundtonverlaufs einer Klangquellemadglichen. Aulerdem wird das Signal
vor der Tonhohenschatzung einer dem menschlicherhéitGenachempfundenen
Vorverarbeitung unterzogen, welche in der Lage m®sthwache oder fehlende
Grundtonkomponenten aus der Obertonstuktur eineeng€ls zu regenerieren. Die so
extrahierten Grundtontrajektorien werden schliél3bufgrund der Eigenschaften des Zeit-

Frequenz-Verlaufs als Gesangs- bzw. Instrumentaijd&lassifiziert.

Die entwickelte Methode wurde mittels des ,MIREX0%0— Training data set — vocal*
evaluiert. Die Genauigkeit der Tonhdéhenschatzungn Vokalklangen in polyphonener
Musik liegt bei 90,4% wahrend die Klassifizierungizchen Instumentalklang bzw. Gesang
bei ca. 79,1% liegt.
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Chapter 1 - Introduction to the topic

1.1. Motivation

The fast growth of digital music markets and theoagted consumer electronic industry
induced a need for automated music analysis andxing methods. Broad scientific

attention has been drawn to the research field asid Information Retrieval (MIR) or

computational music content analysis. Researchsdadéek to the 1970’s but up to now
algorithms generating full score transcriptionsriiianic-, melodic- and rhythmic content)
have proven elusive [Poliner2007]. Higher trandarip accuracy has been obtained by
algorithms seeking to perform only partial trangtians consisting of the chord sequence,

the drum track or the melody.

Melody is a highly descriptive attribute of musinabling us to distinguish one musical
excerpt from another [Selfridge-Field98]. Therefoadgorithms able of automatically
extracting the main melody (being the most salemt at a time) from audio recordings
would open the field to a wide range of applicasiacwomprising music indexing, lyrics
alignment, voice-removal (karaoke), score followimgery-by-humming and other Music

Information Retrieval based applications.

The focus of this thesis will be on the detectibrthe singing voice melody since in popular
music recordings the main melody is usually carbigé human voice. The key to successful
transcription of the singing voice melody is théust and reliable estimation of the singing
voice fundamental frequency o)Rtrajectory from the complex audio signal exenmedfin
Fig.0. The main difficulty is that the vocal andstrumental sounds usually significantly
overlap in time and frequency. Moreover thg df singing voice varies a lot with time
especially at note beginnings which is challengingterms of tracking (the correct
association of frame wise multi pitch estimate$gdrajectories corresponding to thesFof
underlying sound sources). Therefore singing vdéigestimation is closely related to the
research fields of computational auditory scendyaig source separation and multi pitch
estimation (MPE).
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This thesis is organized as follows. In the filsapter we will introduce the concept of pitch
which is essential to human hearing and the basithé perception of musical sounds. Pitch
perception will further be investigated on the basi the physiology of the human auditory
system which motivated the auditory signal pre-pssing able to reinforce weak FO
components. Then the signal characteristics of ecalsounds and singing voice will be
investigated and compared. The chapter ends withteoduction of the most basic concepts
concerning the organization of musical pitches gst®rn music. In the second chapter we
will start with a general overview of (multi-) piicestimation methods ending with the
presentation of two recently proposed approachesartts singing voice FO estimation that
have been influential for this thesis. In the thefthpter the proposed approach is introduced
and explained in detail. Chapter four explains ¢kaluation framework and corresponding
results are presented. Then in chapter five thegzsed method will be reflected and finally

the thesis ends with chapter six drawing conclusfon future improvements.

1000

Frequency [Hz]
o
=]

0 0.5 1 1.5 2 25 3 3.

Fig. 0.: Singing voice {§trajectory (blue) plotted over the spectrogram
representation of the corresponding audio excerpt
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1.2. Perception of musical sounds

The capability of humans to orient to musical saursdwell known [Bregman90]. The basic
acoustical characteristics of sounds namely piwhgdness, timbre and duration are easily
perceived, even by listeners without former musézhlcation. Among these pitch is the most
important for discriminating between concurrent redsl and thus essential for the

transcription process.

1.2.1. Pitch

Pitch is a perceptual quality of sound which isdfamental to the hearing process. According
to the ANSI standard 1994 [ANSI941Pitch is that attribute of auditory sensation iarms

of which sounds may be ordered on a scale exterithnglow to high. Pitch depends mainly
on the frequency content of the sound stimulusitlalgo depends on the sound pressure and
the waveform of the stimulusThis is often referred to as the verbal definitadrpitch which

is rather impractical and inexact for analyticabemnation and comparison of sounds. A
more practical definition of pitch is given by [8&ns75] who associates pitch with the
measurable physical quantity of frequency givefolisws: “A sound has a certain pitch if it
can be reliably matched by adjusting the frequenicg sine wave of arbitrary amplitude.”

This is often referred to as the operational dediniof pitch.

Sinusoids are the simplest kinds of sounds thake@opitch percept consisting of one single
frequency component. There is a relation betwespdeal periodicity of the waveform and
spectral energy distribution which can easily beesbed under Fourier analysis which is

illustrated schematically in Fig 1.1 and 1.2.

Magnilude
Amplitude
I/ >
‘ Time »
»
F(ty) Frequency [Hz]
Fig. 1.1.: Fundamental period of a single sine wave Fig. 1.2.: Fourier Spectrum of a sinusoid

(schematically)
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Temporal periodicity is described by the fundamkptxiod o in seconds (see Fig. 1.1),

corresponding to the fundamental rate of repetiiiothe waveform which is related to the

frequencyF in Hz by the simple equation

F = l [Hz] (Eqg. 1.1)
To

However, natural instruments and also the voical tem produce sounds with several

frequency components which are called harmonicsar partial tones of a sound. They are
found at distinct frequency locations forming a cpE pattern which exhibits energy

concentrations at integer multiples of the lowestjiency component (see Fig. 1.4), which
therefore is called fundamental frequengyFhe partial tone frequencies are related to the F

by the following equation:
Fc=k*Fo [HZ] k=1,2,3... (Eq.1.2)

These frequency components result from partialmasoces largely determined by the sound
generation mechanism. The waveform and the pattiaé series of a complex tone is
illustrated schematically in Fig.1.3 & Fig.1.4. Teeectrum of a sound showing this property

is said to be harmonic.

Amplitude Magnitude
To
T ﬂ\ f/\; A
A A “l A WL un ,r-f ‘\'11 >
A W A ‘ |
_ \/ Time
‘f v A | R
Fo  2%F, 3%Fg 4%F, ... Frequency [Hz]
Fig. 1.3.: Fundamental periagindicated in the Fig. 1.4.: Partial tone series of a complex tongéeun
waveform of a complex tone Fourier Analysis (schematically)

Real instruments tend to produce partial tone fegies slightly deviating from the ideal
harmonic positions due to imperfect vibrating cdiodis. Inharmonicity is especially
observed for instruments that use plucked (piam@) struck (guitar) strings due to the
stiffness of real strings [Fletcher98]. Since pepumusic makes heavy use of these
instruments this property has to be considered vaesigning multi pitch estimation (MPE)

methods for music analysis.

The perceived pitch of complex harmonic sounds esponds over a wide range of

frequencies to theoFmeasured in Hertz. Since pitch is a pure subjeatvality of sound

10
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which needs a human listener to make a perceptddgnjent, it has established to

computationally analyze the pitch of sounds onlibsis of their FO, the lowest frequency
component of a certain partial tone series. The tesvmini pitch and FO are often mixed

though conceptually different. Psychoacoustic figdi for example show that a pitch is also
perceived for harmonic sounds where the FO compdmenbeen removed or masked which
is referred to as the “missing fundamental” phenoome The pitch that is heard at FO though
actually not present in the sound stimulus is reférto as “virtual pitch” or also “residue

pitch” indicated in the following illustration asF0,.”. This phenomenon can also be
observed for sounds where only part of the pattineé series (e.g. Partial Tones: 3,4,5) is
present. However, since certain terminology haabéished we will also useyfand pitch as

synonyms for each other throughout this thesis.

Magnitude

Virtual Pitch  Present Patrtials

A
~ )

| | | 1 »
»

FQir 2*FO 3*FO 4*FO ... Frequency [Hz]

Fig. 1.5.:The “missing fundamental” phenomenon: Human ligtetear a virtual
pitch at FQy. though no spectral energy is present in the sostisilus

The spectral pattern formed by the partial toneeseseems to be of importance for the pitch
perception of complex tones. Indeed pitch perceptimodels of Goldstein (1973) and

Terhardt (1974) try to explain the missing fundataephenomenon by some kind of pattern
matching mechanism that is assumed to take pladkeirauditory system to derive pitch

sensations for harmonic sounds according to [Pkick®part from that, inharmonic sounds

that don’t have a distinctoFlike the sound of a church bell) might also evakepitch

sensation which not necessarily corresponds ttothest frequency component present.

Besides, psychoacoustic evidence emphasizes thettiat temporal regularity of the

waveform of a sound stimulus and its envelope igel@vance too. For amplitude modulated
white noise for example that has a random finectire a pitch is heard according to the
modulation frequency. In another experiment it hasn demonstrated that for white noise
that is periodically switched off listeners couldrgeive a pitch sensation according to the

frequency corresponding to the inverse of the iomion rate. In both cases the long term

11



Detection of singing voice signals in popular musicordings — Diploma Thesis — Amir Rahimzadeh +.Ne®09

average magnitude spectra of the sound stimufil@rand don’t show distinct spectral peaks
[Plack04].

Obviously there is no simple relation between tiegdiency content or the waveform of a
sound and the perceived pitch. Pitch perceptialatiser based on a complex interaction of
physiological, neurological and high level cogretiprocesses working together to form a

sensation of tone height.

However, the peripheral parts of the auditory systand its behavior to acoustic sensations
are quite accurately known. According to [Plack®¥ main characteristics of the peripheral
part can be effectively simulated by a sequencdlitierent signal processings which
comprise auditory filtering, compression, half-wakectification, and low-pass filtering.
[KlapuriO8] demonstrated that pitch estimation aipons for music transcription might
benefit from such a processing. Therefore our ntetnakes use of the auditory motivated
processing proposed by [KlapuriO8] which is able renforce weak or missing oF
components from the partial tone series which beéllexplained in detail in Chapter 3. First
we will study the characteristics of the periphgralt of the auditory system which is the

basis for the auditory motivated signal processing.

1.3. The human auditory system

Human listeners show a great capability to listeh individual sound sources in complex
acoustical scenes and musical mixture signals fBee®0]. It has been found [Plack04] that
pitch is of major importance to this high level ndiye process which motivates the study of
the human auditory system. Knowledge about howcanstical signal is processed along the

auditory path can be beneficial for pitch estimatdgorithms [KlapuriO8].

1.3.1. Physiology of hearing

Since there is plenty of work covering the physigiof hearing (e.g. [Pickles08]) we will

mainly concentrate on the parts essential fordalk of pitch perception. The human auditory
system can be divided into the peripheral hearysgesn and the auditory cortex in the brain.
While the characteristics of the peripheral pag quite accurately known the cognitive

processes remain a matter of debate.

12
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The peripheral paf the human auditory systecan be divided into outer ear, middle
and inner eaas illustrated in Fig. 1. The outer eamainly contributes to directional hear
and acts as a resonator for frequencies aroundz, while the middle ear performs
impedance match between the outer and inner earinfter eacontains the cochlea whit
is responsible for the transductiof the mechanical vibration into a neural represton,
transmitted to the brain via the Auditory nerThe cochlea is sophisticated organ whis
performs a frequency-to-plateansforn of the input signal and therefore is of large ing¢

for undersanding human pitch percepti

Outer ear Middle ear niner ear
5 1 ]

Labyrinth
A

Auditory

Ear canal

/ T b, e
Eustachian —s..

‘r i tube
A\

Fig. 1.6.: The peripheral part of the human augligysterr(from %)

Physiologically, the cochlea is a long coiled, tiabwstructure which is filled with liquiand
which tapers towards its end. It is divided intmtman sections by the basilar membr:
over the whole lengtlfsee Fig. 1... Mechanical vibration transmitted by the middle
enters the cochlea via the oval window resultinghyaraulic pressure fluctuations in t
contained liquid causing the basilar merane to vibrate in a specific wagee Fig. 1.1(
Interestingly the points of maximal resonance anlthsilar membrane vary with freque.
High frequency stimuli result in maximal excitatiorear the apex while low frequen
stimuli result in maximal diplacement towards the base which is referred tahe

tonotopical organization of the E illustrated in Fig. 1.8.

! Connect to research, 11.11.2009, URL: hitywiv.connecttoresearch.org/publications

13
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a Vestibule Traveling Wave Peak
: Scala Vestibuli
Scala Tympani
Traveling Wave Peak
e M-dd'eFvequnW D Basllarmmbvane)
Traveling Wave Peak
b Low ‘F‘re;:luen‘c‘y D
stirrup —_—
bone q T N basilar membrane BASE [mammmmmmmmmms Distance along cochlear duct Z> APEX
J High Frequencies Low Frequencies
Fig. 1.7.: a.)Cut through the cochlib.) Fig. 1.8.Tonotopical organization of the E; the point
lllustration of the excitation of the Basil of maximal displacement on the BM depends or
Membrane in the unrolled coch (from frequency of a sound stimulus(frd@elfand01)

[Gelfand01])

While the width of the basilar membrane increadewost linearly from base to apex, t
stiffness decreases logarithmically. Therefore riflation between the frequey of a pure

toneand distance of points of maximal resonance orb#&sdar membrar (BM) is nonlinear
(see Fig. 1.9).

