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Abstract 
 
Automatic music content analysis is an important, diverse and challenging research field. In 

this field, automatic (singing voice) melody transcription is of special interest being the key 

to many applications like music structure analysis, score-following, query-by-humming and 

karaoke like applications (voice removal). The basis for this wide field of applications is the 

robust and reliable estimation of the singing voice fundamental frequency (F0) trajectory.  

This thesis deals with the detection of singing voice signals in polyphonic popular music 

recordings. The main challenges are to somehow recognize individual sound sources from the 

complex music mixture signal and to classify them as vocal or non-vocal. To do so we 

propose analysis of the musical content on the basis of pitch tracks. These are extracted from 

the audio signal applying frame wise multi pitch estimation followed by a tracking algorithm 

which uses cubic interpolation to improve correct grouping of the estimates across frames. 

Auditory motivated preprocessing is applied to the audio signal reinforcing weak or missing 

fundamental frequency components before multi pitch estimation and tracking is performed. 

From the pitch tracks a set of features is derived that has been found to bear discriminability 

between vocal and instrumental sounds and which is finally used for identification of the 

singing voice F0 trajectory. 

The proposed method has been evaluated using the ”MIREX 2005 – Training data set – 

vocal“. The pure pitch accuracy of the algorithm for vocal F0’s in polyphonic music mixtures 

yields 90.4% while classification between singing voice and instrumental sounds reaches 

79.1%. 
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Kurzfassung 
 
Die automatisierte Analyse des musikalischen Inhalts polyphoner Audiosignale ist ein immer 

wichtiger werdendes Forschungsgebiet. Von großem Interesse sind vor allem (Gesangs-) 

Melodie Extraktionsalgorithmen welche die Basis für eine Reihe interessanter Anwendungen 

bilden. Zu diesen zählen Strukturanalyse von Musikstücken, score-following 

(Synchronisation zwischen Notentext und akustischem Signal), query-by-humming 

(Durchsuchen digitaler Musikdatenbanken durch Singen/Summen einer markanten Passage) 

sowie Anwendungen im Karaoke Bereich, wie das Entfernen der Gesangstimme aus einem 

Musiksignal. Ausgangspunkt für eine zuverlässige Detektion der Gesangsmelodie ist die 

korrekte Schätzung des Zeit-Frequenzverlaufs des Grundtons der Gesangsstimme. 

Ziel dieser Arbeit ist das Auffinden von Gesangssignalen in polyphonen Popmusik 

Aufnahmen. Die Herausforderung besteht darin, die einzelnen gleichzeitig auftretenden 

Klangquellen im komplexen Musiksignal zu erkennen und sie aufgrund Ihrer Eigenschaften 

als Gesang oder Instrumentalklang zu klassifizieren.  

Der vorgeschlagene Ansatz beruht auf der Analyse von Grundtontrajektorien, welche in 

einem zweistufigen Verfahren aus dem Musiksignal geschätzt werden. Dazu wird das Audio 

Signal einer mehrfachen  segmentweisen Tonhöhenschätzung (Multi Pitch Estimation, MPE) 

unterzogen, gefolgt von einem „Tracking“ Algorithmus, der die Tonhöhenkandidaten über 

Segmentgrenzen hinweg zu kontinuierlichen Frequenz-Trajektorien verbindet. Der 

Tracking“-Algorithmus verwendet kubische  Interpolation um eine genauere Vorhersage des 

tatsächlichen Gundtonverlaufs einer Klangquelle zu ermöglichen. Außerdem wird das Signal 

vor der Tonhöhenschätzung einer dem menschlichen Gehör nachempfundenen 

Vorverarbeitung unterzogen, welche in der Lage ist schwache oder fehlende 

Grundtonkomponenten aus der Obertonstuktur eines Klanges zu regenerieren. Die so 

extrahierten Grundtontrajektorien werden schließlich aufgrund der Eigenschaften des Zeit-

Frequenz-Verlaufs als Gesangs- bzw. Instrumentalklänge klassifiziert. 

Die entwickelte Methode wurde mittels des „MIREX 2005 – Training data set – vocal“ 

evaluiert. Die Genauigkeit der Tonhöhenschätzung  von Vokalklängen in polyphonener 

Musik liegt bei 90,4% während die Klassifizierung zwischen Instumentalklang bzw. Gesang 

bei ca. 79,1% liegt. 
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Chapter 1 - Introduction to the topic 
 

1.1. Motivation 
 
The fast growth of digital music markets and the associated consumer electronic industry 

induced a need for automated music analysis and indexing methods. Broad scientific 

attention has been drawn to the research field of Music Information Retrieval (MIR) or 

computational music content analysis. Research dates back to the 1970’s but up to now 

algorithms generating full score transcriptions (harmonic-, melodic- and rhythmic content) 

have proven elusive [Poliner2007]. Higher transcription accuracy has been obtained by 

algorithms seeking to perform only partial transcriptions consisting of the chord sequence, 

the drum track or the melody. 

Melody is a highly descriptive attribute of music enabling us to distinguish one musical 

excerpt from another [Selfridge-Field98]. Therefore algorithms able of automatically 

extracting the main melody (being the most salient one at a time) from audio recordings 

would open the field to a wide range of applications comprising music indexing, lyrics 

alignment, voice-removal (karaoke), score following, query-by-humming and other Music 

Information Retrieval based applications.  

The focus of this thesis will be on the detection of the singing voice melody since in popular 

music recordings the main melody is usually carried by a human voice. The key to successful 

transcription of the singing voice melody is the robust and reliable estimation of the singing 

voice fundamental frequency (F0) trajectory from the complex audio signal exemplified in 

Fig.0. The main difficulty is that the vocal and instrumental sounds usually significantly 

overlap in time and frequency. Moreover the F0 of singing voice varies a lot with time 

especially at note beginnings which is challenging in terms of tracking (the correct 

association of frame wise multi pitch estimates to F0-trajectories corresponding to the F0s of 

underlying sound sources). Therefore singing voice F0 estimation is closely related to the 

research fields of computational auditory scene analysis, source separation and multi pitch 

estimation (MPE).  
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This thesis is organized as follows. In the first chapter we will introduce the concept of pitch 

which is essential to human hearing and the basis for the perception of musical sounds. Pitch 

perception will further be investigated on the basis of the physiology of the human auditory 

system which motivated the auditory signal pre-processing able to reinforce weak F0 

components. Then the signal characteristics of musical sounds and singing voice will be 

investigated and compared. The chapter ends with an introduction of the most basic concepts 

concerning the organization of musical pitches in western music. In the second chapter we 

will start with a general overview of (multi-) pitch estimation methods ending with the 

presentation of two recently proposed approaches towards singing voice F0 estimation that 

have been influential for this thesis. In the third chapter the proposed approach is introduced 

and explained in detail. Chapter four explains the evaluation framework and corresponding 

results are presented. Then in chapter five the proposed method will be reflected and finally 

the thesis ends with chapter six drawing conclusions for future improvements. 

 

 
 

Fig. 0.: Singing voice F0 trajectory (blue) plotted over the spectrogram 
representation of the corresponding audio excerpt 
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1.2. Perception of musical sounds 
 
The capability of humans to orient to musical sounds is well known [Bregman90]. The basic 

acoustical characteristics of sounds namely pitch, loudness, timbre and duration are easily 

perceived, even by listeners without former musical education. Among these pitch is the most 

important for discriminating between concurrent sounds and thus essential for the 

transcription process. 

1.2.1. Pitch 
 
Pitch is a perceptual quality of sound which is fundamental to the hearing process. According 

to the ANSI standard 1994 [ANSI94],  “Pitch is that attribute of auditory sensation in terms 

of which sounds may be ordered on a scale extending from low to high. Pitch depends mainly 

on the frequency content of the sound stimulus, but it also depends on the sound pressure and 

the waveform of the stimulus." This is often referred to as the verbal definition of pitch which 

is rather impractical and inexact for analytical examination and comparison of sounds. A 

more practical definition of pitch is given by [Stevens75] who associates pitch with the 

measurable physical quantity of frequency given as follows: “A sound has a certain pitch if it 

can be reliably matched by adjusting the frequency of a sine wave of arbitrary amplitude." 

This is often referred to as the operational definition of pitch.  

Sinusoids are the simplest kinds of sounds that evoke a pitch percept consisting of one single 

frequency component. There is a relation between temporal periodicity of the waveform and 

spectral energy distribution which can easily be observed under Fourier analysis which is 

illustrated schematically in Fig 1.1 and 1.2.  

 

 
Fig. 1.1.: Fundamental period of a single sine wave 

 
Fig. 1.2.: Fourier Spectrum of a sinusoid 

(schematically) 
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Temporal periodicity is described by the fundamental period τ0 in seconds (see Fig. 1.1), 

corresponding to the fundamental rate of repetition in the waveform which is related to the 

frequency F in Hz by the simple equation  

     (Eq. 1.1)  

However, natural instruments and also the voice tend to produce sounds with several 

frequency components which are called harmonics or also partial tones of a sound. They are 

found at distinct frequency locations forming a spectral pattern which exhibits energy 

concentrations at integer multiples of the lowest frequency component (see Fig. 1.4), which 

therefore is called fundamental frequency F0. The partial tone frequencies are related to the F0 

by the following equation: 

Fk = k * F0  [Hz]    k = 1,2,3...  (Eq. 1.2)  

These frequency components result from partial resonances largely determined by the sound 

generation mechanism. The waveform and the partial tone series of a complex tone is 

illustrated schematically in Fig.1.3 & Fig.1.4. The spectrum of a sound showing this property 

is said to be harmonic.  

 
 

Fig. 1.3.: Fundamental period τ0 indicated in the 
waveform of a complex tone 

Fig. 1.4.: Partial tone series of a complex tone under 
Fourier Analysis (schematically) 

 
Real instruments tend to produce partial tone frequencies slightly deviating from the ideal 

harmonic positions due to imperfect vibrating conditions. Inharmonicity is especially 

observed for instruments that use plucked (piano) and struck (guitar) strings due to the 

stiffness of real strings [Fletcher98]. Since popular music makes heavy use of these 

instruments this property has to be considered when designing multi pitch estimation (MPE) 

methods for music analysis. 

The perceived pitch of complex harmonic sounds corresponds over a wide range of 

frequencies to the F0 measured in Hertz. Since pitch is a pure subjective quality of sound 
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which needs a human listener to make a perceptual judgment, it has established to 

computationally analyze the pitch of sounds on the basis of their F0, the lowest frequency 

component of a certain partial tone series. The two termini pitch and F0 are often mixed 

though conceptually different. Psychoacoustic findings for example show that a pitch is also 

perceived for harmonic sounds where the F0 component has been removed or masked which 

is referred to as the “missing fundamental” phenomenon. The pitch that is heard at F0 though 

actually not present in the sound stimulus is referred to as “virtual pitch” or also “residue 

pitch” indicated in the following illustration as “F0virt.”. This phenomenon can also be 

observed for sounds where only part of the partial tone series (e.g. Partial Tones: 3,4,5) is 

present. However, since certain terminology has established we will also use F0 and pitch as 

synonyms for each other throughout this thesis. 

 

 

 

 

Fig. 1.5.: The “missing fundamental” phenomenon: Human listeners hear  a virtual  
pitch at F0virt. though no spectral energy is present in the sounds stimulus 

 
The spectral pattern formed by the partial tone series seems to be of importance for the pitch 

perception of complex tones. Indeed pitch perception models of Goldstein (1973) and 

Terhardt (1974) try to explain the missing fundamental phenomenon by some kind of pattern 

matching mechanism that is assumed to take place in the auditory system to derive pitch 

sensations for harmonic sounds according to [Plack04]. Apart from that, inharmonic sounds 

that don’t have a distinct F0 (like the sound of a church bell) might also evoke a pitch 

sensation which not necessarily corresponds to the lowest frequency component present.  

Besides, psychoacoustic evidence emphasizes the fact that temporal regularity of the 

waveform of a sound stimulus and its envelope is of relevance too. For amplitude modulated 

white noise for example that has a random fine structure a pitch is heard according to the 

modulation frequency. In another experiment it has been demonstrated that for white noise 

that is periodically switched off listeners could perceive a pitch sensation according to the 

frequency corresponding to the inverse of the interruption rate. In both cases the long term 

Present Partials   Virtual Pitch 

Frequency [Hz] 

Magnitude  

F0virt. 2*F0   3*F0   4*F0   . . . 
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average magnitude spectra of the sound stimuli are flat and don’t show distinct spectral peaks 

[Plack04].  

Obviously there is no simple relation between the frequency content or the waveform of a 

sound and the perceived pitch. Pitch perception is rather based on a complex interaction of 

physiological, neurological and high level cognitive processes working together to form a 

sensation of tone height.  

However, the peripheral parts of the auditory system and its behavior to acoustic sensations 

are quite accurately known. According to [Plack04] the main characteristics of the peripheral 

part can be effectively simulated by a sequence of different signal processings which 

comprise auditory filtering, compression, half-wave rectification, and low-pass filtering. 

[Klapuri08] demonstrated that pitch estimation algorithms for music transcription might 

benefit from such a processing. Therefore our method makes use of the auditory motivated 

processing proposed by [Klapuri08] which is able to reinforce weak or missing F0 

components from the partial tone series which will be explained in detail in Chapter 3. First 

we will study the characteristics of the peripheral part of the auditory system which is the 

basis for the auditory motivated signal processing. 

 

1.3. The human auditory system 
 
Human listeners show a great capability to listen out individual sound sources in complex 

acoustical scenes and musical mixture signals [Bregman90]. It has been found [Plack04] that 

pitch is of major importance to this high level cognitive process which motivates the study of 

the human auditory system. Knowledge about how an acoustical signal is processed along the 

auditory path can be beneficial for pitch estimation algorithms [Klapuri08]. 

1.3.1. Physiology of hearing 
 
Since there is plenty of work covering the physiology of hearing (e.g. [Pickles08]) we will 

mainly concentrate on the parts essential for the task of pitch perception. The human auditory 

system can be divided into the peripheral hearing system and the auditory cortex in the brain. 

While the characteristics of the peripheral part are quite accurately known the cognitive 

processes remain a matter of debate. 
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The peripheral part of the human auditory system 

and inner ear as illustrated in Fig. 1.6

and acts as a resonator for frequencies around 4 kHz

impedance match between the outer and inner ear. The inner ear 

is responsible for the transduction 

transmitted to the brain via the Auditory nerve. 

performs a frequency-to-place transform

for understanding human pitch perception.

