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Abstract

Additive synthesis is a meaningful sound model for analysis and processing of sound that
represents a signal as a sum of individually controllable sinusoids. The accuracy of twelve
frame-based parameter estimators which determine frequency and amplitude of the partials
in harmonic sounds are tested with sinusoidal, static, time-varying and natural-like test
sounds. The estimation errors are determined by the known frequency content of the test
signals and the output of the estimators. The errors are smallest for the method proposed
here which directly fits the analytical shape of the window main lobe into the frequency
spectrum. Among the commonly known estimators, derivative algorithm, phase vocoder and
spectrum reassignment give the best numerical results. The Matlab implementation provides
a platform to evaluate new approaches for frame-based parameter estimators and readily
shows the effectiveness compared to the standard algorithms.

Parameter estimation directly from MDCT coefficients has limitations and further research
is necessary in this area. The ODFT, a frequency-shifted discrete Fourier transform, is shown
as the natural link between the DFT and the MDCT. A parameter estimator based on ODFT
is presented. It provides accurate results and becomes useful in MDCT based audio coding.
Furthermore it is exemplarily demonstrated that a combined analysis with DFT and ODFT
can reduce the estimation error at low frequencies.

Title: Estimating Frequency and Amplitude of Sinusoids in Harmonic Signals – a Survey
and the Use of Shifted Fourier Transforms

Keywords: Additive synthesis, analysis of sound, parameter estimation, frequency estimation,
shifted discrete Fourier transform, modified discrete Fourier transform, SDFT, ODFT,
MDCT



Zusammenfassung

In dieser Arbeit werden die gebräuchlichsten Verfahren zur Parameterbestimmung für die
Additive Synthese numerisch verglichen. Harmonische Klänge werden dabei in ihre Teiltöne
(zeitvariable Sinuskomponenten) zerlegt und deren Frequenz und Amplitude möglichst genau
bestimmt. Die erzielte Genauigkeit wird mittels geeigneter Testsignale mit exakt definierten
Partialtönen ermittelt. Unter den herkömmlichen Methoden ist der Schätzfehler am gerings-
ten, wenn neben dem Amplituden- auch das Phasenspektrum berücksichtigt wird (Phase
Vocoder, Spectrum Reassignment und Derivative Algorithm). Die kleinsten Fehler werden je-
doch durch das direkte Einpassen der kontinuierlichen Fourier-Transformierten des Analyse-
Fensters in das diskrete Frequenz-Spektrum des Signals erzielt.

Die Bestimmung der Teiltonparameter direkt aus MDCT-Koeffizienten funktioniert nur
eingeschränkt und bedarf weiterer Entwicklung. Die ODFT, eine diskrete Fourier-Transfor-
mation, deren Abtastpunkte im Frequenzbereich verschoben sind, stellt die Verbindung zwi-
schen MDCT und DFT dar. Ein Parameterschätzer basierend auf der ODFT-Transformation
liefert gute Ergebnisse und kann im Bereich MDCT-basierter Audio-Kodieralgorithmen zu
einer Effizienzsteigerung führen. Des Weiteren konnte gezeigt werden, dass sich durch eine
kombinierte Analyse mit DFT und ODFT die Schätzfehler im Bereich niedriger Frequenzen
verringern.

Titel: Frequenz- und Amplitudenbestimmung von Partialtönen harmonischer Signale: Ver-
gleich und Entwurf von ODFT- und MDCT-basierten Verfahren

Schlagwörter: Additive Synthese, Klanganalyse, Parameterschätzer, Frequenzbestimmung,
Verallgemeinerte diskrete Fourier-Transformation, SDFT, ODFT, MDCT
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Chapter 1.

Introduction

Computers offer new possibilities concerning sound processing. The ongoing advancement
in computer performance reinforces the use of additive synthesis as sound model. Additive
synthesis is a spectrum modelling technique that creates sound by a sum of a large number
of independently controllable sinusoidal partials.

For applications in computer music systems and electronic music, natural existing sounds
are analysed in order to modify their partials. It is therefore necessary to extract the sinu-
soids from a signal, which is often harmonic. The so-called ‘parameter estimators’ then try
to accurately determine the sinusoids’ parameters, namely frequency, amplitude and initial
phase.

Numerous research on DFT-based parameter estimation has been undertaken so far. Many
different procedures are available, quite a few of them claiming outstanding performance. In
order to provide a basis for comparisons and further improvements, this thesis objectively
evaluates the accuracy of the amplitude and frequency estimation of the most common pa-
rameter estimators. They are therefore implemented and tested with different categories of
reference signals.

Driven by the increasing usage of shifted transforms (in particular the MDCT in advanced
audio coding), parameter estimators that apply shifted Fourier transforms are closely in-
vestigated. Their results are compared with the conventional methods and improvements
suggested.

This thesis report concerns itself with the determination of the following objectives: Chap-
ter 2 gives an introductory overview on sound models and shows in particular the functional
units of an additive synthesis system. A mathematical description of the used sound model
is provided. As there are many transformations that are closely related to the Fourier trans-
form (e. g. SDFT, ODFT, MDCT, . . . ), chapter 3 gives their definitions and shows some
interconnections between them.

Then chapter 4 presents an overview of the most commonly used state-of-the-art DFT-
based parameter estimators and explains their functionality. The succeeding chapter moves
on to parameter estimators based on shifted Fourier transforms. The motivation for the
usage is demonstrated and their underlying functionality is mathematically derived.

The above mentioned survey on the accuracy of the analysis methods is presented in
chapter 6. The used methodology is addressed in detail and the resulting simulation results
are provided and commented. Driven by the observations obtained in the comparisons some
improvements are presented in the last chapter. This includes mechanisms for suppressing
the influence of negative mirror frequencies, optimum interpolation techniques and ways of
combined application of shifted and non-shifted Fourier transforms.
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Chapter 2.

Sound Models and Additive Synthesis

In order to successfully synthesize or transform digital sounds on a computer, an appropriate
model that describes the sound is necessary. It provides the vital link between the natural
and the mathematical representation of sound. A good sound model should be flexible in
terms of signals which it can represent. For musical applications it should as well provide pa-
rameters that allow musically expressive and meaningful transformations. For more detailed
information please refer to [24, 29, 42].

2.1. Sound Models

Mainly four families of sound models are used nowadays for musical sound generation:

Temporal Representations are the most obvious way to describe an audio signal, as they
are closely related to the physical nature of sound. Simply the amplitude of the sound
wave is given as a function over time. A variety of signal processing techniques can be
applied to the signal. Unfortunately only a very small number of these transformations
are related to musical parameters.

Physical Models try to put the natural acoustical formation of a sound in its source into
mathematical equations. For the case of e. g. an organ pipe, the shape and the material
of the pipe are considered, and the physical behaviour of the enclosed air – which finally
dispreads the sound – is mathematically expressed.

Abstract Models give the rules to create a sound in purely mathematically inspired equa-
tions. Without any analysis stage, these models are well suited to create new sounds,
but fail in reproducing or manipulating natural sounds. An example for these models
is the well known Frequency-Modulation-Synthesis (FM-Synthesis).

Spectral Models represent sound with a spectrum in the frequency domain. This is driven
by a perceptual perspective, as the human ear makes on the basilar membrane as well
some sort of time-frequency transformation [53]. Transformation and feature extraction
is possible in a way which is closer related to perception.

2.2. Additive Synthesis Model

This work addresses issues in the last category of sound models, spectrum modelling. The
main advantage of this type is the existence of analysis methods to extract the synthesis

10



Chapter 2. Sound Models and Additive Synthesis

parameters out of real sounds. This allows reproduction and modification of existing sounds
using the extracted parameters.

Our particular approach is based on modelling sounds with sinusoids. A pure continuous-
time sine wave x(t) is given by

x(t) = A sin(Ωt + Φ) with Ω = 2πf (2.1)

All variables are real numbers and

A : amplitude (A ≥ 0)
Ω : radian frequency in rad/s

f : frequency in Hz
t : time in s

Φ : initial phase in rad.

Sampling this signal x(t) every Ts seconds gives a discrete-time signal which is mathemati-
cally represented by a sequence of numbers x[n] := x(nTs), where x(nTs) is the sample taken
at time t = nTs. So with

x(nTs) = A sin(ΩTsn + Φ)

and ω := ΩTs = Ω
fs

equation 2.1 becomes to its sampled discrete-time equivalent

x[n] = A sin(ωn + Φ) (2.2)

with

n : integer sample number
Ts : sampling period in s

fs =
1
Ts

: sampling frequency in Hz

ω : normalized radian frequency in rad 1

[. . .] : used for independent variable of a discrete-time sequence
(. . .) : used for independent variable of a continuous-time function.

The additive synthesis model represents a sound as a sum of ’quasi-stable’ sinusoids (sinu-
soids with slowly time-varying amplitude and frequency). These sinusoidal components of
the modelled sound are usually called ‘partials’. When using the term ‘harmonics’ for them,
it expresses that the partials’ frequencies are harmonically related among each other.

The sound a(t) is modelled in the additive synthesis model by

a(t) =
P∑

p=1

Ap(t) sin(φp(t)) (2.3)

1Instead of the frequency Ω its normalized version ω = Ω
fs

is often used implicitly, which is equivalent to
setting Ts = 1 s and fs = 1Hz.

11



Chapter 2. Sound Models and Additive Synthesis

with the instantaneous phase of the pth partial

φp(t) = Φp + 2π

t∫
u=0

fp(u)du. (2.4)

where Ap(t) and fp(t) are the time-varying amplitude and frequency of the pth partial, Φp

the initial phase and P the total number of partials.

2.3. Analysis for Additive Synthesis

The analysis stage of an additive synthesis system examines the time-varying spectral charac-
teristics of a sound. It maps these characteristics to the parameters of the additive synthesis
model described above, namely to the slowly time-varying amplitude and frequency (and
sometimes initial phase) of each sine wave.

The block diagram of an additive synthesis system basically consists of three blocks (fig-
ure 2.1): The analysis stage extracts the parameters, which are modified in a transformation
stage according to the desired musical application. The synthesis part then uses these mod-
ified parameters to generate the output sound according to equation 2.3. Smith and Serra
give in [44] a concise report about the implementation of an additive synthesis system.

Analysis

Transformation

Additive Synthesis

Parameters for Additive Synthesis Model
Ap(t), fp(t), Φp(t) for every partial p

Modified Parameters
Ap,m(t), fp,m(t), Φp,m(t) for every partial p

time-domain signal am[n]

time-domain signal a[n]

Figure 2.1.: Typical structure of a sound processing system based on additive synthesis.

We focus on the analysis stage, whereof figure 2.2 on the following page shows its general
structure.
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Chapter 2. Sound Models and Additive Synthesis

signal a[n]

Sliding Window Mechanism

Analysis Window
(Hann, Sine, KBD, ...)

Fourier Transform
(DFT, ODFT, MDCT, ...)

Peak Detection

Estimation of
Amplitude, Frequency and Phase

Peak Continuation

Signal Frame

Windowed Signal

Frequency Spectrum

Location of  Peaks (Local Maxima)

Ap, fp, Φp of every peak

Parameters for Additive Synthesis Model
Ap(t), fp(t), Φp(t) for every partial p

STFT

Objects of
Investigation

Figure 2.2.: Typical structure of the analysis stage for additive synthesis.
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Chapter 2. Sound Models and Additive Synthesis

In computer music applications for the purpose of spectral analysis the short-time Fourier
transform (STFT) is widely used [2, 44]. The STFT is often as well referred to as time
dependent Fourier transform.

In the STFT first a sliding window mechanism is applied on the input signal x[n]. That is,
the signal is structured in frames of length M whose start points are separated by the hop
size R. As a consequence the frames overlap by M − R samples. An ascending index r is
assigned to the frames.

Every frame xr of the signal is then multiplied by an analysis window function w of the
same length to smooth out the impact of discontinuities of the time signal occurring at the
frame borders. The choice of the analysis window is a well-developed topic and influences
the spectral resolution of the analysis. A discussion on windows is beyond the scope of this
document. An introduction is given by Harris in [16] with supplementations by Nuttall in
[28].

The windowed frames are then possibly extended with zeros on one or both sides to a length
N . The zero-padding and interpolation factor is given by the ratio N

M . Zero-padding in the
time domain corresponds to interpolation in the frequency domain. On the zero-padded and
windowed frames a DFT is applied.

With a zero-padding factor of N
M = 1 the STFT of a signal x[n] is given by:

XSTFT(r, k) =
∞∑

n=−∞
w[n− rR]x[n]e−j 2π

N
nk (2.5)

The next step is to detected the prominent peaks in the spectrum of the current frame.
The magnitude spectrum is therefore searched for local maxima, and every local maximum
above a certain threshold is considered as a potential peak. As XSTFT(r, k) is discrete in
frequency, the frequency of the detected peak is only accurate within one frequency bin or
fs

N (see chapter 3).
The accuracy can be highly increase by so-called ‘parameter estimators’. With different

methods they interpolate between the discrete spectrum values or make use of the phase
spectrum of the signal to estimate the frequency, amplitude and sometimes phase of the peak
very accurately. The different methods available for this purpose are the main scope of this
report.

These parameter estimators are usually much more efficient than interpolating by zero-
padding, as the latter requires a much longer FFT length. Nevertheless a combination of
both can be successfully applied. [42]

The last step in the analysis stage is to assign the detected peaks to the different partials
of the additive synthesis model. This process of tracking peaks from frame to frame is as well
called ‘partial tracking’. Therefore the peaks in adjacent frames are connected to each other
by peak trajectories. The algorithm tries to find continuations of peaks in subsequent frames
e. g. with a “birth death concept” and connection probabilities [24] or by the application
of hidden Markov models [9]. A peak that was carried forward for several frames is then
considered as partial of the sound.

14



Chapter 3.

Frequency Representations based on
Fourier Transforms

As shown in chapter 2 we study a sound model that represents sound a as mix of sine waves,
which is similar to the Fourier series representation of periodic signals. As the parameters of
the model’s sinusoids slowly evolve in time, the signals are strictly speaking no more periodic.
We therefore extend the Fourier series approach and give an overview of Fourier transforms
and related transformations. For more information see [43, 29, 32, 11, 24].

3.1. Basic Fourier Transforms

The continuous-time Fourier transform (FT) of a signal x(t) with −∞ ≤ t ≤ ∞ is defined as

X(ω) =

∞∫
t=−∞

x(t)e−jωtdt (3.1)

with j =
√
−1 being the imaginary unit.

The discrete-time Fourier transform (DTFT) of a sequence x[n] with −∞ ≤ n ≤ ∞ is
similarly defined as

XDTFT(ω) =
∞∑

n=−∞
x[n]e−jωn (3.2)

which is often simply called the Fourier transform of a sequence x[n] and is continuous in
frequency.

If we consider only a finite length signal x[n] with length N and non-zero values only
between 0 and N-1, the DTFT becomes:

XDTFT(ω) =
N−1∑
n=0

x[n]e−jωn (3.3)

The discrete Fourier transform (DFT) of a finite length sequence x[n] with 0 ≤ n ≤ N − 1
and length N is linked to the Fourier transform by sampling the DTFT at distinct uniformly
spaced frequencies ωk within the range 0 ≤ ωk < 2π [51].