A 2,000 Hz
1,500 Hz T

3,000 Hz

(a)

direction of
travelling wave

basilar

basilar membrane

7,000 Hz -\ membrane apex
121997 Encyclopaedia Britannica, Inc. O o ®)
Fig. 1.9.: Nonlinear relation between points Fig. 1.10.: Excitation patterof the basilai
maximal resonance along the basilar memb membrane, (a) if BM would not be fixed laters
frequencies of sinusoidal stim (from (b) simulation of the actu&M motion (from
Encyclopaedia Britannica, In [Gelfand01])

So in fact frequency is perceived logarithmicalBso musical instruments reflect tt
property. Sounds in octave relationshcorresponding to a doubling of Fire perceive:
particularly similar, resultingat least for sinusoidal souncin equidistant points of maxim

excitation on the BMAccording to [PlackO4]he excitation along the BM can be effectiv

14
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modeled by a bank of band-pass filters with loganitally spaced center frequencies and

having bandwidths increasing with frequency.

It is known [Plack04] that in the high frequencyghl) region of the cochlea a compression
of the input signal as much as 5:1 takes placayltreg in inter-modulation distortion
products if more than one sinusoidal componentrésent, as it is the case for harmonic
sounds. These distortion products occur at fregasrfief; and atfi-k(f,-f1). For harmonic
sounds the first term would always result in thed@amental frequency of that specific sound
for every two neighboring partial tones which migpartly explain the “missing

fundamental” phenomenon.

Along the BM there are about 15.500 [Moore04] hegtls which react to mechanical
displacement of the same, thus they are respon$iblehe transduction of mechanical
vibration into neural impulses. The hair cells amnnected to the auditory nerve which
connects to the brain. Motion at different plac&mg@ the BM causes activity in different
neurons in the auditory nerve. Therefore it isdad that frequency of a tone is represented

by a pattern of neural activity evaluated at higt@gnitive levels.

There are two competing theories to the perceptibpitch, the “place theory” and the
“temporal theory” [Moore04]. The “place theory” ta that pitch is perceived according to
the specific point of maximal resonance on the BMicl results in activity in distinct
neurons. This is supported by measurements ofxtieagon of the BM in response to pure
tones. Unfortunately this concept fails to expltia perception of complex tones for which
the point of maximal resonance on the BM not nearélgscorresponds to the perceived pitch.
The “temporal theory” on the other hand states thaditch percept is derived from the
temporal pattern of neural impulses. This is sufgabby the observation that nerve spikes
occur at a particular phase of the stimulating i@we for FO's up to about 5 kHz which is
referred to as “phase locking” of nerve fibers [Me@4]. Neither of the two theories can
explain the diversity of psychoacoustic phenoméiaa lhave been observed in humans and it
might be more realistic to assume that both meshamiwork together. However, the
cognitive processes involved in the perceptionafngl can only be studied indirectly, and

therefore are not accurately known and remain aemat debate.

Consequently modern pitch perception models aisimatilating the main characteristics of

the peripheral part of the auditory system which @quite accurately known and comprise
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auditory filtering (simulation of the BM motion),enral transduction (compression, half-
wave rectification, low pass filtering) followed ksome kind of periodicity analysis. A
processing strategy for MPE following the mentios&dcture has been proposed recently by
[Klapuri08] which is able to reinforce weak or migg FO components by auditory motivated
signal processing which has been adopted to a eegeee and will be explained in detail in
Chapter 3.

16



Detection of singing voice signals in popular musicordings — Diploma Thesis — Amir Rahimzadeh v.Na®09

1.4. Organization of musical pitches

Western music is highly structured in time and @reracy. The basic musical objects are notes
which are specified by their pitch value, the dioratand the onset time and rests which are
moments of silence. Notes may be arranged seqligriitmming melodies or vertically

building chords which are explained by the con@éftarmony.
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Fig. 1.11.: Possible arrangeme of musical note (from )

Musical notes are organized in intervals, which lbarexpressed as frequency ratios between
Fo's. The smallest interval in western music is tleengone which refers to agFatio of

fy/f,=21?between neighboring notes.

One particular interval is the octave, correspogdio a doubling or halving of the
fundamental frequency. An octave is divided into dilches according 12-tone equal
tempered tuning which has established for modesteme popular music. These pitches are
referred to using letters C, C#, D, D#, E, F, F#G&, A, A#, B and the corresponding s
are equally spaced on a logarithmical frequencyesaacording tof,;=2"*?%,.cc where n
refers to the integer offset in semitones from rdéference note. So the reference rigie
determines the pitch of the remaining semitonesdllys frase= 440 Hzor close to that). A
distinct set of these 12 notes is referred to ates@n example of a particular scale the C-

major that corresponds to the white keys of thegieeyboard is illustrated in the following.

68 10

WM

ICDEFGABCI

1 Octave = 12 semitones

Fig. 1.12.: An octave and the 12 semitones
illustrated on a piano keyboard

1WikiVisuaI, 18.10.2009, URL: http://en.wikivisuabm/images/5/55/Mussorgsky_Pictures_at_an_Exhibitichords.PNG
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The notes of a scale repeat themselves for eaelve as illustrated for the @ajor scal in
Fig. 1.13 over a range of 4 octav Two notes in octave relationship arerceived as

particularly similar and share the same - or pitch class symbol.

Fig. 1.13: The C-major scale for 4 different octaves. Notes of e pitck
class share a common class symbol referred to iesiteg: (from %)

It has been observed thaetrange of ¢'s that can be used to produce melodies is linrto
high frequenciesnd that recognition of musical intervals breakemldor Fy's above 5 kH
[Plack04].1t doesn’'t seem coincidental that the highest notan achestra played on tf

piccolo flutehas a frequency of 4.0¢Hz corresponding to cb.

The similarityin perception of tones in octave relationship setéive. This cyclic attribute
of similar pitch sensation is referred to as “chadnThe relation beteen notes in octa\
relationship (thusotes sharinghe same pitch clasahd absolute frequency is illustratec

the followingfor the note A at different octav.

4000

3000

2000

Frequency [Hz]

Fig. 1.14: The relatiorbetween pitch of musical notes and FO in Hz,
displayed fotthe note A in different octaves

Obviously theras a nonlinear relation between freque and perceivedhusicalpitch which

corresponds witiphysiological measuremerof the inner ear.

Wikimedia, 19.10.2009, URLhttp://commons.wikimedia.org/wikiile:Octaves.gif
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1.5. Singing voice characteristics

In the following the main characteristics of singjimoice will be analyzed and compared to
the ones of speech. Further the differences betwe®ing voice signals and instrumental

sounds will be investigated.

Sounds produced by the human voice can largely ibieed into voiced and unvoiced
sounds. The main characteristic of voiced soundsasthe vocal folds vibrate to generate a
sound. In fact, an airstream coming from the luisgsontinuously modulated by the vocal
folds resulting in pressure-pulse train. This sglgt rich signal exhibits frequency
components at integer multiples of the FO, calladrtonics. Unvoiced sounds in contrast

don’t show these properties.

Singing voice and speech signals are of coursdasinm many aspects due to the sound
generation mechanism they share. Nevertheless irced#ferences in the signal

characteristics exist and which will be explainedhie following.

1.5.1. Ratio - Voiced / Unvoiced

It has been observed that in singing the ratio betwvoiced and unvoiced parts is
significantly larger than for speech. The amountvoiced parts is about 60 % in speech
while for singing it can increase up to 95% [Cook9his is due to the fact that singers
intentionally stretch voiced parts to match thergtsuof accompanying instruments. Since the
voiced parts carry most of the musical informatibrey are of major interest for the

transcription process.

1.5.2. Singing Formant

The spectrum of voice sounds shows energy condemisain certain frequency regions
indifferent of the § of a sound. These are called formants and arige tduthe wave
propagation properties of the vocal tract, the moahd the nasal cavity which act as
acoustical resonators. A well known difference lesw speech signals and operatic singing
is the presence of an additional formant, callex gmging formant, at frequencies around
2000 — 3000 Hz which can be seen in Fig. 1.17.rAff@eindberg70] who first documented
the existence of the singing formant, it helps tloce of a singer stand out of the

accompaniment.
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Unfortunately the singing formant seems to be acuskve attribute of operatic singing
which can be seen from the following comparisorg (Eil7) of long term average spectra
(LTAS) of a pop singer and an operatic tenor sivgeich performed the same excerpt in the
same key using tempo and phrasing of their ownceh@Borch02]. Averaging time was

about 17 seconds.

""" Pop singer

MEAN SPECTRUM LEVEL (dB),

o}
=}

— Operatic singer

&
S

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
FREQUENCY (Hz)

Fig. 1.17.: Comparison of the long term averagespef a pop
singer and an operatic tenor singer performingsdme excerpt
in the same key (from [Borch02])

1.5.3. Pitch range

Another difference is the pitch range which is a8 Hz — 400 Hz for normal speech while
it is about 80 - 1000 Hz for (operatic) singing(g]. For the songs of the vocal training data
set (9 song excerpts of ~30 s each, detailed ghiseriin Chapter 4) that singing voicg'$~
concentrate on a narrower frequency range. Thisllustrated in Fig.1.18, displayed
parameters are the absolute frequency range (kedichy “*” and “0”), the standard
deviation and the mean values of the referencelVe@atrajectories (temporal resolution
10ms) for individual songs excerpts. Although thanber of songs is small and therefore
might not be representative for all songs of thergeopular music it can be expected that
singing voice FOs in popular music will mainly centrate on a narrow frequency range

usually smaller than the range described by Li\Ataohg in [LiO5].
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Fig. 1.18.: FOstatistics of the training daset vocaldetailed description in Chapter.
Displayed parameters: mean value (line), Standevéhton (bar), minimui-(circle) &
maximum{asterisk) FO for indiviual song excerpts (1-8f approximately 30s ea

1.5.4. Pitch variability

While singing voice exhibits large pitch variabi notes played on instruments resuli
pitches that are more or less stable in frequ during one note everjSutton05. This
characteristic has beeaxploitedrecently for singing voice detection [Shenoy. A visual
comparison of the spectral characteristics of aafersinging performance and notes pla

on the piano is given iRig.1.19 and Fig. 1.
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Fig. 1.19.: $ectrogram of a fema Fig. 1.20.:Spectrogram of a sequence of nc

vocal performance (~6s) played on the piano (~1

It has to be noted that there are certain instrasnamd playing styles that don’t allow suc
clear distinction between vocal and instrumentainsis. Trombones for example are abls
altering the frequency of a tone whplaying resulting in continugs rather than discrete nc
transitions referred to as glissandi. Another eXxammuld be pitch bendings, a playing st
on the guitar where individual strings are bendeddntinuously alter the frequency o

note.
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Finally both singing and speech nals exhibits FO fluctuations and they have beemdao
be larger for the former. For singing three didtitgpes of FO fluctuatics have been
identified by [Saitou02]which have been founessential for the naturalness of vc
performances. These typeare referred to as overshoot, vibrato and jration and ar
indicated in Fig 1.21With respect to our application tlidentificationof theseexplicit types
is not necessary. de importaniis the fact thathere are certain signal characteristhat

seem to be exclusive attributes of the singingev

6.3 T T T T

Overshoot
BB r e e N R TR -
55 I ! 1 1 !
0 1000 2000 3000 4000 5000 6000
Time (ms)

Fig. 1.21.: Three types of FO fluctuations chanastie to singing voice signe
(Note the logarithmic scaling of the frequency §, from [Saitou02]

Knowledge of the mentioned singing voice charasties will be exploitedlater on
facilitating the discrimination of vocal and instrumental so. As will be explained i
chapter 3 in detail we will derive a feature settthims at capturing the dedbed propertie

which will be finally used for voice recognitic
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Chapter 2 - Literature Review

The transcription of a song refers to the derivatad a symbolic representation of the
musical content in terms of notes which have beegeo by the individual instruments.
Automatic polyphonic music transcription algorithimsve gradually improved over the last
decades but accuracy of full instrument transaiptnethods is still far from a satisfactory
level and musically trained people still outperfoomamputational methods in delivering
reliable transcriptions [KlapuriO6]. In order todwee the complexity of the problem
researchers have concentrated on the developmealgofithms able to predict the most
prominent pitch sequence in sound mixtures whidlefesrred to as the main melody. It is the
specific sequence of notes that human listenemsllysagree on when reproducing an excerpt
of a song and thus seems to be of high informatheracter when comparing two music
performances [Selfridge-Field98]. We focus on vatalody transcription algorithms since
in popular music the main melody is usually caritigda human singer. The key to successful
melody transcription is reliable and robust estioratof the singing voice fundamental
frequency (k) trajectory. Numerous algorithms have been progostearing one general

structure that we adopted which illustrated in Rid..

Polyphonic Pitch Raw vocal Vocal melody
i si i itch track ;
audio signal Multi Pitch candidates . . piich trac — line
. . Pitch Tracking Classification
Estimation

Fig. 2.1.:Basic structure underlying singing voice FO estioratlgorithms

The common primary step is to derive multiple pitemdidates from the polyphonic music
signal. Since the acoustical waveform doesn’t altbes direct extraction of the individual

pitches of the underlying sound sources the data tiea be transformed to yield a
representation which reveals the desired informatMultiple pitch estimation algorithms

differ in the way they make use of the complex iinfation contained in the acoustical
waveform. They may largely be divided into algamiththat make use of spectral information
using the well known Short Time Fourier Transfor8ITET) and algorithms that analyze
temporal periodicity of the waveform using corredat based methods, also hybrid

algorithms exist. A third class of algorithms appliauditory motivated processing to the
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input signal before periodicity analysis is perfexan This is also the approach followed in
this thesis which is motivated by the well knownilighb of human listeners to orient to
musical sounds. A good overview of existing muitclp estimation methods can be found in
[KlapuriO6].