Fig. 1.6.: The peripheral part of the human auditory system 
 
Physiologically, the cochlea is a long coiled, tubular structure which is filled with liquid 

which tapers towards its end. It is divided into two mai

over the whole length (see Fig. 1.7)

enters the cochlea via the oval window resulting in hydraulic pressure fluctuations in the 

contained liquid causing the basilar memb

Interestingly the points of maximal resonance on the basilar membrane vary with frequency

High frequency stimuli result in maximal excitation near the apex while low frequency 

stimuli result in maximal displacement towards the base which is referred to as the 

tonotopical organization of the BM

 

 

 
 
 
1 Connect to research, 11.11.2009, URL: http://www.connecttoresearch.org/publications/72
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of the human auditory system can be divided into outer ear, middle ear 

as illustrated in Fig. 1.6. The outer ear mainly contributes to directional hearing

and acts as a resonator for frequencies around 4 kHz, while the middle ear performs an 

impedance match between the outer and inner ear. The inner ear contains the cochlea which 

is responsible for the transduction of the mechanical vibration into a neural representation

transmitted to the brain via the Auditory nerve. The cochlea is a sophisticated organ which 

transform of the input signal and therefore is of large interest 

anding human pitch perception. 

 

Fig. 1.6.: The peripheral part of the human auditory system (from 1) 

Physiologically, the cochlea is a long coiled, tubular structure which is filled with liquid 

which tapers towards its end. It is divided into two main sections by the basilar membrane 

(see Fig. 1.7). Mechanical vibration transmitted by the middle ear 

enters the cochlea via the oval window resulting in hydraulic pressure fluctuations in the 

contained liquid causing the basilar membrane to vibrate in a specific way (see Fig. 1.10)

Interestingly the points of maximal resonance on the basilar membrane vary with frequency

High frequency stimuli result in maximal excitation near the apex while low frequency 

splacement towards the base which is referred to as the 

tonotopical organization of the BM illustrated in Fig. 1.8.  

www.connecttoresearch.org/publications/72 
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can be divided into outer ear, middle ear 

mainly contributes to directional hearing 

, while the middle ear performs an 

contains the cochlea which 

of the mechanical vibration into a neural representation, 
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f the input signal and therefore is of large interest 

Physiologically, the cochlea is a long coiled, tubular structure which is filled with liquid and 

n sections by the basilar membrane 

. Mechanical vibration transmitted by the middle ear 

enters the cochlea via the oval window resulting in hydraulic pressure fluctuations in the 

(see Fig. 1.10). 

Interestingly the points of maximal resonance on the basilar membrane vary with frequency. 

High frequency stimuli result in maximal excitation near the apex while low frequency 

splacement towards the base which is referred to as the 
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Fig. 1.7.: a.) Cut through the cochlea
Illustration of the excitation of the Basilar 
Membrane in the unrolled cochlea

[Gelfand01]) 
 
While the width of the basilar membrane increases almost linearly from base to apex, the 

stiffness decreases logarithmically. Therefore the relation between the frequenc

tone and distance of points of maximal resonance on the basilar membrane

(see Fig. 1.9).  

 

Fig. 1.9.: Nonlinear relation between points of 
maximal  resonance along the basilar membrane 

frequencies of sinusoidal stimuli
Encyclopædia Britannica, Inc.)

 
So in fact frequency is perceived logarithmically. Also musical instruments reflect this 

property. Sounds in octave relationship 

particularly similar, resulting (at least for sinusoidal sounds) 

excitation on the BM. According to [Plack04] t
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Cut through the cochlea b.) 
Illustration of the excitation of the Basilar 
Membrane in the unrolled cochlea (from 

Fig. 1.8.:Tonotopical organization of the BM
of maximal displacement on the BM depends on the 
frequency of a sound stimulus(from [Gelfand01]

 

While the width of the basilar membrane increases almost linearly from base to apex, the 

stiffness decreases logarithmically. Therefore the relation between the frequenc

and distance of points of maximal resonance on the basilar membrane (BM)

 
Fig. 1.9.: Nonlinear relation between points of 

maximal  resonance along the basilar membrane 
frequencies of sinusoidal stimuli (from 

Encyclopædia Britannica, Inc.) 

Fig. 1.10.: Excitation pattern of the basilar 
membrane, (a) if BM would not be fixed laterally 

(b) simulation of the actual BM motion
[Gelfand01]) 

So in fact frequency is perceived logarithmically. Also musical instruments reflect this 

Sounds in octave relationship corresponding to a doubling of F0 are perceived 

(at least for sinusoidal sounds) in equidistant points of maximal 

According to [Plack04] the excitation along the BM can be effectively 

deh – Nov. 2009 

 

Tonotopical organization of the BM; the point 
of maximal displacement on the BM depends on the 

[Gelfand01]) 

While the width of the basilar membrane increases almost linearly from base to apex, the 

stiffness decreases logarithmically. Therefore the relation between the frequency of a pure 

(BM) is nonlinear 

 

of the basilar 
membrane, (a) if BM would not be fixed laterally 

BM motion (from 

So in fact frequency is perceived logarithmically. Also musical instruments reflect this 

are perceived 

in equidistant points of maximal 

he excitation along the BM can be effectively 
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modeled by a bank of band-pass filters with logarithmically spaced center frequencies and 

having bandwidths increasing with frequency. 

It is known [Plack04] that in the high frequency (basal) region of the cochlea a compression 

of the input signal as much as 5:1 takes place, resulting in inter-modulation distortion 

products if more than one sinusoidal component is present, as it is the case for harmonic 

sounds. These distortion products occur at frequencies f2-f1 and at f1-k(f2-f1). For harmonic 

sounds the first term would always result in the fundamental frequency of that specific sound 

for every two neighboring partial tones which might partly explain the “missing 

fundamental” phenomenon.  

Along the BM there are about 15.500 [Moore04] hair cells which react to mechanical 

displacement of the same, thus they are responsible for the transduction of mechanical 

vibration into neural impulses. The hair cells are connected to the auditory nerve which 

connects to the brain. Motion at different places along the BM causes activity in different 

neurons in the auditory nerve. Therefore it is believed that frequency of a tone is represented 

by a pattern of neural activity evaluated at higher cognitive levels. 

There are two competing theories to the perception of pitch, the “place theory” and the 

“temporal theory” [Moore04]. The “place theory” states that pitch is perceived according to 

the specific point of maximal resonance on the BM which results in activity in distinct 

neurons. This is supported by measurements of the excitation of the BM in response to pure 

tones. Unfortunately this concept fails to explain the perception of complex tones for which 

the point of maximal resonance on the BM not necessarily corresponds to the perceived pitch. 

The “temporal theory” on the other hand states that a pitch percept is derived from the 

temporal pattern of neural impulses. This is supported by the observation that nerve spikes 

occur at a particular phase of the stimulating waveform for F0’s up to about 5 kHz which is 

referred to as “phase locking” of nerve fibers [Moore04]. Neither of the two theories can 

explain the diversity of psychoacoustic phenomena that have been observed in humans and it 

might be more realistic to assume that both mechanisms work together. However, the 

cognitive processes involved in the perception of sound can only be studied indirectly, and 

therefore are not accurately known and remain a matter of debate. 

Consequently modern pitch perception models aim at simulating the main characteristics of 

the peripheral part of the auditory system which are quite accurately known and comprise 
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auditory filtering (simulation of the BM motion), neural transduction (compression, half-

wave rectification, low pass filtering) followed by some kind of periodicity analysis. A 

processing strategy for MPE following the mentioned structure has been proposed recently by 

[Klapuri08] which is able to reinforce weak or missing F0 components by auditory motivated 

signal processing which has been adopted to a large degree and will be explained in detail in 

Chapter 3. 
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1.4. Organization of musical pitches 
 
Western music is highly structured in time and frequency. The basic musical objects are notes 

which are specified by their pitch value, the duration and the onset time and rests which are 

moments of silence. Notes may be arranged sequentially forming melodies or vertically 

building chords which are explained by the concept of harmony.  

 
 

 
 MELODY  CHORDS  

Fig. 1.11.: Possible arrangements of musical notes (from 1) 
 
Musical notes are organized in intervals, which can be expressed as frequency ratios between 

F0’s. The smallest interval in western music is the semitone which refers to a F0 ratio of 

f1/f2=2(1/12) between neighboring notes. 

One particular interval is the octave, corresponding to a doubling or halving of the 

fundamental frequency. An octave is divided into 12 pitches according 12-tone equal 

tempered tuning which has established for modern western popular music. These pitches are 

referred to using letters C, C#, D, D#, E, F, F#, G, G#, A, A#, B and the corresponding F0’s 

are equally spaced on a logarithmical frequency scale according to fn=2(n/12)fbase where n 

refers to the integer offset in semitones from the reference note. So the reference note fbase 

determines the pitch of the remaining semitones (usually fbase = 440 Hz or close to that). A 

distinct set of these 12 notes is referred to as scale. An example of a particular scale the C-

major that corresponds to the white keys of the piano keyboard is illustrated in the following.  

 

 

1 Octave = 12 semitones 

Fig. 1.12.: An octave and the 12 semitones  
illustrated on a piano keyboard 

 
1 

WikiVisual, 18.10.2009,  URL: http://en.wikivisual.com/images/5/55/Mussorgsky_Pictures_at_an_Exhibition,_chords.PNG 
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The notes of a scale repeat themselves for each octave

Fig. 1.13 over a range of 4 octaves.

particularly similar and share the same note

Fig. 1.13.: The C-major scale for 4 different octaves. Notes of the same pitch 
class share a common class symbol referred to using letters

 
It has been observed that the range of F

high frequencies and that recognition of musical intervals breaks down for F

[Plack04]. It doesn’t seem coincidental that the highest note in an o

piccolo flute has a frequency of 4.096 

The similarity in perception of tones in octave relationship is repetitive. 

of similar pitch sensation is referred to as “chroma”. 

relationship (thus notes sharing t

the following for the note A at different octaves

 

Fig. 1.14.: The relation 
displayed for 

Obviously there is a nonlinear relation between frequency

corresponds with physiological measurements 

 
 

1 Wikimedia, 19.10.2009, URL: http://commons.wikimedia.org/wiki/F
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The notes of a scale repeat themselves for each octave as illustrated for the C-major scale

over a range of 4 octaves. Two notes in octave relationship are p

particularly similar and share the same note- or pitch class symbol. 

major scale for 4 different octaves. Notes of the same pitch  
class share a common class symbol referred to using letters (from 1) 

he range of F0’s that can be used to produce melodies is limited 

and that recognition of musical intervals breaks down for F0’s above 5 kHz

It doesn’t seem coincidental that the highest note in an orchestra played on the 

has a frequency of 4.096 Hz corresponding to c5. 

in perception of tones in octave relationship is repetitive. This cyclic attribute 

of similar pitch sensation is referred to as “chroma”. The relation between notes in octave 

notes sharing the same pitch class) and absolute frequency is illustrated in 

for the note A at different octaves. 

 

: The relation between pitch of musical notes and F0 in Hz,  
displayed for the note A in different octaves 

 
is a nonlinear relation between frequency and perceived musical 

physiological measurements of the inner ear.  

http://commons.wikimedia.org/wiki/File:Octaves.gif 
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1.5. Singing voice characteristics 
 
In the following the main characteristics of singing voice will be analyzed and compared to 

the ones of speech. Further the differences between singing voice signals and instrumental 

sounds will be investigated.   

Sounds produced by the human voice can largely be divided into voiced and unvoiced 

sounds. The main characteristic of voiced sounds is that the vocal folds vibrate to generate a 

sound. In fact, an airstream coming from the lungs is continuously modulated by the vocal 

folds resulting in pressure-pulse train. This spectrally rich signal exhibits frequency 

components at integer multiples of the F0, called harmonics. Unvoiced sounds in contrast 

don’t show these properties.  

Singing voice and speech signals are of course similar in many aspects due to the sound 

generation mechanism they share. Nevertheless certain differences in the signal 

characteristics exist and which will be explained in the following.  

 

1.5.1. Ratio – Voiced / Unvoiced  
 
It has been observed that in singing the ratio between voiced and unvoiced parts is 

significantly larger than for speech. The amount of voiced parts is about 60 % in speech 

while for singing it can increase up to 95% [Cook90]. This is due to the fact that singers 

intentionally stretch voiced parts to match the sounds of accompanying instruments. Since the 

voiced parts carry most of the musical information they are of major interest for the 

transcription process.  

 

1.5.2. Singing Formant 
 
The spectrum of voice sounds shows energy concentrations in certain frequency regions 

indifferent of the F0 of a sound. These are called formants and arise due to the wave 

propagation properties of the vocal tract, the mouth and the nasal cavity which act as 

acoustical resonators. A well known difference between speech signals and operatic singing 

is the presence of an additional formant, called the singing formant, at frequencies around 

2000 – 3000 Hz which can be seen in Fig. 1.17. After [Sundberg70] who first documented 

the existence of the singing formant, it helps the voice of a singer stand out of the 

accompaniment.  



Detection of singing voice signals in popular music recordings – Diploma Thesis – Amir Rahimzadeh – Nov. 2009 

20 
 

Unfortunately the singing formant seems to be an exclusive attribute of operatic singing 

which can be seen from the following comparison (Fig 1.17) of long term average spectra 

(LTAS) of a pop singer and an operatic tenor singer which performed the same excerpt in the 

same key using tempo and phrasing of their own choice [Borch02]. Averaging time was 

about 17 seconds. 