XDFT(k) =
N−1∑
n=0

x[n]e−jωkn with ωk =
2π

N
k (3.4)
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Chapter 3. Frequency Representations based on Fourier Transforms

where

XDFT(k) : DFT of x[n] or ‘spectrum’
k : DFT bin number with 0 ≤ k ≤ N − 1

ωk : normalized radian frequency at bin k

Although x[n] and XDFT(k) are defined in the range 0 ≤ n, k ≤ N − 1 only, in operations
involving the DFT they take on an implicit periodicity with period N [38]. The inverse DFT
results in a periodic extension of the signal x[n], which is an infinite duration N-periodic
signal created by concatenating the original finite length signal x[n].

The so-called fast Fourier transform (FFT) is a computationally efficient implementation
of the DFT. The choice of the transform length N is restricted, but the computational
complexity is significantly reduced from O(N2) to O(N log(N)). In practice we usually set
the length N as a power of two.

Figure 3.1 illustrates the connection between the DFT and the DTFT: A pure sinusoid
with frequency l = 100.3 bins is windowed by a Hann window. Its discrete-time Fourier
transform DTFT is plotted with a continuous line. The DFT of the same windowed sinusoid
is represented by equally spaced samples of the DTFT, marked in the figure with small circles.

The distance between the frequency samples is one frequency bin and equals sampling-rate
fs divided by the length N of the analysis window. E. g. with the used sampling rate of
fs = 44, 1 kHz and a window length of N = 1024 samples the distance between two frequency
bins is approximately 43 Hz.
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Figure 3.1.: DTFT and DFT of a windowed sinusoid (N = 1024, l = 100.3, Hann window).

3.2. Shifted Fourier Transforms

The shifted discrete Fourier transform (SDFT) is defined in its general form as:

XSDFT ,a,b(k) =
N−1∑
n=0

x[n]e−j 2π
N

(n+a)(k+b) (3.5)
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Chapter 3. Frequency Representations based on Fourier Transforms

with

a : arbitrary time domain shift
b : arbitrary frequency domain shift

The SDFT can be seen as a generalization of the DFT, which allows us to shift the samples
in time as well as in the frequency domain with respect to the signal and its spectrum
coordinate systems (see [52] and [48]).

In the conventional DFT, the periodicity is given simply by a periodic extension. Whereas
in the generalized case, every further period of the sequence is rotated once more by an angle
proportional to the frequency or time shift. The cyclicity can be expressed by:

x[n + Np] = x[n]e−j2πpb (3.6)

XSDFT ,a,b(k + Np) = XSDFT ,a,b(k)ej2πpa (3.7)

where p is an integer number.
As shown in [52], a shifted sequence rotates the SDFT coefficients by an angle proportional

to the sequence shift and the transform shift parameters:

SDFT {x[n + n0]} = XSDFT ,a,b(k)e−j2πn0(k+b)/N (3.8)

XSDFT ,a,b(k + k0) = SDFT
{

x[n]e−j2πk0(n+a)/N
}

(3.9)

Ordinary DFT

Several special cases of the SDFT can be considered, depending on the specific values for a
and b.

With no time shift (a = 0) and no frequency shift (b = 0) the SDFT becomes the usual
DFT as already given in equation 3.4 on page 15:

XSDFT ,0 ,0 (k) =
N−1∑
n=0

x[n]e−j 2π
N

nk = XDFT(k) (3.10)

This DFT is periodic both in time and frequency domain:

XDFT(k) = XDFT(k + Np) (result of sampling the signal)
x[n] = x[n + Np] (result of sampling the spectrum)

where p is an integer number.

Time-Shifted DFT

With a time shift of half a sample (a = 1
2) and no frequency shift (b = 0) the SDFT becomes

the odd-time DFT:

XSDFT , 12 ,0 (k) =
N−1∑
n=0

x[n]e−j 2π
N

(n+ 1
2
)k (3.11)

It is periodic in time and ‘anti-periodic’ in the frequency domain:

XSDFT , 12 ,0 (k) = (−1)pXSDFT , 12 ,0 (k + Np)

x[n] = x[n + Np]

17



Chapter 3. Frequency Representations based on Fourier Transforms

Frequency-Shifted DFT

With no time shift (a = 0) and a frequency shift of half a DFT bin (b = 1
2) the SDFT becomes

the odd-frequency DFT, or e. g. in [14] as well just called Odd-DFT (ODFT):

XODFT(k) = XSDFT ,0 , 12
(k) =

N−1∑
n=0

x[n]e−j 2π
N

n(k+ 1
2
) (3.12)

It is periodic in the frequency and anti-periodic in the time domain:

XODFT(k) = XODFT(k + Np)
x[n] = (−1)px[n + Np]

For real valued input signals x[n] ∈ R another symmetry property can be easily shown:

XODFT(k) = XODFT(N − k − 1)∗

where z∗ denotes the complex conjugate of the complex number z.
Regarding figure 3.1 on page 16 again, the ODFT is very similar to the DFT. Both are

samples of the DTFT, the samples just taken at different places (or frequencies). In the case
of the ODFT, its sample locations are positioned directly between two DFT sample bins. The
sample bins are shifted by b = 1

2 bins, which corresponds to a shift of ω = 1
2N in normalized

frequency. The connection to the DTFT definition in equation 3.3 on page 15 is given by:

ωk =
2π

N
(k + 1

2) (3.13)

The same values could be achieved by zero padding the input signal from length N to
length 2N , performing a DFT of length 2N and then only considering the odd values. This
is because zero padding just provides a finer sampling of the spectrum and zero padding to
double the length gives exactly one additional value each in between the original DFT bins.

Although the total number of frequency bins N is of course the same for DFT and ODFT,
in the ODFT we need one spectral sample less to represent a real signal: As the ODFT does
not sample the frequencies f = 0 and f = fs

2 , we have exactly N
2 bins below the Nyquist

frequency, and the same number of mirror frequency bins above it. In contrast the DFT gives
N
2 + 1 frequency bins within 0 ≤ f ≤ fs

2 . Figure 3.2 on the next page illustrates this fact
by a DFT and ODFT transform of an artificially designed input signal. This somehow nicer
symmetry of the ODFT coefficients could be useful in some applications, especially in terms
of window design issues.

Time- and Frequency-Shifted DFT

With a time shift of half a sample (a = 1
2) and a frequency shift of half a DFT bin (b = 1

2)
the SDFT becomes the odd-time odd-frequency DFT (O2-DFT):

XSDFT , 12 , 12
(k) =

N−1∑
n=0

x[n]e−j 2π
N

(n+ 1
2
)(k+ 1

2
) (3.14)

It is anti-periodic in the time and frequency domain:

XSDFT , 12 , 12
(k) = (−1)pXSDFT , 12 , 12

(k + Np)

x[n] = (−1)px[n + Np]
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(a) Discrete Fourier Transform (DFT, length N=8)
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(b) Frequency-shifted DFT (ODFT, length N=8)

Figure 3.2.: 8-point DFT and ODFT of the same arbitrary input signal.

3.3. Discrete Cosine Transforms

The discrete cosine transform (DCT) and its advantages such as the close relation to the
Karhunen-Loève transform where first shown in [1]. It is a frequency transform similar to
the shifted discrete Fourier transform (SDFT) [50]:

XDCT ,a,b(k) =
N−1∑
n=0

x[n] cos
( π

N
(n + a)(k + b)

)
(3.15)

It is defined only for input signals x[n] which are real valued and with even symmetry (i. e.
x(n) = x(−n)). Parameters a and b are 0 or 1/2 again.

Since the Fourier transform of a real and even function is respectively even and real again,
the DCT is closely related to the shifted DFT. If we assume real and even input and take
XSDFT ,a,b(k) as defined in equation 3.5 on page 16, we can follow:

XSDFT ,a,b(k) = <[XSDFT ,a,b(k)]

= <

[
N−1∑
n=0

x[n]e−j 2π
N

(n+a)(k+b)

]

=
N−1∑
n=0

x[n] cos
(
2

π

N
(n + a)(k + b)

) (3.16)

This result equals almost the DCT definition in equation 3.15, except the factor of two in
the cosine argument. Mathematically expressed, this simply means that the basis functions
of the new signal space oscillate twice as fast.

In literature (e. g. [40] and [45]), mainly four different types of the DCT are defined,
depending on the values of the parameters a and b (table 3.1 on the following page).

Let us take a look at the DCT-II, which is so defined by

XDCT , 12 ,0 (k) =
N−1∑
n=0

x[n] cos
( π

N
(n + 1/2)k

)
(3.17)

in order to show its relation to the the SDFT with the same parameters a = 1
2 and b = 0.
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DCT type a b

DCT-I 0 0
DCT-II 1/2 0
DCT-III 0 1/2

DCT-IV 1/2 1/2

Table 3.1.: Standard types of the Discrete Cosine Transform (DCT-I to DCT-IV).

We therefore apply the time-shifted DFT on a double length real even sequence defined by:

x[n] = x[2N − 1− n] (3.18)
x[n] = x[n + 2Np] with p integer and 0 ≤ n ≤ 2N − 1 (3.19)

XSDFT , 12 ,0 (k) =
2N−1∑
n=0

x[n]e−j 2π
2N

(n+ 1
2
)k (3.20)

Due to equation 3.18 x[n] is even around time n = N− 1
2 , with x[N−1] = x[N ]. Additionally,

by inspection it shows up that the exponential term is anti-symmetric around the same point
n = N − 1

2 so that f(n) = (f(2N − 1−n))∗ with f(n) = e−j 2π
2N

(n+ 1
2
)k. We so group together

the two terms with the same value for x[n], which is e. g. n = 0 and n = 2N − 1, n = 1 and
n = 2N − 2, . . . and so end up with half as much terms with 0 ≤ n ≤ N − 1:

XSDFT , 12 ,0 (k) =
N−1∑
n=0

x[n]
[
e−j 2π

2N
(n+ 1

2
)k + ej 2π

2N
(n+ 1

2
)k
]

= 2
N−1∑
n=0

x[n] cos
( π

N
(n + 1/2)k

) (3.21)

which is (except a scaling factor of two) identical to the DCT-II of x[n] with length N.

3.4. Modified Discrete Cosine Transform

The modified discrete cosine transform (MDCT) has become the most predominant time-
frequency decomposition method for high-quality audio coding and compression.

The MDCT is used on blocks or frames of the input signal. Thereby usually a 50 % time-
domain window overlap is used. Putting some restrictions on the used window (namely the
Princen-Bradley conditions [35, 36]), it is an interesting property of the MDCT, that the
time-domain aliasing introduced by the transformation cancels out by the overlap and add.
We so get perfect reconstruction of the input signal again. This process is called time domain
aliasing cancellation (TDAC) and explained in detail in [35, 12].

The MDCT is usually defined as

XMDCT(k) =
N−1∑
n=0

h[n]x[n] cos
(

2π

N

(
n +

1
2

+
N

4

)(
k +

1
2

))
(3.22)
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where h[n] is the window function. A commonly used window is given by

h[n] =

{
sin
(

π
N (n + 1

2)
)

if 0 ≤ n ≤ N − 1
0 else

(3.23)

This sine window is the square root of a shifted Hann window, which can be easily shown
applying the identity sin2(x) = 1

2 −
1
2 cos(2x). It fulfils the Princen-Bradley conditions,

because:

1. The window overlap in not more than 50 %.
Proof: We use a step size of N

2 and a window length of N, so an overlap of 50 %.

2. h[n] is symmetric with h[n] = h[N − 1− n].
Proof: h[N − 1 − n] = sin

(
π
N (N − 1− n + 1

2)
)

= sin
(
π − π

N (n + 1
2)
)

= h[n] (which
additionally identifies h[n] as linear phase filter).

3. h[n] fulfils h2[n] + h2[n + N
2 ] = 1.

Proof: h2[n]+h2[n+ N
2 ] = sin2

(
π
N (n + 1

2)
)
+sin2

(
π
N (n + N

2 + 1
2)
)

= sin2(a)+sin2(a+
π
2 ) = sin2(a) + cos2(a) = 1

In combination with the above given MDCT definition h[n] so fulfils the requirements for
perfect reconstruction.

The MDCT is usually applied with a 50 % window overlap. The length of the analysis is
two times the (integer) window hop size and we can easily restrict N to be an even number.
Then, as shown in [48], the MDCT transform coefficients show some symmetric properties,
namely:

XMDCT(N − 1− k) = (−1)
N
2

+1XMDCT(k) (3.24)

For N/2 being an even number, as it is usually the case in audio applications, the MDCT
coefficients show odd symmetry around n = N/2. The number of unique and independent
MDCT output coefficients is so only half the number of input samples and we regard from
now on only MDCT coefficients

XMDCT(k) with 0 ≤ k ≤ N

2
− 1. (3.25)

Before showing in the next chapter the connection to the DFT, we here give first an
illustrative example of the MDCT in conjunction with the TDAC concept in figure 3.3 on
the following page [48, 49].

A 54 samples long arbitrary artificial time domain signal was created and is plotted in
figure 3.3 on the next page, subplot (a). It is windowed by length N sine windows which
overlap by 50 % (dashed line). An MDCT transform is then applied on the first window
and the resulting coefficients plotted in subfigure (b). As mentioned above, we can see the
occurring subsampling: the N time domain samples result in only N/2 independent frequency
domain coefficients. So obviously alias is introduced, which can be seen in subplot (c). This is
the inverse MDCT of (b), the alias is highlighted by markers on the line. Subplots (d) and (e)
are the MDCT and inverse MDCT of the second frame. The resulting time-domain signals
(d) and (e) are then added together in the region where they overlap (between the time-
points B and C). As can be seen in subplot (f), the original time-domain signal is perfectly
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time domain by (N+1)/2 of the sampling interval and evaluated
with the shift of ½ of the frequency-sampling interval.

MDCT transform coefficients exhibit symmetric properties:
( )

U

1

U1
αα 1

12 1 +
−− −= (22)

To show this, replace in (1) U  with 12 −− U1  to obtain

( )[ ]∑
−

=
−− −−=

12

0

12 ,12,cos~
1

N

NU1
1U1ND πβα (23)

Rearrange terms:

( )( ) ( )[ ]∑
−

=

−++=
12

0

,,212cos~
1

N

N
1UN1ND πβπ (24)

For integers k and n,
( ) ( ) ( )[[QN

Q cos12cos −=++ ππ (25)
Therefore,

( ) ( )[ ] ( )
U

1

1

N

N

1

U1
1UND απβα 1

12

0

1
12 1,,cos~1 +

−

=

+
−− −=−= ∑ (26)

Apparently, the MDCT coefficients are odd symmetric, only if N
is even, which is often true in audio coding applications.
However, they are even symmetric if N is odd. This new
conclusion is more general in comparison with [12]. Using this
newly derived property we can now easily derive the Inverse
MDCT (IMDCT). From (6) it follows that

( )[ ]2/,,2exp
2

1
ˆ

12

0

�
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�

�
1

U
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πβα −= ∑

−

=

(27)

Divide the summation into two parts:

N
�̂ ( )[ ] ( )[ ]1UNL

1
1UNL

1

1

1U

U

1

U

U
,,exp

2

1
,,exp

2

1 121

0

πβαπβα −+−= ∑∑
−

=

−

=

(28)

Replace U  with 12 −− U1  and change the summation order in the
second term:

N
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1 1
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πβα
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Rearrange terms in the last exponent:
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0
12 πβπβα∑

−

=
−− − (30)

Because ( ) ( )[[QL exp2exp =+π  for integer n, we get

N
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Because ( )[ ] ( ) 111exp +−=+− 1

1Lπ , and using the symmetry of 
U

α  in
(22) we get:
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Finally add the summations together:
( )( )( )∑
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
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This proves that IMDCT is equivalent to the ������1���������.