We adopted a pre-processing strategy proposed lap(iKi08] which is able to reinforce
weak or missing FO components. This is very usafide MPE algorithms sometimes fail in
predicting the exact pitch due to weak FO companentspectrally interfering partial tones
leading to FO doubling or halving errors. Moreothe method proposed by Klapuri has been
favored over others to serve as front end for gopr@ach towards singing voice FO
estimation since the reported error rates [Kla@]rifre substantially low. They used solo
instrument recordings (on the whole 2842 samplemdiiidual note events comprising 32
instruments) to generate 4000 semi-random mixtiaredifferent numbers of simultaneously
played notes (N=1,2,4,6 — 1000 test cases eaclthwiaive been used for evaluation. Sounds
have been mixed with equal mean amplitude and coR@ estimates have been defined to
deviate less than 3% from the reference (correspgnoughly to +/- %2 semitone). It has to
be noted that the polyphonic test cases did nassecily contain only musically meaningful
note combinations. Reported error rates [Klapuri@®8]multi pitch estimation are ~10% for

combinations of 4 notes.

Given multiple pitch candidates over time the nehdllenging step is deciding which of the
pitch candidates has most likely originated frorhueman voice and which ones have not,
often referred to as vocal/non-vocal discriminatidéarly methods have applied voicing
decisions on a frame level assuming that the visicmnstantly the strongest component in
the mixture over time. This is not necessarily tamel it would be more adequate to assume
the voice to be predominant in a certain frequenagion, namely the mid- and high
frequencies, while the low frequencies (FO <150 &=®) usually dominated by the bass line.
Moreover these early approaches didn’t particuladglress the explicit differences in the
signal characteristics of voice and instrumentainsis, the most apparent ones being pitch
instability of vocal sounds and the mentioned danae region. In the following, two recent
approaches to vocal melody transcription speclficatidressing the peculiarities of vocal

sounds will be discussed.
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2.1. Comparison of two recent approaches

[Goto06] proposed a three stage processing strateayprising frame based pitch likelihood
calculation, vocal probability calculation and F@dking based on Viterbi search. The front
end of the famous “PreFEst” algorithm is used tdgren frame based multi pitch estimation.
A given spectrum is assumed to have originated fiteensuperposition of multiple harmonic
sounds sources which are modeled as probabilitgigefunctions to enable the application
of statistical methods. For each frame a maximumber of 10 pitches having the highest
likelihood are selected. These predominant pitcdrestracked over time and finally re-
synthesized individually with a sinusoidal modelngsthe parameters extracted from the
specific locations in the power spectrum and plsgsetrum corresponding to the partial tone
frequencies. In this way separation of the indigidsources is achieved. This time domain
representation of the individual pitches is useddévive features which serve for vocal
probability calculation. These features compriseelir-Prediction-Mel-Frequency-Cepstral-
Coefficients (LPMFCC’s, MFCC of the LPC derived sfram) andAFQ’s which both aim at
capturing the mentioned voice characteristics. Tdifferent types of GMM’'s (Gaussian
Mixture Models) are used to calculate voice proligbof individual FO's. They used a
vocal-GMM and a non-vocal GMM which have been tediron features of vocal solo parts
and polyphonic interlude sections, respectivelye Tfaining data set comprises 21 songs of
14 singers of the “RWC music database: Popularialii given the vocal probabilities and
considering continuity of s the most probable FO series over time is fousidgu Viterbi
search. The algorithm has been evaluated usingpd@ssfrom the “RWC music database:

Popular” and pitch accuracy of 84.3% and chromaii@ay of 85.5% is reported in [Goto06].

Our method resembles the described one in thatdpyity frame wise multi pitch estimation
and that both methods aim at generating continfreggiency trajectories which are used for
the discrimination between singing voice and insgntal sounds. The two methods differ in
the way how they make use of the information comdiin the frequency trajectory. In
contrast to the approach followed in [Goto06] wendb re-synthesize individual tracks since
we believe the key characteristics of singing vaoands being the FO variability which we

try to capture using a set of features derived ftioenfrequency trajectory.

[Sutton06] has proposed vocal melody transcripbased on two distinct pitch estimators
which exploit characteristics of the human singwogce. A Hidden-Markov Model (HMM)

is used to fuse the individual pitch estimates tnthake voicing decisions. The first vocal
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pitch estimator consists of a pre-processing stapere semi-tone cancellation is applied to
emphasize vocal parts followed by a standard twg-mesmatch (TWM) monophonic pitch
transcription algorithm. Semi-tone cancellatiorb@sed on the fact that vibrato in singing
voice (+/- 60-200 cent) has been observed to lgetahan for instruments (+/- 20-35 cent).
According to that spectral energy is removed atstamt note FO positions by zeroing the
corresponding FFT bins in the vicinity of +/- 20nteThis is done for all notes in the
frequency range of interest spaced by one semitéoeals generally survive this procedure
due to larger pitch variability while the accompaent is attenuated. It seems feasible to
apply a monophonic pitch transcription algorithmthe resulting signal. The second vocal
pitch estimator consists of a correlogram basedaploonic pitch transcription algorithm. It
has been found that power of the upper partialvoade is generally larger than that of
instruments and that accuracy of correlation bagedl pitch estimation is higher for high
frequency channels than for low frequency chanfie(5]. According to that 19 channels
between 3-15 kHz are used to derive individual Ipiestimates and the most frequently
occurring estimate is selected. Moreover this aldle formulation of a reliability measure
reflecting whether these multiple frame-wise pigdtimates cluster or scatter. The method
has participated in the MIREX 2006 melody extrattimntest and was ranked third (overall
accuracy ~67.3 %) on the “MIREX 2005 dataset — Vo@songs of approximately 30 sec.
each, described in Chapter 4) having the lowestingifalse alarm rate (12.3%) of all
entered algorithms. The winning algorithm with avemll accuracy of ~73.7% did not
specifically address the properties of singing gand showed a voicing false alarm rate of
28.7%.

Similar to the described method we make use of difierent multi pitch estimators to
increase pitch estimation accuracy. Moreover bgipr@aches aim at separating the voice
from the accompaniment while using different sgae to achieve this. Our approach
towards singing voice detection is based on thienasbn of multiple parallel FO trajectories
present in polyphonic music signals. The represiemtaf individual sound sources as time-
frequency tracks is considered the main informatienain for discrimination between
singing voice and instrumental sounds. In the foilg chapter our approach towards

estimation of the singing voice FO trajectory idypionic music will be presented.
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Chapter 3 - The proposed method in detail

The analysis framework follows a hierarchical stmoe (see Fig. 3.1). The individual

processing stages will be explained in detail diter @nother. First the auditory motivated
preprocessing will be presented and the effecsnoaudio signal will be demonstrated. Then
a twofold multi pitch estimation strategy is introed and the resulting frequency
discriminability will be investigated. Next a traol algorithm is proposed that uses cubic
interpolation to facilitate grouping of pitch caddies across frame boundaries to pitch
tracks. The post-processing stage is responsiblejézt unreliable pitch tracks. Next the
feature extraction stage and the derivation ohingi data from audio recordings is described
and discriminability of the training data based the feature set will be investigated in

different ways (Fisher's Ratio, Linear DiscriminaAnbalysis LDA). Then the K-Nearest

Neighbor classifier will be presented which is ugediscriminate between singing voice and
instrumental sounds. Finally we will explain podgies how to convert the Frajectory

into discrete note events. The whole programmirgdegeen done in MATLAB.

Polyphonic ~ ~N ~N
audio signa Auditory Multi Pitch Pitch Post Feature
Pre-processing Estimation Tracking Processing Extraction
& J J

4 N N Singing voice
Note melody
» e
» Classification | Quantization >
- J J/

Singing voice
FO trajectory

Fig. 3.1.: Block Diagram of individual processirtgges of the proposed
method towards singing voice FO estimation
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3.1. Data Preparation

Stereo audio files will be converted to mono fitlgssimply adding the left channel and the
right channel together. All input audio signals am@malized to their absolute maximal

value.

3.1.1. Segmentation

Every input signal is divided into partly overlapgi segments according to the selected
frame size and hop size. We use a frame size 8frtt2and a hop size of approximately 5ms.
The frame size and the sampling frequency deteritiieediscriminability between spectral
components in the FFT magnitude spectrum. Furtieaild will be explained ir8.1.4.

Frequency discriminability of the periodicity ansis

3.2. Auditory Preprocessing

The human auditory system shows great capabilityesolving and organizing musical
sounds based on spacial, temporal, and timbratrrdton. Therefore it seems natural to
apply a similar kind of processing to the signaltthappens in the auditory system before
deriving further information. We adopted a procegsstrategy and periodicity analysis
proposed by [KlapuriO8] being the basis for furthealysis. The individual processing steps
explained in the following aim at simulating tharisform characteristics of the inner ear and
follow the common structure of pitch perception misdCheveigne05] as illustrated in Fig.
3.2.

x \xc(n) | Compress, yc(n) [Yo (k)P

8 P rectify, —» [DFT()[”
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Fig. 3.2.: Common structure of pitch perception sled
simulating the peripheral part of the auditory egstfrom [Cheveigne05]
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3.1.1. The auditory filter bank

The basilar membrane performs a frequency-to-plegeversion. Sounds of different
frequency result in maximal displacement at difféereoints along the membrane. This
frequency selectivity of the inner ear can effegliivbe modeled by an auditory filter bank
[Plack04]

The power and impulse response of auditory filkerge been studied in humans and animals

and are quite accurately known [Patterson76], [B8erThe gammatondilter provides an

excellent fit to the experimental data, and isefane widely used [Patterson96]
The impulse response of gammatone filters is ghsethe following equation:
h(t) = b1t~ 1e=2"Pt cos(2f.t + ¢) ...t = 0,h(0) =0 (Eqg. 3.1)

The main parameters of the gammatone filter desdriby the impulse response h(t) in
Eq.3.1 are b and. According to [Patterson96] “b” largely determinds® duration of the
impulse response, and thus the bandwidth of ther fithile " refers to the order of the
filter determining its Q-factor. The parametey’ ‘dorresponds to the filter center frequency in

Hz and “t“ represents time in seconds.

As proposed by [KlapuriO8] we use a total of 70 gaatone filters with center frequencies
ranging from 65Hz to 5.2 kHz. The center frequesi@ee spaced uniformly on a critical-
band scale resulting in a logarithmic frequencycama(see Fig. 3.3) of neighboring auditory

channels according to
fo = 229 x (10@¢1xc30)/214 _ 1) (Eq. 3.2)

With &g being the critical-band-number of the lowest baar] 0<€;<1 determining the band
density, in our cas&=2.3and&;=0.39.
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Comparison of different implementations of the Auditory Gammatone Filter Bank
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Fig. 3.3.: Magnitude Response for individual fiteaf the auditory filterbank, with
logarithmically spaced center frequencies, evétfilter displayed for better readability

One of the most important parameters of the filiank is the bandwidth of the auditory
filters. The equivalent rectangular bandwidth (ERB)the filters used in this thesis have

been reported in humans by [Moore95] given by
b, = 0.108f, + 24.7 [Hz] (Eq. 3.3)

The ERB of a filter is a measure for comparing thendwidths of two filters. More
specifically it is defined as the bandwidth of afeetly rectangular filter which has an
integral over its power response which is equahéoone of the specified filter. The auditory
filters are implemented using a cascade of fouosgrder infinite impulse response (IIR)
filters. For a detailed description of the filtdrusture and an efficient implementation the
reader is referred to [Klapuri08].

3.1.2. Neural Coding

At some point in the auditory system the physicav@form has to be transformed into a
neural representation in order to be evaluatedhleybrain. This happens in the inner ear

where hair cells excited by the BM motion generaeve firings in the auditory nerve.

The main characteristics of the processing thagrasis subjected to in the inner ear can be
effectively modeled as a cascade of signal proegsgperations: These comprise 1) dynamic
gain control, 2) half-wave rectification, and Rw-pass filteringKlapuri06].
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3.1.2.1. Compression

Measurements of basilar membrane motion show Heatochlea has a strong compressive
nonlinearity over a wide range of sound intensitiElse purpose of the strong nonlinearity
may be recognized as an automatic gain control (AtB&t serves to map a huge dynamic

range of physical stimuli into the limited dynamamge of nerve firings [Lyon95].

In order to become independent of the absolutel lefs¢he input signal a dynamic gain
control is applied to the output signals of theividiial auditory filters. To let all auditory
channels contribute equally to the summary spectiina sub-band signals(r) of one

analysis frame are scaled by the fagtqr

_ v-1
Yot = gt (Eq. 3.4)

With ¢ being the number of the corresponding awdithannel, t the analysis instant, and
being the standard deviation of the signghxwithin the frame t. The parameter controls
the amount of compression. For W84 the auditory channel variances are normalized

towards unity resulting in a spectral flatteningloé summary signal (see Fig. 3.4). The value
applied here is = 0.33.
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Fig. 34.: Effects ofdynamic compression of the bebass outpusignals of the auditory filter ba:
Unprocessed wideband spectrum (blue) vs. normaimetmary sub-band spectrum (red)
calculated for an artificial harmonic tone compt#?220 Hz, maximal gain reduction ~25dB,
FFT Settings: 92,9ms frame size, 4x zero padding
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3.1.2.2. Half-wave rectification

Half-wave rectification (HWR) is a nonlinear signalocessing operation introducing new
frequency components to the original signal. Wrhalealytically difficult to track, the
gualitative effect of HWR on the output signalstlodé auditory filters can be easily observed
from the comparison of HWR-processed and unprodessgnitude spectra. In Fig (b) & (c)
the spectrum of the output signal of thé"Suditory filter (center freq. ~ 2.600 Hz) and its
half-wave rectified counterpart are displayed fa@yathetic harmonic tone complex of 250
Hz.