 

 

 

 

 

 

Fig. 1.17.: Comparison of the long term average spectra of a pop 
singer and an operatic tenor singer performing the same excerpt 

in the same key (from [Borch02]) 
 

1.5.3. Pitch range 
 
Another difference is the pitch range which is about 80 Hz – 400 Hz for normal speech while 

it is about 80 - 1000 Hz for (operatic) singing [Li05]. For the songs of the vocal training data 

set (9 song excerpts of ~30 s each, detailed description in Chapter 4) that singing voice F0’s 

concentrate on a narrower frequency range. This is illustrated in Fig.1.18, displayed 

parameters are the absolute frequency range (indicated by “*” and “o”), the standard 

deviation and the mean values of the reference vocal F0 trajectories (temporal resolution 

10ms) for individual songs excerpts. Although the number of songs is small and therefore 

might not be representative for all songs of the genre popular music it can be expected that 

singing voice F0s in popular music will mainly concentrate on a narrow frequency range 

usually smaller than the range described by Li and Wang in [Li05].  
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Fig. 1.18.: F0 Statistics of the training data 
Displayed parameters: mean value (line), Standard deviation (bar), minimum

maximum-(asterisk) F0 for individ
 

1.5.4. Pitch variability 
 
While singing voice exhibits large pitch variability

pitches that are more or less stable in frequency

characteristic has been exploited 

comparison of the spectral characteristics of a female singing performance and notes played 

on the piano is given in Fig.1.19 and Fig. 1.20

Fig. 1.19.: Spectrogram of a female 
vocal performance (~6s) 

It has to be noted that there are certain instruments and playing styles that don’t allow such a 

clear distinction between vocal and instrumental sounds. Trombones for example are able of 

altering the frequency of a tone while 

transitions referred to as glissandi. Another example would be pitch bendings, a playing style 

on the guitar where individual strings are bended to continuously alter the frequency of a 

note. 
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Statistics of the training data set vocal (detailed description in Chapter 4)
Displayed parameters: mean value (line), Standard deviation (bar), minimum-(circle) & 

(asterisk) F0 for individual song excerpts (1-9) of approximately 30s each

singing voice exhibits large pitch variability notes played on instruments result in 

pitches that are more or less stable in frequency during one note event [Sutton05]

exploited recently for singing voice detection [Shenoy05]

comparison of the spectral characteristics of a female singing performance and notes played 

Fig.1.19 and Fig. 1.20. 

pectrogram of a female  
 

Fig. 1.20.: Spectrogram of a sequence of notes 
played on the piano  (~7s)

 
It has to be noted that there are certain instruments and playing styles that don’t allow such a 

clear distinction between vocal and instrumental sounds. Trombones for example are able of 

altering the frequency of a tone while playing resulting in continuous rather than discrete note 

transitions referred to as glissandi. Another example would be pitch bendings, a playing style 

on the guitar where individual strings are bended to continuously alter the frequency of a 

deh – Nov. 2009 

 
(detailed description in Chapter 4).  

(circle) &  
of approximately 30s each 

notes played on instruments result in 

[Sutton05]. This 

recently for singing voice detection [Shenoy05]. A visual 

comparison of the spectral characteristics of a female singing performance and notes played 

 

Spectrogram of a sequence of notes  
played on the piano  (~7s) 

It has to be noted that there are certain instruments and playing styles that don’t allow such a 

clear distinction between vocal and instrumental sounds. Trombones for example are able of 

us rather than discrete note 

transitions referred to as glissandi. Another example would be pitch bendings, a playing style 

on the guitar where individual strings are bended to continuously alter the frequency of a 
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Finally both singing and speech sig

be larger for the former. For singing three distinct types of F0 fluctuation

identified by [Saitou02] which have been found 

performances. These types are referred to as overshoot, vibrato and prepa

indicated in Fig 1.21. With respect to our application the 

is not necessary. More important 

seem to be exclusive attributes of the singing voice.

 

Fig. 1.21.: Three types of F0 fluctuations characteristic to singing voice signals
(Note the logarithmic scaling of the frequency axis)

 
Knowledge of the mentioned singing voice characteristics will be exploited 

facilitating the discrimination of vocal and instrumental sounds

chapter 3 in detail we will derive a feature set that aims at capturing the descri

which will be finally used for voice recognition.
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Finally both singing and speech signals exhibits F0 fluctuations and they have been found to 

be larger for the former. For singing three distinct types of F0 fluctuation

which have been found essential for the naturalness of vocal 

s are referred to as overshoot, vibrato and preparation and are 

With respect to our application the identification of these 

ore important is the fact that there are certain signal characteristics 

seem to be exclusive attributes of the singing voice. 

Fig. 1.21.: Three types of F0 fluctuations characteristic to singing voice signals 
(Note the logarithmic scaling of the frequency axis), from [Saitou02] 

Knowledge of the mentioned singing voice characteristics will be exploited 

the discrimination of vocal and instrumental sounds. As will be explained in 

chapter 3 in detail we will derive a feature set that aims at capturing the described properties 

be finally used for voice recognition. 

deh – Nov. 2009 

nals exhibits F0 fluctuations and they have been found to 

be larger for the former. For singing three distinct types of F0 fluctuations have been 

essential for the naturalness of vocal 

ration and are 

of these explicit types 

there are certain signal characteristics that 

 

 

Knowledge of the mentioned singing voice characteristics will be exploited later on 

. As will be explained in 

bed properties 
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Chapter 2 - Literature Review  

 

The transcription of a song refers to the derivation of a symbolic representation of the 

musical content in terms of notes which have been played by the individual instruments. 

Automatic polyphonic music transcription algorithms have gradually improved over the last 

decades but accuracy of full instrument transcription methods is still far from a satisfactory 

level and musically trained people still outperform computational methods in delivering 

reliable transcriptions [Klapuri06]. In order to reduce the complexity of the problem 

researchers have concentrated on the development of algorithms able to predict the most 

prominent pitch sequence in sound mixtures which is referred to as the main melody. It is the 

specific sequence of notes that human listeners usually agree on when reproducing an excerpt 

of a song and thus seems to be of high informative character when comparing two music 

performances [Selfridge-Field98]. We focus on vocal melody transcription algorithms since 

in popular music the main melody is usually carried by a human singer. The key to successful 

melody transcription is reliable and robust estimation of the singing voice fundamental 

frequency (F0) trajectory. Numerous algorithms have been proposed sharing one general 

structure that we adopted which illustrated in Fig. 2.1. 

 
 
 
 

Fig. 2.1.: Basic structure underlying singing voice F0 estimation algorithms 

The common primary step is to derive multiple pitch candidates from the polyphonic music 

signal. Since the acoustical waveform doesn’t allow the direct extraction of the individual 

pitches of the underlying sound sources the data has to be transformed to yield a 

representation which reveals the desired information. Multiple pitch estimation algorithms 

differ in the way they make use of the complex information contained in the acoustical 

waveform. They may largely be divided into algorithms that make use of spectral information 

using the well known Short Time Fourier Transform (STFT) and algorithms that analyze 

temporal periodicity of the waveform using correlation based methods, also hybrid 

algorithms exist. A third class of algorithms applies auditory motivated processing to the 
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input signal before periodicity analysis is performed. This is also the approach followed in 

this thesis which is motivated by the well known ability of human listeners to orient to 

musical sounds. A good overview of existing multi pitch estimation methods can be found in 

[Klapuri06].  

We adopted a pre-processing strategy proposed in [Klapuri08] which is able to reinforce 

weak or missing F0 components. This is very useful since MPE algorithms sometimes fail in 

predicting the exact pitch due to weak F0 components or spectrally interfering partial tones 

leading to F0 doubling or halving errors. Moreover the method proposed by Klapuri has been 

favored over others to serve as front end for our approach towards singing voice F0 

estimation since the reported error rates [Klapuri08] are substantially low. They used solo 

instrument recordings (on the whole 2842 samples of individual note events comprising 32 

instruments) to generate 4000 semi-random mixtures for different numbers of simultaneously 

played notes (N=1,2,4,6 – 1000 test cases each) which have been used for evaluation. Sounds 

have been mixed with equal mean amplitude and correct F0 estimates have been defined to 

deviate less than 3% from the reference (corresponding roughly to +/- ½ semitone). It has to 

be noted that the polyphonic test cases did not necessarily contain only musically meaningful 

note combinations. Reported error rates [Klapuri08] for multi pitch estimation are ~10% for 

combinations of 4 notes. 

Given multiple pitch candidates over time the next challenging step is deciding which of the 

pitch candidates has most likely originated from a human voice and which ones have not, 

often referred to as vocal/non-vocal discrimination. Early methods have applied voicing 

decisions on a frame level assuming that the voice is constantly the strongest component in 

the mixture over time. This is not necessarily true and it would be more adequate to assume 

the voice to be predominant in a certain frequency region, namely the mid- and high 

frequencies, while the low frequencies (F0 <150 Hz) are usually dominated by the bass line. 

Moreover these early approaches didn’t particularly address the explicit differences in the 

signal characteristics of voice and instrumental sounds, the most apparent ones being pitch 

instability of vocal sounds and the mentioned dominance region. In the following, two recent 

approaches to vocal melody transcription specifically addressing the peculiarities of vocal 

sounds will be discussed.  
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2.1. Comparison of two recent approaches 
 
[Goto06] proposed a three stage processing strategy comprising frame based pitch likelihood 

calculation, vocal probability calculation and F0 tracking based on Viterbi search. The front 

end of the famous “PreFEst” algorithm is used to perform frame based multi pitch estimation. 

A given spectrum is assumed to have originated from the superposition of multiple harmonic 

sounds sources which are modeled as probability density functions to enable the application 

of statistical methods. For each frame a maximum number of 10 pitches having the highest 

likelihood are selected.  These predominant pitches are tracked over time and finally re-

synthesized individually with a sinusoidal model using the parameters extracted from the 

specific locations in the power spectrum and phase spectrum corresponding to the partial tone 

frequencies. In this way separation of the individual sources is achieved. This time domain 

representation of the individual pitches is used to derive features which serve for vocal 

probability calculation. These features comprise Linear-Prediction-Mel-Frequency-Cepstral-

Coefficients (LPMFCC’s, MFCC of the LPC derived spectrum) and ∆F0’s which both aim at 

capturing the mentioned voice characteristics. Two different types of GMM’s (Gaussian 

Mixture Models) are used to calculate voice probability of individual F0’s. They used a 

vocal-GMM and a non-vocal GMM which have been trained on features of vocal solo parts 

and polyphonic interlude sections, respectively. The training data set comprises 21 songs of 

14 singers of the “RWC music database: Popular”. Finally given the vocal probabilities and 

considering continuity of F0’s the most probable F0 series over time is found using Viterbi 

search. The algorithm has been evaluated using 10 songs from the “RWC music database: 

Popular” and pitch accuracy of 84.3% and chroma accuracy of 85.5% is reported in [Goto06]. 

Our method resembles the described one in that both apply frame wise multi pitch estimation 

and that both methods aim at generating continuous frequency trajectories which are used for 

the discrimination between singing voice and instrumental sounds. The two methods differ in 

the way how they make use of the information contained in the frequency trajectory. In 

contrast to the approach followed in [Goto06] we do not re-synthesize individual tracks since 

we believe the key characteristics of singing voice sounds being the F0 variability which we 

try to capture using a set of features derived from the frequency trajectory. 

[Sutton06] has proposed vocal melody transcription based on two distinct pitch estimators 

which exploit characteristics of the human singing voice. A Hidden-Markov Model (HMM) 

is used to fuse the individual pitch estimates and to make voicing decisions. The first vocal 
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pitch estimator consists of a pre-processing stage, where semi-tone cancellation is applied to 

emphasize vocal parts followed by a standard two-way mismatch (TWM) monophonic pitch 

transcription algorithm. Semi-tone cancellation is based on the fact that vibrato in singing 

voice (+/- 60-200 cent) has been observed to be larger than for instruments (+/- 20-35 cent). 

According to that spectral energy is removed at constant note F0 positions by zeroing the 

corresponding FFT bins in the vicinity of +/- 20 cent. This is done for all notes in the 

frequency range of interest spaced by one semitone. Vocals generally survive this procedure 

due to larger pitch variability while the accompaniment is attenuated. It seems feasible to 

apply a monophonic pitch transcription algorithm to the resulting signal. The second vocal 

pitch estimator consists of a correlogram based monophonic pitch transcription algorithm.  It 

has been found that power of the upper partials of voice is generally larger than that of 

instruments and that accuracy of correlation based vocal pitch estimation is higher for high 

frequency channels than for low frequency channels [Li05].  According to that 19 channels 

between 3-15 kHz are used to derive individual pitch estimates and the most frequently 

occurring estimate is selected. Moreover this allows the formulation of a reliability measure 

reflecting whether these multiple frame-wise pitch estimates cluster or scatter. The method 

has participated in the MIREX 2006 melody extraction contest and was ranked third (overall 

accuracy ~67.3 %) on the “MIREX 2005 dataset – vocal” (9 songs of approximately 30 sec. 

each, described in Chapter 4) having the lowest voicing false alarm rate (12.3%) of all 

entered algorithms. The winning algorithm with an overall accuracy of ~73.7% did not 

specifically address the properties of singing voice and showed a voicing false alarm rate of 

28.7%. 

Similar to the described method we make use of two different multi pitch estimators to 

increase pitch estimation accuracy. Moreover both approaches aim at separating the voice 

from the accompaniment while using different strategies to achieve this. Our approach 

towards singing voice detection is based on the estimation of multiple parallel F0 trajectories 

present in polyphonic music signals. The representation of individual sound sources as time-

frequency tracks is considered the main informative domain for discrimination between 

singing voice and instrumental sounds. In the following chapter our approach towards 

estimation of the singing voice F0 trajectory in polyphonic music will be presented. 
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Chapter 3 - The proposed method in detail 
 

The analysis framework follows a hierarchical structure (see Fig. 3.1). The individual 

processing stages will be explained in detail one after another. First the auditory motivated 

preprocessing will be presented and the effects on an audio signal will be demonstrated. Then 

a twofold multi pitch estimation strategy is introduced and the resulting frequency 

discriminability will be investigated. Next a tracking algorithm is proposed that uses cubic 

interpolation to facilitate grouping of pitch candidates across frame boundaries to pitch 

tracks. The post-processing stage is responsible to reject unreliable pitch tracks. Next the 

feature extraction stage and the derivation of training data from audio recordings is described 

and discriminability of the training data based on the feature set will be investigated in 

different ways (Fisher’s Ratio, Linear Discriminant Analysis LDA). Then the K-Nearest 

Neighbor classifier will be presented which is used to discriminate between singing voice and 

instrumental sounds. Finally we will explain possibilities how to convert the F0-trajectory 

into discrete note events. The whole programming has been done in MATLAB. 

 

 

 

 

 
 

Fig. 3.1.: Block Diagram of individual processing stages of the proposed  
method towards singing voice F0 estimation 
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3.1. Data Preparation 
 
Stereo audio files will be converted to mono files by simply adding the left channel and the 

right channel together. All input audio signals are normalized to their absolute maximal 

value. 

3.1.1. Segmentation 
 
Every input signal is divided into partly overlapping segments according to the selected 

frame size and hop size. We use a frame size of 92,9ms and a hop size of approximately 5ms. 

The frame size and the sampling frequency determine the discriminability between spectral 

components in the FFT magnitude spectrum. Further details will be explained in 3.1.4. 

Frequency discriminability of the periodicity analysis.  

 

3.2. Auditory Preprocessing  
 
The human auditory system shows great capability in resolving and organizing musical 

sounds based on spacial, temporal, and timbral information. Therefore it seems natural to 

apply a similar kind of processing to the signal that happens in the auditory system before 

deriving further information. We adopted a processing strategy and periodicity analysis 

proposed by [Klapuri08] being the basis for further analysis. The individual processing steps 

explained in the following aim at simulating the transform characteristics of the inner ear and 

follow the common structure of pitch perception models [Cheveigne05] as illustrated in Fig. 

3.2. 