From (33) we can see that, in comparison with conventional
orthogonal transforms, MDCT has a special property: the input

signal cannot be perfectly reconstructed from the MDCT
coefficients even without quantization. MDCT itself is a lossy
process (therefore not an orthogonal transform). That is, the
imaginary coefficients of the �����1��������� are lost in the MDCT
transform. However, the lost information can be recovered using
the redundancy of the 50% overlap of neighboring frames to gain
perfect reconstruction. Applying MDCT and IMDCT converts
the input signal into one that contains certain twofold symmetric
alias (see (14) and Figure 1(c)). The introduced alias will be
cancelled in the overlap-add process (see Figure 1).
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Illustration of MDCT, Overlap−Add Operation and Time Domain Alias Cancellation
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Figure 1. Illustration of the MDCT, overlap-add (OA)
procedure and the concept of the Time Domain alias
cancellation (TDAC). (a) An artificial time signal, dashed
lines indicating the 50% overlapped windows; (b)
MDCT coefficients of the signal in Window 1; (c)
IMDCT coefficients of the signal in (b), the alias is
shown by markers on the line; (d) The MDCT
coefficients of the signal in Window 2; (e) IMDCT
coefficients of the signal in (d), the alias is shown by
markers on the line; (f) The reconstructed time domain
signal after the overlap-add (OA) procedure. The original
signal in the overlapped part (between points B and C) is
perfectly reconstructed.

Based on our theoretical analysis, we have designed an artificial
time domain signal to illustrate the Time Domain Aliasing
Cancellation (TDAC) concept in a very intuitive way. The

Figure 3.3.: Illustration of MDCT, Overlap-Add and Time Domain Alias Cancellation [48]:
(a) Arbitrary artificial time signal. Dashed lines indicate overlapping windows.
(b) MDCT of signal in frame one (window one).
(c) IMDCT of Frame1-MDCT. Markers highlight introduced alias.
(d) MDCT of signal in frame two (window two).
(e) IMDCT of Frame2-MDCT. Markers highlight introduced alias.
(f) Reconstructed signal between B and C by overlapping (c) and (e).
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reconstructed in the overlapped part. As there is no overlapping available for the first half
of the first window and the last half of the last window, perfect reconstruction cannot be
achieved for these areas.

3.5. Complex Modified Discrete Cosine Transform

Similar to the MDCT the modified discrete sine transform (MDST) is defined by:

XMDST(k) =
N−1∑
n=0

h[n]x[n] sin
(

2π

N

(
n +

1
2

+
N

4

)(
k +

1
2

))
(3.26)

With the MDCT and the MDST of a windowed input signal x[n] with 0 ≤ k ≤ N
2 − 1 we

define the complex modified discrete cosine transform (CMDCT) XCMDCT(k):

XCMDCT(k) = XMDCT(k) + jXMDST(k) (3.27)

We want to show a connection of the MDCT to the DFT and evaluate therefore the complex
conjugate of the CMDCT [23]:

XCMDCT(k)∗ =XMDCT(k)− jXMDST(k)

=
N−1∑
n=0

x[n] cos
(

2π

N

(
n +

1
2

+
N

4

)(
k +

1
2

))

− j
N−1∑
n=0

x[n] sin
(

2π

N

(
n +

1
2

+
N

4

)(
k +

1
2

))

=
N−1∑
n=0

x[n] cos
(

2π

N

(
k +

1
2

)
n + Φk

)

− j
N−1∑
n=0

x[n] sin
(

2π

N

(
k +

1
2

)
n + Φk

)

with Φk =
(

2π

N

(
1
2

+
N

4

)(
k +

1
2

))

(3.28)

Rearranging terms and using Euler’s identity e−jφ = cos(φ)− j sin(φ) we get

XCMDCT(k)∗ =
N−1∑
n=0

x[n]e(
2π
N (k+ 1

2)n+Φk)

=e−jΦk

N−1∑
n=0

x[n]e(
2π
N (k+ 1

2)n)

=e−jΦkXODFT(k)

(3.29)

This shows, that the complex conjugate of the CMDCT is the frequency shifted DFT as
given in equation 3.12 on page 18, phase-shifted by a constant angle Φk, which only depends
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on the number k of the frequency bin. Furthermore this gives the connection between MDCT
and SDFT, as:

XMDCT(k) = <[XCMDCT(k)∗] = <[e−jΦkXODFT(k)] =
= <[XODFT(k)] cos(Φk) + =[XODFT(k)] sin(Φk) (3.30)

So the MDCT coefficients can as well be obtained by computing the complex-valued ODFT,
phase-shifting the coefficients by Φk as defined above and taking the real part of the resulting
spectrum.
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Chapter 4.

Parameter Estimators based on the
Discrete Fourier Transform

This chapter presents an overview on the most widespread methods for estimating frequency,
amplitude and phase of sinusoids in musical sounds. Their basic principles are described
briefly, the choice of parameters used in the implementations is explained and pointers to
detailed descriptions are provided. We focus on the methods selected in [17] and therefore
restrict ourself on DFT-based estimators that extract parameters directly from a single signal
frame.

For all methods the same basic analysis structure is used: an input signal x[n] is split
into (possibly overlapping) blocks of length M . These blocks are weighted by a temporal
window function w[n] and then an N -point DFT transforms these blocks into the frequency
domain. The DFT length N equals the window length M , no oversampling or zero-padding
is performed.

4.1. Estimation Methods based on Interpolation

As illustrated already in figure 3.1 on page 16 it seems possible to increase the accuracy of
the parameter estimation by carefully interpolating between the DFT coefficients.

4.1.1. Zero Order Interpolation (Plain FFT without further Processing)

Zero order interpolation in this context means, that no interpolation at all is done in between
the DFT samples. This method is included in the implementations for generic comparison
only.

As analysis window w[n] the ‘periodic’ Hann window is applied.1 We compute the FFT
magnitude spectrum and set all values below a certain threshold to zero. For the implemen-
tation a threshold value of -80 dB in terms of power is used. Therefore the amplitude gain of
the Fourier transform has to be considered.

The local maxima km of this modified FFT magnitude spectrum are considered as direct
representaion of the input signal’s partials. The estimation is then given by the frequency
corresponding to the FFT bin.

fm =
kmfs

N
(4.1)

The amplitude is scaled to one half of the maximum of the window’s Fourier transform |W (0)|,
which can be expressed as the sum of the time domain window samples:

1We use periodic windows (in contrast to symmetric ones) as defined in [16].
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|W (0)| =
N−1∑
n=0

w[n] (4.2)

So the amplitude estimation for the local maximum becomes to:

am =
2|XDFT(km)|∑N−1

n=0 w[n]
(4.3)

4.1.2. First Order Interpolation (Linear Interpolation)

The next logical step is to interpolate linearly between the DFT values, which means con-
necting the sample points with straight lines. This provides spectrum values in between the
sample points, but does not improve parameter estimation, because we do not gain any more
information about the position of the apex of the modulated window Fourier transform in
the general case.

Triangle Analysis Algorithm

Keiler and Zölzer present in [18] and [3] an analysis algorithm which successfully applies
linear approximation with using a special analysis window. The technique does not directly
implement what is usually considered as linear interpolation between sample points, but
extrapolates linearly from a set of sample points by a straight line to the desired location.

As explained before, a sinusoidal input modulates the window Fourier transform to the
frequency of the input sine (and its negative mirror frequency). The idea is to use a window
which magnitude frequency response has a triangular shape. So two straight lines can be
fit into the DFT sample points around a local maximum, which correspond to the slopes of
the triangle. As illustrated in figure 4.1 the exact frequency is then determined by the point
of intersection of the two straight lines. For a good and more in-depth description of the
algorithm please refer to [18].
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Figure 4.1.: Fitting of the triangle into a sequence of FFT data points in a least mean square error
sense. [17]
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Design of Analysis Windows with Triangular Spectral Shape

The window is designed in the frequency domain. It is defined by the sampling of a spectral
triangle shape whose main parameter is the bandwidth of one triangle slope in frequency
bins. In order to get the time domain window, an inverse DFT of length N is applied. This
results in a temporal window, which is centred around n = 0 and is so non-causal. As a
consequence it is delayed by N/2 samples to get a causal window.

The discrete-time Fourier transform of windows designed in this way do only approximately
model the ideal triangle shape we started from. The resulting frequency response is a sum
of scaled and frequency- and phase-shifted sincN (Ω)-functions. Figure 4.2 on the next page
depicts the resulting window in time and frequency domain for a triangle slope bandwidth of
S = 4 bins and a window length of N = 1024. Please note, that the DFT samples lie exactly
on the predefined spots of the ideal triangle. Just the values of the continuous discrete-time
Fourier transform in between them differ from the ideal straight line (which of course will
have an impact on the accuracy of the parameter estimation).

The choice of the the parameter S directly influences the window bandwidth. The length of
the triangle base, which corresponds to the width of the main lobe of conventional windows,
is double the length of S. For narrower triangles the frequency resolution increases. Wider
triangles (bigger S) make the estimation more stable in the case of presence of noise, as a
higher number of values is considered. Figure 4.3 on the following page shows the magnitude
spectrum of a sinusoid on which a window of length S = 4 was applied.

In the implementation a slope bandwidth of S = 2 was used, in order to maintain a
sufficient frequency resolution. The above described window design procedure then works as
follows: Only three samples of the (normalized) discrete Fourier transform are given: the first
is 1, the second 0.5 and the third is 0. To get a periodic window of length N , the Nth value
is set to 0.5, too. All other values in between are zero. On this sequence an inverse DFT is
applied. Only the real part is considered and for causality shifted by N

2 , which results in the
time domain analysis window.

One important information is neither given in [18], nor in [17], which uses S = 2, too: For
this special case of S = 2 this design process results in the same sequence of samples than
for the well known Hann window.

We can show this as well with the analytic expression of the resulting time domain window
wS [n], which is given in [18, eq.7f]. With S = 2 this equation resolves to a scaled Hann
window:

w2[n] =
1
N

{
1 + 2

S−1∑
k=1

(
1− k

S

)
cos
[
2π

N
k
(
n− N/2

)]} ∣∣∣∣∣
S=2

(4.4)

=
1
N

[
1− cos

(2π

N
n
)]

(4.5)

4.1.3. Second Order Interpolation (Parabolic Interpolation)

Parabolic interpolation is a very widely used approach. It is based on the assumption that
the main lobe of the discrete-time Fourier transform of the analysis window in a logarithmic
dB-scale can be approximated by a parabola.
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Figure 4.2.: Analysis window with a triangular spectral shape for N = 1024 and S = 4. (a) window
function in time domain, (b) linear scale magnitude response and (c) logarithmic scale
magnitude response. [18]
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Figure 4.3.: Spectrum of frequency modulated window with triangular spectral shape, input signal
x[n] = cos( 2π

N 20.5n), N = 64 and S = 4. (a) Linear and (b) logarithmic scale. [18]
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Again, a threshold-limited FFT magnitude spectrum of a windowed input signal is searched
for local maxima. Then, a parabola (a second order polynomial) is fit into the DFT points
around the maxima and the parabola’s apex determines the frequency and amplitude estima-
tion.

In our implementation we only use the local maximum and its right and left hand side
direct neighbours. As long as these three points are not all positioned along a straight line,
it is always possible to exactly fit a parabola through them. We can derive an analytic
expression to get the position of the apex of the parabola with only the three magnitude
values given. As mentioned before, we use the magnitude spectrum in a dB scale, so XdB(k) =
20 log10(|XDFT(k)|), and we call k0 the frequency index of the local maximum.

We start with the generic equation for a parabola which is parallel to the y-axis and open
to the bottom:

(x− xs)2 = −2p(y − ys) (4.6)

with xs, ys being the coordinates of the apex A0 and p > 0 being the parabola’s parameter.
The point A0 is the apex of the parabola and A0+1 is the point on the parabola at the
frequency of the apex plus one bin. We name the three DFT parameters which determine
the parabola according to:

A1 = XdB(k0 − 1) A2 = XdB(k0) A3 = XdB(k0 + 1) (4.7)

The position of all these points is depicted in figure 4.4.
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Figure 4.4.: Fitting of a parabola through three points of a DFT spectrum

We put the given values A1, A2, A3 into the parabola equation which results in three
equations for the three unknowns xs, ys and p:

(−1− xs)2 = −2p(A1 − ys) (4.8)

(0− xs)2 = −2p(A2 − ys) (4.9)

(1− xs)2 = −2p(A3 − ys) (4.10)
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Solving this equation system leads to:

xs =
A1 −A3

2(A1 − 2A2 + A3)
(4.11)

ys = A2 −
(A1 −A3)2

8(A1 − 2A2 + A3)
= A2 −

xs

4
(A1 −A3) (4.12)

p =
1

−A1 + 2A2 −A3
(4.13)

The estimation of the partial’s frequency is so given by k0+xs in DFT bins and its amplitude
by 10(ys/20) times the amplitude scaling factor introduced by transformation and analysis
window. Better amplitude estimation results are achieved by using the actual shape of the
window main lobe. This technique is explained in detail in section 4.2.1, equation 4.31 on
page 33.

If the local maximum is actually induced by a sinusoid, the resulting parabola should be
approximately as wide as the window’s main lobe. As a characteristic parameter we use the
amplitude difference in dB between the apex A0 and the amplitude A0+1 at a distance of
one frequency bin away. This difference is compared to the corresponding value for the used
analysis window (e.g. approximately −3 dB for a Hann window). If they differ too much, the
corresponding peak is discarded.

Obviously this method is highly dependent on the used analysis window. The approxima-
tion error is made by using a parabola instead of the actual window shape. So the requirement
on a “good” window for this method is, that its discrete-time Fourier transform main lobe
in dB-scale is as close to a parabola as possible. The Hann window or a truncated Gaussian
window could be used here, but best results are achieved with a special window described
in [17]. It is again designed in the frequency domain and with inverse Fourier transform as
described in section 4.1.2 on page 27, but starting from a parabolic shape in the frequency
domain, instead of a triangular one.

The bandwidth S of the slope of the parabola in the frequency domain in bins is usually
defined to S = 2 or S = 3. In the lower half of the frequency spectrum (the upper half is just
mirrored) the first S values are set unequal to zero. With A0+1 being the desired amplitude
of the magnitude spectrum in dB at bin k = 1 in terms of power of the magnitude at bin
k = 0 (e.g. A0+1 = −4.35 dB), these S coefficients are given by:

XDFT(k) = 10
(

A0+1k2

20

)
for 0 ≤ k ≤ S − 1 (4.14)

For a window with S = 2, in [17] a value of A0+1 = −4.35 dB is used.
Again, after mirroring the lower half around N

2 + 1 to get a window which is periodic in
frequency domain, an inverse Fourier transform of length N is performed. The resulting time
domain window is shifted by N

2 to make it a causal and finally normalized to a maximum
amplitude of one.

In order to make the algorithm more stable against the influence of noise, more than
three points could be used. One can either consider not only the direct neighbours of the
maximum but as well more adjacent points, what reduces the frequency resolution for closely
spaced partials. Or one can oversample the signal by zero-padding. The parabola is then
overdetermined and a numerical curve fitting approach is used which can consider a higher
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number of points. An error function for the curve fitting error is set up and numerically
minimized. An algorithm which proved to work well in practice is referred to as the Brent-
method (or ‘Golden Section Search’), and its implementation is demonstrated in [34].