Frequency components are introduced in the basd bad at multiples of the channels
center frequency (see Fig. 3.5 — ¢). These arisetaieating components corresponding to
the frequency intervals between the input partaks. The most prominent interval usually
corresponds to theoFsince harmonic sounds exhibit a partial tone setiet shows a
constant spacing between consecutive partials tdrigs 3.5 demonstrates the effect of
HWR.
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Fig. 3.5.: Effects of half wave rectification oftsband signals: a) Wideband spectrum b) sub-band
spectrum of output signal of auditory channel nb(f8~2.6 kHz), c) spectrum after half wave
rectification, d) spec after HWR & LP-filtering. Atyzed signal has been an artificial
harmonic tone complex with FO=250 Hz, fs = 11025 Hz
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3.1.2.3. Low-pass filtering

The components generated at twice the center fregu@-ig 3.5 - ¢) due to HWR of the
output signals of the auditory filter bank have heen reported to be of use [KlapuriO8]
since they are not guaranteed to match the harnsmries of the sound due to imperfect
harmonicity. Therefore the frequency componentsvite the channels center frequency are
rejected by low-pass filtering the individual siggavith cut-off frequencies according to the
channel's center frequency using FIR filters of esrdb4. The qualitative effects of the
described processing (1) Auditory filtering, (2ngaression, (3) HWR, (4) LP-filtering have

been demonstrated using synthetic harmonic tonglexes.

Finally the ability of the processing strategy tnforce missing fundamental frequency
components is demonstrated (Fig.3.6) using a stintharmonic tone complex of 250 Hz
which does not exhibit energy at FO location (Fig.8)). Further spectra of the output
signals of several auditory filters after auditpnpcessing (b,c,d,e) are displayed. At last the
summary spectrum (f) is shown which results frormsing up the spectra from individual
auditory channels.
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Fig. 3.6.: Reinforcement of the missing fundamefriequency component due to auditory motivated pre-
processing exemplified for an artificial harmorooné complex of 250 Hz with 0 amplitudg domponent:
(a) Magnitude Input Spectrum, (b)(c)(d)(e) Magnéusbectra of output signals of individual auditbiters
after channel normalization, HWR and LP-filterif). Summary Spectrum showing reinforced FO compbnen
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3.1.3. FFT based Periodicity analysis

Though it is not well understood how pitch is reyameted at higher cognitive levels, there is
large evidence that some kind of periodicity analyakes place in the individual auditory
channels and that information is combined acrodsbsunds to yield the pitch percept
[Meddis91].

A lot of pitch perception models assume this pecibglanalysis to be based on some kind of
auto-correlation function derived from sub-bandgnals. Moreover experimental evidence
supports this point of view. [Cariani96] studieck thignals in the auditory nerve of cats in
response to complex sounds. They recorded the mespon 507 nerve fibers and computed
histograms of successive and non-successive nepileds and combined the histograms.
They found that pitch correlated strongly with thest prominent inter-spike intervals which

suggests that the brain analyzes inter-spike patterform a pitch percept.

While autocorrelation based pitch estimation meshate able to predict well the pitch of
individual sounds they fail sometimes in predictihg ks of multiple concurrent sounds.
Even the highest maximum of the summary auto-caticel function (SACF, which is
attained by summation of ACF’s of individual chalsaloes not necessarily correspond to
any of the actual pitches. Certain pitch relatigpsizan confuse these models as it is the case
for the major triad as for the interval of a petféfth. In these cases the constituent notes
match the overtone structure of a non-existing @hoot, leading to a maximum in the SACF

corresponding to the virtual root note insteachef¢orresponding FOs.

Major Triad: Root note A = 440 Hz Interval of a perfect fifth: on A = 440 Hz
Constituent notes: A C# E Constituent notes: A E
Corresponding FOs: 440 550 660 Corresponding FOs: 440 660
Virtual Root Note: 110 Virtual Root Note: 220

Fig. 3.7.: Virtual Root notes due to specific relatbetween FQO’s

Moreover autocorrelation based pitch models dgonotide good robustness against additive
noise. Especially in music the harmonic contemfien accompanied by drums polluting the
pitch information. For the mentioned reasons weyappT analysis to the sub-band signals

instead of correlating them. Information across ncieds is integrated by summing up
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individual spectra yielding the summary spectrumchiwill be referred to as {J It should
be noted that FFT and the ACF are closely relatedach other over the power spectral
density (PSD) [Oppenheim04]. They can be thouglatsafivo different representations of the
periodicity information contained in a signal.

3.1.4. Frequency discriminability of the periodiciy analysis

Complex polyphonic audio signals can be seen asstaiionary signals, meaning that the
signal content varies rapidly. Therefore they aseally analyzed using block—processing
where a signal is cut into overlapping signal segimand each segment is analyzed by itself.
In this way quasi-stationarity can be assumed, ingathat statistical properties don't vary
much at least during one segment. This is a negeseadition for FFT analysis to correctly
represent the signal content. The segments arerafsaed to as signal frames and the
segment length as frame size measured in samiese &re two parameters determining the
frequency discriminabilitAFr; between spectral components in the FFT of a sifyaaie,

namely the frame size and the sampling frequenieg.ré&€lation between the two is given by:

sampling frequency

Eq. 3.5
AFppr = (E4. 35)

frame size [HZ]
Thus a large frame size is needed to yield highueacy discriminability. Since the spectral
content of complex audio signals varies rapidly ffzane size cannot be made arbitrarily
large because as mentioned the signal contentlysrepresented accurately by the Fourier
Transform for stationary or at least quasi-statigreagnals. Therefore the frame size has to
be chosen as large as possible to yield high fregyueliscriminability and as small as
necessary to guarantee stationarity of the sigmahg one analysis frame.

Usually the frame size is chosen according to thallest frequency difference that has to be
resolved for a given application. In our case watwa resolve frequencies in the range of 98
— 784 Hz corresponding to notes G2 — G5 which ésetkpected frequency range of singing
voice fundamental frequencies. With respect to lvasgp harmonically related FO’s like in
our case the FFT resolution should be at |18a&st; = 2 semitones. This is reasonable
since two notes with a spacing of less than 2 semed played together are perceived as
particularly dissonant and are therefore rarelydusgpopular music. The smallest frequency
difference that needs to be resolved occurs folotvest pitch of interest being
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AFeer = AFsmanes= F1-F2 =98 — 110 = 12 Hz. (Eq. 3.6)

This would require a frame size of roughly 83msesponding to 918 samples at a sampling
frequency of 11025 Hz. Rounding the number of sasipb the closest power of two results
in 1024 samples per frame at a sampling frequefcy1®25 kHz corresponding to 93ms
frame length, a common value used for multi pitstingation. This results in a frequency

resolution ofAFpp; = 10,76 Hz.

To avoid the well known leakage effect due to digrwities at frame boundaries each signal
frame is multiplied with a Hann window of the samsige. The multiplication in the time
domain corresponds to a convolution in the frequetmmain which means that every bin of
the FFT of the signal frame is convolved with thETFof the window function. The
consequence is spectral smearing which degradefa@haency resolution. The resulting
frequency resolution depends on the main lobe waditthe window function. By convention
different window functions are compared based ennttain lobe width at -6dB measured in
bins. The Hann window has a main lobe width ofi&sbso frequency resolution is degraded

by a factor of 2 and the effective resolution af #FT analysis is
AFprt.ei=21,52 Hz (Eq. 3.7)

Thus, the desired frequency resolution of 2 semesois achieved only for pitches higher
than the note F3 corresponding to a frequency éf6Hz. This is not so critic since at low

frequencies such small intervals result in harainde and therefore are usually not used.
This harshness or dissonance is perceived whenltameous sinusoidal components are
separated less than a critical bandwidth resulitiran interaction of the excitation patterns on
the basilar membrane [Cook99]. The relative critloandwidth (with respect to the center

frequency) is larger at low frequencies and so kimi@rvals result in larger harshness at low

frequencies than at higher ones.

Finally the discriminability of the periodicity alyais in terms of resolvability of spectrally
close frequency components is demonstrated inF&for a mixture of two sinusoids with
frequencies F1-F2 larger thafrerro and in Fig. 3.9 for two sinusoids with frequendids

F2 smaller that\Fertest.
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Fig. 38.: FO Discriminability of the periodicity Fig. 39.: FO Discriminability of the periodicity
analysis for spectrally close sinusoids: Spectnograanalysis for spectrally close sinusoids: Spectnogra
and derived pitch estimates (blue) for 2 sinusaifls and derived pitch estimates (blue) for 2 sinusuiik
0.5s length, withAF=|F1-F2|AFeererr (F1=100 Hz / AF=|F1-F2|AFgrrer (F1=100 Hz / F2 = 118 Hz). As
F2 = 122 Hz), displayed between 80 and 150 Hxxpected correct FO estimation breaks down for
spectrogram  settings - frame size 92.9nfilequencies closer thakFegr.ef

(1024samples @ fs = 11025) Hz, hop =11.6ms

3.2. Multi Pitch estimation

It is well known that multi pitch estimation (MPR)gorithms sometimes fail in predicting
every single fundamental frequency of the undegysound sources correctly which is
getting worse, the higher the number of concurpsiches. Apart from that MPE algorithms
tend to be biased towards one type of octave eF@oubling or FO-halving errors. We
therefore apply a twofold pitch estimation strategyorder to increase the robustness and

reliability of multi pitch estimates which is illtrated in the following.

( N\ Pitch
- MPE 1: candidates
Salience Partial Tone
X-sub-band L ) ( Amplitudes &
Spectrum d k X Freauencie
> Partial Detection
>
(" R L
R MPE2:
g Peak Detection Pitch
\_ _) candidates

Fig. 3.10.: Block Diagram of the proposed multchiestimation strategy

First we apply two different MPEs to the summarp-band spectrum (). Based on the
pitch candidates from both MPEs the partial detecstage tries to locate the actual peaks of
the corresponding partial tones in the FFT-spectafrmone analysis frame. This shall

improve reliability of pitch candidates since magisounds and especially voice sounds tend

37



Detection of singing voice signals in popular musicordings — Diploma Thesis — Amir Rahimzadeh v.Na®09

to have harmonic spectra. Moreover this allows ipleltspectral peaks to be assigned to an
underlying sound source.

3.2.1. MPE1 - Salience Function

The MPE 1 makes use of a salience function to oeter the harmonic strength of
concurrent pitch candidates. The salience fundgoa function of fundamental periadin
seconds equivalent to B/H-or each period candidatehe salience s) is calculated as the
weighted sum of the amplitudes of harmonic partiddsived from (k). Salience is

calculated corresponding to equation 3.7.:

M
s(1) = Z w(t,m)Us(k,,) withk,, =Km/tand K =N/fs (EQ.37)

m=1

with kn, corresponding to the partial tone location in theand w,m) being a weighting
function (Eq. 3.8) determining to which degree wuidiial partial tone amplitudes contribute
to the salience of a specific period candidate. THrgest peaks in the salience function
usually correspond to the most salient pitch ceatesl
fs/t+&
w(t,m) = mis/it e, (Eg. 3.8)

The individual weights depend on the fundamentaiogeof a pitch candidate and on the
partial tone number and are given by equation B displayed in Fig. 3.11for the first 5
partial tones for various frequencies. To the ritiie weighting function is illustrated for

increasing frequency for the first 5 partial tones.

Partial 1
0.8}
E 06 B T
=) Partial 2
2
047 /’f Partial 3
] . _ Partial 4
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Partial 5
0 1 1 1 1
0 1000 2000 3000 4000 5000

Frequency [Hz]

Fig. 3.11.: Weight function for the first 5 pial tone: with increasing frequen:
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The weighting function has been evaluated usin@4@und mixtures with different number
of polyphony (Polyphony = 1,2,4 and 6, 1000 sampiash) and the above form has been
found to result in the most reliable peaks in thigesce function [KlapuriO6k; and&; in Eq.

3.8 are moderating terms important for low frequeR€©’'s. The exact values have been
adopted being;=20 Hz and,=320 Hz for analysis frames of approximately 93W#hout

these terms the weighting function would reducg/io.

In the following (Fig. 3.12) the salience functiendisplayed for a mixture of 3 synthetic
tones (20 partials each, with equal exponentialgcreasing partial amplitudes) with
fundamental frequencies 0§.F=440, /.,=550 and §3=660 Hz.

121 Foal2
L Fo-3/2 2R
08l
05|
04l

02

0 | | | | | | | | |
0 100 200 300 400 500 500 700 800 500
Frequency

Fig. 3.12.: Salience function (blue) for a mixture of 3 syntbébnes with fundamental frequencies 0,=440,
F0,=550 and Fg=660 Hz, red vertical lines indicate the exact B8ifjons

The evaluation of the salience functiom)s(t equally spaced fundamental periodesults in
a nonlinear frequency resolution which is decre@$om increasing § This can be observed
in Fig. 3.12. The spacing between the blue dowicating consecutive values oftk(is
getting larger for higher frequencies. Instead qfiad frequency resolution over the whole

frequency range, there is high resolution at lagfrencies wherey$tend to be very close.

Apart from that it can easily be observed that ghéence function also exhibits peaks at
double and half §of the underlying pitches. This is due to the finett pitches in octave
relationship share many partial tones which suppatative pitch candidates at/E and
2xFy. Therefore instead of assuming the N highest pdakshe salience function to

correspond to the real pitches, a technique cdlietative estimation and calculatidn
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proposed by [KlapuriO8] is applied. There, aftetedting the highest peak in the salience
function the corresponding partial tone series astlp removed from the &J Then the

salience function is re-estimated and again thedsgpeak is detected and so forth.