 

Fig. 3.2.: Common structure of pitch perception models 
simulating the peripheral part of the auditory system from [Cheveigne05] 
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3.1.1. The auditory filter bank 
 
The basilar membrane performs a frequency-to-place conversion. Sounds of different 

frequency result in maximal displacement at different points along the membrane. This 

frequency selectivity of the inner ear can effectively be modeled by an auditory filter bank 

[Plack04]. 

The power and impulse response of auditory filters have been studied in humans and animals 

and are quite accurately known [Patterson76], [Boer78]. The gammatone filter provides an 

excellent fit to the experimental data, and is therefore widely used [Patterson96]. 

The impulse response of gammatone filters is given by the following equation: 

���� � ������������ cos�2��� 
 �� … � � 0, ��0� � 0  (Eq. 3.1) 

The main parameters of the gammatone filter described by the impulse response h(t) in 

Eq.3.1 are b and η. According to [Patterson96] “b” largely determines the duration of the 

impulse response, and thus the bandwidth of the filter while “η” refers to the order of the 

filter determining its Q-factor. The parameter “fc”  corresponds to the filter center frequency in 

Hz and “t“ represents time in seconds. 

As proposed by [Klapuri08] we use a total of 70 gammatone filters with center frequencies 

ranging from 65Hz to 5.2 kHz. The center frequencies are spaced uniformly on a critical-

band scale resulting in a logarithmic frequency spacing (see Fig. 3.3) of neighboring auditory 

channels according to  

�� � 229 � �10	
����

�/��.� � 1�   (Eq. 3.2)  

With ξ0 being the critical-band-number of the lowest band, and 0<ξ1<1 determining the band 

density, in our case ξ0=2.3 and ξ1=0.39.  
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Fig. 3.3.: Magnitude Response for individual filters of the auditory filterbank, with  
logarithmically spaced center frequencies, every 4th filter displayed for better readability 

 
One of the most important parameters of the filter bank is the bandwidth of the auditory 

filters. The equivalent rectangular bandwidth (ERB) of the filters used in this thesis have 

been reported in humans by [Moore95] given by 

     �� � 0.108�� 
 24.7 [Hz]   (Eq. 3.3)  

The ERB of a filter is a measure for comparing the bandwidths of two filters. More 

specifically it is defined as the bandwidth of a perfectly rectangular filter which has an 

integral over its power response which is equal to the one of the specified filter. The auditory 

filters are implemented using a cascade of four second order infinite impulse response (IIR) 

filters. For a detailed description of the filter structure and an efficient implementation the 

reader is referred to [Klapuri08]. 

 

3.1.2. Neural Coding 
 
At some point in the auditory system the physical waveform has to be transformed into a 

neural representation in order to be evaluated by the brain. This happens in the inner ear 

where hair cells excited by the BM motion generate nerve firings in the auditory nerve.  

The main characteristics of the processing that a signal is subjected to in the inner ear can be 

effectively modeled as a cascade of signal processing operations: These comprise 1) dynamic 

gain control, 2)  half-wave rectification, and 3)  low-pass filtering [Klapuri06]. 
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3.1.2.1. Compression 

Measurements of basilar membrane motion show that the cochlea has a strong compressive 

nonlinearity over a wide range of sound intensities. The purpose of the strong nonlinearity 

may be recognized as an automatic gain control (AGC) that serves to map a huge dynamic 

range of physical stimuli into the limited dynamic range of nerve firings [Lyon95].  

In order to become independent of the absolute level of the input signal a dynamic gain 

control is applied to the output signals of the individual auditory filters. To let all auditory 

channels contribute equally to the summary spectrum, the sub-band signals xc(n) of one 

analysis frame are scaled by the factor γc,t: 

      (Eq. 3.4)  

With c being the number of the corresponding auditory channel, t the analysis instant, and σ 

being the standard deviation of the signal xc(n) within the frame t. The parameter  controls 

the amount of compression. For 0<ν<1 the auditory channel variances are normalized 

towards unity resulting in a spectral flattening of the summary signal (see Fig. 3.4). The value 

applied here is ν = 0.33. 

 

 

 

 

 

 

 

Fig. 3.4.: Effects of dynamic compression of the band-bass output signals of the auditory filter bank:  
Unprocessed wideband spectrum (blue) vs. normalized summary sub-band spectrum (red)  

calculated for an artificial harmonic tone complex of 220 Hz, maximal gain reduction ~25dB,  
FFT Settings: 92,9ms frame size, 4x zero padding 

  

20 dB 
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3.1.2.2. Half-wave rectification 

Half-wave rectification (HWR) is a nonlinear signal processing operation introducing new 

frequency components to the original signal. While analytically difficult to track, the 

qualitative effect of HWR on the output signals of the auditory filters can be easily observed 

from the comparison of HWR-processed and unprocessed magnitude spectra. In Fig (b) & (c) 

the spectrum of the output signal of the 54th auditory filter (center freq. ~ 2.600 Hz) and its 

half-wave rectified counterpart are displayed for a synthetic harmonic tone complex of 250 

Hz. 

Frequency components are introduced in the base band and at multiples of the channels 

center frequency (see Fig. 3.5 – c). These arise due to beating components corresponding to 

the frequency intervals between the input partial tones. The most prominent interval usually 

corresponds to the F0 since harmonic sounds exhibit a partial tone series that shows a 

constant spacing between consecutive partials tones. Fig. 3.5 demonstrates the effect of 

HWR.  

 

  

Fig. 3.5.: Effects of half wave rectification of sub band signals: a) Wideband spectrum b) sub-band  
spectrum of output signal of auditory channel no. 54 (fc~2.6 kHz), c) spectrum after half wave  

rectification, d) spec after HWR & LP-filtering. Analyzed signal has been an artificial  
harmonic tone complex with F0=250 Hz, fs = 11025 Hz 
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3.1.2.3. Low-pass filtering 

The components generated at twice the center frequency (Fig 3.5 - c) due to HWR of the 

output signals of the auditory filter bank have not been reported to be of use [Klapuri08] 

since they are not guaranteed to match the harmonic series of the sound due to imperfect 

harmonicity. Therefore the frequency components at twice the channels center frequency are 

rejected by low-pass filtering the individual signals with cut-off frequencies according to the 

channel’s center frequency using FIR filters of order 64. The qualitative effects of the 

described processing (1) Auditory filtering, (2) compression,   (3) HWR, (4) LP-filtering have 

been demonstrated using synthetic harmonic tone complexes.  

Finally the ability of the processing strategy to reinforce missing fundamental frequency 

components is demonstrated (Fig.3.6) using a synthetic harmonic tone complex of 250 Hz 

which does not exhibit energy at F0 location (Fig.3.6 (a)). Further spectra of the output 

signals of several auditory filters after auditory processing (b,c,d,e) are displayed. At last the 

summary spectrum (f) is shown which results from summing up the spectra from individual 

auditory channels. 

 

 
 

Fig. 3.6.: Reinforcement of the missing fundamental frequency component due to auditory motivated pre-
processing exemplified for an artificial harmonic tone complex of 250 Hz with 0 amplitude F0 component: 

(a) Magnitude Input Spectrum, (b)(c)(d)(e) Magnitude Spectra of output signals of individual auditory filters 
after channel normalization, HWR and LP-filtering. (f) Summary Spectrum showing reinforced F0 component 
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3.1.3. FFT based Periodicity analysis 
 
Though it is not well understood how pitch is represented at higher cognitive levels, there is 

large evidence that some kind of periodicity analysis takes place in the individual auditory 

channels and that information is combined across sub-bands to yield the pitch percept 

[Meddis91].  

A lot of pitch perception models assume this periodicity analysis to be based on some kind of 

auto-correlation function derived from sub-bands signals. Moreover experimental evidence 

supports this point of view. [Cariani96] studied the signals in the auditory nerve of cats in 

response to complex sounds. They recorded the responses in 507 nerve fibers and computed 

histograms of successive and non-successive neural spikes and combined the histograms. 

They found that pitch correlated strongly with the most prominent inter-spike intervals which 

suggests that the brain analyzes inter-spike patterns to form a pitch percept.  

While autocorrelation based pitch estimation methods are able to predict well the pitch of 

individual sounds they fail sometimes in predicting the F0s of multiple concurrent sounds. 

Even the highest maximum of the summary auto-correlation function (SACF, which is 

attained by summation of ACF’s of individual channels) does not necessarily correspond to 

any of the actual pitches. Certain pitch relationships can confuse these models as it is the case 

for the major triad as for the interval of a perfect fifth. In these cases the constituent notes 

match the overtone structure of a non-existing chord root, leading to a maximum in the SACF 

corresponding to the virtual root note instead of the corresponding F0s. 

 
Major Triad: Root note A = 440 Hz 

Constituent notes:    A    C#    E 
 
Corresponding F0s: 440 550 660 
 
Virtual Root Note: 110  

 
Interval of a perfect fifth: on A = 440 Hz 

Constituent notes:   A     E 
 
Corresponding F0s: 440 660 
 
Virtual Root Note: 220 

Fig. 3.7.: Virtual Root notes due to specific relation between F0’s 

Moreover autocorrelation based pitch models do not provide good robustness against additive 

noise. Especially in music the harmonic content is often accompanied by drums polluting the 

pitch information. For the mentioned reasons we apply FFT analysis to the sub-band signals 

instead of correlating them. Information across channels is integrated by summing up 
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individual spectra yielding the summary spectrum which will be referred to as UΣ. It should 

be noted that FFT and the ACF are closely related to each other over the power spectral 

density (PSD) [Oppenheim04]. They can be thought of as two different representations of the 

periodicity information contained in a signal. 

 
3.1.4. Frequency discriminability of the periodicity analysis 

Complex polyphonic audio signals can be seen as non-stationary signals, meaning that the 

signal content varies rapidly. Therefore they are usually analyzed using block–processing 

where a signal is cut into overlapping signal segments and each segment is analyzed by itself. 

In this way quasi-stationarity can be assumed, meaning that statistical properties don’t vary 

much at least during one segment. This is a necessary condition for FFT analysis to correctly 

represent the signal content. The segments are also referred to as signal frames and the 

segment length as frame size measured in samples. There are two parameters determining the 

frequency discriminability ∆���� between spectral components in the FFT of a signal frame, 

namely the frame size and the sampling frequency. The relation between the two is given by: 

∆���� � ������	
 �
����	��
�
��� ����   ����           (Eq. 3.5) 

Thus a large frame size is needed to yield high frequency discriminability. Since the spectral 

content of complex audio signals varies rapidly the frame size cannot be made arbitrarily 

large because as mentioned the signal content is only represented accurately by the Fourier 

Transform for stationary or at least quasi-stationary signals. Therefore the frame size has to 

be chosen as large as possible to yield high frequency discriminability and as small as 

necessary to guarantee stationarity of the signal during one analysis frame. 

Usually the frame size is chosen according to the smallest frequency difference that has to be 

resolved for a given application. In our case we want to resolve frequencies in the range of 98 

– 784 Hz corresponding to notes G2 – G5 which is the expected frequency range of singing 

voice fundamental frequencies. With respect to resolving harmonically related F0’s like in 

our case the FFT resolution should be at least ∆���� �  2  �!"�#$� . This is reasonable 

since two notes with a spacing of less than 2 semitones played together are perceived as 

particularly dissonant and are therefore rarely used in popular music. The smallest frequency 

difference that needs to be resolved occurs for the lowest pitch of interest being  
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 ∆FFFT = ∆Fsmallest = F1-F2 = 98 – 110 = 12 Hz. (Eq. 3.6)  

This would require a frame size of roughly 83ms corresponding to 918 samples at a sampling 

frequency of 11025 Hz. Rounding the number of samples to the closest power of two results 

in 1024 samples per frame at a sampling frequency of 11,025 kHz corresponding to 93ms 

frame length, a common value used for multi pitch estimation. This results in a frequency 

resolution of ∆���� � 10,76 Hz.  

To avoid the well known leakage effect due to discontinuities at frame boundaries each signal 

frame is multiplied with a Hann window of the same size. The multiplication in the time 

domain corresponds to a convolution in the frequency domain which means that every bin of 

the FFT of the signal frame is convolved with the FFT of the window function. The 

consequence is spectral smearing which degrades the frequency resolution. The resulting 

frequency resolution depends on the main lobe width of the window function. By convention 

different window functions are compared based on the main lobe width at -6dB measured in 

bins. The Hann window has a main lobe width of 2 bins, so frequency resolution is degraded 

by a factor of 2 and the effective resolution of the FFT analysis is  

∆FFFT-eff =21,52 Hz   (Eq. 3.7)  

Thus, the desired frequency resolution of 2 semi tones is achieved only for pitches higher 

than the note F3 corresponding to a frequency of 174,6Hz. This is not so critic since at low 

frequencies such small intervals result in harsh sounds and therefore are usually not used. 

This harshness or dissonance is perceived when simultaneous sinusoidal components are 

separated less than a critical bandwidth resulting in an interaction of the excitation patterns on 

the basilar membrane [Cook99]. The relative critical bandwidth (with respect to the center 

frequency) is larger at low frequencies and so small intervals result in larger harshness at low 

frequencies than at higher ones. 

Finally the discriminability of the periodicity analysis in terms of resolvability of spectrally 

close frequency components is demonstrated in Fig. 3.8 for a mixture of two sinusoids with 

frequencies F1-F2 larger than ∆FFFT-eff and in Fig. 3.9 for two sinusoids with frequencies F1-

F2 smaller than ∆FFFT-eff. 
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Fig. 3.8.: F0 Discriminability of the periodicity  
analysis for spectrally close sinusoids: Spectrogram 
and derived pitch estimates (blue) for 2 sinusoids of 
0.5s length, with ∆F=|F1-F2|>∆FFFT-eff (F1=100 Hz / 
F2 = 122 Hz), displayed between 80 and 150 Hz, 
spectrogram settings - frame size 92.9ms 
(1024samples @ fs = 11025) Hz,  hop = 11.6ms 

Fig. 3.9.: F0 Discriminability of the periodicity  
analysis for spectrally close sinusoids: Spectrogram 
and derived pitch estimates (blue) for 2 sinusoids with 
∆F=|F1-F2|<∆FFFT-eff (F1=100 Hz / F2 = 118 Hz). As 
expected correct F0 estimation breaks down for 
frequencies closer than ∆FFFT-eff 

 

3.2. Multi Pitch estimation 
 
It is well known that multi pitch estimation (MPE) algorithms sometimes fail in predicting 

every single fundamental frequency of the underlying sound sources correctly which is 

getting worse, the higher the number of concurrent pitches. Apart from that MPE algorithms 

tend to be biased towards one type of octave error, F0-doubling or F0-halving errors. We 

therefore apply a twofold pitch estimation strategy in order to increase the robustness and 

reliability of multi pitch estimates which is illustrated in the following.  