4.2. Estimation Methods based on Linear Phase Evolultion

Although the interpolation methods often provide good results, they share a common in-
sufficiency: they depend on a special analysis window. Therefore an alternative is to find
methods which are no more based on interpolation of the spectrum but which try to exploit
a special property that comes along with the discrete Fourier transform and the well defined
class of signals we want to use the methods for: we can assume that there is only one sine
wave which dominates the corresponding DFT channel at a local maximum. Furthermore we
assume that the frequency of the partial changes only slowly in time and we can so consider
that its frequency is constant within the analysis frame. As a consequence, the modelling of
the phase evolution simplifies to

φp(t) = Φp + 2πfpt (4.15)

where fp is the frequency of the pth partial and Φp its initial phase. This describes that the
phase of the sinusoid evolves linearly in time and results from equation 2.4 on page 12, with
considering the assumptions stated above.

4.2.1. Derivative Algorithm

The derivative Algorithm was recently developed by Sylvain Marchand and is presented in
detail in [24] and [10], with some improvements shown in [18]. The basic idea behind this
algorithm is quite simple: the derivative of a sinusoid is a sinusoid again, multiplied by its
frequency. E. g. for a continuous-time signal x(t) = A sin(Ωt + Φ) its derivative is given by
x′(t) = ΩA cos(Ωt + Φ).

Continuous-Time Signal

Considering more generally the expression of a single partial ap(t) as defined in equation 2.3
on page 11, its derivative a′p(t) = dap

dt is given by:

ap(t) = Ap(t) sin(φ(t)) (4.16)
dap(t)

dt
=

d
dt
{Ap(t)} sin(φ(t)) + Ap(t)

d
dt
{sin(φ(t))} (4.17)

As Ap is only slowly time varying in comparison to the second term, we assume d
dt{Ap(t)} ≈ 0.

We can so rewrite this equation to:
dap(t)

dt
≈ Ap(t) cos(φ(t))

d
dt
{φ(t)} (4.18)

with
dφ(t)

dt
=

d
dt

{
Φp + 2π

∫ t

u=0
fp(u)du

}
= 2πfp(t) (4.19)

dap(t)
dt

≈ 2πAp(t)fp(t) sin
(
φ(t) +

π

2

)
(4.20)
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The frequency of the partial fp(t) is only slowly time varying, too. So we approximate it as
being constant with fp. We denote the discrete-time Fourier transform of ap(t) as FT 0(f) and
the Fourier transform of the derivative dap(t)

dt as FT 1(f). For a given partial the magnitude
spectra of both Fourier transforms have their maximum at the partial’s frequency fp. Putting
this together with equations 4.16 and 4.18 we can conclude that:

fp =
FT 1(fp)

2πFT 0(fp)
(4.21)

Please note, that the effect of the analysis window is the same on FT 0(f) and FT 1(f) and
is cancelled out by the above division.

Discrete-Time Signal

For a discrete-time signal s[n] it is shown in [10] that

s′[n] = fs{s[n]− s[n− 1]} (4.22)

is a valid approximation for the derivative of s[n]. The z-transform S′(z) of this expression
using the linearity and time shifting properties of the z-transform becomes to:

S′(z) = fs

(
S(z)− z−1S(z)

)
= H(z)S(z) with H(z) = fs(1− z−1) (4.23)

Evaluating the magnitude of H(z) at the complex unit circle z = ejω results in the frequency
response H(ω) := H(ejω):

|H(ω)| = fs

√
2− 2 cos(ω) = 2fs sin

(ω

2

)
(4.24)

Let us now consider an input partial ap[n] = Ap sin(ωpn + Φp), which amplitude and
frequency is constant within one analysis frame. It is windowed by a finite length window
function w[n], which Fourier transform is given by W (ω). Chapter 5.2 on page 38 will show,
that the discrete-time Fourier transform XDTFT(ω) of the windowed input partial is given by:

XDTFT(ω) =
A

2j

[
ejΦpW (ω − ωp)− e−jΦpW (ω + ωp)

]
(4.25)

The discrete-time Fourier transform X ′
DTFT(ω) of the derivative of ap[n] according to equation

4.22 and using equation 4.23 is given by:

X ′
DTFT(ω) = H(ω)XDTFT(ω) (4.26)

For both ωp and ω not being very low frequencies, we can assume that W (ω + ωp) ≈ 0.
This is especially true for analysis windows with high side lobe attenuation. When we apply
this approximation and look at the maxima of both DTFTs at ωp, we can so compute a ratio
γ(ωp):

γ(ωp) =
|X ′

DTFT(ωp)|
|XDTFT(ωp)|

=
∣∣∣∣XDTFT(ωp)H(ωp)

XDTFT(ωp)

∣∣∣∣ = 2fs sin
(ωp

2

)
(4.27)

We regroup this for ωp:

ωp = 2arcsin
(

γ(ωp)
2fs

)
(4.28)
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In order to use this for frequency estimation, we approximate γ(ωp) by its value at the
integer DFT frequency bin closest to ωp: We compute the DFT spectra XDFT(k) and X ′

DFT(k)
of the windowed partials ap[n] and a′p[n]. This is equivalent to evaluating XDTFT(ω) and
X ′

DTFT(ω) at the frequencies ωk = 2πk
N , 0 ≤ k ≤ N − 1. The maximum of |XDFT(k)| is at

the frequency bin k = k0, which is as well the position of the maximum of |X ′
DFT(k)|. This

location k0 is the frequency bin closest to ωp, i. e.
∣∣∣ωpN

2π − k0

∣∣∣ ≤ 0.5. With ω0 = 2πk0
N we

therefore get as frequency estimation

ωp ≈ 2 arcsin
(

γ(ω0)
2fs

)
(4.29)

or with fp being the partial’s frequency in Hz:

fp ≈
fs

π
arcsin

(
|X ′

DFT(k0)|
2fs|XDFT(k0)|

)
(4.30)

The estimation error is consequently not made in the approximation of the derivative of the
input signal, but by evaluating γ(ω) only at the DFT sample points instead of at the exact
(but unknown) frequency ωp.

For the amplitude estimation we again neglect the contributions of negative mirror fre-
quencies. It is then based on the frequency estimation and the gain of the window at the
computed fractional frequency, i. e.

Ap = 2
|XDFT(k0)|
|W (ωp − ω0)|

(4.31)

This requires the discrete-time Fourier transform of the window function, which is for most
of the common windows given by analytical expressions. Otherwise a lookup table can be
used, which is be pre-computed by highly oversampling the analysis window (zero-padding
the time window before applying the DFT).

4.2.2. Spectral Reassignment

Spectral Reassignment was initially designed by Kodera, Gendrin and Villedary to improve
the readability of spectrograms [19]. Due to difficulties when implementing it in practice it
was not widely used. Auger and Flandrin reformulated the algorithm [5, 4] and generalized
it for all kinds of bilinear transforms. They presented efficient ways for implementing it and
showed its practical use for audio analysis.

In classical short time Fourier analysis (STFT) the energy of a windowed signal frame is
represented in single points, which are given by the centre of the analysis window (with a
given length and overlap factor). The spectrogram is so not continuous, but discrete in time
(determined by the hop size of the window) and discrete in frequency (determined by the
window and DFT length). The idea of spectrum reassignment is, to move these points away
from the time-frequency lattice to the centre of gravity of the energy included in the window.
I. e. the point representing the frames energy is not any more in the centre of the window,
but on the position where most of the energy is located in the window (as it is in the general
case unevenly distributed). This leads to a reassignment of both the time and the frequency
value. This is done by exploiting the phase information which is provided by the DFT but
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not used in e. g. all the interpolation based methods. It helps to reduce the smearing of
energy and to sharpen the amplitude and frequency estimates provided by the spectrogram
[15]. An application to natural speech signals is presented in [33].

For a given time signal frame, the frequency reassignment is done by the following steps:
First, the time signal x[n] is multiplied with an arbitrary analysis window function w[n] and
its discrete Fourier transform XDFT ,w(k) is computed. Second, the DFT XDFT ,w ’(k) of the
same signal frame x[n] is evaluated, but instead using the analysis window w[n] its analytical
derivative w′[n] is applied.

For a given partial in the input signal we get a maximum in the magnitude spectrum
|XDFT ,w(k)| at k = k0. The frequency reassignment fp for this partial is then given by

fp =
k0fs

N
− fs

2π
=
{

XDFT ,w ’(k0)
XDFT ,w(k0)

}
(4.32)

The theoretical background which leads to this expression is explained in detail in [5] and
not repeated here.

This reassigned frequency is directly used as estimation for the partial. The amplitude
is again estimated using the shape of the window main lobe, in the same way as shown in
equation 4.31 on the previous page.

4.2.3. Phase Vocoder

Similar to the spectral reassignment method, the phase vocoder approach uses the phases of
the complex DFT coefficients to improve the accuracy in frequency and amplitude estimation.
Puckette and Brown give in [37] a thorough presentation on this. For implementation details
please refer to [11, p. 337].

The basic idea is, that the fundamental frequency ωp of a partial is mathematically given
by the derivative of the instantaneous phase, i. e. ωp = dφ(n)

dn . We approximate this derivative
by the phase difference between two DFTs separated by the hop size H. To get a frequency
estimation, this phase difference is evaluated at the local maximum of the first DFT and
divided by the used hop size. So ωp ≈ ∆φ(k0)

H .
Figure 4.5 on the following page shows the basic framework: Similar to the STFT the

input signal is framed with an analysis window of length N , starting at every Hth sample,
with H being the hop size. For two consecutive windows (only shifted by the hop size) the
corresponding DFTs XDFT ,1 (k) and XDFT ,2 (k) are computed. At the local maximum k = k0

of XDFT ,1 (k) the phases of XDFT ,1 (k0) and XDFT ,2 (k0) are computed, unwrapped, and their
difference divided by the hop size H. This results in the frequency estimation ωp.

The amplitude is again estimated using the shape of the window main lobe, in the same
way as shown in equation 4.31 on the previous page.
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Figure 4.5.: Block diagram of the phase vocoder used for frequency estimation. [37]
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Chapter 5.

Frequency Estimators based on Shifted
Fourier Transforms

We will introduce in this chapter two estimation methods based on shifted Fourier transforms.
They promise good results in terms of numerical exactness.

5.1. Motivation

In order to understand their usefulness and advantages, we take a look at the motivation
behind these methods.

5.1.1. MDCT in Perceptual Audio Coding

The MDCT in combination with the sinusoidal window (square root of a shifted Hann win-
dow) is widely used in audio coding. It can be computed efficiently (e. g. [27]) and the energy
compaction is known to be good (although the differences are marginal [47]). Furthermore it
showed up that it serves as a very suitable filter bank for perceptual audio coders, applied e. g.
in the MPEG audio coders MPEG-1 Layer 3 and MPEG-2 AAC. For detailed information
on perceptual audio coders please refer to the excellent review and tutorial by Painter and
Spanias [31].

Figure 5.1 on the following page shows a simplified block diagram of the MPEG-2 AAC
coder, which is common to most MDCT based audio coders. A frequency domain represen-
tation of the audio signal is computed with the MDCT, usually using a sine window or a
Kaiser-Bessel derived window (KBD window). By requantisation a quantiser reduces the
number of bits used for coding every MDCT coefficient to a value, which is provided by
the psychoacoustic model (quantisation noise shaping). The psychoacoustic model is mostly
based on temporal and frequency masking and requires therefore the computation of an FFT
to compute the masking thresholds and the maximum allowed quantization noise level. In
the MPEG standard a Hann window is used in combination with the FFT.

For computational simplicity it would be desirable, to replace the two different frequency
transforms by one transformation which is then common to the audio coding and the psy-
choacoustic model. We showed in chapter 3.5 on page 23 that the shifted DFTs and the
MDCT are closely related to each other. We can express the MDCT by taking the real part
of the complex ODFT coefficients (shifted by a constant phase term) and therefore replace
in the audio coder model the DFT and the MDCT by the ODFT [14]. Figure 5.2 on the
following page illustrates this.
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Figure 5.1.: Block diagram of a MDCT based audio coder (e. g. MPEG-2 AAC). [46]
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Figure 5.2.: Modified structure for a MDCT based audio coder using ODFT. [46]

In [46] instead of the ODFT another shifted DFT is used, which has a frequency shift
b = v = 0.5 and a time shift of a = u = N+1

2 . So the constant phase shift of the coefficients
to get the MDCT values is not necessary there anymore.

Nevertheless we focus on the ODFT representation (a = 0, b = 1
2), as the resulting

spectrum is much closer to the DFT spectrum and the obtained MDCT coefficients are
identical anyway.

As a consequence for both the signal coding part and the psychoacoustic model the same
sine window is used then. The use of a e. g. Hann window is impossible, as perfect recon-
struction in the signal coding part would not be maintained anymore. The impact of the use
of the sine window instead of the Hann window in the psychoacoustic model is examined in
detail in [21]. The result is, that the use of the sine or the KBD window does not make any
difference to the final masking threshold compared to when the Hann window is used.

In [23] a similar approach for the MP3-encoder MPEG1 Layer3 is proposed. It is based
on the same idea, uses the complex CMDCT and considers the additional filter bank that is
present in the analysis stage.

From this perspective it is not astonishing anymore that we want to carry out parameter
estimation based on the ODFT.

Daudet and Sandler presented a “pure MDCT” coder which approximates the FFT by
the regularized S-spectrum [7]. They estimate the parameters directly from the MDCT
coefficients with the method described below in section 5.4.
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5.1.2. MDCT Domain Processing

Compressed domain processing is in [22, ch.6] defined as “. . . the ability to perform modifica-
tions on the audio while in its compressed form.” Its importance is showed in detail there.
The goal is to do modifications on the sound or even only feature-extraction without hav-
ing to perform a time-consuming decoding and furthermore quality-degrading re-encoding
of the audio data. As shown above, many common audio coder outputs basically consist of
re-quantised MDCT coefficients. For a large number of processing applications the first step
is the extraction of parameters of the sound’s frequency content.

So a method to perform parameter estimation directly from the MDCT coefficients is
desirable. The only algorithm we found that is capable of doing this is the MDCT estimator
presented in section 5.4. In its original version, as published in [26], it is capable of detecting
only the most dominant spectral peak per frame. We will generalize the method to detect as
much partials of the input sound as possible.

5.2. Frequency Response of the Sinusoidal Analysis Window

In the same way as for most of the methods shown in chapter 4, for simplicity we restrict the
theoretical description of the estimators on a single sinusoid which is stationary within the
analysis frame. This is by far the biggest limitation. We so assume that the partials are only
slowly changing over time. Furthermore they must be widely spaced in frequency, so that
their spectral components do not interfere significantly. Nevertheless, as shown in chapter
6.5, the estimators still perform quite well when analysing musical sounds which do not fully
hold the given constraints anymore.

So we assume a discrete-time sinusoidal input x[n] as defined in equation 2.2 on page 11,

x[n] = A sin
[
2π

N
(l0 + ∆l)n + Φ

]
with l = l0 + ∆l

(5.1)

where l is the normalized frequency (or frequency in DFT bins), l0 its integer part and ∆l
its fractional part (so 0 ≤ ∆l < 1).

This input is windowed by a sinusoidal window h[n] as defined in equation 3.23 on page 21.

h[n] =

{
sin
(

π
N (n + 1

2)
)

if 0 ≤ n ≤ N − 1
0 else

(5.2)

This sinusoidal window is as well a plain sinusoid as defined in equation 5.1, with

A = 1 l =
1
2

ω0 =
π

N
Φ =

2π

4N
(5.3)

and which is multiplied by a rectangular window r[n] of length N .

r[n] =

{
1 if 0 ≤ n ≤ N − 1
0 else.

