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Abstract 
A new feature within mobile phones of the third generation is the                        
“advanced audio functionality”. Besides other things, the reproduction of polyphonic 
ringing tones is of great interest. Therefore, a synthesis unit, which is convenient for 
mobile phones in respect of memory usage and computational costs is needed. 

The aim of this diploma thesis is the investigation of sound synthesis techniques, which are 
suited for this demands. Out of a wide range of different synthesis techniques, three have 
been chosen to synthesize the sound of a real piano. These are: the FM synthesis, the 
sampling synthesis and the digital waveguide synthesis.  

These sound synthesis techniques have been implemented in Matlab™. Thus, the 
synthetically created piano sounds are compared to that of a real piano. 

 

 

 

Kurzfassung 
Eine Besonderheit von Mobiltelefonen der dritten Generation ist die                   
„Erweiterte Audiofunktionalität“. Dazu zählt unter anderem die Wiedergabe von 
mehrstimmigen Klingeltönen. Zur Erzeugung dieser benötigt man eine Syntheseeinheit, 
die hinsichtlich Speicherbedarf und Rechenleistung für den Einsatz in Mobiltelefonen 
geeignet ist.  

Ziel dieser Diplomarbeit ist die Untersuchung von Klangsyntheseverfahren, die diesen 
Anforderungen genügen. Aus einer großen Anzahl an verschiedenen Syntheseverfahren 
wurden drei für die Synthese eines natürlichen Klavierklanges ausgewählt. Diese sind:    
die FM Synthese, die Sampling Synthese und die Waveguide Synthese. 

Diese Klangsyntheseverfahren wurden in Matlab™ implementiert. Die dadurch erzielten 
synthetischen Klavierklänge werden mit jenen des realen Klaviers verglichen.  
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1 Introduction 
The aim of this thesis is the investigation of three sound synthesis techniques, which can be 
implemented on a digital signal processor. Thereby, the provided amount of available 
memory is strictly limited and the computational performance is an average. As a result, 
the choice of the used sound synthesis techniques is based on these conditions. 

The three sound synthesis techniques this thesis deals with are the FM synthesis, the 
sampling synthesis and the waveguide synthesis. The first technique is assigned to the 
group of abstract algorithms. The advantage of these algorithms is that only a few 
parameters have to be used to control their behavior. However, it is difficult to model the 
sound of real instruments due to the nonlinear characteristic of these algorithms. The 
second sound synthesis technique belongs to the group of processed recordings. Thereby, 
recordings of real sounds are used, which will be processed in either way to result in a 
desired output signal. The third technique is assigned to the group of physical models. The 
physics-based approach has several advantages compared to abstract algorithms or 
processed recordings, where the control parameters have no meaning to the musician. 
Physical modeling techniques concentrate on the underlying sound production mechanism 
and not on the modeling of the radiated sound. This is why the parameters of the models 
will have a more direct interpretation in the real world.   

These sound synthesis techniques are investigated by means of the synthesis of the real 
piano sound. Thereby, some important properties of the real piano should be taken into 
account for the synthesis stage. These are: 

• the inharmonic ratio of the partials caused by the stiffness of the vibrating string, 

• the two-stage decay, which can be traced to the different polarizations and the 
coupling of the strings and 

• the spectral behavior, which depends on the attack velocity of the depressed key as 
well as on time.  

As the sound production mechanism and the consistence of the resultant sound of the real 
piano is quite complex, this is a good choice for analyzing the potential of the different 
synthesis techniques. 

The synthesis of the real piano tone by means of FM synthesis is performed by the use of 
four sine oscillators, which are interconnected in a particular way. Their frequencies were 
chosen in a way to model the inharmonicity of the real piano. The time-varying spectral 
behavior of the real piano tone can be modeled by changing the modulation index for the 
individual oscillators in proportion to time. Therefore, envelope generators have to be 
introduced.  

In the case of the sampling synthesis, the tone of the real piano is synthesized by using 
short pre-recorded samples of it. To reduce the demand on required memory, the technique 
of looping and pitch shifting is introduced. As a result, time-variant filtering of the output 
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signal has to be performed in order to model the spectral changes of the real piano versus 
time. 

The modeling of the real piano tone with the aid of the digital waveguide synthesis is the 
last technique described in this thesis. Waveguide synthesis is one of the most widely used 
physics-based sound synthesis methods in use nowadays. The tasks for developing the 
structure of a physical model for an instrument are the following: first, the acoustical 
properties of the instrument have to be carefully investigated. Second, a decision has to be 
made about which features need to be simulated. The last step is finding efficient 
implementations for these features. In the digital waveguide synthesis, the physical 
behavior of a vibrating string can be modeled by a discretization of the wave equation of 
the ideal string. This leads to two parallel delay lines, which represent the traveling wave 
components of the medium interior. To model the behavior of the real vibrating string, a 
loop filter has to be integrated in the waveguide. This enables modeling the losses due to 
friction with the air and the finite mass of the string. Furthermore, the stiffness of the string 
has to be taken into account. Since the digital waveguide only models the string, a further 
model has to be introduced representing the hammer of the real piano. The resultant 
excitation signal drives the digital waveguide then. Furthermore, the resonating system of 
the real piano has to be taken into account. 

As this thesis deals with the synthesis of the real piano, the acoustical properties of the 
instrument have to be discussed. This discussion can be found in chapter 2. In chapter 3, 
different sound synthesis techniques and their behavior with regard to sound quality, 
memory usage, and computational costs are shortly analyzed. Chapter 4 deals with the 
principles of the FM synthesis technique and proposes an algorithm for the synthesis of the 
piano tone. Chapter 5 is about the synthesis of the piano sound by means of the sampling 
synthesis technique. Thereby, the difficulties in finding convenient samples regarding to 
the length of the samples are discussed. The modeling of the real piano by means of the 
digital waveguide synthesis is described in chapter 6. Furthermore, two models for the 
piano hammers are introduced. As a last resort, the commuted piano synthesis is 
investigated for a computationally efficient implementation of a piano model. In chapter 7, 
the researched synthesis techniques are compared in regard to the memory usage and the 
computational costs. Finally, in chapter 8 results are summarized leading to a conclusion.    
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2 Acoustical properties of the piano 
The piano belongs to the group of struck string instruments. The first piano was built as 
early as 1709 by Bartolomeo Cristofori, but it had to go through many changes to reach its 
modern form. In [1-3] the comparison of a new and the 1720 Cristofori piano can be found. 

The general structure of the piano is the following: an iron frame is attached to the upper 
part of the wooden case and the strings are extended upon it in a direction nearly 
perpendicular to the keyboard. That end of the string, which is closer to the keyboard, is 
connected to the tuning pins on the pin block. After crossing the bridge, the other end is 
attached to the hitch pin rail of the frame. The bridge is a thin wooden bar transmitting the 
vibration of the string to the soundboard, which can be found under the frame. 

 
Figure 2.1: Schematic structure of the piano [4] 

According to the above-mentioned parts the sound-production mechanism of the piano can 
be divided into the following steps: 

1. First, the hammer strike, which transmits the kinetic energy taken in by the artist to 
the kinetic energy of the hammer. Therefore, the piano action belongs to this part as 
well. After bouncing to the string, it is transformed to vibrational energy. 

2. The energy is stored by the string, whereas one part of that is dissipated due to 
internal losses; the other one gets to the soundboard through the bridge. 

3. The soundboard converts the vibrational energy to acoustical energy, which results 
in the audible sound. 

2.1 Piano action and hammer 

2.1.1 The action 

The action of the piano is an artwork of precision mechanics, and its operation is rather 
complicated. Allowing the fastest possible repetition of a single note results in a very 
complex mechanical structure. In this way, the repetition can be performed before the 
hammer reaches its rest position. Generally speaking, the action can be considered as a 
lever system with a ratio of 1:5 between the movement of the key and the hammer. 
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It is important to notice that in the moment of hammer-string contact the hammer rotates 
freely. When the key is pressed down slowly, the hammer stops 4-6 mm beneath the string. 
Under regular playing conditions, the hammer is moved towards the string by the 
transferred kinetic energy. By pressing a key the corresponding damper is lifted, which 
mutes the string by falling back after the key is released [5, 6].  

By the examination of the timing of the action, [5] made some interesting observations. 
They concluded that the delay introduced by the action depends mainly on the dynamic 
level. In the piano-legato touch, this delay can be as high as 100 ms, while at the forte-
staccato touch from the hit of the key to the sound of the note only 25 ms elapse. Since this 
difference is audible, the skilled pianist must compensate for this performance. A further 
characteristic trait of the piano, as well as of many other instruments is the alteration of 
timbre depending on a change of the dynamic level.    Figure 2.2 shows three spectra due 
to playing pianissimo (ppp), mezzo forte (mf), and fortissimo (fff) on the G3 (196 Hz) key. 
To facilitate a comparison, the spectra were normalized in order to ensure that they have 
the same total energy. 

 
Figure 2.2: Relative sound-pressure level due to playing ppp, mf, and fff [7] 

2.1.2 The hammer 

Hammers have a great influence on the timbre of the piano, as they excite the strings. The 
hardwood cores of the hammers are covered by wool felt. The characteristics of the felt 
influence the resulting sound considerably. Thus, harder felt result in stronger partials, i.e., 
a brighter tone. On the contrary, softer hammers produce less partials and a softer tone. 
The timbre of the piano can be influenced by “voicing” (hammers can be made softer by 
needling, or hardened by a hardening agent). Voicing is the last step of piano production, 
giving a “personality” to the instrument [2]. 

The felt of the hammer is not homogeneous. Its hardness changes gradually from the outer 
part to the core. This is the main reason for the spectral differences at various dynamic 
levels.  
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Therefore, the felt can be considered as a nonlinear spring with a stiffness increasing with 
compression. An approximate power-law model can be found in, e.g., [7]: 

 ( ) pF K y= ∆  (2.1) 

where y∆  refers to the compression of the felt, K is the stiffness coefficient and p is the 
stiffness exponent. These values (K and p) can be determined by curve-fitting from 
measured data [8]. Some papers suggest a hysteretic model for the hammer felt (see, e.g., 
[9]). 

The process of the hammer-string interaction is the following: the hammer, accelerated by 
the action, hits the string but it does not bounce back immediately, since its mass is not 
negligible compared to the string. The hammer is thrown back by the reflected pulses 
returning from the closer end of the string. This end is denoted as the agraffe. The force 
experienced by the string and the hammer is a sequence of shock waves. The shape and 
smoothness (and thus the frequency content) of the force curve is influenced by  p, K and 
the initial velocity as well. Increasing K or the initial velocity has the same effect, they 
both enlarge the high frequency content of the excitation. The average duration of the 
hammer-string contact is determined by the ratio of the hammer mass and the mass of the 
string. The heavier the hammer is, the longer is the time of contact. For an efficient 
excitation of the string, the contact time is equal to the half period of the tone. In 
contemporary pianos, hammers of gradually changing mass are used in order to meet this 
condition. 

The spectrum of the resultant sound also depends on the striking point. This results in a 
comb filtering effect, since those modes of the string, which have a node near to the 
striking position, cannot be excited effectively [2]. 

2.2 Piano strings 
The strings of the piano are made of steel wire. High efficiency requires high tension 
(about 700 N for each string), and accordingly the strings are strained at the 30-60% of 
their specified tensile strength. In order to reach higher acoustic output, three strings for the 
same note are used (except for the lowest two octaves). These strings are not tuned in 
perfect unison, introducing beating and two-stage decay, two important characteristics of 
the piano sound. The length of the strings is not exactly in an inverse proportion to the 
fundamental frequency. Otherwise, the lowest strings would be too long yielding an 
unacceptable size of the piano case. To overcome this problem, the mass of the bass strings 
is increased. On the other hand, thicker strings result in higher inharmonicity, simply 
because the string begins to behave like a stiff bar. The solution is winding the bass strings 
with one or two layers of copper wire, which reduces the stiffness [1]. 
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2.2.1 Beating and two-stage decay 

Having more strings for exciting the same note increases the efficiency of energy 
transmission towards the bridge as well as it constitutes the characteristic piano sound. If 
we assume that the strings are not tuned to the same frequency but neglect the effect of 
coupling, the result will be beating between the partials. In reality, these strings are not 
independent since they are coupled to the bridge, new modal frequencies will occur. 
Coupling can be the reason for two-stage decay as well. This means that in the early part of 
the tone the sound decays much faster than in the latter part [10]. 