 

 

 

 

Fig. 3.10.: Block Diagram of the proposed multi pitch estimation strategy 

First we apply two different MPEs to the summary sub-band spectrum (UΣ). Based on the 

pitch candidates from both MPEs the partial detection stage tries to locate the actual peaks of 

the corresponding partial tones in the FFT-spectrum of one analysis frame. This shall 

improve reliability of pitch candidates since musical sounds and especially voice sounds tend 
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to have harmonic spectra. Moreover this allows multiple spectral peaks to be assigned to an 

underlying sound source.  

3.2.1. MPE1 – Salience Function 
 
The MPE 1 makes use of a salience function to determine the harmonic strength of 

concurrent pitch candidates. The salience function is a function of fundamental period τ in 

seconds equivalent to 1/F0. For each period candidate τ the salience s(τ) is calculated as the 

weighted sum of the amplitudes of harmonic partials derived from UΣ(k). Salience is 

calculated corresponding to equation 3.7.: 

 
 

 (Eq. 3.7) 
 
 
 
with km corresponding to the partial tone location in the UΣ and w(τ,m) being a weighting 

function (Eq. 3.8) determining to which degree individual partial tone amplitudes contribute 

to the salience of a specific period candidate. The largest peaks in the salience function 

usually correspond to the most salient pitch candidates.  

 

(Eq. 3.8) 

 

The individual weights depend on the fundamental period of a pitch candidate and on the 

partial tone number and are given by equation 3.8 and displayed in Fig. 3.11for the first 5 

partial tones for various frequencies. To the right the weighting function is illustrated for 

increasing frequency for the first 5 partial tones.  

  
Fig. 3.11.: Weight function for the first 5 partial tones with increasing frequency 

Partial 1 

Partial 2 

Partial 3 

Partial 4 

Partial 5 
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The weighting function has been evaluated using 4000 sound mixtures with different number 

of polyphony (Polyphony = 1,2,4 and 6, 1000 samples each) and the above form has been 

found to result in the most reliable peaks in the salience function [Klapuri06]. ξ1 and ξ2 in Eq. 

3.8 are moderating terms important for low frequency F0’s. The exact values have been 

adopted being ξ1=20 Hz and ξ2=320 Hz for analysis frames of approximately 93ms. Without 

these terms the weighting function would reduce to 1/m.  

In the following (Fig. 3.12) the salience function is displayed for a mixture of 3 synthetic 

tones (20 partials each, with equal exponentially decreasing partial amplitudes) with 

fundamental frequencies of F0-1=440, F0-2=550 and F0-3=660 Hz. 

 

Fig. 3.12.: Salience function (blue) for a mixture of 3 synthetic tones with fundamental frequencies of F01=440, 

F02=550 and F03=660 Hz, red vertical lines indicate the exact F0 positions 

 
The evaluation of the salience function s(τ) at equally spaced fundamental periods τ results in 

a nonlinear frequency resolution which is decreasing for increasing F0. This can be observed 

in Fig. 3.12. The spacing between the blue dots, indicating consecutive values of s(τ), is 

getting larger for higher frequencies. Instead of equal frequency resolution over the whole 

frequency range, there is high resolution at low frequencies where F0s tend to be very close.  

Apart from that it can easily be observed that the salience function also exhibits peaks at 

double and half F0 of the underlying pitches. This is due to the fact that pitches in octave 

relationship share many partial tones which support putative pitch candidates at F0/2 and 

2xF0. Therefore instead of assuming the N highest peaks in the salience function to 

correspond to the real pitches, a technique called “ iterative estimation and calculation” 

F0-1/2 

2F0-1 F0-3/2 

Frequency 
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proposed by [Klapuri08] is applied. There, after detecting the highest peak in the salience 

function the corresponding partial tone series is partly removed from the UΣ. Then the 

salience function is re-estimated and again the highest peak is detected and so forth.  

Since partial tone frequencies of different harmonically related pitches often overlap, they 

will not be removed completely which could negatively affect the detection of the remaining 

pitches. Instead, the partial tone amplitudes will be weighted using the weight function 

introduced earlier, before removal. As can be seen from the weighting function in Fig.3.11 

low F0’s and low partials are removed less than higher ones. This accounts for the fact that 

F0’s and corresponding harmonics are close and usually overlap significantly at low 

frequencies while they tend to be better separated the higher the F0.  

3.2.2. MPE2 – Peak Detection 
 
In addition to the MPE 1 proposed by [Klapuri08] we apply a simple peak picking routine to 

UΣ in order to reveal unrecognized peaks. This is necessary since informal tests showed that 

increasing the number of estimated pitches in the MPE 1 doesn’t help finding all the 

remaining pitch candidates due to the nature of the estimation procedure. In Fig. 3.13 and 

Fig. 3.14 this is exemplified for the frame-wise pitch candidates of MPE1 and MPE2 of a 

musical excerpt are plotted over its spectrogram. A total number of 8 pitches have been 

estimated. As can be seen from Fig. 3.14, MPE2 is capable of detecting all relevant peaks in 

the spectrogram.  

Fig. 3.13.: Frame wise pitch candidates (blue) from 
MPE1, # estimated voices = 8 

Fig. 3.14.: Frame wise pitch candidates (blue) from 
MPE2, # estimated voices = 8 
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3.3.3. Guided partial tone detection 
 
Up to now pitch candidates have been derived from the summary spectrum UΣ by comparing 

spectral energy at harmonic locations and by simple peak picking, looking for strong F0 

components. It is well known that accuracy of pitch candidates rapidly degrades in the 

presence of additive noise usually originating from percussive instruments. Therefore in order 

to increase reliability of the pitch candidates the actual partial tone series of each pitch 

candidate is trying to be located.   

If a peak to a given pitch candidate is found in the spectrum and peak amplitude is higher 

than a certain threshold the peak position is refined using parabolic interpolation. For each 

refined pitch candidate a total number of P partial tones are trying to be located at frequency 

positions being integer multiples of the fundamental frequency as given in Eq. 3.9. 

�� � �
 � & '()*      & � 2,3,4…,   (Eq. 3.9)  

Not all instruments generate perfectly harmonic spectra and the partial locations tend to 

deviate from the ideal positions. In particular string instruments like piano and guitar often 

used in popular music show this characteristic [Järveläinen99]. Moreover if pitch estimates 

are inexact, the predicted partial tone frequencies are inexact too and the error increases with 

partial tone number. Therefore a deviation of 1% ��  from the ideal harmonic partial tone 

frequency is tolerated to account for that which corresponds to +/-17 cent or a (hypothetical) 

sixteenth tone. As for the F0s, the located partial tone frequency- and amplitude estimates are 

improved using parabolic interpolation. Parabolic interpolation uses only three neighboring 

FFT bins to estimate the true peak location achieving satisfactory results which drastically 

reduces the computational load compared to zero padding.  

In this way the partial tone series of each pitch candidate is trying to be located in the UΣ. The 

estimated harmonic series represented by the corresponding partial tone frequencies and 

amplitudes are passed to the partial tracking stage. The partial tracker is responsible for the 

grouping of these estimates over time, connecting individual frame wise estimates to form 

pitch tracks representing individual note events. 
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3.3. Pitch Tracking 
 
We consider the F0 trajectory being of high informative character in the discrimination 

between vocal and instrumental sounds. Therefore pitch candidates of consecutive analysis 

frames have to be connected in order to get continuous pitch tracks enabling us to analyze the 

temporal evolution of pitches over time. Consequently it is essential that pitch tracks 

correspond to the actual F0 trajectories of the underlying sound sources.  

In western music it is common that instruments and singing voice often share the same notes 

thus pitch tracks might be relatively close in frequency or even cross. This can lead to 

ambiguous situations for the pitch tracker when pitch candidates of frame N are equally close 

in frequency to a pitch track that existed in frame N-1. Even in less specific situations as the 

above mentioned the continuation based on the smallest difference in frequency between 

consecutive pitch candidates which seems intuitive, might lead to erroneous connections due 

to the large pitch variability typical to vocal sounds. An example of an ambiguous situation is 

illustrated in Fig. 3.15. 

 
Voice             
 

Instrument 
 

 

 

 
Fig. 3.15.: Simple Partial Tracking: Tracking errors due to large F0 variability of singing voice, if pitch track  

continuation is based on the closest distance between consecutive pitch candidates 
 
 

3.3.1. Tracking based on cubic interpolation 
 
To overcome the mentioned possible tracking ambiguity we make use of the history of pitch 

tracks. More specifically we calculate the expected �0----���.����� ��.� for each active pitch track 

in frame N out of the last three F0’s (N-3…N-1) of the corresponding pitch track applying 

cubic interpolation. That pitch candidate that is closest to the expected �0----���.����� ��.�  is 

considered the correct pitch for the continuation of track M. This is illustrated schematically 

in Fig. 3.16. 
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Fig. 3.16.: Correct pitch track continuation based on closest distance ∆F0-exp. between the extracted pitch 
candidate in frame N and the expected F0-exp. predicted from the last 3 F0 estimates using cubic interpolation 

 

3.4. Post processing 
 
The pitch tracks that have been derived in the described manner are finally restricted to a 

minimum duration of 50ms and tracks with low F0 salience are discarded. F0 salience is 

simply calculated as the mean amplitude value for each pitch track and tracks showing values 

lower than the 50% of the local mean amplitude value are discarded. The local mean is 

calculated as the mean of mean amplitude values of tracks surrounding (+/-1 s.) the track 

under test. As can be seen from Fig 3.17 the proposed pitch tracking method is able of 

capturing the constituent parts of the parallel harmonic sound sources in a polyphonic audio 

signal from the auditory motivated spectral representation of it. 

 

 

 

 

 

 

Fig. 3.17.: Pitch Tracks (blue) after post-processing plotted over the spectrogram  
representation of the corresponding audio excerpt 
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3.5. Feature Extraction 
 
Since an audio waveform doesn’t allow the direct derivation of the note sequence 

corresponding to the vocal melody, different kinds of signal processing are applied to the data 

in order to reveal the desired information. In this context the result of such processing is 

called a feature being a measure of a particular signal property. Features may be calculated 

for individual signal segments, for the audio track as a whole or from some other kind of 

representation (e.g.: FFT, Cepstrum, Correlogram) of the data.  

The feature extraction stage plays a key role for the succeeding classification process. Often 

single features fail yielding satisfactory classification accuracy. Usually the use of a feature 

set (different features in conjunction) results in better performance. The challenge lies in the 

determination of the optimal feature set being the specific number and kind of features which 

minimize a previously defined error criterion. In our case that would be to minimize the 

overall error being the number of frames of vocal pitch tracks erroneously classified as 

instrumental tracks and vice versa. The optimal feature set is usually found by means of 

simulation.   

In our case all features are derived from the previously extracted pitch tracks. These 

constitute a mid-level representation of the harmonic content of the signal, holding 

frequencies and amplitudes of different F0 trajectories of the corresponding partial tones. The 

features that will be described in the following aim at representing the characteristics of vocal 

and instrumental sounds that have been explained before (p.17 – p.20 – 1.5 Singing voice 

characteristics). 
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3.5.1. Feature Description 
 
 
Feature 1: Salience 

This feature aims at representing the absolute strength of the harmonic series and has been 

used by [Rao08] in the context of main melody estimation. It is calculated for every pitch 

track as the sum of partial amplitudes of the corresponding harmonic series averaged over its 

length which can be written as 

�������� � �
�����������

∑ ∑ 
���, �������	�
�
���

����
��������      (Eq. 3.10) 

where n refers to the frame number and k to the corresponding FFT-bin of partial tone p. 

Feature 2: Mean Relative Salience (MRS) 

Relative spectral energy concentrations at sub-bands have already been exploited in 

[Tzanetakis04] among other features to discriminate between song segments where the 

singing voice is present or not. Inspired from that we propose a feature that represents the 

relative salience of each pitch track compared to the strength of the accompaniment in the 

frequency range of 300 Hz – 2.500 Hz where the voice is expected to be dominant. It is 

calculated as the ratio of the spectral energy of a partial tone series and the remaining energy 

in the mentioned frequency band. Spectral energy is calculated for the partial tone series 

p=1…P as the sum of squared magnitude values /0�1��/² of the FFT bin k including the 

neighboring bins k-1 and k+1 for each partial tone p referred to as 0�1�� to account for the 

spectral energy spread due to windowing. Equation 3.11 describes the calculation of the 

relative salience value for one single frame n. The strength of the accompaniment is 

calculated as the sum of magnitudes of bins 2 corresponding to the remaining FFT bins 

which do not correspond to any of the bins related to the partial tones series of track T. The 

absolute range of kp and K is limited as mentioned to the corresponding frequency range of 

300 Hz - 2.500 Hz. 

����.��� �  ∑ ����	��

∑�
���  … �
 � 	� 
 1, �, � 
 1�, � � 1…�     (Eq. 3.11) 
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For each track the mean relative salience is calculated as the mean value of the frame wise 

salience values  

��� � �  �������	
∑ ����.���������	���    (Eq. 3.12) 

Feature 3: Mean F0 

As mentioned, vocal F0s in popular music mainly concentrate on a limited frequency range 

lying roughly between 100 – 800 Hz. Therefore the mean F0 value for each pitch track is 

calculated, given as follows: 

�������� � �������	
∑ �����������	���    (Eq. 3.13) 

 
Feature 4: SPSD – Summary partial standard deviation 

SPSD aims at capturing the variability of partial tones around their mean value which is 

inherent to singing voice signals. The standard deviation is calculated for the F0 trajectory of 

every partial tone of a harmonic series and finally summed up which can be written as: 

���� � ∑ ��������������
���	
��     (Eq. 3.14) 

With Fv(p) being the frequency trajectory of partial tone p, Npartials being the number of 

estimated partial tones and STD representing the standard deviation.  

Feature 5: PSD – Partial standard deviation 

Moreover this score has been calculated for individual partial tones (p=1…5) to study the 

advantage or disadvantage of considering the whole partial tone series in contrast to 

considering  individual partial tone trajectories. The score reduces to Partial Standard 

Deviation (PSD) which is calculated as: 

���� � ����������    (Eq. 3.15) 

With Fv(p) being the frequency trajectory of partial tone p and STD representing the standard 

deviation. 
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Feature 6: ∆-F0  

This feature also aims at capturing the dynamics of the frequency trajectory which is usually 

lower for instrumental sounds than for singing voice. It has been used in [Goto06] as one of 

two features for singing voice discrimination. It is calculated as the frequency difference 

between F0s of consecutive analysis frames n for each pitch track as follows: 

∆�
�$������� � �
�������$� � �
�������$ � 1�  (Eq. 3.16) 

From the ∆-F0v vector several features are derived comprising the mean ∆-F0, the standard 

deviation, variance and maximum calculated for each pitch track.  