(5.4)
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In the following steps we derive analytically the discrete-time Fourier transform (DTFT)
of the analysis window h[n]. (We thereby omit the subscript ‘DTFT’ for the frequency
representations RDTFT(ω), HDTFT(ω) and XDTFT(ω).)

With z ∈ Z being an arbitrary complex number, the so-called geometric series and its
closed form are given by the following formula [29]:

N2∑
n=N1

zn =
zN1 − zN2+1

1− z
with N1 ≤ N2 (5.5)

which gives
N−1∑
n=0

zn =
1− zN

1− z
(5.6)

With the aid of that the DTFT R(ω) of the rectangular window r[n] calculates to:

R(ω) =
∞∑

n=−∞
r[n]e−jωn =

N−1∑
n=0

1(e−jω)n

=
1− e−jωN

1− e−jω
=

e−jωN/2(ejωN/2 − e−jωN/2) 1
2j

e−jω/2(ejω/2 − e−jω/2) 1
2j

= e−jω/2(N−1) sin(ωN/2)
sin(ω/2)

(5.7)

With ω = ω0 and with δ(l) being the Kronecker delta defined by

δ(l) =

{
1 for l = 0
0 else

(5.8)

one period of the DTFT of the sinusoid x[n] is given by:

X(ω) =
A

2j

[
ejΦδ(ω − ω0)− e−jΦδ(ω + ω0)

]
(5.9)

The longish proof for that is shown in [30] and not repeated here.
The window h[n] is a sinusoid multiplied by a rectangular window r[n]. As a consequence,

its DTFT H(ω) can be easily computed by convolution of X(ω) and R(ω):

H(ω) = X(ω) ∗R(ω)

=
A

2j

[
ejΦR(ω − ω0)− e−jΦR(ω + ω0)

] (5.10)

With the values given in equation 5.3 on the preceding page and equation 5.7 H(ω) can be
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expressed as:

H(ω) =
1
2
ej 3π

2

[
ej 2π

4N e−j 1
2
(ω− π

N
)(N−1) sin[(ω − π

N )N
2 ]

sin[(ω − π
N )1

2 ]

−e−j 2π
4N e−j 1

2
(ω+ π

N
)(N−1) sin[(ω + π

N )N
2 ]

sin[(ω + π
N )1

2 ]

]

=
1
2

[
e−j ω

2
(N−1) cos(ωN

2 )
sin( π

2N − ω
2 )

+ e−j ω
2
(N−1) cos(ωN

2 )
sin( π

2N + ω
2 )

]

This gives as final result:

H(ω) =
1
2
e−j ω

2
(N−1) cos

(
ωN

2

)[
1

sin( π
2N + ω

2 )
+

1
sin( π

2N − ω
2 )

]
(5.11)

As H(ω)|ω=0 = 1
sin( π

2N
) , the normalized frequency response Ĥ(ω) evaluates to

Ĥ(ω) =
1
2
e−j ω

2
(N−1) sin

(
π

2N

)
cos
(

ωN

2

)[
1

sin( π
2N + ω

2 )
+

1
sin( π

2N − ω
2 )

]
(5.12)

One can see in equation 5.11 already, that the frequency response is a sum of two components
H1 and H2 differing only in the 1

sin term within the brackets. Figure 5.3 on the following
page illustrates this. Its frequency axes are given in DFT-bins (ω = k · 2π

N ).
Subplots (a) and (b) (real and imaginary part) show, that the two components H1(ω) and

H2(ω) are identical, except that one of them is mirrored around the y-axis. They add up
to H(ω). In the magnitude plot (subplot (c)) it is not visible anymore that the frequency
response of the window actually consists of two overlying spectral components. It has zeros
at

ω = ±
(

π

N
+ k

2π

N

)
with k integer, k ≥ 1. (5.13)

The width of the main lobe is 32π
N or three frequency bins. As a consequence, in a corre-

sponding DFT spectrum with sinusoidal input no more than three bins are excited by the
main lobe.

The phase plot in sub-figure (d) demonstrates the linear phase property of this special
window. The linear phase can be shown as well directly with the definition h[n] of the
window, as it fulfils the condition h[n] = h[N − 1 − n]. Please notice that the phase jumps
of π are positioned at the zeros of H(ω).

The width of the side lobes is one bin, the highest side lobe is at -23 dB and an approxi-
mation for the side lobe falloff for high frequencies is given in [13].

Furthermore subplot (c) gives some insight on how the input signal’s power is distributed
after a transformation on the different spectral peaks. It is twice split up to finally four
different locations: on the one hand to the positive and to the negative mirror frequencies,
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Figure 5.3.: Frequency response of the normalized sinusoidal window Ĥ(ω).

and on the other hand to the two spectral components of the window frequency response as
shown in the plot. Including the factor N which will be introduced by the discretisation of
the Fourier transform, in our equations the amplitude factor will show up with |NA|

4 .
We therefore want to normalize the frequency response in a way, so that the maximum of

|Ĥ1(ω)| at ω = π
N (which equals |Ĥ( π

N )|) equals one. |Ĥ1(ω)| has a zero at this point which
is lifted by a pole at the same location. We therefore compute the limit by:

lim
ω→ π

N

|Ĥ1(ω)| = lim
ω→ π

N

[
1
2

sin( π
2N )

cos(ωN
2 )

sin( π
2N − ω

2 )

]

= lim
z→0

[
1
2

sin( π
2N )

sin( z
2)

sin( z
2N )

]
with z := ωN − π (5.14)

= N
2 sin( π

2N ) with l’Hospital’s rule

≈ π

4
for N �

As a consequence we rescale our normalized frequency response |Ĥ(ω)| by the multiplicative
factor 2

N sin(
π

2N )
≈ 4

π .
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5.3. ODFT Analysis of a Sinusoidal Input

We stepwise derive this method based on the ODFT, which was recently published by Aníbal
J. S. Ferreira in [14].

We assume the input signal x[n] as given in equation 5.1 on page 38 with a given frequency l.
The task is, to determine l0 and ∆l from the signal’s ODFT spectrum.

Because in time domain x[n] is windowed by h[n], this means that their DTFT spectra are
convoluted and the resulting spectrum Y (ω) is basically H(ω) frequency shifted (modulated)
to the frequency l of the input sinusoid. In the strict sense, H(ω) is as well modulated to
the negative mirror frequency −l, which gives additional small components in the positive
frequency range.

As an approximation we neglect these aliasing terms. Usually not being a big restriction,
this increases the estimation error for very low and very high frequencies. By doing this we
do not take into account components that are caused by the second term of equation 5.9 on
page 39 and approximate it by:

X(ω) ≈ A

2j
ejΦδ(ω − ω0) for 0 ≤ ω ≤ π. (5.15)

As shown in chapter 3.2, the ODFT YODFT(k) is then obtained by taking samples of Y (ω)
at the frequency points ωk = 2π

N (k + 1
2).

Figure 5.4 shows a typical situation of the ODFT coefficients around the input frequency
l. In this case l = 100.3, so l0 = 100 and ∆l = 0.3. With the used window length N=1024
this corresponds to a normalized frequency of ω0 = 2πl

N = 0.61543.
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Figure 5.4.: ODFT coefficients of a windowed sinusoid with frequency l = 100.3.

Figure 5.5 on the following page gives a qualitative overview on possible magnitude pro-
portions of the three ODFT bins that are excited by a sinusoid. Their relation is dependent
on ∆l only. YODFT(l0) is a local maximum in the cases (b), (c) and (d). Therefore, l0 can be
easily determined by scanning YODFT(k) for its local maximum. In case (a), where only two
bins at all show up and have the same magnitude, the higher number coefficient on the right
gives the correct value.

Furthermore, obviously the relative magnitude of the ODFT coefficients l0 − 1 and l0 + 1
give information about ∆l. We will exploit this fact to determine the input frequency of the
sinusoid. As you can see on the figures, all coefficients are determined by the window main
lobe, which we will fit into the local maximum l0 and its two neighbours.
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Figure 5.5.: Proportions of the ODFT magnitude coefficients l0 − 1, l0 and l0 + 1 with an input
sinusoid of frequency ω = 2π

N (l0 + ∆l) (denoted by ‘∗’).

Extraction of the Frequency

Let us define an amplitude scaling factor κ corresponding to equation 5.14 on page 41:

κ =
|NA|

4
2

N sin( π
2N )

(5.16)

From figure 5.4 on the preceding page we can easily derive the connection between the
magnitudes of our three ODFT coefficients YODFT(k) and the window frequency response
Ĥ(ω):

|YODFT(l0 − 1)|= κ|Ĥ
(

2π
N (0−∆l − 1

2)
)
| = κ|Ĥ

(
2π
N (∆l + 1

2)
)
| (5.17)

|YODFT(l0)| = κ|Ĥ
(

2π
N (0−∆l + 1

2)
)
| = κ|Ĥ

(
2π
N (∆l − 1

2)
)
| (5.18)

|YODFT(l0 + 1)|= κ|Ĥ
(

2π
N (0−∆l + 3

2)
)
| = κ|Ĥ

(
2π
N (∆l − 3

2)
)
| (5.19)

The ratio of two of these signals is given by:

|YODFT(l0 − 1)|
|YODFT(l0 + 1)|

=
|Ĥ
(

2π
N (∆l + 1

2)
)
|

|Ĥ
(

2π
N (∆l − 3

2)
)
|

(5.20)

The left side of this equation consists of measured values from the ODFT spectrum, the
right hand side is an analytical expression, in which the only unknown is ∆l. As a consequence,
it is – at least in theory – possible to extract ∆l from this equation.

Unfortunately |Ĥ(ω)| is an analytically complex expression, so that we cannot easily extract
∆l from that. Because of this, we introduce a more simple function which models the main
lobe of |Ĥ(ω)|. This is of course an approximation only. Therefore this method is somehow
similar to e. g. the parabolic interpolation method, which models the window main lobe by
a parabola.

As approximation we use the following function, which is traceable by the parameter G:

|Ĥ(ω)| ≈
[
cos
(

Nω

6

)]G

with |ω| < 3π

N
(5.21)

Parameter G is an arbitrary real constant. In [14] an optimization process on G was carried
out. Its best value to minimize the maximum absolute frequency estimation error was found
and given with G = 1.37.
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We can now exchange |Ĥ(ω)| in equation 5.20 on the previous page by the approximated
|Ĥ(ω)| and easily resolve this new equation for ∆l, which ends up in:

∆l ≈ 3
π

arctan

 √
3

2 G

√
|YODFT (l0−1)|
|YODFT (l0+1)| + 1

 (5.22)

This is the final estimation of the input frequency l, l0 given through the local maximum
and ∆l approximated by equation 5.22.

Extraction of the Phase

The phase estimation is based on the value of ∆l, so its estimation error mainly depends on
an accurate frequency estimation.

The phase of a coefficient YODFT(l0) is determined by three components:

1. Phase shift ejΦ given by the initial phase Φ (equation 5.9 on page 39).

2. Phase shift e−j π
2 given by the input transform X(ω) (equation 5.9).

3. Phase shift e−j ω
2
(N−1) given by the window frequency response H(ω) in equation 5.11,

with ω = 2π
N (1

2 −∆l), which is derived from figure 5.4 again.

So the phase for the l0-th ODFT coefficient evaluates to:

∠(YODFT(l0)) = Φ− π

2
− π

N
(N − 1)(1

2 −∆l)

= Φ + ∆lπ(1− 1
N )− π(1− 1

2N )
(5.23)

Resolved for Φ and with ∆l from equation 5.22 we get the estimation for the initial phase of
the input sinusoid:

Φ = ∠(YODFT(l0))−∆lπ(1− 1
N ) + π(1− 1

2N ) (5.24)

As mentioned before, the estimation error of ∆l propagates linearly into the phase estimation.

Extraction of the Amplitude

In the same way as the phase, the amplitude estimation is based on an accurate extraction of
∆l. Furthermore, it is based on a main lobe model similar to equation 5.21 on the previous
page, with the slight difference that only a smaller part of the main lobe is modelled.

|Ĥ(ω)| ≈
[
cos
(

Nω

6

)]F

with |ω| ≤ π

N
(5.25)

Again Ĥ(ω) was optimized in [14] in the parameter F and the smallest relative magnitude
estimation error showed up for F = 1.65. This value is different from G (as seen above), as
not the whole main lobe has to be covered by the model.

To get the amplitude, we use the same relation as in equation 5.18. The rescaling is done
similar to equation 5.14 on page 41, but using the approximation model to get the rescaling
factor:

|Ĥ( π
N )| ≈

[
cos
(π

6

)]F
=
[√

3
2

]F
(5.26)
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Putting all this together results in:

|YODFT(l0)| ≈
|NA|

4

[
2√
3

]F
|Ĥ
(

2π
N (∆l − 1

2)
)
|

≈ |NA|
4

[
2√
3
cos(π

6 (2∆l − 1))
]F (5.27)

So finally the estimation for the amplitude is given by resolving this equation for A:

A ≈ 4|YODFT(l0)|
N

[ √
3

2 cos(π
6 (2∆l − 1))

]F

(5.28)

Extension to Sounds with Multiple Sinusoidal Components

In the same way as with the conventional methods described before, the ODFT magnitude
spectrum is searched for local maxima. These are considered as the integer parts l0 of
the partials frequencies. Together with their left and right hand side neighbour bins the
parameters for every peak are separately estimated.

5.4. MDCT Analysis of a Sinusoidal Input

In the section before, we got the frequency representation by the ODFT and extracted the
signal parameters from that spectrum. If required, the MDCT coefficients are then obtained
from equation 3.30 on page 24.

Another approach, recently published by Merdjani and Daudet in [26], estimates the pa-
rameters directly from the MDCT coefficients. The following section will now derive this
method including the enhancement for multiple peaks.

We first want to get an explicit expression for the MDCT coefficients of a sinusoidal signal
which is windowed by the sinusoidal window. For the derivation we start from the MDCT
definition X ′

MDCT(k) as given by Daudet in [26] together with the corresponding window
and input signal definitions. They slightly differ from the usually used representation as
introduced in chapter 3.4. We will therefore implicitly give the connection between these
two variants, by reshaping it to a form as given by equation 3.30 on page 24. Dashes after a
variable, like X ′, h′, etc., depict the functions or sequences as defined by Daudet in [26].

X ′
MDCT(k) =

3L
2
−1∑

n=−L
2

h′[n] x′[n]

√
2
L

cos
[

2π

2L

(
n +

1
2

)(
k +

1
2

)]
(5.29)

We substitute 2L by N and the summation index n by q = n + N
4 and get:

X ′
MDCT(k) =

N−1∑
q=0

h′[q − N
4 ] x′[q − N

4 ]

√
4
N

cos
[
2π

N

(
q +

1
2
− N

4

)(
k +

1
2

)]
(5.30)

Let us define h[n] and x[n] similar to equation 5.1 and 5.2 on page 38. In contrast to [26] we
do not use the sliding window formalism here and therefore set the frame index p = 0.

h[q] :=

{
h′[q − N

4 ] = sin
[

π
N (q + 1

2)
]

if 0 ≤ q ≤ N − 1
0 else

(5.31)
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x[q] := x′[q − N
4 ] = A sin

[
2π

N
f(q − N

4 ) + Φ′
]

(5.32)

With substituting l := f and setting the initial phase

Φ := Φ′ − l
π

2
(5.33)

we get:

x[q] = A sin
[
2π

N
lq + Φ

]
(5.34)

With cos(−x) = cos(x) we can now rewrite equation 5.30 by:

X ′
MDCT(k) =

N−1∑
q=0

√
4
N

h[q] x[q] cos
[
−2π

N

(
q +

1
2
− N

4

)(
k +

1
2

)]

= <


N−1∑
q=0

√
4
N

h[q] x[q]e−j 2π
N (q+ 1

2
−N

4 )(k+ 1
2)


= <

e−j 2π
N ( 1

2
−N

4 )(k+ 1
2)
√

4
N

N−1∑
q=0

h[q] x[q]e−j 2π
N (k+ 1

2)q

 (5.35)

The equation is now of the form as shown in equation 3.30 on page 24 again. Its kernel is
an ODFT transform of the input signal x[n] as defined before, just with another initial phase
term. Additionally, we have a slightly different constant phase shift Φk.