There is another explanation for the two-stage decay: the behavior of the two different 
polarizations. Since the vertical polarization is coupled more efficiently to the bridge than 
the horizontal polarization, the decay times differ significantly. The hammer excites the 
vertical polarization to a greater extent, and the energy transmission to the bridge is more 
effective in this direction as well. As a result, at the beginning of the tone the sound 
produced by the vertical polarization will be the dominant one. As the vibration of the 
vertical polarization decays faster, the latter part of the tone will be determined by the 
horizontal polarization [10].  

2.2.2 Inharmonicity 

As already mentioned, the stiffness of the strings results in a slightly inharmonic sound.  
(2.2) shows the wave equation of the stiff string1. 

 
2 2 4

2
2 2 4

y y yT QS
t x x

µ κ
∂ ∂ ∂

= −
∂ ∂ ∂

 (2.2) 

where x is the position along the string, y is the transversal string displacement, t is the 
time,  T refers to tension and  µ  to mass density. Q stands for Young’s modulus, S is the 
cross-section area of the string and κ is the radius of gyration. Because of the forth-power 
term, dispersion will appear, and waves with higher frequency will travel faster on the 
string, i.e., the wave velocity will not be constant any more. As a result of dispersion, 
higher modes will go back and move forward on the string within a shorter time, so their 
frequency will be the same nearby, like that of the ideal string. 

It is an important question whether the inharmonicity is a desired factor or just an 
unavoidable feature. [1] concludes that inharmonicity is an important factor of piano 
sound, but there should be as little as possible of it. 

Inharmonicity also affects piano tuning. Since tuning is based on beating between 
intervals, stretching of partials will also cause stretching of fundamental frequencies. As a 
result, the lowest notes of the piano are 30 cent below, while the highest are 30 cent above 
the tempered values. 

                                                 
1 For the wave equation of the ideal string see chapter 6 of this diploma thesis 
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2.3 The bridge and the soundboard 
The soundboard of modern pianos is generally made of assembling strips of solid softwood 
(such as Sitka or red spruce). These 5-15 cm wide strips are glued together. Since the 
stiffness of the wood is higher along the grain, the cross-grain stiffness is increased by 
adding ribs to the soundboard. This increases the travel velocity in this direction. Cheaper 
Pianos are generally built of laminated wood. The comparison of soundboards of different 
materials can be found in [3].  

The vibration of the strings is transmitted to the soundboard through the bridge. The bridge 
functions as an impedance transformer, presenting higher impedance to the string than that 
if the strings were directly connected to the soundboard. In the latter case, decay times 
would be too short. By carefully designing the soundboard and the bridge, the loudness and 
the decay time of the partials can be set. 

The impedance curve of the soundboard exhibits a high modal density. Many studies have 
been made on the low frequency behavior of the soundboard. These resonances are similar 
to the simple motion of a plate and can easily be observed by the Chladni method [3]. For 
the higher frequency region of the soundboard the average of the impedance is constantly 
up to about 3-7 kHz and after that it starts to decrease with frequency. This decline exists 
because of the ribs. 

2.4 Pedals 
Pianos have either two or three pedals. The most important one is the sustain pedal on the 
right which lifts the dampers of all the strings. This sustains the struck keys on the one 
hand and changes the character of the timbre on the other hand, since all the other strings 
can vibrate freely in sympathetic mode. 

The left pedal is the “una corda” pedal, which shifts the entire action sideways. 
Consequently, the hammer strikes only two strings out of three in the treble, or one out of 
two in the midrange. This causes only about 1 dB reduction of the sound pressure level, but 
changes the timbre. One of the reasons for this is that the third string gains energy from the 
vibration of the other two. The initial conditions of the coupled vibration are changed, 
resulting in a slower decay [10]. Another reason for the spectral change may be the fact 
that when the same hammer hits a smaller number of strings, it appears to be heavier with 
respect to the single strings, causing longer contact times and a softer timbre. 

The middle pedal is the “sustenuto” pedal, which sustains only those notes that have been 
hit before depressing the pedal. 
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3 Overview of synthesis methods 
Digital sound synthesis methods are numerical algorithms that aim at producing musically 
interesting sounds. The following approach for the evaluation of digital sound synthesis 
methods is based on a classification by [11]. He divides the different methods into four 
groups:  

� abstract algorithms, 

� processed recordings,  

� spectral models and  

� physical models.  

An overview of representative synthesis methods of each category follows. For more 
detailed information see [12-15]. 

3.1 Abstract algorithms 
The advantages of abstract algorithms are their simplicity and the small number of control 
parameters. However, because of the nonlinear behavior, the analysis procedures are 
complicated. Thus, the simulation of the sound of numerous real instruments is almost 
impossible. They are rather useful to create inconvenient sonorities.    

3.1.1 FM synthesis 

FM (frequency modulation) synthesis is a fundamental digital sound synthesis technique. 
The fundamental approach of this synthesis method is the distortion of the frequency of an 
oscillator in accordance with the amplitude of a modulating signal [12]. So it’s main 
advantage is, that even a two-oscillator system can produce a rich spectrum. For further 
information to FM synthesis, see chapter 4 of this thesis. 

3.1.2 Waveshaping synthesis 

In waveshaping synthesis, a nonlinear shaping function is used to modify the input signal.  
The spectrum produced by a waveshaping instrument changes with the amplitude of the 
sound. This corresponds with the characteristics of the spectra of acoustic instruments. In 
the most fundamental form, waveshaping is implemented as a mapping of a sinusoidal 
input signal with a nonlinear distortion function. With the aid of Chebyshev polynomials, 
the matching of a desired steady-state spectrum can be realized. Therefore, the input signal 
has to be a cosine wave with the amplitude of one. For full independence between the 
timbre and the output amplitude, some form of amplitude normalization is used [12, 14]. 
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3.1.3 Karplus-Strong Algorithm 

Karplus and Strong [16] developed a method for an amazingly high-quality synthesis of 
plucked strings and drum sounds. The Karplus-Strong (KS) algorithm is an extension of 
the simple wavetable synthesis technique. In contrast to wavetable synthesis, where the 
sound signal is periodically read from computer memory, in the KS algorithm, the 
wavetable is modified each time a sample is being read. In this way, the content of the 
wavetable will evolve with time.  

However, it was found out soon, that the Karplus-Strong algorithm is a special case of the 
technique now called digital waveguide modeling [17]. 

 
Figure 3.1: Karplus-Strong model for plucked strings [15] 

3.2 Processed recordings 
The methods described below are based on recording and processing of real sounds. First 
experiments were done at 1920’s by composers like Hindemith, Milhaud, and Toch, who 
experimented with variable speed phonographs in concert [14].  

In the following chapters, three methods utilizing recordings are discussed shortly. These 
are sampling, multiple wavetable synthesis and granular synthesis. 

3.2.1 Sampling synthesis 

In sampling synthesis, recordings of relatively short sounds are played back. To change or 
to vary the characteristic of the sounds, digital sampling instruments use techniques like 
pitch shifting, looping, and time stretching. The synthesis itself is very efficient to 
implement, however, the required memory storage is huge. For a detailed description of the 
sampling syntheses approach, see chapter 5 of this thesis.  

3.2.2 Multiple wavetable synthesis 

The terms “wavetable synthesis” and “sampling synthesis” are often used synonymously, 
mainly in industrial lingo, because of their analogical fundamental approaches. The most 
widely used methods are wavetable cross fading and wavetable stacking [14]. 
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In wavetable cross fading two or more wavetables are used to generate time-varying 
timbres. Each output of the individual wavetables are multiplied with an amplitude 
envelope and summed together. The way of generating the output signal is controlled by an 
oscillator that cross-fades between the various wavetables. So it is possible to synthesize a 
sound starting with an attack recorded from an acoustic instrument, like a struck of a 
string, and then cross-fade the sound into a synthetic generated waveform [14, 15]. 

Wavetable stacking is similar to additive synthesis, were sine waves are summed together 
to generate a certain sound. In wavetable stacking, not sine waves but complicated 
waveforms such as sampled sounds are summed together to generate rich hybrid textures. 
Surveying commercial synthesizers shows, that usually four to eight wavetables are used in 
wavetable stacking [14]. 

In [18] methods for matching the time-varying spectra of a harmonic wavetable-stacked 
tone to an original are presented. The overall objective is to find wavetable spectra and 
associated amplitude envelopes, which together provide a close fit on an original time-
varying spectrum. 

3.2.3 Granular synthesis 

In granular synthesis, the sound signal is produced by adding sound grains in the time 
domain, where one sound grain can have a duration ranging from one millisecond to more 
than a hundred milliseconds. The waveform of the grain can be a windowed sinusoid or a 
sampled signal. The algorithms can be divided into asynchronous and pitch synchronous 
methods. 

Asynchronous granular synthesis was developed by Roads [14]. This method scatters 
sound grains in a statistical manner over a region in the time-frequency plane. The regions 
are called sound clouds and they form the elementary unit the composer works with [14]. 
A cloud is specified by the following parameters: start time and duration of a cloud, grain 
duration, density of grains, amplitude envelope and bandwidth of the cloud, waveform of 
each grain and spatial distribution of the cloud. This method is rather used to generate 
synthetic waveforms. It is not suited to reproduce the behavior of acoustic instruments. 

In pitch synchronous granular synthesis, grains are derived from the short-time Fourier 
transform. From these analysis grains, impulse responses corresponding to prominent 
content in the frequency domain representation have derived. In the resynthesis stage a 
pulse train is used to drive a set of FIR filters. The output signal results from the excitation 
of the pulse train on the weighted sum of the impulse responses of all the filters.  
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3.3 Spectral models 
Spectral sound synthesis methods are based on modeling the behavior of sound waves in 
the frequency domain, which is more similar to the human sound perception. Some of them 
also consider psychoacoustic criteria. 

In this chapter, three methods, namely, additive synthesis, source-filter synthesis and 
spectral modeling synthesis are shortly discussed. 

3.3.1 Additive synthesis 

Additive synthesis is one of the oldest synthesis techniques. The concept is to generate a 
composite waveform by summing sinusoidal components with different frequency and 
amplitude envelopes. Sometimes additive synthesis is also called “Fourier synthesis”, since 
the theoretical framework is the Fourier transform [13]. 

In additive synthesis, the control parameters for each sinusoidal oscillator are the 
amplitude, the frequency and in some cases the phase. For instance, these parameters can 
be obtained by a bank of narrow bandpass filters, where every filter is tuned to a specific 
center frequency.  

 
Figure 3.2: Additive analysis and synthesis stage after [14] 
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For an efficient digital implementation of an additive synthesis algorithm, the filter bank 
can be replaced by the short-time Fourier transform. Anyway, the main drawbacks of the 
additive synthesis are the enormous amount of data involved and the demand for a large 
number of oscillators [15]. 

 

3.3.2 Source-Filter Synthesis 

In Source-Filter Synthesis the desired output signal is obtained by filtering a spectrally rich 
source sound. Sometimes the method is also called subtractive synthesis. Originally 
developed for speech synthesis this technique can be applied to simulate the sound of 
traditional instruments [14]. 

Figure 3.3 depicts a block diagram of the method. 

 
Figure 3.3: Block diagram of the source-filter synthesis method after [15] 

 

Here, a harmonically rich excitation signal is filtered to get the desired output signal. The 
filter acts as a resonating system with time-varying coefficients a(n) and b(n), where the 
computation of the coefficients can be accomplished by linear predictive analysis. Since 
many traditional instruments have a stationary or a slowly time-varying resonating system, 
source-filter synthesis can be used to model these instruments. 