 
Feature 7: SDPF – Summary delta-partial tone frequency  

This feature is closely related to the previous feature with the difference that ∆F is calculated 

for all partial tones of the pitch track. In detail, it is calculated as the sum of absolute 

frequency difference between consecutive analysis frames for every partial tone of a 

harmonic series which is finally summed up for all partials. 

�������� � �������	
∑ ∑ ����∆����, ���������	�������
���	
��  (Eq. 3.17) 

Npartials corresponds to the estimated number of partials, Nframes is the duration of a tone in 

frames, Fv(p,n) is the frequency value of partial tone p in frame n of pitch track Fv, and 

∆Fv(p,n) refers to the difference between the frequency value of frames n and n-1.  

 
Feature 8: F0 range(absolute) 

To capture the evolution of pitch tracks across frequencies the absolute difference between 

the maximal and minimal F0 is calculated for each extracted track being a measure for the 

range of frequencies that is passed by a track. 

�0�������� !"#������� $ � �0%��$ � �0%&�$        '()*  (Eq. 3.18) 
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Feature 9:  F0 range (relative) 

 In order to transform this measure to a musical scale the absolute range in semitones is 

calculated. The cent scale is a relative scale and therefore the frequency difference of the 

above equation between minimal and maximal F0 becomes a ratio between the corresponding 

values which equals a difference in the log domain. 

�0��������"��&'������ $ �  1200 log� 5�
����

�
���
� 6     '7�$�*   (Eq. 3.19) 

The above described features will be the basis for the following vocal classification process. 

Classifiers usually need reference data which is representative for the given number of 

different classes and which allows generalization in terms of statistical modeling of the data. 

New data is subsequently classified based on the training data. Therefore a representative 

training data set is the key for successful classification. In the following the derivation of the 

training dataset will be explained in detail and the discriminative power of features derived 

from it will be investigated by information theoretic means (Fisher’s Ratio, LDA) and by 

means of simulation (N-fold-cross validation, Chapter 4 - Evaluation).  
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3.5.2. Derivation of the training data set  
 
The discriminative power of individual features or a feature set is not known in advance and 

has to be verified. First informal tests on solo instrument and vocal recordings showed 

promising results. So the question was if features derived from the polyphonic mixture audio 

signal were as informative as the ones derived from the solo recordings.  

 
 

 

 
Fig.: 3.18.: Block Diagram - Derivation of the training data set  

Therefore we had to generate training data on which a classifier could base its decision on. 

The MIREX 2005 – Training data base was used to extract the desired training instances. The 

data base comprises 13 polyphonic song excerpts of which 9 contain singing voice. For the 

derivation of the training data only the 9 songs containing a male or female singing voice 

have been considered. The song excerpts are approximately 30 sec each and they come with a 

manually annotated reference transcription of the singing voice F0 trajectory in Hz with a 

spacing of 10ms between consecutive analysis instants. This ground truth served as a basis 

for the separation between vocal and instrumental sounds. Each song excerpt has been 

analyzed by the developed algorithm and pitch tracks corresponding to the F0 trajectory (or 

integer multiples of the same) of various concurrent sounds have been extracted as described 

in Chapter 3.1 – 3.4. On the left hand of the Fig. 3.19 an example of the extracted pitch tracks 

is given, plotted over the spectrogram of a 5 second sound excerpt. Pitch tracks have been 

estimated for a frequency range of 100 – 800 Hz and tracks have been restricted to a 

minimum duration of 100ms.  
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Fig.: 3.19.: Pitch Tracks derived from a song excerpt 
(5s) of the training data base plotted over the 

spectrogram representation of the corresponding 
audio waveform. Pitch tracks have been estimated 
for a frequency range of 100 – 800 Hz and tracks 

have been restricted to a minimum duration of 
100ms. 

Fig.: 3.20.: Separation of pitch tracks into classes 
voiced (red) & instrumental (blue) based on the ground 

truth F0 trajectory (green). Integer multiples of the 
ground truth are considered as voiced too. Tracks that 

don’t allow a clear distinction (beteen 10% to 60% 
overlap with  

reference) are not considered (magenta) 
 
Based on the MIREX reference transcription of the F0 trajectory of the singing voice the 

extracted pitch tracks have been separated into the classes vocal and instrumental. Now tracks 

that do not deviate more than a quarter-tone (+/-50 cent) from the reference F0 or an integer 

multiple of the same for at least 60% of the track duration are considered as vocal 

corresponding to the blue tracks in Fig. 3.20. Tracks that didn’t allow such a clear distinction 

(between 10% to 60% overlap with reference) have been excluded to avoid ambiguities in the 

training data set. In Fig 3.20 pitch tracks corresponding to instrumental sounds are displayed 

in red.  

In the described manner pitch tracks have been derived for every one of the 9 songs of the 

vocal training data set and pitch tracks have been separated carefully into classes vocal and 

instrumental based on the manually annotated vocal reference F0 trajectory. Pitch tracks have 

been restricted to a minimum duration of 50ms. From these pitch tracks the described 

features have been derived which we consider as our training data base. The total number of 

samples in the training database is Nsamples = 2263 which splits up to Nmusic = 1319 and     

Nvoice = 944. Before the training data might be used to classify new data instances it has to be 

verified that the collected data allows discrimination between the two classes.  
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3.5.3. Discriminative power of the features set 
 
To get an idea of which features might be informative and which not, statistical testing is 

performed for individual features before feature combinations are tested. The discriminability 

of the features of the labeled training data has been studied in three different ways. On one 

hand statistical testing of individual features in terms of calculating Fisher’s Ratio has been 

performed. On the other hand the discriminative power of the whole feature set is 

investigated applying Linear Discriminant Analysis (LDA). Finally in Chapter 4 the 

generality of the features set will studied by means of simulation using the leave-one-out 

method. 

Fisher’s Ratio 

Fisher’s Ratio (FR) is calculated as the ratio between the inter-class variance and the intra-

class variance and is given for the classes C1 and C2 as follows: 

  

(Eq.: 3.20)  
 

It reflects the degree of overlap of the two distributions C1 and C2 and if the classes are 

separable in terms of the mean value and the variance of the distributions. To give an idea of 

the value range, FR has been exemplified in Fig. 3.21 for 3 distributions showing different 

degrees of overlap. 

 

 
 

Fig.: 3.21.: Fisher’s Ratio exemplified for different distributions. Note that the mean values  
remain the same for all examples while the variance decreases. 

 
Fisher’s Ratio has been calculated from the labeled training data for individual features of the 

feature set described before. Results are given in Table 1. 

 

 

F-Ratio = 0.55 F-Ratio = 0.8 F-Ratio = 1.6 

µ1 =  0.2 / σ2
1 = 0.15 

µ2 = -0.2 / σ2
2 = 0.15 

overlap: 46,6% 
 

µ1 = 0.2 / σ2
1 = 0.1 

µ2 =-0.2 / σ2
2 = 0.1 

overlap: 37,1% 

µ1 =  0.2 / σ2
1 = 0.05 

µ2 = -0.2 / σ2
2 = 0.05 

overlap: 20,6% 
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Fisher’s Ratio for single features 

Feature 6 (mean value) Mean ∆F0 0.754                   *  
Feature 4 SPSD  0.644          *  
Feature 5 (Partial 3) PSD3 0.635  
Feature 5 (Partial 4) PSD4 0.634  
Feature 5 (Partial 2) PSD2 0.631  
Feature 5 (Partial 5) PSD5 0.631  
Feature 8  Abs. F0 range (Hz) 0.624          *  
Feature 5 (Partial 1=F0) PSD1 0.623  
Feature 6 (standard dev.) Std ∆F0 0.571          *  
Feature 7 SDPF 0.569          *  
Feature 3 Mean F0 0.475          *  
Feature 6 (maximum) Max ∆F0 0.464          *  
Feature 2 MRS 0.296          *  
Feature 6 (variance) Var ∆F0 0.253  
Feature 1 Salience 0.138          *  
Feature 9 F0 range (cent) 0.095  

 
Table 1: Fisher’s Ratio derived from the samples of the training data base  
(N samples = 2263; N vocal = 944; N non-vocal = 1319) for individual  

features. The “*” symbol indicates the features of the feature  
subset which is later used for evaluation 

 
As can be seen single features of the training data base bear discriminability between the two 

classes to some extent but Fisher’s ratios are far too low to reliably predict class affiliation 

based on one single feature. However, single features showing low FR’s might be valuable 

when used in combination with other features. Therefore we apply linear discriminant 

analysis to the whole feature set. 

Linear Discriminant Analysis 

Linear Discriminant analysis is a technique used in machine learning for dimensionality 

reduction of a feature space. Based on the class information the method tries to find a linear 

combination of the present feature set 89 (comprising features F1…FN) of the N dimensional 

feature space according to  

: � ;�<-    (Eq. 3.21)  

such that separability in the new 1 dimensional feature space Y is maximized. The criterion 

for maximization is the ratio of between-class scatter and within-class scatter. 
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Feature Selection using LDA 

So by applying LDA we project the existing feature space onto a new features space where 

classes are in general more separable. Therefore also FR’s will be in general larger for the 

transformed features than for individual features. This can be used for feature selection by 

iteratively excluding individual features from the whole feature set, calculating FR of the 

transformed feature subset and comparing it to FR derived from the transform of the whole 

feature set. In this way features are subsequently excluded from the feature set as long as FR 

of the transformed subset increased or at least did not degrade significantly. Those features 

showing the lowest individual FR have been the first candidates for exclusion. 

It turned out that the features mean F0, mean relative salience (MRS) and mean ∆F0 are the 

features bearing the highest discriminability when used in combination with respect to the 

training data set since they resulted in the largest degradation in terms of Fisher’s Ratio of the 

LDA transformed features when excluded from the feature set. 

The final feature set contains 9 of the 16 proposed features. Fisher’s Ratio for the LDA 

transformed features set is FR=3,18 and for the feature subset FR-sub=2,97. Feature 

distributions for the transformed feature subset are exemplified in Fig. 3.22 and 3.23. 

 
 
 

Fig. 3.22: Feature Values after LDA for the two classes voice (red) / music (blue).  
Good separation of the training data using the derived feature subset is obviously given. 
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Fig. 3.23.: Distribution of feature values  after LDA in terms of frequency of occurrence for the  
two classes voice (red) / music (blue). Good separation of the training data using  

the derived feature subset is obviously given. 
 
 

The discriminative power of individual features of the feature set has been investigated using 

Fisher’s Ratio. A feature subset has been found using LDA which does not significantly 

degrade linear separability of the data compared to the whole feature set. Now that we know 

that the training data can be discriminated to a certain extent based on the derived features the 

generality of the training data has to be verified in terms of how well class affiliation of new 

data instants can be predicted correctly based on the training data. This is called validation of 

the training data which will be done using the N-fold-cross-validation method, described in 

detail in “Chapter 4 – Evaluation and Results”. 
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3.6. Classification 
 
Classification of new data instances based on the training data is accomplished using the 

KNN (K-Nearest-Neighbor) classifier. The principle of KNN-classification is that new data 

instants are classified based on the class affiliation of the K closest training instants as 

illustrated in Fig. 3.24 for K=3 and K=5. Usually the Euclidean distance is used as a distance 

metric. 

 

 

 

 

Fig. 3.24.: Principle of KNN classification: A new data instant (green) is classified  
based on the class affiliation of the K closest training instants (Class1:  

blue / Class2: red), closest neighbors shown for K=3 and K=5 
 
The KNN classifier has been chosen for its simplicity of implementation and because it 

allows to easily adjust the sensitivity of the classifier to the training data by varying the 

number K of neighboring data instances which strongly affects the structure of class 

boundaries [Duda01]. The choice of K usually depends on the number of training instances 

NTrain and a general guideline is to select K according to =.���&�. If the classes are well 

separated in the feature space a smaller value for K can be selected.  

Another reason for choosing the KNN classifier is that it has established as reference for 

pattern recognition. Compared to more elaborate classifiers the KNN might not always 

perform best but it sets a baseline for achievable classifier accuracy.  

A visual example of the classification results for a 8s song excerpt of the training database is 

given in the Fig. 3.25. Pitch estimation has been performed between 100 Hz and 800 Hz and 

track duration has been restricted to be at least 100ms. Features of the song under test 

previously derived for each training song are of course excluded from the training set before 

classification to avoid that tracks are classified based on training data derived from the same 

song. Tracks classified as voice are displayed in red and instrumental tracks in blue. The 

reference F0 trajectory is displayed in green.  

K=3 
 
K=5 

? 
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Fig. 3.25.: Successful classification of pitch tracks into classes voice (red) and instrumental (blue)  
based on the training data set containing N=2000 training instances. The reference F0 trajectory is  

displayed in green. Number of neighbors of the KNN classifier was set to K=11. 

 
As can be seen the training data allows successful classification of pitch tracks into the 

classes voice and instrumental. Of course perfect discrimination as in the example above is 

not always achievable for different reasons. On one hand the more notes are played 

simultaneously the more difficult is the extraction and separation of individual pitch tracks. 

On the other hand not all singers show the expected vocal characteristics in such a 

pronounced way which can lead to misclassification. 

 

3.7. Final Pitch streaming 
 
As described before in “3.5.1. Derivation of the training data set” also tracks found at 

integer multiples of the reference vocal F0’s are considered as training instances for the class 

voice. This is the only way to maintain class separation without having to restrict the search 

range for F0’s too much. Consequently there might be multiple tracks overlapping in time 

after classification usually corresponding to the F0 and the first few partials that fall within 

the frequency range of interest as can be seen above in Fig. 3.25 . Therefore the output of the 

classifier has to be post processed and the tracks classified as voice have to be reduced to one 

final vocal track. Parallel pitch tracks are compared on the basis of the summary mean 

spectral amplitude (SMSA) of the first 3 partial tones. For overlapping tracks always the one 

showing a lower SMSA value is discarded. In Fig. 3.26 the final vocal pitch stream derived in 

the described manner for the above example is shown in red together with the reference F0 in 

green plotted over the spectrogram representation of the 8s song excerpt.  
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Fig. 3.26.: Final vocal pitch track (red) after reduction and reference F0 (green) plotted over the  
spectrogram representation of the corresponding song excerpt. 