We express equation 5.35 by

X ′
MDCT(k) = <{zk} = <

{
rk · ejθk

}
= rk cos(θk) (5.36)

in order to compute magnitude rk and phase ejθk of the complex expression zk in 5.35
separately.

As we have an ODFT transform again, we can completely reuse the knowledge we gained
from sections 5.2 and 5.3.

So the following terms contribute to the phase of zk:

1. Phase shift given by the modified initial phase Φ (equations 5.23 and 5.33):

ejΦ = ejΦ′
e−jl π

2 (5.37)

2. Phase shift given by the input transform X(ω) (equations 5.15 and 5.23):

e−j π
2 (5.38)

3. Phase shift given by the window frequency response H(ω − ω0) with ω = 2π
N (k + 1

2)
and ω0 = 2π

N l (equations 5.11, 5.34 and 5.35):

e−j
ω−ω0

2
(N−1) = e−j π

N
(k+ 1

2
−l)(N−1) (5.39)
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4. Phase shift given by the ODFT to MDCT transform (equation 5.35):

e−j 2π
N ( 1

2
−N

4 )(k+ 1
2) (5.40)

The longish process of putting all four terms together, evaluating the products and regroup-
ing gives:

ejθk = ej{Φ′−l π
2
−π

2
− π

N
(k+ 1

2
−l)(N−1)− 2π

N ( 1
2
−N

4 )(k+ 1
2)} (5.41)

= ej{Φ′− 3
4
π− k

2
π+(N−1

N
− 1

2)lπ} (5.42)

= (−1)ke
j

{
Φ′− 3

4
π+ k

2
π+

N
2 −1

N
lπ

}
with ejπk = (−1)k, k integer (5.43)

We compute rk, the magnitude of zk in the same way:

1. Amplitude term given by the input transform X(ω) (equation 5.15): A
2

2. Amplitude term given by the scaling factor in equation 5.35:
√

4
N

3. Amplitude terms given by the window frequency response H(ω−ω0) with ω = 2π
N (k+ 1

2)
and ω0 = 2π

N l (equations 5.11, 5.34 and 5.35):

1
2

cos
(
π(k + 1

2 − l)
) [ 1

sin( π
2N + π

N (k + 1
2 − l))

+
1

sin( π
2N − π

N (k + 1
2 − l))

]

=
1
2
(−1)k sin(πl)

[
1

sin( π
N (k − l + 1))

+
1

sin(− π
N (k − l))

]
(5.44)

Putting these three terms together results in the magnitude rk:

rk =
A

2
√

N
(−1)k sin(πl)

[
1

sin( π
N (k − l + 1))

+
1

sin(− π
N (k − l))

]
(5.45)

This is an expression similar to the one given by equation 5.11 on page 40. Ferreira introduced
as approximation model a simple cosine function as given in equation 5.21 on page 43 in oder
to overcome the analytical complexity of this equation. We here go another way, which makes
the basic difference between these two methods.

As we are looking for an expression for the purpose of peak extraction, we will later on use
this equation only in the vicinity of the input frequency l, so k− l is always a relatively small
number. As N is large, the arguments of the two sine functions within the square brackets,
which are basically of the structure k−l

N , are small and we can use the approximation

sin(x) ≈ x for x � (5.46)

The error that is made by this approximation gets smaller with increasing N .
By doing this, equation 5.45 becomes to:

rk ≈ (−1)kA

√
N

2π
sin(πl)

[
1

(k − l + 1)
+

1
l − k

]
= (−1)k

√
N

2π

−A sin(πl)
(l − k)(l − k − 1)

(5.47)

47



Chapter 5. Frequency Estimators based on Shifted Fourier Transforms

We can now put rk from equation 5.47 and θk from equation 5.43 on the previous page back
into equation 5.36 on page 46 to get our final explicit expression for the MDCT coefficients
X ′

MDCT(k):

X ′
MDCT(k) ≈ −

√
N

2π

A sin(πl)
(l − k)(l − k − 1)

cos

[
Φ′ − 3

4
π +

k

2
π +

N
2 − 1
N

lπ

]
(5.48)

Although starting from the same prerequisites, Daudet provides in [26] a different result
for this equation. In his result an additional addend of π

2 shows up in the cosine term.
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Figure 5.6.: MDCT coefficients of a sine and a cosine signal of frequency l=100.3 bins and its approx-
imations (N=1024).

Figure 5.6 show a plot of the MDCT transform of a sine function with frequency l = 100.3,
initial phase Φ′ = π

5 and amplitude A = 0.8 as defined in equations 5.1 and 5.29 and its
corresponding approximation X1 as given by 5.48. Furthermore it plots the approximation
formula X2 which is given in [26]. Although otherwise stated in the paper, this is obviously
the MDCT transform of a cosine function with the same frequency and initial phase, which
is plotted as well. This can also be easily derived from equation 5.48 by rewriting the input
cosine by a sine function with an additional initial phase of π

2 :

x[n] = A cos
[
2π

N
ln + Φ

]
= A sin

[
2π

N
ln + Φ +

π

2

]
(5.49)

This changes then equation 5.48 to the one published in [26].
Additionally please notice, that for this simple case of single sinusoids the initial phase shift

is nothing else than a time shift of the input signal. Nevertheless this time shift has obviously
(figure 5.6) a big impact on the resulting MDCT coefficients. Paper [7] gives more details
on the non-invariance of the MDCT coefficients in respect to time shifts and its impact on
audio coding.

Extraction of the Frequency

Extracting the integer part l0 of the input frequency l is not as straightforward as before.
Figure 5.7 on the following page illustrates this. In all three cases l0 = 100, but nevertheless
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coefficient l0−1, l0 or l0+1 can be the local maximum, depending on the fractional frequency
∆l and the initial phase Φ′.
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Figure 5.7.: MDCT coefficients of windowed sinusoids with different fractional frequency ∆l and
initial phase Φ′.

In order to circumvent this problem, we represent the MDCT coefficients in a regularized
spectrum [7], which coefficients are defined by the corresponding MDCT coefficient and its
direct neighbours:

S(k) =
√

(XMDCT(k))2 + (XMDCT(k + 1)−XMDCT(k − 1))2

with 0 ≤ k ≤ N
2 − 1 and XMDCT(−1) = XMDCT(N

2 ) = 0.
(5.50)

If we neglect the aliasing terms from negative frequencies again, this so called S-spectrum
has its absolute maximum always at the frequency bin l0 [6, 26]. As a consequence, we
obtain the integer part of the input frequency l0 by computing the S-spectrum from the
MDCT coefficients and scanning the spectrum for the absolute maximum.

In order to get the fractional part ∆l, we replace l in equation 5.48 on the previous page by
l0 + ∆l. Then the amplitude ratio α between the two neighbouring peaks is on the one hand
given by the actual MDCT coefficients, and can be on the other hand expressed in terms
of the approximated explicit expressions. This equation can then be resolved for ∆l. So we
define α as:

α = −XMDCT(l0 − 1)
XMDCT(l0 + 1)

(5.51)

We put equation 5.48 into this equation, and after cancelling and regrouping α becomes to:

α =
(∆l − 1)(∆l − 2)

(∆l + 1)∆l
(5.52)

As ∆l is by definition (eqn. 5.1) 0 ≤ ∆l < 1, the two terms in the numerator are both always
negative (or zero), and the denominator is alway positive, so we could adhere that α ≥ 0
always. Solving this equation for ∆l (a second order polynomial) gives exactly one solution
which lies in the valid range of ∆l:

∆l =
3 + α−

√
α2 + 14α + 1

2(1− α)
with α 6= 1 (5.53)
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For the pole at α = 1, which means that the two coefficients have same amplitude but
opposite sign, ∆l evaluates to ∆l = 0.5. This equation together with the local maximum of
the S-spectrum at l0 is the frequency estimation.

Nevertheless, as stated in [26], there are in practice cases, where the two coefficients at
l0 − 1 and l0 + 1 are both very small and therefore α becomes fault-prone and leads to
spurious results. In these cases then the next two neighbouring coefficients l0 − 2 and l0 + 2
are automatically large, and we better consider the ratio β between these two coefficients:

β =
XMDCT(l0 − 2)
XMDCT(l0 + 2)

(5.54)

In the same way as before ∆l computes to

∆l =
5 + 3β −

√
β2 + 62β + 1

2(1− β)
with β 6= 1 (5.55)

and ∆l = 0.5 for β = 1.
The decision whether to use α or β to estimate ∆l bases on a ratio λ defined by

λ =
|XMDCT(l0)|

S(l0)
(5.56)

Considering the definition for S(k) in equation 5.50 on the preceding page one can see that
S(l0) ≥ |XMDCT(l0)| always, so 0 ≤ λ ≤ 1. As more the value of S(l0) decreases down to its
minimum |XMDCT(l0)| (and so λ gets close to one), as more contribution to S(l0) is coming
from the coefficient l0. As a consequence the neighbour coefficients at l0 − 1 and l0 + 1 are
small. In [26] a threshold value of λ0 = 0.9685 is numerically derived. So if λ is below this
value, we use α to estimate ∆l, and β otherwise.

Additionally, in practice we cannot assume that α, β ≥ 0 always, as equation 5.48, from
which this assumption is derived from, is an approximation only. Therefore we have to
restrict the valid range for α and β to get meaningful results, as ∆l ∈ [0, 1[ only. Equation
5.53 resolves to ∆l = 1 for α = 0 and converges monotonously to ∆l = 0 for increasing α.
For negative α the result becomes complex (which is not meaningful here). Equation 5.55
resolves to ∆l = 1 for β = 1

3 and decreases monotonously to ∆l = 0 at β = 3. For negative
β the result becomes complex, again.

So if α /∈ [0,∞[ use β and if β /∈ [1/3, 3] use α. If both parameters are not in their valid
range, discard this peak, as the resulting out-of-range fractional frequency would result in a
very spurious amplitude estimation.

Extraction of the Phase

Extracting the phase Φ of the input sinusoid is not as straight forward as proposed in [26].
The process again uses the ratio between two adjacent coefficients. This is again on the
one hand given by the transform coefficients and on the other hand can be expressed by
equation 5.48 on page 48. After cancelling down and regrouping we get:

γ =
XMDCT(l0 − 1)

XMDCT(l0)
=

∆l − 1
∆l + 1

tan

[
Φ′ − 3

4
π +

l0
2

π +
N
2 − 1
N

(l0 + ∆l)π

]
(5.57)
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Please note, that in [26] another expression for this is given, which is probably only a type-
setting error. Furthermore the difference in equation 5.48 as described above propagates into
this equation. Resolving it for the initial phase Φ′ gives:

Φ′ = arctan
[
γ

∆l + 1
∆l − 1

]
+

3
4
π − l0

2
π −

N
2 − 1
N

(l0 + ∆l)π (5.58)

As the tan and arctan functions are periodic in π instead of 2π, we always only get the
initial phase reduced by kπ so that it is in a range between −π/2 and π/2, as:

a = tan(Φ) ⇔ Φ = arctan(a) + kπ (k ∈ Z) (5.59)

The “loss of information” about the phase occurs during the cancelling of terms in the
quotient of the two expressions for the MDCT coefficients and the substitution of sin(x)

cos(x) =
tan(x). We can determine the quadrant in which the phase angle has to be by looking at the
single coefficients itself.

Equation 5.48 becomes for the two used coefficients and using w1, w2 and Φt as abbrevia-
tions to:

XMDCT(l0) = −w2 sin[π(l0 + ∆l)] cos[Φ′ + Φt] (5.60)
XMDCT(l0 − 1) = −w1 sin[π(l0 + ∆l)] sin[Φ′ + Φt] (5.61)

with

w1 =
√

N

2π

A

(∆l + 1)∆l
≥ 0 w2 =

√
N

2π

A

(∆l − 1)∆l
≤ 0 (5.62)

Φt =

[
−3

4
π +

l0
2

π +
N
2 − 1
N

(l0 + ∆l)π

]
(5.63)

Equations 5.60 and 5.61 both define a specific range in which for given parameters the
sum of Φ′ + Φt lies. Table 5.1 shows four conditions. Two of them are always fulfilled and
therefore the quadrant in which Φ′ + Φt lies is fully determined.

Condition
Φ′ + Φt is in quadrant

I II III IV

XMDCT (l0−1)
− sin[π(l0+∆l)] ≥ 0 X X

XMDCT (l0−1)
− sin[π(l0+∆l)] < 0 X X

XMDCT (l0)
− sin[π(l0+∆l)] ≥ 0 X X

XMDCT (l0)
− sin[π(l0+∆l)] < 0 X X

Table 5.1.: Determination of the sinusoid’s initial phase quadrant in the MDCT domain.

We so compute Φ′ with equation 5.58, check if Φ′ + Φt lies in the required quadrant and
add or subtract π/2 or π accordingly.
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Extraction of the Amplitude

As we already estimated frequency and phase of the input sinusoid, we could directly extract
the amplitude using these two values. But in terms of error propagation we favourably use
two coefficients again and only the frequency estimation.

We first give two expressions which are the squares of two adjacent MDCT coefficients
multiplied by compatible factors. The motivation for that is to eliminate the cosine term by
applying the identity sin2(x) + cos2(x) = 1.

[∆l(∆l − 1)XMDCT(l0)]2 =

(√
N

2π
A sin(π∆l)

)2

cos2
[
Φ′ − 3

4
π +

l0
2

π +
N
2 − 1
N

lπ

]
(5.64)

[(∆l − 1)(∆l − 2)XMDCT(l0 + 1)]2 =

(√
N

2π
A sin(π∆l)

)2

sin2

[
Φ′ − 3

4
π +

l0
2

π +
N
2 − 1
N

lπ

]
(5.65)

These two equations added together result in:

ζr := [(∆l − 1)∆lXMDCT(l0)]
2 + [(∆l − 1)(∆l − 2)XMDCT(l0 + 1)]2 =

N

4π2
A2 sin2(π∆l)

(5.66)
Doing the same with the MDCT coefficients XMDCT(l0) and XMDCT(l0 − 1) results in:

ζl := [(∆l − 1)∆lXMDCT(l0)]
2 + [∆l(∆l + 1)XMDCT(l0 − 1)]2 =

N

4π2
A2 sin2(π∆l) (5.67)

We can compute the left side of the equations (abbreviated by ζl/r) from the given MDCT
coefficients and the estimated frequency. On the right side of the equation the only unknown
variables are the amplitudes, which so result in:

Al =

√
4π2ζl

N sin2(π∆l)
Ar =

√
4π2ζr

N sin2(π∆l)
(5.68)

In the theoretical case Al and Ar are identical. In practice this is hardly the case, as the
MDCT coefficients are disturbed by negative mirror frequency components, the influence of
other partials, and noise. We so use the normalized difference between the two amplitude
measures as a criteria to determine if the actual peak is caused by a partial in the input
signal or if we should better discard this peak.