    

3.3.3 Spectral modeling synthesis 

The spectral modeling synthesis (SMS) technique is based on the assumption that the input 
signal can be represented as the sum of a deterministic and a stochastic component. The 
deterministic part of the signal can be obtained by using a magnitude-only analysis or by 
using the MQ algorithm [19]. This component is a data-reduced version of the analysis that 
models the prominent frequencies in the spectrum. Subtracting the deterministic signal 
from the original one produces a residual signal, which corresponds to the stochastic 
component. The residual signal can be modeled by the time-domain convolution of white 
noise with a time-varying frequency-shaping filter [14, 15]. 
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3.4 Physical Models 
The aim of physical modeling is to describe the acoustic and mechanical behavior of an 
instrument. Based on the fact that not the sound of the instrument but the instrument itself 
is modeled, it is possible to create sounds of instruments that would otherwise be 
impossible to built [14]. Theoretically, the physical modeling approach could deliver the 
most realistic synthetic instrument sounds. Their drawback is the loss of generality and the 
high computational costs. 

3.4.1 Modal Synthesis 

Modal synthesis starts from the premise that a sound-producing object can be represented 
as a set of vibrating substructures. Typical substructures include violin bridges, violin 
bodies, acoustic tubes, bells, drumheads and so on [14]. By an excitation of these 
substructures with the corresponding physical parameters (force, air flow etc.), a set of 
natural “modes of vibration” is obtained. These modes are specific to a particular structure. 
As the sound-producing mechanisms are separated into substructures, it is possible to add 
or subtract such substructures to create time-varying synthesis effects. Furthermore, this 
method also permits an interpolation from one timbre to another by combining 
substructures in an unnatural manner [14]. 

3.4.2 Finite difference method 

The principle of this method is the mathematical description of the vibratory motion in the 
object under study. The received wave equations are then solved for a finite number of 
points along the object, thus obtaining a difference equation. [20] were the first to take the 
approach of solving the differential equations of a vibrating string for the purpose of sound 
synthesis. Since that pioneer work, developments have been made in modeling the 
excitation, e.g., the interaction of the hammer and the piano strings, see ([8, 21]) for 
references. 

For real-time sound synthesis, the finite difference model is not very attractive as it can 
only be applied to a simple structure. 

3.4.3 Digital Waveguides 

Digital waveguide models are physical models for certain classes of musical instruments, 
which are made up of delay lines and digital filters. In principle, they can be viewed as a 
particular class of finite difference schemes for numerical physical modeling. 

For modeling instruments with two- or three-dimensional vibrators, the digital waveguide 
can be expanded to a waveguide mesh. To be able to formulate a waveguide mesh, a 
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junction of waveguides needs to be developed. Applications of waveguide meshes for 
instance are modeling soundboards, cymbals, membranes and gongs [15]. 

A detailed description to digital waveguide models will be given in chapter 6 of this thesis. 

3.5 The synthesis methods by comparison 
So far, only the basic principles of several synthesis methods have been described. Since 
the aim of this diploma thesis is the investigation of synthesis techniques by means of their 
computational efficiency, their memory requirements, and their reachable sound quality, 
now the aforementioned synthesis methods should be compared regarding to these 
properties. For this purpose, the evaluation of sound synthesis methods made by [15] is 
adopted as follows: 

 

 Sound quality Computational cost Memory usage 

Abstract    

FM * *** *** 

Waveshaping * *** *** 

Karplus-Strong ** *** *** 

Sampling    

Sampling *** *** * 

Multiple WT ** ** * 

Granular *** ** ** 

Spectral    

Additive ** ** * 

Source-filter ** ** ** 

SMS *** ** ** 

Physical    

Modal *** ** * 

Finite Difference *** * ** 

Waveguide *** ** *** 

Table 3.1: Tabulated evaluation of the sound synthesis methods;  *…poor, **…fair, ***…good 
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4 FM Synthesis 

4.1 Theory 
In 1973, John Chowning at Stanford University released the technical bases of frequency 
modulation for sound synthesis [22]. With the use of this sound synthesis method the 
possibility of changing the spectral behavior of a sound with very great simplicity was 
born.          

4.1.1 The basic technique of FM 

In simple FM synthesis, the frequency of a sinusoidal oscillator (carrier) is modulated by 
another sinusoidal oscillator (modulator) to generate a complex waveform. The spectral 
characteristics depend on the modulation index and the parameters of the two sine waves. 
The FM signal x(t) is given by (4.1). 

 ( )[ ]tfItfAtx mc ππ 2sin2sin)( +=  (4.1)   

where A is the amplitude,  fc is the carrier frequency, fm is the modulation frequency, and I 
is the modulation index. Figure 4.1 diagrams a simple FM instrument which meets (4.1).  

 

 
Figure 4.1: A simple FM instrument 

 

4.1.2 The Spectrum of Simple FM 

The number of occurring side frequencies is related to the modulation index I in such a 
way that an increasing I yields a wider distribution of the power among the sidebands as 
well as an increasing number of sidebands with significant amplitudes. 
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The total bandwidth is approximately equal to twice the sum of the peak frequency 
deviation  d  and the modulation frequency [22]. In formal terms: 

 

 ( ) ( ) mm fIfdbandwidth 122 +=+≈  (4.2)  

     

4.1.2.1 Bessel Functions    

Bessel functions of first kind and nth order, Jn(I), where the argument to the function is the 
modulation index I are used to determine the amplitude of the carrier and the sideband 
components. 

Equation (4.1) can also be written as 

        

( ) ( )sin sin

1

( )
2 2

      ( ) ( )
2 2

m mc c
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jI t jI tj t j t

j t j t

A Ax t e e e e
j j

A Ae y t e y t
j j

ω ωω ω

ω ω

−−

− −

= ⋅ − ⋅

= ⋅ ⋅ − ⋅ ⋅
 (4.3) 

 ( )sinwith:     ( ) mjI ty t e ω=  (4.4) 

The next step is to expand y(t) into a fourier series representation.  

 ∑
∞

−∞=

⋅=
n

tjn
n

mecty ω)(  (4.5)   

The coefficients are: 

 ( )[ ]∫ ∫
− −
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2/
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T

T

T
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n dte

T
dtety

T
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With the help of the following substitution 

 ∫∫
−−

=====
π

π

ϕ
π

π
ωϕ

π
ωϕ ddt

T
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T
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T
t

T

T
mm 2

11     ,2     ,2 2/

2/

 (4.7)   

the coefficients alter from (4.6) to (4.8). 

 ( ) )(
2
1 sin IJdec n

nIj
n == ∫

−

− ϕ
π

π

π

ϕϕ  (4.8)   

Now by inserting (4.8) into (4.5) and the result into (4.4) this yields a trigonometry series 
representation of x(t). 

 ( )( )∑
∞

−∞=

+=
n

mcn tnIJAtx ωωsin)()(  (4.9)  
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An inspection of (4.9) reveals that the frequency-domain representation of the signal x(t) 
consists of a peak at  fc and additional peaks at frequencies  

,    1, 2...n c mf f nf n= ± =  

Note that (4.9) allows the partials to be determined analytically. 

 

4.1.2.2 Harmonic and Inharmonic Spectra 

The ratio of the carrier frequency to the modulating frequency is the decisive factor for the 
kind of spectra obtained by frequency modulation, thus 

 
2

1

N
N

f
f

m

c =  (4.10)   

If N1 and N2 are integers, the result is a harmonic spectra and the fundamental frequency of 
the modulated wave will be 
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0 N
f

N
f

f mc ==  (4.11)   

Inharmonic spectra will result if (4.10) is a ratio of irrational numbers. In that case, the 
reflected side frequencies will fall between the positive components and the fundamental 
frequency.  Especially if the modulation index increases this is very hard to be detected by 
the listeners. 

4.2 Generation of a sinusoidal oscillator 
[23] splits up algorithms to produce harmonic sequences into three categories: 

• Direct calculation of sin(Θn) 

• Recursive algorithms 

• Wavetable algorithms 

4.2.1 Direct calculation of sin(Θn) 

With the following series expansion values of the trigonometric function sin(Θn) are 
calculated numerically: 

 ( ) ( ) ( )
3 5 7 2 1

0
sin .... 1         for 

3! 5! 7! 2 1 !

n
n

n

x x x xx x x
n

+∞

=

= − + − + − = − < ∞
+∑  (4.12) 

The calculation of the above mentioned series expansion is aborted after the nth element, 
which yields an error. Due to the fact that the sine is a periodic function, the argument can 
be limited to the area of 0 to 2π.  
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Therefore 

 sin( ) sin( )        with:  ( ) mod(2 )n x x n πΘ = = Θ  (4.13) 

Now it is possible to reduce the error of calculation by considering the half and fourth 
cycle symmetry of the sine functions. This means that the function has to be calculated 
only for argument values between 0 and π respectively 0 and π/2. 

Half-wave symmetry 

 
sin( ).............for 0

sin( )
sin( )....for 2

x x
n

x x
π

π π π
≤ <

Θ = − − ≤ <
 (4.14) 

 with:   ( ) mod(2 )x n π= Θ  

Quarter-wave symmetry 

 

sin( )...............for 0 / 2
sin( ).........for /2

sin( )
sin( )......for 3 / 2
sin(2 )....for 3 /2 2

x x
x x

n
x x

x x

π
π π π

π π π
π π π

≤ <
 − ≤ <Θ = − − ≤ <
− − ≤ <

 (4.15) 

 with:   ( ) mod(2 )x n π= Θ  

 

4.2.2 Recursive algorithms 

With the aid of recursive algorithms a further method to generate sine waves is given. 
Thereby the instant values of the sine sequence are calculated by preceded values and state 
variables of the system. In the following, two methods [23] of recursive algorithms are 
shortly mentioned. 

4.2.2.1 The Coupled Form 

The coupled first-order form can be expressed as a pair of equations: 

 
[ ] ( ) [ ] ( ) [ ]
[ ] ( ) [ ] ( ) [ ]

cos 1 sin 1

sin 1 cos 1

x n x n y n

y n x n y n

= Θ − + Θ −

= − Θ − + Θ −
 (4.16) 

 

or in matrix form as 

 
[ ]
[ ]

( ) ( )
( ) ( )

[ ]
[ ]

( ) ( )
( ) ( )

[ ]
[ ]

cos sin cos sin1 0
sin cos sin cos1 0

nx n x n x
y n yy n

     Θ Θ Θ Θ  −  
= =        − Θ Θ − Θ Θ−         

 (4.17) 

 

 

This is equivalent to 
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[ ]
[ ]

( ) ( )
( ) ( )

[ ]
[ ]

cos sin 0
sin cos 0

x n n n x
n n yy n

   Θ Θ 
=    − Θ Θ      

 (4.18) 

 

 

With the initial condition of  

 
[ ]
[ ]
0 1
0 0

x
y

   
=   
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 (4.19) 

 

it can be seen that x[n] is a cosine-shaped and y[n] is a sine-shaped sequence with 
frequency Θ. Since finite word-length machines have the property to be numerical instable, 
the determinant of the matrix is not necessarily equal to one, which results in waveforms 
that either decay rapidly or grow very fast in amplitude.   

 

4.2.2.2 The Modified Coupled Form  

Using a set of coefficients, which is slightly different to that used in the coupled form 
yields a stable behavior of the system. 