Since patrtial tone frequencies of different harmally related pitches often overlap, they
will not be removed completely which could negatjvaffect the detection of the remaining
pitches. Instead, the partial tone amplitudes Wwél weighted using the weight function
introduced earlier, before removal. As can be deam the weighting function in Fig.3.11
low Fy's and low partials are removed less than high@soihis accounts for the fact that
Fo's and corresponding harmonics are close and yswalerlap significantly at low

frequencies while they tend to be better sepatatetigher the ¢

3.2.2. MPE2 - Peak Detection

In addition to the MPE 1 proposed by [KlapuriO8] aygply a simple peak picking routine to

Us in order to reveal unrecognized peaks. This iessary since informal tests showed that
increasing the number of estimated pitches in tHeEML doesn’t help finding all the

remaining pitch candidates due to the nature ofesstenation procedure. In Fig. 3.13 and
Fig. 3.14 this is exemplified for the frame-wisdcpi candidates of MPE1 and MPE2 of a
musical excerpt are plotted over its spectrograntotal number of 8 pitches have been
estimated. As can be seen from Fig. 3.14, MPE2jslsle of detecting all relevant peaks in

the spectrogram.

Fig. 3.1%.: Frame wise pitch candidates (blue) fr Fig. 3.14.: Frame wise pitch candidates (blue) fr
MPE1, # estimated voices = 8 MPE2, # estimated voices = 8
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3.3.3. Guided partial tone detection

Up to now pitch candidates have been derived floensummary spectrumsUy comparing
spectral energy at harmonic locations and by sinmglak picking, looking for strong FO
components. It is well known that accuracy of pitdndidates rapidly degrades in the
presence of additive noise usually originating fneencussive instruments. Therefore in order
to increase reliability of the pitch candidates #ual partial tone series of each pitch

candidate is trying to be located.

If a peak to a given pitch candidate is found ie #pectrum and peak amplitude is higher
than a certain threshold the peak position is eefinsing parabolic interpolation. For each
refined pitch candidate a total number of P pattaks are trying to be located at frequency

positions being integer multiples of the fundamefmequency as given in Eq. 3.9.
E,=FyxplHz] p=234..P (Eqg. 3.9)

Not all instruments generate perfectly harmoniccipeand the partial locations tend to
deviate from the ideal positions. In particulairgjrinstruments like piano and guitar often
used in popular music show this characteristicviglainen99]. Moreover if pitch estimates
are inexact, the predicted partial tone frequenaiesnexact too and the error increases with
partial tone number. Therefore a deviation of A%rom the ideal harmonic partial tone
frequency is tolerated to account for that whichresponds to +/-17 cent or a (hypothetical)
sixteenth tone. As for they$; the located partial tone frequency- and ampditestimates are
improved using parabolic interpolation. Parabotiterpolation uses only three neighboring
FFT bins to estimate the true peak location achgewatisfactory results which drastically

reduces the computational load compared to zerdipgd

In this way the partial tone series of each pitghdidate is trying to be located in the. The

estimated harmonic series represented by the pomdsg partial tone frequencies and
amplitudes are passed to the partial tracking stélge partial tracker is responsible for the
grouping of these estimates over time, connectimlividual frame wise estimates to form

pitch tracks representing individual note events.
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3.3. Pitch Tracking

We consider the d-trajectory being of high informative character thne discrimination
between vocal and instrumental sounds. Therefdoh giandidates of consecutive analysis
frames have to be connected in order to get comtisipitch tracks enabling us to analyze the
temporal evolution of pitches over time. Consegyeiit is essential that pitch tracks

correspond to the actual FO trajectories of theedgithg sound sources.

In western music it is common that instruments sinding voice often share the same notes
thus pitch tracks might be relatively close in fregcy or even cross. This can lead to
ambiguous situations for the pitch tracker whentpitandidates of frame N are equally close
in frequency to a pitch track that existed in fraNd. Even in less specific situations as the
above mentioned the continuation based on the estallifference in frequency between
consecutive pitch candidates which seems intuitivight lead to erroneous connections due
to the large pitch variability typical to vocal sals. An example of an ambiguous situation is
illustrated in Fig. 3.15.

A Voice Correct Vocal FO Track
1 Instrument Correct FQ”_...J-A

Instrumental FO Track
45 | |

A
A/ Closest FO
/ »

N-2 N-1 N N+1 N+2  Frame no.

»

A

Frequenc

Fig. 3.1%: Simple Partial Trackin Tracking errors due to large FO variability of simgivoice, ifpitch track
continuation is based on the closest distance legtwensecutive pitch candidates

3.3.1. Tracking based on cubic interpolation

To overcome the mentioned possible tracking ambjigue make use of the history of pitch
tracks. More specifically we calculate the expe(ﬂ_éﬂgg_ck"” (N) for each active pitch track
in frame N out of the last three'§ (N-3...N-1) of the corresponding pitch track appty
cubic interpolation. That pitch candidate that lesest to the expectdDl72™(N) is

considered the correct pitch for the continuatibrack M. This is illustrated schematically
in Fig. 3.16.
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Fig. 3.1€.: Correct pitch track continuation based on clbdestanceAFQ..,, between the extracted pit
candidate in frame N and the expected,E@redicted from the last 3 FO estimates using cirtérpolation

3.4. Post processing

The pitch tracks that have been derived in the rde=tt manner are finally restricted to a
minimum duration of 50ms and tracks with low FOiesade are discarded. FO salience is
simply calculated as the mean amplitude value &hepitch track and tracks showing values
lower than the 50% of the local mean amplitude @adwe discarded. The local mean is
calculated as the mean of mean amplitude valudsaoks surrounding (+/-1 s.) the track

under test. As can be seen from Fig 3.17 the peapgstch tracking method is able of

capturing the constituent parts of the parallehf@ric sound sources in a polyphonic audio
signal from the auditory motivated spectral repnéssion of it.
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Fig. 3.17.: Pitch Tracks (blue) after post-proceggilotted over the spectrogram
representation of the corresponding audio excerpt
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3.5. Feature Extraction

Since an audio waveform doesn’t allow the direcrivdion of the note sequence
corresponding to the vocal melody, different kinflsignal processing are applied to the data
in order to reveal the desired information. In thantext the result of such processing is
called a feature being a measure of a particutarasiproperty. Features may be calculated
for individual signal segments, for the audio tracka whole or from some other kind of

representation (e.g.: FFT, Cepstrum, Correlogradnhendata.

The feature extraction stage plays a key roleHerducceeding classification process. Often
single features fail yielding satisfactory classifion accuracy. Usually the use of a feature
set (different features in conjunction) resultdetter performance. The challenge lies in the
determination of the optimal feature set beinggpecific number and kind of features which
minimize a previously defined error criterion. larocase that would be to minimize the
overall error being the number of frames of vocatiptracks erroneously classified as
instrumental tracks and vice versa. The optimatuieaset is usually found by means of

simulation.

In our case all features are derived from the psly extracted pitch tracks. These
constitute a mid-level representation of the hanmorontent of the signal, holding
frequencies and amplitudes of different FO trajeetoof the corresponding partial tones. The
features that will be described in the followingaat representing the characteristics of vocal
and instrumental sounds that have been explainfaeb€p.17 — p.20 — 1.5inging voice

characteristic$.
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3.5.1. Feature Description

Feature 1: Salience

This feature aims at representing the absolutegtineof the harmonic series and has been
used by [Rao08] in the context of main melody eation. It is calculated for every pitch
track as the sum of partial amplitudes of the apoading harmonic series averaged over its
length which can be written as

salience = ;ZN“‘JI ZP”‘"“‘”SX (kp, n) (Eq. 3.10)

Nend—Nstart n=Nstart “p=1
where n refers to the frame number and k to theesponding FFT-bin of partial tone p.

Feature 2: Mean Relative Salience (MRS)

Relative spectral energy concentrations at sub<anave already been exploited in
[TzanetakisO4] among other features to discriminaééwveen song segments where the
singing voice is present or not. Inspired from that propose a feature that represents the
relative salience of each pitch track comparedht dtrength of the accompaniment in the
frequency range of 300 Hz — 2.500 Hz where the evidécexpected to be dominant. It is
calculated as the ratio of the spectral energy pdiréial tone series and the remaining energy
in the mentioned frequency band. Spectral energsalsulated for the partial tone series
p=1...P as the sum of squared magnitude vgligs,)|? of the FFT bin k including the

neighboring bins k-1 and k+1 for each partial tpneeferred to a&'(kp) to account for the

spectral energy spread due to windowing. Equatidd 3lescribes the calculation of the
relative salience value for one single frame n. ®tength of the accompaniment is
calculated as the sum of magnitudes of Binsorresponding to the remaining FFT bins
which do not correspond to any of the bins reldatethe partial tones series of track T. The
absolute range df, andK is limited as mentioned to the corresponding feemy range of
300 Hz - 2.500 Hz.

27 x(kp)’

Srer.(n) = S

wky={k—1kk+1},p=1..P (Eq. 3.11)
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For each track the mean relative salience is catedlas the mean value of the frame wise

salience values

MRS, = ——yIramesg | (n) (Eq. 3.12)

Nframes n=1

Feature 3: Mean FO

As mentioned, vocal FOs in popular music mainlyasorirate on a limited frequency range
lying roughly between 100 — 800 Hz. Therefore theam FO value for each pitch track is

calculated, given as follows:

Mean(F,) = " ! ZNﬁ“mes Fy(n) (Eq. 3.13)

frames n=1

Feature 4: SPSD — Summary partial standard deviatio

SPSD aims at capturing the variability of partiahé¢s around their mean value which is
inherent to singing voice signals. The standardadien is calculated for the FO trajectory of

every partial tone of a harmonic series and finsllgnmed up which can be written as:

SPSD = 3,747 STD (F, (p)) (Eq. 3.14)

With F,(p) being the frequency trajectory of partial tome Npariais b€iNg the number of

estimated partial tones and STD representing Hredard deviation.

Feature 5: PSD — Partial standard deviation

Moreover this score has been calculated for indadcpartial tones (p=1...5) to study the
advantage or disadvantage of considering the wipaldial tone series in contrast to
considering individual partial tone trajectoriebhe score reduces to Partial Standard

Deviation (PSD) which is calculated as:
PSDp, = STD(E,(p)) (Eqg. 3.15)

With F,(p) being the frequency trajectory of partial tqnand STD representing the standard

deviation.

46



Detection of singing voice signals in popular musicordings — Diploma Thesis — Amir Rahimzadeh +.Ne®09

Feature 6:A-FO

This feature also aims at capturing the dynamidheffrequency trajectory which is usually
lower for instrumental sounds than for singing eoilt has been used in [Goto06] as one of
two features for singing voice discrimination. & c¢alculated as the frequency difference

between FOs of consecutive analysis frames n fdr pach track as follows:
AFO (n)TrackT = FOTTaCkT (Tl) - FOTTaCkT(n - 1) (Eq 316)

From theA-FQ, vector several features are derived comprisingnieanA-FO, the standard

deviation, variance and maximum calculated for gatth track.

Feature 7: SDPF — Summary delta-partial tone frequecy

This feature is closely related to the previousueawith the difference thatF is calculated
for all partial tones of the pitch track. In detail is calculated as the sum of absolute
frequency difference between consecutive analyssnds for every partial tone of a

harmonic series which is finally summed up forpalttials.

SDPF(F,) = —— ¥ P 3, /7" abs(AF,(p,n))  (Eq. 3.17)

frames p=1 n=2

Npariiais COrresponds to the estimated number of partiadgmdyis the duration of a tone in
frames, K{(p,n) is the frequency value of partial tone p lanfe n of pitch track Jf and

AF(p,n) refers to the difference between the frequesmtue of frames n and n-1.

Feature 8: FO range(absolute)

To capture the evolution of pitch tracks acrossjiencies the absolute difference between
the maximal and minimaloHs calculated for each extracted track being asueafor the

range of frequencies that is passed by a track.

FoTrack N — Forl\r]lax — FO%in [Hz] (Eq. 3.18)

Range—absolute
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Feature 9: FO range (relative)

In order to transform this measure to a musicalesthe absolute range in semitones is
calculated. The cent scale is a relative scalethadefore the frequency difference of the
above equation between minimal and maximal FO besamratio between the corresponding

values which equals a difference in the log domain.

Fofrack N = 1200 logz(

Range—relative

FOMmax
Foﬁm> [cent] (Eqg. 3.19)
The above described features will be the basishi®rfollowing vocal classification process.
Classifiers usually need reference data which mesentative for the given number of
different classes and which allows generalizatioterms of statistical modeling of the data.
New data is subsequently classified based on #imirig data. Therefore a representative
training data set is the key for successful classgibn. In the following the derivation of the
training dataset will be explained in detail and thiscriminative power of features derived
from it will be investigated by information theareimeans (Fisher's Ratio, LDA) and by

means of simulation (N-fold-cross validati&@hapter 4 - Evaluation
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3.5.2. Derivation of the training data set

The discriminative power of individual featuresaofeature set is not known in advance and
has to be verified. First informal tests on solgtinment and vocal recordings showed
promising results. So the question was if featdeysved from the polyphonic mixture audio

signal were as informative as the ones derived fimrsolo recordings.