No such test is performed in [26]. We use as final amplitude estimation the mean value
of the two amplitude estimations A = Al+Ar

2 and discard the peak, if the difference between
the two values (normalized by the smaller one of the two values) is bigger than a certain
percentage. So Al and Ar have to hold the condition:

|Ar −Al|
min[Al, Ar]

≤ adif (5.69)

A maximum ratio of adif = 0.05 gives satisfactory results.
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Extension to Sounds with Multiple Sinusoidal Components

In order to detect more than one partial of the signal, a local peak picking has to be performed.
The observation made above, that a partial of frequency l0 + ∆l induces a maximum in the
S-Spectrum at bin l0 still holds for the case of multiple widely spaced partials and considering
l0 as only local maximum of the spectrum. Unfortunately, the rather complex structure of the
MDCT and S-spectra are both by far not monotonously increasing or decreasing between even
widely separated peaks. So a simple search for local maxima does not give satisfactory results.
Too many local maxima are present in the spectrum which are caused by the transformation
and not by an actual partial.

Basically by inspection of spectra of known signals, a peak picking algorithm was developed
and is presented in this section.

In a first step, the MDCT spectrum is transformed to the S-Spectrum as described above.
It is shown in [7], that the S-Spectrum roughly approximates the DFT spectrum of the input
signal. In the same way as with the other parameter estimators, we set all values below a
certain threshold to zero. In the simulations we use a threshold of -80 dB in terms of power
of the DFT spectrum. Please note that the threshold value has to be multiplied with the
additional scaling factor

√
4
N , which originates from the applied MDCT definition (and is

not present in the DFT definition).
Beside the overall trend that a partial causes a local maximum, the actual values beside

the maximum peak down to low amplitudes show a periodic oscillation around that overall
trend. This results in unwanted local maxima at every second frequency bin. In order to
circumvent this, we apply a moving average filter of length two on the S-spectrum. This
results in an averaged S-spectrum, which we denote as Sa-spectrum.

Sa(k) =
S(k) + S(k−1)

2
(5.70)

We scan the Sa-spectrum for local maxima. We detect the locations of the biggest S-Spectrum
values in the direct vicinity (plus or minus one bin) of the Sa-maxima. These frequency bins
form a first set of candidates for being peaks caused by partials. Still, even in the noiseless
case and with a low number of partials, we have much more candidates than partials in the
used signal.

In a further step we only keep those candidates ki (with i denoting the ith candidate) which
hold the condition

Sa(ki) >
Sa(ki−1) + Sa(ki+1)

2
(5.71)

This translates with equation 5.70 into the equivalent condition:

S(ki) > S(ki−2)− S(ki−1) + S(ki+1) (5.72)

Again, there are still more candidates than partials in the input signal. Examining these
false candidates reveals, that at least one of the second neighbours of the peak candidates
(namely S(ki−2) or S(ki+2)) should have a by a certain factor athr smaller amplitude than
the candidates S-spectrum value S(ki). In other words, one of the following conditions has
to be fulfilled:

S(ki) >
S(ki−2)

athr
or S(ki) >

S(ki+2)
athr

(5.73)
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In practice, a threshold factor of athr = 0.5 turned out to work well (meaning that the
candidate must be at least double as big as the smallest of its second neighbours).

Unfortunately this last step removes in rare cases candidates which are actually induced
by a partial. To prevent this, we want to keep those peaks which have a very “symmetrical”
shape and have almost equally strong first and second neighbours. We therefore define

d0 = S(ki) (5.74)
d1 = S(ki−1)− S(ki+1) (5.75)
d2 = S(ki−2)− S(ki+2) (5.76)

and keep those which fulfil either the condition

|d1|+ |d2|
d0

< asym · sign(d1d2) (5.77)

or, in the special case that all five values S(ki−2) to S(ki+2) have the same sign, the condition:

|d1|+ |d2|
d0

< asym ·
1

100
(5.78)

In practice, setting parameter asym = 0.17 gives good results.
For every peak that is finally remaining after this filtering process, frequency and amplitude

are computed as described above.
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Chapter 6.

Systematic Performance Comparison

A main scope of this work is to present a concise overview on the performance of the different
parameter estimators. Inspired from previous work done by Keiler and Marchand in [17] and
in order to verify their results we implemented the parameter estimators shown in chapter 4
and 5. We test them with different test signals to determine their performance.

We restrict the survey on the accuracy of the amplitude and frequency estimation. In the
context of analysis for additive synthesis the estimation of the initial phase is usually omitted.
We therefore do not include phase estimation in the survey, although it might beneficial to
take this issue up again in a future extension.

Computational costs for the different methods highly depend on their implementation.
The estimators were implemented using Matlab by Mathworks. The computation time of
a method in Matlab does not provide a sufficient estimate for the numerical complexity of
one or the other method or its computational demand for execution in real time on a digital
signal processor.

In the following chapters we first take a look at the test setup and then describe the
simulation results.

6.1. Analysis Methods

The survey includes all parameter estimation methods mentioned in [17]. The implementa-
tions were cross-checked with the source code of Keiler’s and Marchand’s implementations,
that became available at a late state of the project. Additionally the survey includes two
parameter estimators based on shifted Fourier transforms, as they represent an essential part
of this work.

The following list provides an overview of the used parameters for the different analysis
methods. For a detailed description and the meaning of the parameters please refer to the
explanations of the estimators in the chapters 4 and 5.

1. Plain FFT with no Further Processing (PlainFFT)

• Analysis Window: Periodic Hann Window

• FFT magnitude threshold: -80 dB (Power)

2. Parabolic Interpolation (ParInt)

• Analysis Window: IFFT of a Parabola

• FFT magnitude threshold: -80 dB (Power)
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• Window shape error threshold: 0.3 (multiple of reference value)

3. Triangle Algorithm (TrglAlg)

• Analysis Window: IFFT of a Triangle (S = 2, Periodic Hann Window)

• FFT magnitude threshold: -80 dB (Power)

• Slope bandwidth S: 2 (frequency bins)

• Error energy threshold: 0.05 (multiple of reference energy)

• Phase error threshold: 0.8 (radians)

• Frequency difference threshold: 1 (frequency bins)

4. Spectrum Reassignment (SpcReass)

• Analysis Window: Periodic Hann Window

• FFT magnitude threshold: -80 dB (Power)

5. Derivative Algorithm (DrvAlg)

• Analysis Window: Periodic Hann Window

• FFT magnitude threshold: -80 dB (Power)

6. Phase Vocoder (PhsVoc)

• Analysis Window: Periodic Hann Window

• FFT magnitude threshold: -80 dB (Power)

• Hop size H between two analysis frames: 1 (frequency bin)

7. ODFT Analysis (OdftAlg)

• Analysis Window: Sinusoidal Window (square root of a shifted Hann window)

• FFT magnitude threshold: -80 dB (Power)

• Window main lobe approximation parameter G: 1.37 (scalar)

• Window main lobe approximation parameter F : 1.65 (scalar)

8. MDCT Analysis (MdctAlg)

• Analysis Window: Sinusoidal Window (square root of a shifted Hann window)

• FFT magnitude threshold: -80 dB (Power)

• Coefficient selection threshold λ0: 0.9685 (ratio)

• Amplitude difference threshold adif : 0.05 (ratio)

• Second neighbour magnitude threshold athr: 0.5 (multiple of peak magnitude)

• Symmetry threshold asym: 0.17 (ratio)
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All methods use the same window length and transform length of N = 1024 and a sample
rate of fs = 44100 Hz. For the amplitude estimation using the shape of the window main
lobe, a lookup table is used instead of the analytical expression. The spectrum of the window
is oversampled by a factor of 212. After the FFT the first 212 values form the lookup table.
These values are equivalent to a frequency range of one DFT bin (0 ≤ ∆l < 1).

The most important parameter for all the estimators is the choice of the analysis window.
The accuracy of several estimators varies highly with different windows. Some methods do
not work with every window, some others are even dependent on a special analysis window.
In the first sequence of tests every estimator is used in combination with that analysis window
with which the estimator performs best. Of course, in a specific application, other windows
than the ones optimum for the estimator might be preferable, depending on the input signal
and the information that should be extracted. As a consequence we additionally test all
methods with the periodic Hann window and the sinusoidal window (square root of a shifted
Hann window).

6.2. Test Signals

It is important to choose the right kinds and a wide variety of test signals. On the one
hand, they provide some insight on advantages and drawbacks of certain methods. On the
other hand, they can show limitations that are common to all estimators and given just by
the nature of the signal. Simple signals allow the study of the behaviour of the estimators.
Nevertheless this gives only a very limited picture on how the estimator performs for more
complex signals. This is especially the case when the assumptions made in the theoretic
derivations do not hold any more. The design of the test signals is similar to the ones used
in [17] in order to enable comparability and verifiability of results. Nevertheless there are
subtle implementation differences which result in slightly different numerics. Additionally in
[17] consistently cosine instead of sine functions are used to compute the signals.

6.2.1. Single Stationary Sinusoids

Single Stationary Sinusoids (SiStSi)

The first and simplest signal is the use of pure sine tones which are stationary within the
analysis frame. That means the amplitude and the frequency of the tone is constant and
does not change within the analysis window.

x[n] = A sin
[
2π

N
(l0 + ∆l)n + Φ

]
with l = l0 + ∆l

(6.1)

The tests are performed at different frequencies of the input sinusoid. We use an integer
frequency bin range from l0 = 5 to l0 = 100 (corresponding to a frequency range from
215 Hz to 4321 Hz). The number of frequencies within one integer frequency bin in this range
decreases logarithmically from 100 to 1 and results in a total number of 2090 sinusoids or
frames. We so give more weight to lower frequencies, in order to conform with perception
and the distribution of energy in most musical sounds. The fractional frequency ∆l is chosen
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randomly for every frame between 0 and 1 bin with a uniform distribution. For numerical
reproducibility of the results it is important to reset the random number generator to a
well defined state every time it is used. Figure 6.1 depicts the distribution of the chosen
frequencies.
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Figure 6.1.: Frequency of occurrence of tones with a certain frequency over (a) the tone’s pitch and
(b) the fractional frequency of the tone (histograms).

The initial phase Φ of each frame is set in a way so that there are no discontinuities between
the end of one frame and the beginning of the next frame. The amplitude is set to A = 1
and constant for all frames.

Single Stationary Sinusoids at Higher Frequencies (SiStSiMF)

This test uses the same signals as in the SiStSi case, except that only sinusoids with a
frequency at around one fourth of the sampling frequency are used. We can therefore assume,
that even for the worst analysis windows used there are practically no more contributions of
negative mirror frequencies in the observed spectrum. Beside analytical signals, which are
described later, this is the ‘cleanest’ test signal possible.

Single Stationary Sinusoids with High Noise Level (SiStSiHN)

To the pure stationary sinusoids random noise is added. In general the presence of noise
decreases the performance of the parameter estimators. They are differently stable against
the influence of noise, and spurious peaks are detected.

We use the same frequency distribution as in the SiStSi case with the same amplitudes
and initial phases. We add to this signal Gaussian white noise with a signal-to-noise ratio of
SNR = 12dB in terms of power.

The Gaussian white noise signal xn[n] is created using the Matlab randn() function, again
with the random number generator reset to a defined state. This results in a set of random
numbers with a mean value µ = 0 and a variance and standard deviation of σ2 = σ = 1 (for
an infinite number of samples).

We compute the power Psig of the pure sinusoidal signal and the power Pnoise of the noise
signal separately for every frame. [43, Signal Metrics]

Psig =
A2

2
Pnoise =

1
N

N−1∑
n=0

|xn[n]|2 (6.2)
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The required noise power P ′
noise is determined by the signal-to-noise ratio SNR and computes

to
P ′

noise = Psig · 10−0.1SNR (6.3)

We therefore rescale the amplitude of our noise signal by the multiplicative factor an:

an =

√
P ′

noise

Pnoise
(6.4)

Please note, that only for N → ∞ this value converges to an = A · 10−0.05SNR. The final
noisy test signal x′[n] is so given by:

x′[n] = x[n] + anxn[n] (6.5)

Single Stationary Sinusoids with Low Noise Level (SiStSiLN)

The SiStSiHN signal presented above is suitable for testing the stability of the estimators.
In practical applications one usually encounters a much lower noise level. We therefore use a
second test signal set with a signal-to-noise ratio of SNR = 40 dB. All other parameters are
set as in the SiStSiHN case.

6.2.2. Two Stationary Sinusoids (TwoStSi)

This set of test signals consists of a sum of two sinusoids with different frequencies, but which
are both stationary within the analysis frame.

This test reveals the influence of the window side lobes of one sinusoid on the estimation
accuracy of the other sinusoid, and how good or bad this is handled by the different estimators.
Furthermore, as closer the frequencies of the two sinusoids become as more difficult it is for
the estimators to distinct between the two sinusoids. This is closely related to the spectral
resolution of the applied transform and the analysis window.

The first of the two sinusoids has constant frequency of 10.3 frequency bins or f1 ≈ 444 Hz
over all frames. The frequency of the second sinusoid is as well constant within the analysis
frame, but the frequency difference between the two sinusoids is different in every frame.
Therefore the frequency of the second sinusoid increases stepwise (with a constant increment)
from 5 frequency bins (∼= 215 Hz) to 16 frequency bins (∼= 689 Hz) within the 1099 frames.
As the superposition of two sinusoids with exactly the same frequency would give misleading
results, we omit for the second sinusoid a frequency range of one percent of a half-tone around
the first sinusoid’s frequency. That means we skip a frequency interval of approximately
0.5Hz:

f2 /∈
[
2− 2(1/1200); 2(1/1200)

]
f1 (6.6)

Figure 6.2 on the following page shows the frequencies of the two sinusoids for all frames.
Both sinusoids have a constant amplitude of A = 0.8. The initial phase Φ of each sinusoid
is set again in a way so that there are no discontinuities in the resulting time signal between
the end of one frame and the beginning of the next frame.
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Figure 6.2.: Frequencies of the two stationary sinusoids in different analysis frames.

6.2.3. Single Non-Stationary Sinusoids

This test section contains signals which are single sinusoids but which are not anymore
stationary within the analysis frame. Their amplitude or frequency is modulated by another
function. All analysis methods assume constant conditions during one frame and are not able
to resolve frequency or amplitude changes during one frame. This results in artefacts in the
parameter estimations.

In the general case, a continuous-time time varying sinusoid s(t) is given by:

s(t) = A(t) sin(φ(t)) (6.7)

with the instantaneous phase φ(t) = Φ + 2π

t∫
u=0

f(u)du (6.8)

and with the instantaneous frequency f(t) =
1
2π

dφ(t)
dt

. (6.9)

The total length of each signal is set to τs = 2s. The continuous-time signals are sampled
at the times t = n

fs
. A window overlapping is used for analysis. The hop size is 64 samples,

which results in an overlap of 960 samples (93.75%) and a total number of 1363 frames. The
arithmetic mean values of frequency and amplitude within the frames are considered as the
reference values for the evaluation of the parameter estimation.

Linear Frequency Sweep (Sweep)

A linear frequency sweep from f0 = 440 Hz to f1 = 880 Hz is performed. We use a constant
amplitude of A0 = 0.8. The continuous-time signal s(t) is then given by:

f(t) = f0 +
f1 − f0

τs
t (6.10)

s(t) = A0 sin
[
2π
(
f0t +

f1 − f0

2τs
t2
)]

(6.11)

The discrete-time signal s[n] with n integer and 0 ≤ n ≤ τsfs − 1 then evaluates to:

s[n] = A0 sin
[
2π

fs

(
f0 +

f1 − f0

2τsfs
n
)
n

]
(6.12)
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Tremolo Vibrato

A0 = 0.8 amplitude basis A0 = 0.8 amplitude (const.)
f0 = 440 frequency (const.) f0 = 440 frequency basis
A1 = 0.15 tremolo depth f1 = 10 vibrato depth
ft = 5 tremolo frequency fv = 10 vibrato frequency

Table 6.1.: Tremolo and Vibrato test sound parameters.