 
[ ] [ ] [ ]
[ ] [ ] [ ]

1

1 1

x n x n y n

y n x n y n

ε

ε

+ = −

+ = + +
, (4.20) 

 

which in matrix form becomes 

 
[ ]
[ ]

[ ]
[ ]2

1 01
1 01

nx n x
y n y

ε
ε ε

   + − 
=    + −    

. (4.21) 

 

In any case here the determinant of the matrix is one, independent from the inaccurate 
representation of ε. The interrelationship between the frequency Θ and the coefficient ε is 
as follows: 

 2sin      and     cos 1 / 4
2 2 2

ε
ε

Θ Θ   = = −   
   

. (4.22) 

 

4.2.3 Wavetable algorithms 

A further method to generate sine waves is the so-called table lookup method. Thereby, a 
waveform memory contains samples of one period of the sine wave to be generated. The 
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increment I is repeatedly added to the phase register at each clock pulse and the contents of 
this register are used to address the waveform memory whereby the method of forming the 
table address is important for determining the quality of the digital output signal. [24] 
elucidated three prospects to gain the function values: 

• Truncation method 

• Rounding method 

• Interpolation method 

 

The output frequency f1 is given by: 

 1
sIff

L
=  (4.23) 

where I is the increment, fs is the sampling frequency, and L is the table length. Figure 4.2 
illustrates the principle of the table lookup method. 

 

 
Figure 4.2: Block diagram of the hardware required for the look-up oscillator. 

 

4.2.3.1 Truncation of the phase value 

By using this method the argument x with 0 Ρ x < 2π is converted into the table address S 
with 0 Ρ S < L-1 by truncation. The arising error is noticeable as noise and is referred to as 
“phase jitter”. The signal-to-noise ratio is determined by the resolution of the function 
values in k bit and the memory length L. 
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 (4.24) 

  

 [ ]1 ..          ...quantisation to  bit (sign bit included)kQ k−  

 

Memory Word length in k bit SNRtruncation 

dB 8 10 12 14 16 20 24 

256 35.9 36.9 36.9 36.9 36.9 36.9 36.9 

512 40.3 42.7 42.9 42.9 42.9 42.9 42.9 

1024 42.5 48.1 48.9 48.9 48.9 48.9 48.9 

2048 43.2 52.3 54.6 54.8 54.8 54.8 54.8 

4096 43.6 54.5 59.9 60.6 60.7 60.7 60.7 M
em

or
y 

Le
ng

th
 L
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 fu
ll 
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8192 43.6 55.5 64.0 66.1 66.3 66.3 66.3 

Table 4.1: Signal-to-Error Noise Ratios for the truncating oscillator 

 

It can be seen from Table 4.1 that after a certain value of the memory word length no 
improvement is gained by adding more bits of precision.  

4.2.3.2 Rounding of the phase value 

Rounding of the phase value to m bit demands an addition of bit m – 1 in place m. The 
formula to calculate the signal-to-noise ratio is as follows: 
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 (4.25) 
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Memory Word length in k bit SNRrounding 

dB 8 10 12 14 16 20 24 

256 39.9 42.8 43.0 43.0 43.0 43.0 43.0 

512 42.6 48.2 49.0 49.0 49.0 49.0 49.0 

1024 43.4 52.4 54.8 55.0 55.0 55.0 55.0 

2048 43.5 54.8 60.3 61.0 61.0 61.0 61.0 

4096 43.6 55.4 64.4 66.8 67.0 67.0 67.0 M
em

or
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th
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 fu
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8192 43.6 55.8 66.8 72.2 72.9 72.9 72.9 

Table 4.2: Signal-to-Error Noise Ratio for the rounding oscillator 

As already mentioned in the truncation method, no improvement is gained by adding more 
bits of precision after a certain value of the memory word length. 

 

4.2.3.3 Interpolation of the phase value 

For equidistant sampling points, as in the case of the stored sine sequence, the interpolation 
formula by Gregory-Newton [25] is most suitable. 
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1

0

1 1
1

with           
                            ...increment 

:

:           ...difference of n-th order

k k

k k
i i i

k k k

h x x

y y

y y y

+

− −
+

= −

∆ =

∆ = ∆ − ∆

 

 

By interpolation of the sine sequence, the argument x can be represented as the sum of 
integer part int and fractional part frac. This leads to the following results: 
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a) For linear interpolation (n = 1): 
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 (4.27) 

 

where [ ]1 sin( )kQ int− is the integer part of the function value quantized by k bit. The 

resulting signal-to-noise ratio is given by equation (4.28): 
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 (4.28) 

 

1 ( ) b
k s aQ I x−

 
   is the value of x interpolated between a and b using a s-th order interpolation 

function. Subsequently this value is quantized by k bit. The results are listed below: 

 

Memory Word length in k bit SNRlin. interp. 

dB 8 10 12 14 16 20 24 

64 37.5 49.0 56.0 59.8 60.8 61.1 61.1 

128 38.3 50.2 60.7 68.5 71.9 73.1 73.1 

256 38.9 50.6 61.9 72.7 80.5 84.9 85.2 

512 39.3 50.8 62.7 74.4 85.5 95.9 97.2 

1024 40.7 50.9 63.1 74.7 86.4 104.5 108.9 M
em

or
y 
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2048 42.0 51.5 63.1 75.1 87.2 109.3 120.0 

Table 4.3: Signal-to-Error Noise Ratio for the interpolating oscillator using linear interpolation 

 

Increasing the memory word-length for the interpolating oscillator influences the Signal-
to-Error Noise Ratios to an increasing degree compared to the truncating and the rounding 
oscillator.  
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b) For quadratic interpolation (n = 2): 

For 0.5frac < :  
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 (4.29) 

 

For 0.5frac ≥ : 
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 (4.30) 

 

The signal-to-noise ratio is defined as: 
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Memory Word length in k bit SNRquad. interp. 

DB 8 10 12 14 16 20 24 

4 16.6 16.8 16.8 16.8 16.8 16.8 16.8 

8 32.5 34.2 34.3 34.3 34.3 34.3 34.3 

16 38.3 48.1 51.7 52.3 52.3 52.3 52.3 

32 38.5 49.9 62.8 69.4 71.2 71.3 71.3 

64 38.8 50.9 61.7 74.1 83.0 85.5 85.5 M
em

or
y 
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ng

th
 L
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128 38.9 50.5 62.4 74.1 82.2 83.8 83.8 

Table 4.4: Signal-to-Error Noise Ratio for the interpolating oscillator using quadratic interpolation 
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c) For cubic interpolation (n = 3): 
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 (4.32) 

The signal-to-noise ratio is given by (4.33) 
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Memory Word length in k bit SNRcub. interp. 

DB 8 10 12 14 16 20 24 

4 20.0 20.8 20.9 20.9 20.9 20.9 20.9 

8 35.2 41.7 43.6 44.0 44.2 44.3 44.3 

16 38.6 49.6 58.4 65.4 76.2 68.0 68.0 

32 38.6 49.9 63.4 73.4 83.5 89.6 90.4 

64 37.9 50.9 61.7 74.4 86.0 97.8 98.3 M
em
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128 39.0 50.5 62.5 74.7 87.1 100.8 101.4 

Table 4.5: Signal-to-Error Noise Ratio for the interpolating oscillator using cubic interpolation 

4.2.3.4 Consideration of quarter-wave symmetry 

As already mentioned in chapter 4.2.1, consideration of quarter-wave symmetry reduces 
the memory length L of the wavetable to a fourth of the original length. Furthermore, the 
resolution of the function values can be reduced by one bit due to the fact, that the sign bit 
is no longer required.  

This means that in case of linear interpolation the memory length L can be chosen to be 64 
in order to get a SNR of about 85 dB by a used memory word length of 24 bits. These 
values should be sufficient for the target application. 
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4.2.3.5 Frequency resolution 

To avoid aliasing, the increment I have to be smaller than the half memory length L. If the 
word length of the increment with included sign bit is  l  bit, than only  2l  increment values 
can be represented. The achievable frequency resolution  f∩ is thereby determined by 

 / 2
2
s

l

ff∆ =  , (4.34) 

where fs is the sampling frequency in Hertz. 

 

4.3 The operators 
Beneath Simple FM where one oscillator modulates one carrier oscillator, there are many 
other possibilities how to combine several oscillators in order to obtain a complex FM 
sound. Since we are talking about synthesis in the digital domain, it is sufficient to know 
that an operator is equivalent to an oscillator in an analog synthesizer. Instead of changing 
voltage values, an operator performs essentially the same task by producing a series of 
changing numbers whose pattern is always that of a sine wave [26]. 

4.3.1 The interconnection of the Operators  

The aim is to interconnect a limited number of operators in such a way that the resulting 
output signal is similar to the tone of a real piano1. For the target application four operators 
are used to create one piano tone. For the purpose of a 16-note polyphony, the number of 
operators increase to 64, determining the boundary of hardware requirements.  

The input parameters for each operator are the frequency fk and the amplitude factor ak 
where k specifies the current operator. 

 

 0( )       1...4k k kf ratio f offset k= + = . (4.35)    

 

In this equation, ratiok is the frequency ratio of the individual operators, f0 is the 
fundamental frequency, and offsetk is the frequency offset of the individual operators. Thus, 
it is possible to slightly detune a specified operator. 

In the further considerations for the FM algorithm, index k determines a certain operator 
and its input parameters.  

 

 

                                                 
1 The choice of interconnection of the operators and all used parameters are similar to the piano algorithm 

implemented in the Yamaha DX7.  
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4.3.2 Accurate determination of the modulation index 

To ensure a simple control of the algorithm it is important to reduce the number of the used 
parameters. Due to the fact that an operator may act as a carrier in one algorithm and as a 
modulator in another one an interrelationship for the modulation index has to be found. So 
it is possible to reduce the number of required parameters up to only one per operator. The 
modulation index as a function of output values is shown in Figure 4.3. 

 

 
Figure 4.3: Modulation index as a function of output values [26]  

4.4 Key scaling 
To simulate the spectral behavior of a real piano in subject to the pressed key number, the 
modulation index  I  has to be changed according to the pitch of the tone to be generated. 
In that case the amplitude input of the operators alter from  ak = Ik  to  

 

 ( ) ( )    1...4; 0...127k k ka m I kscale m k m= + = = , (4.36) 

 

where kscalek(m) represents the scaling factor for note number m. The note numbers satisfy 
the specifications of the MIDI Standard and the resultant fundamental frequency can be 
found by the following equation [12]. 

 

 ( 69) /12
0 440 2 notef −= ⋅  (4.37) 
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In Figure 4.4 a key scaling as a function of note number is shown for the individual 
operators.  

 
Figure 4.4: Key scaling parameter for the specific operators 

For the modulation index of the three modulators, it can be seen from Figure 4.4 that it 
decreases with expanding note number. Here, the modulation index I was adapted to the 
lowest note number. In that case, the rate of partials is the greatest.    

4.5 The Envelopes 
Envelopes are used to model the time variant amplitude devolution of real instruments. The 
output of the envelope generator controls the amplitude of the operator so that the 
instrument produces a fixed waveform enclosed in the envelope. For the piano, the shape 
of the envelope curve decays exponentially, which can be realized by the following 
relation: 

 ( ) ( 1)         1e n r e n with r= ⋅ − <  (4.38) 
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4.5.1 Release part of the envelope 

As the string of a real piano is being damped after the release of the stroke key, the 
envelope generator has to model this behavior. This can be done by modifying the factor r 
in (4.38) to get a fast decaying curve for the release part. In the MIDI Standard, the 
duration of a tone is represented by the MIDI messages “note on” and “note off”.  

Thus, the envelope generator has to be controlled by these messages to produce the correct 
shape. This results in 

 1

2

( 1).......Note On
( )

( 1).......Note Off
kk

k
k k

r e n
e n

r e n
⋅ −

=  ⋅ −
, (4.39) 

where r1 and r2 have to be less then 1. The initial condition for ek(n) is given by: 

 
0

( ) 1k
n

e n
=

= . (4.40) 

Figure 4.5 depicts the envelope curves for each operator, where the duration of the 
synthesized piano tone is two seconds plus the little overhead of the release phase1. An 
informal listening test has shown that the use of these parameter settings yields the best 
synthesis of the piano tone.  