 

3.8. Short-time energy based track grouping 
 
It has been observed that one source of errors with respect to classification accuracy is the 

misconnection of consecutive spectrally close note events to one pitch track. Therefore we 

implemented forced track separation based on the short time energy (STE). The STE is 

calculated from the audio waveform every 1.5 ms for frames of 5.8ms. Due to the small hop 

size and frame size the resulting function will reveal the moments of highest short time signal 

energy. In typical music recordings this increase would usually be caused by the base drum or 

the snare drum. So by forcing tracks to be separated at moments of high STE the pitch tracks 

are automatically synchronized with the beat of a song. To find possible split points we apply 

peak picking to the STE function. Inter-peak intervals are restricted to be at least 400 ms 

apart from each other corresponding to a maximal expected song tempo of 150 BPM. The 

detected peaks are further restricted to be at least higher than two times the mean value of the 

STE function. The derivation of split points is exemplified in Fig. Pitch tracks and STE 

function (blue) are plotted over the spectrogram of the corresponding song excerpt. The 

applied threshold corresponds to the red line and split points are indicated as green asterisks 

on the STE function and as red asterisks at 0 frequency position. The weakness of STE 

function is that it works well if there are strong percussive elements (base drum, snare drum) 

present in the audio signal. For songs with no or few percussion the peaks in the STE will be 

less pronounced and correct separation will be more difficult. 
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Fig. 3.27.: Forced pitch track separation based on short time energy (blue): split points are indicated as  
green asterisks on the short time energy (STE) function and as red asterisks at 0 frequency position,  

applied threshold for peak detection  = 2*mean(STE) (red), actual values of the STE function  
have been increased for better visibility 

 
 

3.8. MIDI quantization 
 
The raw F0 trajectory estimated in the described manner has no musical meaning and 

therefore has to be converted into a distinct note sequence. This may effectively be done by 

MIDI quantizing the F0 track according to:  

 
 (Eq. 3.22) 

 

 

 

Fig. 3.28.: MIDI quantization of the pitch trajectory of a solo vocal performance  
(dark blue) into discrete note events (light blue) 
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However, direct MIDI quantization of the vocal melody doesn’t always yield satisfactory 

results due to large frequency modulation typical to singing (see Fig. 3.29 and Fig. 3.30).  

 
 
 

Fig. 3.29.: Erroneous MIDI note quantization (green) due to large 
frequency modulation caused by vibrato 

 
Therefore F0 tracks are filtered by a 10 Hz moving average filter which corresponding to the 

largest frequency measured for vibrato. The smoothed pitch tracks are then subjected to MIDI 

quantization. Still there are spurious errors which can be reduced by restricting the duration 

of notes to be larger than a certain minimum length since voice sounds tend to be continuous. 

 

Fig. 3.30.: Erroneous MIDI note quantization (red) due to large vibrato and  
quantization after moving average filtering (light blue) of the F0-trajectory (dark blue) 
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3.8. System output 
 
The output of the system is a MIDI file which to our point of view represents a more general 

description of the musical content than a classical score. The fact that plenty of software 

programs related to music processing and music content analysis make use of MIDI suggests 

the usage of it as intercommunication file type in order to facilitate further use of the 

extracted musical information. Moreover one can easily listen to a MIDI file or create a 

musical score using music notation software. In contrast to that only trained musicians are 

able to read and reproduce music from a score written on paper.  

In addition the exact F0 track of the vocal melody is written to a text file containing the time 

stamps of individual analysis instants and the corresponding F0 values. 
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Chapter 4 – Evaluation and Results 
 

The proposed approach towards singing voice detection has been evaluated using the training 

database of the MIREX 2005 melody transcription contest comprising 13 songs excerpts of 

an approximate length of 30 seconds each. The songs cover different genres and 9 of them 

contain vocals while 4 are MIDI songs only. Since we focus on the detection of the singing 

voice the 4 MIDI songs have been excluded from the test data set and for evaluation only the 

9 vocal song excerpts have been considered. Thus given results correspond to mean values of 

the mentioned vocal dataset. The database comes with a reference transcription of the F0 

trajectory of the vocals in terms of a text file containing the time instants and the 

corresponding F0’s in Hz which have been annotated manually. The reference time grid has a 

spacing of 10ms. According to the guidelines of the MIREX melody extraction contest F0 

estimates deviating less than a ¼ tone from the reference are considered as correct estimates. 

Since F0’s of musical notes are logarithmically spaced in frequency, the range of +/- ¼-tone 

in Hz is dependent on the actual note. Therefore all pitch estimates are converted to the cent-

scale which linearizes the logarithmic nature of F0s of musical notes. There the spacing of a 

semitone always corresponds to 100 cent independent of the actual note. So pitch estimates 

are considered correct if they deviate less than +/-50 cents from the reference. 

 

 

Fig. 4.1.: Main Stages of the proposed singing voice F0 estimation method 

The main processing stages of the proposed method (see Fig.4.1), namely multi pitch 

estimation, partial tracking and classification (singing voice recognition) have been 

evaluated separately. First of all “raw singing voice F0 estimation accuracy” is calculated 

from the frame wise pitch estimates. It reflects the ability of the pitch estimation stage to 

correctly estimate the singing voice F0 trajectory in the polyphonic mixture signal.  
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Secondly a “pitch tracking accuracy” is calculated showing how much information is lost 

when individual frame wise pitch candidates are connected to form continuous pitch tracks 

restricting the length of pitch tracks to be at least larger than a specified minimum duration 

(in our case 50ms). Finally the classifier performance is evaluated in terms of correct 

separation between F0 tracks corresponding to vocal and instrumental F0 trajectories. Due to 

the hierarchical structure the performance of individual stages is strongly interdependent.  

In Table 2 the algorithm settings that have been used for evaluation are summarized. 

 
ALGORITHM SETTINGS  

(used for evaluation) 
 

 

Settings Pitch Estimation 
 

 

Settings Pitch Tracking 
 

    
Sampling frequency  11025 Hz N partials tracking 6 
Frame Size 92,88 ms N tracking tolerance 5 
Hop Size 5,80 ms Minimum track duration [s] 0,05 
Z-padding factor 2 Max allowed frame-to-frame 

chirp rate 
2,5 % F0 

Pitch estimates per frame 1 - 10  

Classification 
 

Minimum Frequency  98 Hz N samples Training  N voice = 944 / N music =1.391  
Maximum Frequency  800 Hz KNN classifier K=11 / K=31 / K=51 
  Feature subset According to features in Table 1 

indicated by “*” 
   

Training/Evaluation Data Set 
 

  No of songs. 9 
  Mean duration [s] 30  
 

Table 2: Algorithm settings used for evaluation 
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4.1. Raw Singing Voice F0 Estimation Accuracy 
 
As mentioned this score reflects the ability of the pitch estimation stage to correctly estimate 

the singing voice F0s in the polyphonic mixture signal and is computed from the frame wise 

pitch estimates.  

 

 

Fig. 4.2.: Main stages of the proposed singing voice F0 estimation method, 
highlighted block is subject of evaluation 

 

The number of estimated pitches per frame strongly affects the ability to recognize the 

singing voice F0 among others and has therefore been studied for the range of NMPE = 1…10 

�&��( � �&%��� 
)��%� . Singing voice F0 estimation accuracy (F0V-acc.) is calculated as the ratio 

between number of correctly estimated singing voice F0s and the total number of frames 

containing singing voice.  

��� ����� 	0 ��
���
��� �������� �  � ������
�� ��
���
�� ����� 	0��
� ������ ������  �%� 

  
A frame is considered correctly estimated if any of the N estimated pitches is within +/- ¼-

note to the reference F0.  

 

4.1.1. Performance of the individual MPEs 
 
 
As we make use of two MPEs, one based on the calculation of the salience function (referred 

to as MPE1) and the other based on simple peak picking (MPE2-PP), the performance of the 

two is evaluated individually and also for a combined approach, where estimates of both 

MPEs derived from the summary spectrum are considered simultaneously described by the 

block diagram in Fig 4.3.  
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Fig. 4.3.: Block diagram of the evaluation framework for individual MPEs and the combined approach 
 
The following diagram summarizes performance of the two individual MPEs and the 

combined approach. The x-axis corresponds to results for various numbers of pitch estimates 

(N=1…10) per frame. Each box plot was derived from the mean performance for individual 

songs of the training data base (Nsongs=9).  

 

 
 

Fig. 4.4.: Variance of singing voice F0 estimation accuracy for MPE1 (A), MPE2 (B) and the  
combined approach (C) displayed for different numbers of estimated pitches per frame.  

All pitch estimates have been derived from the summary spectrum 
 
As can be seen from the diagrams in Fig. 4.4 for low numbers of estimated pitches (N<4) the 

combined use of the pitch estimates from both MPEs results only in a small performance 

gain. Moreover it can be seen that for nearly all numbers of estimated pitches, simple peak 

picking based MPE (B) outperforms the salience function based one (A). The reason for this 

is probably the iterative estimation and cancellation procedure applied in MPE1. So for 

higher numbers of estimated pitches (N>4) single use of the peak-picking based MPE 

(MPE2) seems to be the adequate and sufficient choice. Apart from that it can be assumed 

that 100 % pitch accuracy cannot be reached by the used pitch estimators, not even by a 

further increase of the number of estimated pitches. Maximum average singing voice F0 
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accuracy is 90.4% for N=10 estimated pitches per frame (see also Table 4). This is an 

important finding since the overall accuracy of the vocal transcription algorithm is limited by 

the accuracy of the pitch estimation stage. A visual inspection revealed that strong F0 

variations of the singing voice especially at the beginning of notes are hard to track when 

coinciding with strong instrument or percussion onsets. It has been demonstrated that 

performances of the combined approach and peak-picking approach (MPE2) are very similar 

for numbers of frame wise pitch estimates larger than 3. Therefore in the following examples 

results will only be given for MPE2. 

 

4.1.2. Auditory motivated summary spectrum vs. magnitude spectrum 
 
Since we apply auditory motivated processing to the input data before pitch estimation is 

performed, we wanted to study the influence of this processing on the pitch accuracy 

compared to the accuracy of pitch candidates that have been derived from unprocessed 

magnitude spectra. Therefore the performance of MPE2 applied to simple magnitude spectra 

has been additionally evaluated. Fig. 4.5 holds the results for accuracy of singing voice F0 

estimation performed by MPE2, one time applied to the auditory motivated summary 

spectrum and one time applied to simple magnitude spectra. Results are shown for different 

numbers of estimated pitches.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4.5.: Influence of the auditory preprocessing on the singing voice F0 estimation: Variance of estimation 
accuracy for pitch estimation performed by MPE2 for different numbers of estimated pitches. For each number 
of MPEs two boxplots are given, the first corresponding to the use of the auditory summary spectrum (A) and 

the second corresponding to the use of simple magnitude spectra (B) for multi pitch estimation. Displayed 
metrics: median (red), quartiles (blue bottleneck), minimum / maximum (dotted) 
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It should be noted that displayed boxplots in Fig. 4.5 for MPE2 (A) correspond to the values 

in Fig. 4.4 (B) which is not apparent dur to different scaling of the y-axis. The results 

demonstrate that the use of the summary sub-band spectra UΣ for pitch estimation instead of 

mere magnitude spectra results in a significant performance gain. The gain is about 5% for 

higher numbers of estimated pitches (N>4) which justifies the increase in computational 

complexity (70x, since FFT’s have to be calculated for every auditory channel, Nchannels= 70, 

instead of 1 FFT per frame, neglecting filtering operations to derive the sub-band signals). 

Moreover the variance in pitch accuracy is smaller for UΣ.  

 

4.2. Pitch tracking accuracy 
 

 

 

 
Fig. 4.6.:  Main stages of the proposed singing voice F0 estimation method, 

highlighted block is subject of evaluation 
 
 
As explained the partial tracking score reveals the average loss of information when 

individual frame wise pitch candidates are connected to form continuous pitch tracks 

restricting the length of pitch tracks to be at least larger than a specified minimum duration 

(in our case 50ms) and discarding low amplitude pitch candidates before tracking. In the 

following diagram the accuracy of the pure pitch candidates of the MPE2 compared to the 

accuracy after pitch track formation is displayed. The x-axis represents the performances for 

different numbers of estimated voices. Given results correspond to mean values of evaluation 

results for individual songs. In the final comparison also the variance of the pitch tracking 

accuracy will be given.  
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Fig. 4.6.:  Comparison of mean accuracy of MPE2 and the following Pitch Tracking stage 

As expected from the hierarchical structure the accuracy of pitch tracks increases with higher 

accuracy of the pitch estimates. It has been observed, that the accuracy of the pitch tracker 

can be increased in principal by allowing very short tracks too but this has been found to 

negatively affect the following classification process. Therefore pitch tracks have been 

restricted to be at least of 50ms length. The absolute maximum average accuracy of the 

partial tracker is 82.8 % achieved for 10 estimated pitches per frame. The relative tracking 

accuracy with respect to the accuracy of MPE2 is 91.6 %. 

 

4.2.1. Tracking based on cubic interpolation 
 
The difference between tracking based on cubic interpolation compared to simple tracking in 

terms of mean tracking accuracy is very low. The highest improvement compared to simple 

tracking is about 0.3% on average and the highest improvement for individual songs is about 

0.9%, achieved when 10 pitches are estimated per frame (see Table 4, p.71). In an earlier 

implementation where pitch candidates have not been restricted based on the corresponding 

amplitude values before tracking, higher differences between the two implementations could 

be observed. This might be explained by the fact that the more pitch estimates per frame the 

higher the possibility for misconnections. Another reason for the little improvements 

compared to simple tracking might be the small hop size (5.8ms) used which also facilitates 

the correct continuation of pitch tracks. For larger hop size the improvements of the proposed 

tracking algorithm compared to a simpler one are expected to be higher.  
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4.3. Classifier Performance  
 
 

 

Fig. 4.7.:  Main stages of the proposed singing voice F0 estimation method, 
highlighted block is subject of evaluation 

 
The ability of the classifier to correctly separate pitch tracks into classes voice and 

instrumental based on the training data has been evaluated using N-fold-cross-validation. It is 

a technique to test classifier performance in cases where the same data set is used for training 

as for validation. The procedure is visualized in the block diagrams of Fig. 4.8 and Fig. 4.9. 

In a first step features are derived from the training data and training instances are separated 

into classes according to the provided label information (explained in 3.5.2), this is referred 

to as supervised learning. The generality and discriminability based on the derived training 

instances is assessed in a second step when new data has to be classified.  

Supervised Learning 

 

 

 

 
Fig. 4.8.:  Derivation of labeled training data referred to as supervised learning exemplified for our case 

 

N-fold cross validation 

 

 

 
 
 

Fig. 4.9.:  Block Diagram of the N-fold-cross validation procedure 
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As can be seen from the block diagram

songs) are classified based on the features of the training data base excluding the features 

derived from the song under test

that the same data instances are used for training as for classification. 

The results of the 9-fold cross validation are given in two ways. First the summarized results 

of mean classifier performance are given in terms of the confusion matrix

performing setting. Then variance of classifier performance 

estimated pitches per frame will be given.

frame wise, evaluation will also be performed on a frame level. So each pitch track 

contributes to the evaluation result according to its duration in frames.