Song Pitch Tracks Singing Voice Features
Number N of song N Tracks vocal tracks
Training Songs Pitch Track Track Feature Training Database
N songs =9 Extraction Separation Extraction N samples = 2200
Instrument Features
Tracks instrument

Fig.: 3.18.: Block Diagram - Derivation of the maig data set

Therefore we had to generate training data on whickassifier could base its decision on.
The MIREX 2005 — Training data base was used traekthe desired training instances. The
data base comprises 13 polyphonic song excerpighmh 9 contain singing voice. For the
derivation of the training data only the 9 songataming a male or female singing voice
have been considered. The song excerpts are ap@@ty 30 sec each and they come with a
manually annotated reference transcription of tihgisg voice FO trajectory in Hz with a
spacing of 10ms between consecutive analysis itsstdihis ground truth served as a basis
for the separation between vocal and instrumentahds. Each song excerpt has been
analyzed by the developed algorithm and pitch sazkresponding to the FO trajectory (or
integer multiples of the same) of various concurssunds have been extracted as described
in Chapter 3.1 — 3.4. On the left hand of the Big9 an example of the extracted pitch tracks
is given, plotted over the spectrogram of a 5 sécgwund excerpt. Pitch tracks have been
estimated for a frequency range of 100 — 800 Hz @wmacks have been restricted to a
minimum duration of 100ms.
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Fig.: 3.19.: Pitch Tracks derived from a song egter  Fig.: 3.20.: Separation of pitch tracks into classe
(5s) of the training data base plotted over the voiced (red) & instrumental (blue) based on theugo
spectrogram representation of the corresponding truth FO trajectory (green). Integer multiples o t
audio waveform. Pitch tracks have been estimatedground truth are considered as voiced too. Traks t
for a frequency range of 100 — 800 Hz and tracks don't allow a clear distinction (beteen 10% to 60%
have been restricted to a minimum duration of overlap with
100ms. reference) are not considered (magenta)

Based on the MIREX reference transcription of tietfjectory of the singing voice the
extracted pitch tracks have been separated intolélsses vocal and instrumental. Now tracks
that do not deviate more than a quarter-tone (+¢d3ti) from the reference Br an integer
multiple of the same for at least 60% of the tratikration are considered as vocal
corresponding to the blue tracks in Fig. 3.20. Ksahat didn’t allow such a clear distinction
(between 10% to 60% overlap with reference) hawmn lexcluded to avoid ambiguities in the
training data set. In Fig 3.20 pitch tracks coroegpng to instrumental sounds are displayed

in red.

In the described manner pitch tracks have beewetkifior every one of the 9 songs of the
vocal training data set and pitch tracks have lsgrarated carefully into classes vocal and
instrumental based on the manually annotated veéalence FO trajectory. Pitch tracks have
been restricted to a minimum duration of 50ms. Fritrase pitch tracks the described
features have been derived which we consider asraning data base. The total number of
samples in the training database islNes= 2263 which splits up to Nsic = 1319 and

Nvoice = 944. Before the training data might be useddesify new data instances it has to be

verified that the collected data allows discrimioatbetween the two classes.
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3.5.3. Discriminative power of the features set

To get an idea of which features might be informeatand which not, statistical testing is
performed for individual features before featurenbnations are tested. The discriminability
of the features of the labeled training data hanlsudied in three different ways. On one
hand statistical testing of individual featuresenms of calculating Fisher's Ratio has been
performed. On the other hand the discriminative gowf the whole feature set is
investigated applying Linear Discriminant Analys{sDA). Finally in Chapter 4 the
generality of the features set will studied by nseah simulation using the leave-one-out

method.
Fisher's Ratio

Fisher's Ratio (k) is calculated as the ratio between the intersclagiance and the intra-

class variance and is given for the classgar@ G as follows:

_ (e ch)z

> > (Eq.: 3.20)
Oc1 t 0¢y

Fg

It reflects the degree of overlap of the two dmitions G and G and if the classes are
separable in terms of the mean value and the \@iahthe distributions. To give an idea of
the value range,dhas been exemplified in Fig. 3.21 for 3 distribo8 showing different

degrees of overlap.

F-Ratio = 0.5! F-Ratio =0.8 F-Ratio =1.6
1 1 1
05 05 05
0 0 0
-1 M 1 -1 0 1 -1 a 1
M= 0.2 /6% =0.15 M=0.2/6% =0.1 Hi= 0.2 /6% = 0.05
Hp=-0.2 /6% = 0.15 Hp=-0.2 /6% = 0.1 Uy = -0.2 /6% = 0.05
overlap: 46,6% overlap: 37,19 overlap: 20,69

Fig.: 3.21.: Fisher's Ratio exemplified for diffettedistributions. Note that the mean values
remain the same for all examples while the variatexreases.

Fisher's Ratio has been calculated from the labeseding data for individual features of the

feature set described before. Results are givéalie 1.
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Fisher's Ratio for single features
Feature 6 (mean value) MeaRO 0.754 *
Feature 4 SPSD 0.644 *
Feature 5 (Partial 3) P3D 0.635
Feature 5 (Partial 4) P3SD 0.634
Feature 5 (Partial 2) PSD 0.631
Feature 5 (Partial 5) PSD 0.631
Feature 8 Abs. FO range (Hz 0.624 *
Feature 5 (Partial 1=F0) P$SD 0.623
Feature 6 (standard dev. SHHO 0571 *
Feature 7 SDPF 0.569 *
Feature 3 Mean FO 0475 *
Feature 6 (maximum) MaxFO 0.464 *
Feature 2 MRS 0.296 *
Feature 6 (variance) Va0 0.253
Feature 1 Salience 0.138 *
Feature 9 FO range (cent) 0.095

Table 1: Fisher’s Ratio derived from the sampletheftraining data base
(N samples = 2263; N vocal = 944; N non-vocal =9)Jbr individual
features. The “*” symbol indicates the featureshef feature
subset which is later used for evaluation

As can be seen single features of the training lolase bear discriminability between the two
classes to some extent but Fisher’s ratios aréotatow to reliably predict class affiliation
based on one single feature. However, single featshowing low gs might be valuable
when used in combination with other features. Tioeee we apply linear discriminant

analysis to the whole feature set.

Linear Discriminant Analysis

Linear Discriminant analysis is a technique usedmiachine learning for dimensionality
reduction of a feature space. Based on the cléssmation the method tries to find a linear
combination of the present feature B€tomprising features;FFy) of the N dimensional

feature space according to
Y =wTF (Eq. 3.21)

such that separability in the new 1 dimensionaluieaspace Y is maximized. The criterion

for maximization is the ratio of between-class svaind within-class scatter.
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Feature Selection using LDA

So by applying LDA we project the existing featsface onto a new features space where
classes are in general more separable. TherefsoeRgk will be in general larger for the
transformed features than for individual featurBisis can be used for feature selection by
iteratively excluding individual features from thehole feature set, calculatings Fof the
transformed feature subset and comparing itgaétived from the transform of the whole
feature set. In this way features are subsequertiiuded from the feature set as long as F
of the transformed subset increased or at leashalicdegrade significantly. Those features

showing the lowest individualgfhave been the first candidates for exclusion.

It turned out that the featuresean FQ meanrelative salience (MRSndmeanAFO are the
features bearing the highest discriminability whesed in combination with respect to the
training data set since they resulted in the ldrdegradation in terms of Fisher’s Ratio of the

LDA transformed features when excluded from théueaset.

The final feature set contains 9 of the 16 propoeedures. Fisher's Ratio for the LDA
transformed features set isg#3,18 and for the feature subsek.sk=2,97. Feature

distributions for the transformed feature subsetexemplified in Fig. 3.22 and 3.23.
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Fig. 3.22: Feature Values after LDA for the twosslas voice (red) / music (blue).
Good separation of the training data using thevddrfeature subset is obviously given.
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Fig. 3.23: Distribution of feature values after LDA in tesrof frequency of occurrence for t
two classes voice (red) / music (blue). Good sdjmeraf the training data using
the derived feature subset is obviously given.

The discriminative power of individual featurestbé feature set has been investigated using
Fisher's Ratio. A feature subset has been foundgueDA which does not significantly
degrade linear separability of the data compardatigavhole feature set. Now that we know
that the training data can be discriminated tortageextent based on the derived features the
generality of the training data has to be verifiederms of how well class affiliation of new
data instants can be predicted correctly baseti®training data. This is called validation of
the training data which will be done using the Ndfoross-validation method, described in

detail in“Chapter 4 — Evaluation and Results”.
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3.6. Classification

Classification of new data instances based on rdieing data is accomplished using the
KNN (K-Nearest-Neighbor) classifier. The principd¢ KNN-classification is that new data
instants are classified based on the class aififiabf the K closest training instants as

illustrated in Fig. 3.24 for K=3 and K=5. Usuallyet Euclidean distance is used as a distance

metric. A
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Fig. 3.24.: Principle of KNN classification: A nedata instant (green) is classified
based on the class affiliation of the K closesntrg instants (Classl:
blue / Class2: red), closest neighbors shown fd3 Krd K=5

The KNN classifier has been chosen for its simpli@f implementation and because it
allows to easily adjust the sensitivity of the slfier to the training data by varying the
number K of neighboring data instances which styoraffects the structure of class

boundaries [DudaO1]. The choice of K usually depgeon the number of training instances

Ntain @nd a general guideline is to select K accordmg Nr,q;,. If the classes are well

separated in the feature space a smaller valu¢ éan be selected.

Another reason for choosing the KNN classifier hattit has established as reference for
pattern recognition. Compared to more elaboratssilars the KNN might not always

perform best but it sets a baseline for achievelalssifier accuracy.

A visual example of the classification results #8s song excerpt of the training database is
given in the Fig. 3.25. Pitch estimation has beerfigpmed between 100 Hz and 800 Hz and
track duration has been restricted to be at le@6m%. Features of the song under test
previously derived for each training song are afrse excluded from the training set before
classification to avoid that tracks are classitie$ed on training data derived from the same
song. Tracks classified as voice are displayedeth and instrumental tracks in blue. The

reference FO trajectory is displayed in green.
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Fig. 3.25.: Successful classification of pitch kato classes voice (red) and instrumental (blue)
based on the training data set containing N=204ifitrg instances. The reference FO trajectory is
displayed in green. Number of neighbors of the Ktla&sifier was set to K=11.

As can be seen the training data allows succes$igkification of pitch tracks into the
classes voice and instrumental. Of course perfisctichination as in the example above is
not always achievable for different reasons. On btaed the more notes are played
simultaneously the more difficult is the extractiand separation of individual pitch tracks.
On the other hand not all singers show the expeetmthl characteristics in such a

pronounced way which can lead to misclassification.

3.7. Final Pitch streaming

As described before ifi3.5.1. Derivation of the training data setalso tracks found at
integer multiples of the reference vocal FO's avasidered as training instances for the class
voice. This is the only way to maintain class sapan without having to restrict the search
range for s too much. Consequently there might be multipseks overlapping in time
after classification usually corresponding to theaRd the first few partials that fall within
the frequency range of interest as can be seeredbdvig. 3.25 . Therefore the output of the
classifier has to be post processed and the tdaksified as voice have to be reduced to one
final vocal track. Parallel pitch tracks are congmhon the basis of the summary mean
spectral amplitude (SMSA) of the first 3 partiahés. For overlapping tracks always the one
showing a lower SMSA value is discarded. In Fi@63he final vocal pitch stream derived in
the described manner for the above example is showed together with the reference FO in

green plotted over the spectrogram representatitreds song excerpt.
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Fig. 3.26.: Final vocal pitch track (red) after wetion and reference FO (green) plotted over the
spectrogram representation of the corresponding ercerpt.

3.8. Short-time energy based track grouping

It has been observed that one source of errors ieithect to classification accuracy is the
misconnection of consecutive spectrally close resents to one pitch track. Therefore we
implemented forced track separation based on tloet sime energy (STE). The STE is
calculated from the audio waveform every 1.5 msffames of 5.8ms. Due to the small hop
size and frame size the resulting function willeavthe moments of highest short time signal
energy. In typical music recordings this increaseil usually be caused by the base drum or
the snare drum. So by forcing tracks to be sepduatenoments of high STE the pitch tracks
are automatically synchronized with the beat obrags To find possible split points we apply
peak picking to the STE function. Inter-peak intdsvare restricted to be at least 400 ms
apart from each other corresponding to a maximpketed song tempo of 150 BPM. The
detected peaks are further restricted to be at tegiser than two times the mean value of the
STE function. The derivation of split points is exgified in Fig. Pitch tracks and STE
function (blue) are plotted over the spectrogramthaf corresponding song excerpt. The
applied threshold corresponds to the red line atitl @oints are indicated as green asterisks
on the STE function and as red asterisks at O é&ecy position. The weakness of STE
function is that it works well if there are stropgrcussive elements (base drum, snare drum)
present in the audio signal. For songs with ncear percussion the peaks in the STE will be

less pronounced and correct separation will be rdiffieult.
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Fig. 3.27.: Forced pitch track separation baseshant time energy (blue): split points are indicbaes
green asterisks on the short time energy (STE)tiomand as red asterisks at 0 frequency position,
applied threshold for peak detection = 2*mean(S(F&q), actual values of the STE function

have been increased for better visibility

3.8. MIDI quantization

The raw k trajectory estimated in the described manner hasnasical meaning and

therefore has to be converted into a distinct setguence. This may effectively be done by

MIDI quantizing the FO track according to:

Frequency [Hz]

400

F
MIDI Note Number = 69 + 12 = log, (m) (Eq. 3.22)

MIDI Quantization of pitch tracks: - Cold Day - Parté - V.wav

0 05 1 15 2 25 3 35 4 45
Time [s]

Fig. 3.28.: MIDI quantization of the pitch trajecymf a solo vocal performance
(dark blue) into discrete note events (light blue)
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However, direct MIDI quantization of the vocal m@&yodoesn’t always yield satisfactory
results due to large frequency modulation typioainging (see Fig. 3.29 and Fig. 3.30).