 

4.5.2 Envelope scaling 

Considering a real piano shows that the decay rate is a function of the note number. 
Therefore the higher the note number is, the faster the tone decays. Thus, a further control 
parameter for the envelope generators has to be introduced to simulate that property. Now 
(4.39) can be expanded by introducing the envelope-scaling factor w(m).  

This leads to the following equation: 

 

 1
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( ) ( 1).......Note On
( )         0...127

( 1).......Note Off
k k k

k
k k

w m r e n
e n m

r e n
⋅ ⋅ −

= = ⋅ −
 (4.41) 

 

It can be seen from (4.41) that only the part for the Note On event is influenced by the 
scaling factor wk(m). The final decay remains constant over the whole range of note 
numbers. 

 

                                                 
1 To reduce the computational costs, the maximum length of a piano tone is limited to four seconds. 
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Figure 4.5: Envelope shape as a function of time for each operator of the FM instrument 

4.5.3 Velocity sensitivity 

Almost all digital synthesizers have the feature to adjust the velocity sensitivity in a way to 
narrow the dynamic level of the rendered sound down. This can be realized by the 
following equation. 

 3

100
200 12,8 10

k k
k

l ls v−  = +  ⋅ 
 (4.42) 

 with  0...100;  0...127l v= =  

In (4.42), s is the new initial condition for the envelope generators, l is the sensitivity 
value, and v is the velocity value. It can be seen that an increasing l yields a widening of 
the dynamic range of s. Thus, (4.40) changes to: 

 
0

( )k k
n

e n s
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=  (4.43)     
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4.6 The entire algorithm 
Now all parameters for the determination of the entire algorithm of a piano FM instrument 
are given. Table 4.6 gives an overview of the used parameter. 

 

Operators Ratio Output Level Offset [Hz] 

Op1 5,00240 92 0,00 

Op2 1,00030 38 0,26 

Op3 11,0070 40 0,00 

Op4 1,00020 78 0,13 

Table 4.7: Parameters for the individual operators 

 

Figure 4.6 depicts the interconnection of the operators. Furthermore, the envelope 
generators as well as their input parameters are shown in more detail. 

 
Figure 4.6: a) Interconnection of 4 operators;  b) Envelope generator with its input parameters 

The associated equation is as follows: 

           [ ]{ }4 4 4 3 3 3 2 2 2 1 1 1( ) sin 2 sin(2 ) sin 2 sin(2 )y t a e f t a e f t a e f t a e f tπ π π π= + + +  (4.44) 

 



 

 35 

5 Sampling synthesis 
In this chapter, the synthesis of real piano sounds by means of sampling will be discussed. 
Sampling synthesis itself can be implemented efficiently. Thus, all the commercially 
available digital pianos employ this technique. However, the required amount of memory 
storage is huge. To overcome this problem, techniques like looping and pitch shifting are 
employed. Furthermore, techniques to modify the timbre of the synthesized tones have to 
be used.     

 

5.1 Looping 
The difficulty at looping a sampled tone is to find the correct loop points. Normally, 
looping is applied to the steady state part of the tone. After the attack phase, a number of 
instrument families own the property of remaining relatively constant in respect to their 
amplitude and pitch. Thus, locating the starting and ending loop points is straightforward. 
In the case of synthesizing the sound of a piano, after a short attack phase the tone decays 
exponentially. Therefore, for this class of instruments it is rather difficult to define loop 
points. Though it is possible to perform looping near the end of the original sample. 
However, this again increases the amount of required memory. As a result, the sample has 
to be looped shortly after the attack part. 

 

5.1.1 Equalization of the magnitude 

Since the tone of the piano decays exponentially, the starting point and the end point of the 
loop differ in their amplitude values. To overcome this problem, the devolution of the 
amplitude has to be equalized. This can be performed with the aid of the Hilbert transform. 
For a real input sequence x it offers a complex signal y. The amplitude of y represents the 
instantaneous amplitude (amplitude envelope) of x. However, as there are still too many 
ripples in the devolution of the amplitude envelope, a filtering by a moving average filter 
has to be performed. By now, the looped region of the sample has to be weighted by the 
inverse of the filtered version of  y. 

All these operations can be conducted quite easily with the aid of Matlab™ and thus, they 
do not have to be implemented in the target application. 
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Figure 5.1: Equalization of the amplitude values of the input sample 

 

5.1.2 Length of the looped region 

Usually, the length of the loop is taken to be a multiple of the fundamental frequency of the 
recorded instrument tone. If the loop is too short, the synthesized tone sounds a little 
“sterile”. Otherwise, the length of the loop may not be too long, since the magnitudes of 
the spectral components of the piano tone vary with time. Thus, the looping points are 
perceived by the listener as beats, even if the magnitude of the looped region has been 
equalized. 

In general, the beginning as well as the end points of a loop are spliced together at a 
common sampling point. In most instances, this results in a click or pop at the splicing 
point, unless the beginning and ending points are well matched in regard to the amplitude. 
These artifacts may be reduced by crossfading the loop regions at their boundaries. In the 
case that none of the above mentioned techniques produce a smooth loop, the method of 
bi-directional looping can be brought into account. 
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Thereby the direction of playing back the loop is alternated. The loop, which is played 
back in forward direction, can be layered on top of the loop, which is played back in 
inverse direction. Thus, some discontinuities may be masked [14]. 

 

5.2 Pitch shifting 
To further reduce the amount of required memory, one can take pitch shifting into account. 
Thus, only a few tones, e.g., every third or fourth semitone of the real piano have to be 
sampled. The pitch of these samples is shifted up and down by a specific value to cover the 
whole range of piano tones. 

In most samplers, pitch shifting is performed by a simple time-domain technique. This is 
essentially the same pitch variation technique as used in wavetable-lookup synthesis 
described in 4.2.3. A side effect of this method is the alteration of the sounds duration, 
depending on the key that has been depressed.  

However, pitch shifting may be done in the frequency domain as well, with the main 
advantage of preserving the original duration of the sound. The “phase vocoder” theory 
(e.g., [27, 28]) gives a lot of theoretical framework to these techniques. A profound 
consideration lies beyond the scope of this thesis. 

5.2.1 The accuracy of the frequency shift 

Due to the fact that humans auditory perception is capable to differ a change in pitch of 
about one percent of a semitone, the accuracy of the pitch shifting method has to be as 
follows: 

 out wav out

out wav out

f f f
f f f

ϕ ϕ
ϕ ϕ

=  ∆ ∆
=∆ = ∆ 

 (5.1) 

 

 2 Nϕ −∆ =  (5.2) 

 

Solving (5.1) for N yields the following equation: 

 1/1200
2log (2 1)N ϕ > − ⋅ −  , (5.3) 

where 
 fwav… frequency of the signal in the wavetable 
 fout… desired frequency 
 ϕ… phase increment 
 ∆ϕ… smallest value of the phase increment 
 N… number of bits for the fractional part   
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By the limitation of the pitch shift to the amount of one octave, at least a number of 12 bits 
should be used for the fractional part of the phase increment. 

5.3 Modification of the timbre 
In a real piano, the timbre of a tone changes with time. Furthermore, it varies concerning 
the velocity of the piano hammer. Hence, these properties should be taken into account by 
the synthesis of piano tones. This problem can partly be solved by recording several piano 
tones for different velocity values and by storing them in wavetables. However, the main 
drawback of this method is the increase of required memory. 

A different approach to model the changes of the timbre can be given by means of time-
varying filtering of the output signal. Therefore, the samples, which are used for the 
synthesis, have to be recorded at a maximum level of velocity. In this case, it is ensured 
that most of the spectral components of the real piano tone are present. For the filtering of 
the output signal, a first-order high frequency shelving filter is used. The transfer function 
of this filter is given by: 

 [ ]0( ) 1 1 ( )
2

HH z A z= + −  (5.4) 

with the first order allpass 
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The block diagram in Figure 5.2 shows the first order low/high-frequency shelving filter, 
which leads to the following difference equation: 

 

 1 / / 1( ) ( ) ( 1) ( 1)B C B Cy n a x n x n a y n= + − − −  (5.6) 

 

 [ ]0
1( ) ( ) ( ) ( )

2
Hy n x n y n x n= − + . (5.7) 

 

The gain G in dB can be adjusted by the parameter 

 / 20
0 0 01,       with   10GH V V= − = . (5.8) 

 

It is used to simulate the timbral behavior of the piano for different velocity levels. This 
means that after adjusting the cutoff frequency of the shelving filter, G has to be decreased 
if the key-velocity increases.  
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The cutoff parameter aC can be calculated as 

 

 0

0

tan( / ) 1
tan( / ) 1

c s
C

c s

V f fa
V f f

π
π

−
=

+
. (5.9) 

 

 

 

 
Figure 5.2: First-order low / high-frequency shelving filter 

  

 

The time-varying timbral behavior can be modeled by a variation of G as well, but with the 
slight difference that G is continuously decremented over the duration of the tone. 

5.4 The envelope 
Since the envelope generator for the sampling synthesis is approximately identically to that 
of the FM synthesis described in 4.5, only that extra edge will be pointed out in this thesis. 

 

The samples used in the sampling synthesis algorithm are recordings of real piano tones 
and therefore, their amplitudes already decay exponentially.  
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Thus, the envelope generator has to be bypassed until the starting loop point is reached. 
Otherwise, the amplitude of the generated output signal would decay too rapidly.  

 

5.5 The entire algorithm 
Figure 5.3 depicts the entire structure of the sampling instrument. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Structure of sampling algorithm 
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6 Digital waveguide synthesis 
In this chapter, the theory of digital waveguides will be described in terms of their 
mathematical background. After haven given an overview of the ideal string, the effect of 
losses and dispersion will be discussed. Furthermore, the piano hammer and the 
soundboard of the piano are taken into account. 

6.1 Waveguide model of the string 
Modeling strings by means of digital waveguides was introduced by [17]. It can be 
performed by solving the wave equation in a general way to obtain “traveling waves” in 
the interior medium.     

6.1.1 Modeling the ideal string 

By establishing the wave equation for the ideal string, some simplifications have to be 
made:  

• The length of the string is assumed infinite. 

• The string tension and the linear mass density of the string have to be homogeneous 

• The displacement of the string has to be small in relation to the length of the string 

Furthermore, only one transversal polarization of the string is taken into account. The 
outcome of this is the wave equation for the ideal (lossless, linear, flexible) vibrating string 
which can be expressed as 

 
2 2

2 2

y yK
x t

ε
∂ ∂

=
∂ ∂

, (6.1) 

where K is the string tension, ε  the linear mass density, and y the displacement of the 
string [17]. (6.1) is applicable to any perfectly elastic medium with a one- dimensional 
vibratory motion. 

The wave equation can be solved by a function of the form 

 ( , ) ( ) ( )r ly x t y x ct y x ct= − + +  (6.2) 

where 

 Kc
ε

= . (6.3)    

This is d’Alembert’s solution to the wave equation. It represents the superposition of two 
traveling wave components; one moving to the right, denoted as yr(x-ct), the other one to 
the left, denoted as yl(x+ct). Thereby, yr and yl are arbitrary twice-differentiable functions. 
For a digital representation of the traveling wave components, a discretization of these 
functions has to be performed.  
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This can be done by first changing the variables 

 m

n

x x mX
t t nT

→ =
→ =

 

where T is the temporal sampling interval, and X is the corresponding increment in space. 
The new variables are related by 

 Xc
T

= . (6.4) 

If the sampling is done in a way that the traveling waves move one spatial sampling 
interval during one time-instant, it will lead to the digital waveguide model of the ideal 
string [17]: 

 ( , ) ( ) ( )n my t x y n m y n m+ −= − + +  (6.5) 

In this notation, the “+” superscript denotes the traveling wave component going to right 
direction and the “-” superscript the component moving leftwards. 

As a result, the digital implementation of the waveguide can be performed by the use of 
two parallel delay lines. The upper delay line represents the wave components traveling 
rightwards, whereas the lower one is defined to represent the left moving traveling wave 
component. These delay lines are pictured in Figure 6.1. 