 
Confusion matrix 

The confusion matrix summarizes classifier performance

Positives” (TP) being the ratio between 

the total number of frames containing singing voice, the “False Negatives” (FN) being the 

ratio between the number of frames that 

actually contain singing voice and the total number of frames containing singing voice, the 

“False Positives” (FP) being the ratio of the number of frames 

voiced but actually don’t contain voice and the total number of unvoiced frames and finally 

the “True negatives” being the ratio between the number of unvoiced frames that have been 

rejected correctly and the total number of unvoiced frames.

In order to demonstrate effective cla

not been estimated correctly have been excluded before score calculation. In this way the TP

and FN as TN and FP sum up to 100%. Later on results will also be given with respect to 

absolute accuracy (see Fig. 4.11, Fig. 4.12, and Table 4)
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As can be seen from the block diagram pitch tracks of the song under test (1 out of 9 training 

classified based on the features of the training data base excluding the features 

ong under test which is done for every song. In this way it can be avoided 

that the same data instances are used for training as for classification.  

fold cross validation are given in two ways. First the summarized results 

ssifier performance are given in terms of the confusion matrix

. Then variance of classifier performance for different numbers of 

will be given. Since the reference vocal F0 transcription is given 

frame wise, evaluation will also be performed on a frame level. So each pitch track 

contributes to the evaluation result according to its duration in frames. 

confusion matrix summarizes classifier performance. The given metrics are the 

ratio between the number of correctly classified vocal 

the total number of frames containing singing voice, the “False Negatives” (FN) being the 

ratio between the number of frames that  have not been recognized by the classifier but 

actually contain singing voice and the total number of frames containing singing voice, the 

“False Positives” (FP) being the ratio of the number of frames that have been identified as 

t contain voice and the total number of unvoiced frames and finally 

the “True negatives” being the ratio between the number of unvoiced frames that have been 

rejected correctly and the total number of unvoiced frames. 

In order to demonstrate effective classifier performance frames where the singing voice has 

not been estimated correctly have been excluded before score calculation. In this way the TP

FP sum up to 100%. Later on results will also be given with respect to 

ee Fig. 4.11, Fig. 4.12, and Table 4). 

 

 

 

 
:  Confusion matrix with corresponding metrics 
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pitch tracks of the song under test (1 out of 9 training 

classified based on the features of the training data base excluding the features 

In this way it can be avoided 

fold cross validation are given in two ways. First the summarized results 

ssifier performance are given in terms of the confusion matrix for the best 

for different numbers of 

Since the reference vocal F0 transcription is given 

frame wise, evaluation will also be performed on a frame level. So each pitch track 

. The given metrics are the “True 

vocal frames and 

the total number of frames containing singing voice, the “False Negatives” (FN) being the 

have not been recognized by the classifier but 

actually contain singing voice and the total number of frames containing singing voice, the 

that have been identified as 

t contain voice and the total number of unvoiced frames and finally 

the “True negatives” being the ratio between the number of unvoiced frames that have been 

ssifier performance frames where the singing voice has 

not been estimated correctly have been excluded before score calculation. In this way the TP 

FP sum up to 100%. Later on results will also be given with respect to 
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As discussed earlier the number of neighbors used in KNN classification strongly affects the 

classifier performance. Usually the number of neighbors K is chosen according to the square 

root of the number of training instances N.  In our case that would be K~47 for N=2236 

training instances. The KNN classifier has been evaluated for 3 different values of K, namely 

K=11, K=31 and K=51 and a number of 10 pitch estimates per frame.  
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K = 11                                        K=31                                           K=51 
 

Table 3: Relative Performance Values of the KNN classifier for different numbers of neighbors K 
 

From the confusion matrices in Table 3 it can be observed that for higher numbers of K the 

false positive rate decreases. Simultaneously also the true positives decrease with increasing 

number of neighbors. Obviously there is a tradeoff between correct classification and correct 

rejection of samples. So maximizing only one of the two values usually degrades 

performance of the other. In the following we use a value of K=11 which resulted in the 

highest TP rates. 

In order to demonstrate the interdependence between correct classification (TP) and correct 

rejection (TN) the performance values for individual songs are summarized in Fig. 4.11 using 

box plots. Each column holds the results in terms of TP (A) and TN (B) in percent for various 

numbers of estimated pitches.  
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Fig. 4.11.: Absolute classifier performance in terms of True Positives (A) and True Negatives (B) for different 
numbers of estimated pitches, classifier settings KNN (K=11). Displayed metrics: median (red), quartiles (blue 

bottleneck), minimum / maximum (dotted), “+” outliers larger than 1.5 times the interquartile range 
 

Accuracy is defined as the sum of TP and TN divided by the total number of frames. 

Therefore the balance between both values is important to attain high classifier accuracy. As 

can be seen from Fig. 4.11, balance between TP and TN is only given for higher numbers of 

estimated pitches. It is clear that TN decreases with increasing TP and increasing number of 

estimated pitches since the higher the number of found pitch tracks, the higher the probability 

that a tracks really capture the singing voice. Simultaneously the probability for 

misclassification increases the higher the number of parallel pitch tracks. There are two 

outliers indicated by red “+” in Fig. 4.11 for TN which can be important to detect possible 

weaknesses of the algorithm. From visual and acoustic inspection of the corresponding audio 

files it has been found that at least one of the outliers is caused by a low ratio between singing 

voice signal and music accompaniment which might explain the decreased ability of the 

classifier to correctly reject pitch tracks corresponding to instrumental sounds. The second 

outlier corresponds to a song with strong instrumental sounds (Piano & Guitar) but without 

percussion. It has been found that for the mentioned song the short time energy based track 

separation mechanism fails to separate the tracks of the music accompaniment thus leading to 

misclassification and a very low TN value. 

Further it can be seen that there are no outliers for the TPs and the average correct 

recognition of singing voice signals for higher numbers of estimated pitches (N>4) is 
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somewhere around 70 %. Finally the overall accuracy of the individual stages will be 

compared. 

 
Final comparison of accuracies  

A final comparison of the accuracies of the individual algorithm processing stages is given in 

Fig. 4.12 for different numbers of estimated pitches. As can be seen variance of accuracies 

increases from stage to stage which reflects the interdependence between the stages. The 

higher the variance in accuracy of the first stage (MPE) the larger the variance of the 

following stage (Partial Tracker). However, the proposed MPE seems to be able of correctly 

estimating singing voice F0s to a large extent considering (for N > 3 minacc ~ 80%, maxacc ~ 

97 %, medianacc~ 90%). The accuracy of the partial tracking stage decreases due to 

discarding tracks shorter than 50ms. Maybe this value is too restrictive and should be lowered 

to attain higher partial tracking accuracy at the cost of higher FPs. Finally accuracy of the 

classifier varies a lot for individual songs (minacc~40% maxacc ~88%). The main errors (Table 

4) have been found to occur for voices that only show little F0 variability which is one of the 

main characteristic that the described features try to capture. 

 

 
Fig. 4.12.: Comparison of absolute accuracies of individual processing stages. Displayed results: 

MPE2 (A) vs. Pitch Tracking (B) vs. Classifier Accuracy (C, Settings KNN: K=11)  
Displayed metrics: median (red), quartiles (blue bottleneck), minimum / maximum (dotted),  

“+” outliers larger than 1.5 times the interquartile range 
 

        1               2              3              4               5               6              7              8             9             10 
         Number of estimated pitches per frame 

 

A
cc

ur
ac

y 
[%

] 

A 
B 

C 



Detection of singing voice signals in popular music recordings – Diploma Thesis – Amir Rahimzadeh – Nov. 2009 

73 
 

Song Number 
 

Pitch 
Accuracy [%] 

 

 
Tracking 
Accuracy 

(cubic) [%] 
 

 
Tracking 
Accuracy 

(simple) [%] 
 

Classifier Acc 
[%] 

 
TP 

 [%] 
 

1 96,9 90,8 90,5 89,8 88,1 
2 87,9 79,1 78,6 66,3 63,4 
3 81,1 74,4 73,5 55,1 51,6 
4 88,6 75,9 75,6 69,2 67,8 
5 97,1 92,0 91,8 88,4 87,5 
6 83,7 72,8 72,6 40,2 66,3 
7 92,1 84,6 84,3 78,9 79,8 
8 93,1 85,9 85,4 83,6 83,7 
9 92,9 89,3 89,2 66,5 71,4 

Mean / 
Median 

90,4 / 92,1 82,7 / 84,6 82,4 / 84,3 71,5 / 69,2 73,7 / 71,4 

 
Table 4: Results for individual songs of the training/test set for the different processing stages of the algorithm.  
Algorithm settings according to Table 2 – Number of estimated pitches per frame = 10, Classifier Settings K=11  
 
The low classifier performance for song number 3 might be caused by a lack of training data 

in the corresponding frequency range. As can be seen from Fig. 1.18 (p.21) song number 3 is 

the song with the lowest F0s. Song number 6 is the song with the second lowest F0s. 

Moreover it has been observed from the reference annotation that this song has the lowest 

mean ∆F0 which means that singing voice characteristics (e.g. vibrato) might be less 

pronounced which makes discrimination between vocal and instrumental sounds more 

difficult, which possibly is the reason for significantly lower classifier accuracy. Since 

absolute accuracy of the classifier is strongly dependent on the accuracy previous stages 

(MPE, Tracking), classifier accuracy is related to the total number of correctly estimated 

pitches to allow a fair comparison. This is referred to as the relative classifier accuracy 

calculated as the ratio of classifier accuracy and absolute pitch estimation accuracy. In this 

way mean relative classifier accuracy reaches 79.09%. 

 

4.4. Comparison with the MIREX 2008 melody extraction contest 
 
In order to compare our approach to other recent approaches results in terms of overall 

accuracy are compared to the results of different algorithms that entered the MIREX melody 

extraction contest 2008. The results are displayed in Fig. 4.13 using box plots representing 

the variance of algorithm performance across the evaluation song database. Unfortunately 

results are not directly comparable since the data base that has been used for training and 



Detection of singing voice signals in popular music recordings – Diploma Thesis – Amir Rahimzadeh – Nov. 2009 

74 

evaluation of the proposed algorithm comprises only 9 of 16 songs that were originally used 

in the MIREX Melody Extraction Contest 2008 in the category singing voice melody 

extraction. In detail the original data set that is reserved for competition comprises 16 songs 

containing vocals and the training set which is available online(1) comprises only 9 of these 

16 songs. Nevertheless comparing results gives an idea of achievable accuracy.  

As can be seen, the proposed algorithm (no.9, displayed in green) shows large variance in 

accuracy compared to the others (except for algorithm 3 which is the worst performing 

algorithm). On the other hand the proposed algorithm shows the highest maximum classifier 

accuracy value attained for one song which is 89,8% (see Table 4). These results suggest that 

the proposed algorithm works better under certain conditions (number and kind of used 

instruments, singing style much/less vibrato, ratio between music and singing voice) which 

vary from song to song. This could be seen as weakness of the proposed approach. However, 

it should be noted that the winning algorithm (no.5) of the MIREX Melody Extraction contest 

2008 did not specifically address the estimation or detection of singing voice but was rather 

designed to estimate the pre-dominant pitch, indifferent if the pre-dominant pitch 

corresponded to singing voice or instrumental sounds. 

 

 
Fig. 4.13.: Variance in overall accuracy of the algorithms that entered the MIREX 2008 melody extraction 

contest (1-8) compared to our approach (9 – green, Settings KNN K=11). Results are unfortunately not directly 
comparable since the data set used for evaluation of our approach contains only 9 of the 16 vocal songs 

contained in the data set used for competition which has not been available 
 

(1)
LabROSA:  “Laboratory for the recognition and organization of speech and audio”   

     http://labrosa.ee.columbia.edu/projects/melody/ 
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Chapter 5 - Conclusion 
 

A frame work for the detection of singing voice signals in polyphonic popular music 

recordings has been presented. Results suggest that the representation of the musical content 

of song in terms of multiple parallel F0 trajectories allows discrimination between vocal and 

instrumental sounds. 

The individual processing stages have been evaluated separately and corresponding results 

have been presented. The auditory motivated preprocessing of the audio signal improves the 

ability to detect the singing voice F0 in the polyphonic mixture signal. The average gain in 

vocal F0 estimation accuracy compared to estimation from simple FFT magnitude spectra for 

various numbers of estimated pitches is about 5%. This justifies the increase of computational 

complexity due to auditory preprocessing. Absolute vocal F0 accuracy of frame wise pitch 

estimates yields 90.4% on average for the 9 song excerpts. Pitch tracking based on cubic 

extrapolation has been presented yielding absolute accuracy of 82,7% and relative tracking 

accuracy (with respect to the pitch estimation accuracy) yields 91,5%. Tracking based ion 

cubic extrapolation shows only little improvements compared to a simple pitch tracking 

algorithm (0.3 % on average). A training data set later used for classification has been 

derived from polyphonic music excerpts based on reference transcriptions of the singing 

voice F0 trajectory. The discriminability of the two classes based on the features derived 

from the training data has been tested by means of statistical testing (F-ratio, LDA) and by 

means of simulation (N-fold cross validation). Absolute classifier accuracy reaches 71,5% 

and relative classifier accuracy (with respect to the pitch estimation accuracy) reaches 79,1%. 

Finally a method has been presented how to convert the vocal F0 trajectory into individual 

note events based on MIDI quantization. Weaknesses of the proposed approach towards 

singing voice F0 estimation have been discussed and finally an outlook for further 

improvements will be given in the following. 
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Chapter 6 - Outlook 
 

Evaluation results demonstrate that the proposed approach towards singing voice detection is 

comparable to recent methods. Nevertheless there is room for improvements. In the actual 

implementation only monophonic audio signals are considered. In doing so, panning 

information, possibly bearing valuable information for source tracking, is neglected.  

Moreover the context of vocal F0s to the musical accompaniment in terms of harmony could 

be incorporated to facilitate final note quantization. Additionally the probability of note 

transitions in the final note sequence could be evaluated using a musicological model.  

In the current implementation the main criterion for the tracking of pitch candidates is the 

frequency in Hz. Since also the amplitude trajectory tends to continuous and varies slowly 

from frame to frame for a certain pitch track a second tracking criterion could be incorporated 

based on the evolution of the amplitude trajectory. 

Another idea is the use of multiple parallel classifiers for voicing decisions. In that way one 

could possibly increase reliability of classification using decision by majority. 

Apart from that it should be investigated if there is a gender specific difference for achievable 

classifier performance and to which degree the singer dependent absolute F0 range has an 

influence on that.  
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