MIDI Quantization of pitch tracks: - Coyoba - Butterfly - Sample 2.wav

Frequency [Hz]

1 1.2 14 16 18 2 22
Time [s]

Fig. 3.29.: Erroneous MIDI note quantization (greeue to large
frequency modulation caused by vibrato

Therefore FO tracks are filtered by a 10 Hz mowangrage filter which corresponding to the
largest frequency measured for vibrato. The smabhiteh tracks are then subjected to MIDI
quantization. Still there are spurious errors whielm be reduced by restricting the duration

of notes to be larger than a certain minimum lersgtice voice sounds tend to be continuous.

Frequency [Hz]

Time [s]

Fig. 3.30.: Erroneous MIDI note quantization (redg to large vibrato and
guantization after moving average filtering (ligtitie) of the g-trajectory (dark blue)
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3.8. System output

The output of the system is a MIDI file which torquoint of view represents a more general
description of the musical content than a classscalre. The fact that plenty of software
programs related to music processing and musiceob@inalysis make use of MIDI suggests
the usage of it as intercommunication file typeowder to facilitate further use of the
extracted musical information. Moreover one canlgdsten to a MIDI file or create a

musical score using music notation software. Intramh to that only trained musicians are

able to read and reproduce music from a scoreenmrdgh paper.

In addition the exact FO track of the vocal mel@vritten to a text file containing the time

stamps of individual analysis instants and theesgronding FO values.
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Chapter 4 - Evaluation and Results

The proposed approach towards singing voice detetias been evaluated using the training
database of the MIREX 2005 melody transcriptionteshcomprising 13 songs excerpts of
an approximate length of 30 seconds each. The somgs different genres and 9 of them
contain vocals while 4 are MIDI songs only. Since fecus on the detection of the singing
voice the 4 MIDI songs have been excluded fromt¢ise data set and for evaluation only the
9 vocal song excerpts have been considered. Thas gesults correspond to mean values of
the mentioned vocal dataset. The database combsawigference transcription of the FO
trajectory of the vocals in terms of a text filentaining the time instants and the
corresponding FO’s in Hz which have been annotatadually. The reference time grid has a
spacing of 10ms. According to the guidelines of BMEREX melody extraction contestyF
estimates deviating less than a % tone from treyeate are considered as correct estimates.
Since k's of musical notes are logarithmically spacedragtiency, the range of +/- ¥-tone
in Hz is dependent on the actual note. Therefdrgiteh estimates are converted to the cent-
scale which linearizes the logarithmic nature ¢ 6f musical notes. There the spacing of a
semitone always corresponds to 100 cent indeperalehe actual note. So pitch estimates

are considered correct if they deviate less thas0+¢ents from the reference.

Summary Pitch PitChk Singing voice

Spectrum : D candidates Tracks e FO traiector
Mu.ltl Pl-tch Pitch Tracking CI?SS|f|cat!9n ) y
Estimation Voice Recognition

Fig. 4.1.: Main Stages of the proposed singinge/&6 estimation method

The main processing stages of the proposed metbed Fig.4.1), namelynulti pitch

estimation partial tracking and classification (singing voice recognition) have been
evaluated separately. First of all “raw singingoeiFO estimation accuracy” is calculated
from the frame wise pitch estimates. It reflects #bility of the pitch estimation stage to

correctly estimate the singing voice FO trajectiarthe polyphonic mixture signal.

61



Detection of singing voice signals in popular musicordings — Diploma Thesis — Amir Rahimzadeh v.Ne®09

Secondly a “pitch tracking accuracy” is calculastwing how much information is lost

when individual frame wise pitch candidates arenemted to form continuous pitch tracks

restricting the length of pitch tracks to be atstelarger than a specified minimum duration

(in our case 50ms). Finally the classifier perfonce is evaluated in terms of correct

separation between FO tracks corresponding to \awlinstrumental FO trajectories. Due to

the hierarchical structure the performance of iitlial stages is strongly interdependent.

In Table 2 the algorithm settings that have beed disr evaluation are summarized.

ALGORITHM SETTINGS
(used for evaluation)

Settings Pitch Estimation

Settings Pitch Tracking

Sampling frequency 11025 Hz N partials tracking 6
Frame Size 92,88 ms N tracking tolerance 5
Hop Size 5,80 ms Minimum track duration [s] 0,05
Z-padding factor 2 Max allowed frame-to-frame 2,5 % Fy
chirp rate
Pitch estimates per frame 1-10 Classification
Minimum Frequency 98 Hz N samples Training N voice = 944 / N music =1.391
Maximum Frequency 800 Hz KNN classifier K=11/K=31/K=51
Feature subset According to features in Table 1
indicated by “*”
Training/Evaluation Data Set
No of songs. 9
Mean duration [s] 30

Table 2: Algorithm settings used for evaluation
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4.1. Raw Singing Voice F0O Estimation Accuracy

As mentioned this score reflects the ability of piieh estimation stage to correctly estimate
the singing voice FOs in the polyphonic mixturensigand is computed from the frame wise

pitch estimates.

Summary

Spectrum Multi Pitch
Estimation

Fig. 4.2.: Main stages of the proposed singinge®id estimation method,
highlighted block is subject of evaluation

The number of estimated pitches per frame stromdfgcts the ability to recognize the

singing voice FO among others and has therefora beelied for the range ofyNg= 1...10

itch esti t . . . . . . .
%. Singing voice F estimation accuracy (Féacc.) is calculated as the ratio

between number of correctly estimated singing vdibs and the total number of frames

containing singing voice.

N correctly estimated vocal FO's

[%]

Raw Vocal F0 estimation accuracy = N voiced frames

A frame is considered correctly estimated if anythef N estimated pitches is within +/- Y-

note to the reference.F

4.1.1. Performance of the individual MPEs

As we make use of two MPEs, one based on the edienlof the salience function (referred
to as MPE1) and the other based on simple peakngi¢dkMPE2-PP), the performance of the
two is evaluated individually and also for a comdanapproach, where estimates of both
MPEs derived from the summary spectrum are cornsitieimultaneously described by the

block diagram in Fig 4.3.
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( \ Pitch candidates MPE1 - gg's\f,'ﬁg?.l)r
> MRE 1 > MPE1, MPE2,
summary Salience Combined
Spectrum \ J Combine Approach

Pitch Evaluation

( \ Estimates

.| MPE2: Peak
Detection

-
Fig. 4.3.: Block diagram of the evaluation framelfor individual MPEs and the combined approach

Y

Pitch candidates MPE2

The following diagram summarizes performance of the individual MPEs and the
combined approach. The x-axis corresponds to sefultvarious numbers of pitch estimates
(N=1...10) per frame. Each box plot was derived frin® mean performance for individual
songs of the training data basedys9).

Lo DDA b b by sy
4 1 0

Number of estimated pitches per frame

Fig. 4.4.: Variance of singing voiceg Estimation accuracy for MPE1 (A), MPE2 (B) and the
combined approach (C) displayed for different nursloé estimated pitches per frame.
All pitch estimates have been derived from the samynspectrum

As can be seen from the diagrams in Fig. 4.4 fernombers of estimated pitches (N<4) the
combined use of the pitch estimates from both MREsIlts only in a small performance
gain. Moreover it can be seen that for nearly athbers of estimated pitches, simple peak
picking based MPE (B) outperforms the salience tionchased one (A). The reason for this
is probably the iterative estimation and cancealtatprocedure applied in MPE1. So for
higher numbers of estimated pitches (N>4) single of the peak-picking based MPE
(MPE2) seems to be the adequate and sufficientehdipart from that it can be assumed
that 100 % pitch accuracy cannot be reached byusieel pitch estimators, not even by a

further increase of the number of estimated pitcihdaximum average singing voice FO
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accuracy is 90.4% for N=10 estimated pitches pamé (see also Table 4). This is an
important finding since the overall accuracy of toeal transcription algorithm is limited by
the accuracy of the pitch estimation stage. A \idnapection revealed that strong F
variations of the singing voice especially at thegibning of notes are hard to track when
coinciding with strong instrument or percussion edss It has been demonstrated that
performances of the combined approach and peakngi@pproach (MPE2) are very similar
for numbers of frame wise pitch estimates largantB. Therefore in the following examples

results will only be given for MPE2.

4.1.2. Auditory motivated summary spectrum vs. magnitude spectrum

Since we apply auditory motivated processing toitiput data before pitch estimation is
performed, we wanted to study the influence of thiscessing on the pitch accuracy
compared to the accuracy of pitch candidates tlaae been derived from unprocessed
magnitude spectra. Therefore the performance of M&kplied to simple magnitude spectra
has been additionally evaluatddg. 4.5 holds the results for accuracy of singiogce FO

estimation performed by MPE2, one time applied he tuditory motivated summary
spectrum and one time applied to simple magnitypegetsa. Results are shown for different

numbers of estimated pitches.

100||||||||lllll|llllll
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| [
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|
_ 1 1 1 1 1
__70fF ]! 1 L 1 g
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% 60 L + -
©
3 50f ! 1
2 i L
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|
30" B .
1 A
20||||||||||||||||||||
1 2 3 A 5 6 7 8 9 10

Number of estimated pitches per frame

Fig. 4.5.: Influence of the auditory preprocesginghe singing voice FO estimation: Variance ofnestion
accuracy for pitch estimation performed by MPE2different numbers of estimated pitches. For eachlyer
of MPEs two boxplots are given, the first corregiag to the use of the auditory summary spectrujnaf#d

the second corresponding to the use of simple radgipectra (B) for multi pitch estimation. Dispd
metrics: median (red), quartiles (blue bottleneakjimum / maximum (dotted)
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It should be noted that displayed boxplots in Big. for MPE2 (A) correspond to the values
in Fig. 4.4 (B) which is not apparent dur to di#fiet scaling of the y-axis. The results
demonstrate that the use of the summary sub-basatrapy for pitch estimation instead of
mere magnitude spectra results in a significantop@ance gain. The gain is about 5% for
higher numbers of estimated pitches (N>4) whichiffes the increase in computational
complexity (70x, since FFT’s have to be calculdmdevery auditory channel, Mnneiz 70,
instead of 1 FFT per frame, neglecting filteringedions to derive the sub-band signals).

Moreover the variance in pitch accuracy is smddets,

4.2. Pitch tracking accuracy

Pitch Tracks

Pitch
candidates
Pitch Tracking

Fig. 4.6.: Main stages of the proposed singinge®i0 estimation method,
highlighted block is subject of evaluation

As explained the partial tracking score reveals #werage loss of information when
individual frame wise pitch candidates are conrmédte form continuous pitch tracks
restricting the length of pitch tracks to be atstelarger than a specified minimum duration
(in our case 50ms) and discarding low amplitudehpitandidates before tracking. In the
following diagram the accuracy of the pure pitcimdidates of the MPE2 compared to the
accuracy after pitch track formation is display&te x-axis represents the performances for
different numbers of estimated voices. Given restitrespond to mean values of evaluation
results for individual songs. In the final comparnisalso the variance of the pitch tracking

accuracy will be given.
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Mean Accuracy MPE2 vs. Pitch Tracking

0,
100,0% 56 09, 88,3% 89,4% 89,9% 90,1% 90,3% 90,4% 90,4%
90,0% 8L6% — —
>
S 80,0%
S o, 0, oc 0,
g 700% 2 O 0.0% 80,4% BLS% 82.2% 82,5% 82,8%
< ¢ 729% ——MPE2
60,0% —61 0 64,0% == Partial Tracker
50,0% d °| T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10

Number of estimated pitches per frame

Fig. 4.6.: Comparison of mean accuracy of MPE2taedollowing Pitch Tracking stage

As expected from the hierarchical structure thausay of pitch tracks increases with higher
accuracy of the pitch estimates. It has been obdemhat the accuracy of the pitch tracker
can be increased in principal by allowing very shoacks too but this has been found to
negatively affect the following classification pess. Therefore pitch tracks have been
restricted to be at least of 50ms length. The albsomaximum average accuracy of the
partial tracker is 82.8 % achieved for 10 estimagi#dhes per frame. The relative tracking

accuracy with respect to the accuracy of MPE2 i§ 94.

4.2.1. Tracking based on cubic interpolation

The difference between tracking based on cubicpotation compared to simple tracking in
terms of mean tracking accuracy is very low. Thghlst improvement compared to simple
tracking is about 0.3% on average and the higinestavement for individual songs is about
0.9%, achieved when 10 pitches are estimated pemnefr(see Table 4, p.71). In an earlier
implementation where pitch candidates have not lvestnicted based on the corresponding
amplitude values before tracking, higher differenbetween the two implementations could
be observed. This might be explained by the faat the more pitch estimates per frame the
higher the possibility for misconnections. Anothexason for the little improvements
compared to simple tracking might be the small bizg (5.8ms) used which also facilitates
the correct continuation of pitch tracks. For largep size the improvements of the proposed
tracking algorithm compared to a simpler one ageeted to be higher.
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4.3. Classifier Performance

Pitch Tracks

Vocal melody
line

Voice
Recognition

Fig. 4.7.: Main stages of the proposed singing&®i0 estimation method,
highlighted block is subject of evaluation

The ability of the classifier to correctly separgtéch tracks into classes voice and
instrumental based on the training data has bealnaed using N-fold-cross-validation. It is
a technique to test classifier performance in cagese the same data set is used for training
as for validation. The procedure is visualizedha block diagrams of Fig. 4.8 and Fig. 4.9.
In a first step features are derived from the trgjrdata and training instances are separated
into classes according to the provided label inftton (explained in 3.5.2), this is referred
to as supervised learning. The generality and idiscability based on the derived training

instances is assessed in a second step when rneWwagato be classified.