 

 

 

 

 

 

 

 

Figure 6.1: Digital simulation of the ideal, lossless waveguide after [17] 

The output signal of the delay line is obtained by simply adding the delay line variables at 
position m along the delay-line pair. 

Because of the linear behavior of the digital waveguide, other variables can be used instead 
of the transversal displacement as well. These variables can be derived by integration or 
differentiation of y. However, the most important variables are the transversal velocity v as 
well as the force f , since they are proportional to each other. The digitized, traveling force-
wave components are defined by 
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Thereby, R represents the wave impedance (also called the characteristic impedance), 
denoted by 

 R Kε= . (6.7) 

6.1.2 Frequency-dependent losses 

In real vibrating objects, losses that increase with frequency are always present. The largest 
losses in stringed instruments occur at the bridge, especially at frequencies, which couple 
to body resonances. Furthermore, losses due to air drag increase monotonically with 
frequency [17]. 

These losses have to be added to the digital waveguide model in terms of several 
frequency-dependent gain factors, which are inserted between every unit delay.   

Because of the fact, that the digital representation is linear and time-invariant and 
considering that the medium parameters are constant as well, the gain factors can be 
commuted for every unobserved portion of the delay line. Figure 6.2 depicts the modified 
digital waveguide. 

 

 

 

 

 

 

 

 

Figure 6.2: Linear digital waveguide with commuted losses 

For a computationally efficient implementation, the frequency-dependent losses have to be 
approximated by a digital filter. Since implementing a frequency-dependent delay is 
undesired, the filter has to be a linear-phased FIR filter [29]. 

6.1.3 Waveguide with dispersion 

To further approximate the behavior of the real string, its stiffness has to be taken into 
account. Stiffness introduces a restoring force to the fourth derivative of the string 
displacement. Therefore the wave propagation speed is no longer constant, but it depends 
on the frequency. This effect is present in every physical string and is called dispersion. 
For the altered wave equation, see 2.2.2 of this thesis.  
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Dispersion in vibrating strings results in an inharmonic overtone series, as already 
mentioned in. Dispersion can be modeled by the use of allpass filters, which have a non-
uniform delay versus frequency.  

If the string parameters are known, then the frequency of the kth stretched partial can be 
computed as  

 2
0 1kf kf Bk= + , (6.8) 

where the value of the inharmonicity coefficient B depends on string parameters [4]. A 
design method for group-delay filters is given in [30]. Scalcon and Rocchesso [31] studied 
the dependence of the bandwidth of perceived inharmonicity on the fundamental frequency 
by performing listening tests with decaying piano tones.    

6.1.4 The termination of the string 

The simplest case is the rigid termination of the string, corresponding to infinite 
terminating impedance. In that case, the string cannot move at all at the termination point. 
Thus, the traveling wave components are totally reflected. As a result, considering the case 
of the lossless string, the generated tone would never decay. 

For a non-ideal termination of the vibrating string, where the string is terminated by a finite 
impedance, the absolute value of the reflection coefficient will be somewhat lower than 1. 
In this case, the traveling wave components in the delay lines are multiplied by a constant 
value every time they pass the termination. As a result, they decay exponentially. 

6.1.5 The non-ideal string 

The model for a non-ideal string can be given by taking into account all the previously 
mentioned losses and the dispersion. As a fact of linearity and time-invariance, all these 
losses can be lumped to one point. The model of the non-ideal string is depicted in Figure 
6.3. 

 

 

 

 

 

 

Figure 6.3: Model of the non-ideal string; In this case, the input signal is a force signal 

The filter in this figure contains the losses as well as the dispersion of the string on the one 
hand and the terminations on the other. 
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6.1.6 Coupled strings 

Coupling between strings leads to beating and two-stage decay. These effects are caused 
by two or three slightly detuned strings, which are sounding together when a single piano 
key is depressed (except for the lowest octave of the piano). Furthermore, the bridge and 
the action of the soundboard also introduce coupling effects.  

The simplest way to simulate beating and two-stage decay is to use two digital waveguides 
in parallel. When their pitches are slightly different, beating will appear in the sound. 
Otherwise, when their decay rates differ, the two-stage decay will appear.  

Another approach, taken by [32], couples two strings to the same termination and lumps all 
the losses to the bridge impedance. This comes from the assumption that all the losses 
come from the bridge, which is a rough approximation. By using one coupling filter Hb for 
calculating the velocity of the bridge, the reflected velocity waves of the string can be 
computed by subtracting the incoming velocity waves from the bridge velocity. Thus, 

 1 1

2 2

( ) ( ) ( )

( ) ( ) ( )
b

b

v t v t v t

v t v t v t

− +

− +

= −

= −
 (6.9) 

The velocity of the bridge in the Laplace domain is given by 

 1 1 2 2( ) ( ) ( ) ( )b bV s H s RV s R V s+ + = +   (6.10) 

 

R1 and R2 are the wave impedances of the strings, and 
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Figure 6.4 shows the structure of the coupling system. 

 

 

 

 

 

 

 

 

Figure 6.4: Linear coupling of two equal-impedance strings after [32] 
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6.2 Modeling the hammer 
In this subchapter, two approaches of modeling the piano hammer will be described. The 
first model is the so-called “wave digital hammer” introduced by [33]. The second one is a 
linear model for the piano hammer introduced by [34]. 

A description of further models is given in (e.g., [5-7]). 

 

6.2.1 The wave digital hammer 

For the physical model, the hammer is considered as a mass connected to a nonlinear 
spring where the spring represents the felt portion of the hammer [5]. The nonlinear 
behavior can be traced back to the nonlinear compression characteristic of the felt. 

In deriving a digital representation of the hammer model, first a wave decomposition of the 
linear mass and spring system is performed.  

 

The mass and spring system 

First, a definition of the equations of motion for the mass and spring system, depicted in 
Figure 6.5 has to be found. 

 

 

 

 

 

Figure 6.5: mass and spring force diagram 

 

The system is driven at the spring end by an external force. For the mass, an initial velocity 
at time zero is assumed. The driving point force f is equally applied to the spring and to the 
mass. 

 k mf f f= =  (6.12) 

For the velocities the following relation can be applied: 

 k mv v v= +  (6.13) 

 

The force equation for the ideal spring is: 
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Thereby, fk(t) is the force applied on the spring, xk(t) is the compression distance of the 
spring, vk(t) is the velocity of compression, and k is the stiffness constant. 

By assuming that there is no initial force on the spring, the Laplace transform of fk(t) is 

 

 ( ) ( / ) ( )        ( ) ( / ) ( )k k k kF s k s V s V s s k F s= ⇒ =  (6.15) 

 

The force equation for the mass is 

 0
( )( ) ( )m

m
dv tf t m mv t

dt
δ= − . (6.16) 

 

Hence, the Laplace transform of the force on the mass is 

 0
0

1( ) ( )         ( ) ( )m m m m
vF s msV s mv V s F s

ms s
= − ⇒ = +  (6.17) 

 

In (6.16), the term mv0δ(t) represents an initial impulse, which sets the mass in motion at 
velocity v0. Combining (6.15) and (6.17) leads to the driving point admittance relation for 
the mass and spring system. 

 
2

0/( ) ( ) vs k mV s F s
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 (6.18) 

 

Traveling wave decomposition of the lumped system 

Since it is possible to define wave variables for lumped impedances [35], the driving point 
force can be considered as the superposition of a force wave traveling into the impedance, 
which is denoted as fin, and a force wave traveling out of the impedance, denoted as fout. 
Similarly, the driving point velocity can be defined                 by  v = vin + vout .  

Furthermore, there is a wave impedance relation between the force and the velocity waves 
traveling in the same direction. This relation can be defined by the reference impedance Rh.  
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By changing the variables from F and V to Vin and Vout, (6.18) changes to 
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For a digital representation the Bilinear transform  
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is applied to (6.20) which yields 
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where, 
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Scattering junction connection 

For connecting the mass and spring system to a string, a lossless 3-port scattering junction 
is introduced. At the junction point, the velocity of both sides of the string and the driving 
point velocity of the spring has to be equal to the junction velocity. Furthermore, the sum 
of all the forces at the junction point has to be zero, because it is assumed to be massless. 
These conditions lead to the following lossless scattering equations: 
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Thereby, vj is the velocity of the junction and R0 is the characteristic wave impedance. 
These equations say that, as a wave is entering the junction, some portion of the wave is 
reflected and travel back where it comes from, while the rest of the wave component is 
distributed among the other outgoing waves. Figure 6.6 illustrates the attachment of the 
mass and spring system to a waveguide. 

 

 

 

 

 

 

Figure 6.6: Attaching the wave digital hammer 

 

The nonlinear behavior of the felt 

Until now, the spring constant was considered linear. By modeling the nonlinear behavior 
of the hammer felt, the spring constant has to depend on the compression distance xk of the 
felt, which can be defined as  

 ( )01( / )( )
2k h h h h h

ax R k v v v v
α

− + − +−
= − = − . (6.26) 

Now the lossless wave digital hammer system is complete and is depicted in Figure 6.7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: The wave digital hammer after [33] 
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It is obvious that the upper half of the model corresponds to the linear mass and spring 
system depicted in [33]. The lower half of the digital hammer system acts as the nonlinear 
and lossy part. 

• X computes the actual felt compression and thereby indexes the look-up table K, 
which contains the stiffness coefficients. 

• R computes the effective wave impedance for the hammer model. 

• L is used for modeling the hysteretic loss in the felt by offsetting the pointer in 
table K corresponding to the velocity of the felt compression. 

 

6.2.2 Linear model for the piano hammer 

In the case of the hammer-string interaction, waves from the agraffe return and interact 
with the hammer before it leaves the string. Reflected waves from the bridge end take a 
much longer time to reach the striking position of the string. Thus, only at the very highest 
notes an interaction between the hammer and the waves coming from the bridge end is 
possible. Therefore, a one-sided termination at the agraffe end is used to formulate the 
string impedance. 

 

Impedance of the terminated ideal string 

The following equation represents the impedance of the terminated ideal string. 

 02
1

s
s sT

F RR
V e−= =

−
, (6.27) 

where T is the time the force impulse takes to travel to the agraffe and back to striking 
position, and R0 is the characteristic impedance. V and Fs are the Laplace transforms of the 
velocity and the force at the driving point. 

 

Impedance of the ideal linear hammer 

The hammer is a mass and spring system, where the spring represents the felt portion of 
the hammer. The impedance relation for the hammer is: 

 0
2        where     

/H H H
v ksF R V R
s s k m

 = − =  + 
. (6.28) 

The initial striking velocity is represented by  v0 /s . 

During the hammer-string interaction the velocity of the string is equal to the velocity of 
the spring end of the hammer model. The force on the string is equal and opposite to the 
force on the spring. 
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Therefore, FS is given by  
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. (6.30) 

 Now H∝ can be defined as the transfer function from the initial striking velocity step to the 
force experienced by the string and, equivalently, by the hammer felt. 
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(6.31) represents a damped second order system. 

 

For the case of the terminated string, (6.31) alters to 
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With (6.31) and (6.32) it is possible to formulate a recursive relationship between H∝ and 
HT.  
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Hence, it can be seen that the exact nature of the hammer impedance RH is not present in 
the above equation.  

Because of the fact that H∝ can be treated as a differentiated lowpass filter, the step-driven 
hammer system may be transformed to an impulse-driven system. 
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Figure 6.8 depicts the resultant impulse-driven hammer filter. 

 

 

 

 

 

 

Figure 6.8: Impulse-driven recursive hammer filter after [34] 

 

For a digital implementation, the model has to be transformed to the z-domain by the 
bilinear transformation.   

The filter coefficients depend on k, R0 and m. Thus, a recalculation has to be performed 
every time a parameter changes. R0 and m changes whenever a new key is depressed; k 
changes with impact velocity. 

 

6.3 Modeling the soundboard 
Large vibrating objects, such as the soundboard and the enclosure of a piano, have many 
resonant modes in the range of the human hearing. Thus, high order filters have to be used 
to model this resonating system. The computationally most efficient method, concerning 
the modeling of the soundboard and the enclosure of the piano, is the commuted piano 
model introduced by [34, 36]. Thereby, the resonating system is commuted with the digital 
waveguide and the hammer model. Thus, the soundboard of the piano does not have to be 
implemented as a high order digital filter, but as a wavetable (containing the impulse 
response data of the soundboard), whose content is simply “played” into the digital 
waveguide. 

[34] introduced a further method for the modeling of the soundboard. Since the idealized 
soundboard should have a smooth spectral response, the sampled impulse response of the 
soundboard can be replaced by an exponentially decaying white noise. The different decay 
rates of the individual partials can thereby be modeled by the use of a time-varying 
lowpass filter. 

The resonant effect of the sustain pedal can be modeled by filtering white noise too. 
Beating down the “sustain pedal” leads to many resonating partials, which couple to the 
soundboard. Thus, filtered white noise with a slow decay rate can be used to model this 
behavior. 
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6.4 The simulation 
In this subchapter, the simulation of a simplified acoustic model of a piano will be 
discussed. The simulation is based on the commuted piano model [36].  

Since the physical modeling approach tries to simulate the structure of the instrument and 
not the sound itself, the piano model consists of the same parts as the real piano. The 
structure of the model is shown in Figure 6.9. The first step of the sound production 
mechanism is the excitation, which is the hammer in the case of the piano. The resultant 
signal propagates to the string, which determines the fundamental frequency of the tone. 
The periodic output signal is filtered through the radiator, covering the effect of the 
soundboard. 

 

 

 

 

 

Figure 6.9: Schematic diagram of a stringed musical instrument 

 

 

6.4.1 The excitation signal 

An implementation of the wave digital hammer discussed in 6.2.1 would be to complex for 
the target application. Furthermore, since it is a nonlinear model, it does not match with the 
specifications of the commuted synthesis technique. This is because commutativity of 
system elements is only possible for linear and time-invariant elements. Thus, another 
approach for generating the excitation signal has to be chosen. 

Because of the fact, that the hammer-string interaction basically consists of a few discrete 
events per hammer strike (the string has to be initially at rest), it can be approximated as 
one or a few discrete impulses, which are filtered to produce a smooth shape.   [36].  

In this simulation, these multiple interaction impulses are generated by the use of Hanning 
windows, where the width and the magnitude of the windows depend on the key number 
and the hammer velocity of the depressed key. In Figure 6.10, this method is depicted. The 
amount of the delay is given by the time the traveling wave components need to travel 
from the excitation point to the agraffe and back. 
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For the simulation, the used Hanning windows are limited to the amount of three. A 
superposition of these windows will result in the hammer force signal. The individual 
Hanning windows are controlled by the parameters Ak (controls the amplitude) and          
Nk (controls the width of the Hanning winodow).   

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Creation of three hammer-string interaction force pulses 

 

 

Good results for the notes C2 (65,4 Hz), C4 (262 Hz), and C7 (2093 Hz) as an example can 
be reached with the following settings. Thereby, the results of the simulated hammer forces 
given in [21] were approximated. 

 

Note Velocity 1 Velocity 2 Velocity 3 N Delay [ms] 

C2 1 0,3 0,5 60 1 

C4 0,8 1 0,45 33 0,45 

C7 1 1 1 20 0,01 

Table 6.1: Settings for the excitation model 

 

In this table, the Velocity values are the scaling factors for the amplitude of the individual 
Hanning windows. N is the number of points used for the individual Hanning windows. 
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Figure 6.11: Hammer-string interaction force pulses for the note C2 

 
Figure 6.12: Hammer-string interaction force pulses for the note C4 

 
Figure 6.13: Hammer-string interaction force pulses for the note C7 
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6.4.2 The string interface 

In a physical piano string, the hammer strikes the string between its two terminations, some 
distance from the agraffe and far from the bridge. This corresponds to Figure 6.3. Since 
linear and time-invariant elements can be commuted, the structure of this Figure can be 
rearranged, which leads to the following model. 

 

 

 

 

 

Figure 6.14: Model of the string interface used in the simulation 

 

Thereby, the left delay equals the sum of the two delays on the left in Figure 6.3. It acts as 
a comb-filter delay corresponding to the striking point along the string. The right delay is 
equal to the sum of all delays in Figure 6.3. The new structure introduces a further delay, to 
be sure, but simplifies the calibration of the loop.   

 

The length of the string 

The fundamental frequency of the output signal is determined by the effective length of the 
delay loop. The delay length (in samples) can be computed as 

 
0

sfL
f

=  (6.35) 

where fs is the sampling rate of the synthesis system, and f0 is the fundamental frequency. 
In general, L is a positive real number. Thus, a fractional delay has to be used for the 
determination of the correct pitch.  

 

The fractional part can be computed by linear interpolation between the two closest delay 
lengths. This yields the following problem. As linear interpolation acts as a lowpass filter 
in the delay loop, high frequency components will decay to fast.  

An alternative method is to use an allpass filter to generate a fractional delay. For the 
simulation, a first order allpass filter is used. The z transform of this filter is  
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The coefficient a can be derived by 

 (1 ) (1 )a D D= − ⋅ + , (6.37) 

where D stands for the desired fractional delay. As allpass fractional delay filters are 
recursive, they are prone to transient effects when their delay is changed during the tone 
production (e.g., pitch bend, glissandi, and vibrato effects). Solutions to solve this problem 
are given in [37]. In the case of the piano, where the delay length is not changed during a 
key is depressed, this problem will not appear. 

 

The loop filter 

In the simulation, a second order FIR lowpass filter with symmetric impulse response is 
used to model the frequency dependent damping. Thereby, it is required that the loop gain 
never exceeds 1. The computational costs for this kind of implementation are quite low.  

 

The dispersion filter 

Two first order allpass filters in cascade where used to demonstrate the dispersion effect 
which is caused by the stiffness of the string. For a correct positioning of several tens of 
inharmonic partials, the allpass filter order has to be around 20 [4]. However, this would be 
to expensive for the target application. Thus, only the effect of inharmonicity and not the 
correct spacing of the inharmonic partials will be considered in this simulation. 

Therefore it has to be noticed, that the use of these allpass filters introduces a further delay, 
which alters the pitch of the produced tone. As a result, the phase delay values of the 
individual allpass filters at the desired pitch have to be subtracted from the original length 
of the delay line to generate the correct pitch. 

6.4.3 The entire simulation 

For the entire simulation, all these previously discussed sections of the piano model have 
to be combined. Furthermore, the impulse response of the soundboard has to be generated. 
Therefore, exponentially decaying white noise is used. The impulse response is further 
commuted with the digital waveguide and the excitation system. Thus, it only has to be 
convolved with the short excitation signal instead of the output signal of the digital 
waveguide. 

In the simulation, a gain factor g has to be attached to the feedback loop to control the 
decay rate of the produced tone. This is necessary for the release part of the synthetically 
generated piano tone. 

To simulate the two-stage decay, two or three slightly detuned string models are used, 
which are driven by the same excitation signal. Thereby, the coupling of the strings by the 
use of a coupling filter (see Figure 6.4) is not implemented.  
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7 Comparison of the investigated synthesis techniques 
This chapter deals with the memory effort and the computational expense that is needed for 
the implementation of the sound synthesis techniques discussed in the previous chapters. 

7.1 FM synthesis 
The FM synthesis algorithm discussed in 4.6 consists of four interconnected operators and 
their related envelope generators. The computationally most efficient implementation of 
the operators can be reached by the use of a table lookup oscillator to generate the 
individual sine values. Thereby, the results for non-integer values of the increment can be 
determined by the linear interpolation. 

7.1.1 Estimated data amount 

The amount of data is mainly determined by the implementation of the sine table. In 
consideration of the quarter-wave symmetry and of a resolution of 16 bits, the amount of 
table entries can be set to 64. Thereby, the SNR (in the case of linear interpolation) 
amounts 80 dB. The SNR results for different memory word lengths are given in Table 4.3. 
Furthermore, 100 entries of the modulation index, 12 entries of the key-scaling curves, and 
about 20 constants per operator have to be stored in memory. Table 7.1 summarizes the 
estimated amount of data. 

 

 Bytes 

Sine table with 64 entries 128  

Modulation index table with 100 entries 200  

Key scaling tables (4 key scales a´ 3 grid points) 24 

20 constants per operator  160 

Sum 512 

Table 7.1: Estimated data amount for the FM piano instrument; memory word length is chosen to be 16 bits 

7.1.2 Estimated calculation effort for one voice 

Since the initial amplitude value as well as the initial modulation index depends only on 
the velocity and on the key number, they have to be calculated just once per keystroke and 
per voice. As a result, the computational expense is dominated by the calculation of the 
envelope and the operator functions, which must be calculated once per audio sample. 
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The table lookup can be performed by one addition of the phase value and linear 
interpolation (one addition and one multiplication).  

 

 ADD/SUB MPLY Table lookups Sum 

Amplitude 4 4 - 8 

Modulation index 8 - 4 12 

Envelope 4 4 - 8 

Operator 8 24 4 36 

Table 7.2: Estimated calculation effort per output sample 

The estimated calculation effort to generate one second of output samples by a given 
sample rate is 

 

Amplitude + Modulation Index + Sample Rate*(Envelope + Operator). 

 

Thus, a sample rate of 32 kHz for instance will lead to approximately 1,4 MIPS.  

7.2 Sampling synthesis 
Basically, the sampling algorithm is computationally very efficient. However, a large 
amount of memory is needed to store the recorded sounds of real instruments. Since 
memory is rare, the original samples have to be minimized in length. Thus, looping, pitch 
shifting and time-variant filtering must be used to simulate the behavior of the original 
sample. Consequently, the calculation effort increases. 

7.2.1 Estimated data amount 

Actually, the amount of data is only determined by the number of used samples and their 
corresponding lengths. If a sample of every 7-th semitone (interval of a quint) of a real 
piano is used, and if each sample can be shortened to the value of about 200 ms, the 
amount of required memory will be approximately 200 Kbytes (for a sample rate of 44,1 
kHz, and a memory word length of 16 bit). However, there has to be considered that for the 
very low piano tones a sample length of 200 ms would be to short. 

For the target application, the number of used piano samples can be reduced due to the 
limited bandwidth of the loudspeaker. For example, seven samples, starting with the C3 
(130,8 Hz) would be sufficient. Furthermore, the sample rate can be reduced to the amount 
of 32 kHz. Therefore, the quantity of required memory would be 89 Kbytes. 



 

 60 

7.2.2 Estimated calculation effort for one voice 

The computational costs are mainly based on determining the envelope function and on 
filtering each sample of the output signal. 

 

 ADD/SUB MPLY Sum 

Amplitude 2 3 5 

Envelope 1 1 2 

Shelving-Filter 8 16 24 

 Table 7.3: Estimated calculation effort per output sample 

Therefore, the estimated calculation effort to generate one second of output samples can be 
computed by 

 

Amplitude + Sample Rate*(Envelope + Shelving-Filter) 

 

Thus, a sample rate of 32 kHz for instance will lead to approximately 0,832 MIPS. 

7.3 Waveguide synthesis 
In the digital waveguide model, the required memory depends on the note number of the 
synthesized tone, which is different to the FM synthesis and to the sampling method, where 
the memory usage is equal for all notes (given that the lengths of the used samples in the 
sampling method are equal). 

7.3.1 Estimated data amount 

In the model, the pitch of the output signal is determined by the effective length of the 
delay line. 