Supervised Learning

Features

Song - ~N

Number i vocaltracki(
Training Songs Feature Extraction » Training Database
Numberi=1..9 » N samples ~ 2200
\ ) Features
? instrument
4 2
Class Label
Information
S J

Fig. 4.8.: Derivation of labeled training dataaméd to as supervised learning exemplified foraage

N-fold cross validation

Features
Pitch Tracks
Song i

Singing Voice /
Instrumental

( )

Training Song Feature Extraction KNN Classification

Number i
. J 'y
Song Ve
Number i Training Database
—— | Excluding features of songi
N samples ~ 2000 Training Data: Features excluding
- J

features of song N

Fig. 4.9.: Block Diagram of the N-fold-cross vadttbn procedure
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As can be seen from the block diag pitch tracks of the song under test (1 out of thing
songs) areclassified based on the features of the training éase excluding the featul
derived from the eng under te which is done for every sontn this way it can be avoide
that the same data instances are used for traasitfigr classificatior

The results of the $ld cross validation are given in two ways. Fitg# summarized resul
of mean clasifier performance are given in terms of the cesioiu matri; for the best
performing setting Then variance of classifier performanfor different numbers c
estimated pitches per framell be given Since the reference vocal FO transcription is g
frame wise, evaluation will also be performed onframe level. So each pitch tra

contributes to the evaluation result accordinggsaluration in frame

Confusion matrix

The confusion matrix summarizes classifier performi. The given metrics are tt“True

Positives” (TP) being theatio betweerthe number of correctly classifiacal frames and
the total number of frames containing singing vpite “False Negatives” (FN) being t
ratio between the number of frames t have not been recognized by the classifier
actually contain singing voice and the total numbkframes containing singing voice, t
“False Positives” (FP) being the ratio of the numbkframesthat have been identified

voiced but actually dobh’contain voice and the total number of unvoicedrfes and finall
the “True negatives” being the ratio between thelper of unvoiced frames that have b

rejected correctly and the total number of unvoittathes

In order to demonstrate effective ssifier performance frames where the singing vbias
not been estimated correctly have been excludentdstore calculation. In this way the
and FN as TN anéP sum up to 100%. Later on results will also besgiwith respect t
absolute accuracyds Fig. 4.11, Fig. 4.12, and Tabl«.

Predicted Class

Yes No

55

Yes TP FM

Mo FP TN

Actual Cla

Fig. 4.10: Confusion matrix with corresponding metrics
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As discussed earlier the number of neighbors usétNIN classification strongly affects the
classifier performance. Usually the number of ne@s K is chosen according to the square
root of the number of training instances M our case that would be K~47 for N=2236
training instances. The KNN classifier has beeruatad for 3 different values of K, namely
K=11, K=31 and K=51 and a number of 10 pitch estangper frame.

Predicted Predicted Predicted
Vocal Instr. Vocal Instr. Vocal Instr.
g|TP FN T |TP FN = |TP FN
T | S| 8a8%| 152%| | 3| S| 837%| 163%| | T | S| 826%| 17,4%
S o N S o ler N S| o ler N
E 32,7% 67,3% £ 32,4% 67,6% E 28,2% 71,8%

K=11 K=31 K=51
Table 3: Relative Performance Values of the KNNssifier for different numbers of neighbors K

From the confusion matrices in Table 3 it can bgeoked that for higher numbers of K the
false positive rate decreases. Simultaneouslytaksdrue positives decrease with increasing
number of neighbors. Obviously there is a tradbetiveen correct classification and correct
rejection of samples. So maximizing only one of ttveo values usually degrades
performance of the other. In the following we useatue of K=11 which resulted in the

highest TP rates.

In order to demonstrate the interdependence betweenct classification (TP) and correct
rejection (TN) the performance values for individsangs are summarized in Fig. 4.11 using
box plots. Each column holds the results in termBR(A) and TN (B) in percent for various

numbers of estimated pitches.

70



Detection of singing voice signals in popular musicordings — Diploma Thesis — Amir Rahimzadeh v.Na®09

100 T _:_ T T T T T T T T T -I- T T T T T T T T
T —
| T ~ T B T T — — —
80T 8 [ g ]
| |
|
S 60f 1 oM e o T
3 1 1 TR TR I ]
3 T * +
g 401 N + i
20+ + + ]
B
A
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Number of estimated pitches per frame

Fig. 4.11.: Absolute classifier performance in terofl True Positives (A) and True Negatives (B)different
numbers of estimated pitches, classifier settingdNKK=11). Displayed metrics: median (red), quasi(blue
bottleneck), minimum / maximum (dotted), “+” outelarger than 1.5 times the interquartile range

Accuracy is defined as the sum of TP and TN dividlgdthe total number of frames.
Therefore the balance between both values is irapbtb attain high classifier accuracy. As
can be seen from Fig. 4.11, balance between TPBind only given for higher numbers of
estimated pitches. It is clear that TN decreasdis wcreasing TP and increasing number of
estimated pitches since the higher the numberwfdgitch tracks, the higher the probability
that a tracks really capture the singing voice. Biameously the probability for
misclassification increases the higher the numbepavallel pitch tracks. There are two
outliers indicated by red “+” in Fig. 4.11 for TNhiech can be important to detect possible
weaknesses of the algorithm. From visual and awounspection of the corresponding audio
files it has been found that at least one of th#eys is caused by a low ratio between singing
voice signal and music accompaniment which migtglar the decreased ability of the
classifier to correctly reject pitch tracks corresging to instrumental sounds. The second
outlier corresponds to a song with strong instruaesounds (Piano & Guitar) but without
percussion. It has been found that for the mentisung the short time energy based track
separation mechanism fails to separate the traickeeanusic accompaniment thus leading to

misclassification and a very low TN value.

Further it can be seen that there are no outlierstie TPs and the average correct

recognition of singing voice signals for higher rhars of estimated pitches (N>4) is
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somewhere around 70 %. Finally the overall accuratyhe individual stages will be

compared.

Final comparison of accuracies

A final comparison of the accuracies of the indiatialgorithm processing stages is given in
Fig. 4.12 for different numbers of estimated pithAs can be seen variance of accuracies
increases from stage to stage which reflects tterdapendence between the stages. The
higher the variance in accuracy of the first stdiy#°E) the larger the variance of the
following stage (Partial Tracker). However, the gwsed MPE seems to be able of correctly
estimating singing voice FOs to a large extent icamsg (for N > 3 mige. ~ 80%, may. ~

97 %, mediags 90%). The accuracy of the partial tracking statgereases due to
discarding tracks shorter than 50ms. Maybe thigev& too restrictive and should be lowered
to attain higher partial tracking accuracy at tlstoof higher FPs. Finally accuracy of the
classifier varies a lot for individual songs (mir40% may.. ~88%). The main errors (Table
4) have been found to occur for voices that ontywslhittle FO variability which is one of the

main characteristic that the described featurettoapture.
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Fig. 4.12.: Comparison of absolute accuracies dividual processing stages. Displayed results:
MPEZ2 (A) vs. Pitch Tracking (B) vs. Classifier Acaay (C, Settings KNN: K=11)
Displayed metrics: median (red), quartiles (bluttleneck), minimum / maximum (dotted),
“+" outliers larger than 1.5 times the interquartihnge
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. Tracking Tracking e
Song Number Accu};l::zh [%] Accuracy Accuracy Class[lg/u}r Acc E;/P]
y L7 (cubic) [%] (simple) [%] 0 °
1 96,9 90,8 90,5 89,8 88,1
2 87,9 79,1 78,6 66,3 63,4
3 81,1 74,4 73,5 55,1 51,¢
4 88,6 75,9 75,6 69,2 67,8
5 97,1 92,0 91,8 88,4 87,5
6 83,7 72,8 72,€ 40,z 66,3
7 92,1 84,6 84,3 78,9 79,8
8 93,1 85,9 85,4 83,6 83,7
9 92,¢ 89,8 89,2 66,5 71,4
Mean /
. 90,4/92,1 82,7/84,6 82,4/84,3 71,5/69,2 77314
Median

Table 4: Results for individual songs of the tragitest set for the different processing stagebeflgorithm.
Algorithm settings according to Table 2 — Numbeesfimated pitches per frame = 10, Classifier Sg$tkK=11

The low classifier performance for song number 8hihbe caused by a lack of training data
in the corresponding frequency range. As can be Been Fig. 1.18 (p.21) song number 3 is
the song with the lowestos: Song number 6 is the song with the second lowgst
Moreover it has been observed from the refereno®tation that this song has the lowest
mean AFp which means that singing voice characteristicg. (&ibrato) might be less
pronounced which makes discrimination between vaad instrumental sounds more
difficult, which possibly is the reason for sigedintly lower classifier accuracy. Since
absolute accuracy of the classifier is strongly eshefent on the accuracy previous stages
(MPE, Tracking), classifier accuracy is relatedtiie total number of correctly estimated
pitches to allow a fair comparison. This is refdri® as the relative classifier accuracy
calculated as the ratio of classifier accuracy absblute pitch estimation accuracy. In this

way mean relative classifier accuracy reaches %8.09

4.4. Comparison with the MIREX 2008 melody extraction contest

In order to compare our approach to other recepta@ghes results in terms of overall
accuracy are compared to the results of differgardahms that entered the MIREX melody
extraction contest 2008. The results are displagefig. 4.13 using box plots representing
the variance of algorithm performance across treduation song database. Unfortunately

results are not directly comparable since the date that has been used for training and
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evaluation of the proposed algorithm comprises @bf 16 songs that were originally used
in the MIREX Melody Extraction Contest 2008 in tleategory singing voice melody
extraction. In detail the original data set thatdserved for competition comprises 16 songs
containing vocals and the training set which isilatée onlind? comprises only 9 of these

16 songs. Nevertheless comparing results givedesnaf achievable accuracy.

As can be seen, the proposed algorithm (no.9, aiispl in green) shows large variance in
accuracy compared to the others (except for algori8 which is the worst performing
algorithm). On the other hand the proposed algarifiows the highest maximum classifier
accuracy value attained for one song which is 89@8¢ Table 4). These results suggest that
the proposed algorithm works better under certainditions (number and kind of used
instruments, singing style much/less vibrato, régdween music and singing voice) which
vary from song to song. This could be seen as wesakaf the proposed approach. However,
it should be noted that the winning algorithm (nambthe MIREX Melody Extraction contest
2008 did not specifically address the estimationletection of singing voice but was rather
designed to estimate the pre-dominant pitch, iedifit if the pre-dominant pitch

corresponded to singing voice or instrumental ssund
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Fig. 4.13.: Variance in overall accuracy of theoalhms that entered the MIREX 2008 melody extacti

contest (1-8) compared to our approach (9 — gr®ettings KNN K=11). Results are unfortunately no¢ctly

comparable since the data set used for evaluationrapproach contains only 9 of the 16 vocal song
contained in the data set used for competition Wwhas not been available

(1)LabROSA: “Laboratory for the recognition and organizatidrspeech and audio”
http://labrosa.ee.columbia.edu/projects/melody
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Chapter 5 - Conclusion

A frame work for the detection of singing voice reids in polyphonic popular music
recordings has been presented. Results suggeshéhegpresentation of the musical content
of song in terms of multiple parallel FO trajecesriallows discrimination between vocal and

instrumental sounds.

The individual processing stages have been evalusgparately and corresponding results
have been presented. The auditory motivated prepsirtg of the audio signal improves the
ability to detect the singing voice FO in the pdigpic mixture signal. The average gain in
vocal FO estimation accuracy compared to estimdtmm simple FFT magnitude spectra for
various numbers of estimated pitches is about 39& jUstifies the increase of computational
complexity due to auditory preprocessing. Absokrdeal FO accuracy of frame wise pitch
estimates yields 90.4% on average for the 9 sowgrpts. Pitch tracking based on cubic
extrapolation has been presented yielding absalcterracy of 82,7% and relative tracking
accuracy (with respect to the pitch estimation eamcy) yields 91,5%. Tracking based ion
cubic extrapolation shows only little improvememtsmpared to a simple pitch tracking
algorithm (0.3 % on average). A training data sdéer used for classification has been
derived from polyphonic music excerpts based oeregfce transcriptions of the singing
voice FO trajectory. The discriminability of the dwlasses based on the features derived
from the training data has been tested by mearssatistical testing (F-ratio, LDA) and by
means of simulation (N-fold cross validation). Alge classifier accuracy reaches 71,5%
and relative classifier accuracy (with respectht pitch estimation accuracy) reaches 79,1%.
Finally a method has been presented how to comiertocal FO trajectory into individual
note events based on MIDI quantization. Weaknes$ethe proposed approach towards
singing voice FO estimation have been discussed famaly an outlook for further

improvements will be given in the following.
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Chapter 6 - Outlook

Evaluation results demonstrate that the proposptbaph towards singing voice detection is
comparable to recent methods. Nevertheless themom for improvements. In the actual
implementation only monophonic audio signals araesatered. In doing so, panning

information, possibly bearing valuable informatfon source tracking, is neglected.

Moreover the context of vocal FOs to the musicabagpaniment in terms of harmony could
be incorporated to facilitate final note quantiaati Additionally the probability of note

transitions in the final note sequence could béuewad using a musicological model.

In the current implementation the main criteriom fioe tracking of pitch candidates is the
frequency in Hz. Since also the amplitude trajgctends to continuous and varies slowly
from frame to frame for a certain pitch track acsettracking criterion could be incorporated

based on the evolution of the amplitude trajectory.

Another idea is the use of multiple parallel classs for voicing decisions. In that way one

could possibly increase reliability of classificatiusing decision by majority.

Apart from that it should be investigated if these gender specific difference for achievable
classifier performance and to which degree theesimependent absolute FO range has an

influence on that.
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