 0
sff

N
=  (7.1) 

For the synthesis of the C2 (65 Hz), this means that the length of the delay line has to be 
489 samples, which should be the worst case. Thereby, the sample rate was chosen to be 
32 kHz. Furthermore, the impulse response of the soundboard with a duration of about 300 
ms has to be stored in the memory too. For the generation of the hanning windows that are 
used to determine the excitation signal, a quarter-wave of the cosine has to be stored in a 
table.  As a result, the following estimation of the required memory can be given. 
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 Bytes 

Delay line to generate a 65 Hz tone 984 

Impulse response of the soundboard 19200 

Cosine table with 64 entries 128 

Sum 20312 

Table 7.4: Estimation of the memory effort for one voice; the memory word length is chosen to be 16 bits  

 

7.3.2 Estimated calculation effort for one voice 

 

 ADD/SUB MPLY Sum 

FIR loss filter 3 3 6 

Allpass (correct pitch) 2 2 4 

Allpass (dispersion) 4 4 8 

Table 7.5: Estimated calculation effort per output sample 

The estimated calculation effort to generate one second of output samples by a given 
sample rate is 

 

 Sample Rate*(FIR loss filter + Allpass (correct pitch) +Allpass (dispersion)). 

 

Thus, a sample rate of 32 kHz for instance will lead to approximately 0,57 MIPS. 
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8 Conclusion 
In this thesis, FM synthesis, sampling synthesis and digital waveguide synthesis have been 
investigated by means of the synthesis of the real piano tone.  

Considering FM synthesis, it turned out that it is not easy to find a convenient 
interconnection of the individual operators. Furthermore, it was not a simple task to 
establish appropriate parameters. It was mainly based on a trail and error process. Thereby, 
the sound quality of the synthesized real piano tone was not very satisfying as it sounds 
more like an electric piano. 

When it comes to the sampling synthesis, the sound quality strongly depends on the quality 
of the used samples, their lengths and an ideal determination of the loop points. In the 
simulation, the length of the samples has been reduced to about 300 ms and the looped 
portions have directly been stringed together. The use of the high-frequency shelving filter 
for the simulation of the time-varying spectral changes in the real piano tone has turned out 
to be a good choice. 

The synthesis of the real piano tone by means of the digital waveguide synthesis was very 
interesting due to its flexibility. Thus, the structure of the resultant sound can be varied in 
many different ways. The use of filtered white noise acting as the impulse response of the 
soundboard is a good approximation to the real one. Besides, it is very simple to 
implement.  

Some simplifications are conceivable in the case of the implementation of a sound 
synthesis technique on a digital signal processor of a mobile phone. As the bandwidth of 
the integrated loudspeaker of a mobile phone is limited, not the whole frequency range of 
the real piano can be radiated by it. Concerning sampling synthesis, only a few samples of 
the real piano have to be stored in memory. The lower piano tones can be generated by 
shifting down the pitch of a much higher one. Furthermore, the sampling rate and the word 
length can be reduced. If the whole midi standard with its 128 instruments should be 
implemented in a mobile phone, only the sampling synthesis would lead to well sounding 
results. However, the amount of required memory would be very high. To overcome this 
problem, it is possible to implement not only the sampling method, but also to use a mixed 
form of synthesis techniques. Thereby, the sampling method can be used to synthesize the 
tones of the natural instruments; all the synthetic sounds of the midi standard can be 
realized by the use of the FM synthesis.    
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Appendix A      Software 
For each of the discussed sound synthesis techniques, some Matlab™ - functions have 
been created. These functions and their corresponding parameters are listed below.  

 

A.1 FM synthesis 
For the FM synthesis, one function for the whole instrument and two subfunctions have 
been programmed. The first subfunction is used to calculate the two-stage amplitude 
envelope. The second one represents a table-lookup oscillator, which is used to interpolate 
the sine function. 

 

The entire FM instrument 
Function: out = piano(note,fs) 
 
Input parameters: 
   note… input vector with input arguments [dur,pitch,vel] 
     Dur…   duration of the generated sound 
     Pitch… pitch of the generated sound 
     Vel…   velocity value (0-127)       
   fs… sample rate 

 

Envelope generator 
 Function: out = envelope2(dur,dur1,time,level,fs) 
 
 Input parameters: 
    dur… maximum duration of the tone 
    dur1… duration of the generated tone 
    time… specifies a point in time within the whole envelope 
    level… magnitude of envelope at that point of time 
    fs… sample rate 

 

Table-lookup oscillator 
 Function: out = tableinterp(table,f,fs) 
 
 Input parameters: 
    table… table with entries of the sine function 
    f…  desired output frequency 
    fs… sample rate 
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A.2 Sampling synthesis 
The completely sampling instrument is included in one function. Furthermore, a function 
to equalize the amplitude envelope of the looped sample has been created. 

 

The entire sampling instrument 
 Function: out = sampler(fc,value,sample,vel,shift,dur) 
  
 Input parameters: 
    fc… cutoff frequency of the used shelving filter 
    value… defines the decay rate of the envelope generator 
    sample… input sample 
    vel… velocity value (0-127) 
    shift… value of pitch-shifting in semitones 
    dur… duration of the generated output signal 

 

Equalization of the amplitude envelope 
 Function: out = equalize(infile,taps,overhead) 
 
 Input parameters: 
    infile… sample, which should be equalized 
    taps… number of taps of the used moving average filter 

offset… point within the sample, which is used for the 
normalization of the envelope 

 

 

A.3 Digital waveguide synthesis 
In the case of the digital waveguide synthesis, two functions have been used to generate the 
output signal. The first function contains a FIR lowpass filter for the frequency-dependent 
losses. The second one additionally has to 1st order allpass filters in cascade to simulate the 
dispersion effect. Furthermore, subfunctions to create the excitation signal and to calculate 
the correct length of the delay line are used. 

 

Model without dispersion 
 Function: out = model1(force,pitch,dur,comb) 
  
 Input parameters: 
    force… hammer-string interaction force pulses 
    pitch… pitch of the created output signal 
    dur… duration of the generated output signal 
    comb… length of the comb-filtering delay in samples 
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Model with dispersion 
 Function: out = model2(force,pitch,dur,ih1,ih2,comb) 
  
 Input parameters: 
    force… hammer-string interaction force pulses 
    pitch… pitch of the created output signal 
    dur… duration of the generated output signal 
    ih1… coefficient of the first allpass filter 
    ih2… coefficient of the second allpass filter 
    comb… length of the comb-filtering delay [samples] 

 

Generation of the excitation signal 
 Function: force = excitation(vel1,vel2,vel3,N,del,noise,dur) 
 
 Input parameters: 
    vel1… value of the amplitude of the first hanning window 
    vel2… value of the amplitude of the second hanning window 
    vel3… value of the amplitude of the third hanning window 
    N…  number of points of the individual hanning windows 
    del… delay of the individual hanning windows [ms] 
    noise… noise signal for the impulse response of the soundboard 
    dur… duration of the exponentially decaying noise signal 

 

Determination of the correct delay line length 
 Function: out = corr_delayline1(pitch,a1,a2) 
 
 Input parameters: 
    pitch… pitch of the generated output signal 
    a1… coefficient of the first allpass filter 
    a2… coefficient of the second allpass filter  
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Appendix B      Sound examples 
For each of the discussed and implemented sound synthesis techniques, representative 
sound examples have been generated. Thereby, the different phases of the synthesis of the 
real piano sound should be clarified. 

All sound examples are compiled on the accompanying Compact Disc and the following 
subchapters present the content of the CD. 

   

B.1 FM synthesis 
Title  

 Different velocity values 

01 Note C2 with a velocity value of 40  

02 Note C2 with a velocity value of 127 

03 Note C4 with a velocity value of 40 

04 Note C4 with a velocity value of 127 

 Key scaling 

05 Note C1 without key scaling 

06 Note C1 with key scaling 

07 Note C3 without key scaling 

08 Note C3 with key scaling 

09 Note C5 without key scaling 

10 Note C5 with key scaling 

 Envelope generators 

11 Note C2 without envelope generators  (except for the carrier oscillator) 

12 Note C4 without envelope generators  (except for the carrier oscillator) 

13 Note C6 without envelope generators  (except for the carrier oscillator) 

14 Note C2 with envelope generators for all 4 operators 

15 Note C4 with envelope generators for all 4 operators 

16 Note C6 with envelope generators for all 4 operators 
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 Release part of the generated tone 

17 Note C4 without release envelope 

18 Note C4 with release envelope (duration of release part: 500 ms) 

19 Note C4 with release envelope (duration of release part: 250 ms) 

 Scale of C major 

20 Scale starting at C4; velocity = 127; duration of each tone = 2 sec 

21 Scale starting at C4; velocity = 30; duration of each tone = 2 sec 

 FM sound with overlaid filtered attack noise of a real piano sample 

22 Filtered attack noise (bandpass with f1=300 Hz and f2 = 1,6 kHz) 

23 Note C4 with overlaid attack noise 

24 Note C5 with overlaid attack noise 

 

 

B.2 Sampling synthesis 
Title  

 Original Piano Samples 

25 Note C1; length = 2,4 sec 

26 Note C3; length = 2,4 sec 

27 Note C5; length = 2,4 sec 

28 Note C7; length = 2,4 sec 

 Equalization of the amplitude envelope of the looped sample 

29 Note C5; no equalization; length of looped region = 532 ms 

30 Note C5; with equalization; length of looped region = 532 ms 

 Time-varying filtering of a short looped region without cross-fading 

(only the filtered output without envelope generator) 

31 Note C1; loop-start = 221 ms; loop-length = 60 ms  

32 Note C3; loop-start = 153 ms; loop-length = 23 ms 

33 Note C5; loop-start = 173 ms; loop-length = 19 ms 

34 Note C7; loop-start = 172 ms; loop-length = 28 ms 
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 Different velocity values (looping + filtering + envelope) 

35 Note C3; velocity value = 10 

36 Note C3; velocity value = 127 

37 Note C5; velocity value = 10 

38 Note C5; velocity value = 127 

 Pitch-shifting (looping + filtering + envelope) 

39 Note C5; without pitch-shifting 

40 Note C5; pitch-shift  =  - 1 semitone 

41 Note C5; pitch-shift  =  - 3 semitone 

42 Note C5; pitch-shift  =  - 5 semitone 

43 Note C5; pitch-shift  =  2 semitone 

44 Note C5; pitch-shift  =  4 semitone 

45 Note C5; pitch-shift  =  5 semitone 

 

 

B.3 Digital waveguide synthesis 
Title  

 Losses with and without frequency dependence 

46 Note C4; damping factor = 0.995; without 2nd order lowpass filter  

47 Note C4; damping factor = 0.997 and with 2nd order lowpass filter 

 Dispersion (two 1st order allpass filters in cascade) 

48 Note C4; allpass coefficients: a1 = a2 = 0,7 

49 Note C4; allpass coefficients: a1 = a2 = 0,8 

50 Note C4; allpass coefficients: a1 = a2 = 0,9 

 Generating the impulse response of the soundboard 

51 Exponentially decaying white noise; duration = 500ms 

52 Exponentially decaying white noise; duration = 1000ms 

53 Noise (500 ms) convolved with the hammer force signal for Note C4 

54 Noise (1000 ms) convolved with the hammer force signal for Note C4 
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 Resultant sound  

(with lowpass filter, allpass filters and excitation signal) 

55 Note C2; excitation signal (500 ms); velocity = 100 

56 Note C4; excitation signal (500 ms); velocity = 100 

57 Note C4; excitation signal (1000 ms); velocity = 100 

58 Note C4; excitation signal (1000 ms); velocity = 50 

59 Note C7; excitation signal (500 ms); velocity = 100 

 Different lengths of the comb-filtering delay (Position of the hammer) 

60 Note C2; delay length = 10 Samples 

61 Note C2; delay length = 60 Samples 

62 Note C4; delay length = 10 Samples 

63 Note C4; delay length = 20 Samples 

 Two slightly detuned strings to generate the effect of beating 

64 Note C4; one string 

65 Note C4; two strings; frequency difference of 0,4 Hz 

66 Note C7; one string 

67 Note C7; two strings; frequency difference of 0,3 Hz 

 

 

 

 