Tremolo (Tremolo)

The tremolo is characterized by a constant frequency and an oscillating amplitude. Table 6.1
gives an overview about the parameters used for the tremolo and vibrato sounds. For the
continuous-time signal s(t) we therefore get:

A(t) = A0 + A1 sin(2πftt) (6.13)
s(t) = A(t) sin(2πf0t) (6.14)

Vibrato (Vibrato)

The vibrato is characterized by a constant amplitude and an oscillating frequency. Again
with the parameters given in table 6.1 we get for the continuous-time signal s(t):

f(t) = f0 + f1 cos(2πfvt) (6.15)

s(t) = A0 sin
[
2π
(
f0t +

f1

2πfv
sin(2πfvt)

)]
(6.16)

Combined Tremolo and Vibrato (TremVib)

The combined tremolo and vibrato is characterized by oscillating amplitude and frequency.
Again with the parameters given in table 6.1 we get for the continuous-time signal s(t):

A(t) = A0 + A1 sin(2πftt) (6.17)
f(t) = f0 + f1 cos(2πfvt) (6.18)

s(t) = A(t) sin
[
2π
(
f0t +

f1

2πfv
sin(2πfvt)

)]
(6.19)

6.2.4. Musical Instrument Sounds (Guitar, Sax, Voice)

The final test is performed using samples of musical instruments. This provides insight in the
‘real world’ performance of the estimators and proves or disproves their practical usefulness
for musical sounds.

We need reliable and accurate reference amplitudes and frequencies of the test sound’s
partials. This information is not available for recorded sounds. We therefore use high quality
synthesized sounds of musical instruments. Their partials change amplitude and frequency
every 64 samples. We so have by far not constant partials within the analysis frame. Beside

61



Chapter 6. Systematic Performance Comparison

their length in frames and seconds table 6.2 provides the average number of partials per frame
included in every sound. We use a hop size of 64 samples for analysis, so we have again a
window overlap of 960 samples or 93.75%.

The sounds are the same as used in [17]: a a short phrase of a synthesized singing male
voice, a saxophone tone with strong tremolo and vibrato and a plucked guitar sound with a
long sustain phase.

Guitar Sax Voice
Number of Frames 4722 1947 989
Length in seconds 6.87 2.85 1.45
Avg. Number of Partials 11.75 30.46 40.06

Table 6.2.: Parameters of the natural-like test sounds.

6.3. Peak Filtering

In order to get an accurate estimation of frequency and amplitude of a partial, as the first
thing the estimator has to detect the partial at all. For the test signals described above with
more than one sinusoidal component this is by far not always the case. On the other hand
the estimators detect spurious peaks, which are actually not present in the test signal and do
not represent a partial in the reference signal. They result from noise or from inter-products
of closely spaced partials in the reference signal.

The algorithm has to check, if the detected peaks really correspond to a partial in the
reference signal or not. There are peaks that are in the original signal and not in the
estimation and vice versa.

For all frequency components (partials) present in the test signal, the algorithm looks for
corresponding candidates within the detected peaks which fulfil the following prerequisites:

1. The frequency difference between the reference sinusoid and the candidate is smaller
than one frequency bin. So with fr being the frequency of the test signal partial, the
frequency fe of the estimated peak has to be within the interval:

fe ∈
]
fr −

fs

N
; fr +

fs

N

[
(6.20)

2. The amplitude difference between the reference sinusoid and the candidate is smaller
than 3 dB in terms of power. So with Ar being the amplitude of the test signal partial,
the amplitude Ae of the estimated peak has to be within the interval:

Ae ∈
]
Ar10(−3/20);Ar10(3/20)

[
(6.21)

3. From the remaining candidates that fulfil criteria one and two (if there are any), the
algorithm selects the one with the smallest amplitude difference. If there are more than
one with equal (and smallest) amplitude difference, the one of these with the smallest
frequency difference is selected. If there are still more then one candidates, i. e. two or
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more candidates with smallest and equal amplitude and frequency difference, simply
the first one with the lowest frequency is selected.

If there is no candidate left after this peak filtering process, the estimator failed to detect
the partial. We call this partial a missed peak or missed partial. Otherwise the one and
final candidate is assumed as the estimation for the corresponding reference sinusoid. The
estimator successfully detected this partial, and we call this a successfully detected partial.
Although this candidate could fulfil the criteria for several (closely spaced) reference partials,
this candidate is removed from the list of potential candidates for subsequent reference si-
nusoids. Doing this or not is a matter of interpretation and not done in [17]. But consider
for example, if we have only one maximum in the FFT spectrum (and so only one peak
estimation), we cannot distinguish if this peak is caused by one or more input sinusoids. It
so seems more natural, to count this as one detected peak only.

At the end of this process, the algorithm picked for every input sinusoid a corresponding
peak estimation and removed it from the list of available peak estimations or candidates.
Especially in the presence of noise there are still many candidates left which were not assigned
to a reference partial in the process before: we call these falsely detected peaks spurious peaks
or phantom peaks.

Please note that in [17] these spurious peaks are referred to as ‘misdetected peaks’ with
the subscript ‘miss’. Missed reference partials are denoted by the subscript ‘missed’ there.

The number of successfully detected partials plus the number of missed partials per frame
is equal to the total number of reference partials in that frame. In the same way the sum of
phantom peaks and successfully detected peaks has to equal the total number of peaks the
estimator detected.

6.4. Characteristic Touchstones

Different criteria are applied to numerically compare the performance of the estimation meth-
ods. It is not a goal of this project, to provide or find a single-number value which describes
the overall performance of a particular method. This is probably not very useful, as the
performance of a special method highly depends on the application it is used for. We there-
fore better look at different criteria which provide insight to the suitability of an estimator
according to given requirements.

For the comparison we consider a number of values which give information about the
performance of the estimator in the tests described above. The following parameters are
taken into account:

1. Frequency error (Freq)
The frequency error of the estimation is the frequency difference between the reference
sinusoid and its selected estimation candidate. We express this error in cents (‘percent
of number of half-tones’). It is a logarithmic measure of intervals with which an equally
tempered half tone corresponds to 100 cents. 1200 cents equal one octave. With k being
the reference partial’s frequency in bins and kerr the absolute value of the frequency
error in FFT bins, the frequency error factor γ0 computes to:

γ0 =
k + kerr

k
> 1 (6.22)
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With the half-tone factor γht = 12
√

2 the frequency error f
[ct]
e in cents computes to [11]:

f [ct]
e = 100

ln(γ0)
ln(γht)

(6.23)

2. Amplitude error (Ampl)
The amplitude error of the estimation is the amplitude difference between the reference
sinusoid and its selected estimation candidate. We express this error in dB in terms of
power. With A being the amplitude of the reference partial and A′ its estimation, the
amplitude error A

[dB]
e in dB computes to:

A[dB]
e =

∣∣∣∣20 log10

(
A′

A

)∣∣∣∣ (6.24)

3. Amplitude of missed partials (AmplMissed)
The amplitudes A of partials that are not detected by the estimator are given in dB in
terms of power: AMissed = 20 log10(A)

4. Amplitude of phantom peaks (AmplPhantom)
The amplitudes A of spurious peaks that do not correspond to a reference partial are
given in dB in terms of power: APhantom = 20 log10(A)

5. Total number of peaks per frame detected by the analysis method (nPeaksTot)

6. Number of successfully detected partials per frame (nPeaksCorr)

7. Number of missed partials per frame (nMissed)

8. Number of phantom peaks (spurious peaks) per frame (nPhantom)

The detection rate of an estimator for a given signal is determined by:

DetRate =
nPeaksCorr

nPeaksCorr + nMissed
(6.25)

For all values the mean value µ, the standard deviation σ and the minimum and maximum
values over all frames of the according test signal are provided.

6.5. Comparison Results and Interpretation

The following chapter does not provide many numerical results but focuses on discussion and
interpretation. The full tables with all simulation results are included in the appendix. Three
sets of simulations with different analysis windows were carried out:

1. Analysis window best suitable for the estimation method
The windows and parameters listed in section 6.1 were used. Table A.1 on page 90 in
the appendix shows the simulation results.

2. Periodic Hann window
All methods apply a periodic Hann window. The results are given in table A.2 on
page 96.
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3. Sinusoidal window (square root of a shifted Hann window)
Using the sinusoidal window as analysis window for all methods, leads to the results
provided in table A.3 on page 102.

In the following discussion we foremost concentrate on the first case, the simulations with
the best suitable analysis windows. For the analysis methods and test signals the abbrevia-
tions as introduced in section 6.1 and 6.2 are used.

The plain FFT with no further processing (PlainFFT) should be the worst case limit for
all methods. If an estimator gives worse results than the plain FFT with no correction at all,
the method is doing more bad than good and should not be used at all. This is not the case
for all of the tested estimators.

6.5.1. Pure Single Stationary Sinusoids

With the SiStSi and SiStSiMF test signals, all test methods detect exactly one sinusoid
for all frames. So there are no missed partials or spurious peaks. In these two tests the
methods SpcReass, DrvAlg and PhsVoc produce almost the same (very accurate) results (see
table 6.3). They have in common, that they use the same analysis window and are all based
on the linear phase evolution model. Especially in the SiStSiMF case, all assumptions that
are made in the theoretical derivations of these methods are met: The partials are widely
spaced (there is only one), they are constant within the frame and there is no interference
from negative mirror frequencies. All the conventional methods show the same amplitude
error in the SiStSiMF case. The amplitude estimation is based on the frequency estimation.
Although the frequency error tends towards zero, the amplitude error reaches a lower limit.
This limit is given by the resolution of the main lobe shape lookup table which is used for
the amplitude estimation. With the analytical expression of the main lobe shape instead of
the lookup table, the amplitude error tends towards zero, too.

SiStSi

Freq Ampl
µ, in cent µ, in dB

ParInt 0.057545 0.001267
TrglAlg 0.006238 0.000185
SpcReass 0.052656 0.000924
DrvAlg 0.052561 0.000926
PhsVoc 0.052622 0.000921
OdftAlg 0.709787 0.045253
MdctAlg 0.040463 0.001610

SiStSiMF

Freq Ampl
µ, in cent µ, in dB

ParInt 0.000232 0.000174
TrglAlg 0.000000 0.000175
SpcReass 0.000010 0.000175
DrvAlg 0.000002 0.000175
PhsVoc 0.000001 0.000175
OdftAlg 0.044944 0.045254
MdctAlg 0.000003 0.000018

Table 6.3.: Amplitude and frequency errors with noiseless single stationary sinusoids.

The TrglAlg outperforms the other conventional methods in the SiStSiMF case, its fre-
quency error is basically zero. The ParInt does not provide as good results here, the frequency
error reaches a lower bound. This is probably caused by the non-ideal parabolic shape of the
analysis window main lobe, which is the theoretical restriction of this method.

For all conventional methods the results in the SiStSi case with lower frequencies are not as
superior as at f ≈ fs

4 . This results from the contributions of the negative mirror frequencies.
The side lobes of the negative mirror partial unfavourably influence the parameter estimation.
This effect is stronger for the ParInt, as the analysis window that is used with this method
has a much lower side lobe attenuation.

65



Chapter 6. Systematic Performance Comparison

Again, the TrglAlg outperforms the other conventional methods, approximately by a factor
of 10. Although it uses a Hann window like the the other methods, it seems like it is less
susceptible to the disturbance of the negative mirror partial. The author states in [18] a
maximum frequency error of 0.1 Hz, which translates at l0 = 5 to approximately 0.8 cents.
Our simulations show a much smaller maximum frequency error. Even with using signals
starting from l0 = 4 as stated in the paper, the maximum frequency error occurring is only
0.3 cents.

The MdctAlg method performs comparable to the ones based on the linear phase evolution
model. With the SiStSiMF signals the estimation error tends towards zero. In the other
case with the SiStSi frequencies, the method gives slightly better frequency estimations and
slightly worse amplitude estimations than the other conventional methods (except TrglAlg).
Please note, that only by using the parameters for the MdctAlg algorithm as provided in
section 6.1 exactly one peak is detected. Otherwise a small number of partials is missed and
spurious peaks with low amplitudes can occur.

Far behind with these test signals is the OdftAlg method. Even in the SiStSiMF case
the frequency and amplitude estimation errors are relatively high. This means, that even in
optimal conditions the algorithm does not converge to the true value. In the lower frequency
signal the frequency error is approximately ten times larger than with the other methods.
The amplitude error is approximately 300 times bigger, which confirms the superiority of
the amplitude correction using the window main lobe. The author of the method declares
in [14] that the maximum frequency estimation error is approximately 1 % of the bin width,
which translates to 0.43 Hz, and is rather constant over the whole frequency spectrum. At
the frequency bin l0 = 5, which is the lowest component of the test signal, this 0.43 Hz error
translates into an error of 3.46 cents. This complies with the maximum frequency error of
the simulations of 3.3 cents. All other methods have an approximately three times smaller
maximum frequency error.

Summarizing, the TrglAlg achieves best results here. The SpcReass, DrvAlg, PhsVoc and
MdctAlg give approximately equal results, closely followed by ParInt. The OdftAlg performs
comparatively unfavourable here.

6.5.2. Single Stationary Sinusoids with Noise

With the test signals SiStSiHN with SNR = 12 dB and SiStSiLN with SNR = 40 dB every
method (except the MdctAlg) clearly detects the input signal’s partial. Additionally all
methods detect a large number of spurious peaks, induced by the presence of noise.

In the low noise case the maximum amplitude of these spurious peaks is between -44 dB
and -55 dB, the mean at around -60 dB, so well below the noise power level of -40 dB. Same
in the high level noise case: with a mean at around -35 dB and the maxima at around -21 dB
the amplitude of the phantom peaks is far below the noise level of -12 dB. This shows, that
the amplitude estimations of all the methods are stable even in the case of a pure noise signal:
with a random signal as basis, the amplitude estimation does not give random values. This
would lead to very disturbing spurious peaks with high amplitude. Instead of that all values
are below the noise level.

The number of detected peaks should be as low as possible. It is basically constant for both
cases and is around 130 peaks per frame for SpcReass, DrvAlg, PhsVoc and OdftAlg. Only
around 50 peaks per frame are found with ParInt, MdctAlg and TrglAlg. What makes the
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difference here, is that the later methods include in their algorithms some sort of detection:
They check if the found peak is actually caused by a partial in the input signal or not. The
shape of the window main lobe should be present in the spectrum in the case of a real peak.

The MdctAlg fails to detect the signal’s partial in two frames of the SiStSiLN input signal
and in approximately 5% of the frames of the SiStSiHN signal. The algorithm is lacking
robustness in these situations: both the coefficients α and β are out of range and so the
peak has to be discarded. Otherwise this would result in a spurious peak with a very high
amplitude (see chapter 5.4 on page 48).

The low noise test signals confirm the picture of the noiseless case: As table 6.4 shows, again
the TrglAlg achieves best results in amplitude and frequency estimation. SpcReass, DrvAlg
and PhsVoc perform identically, closely followed by the ParInt. The MdctAlg degrades in
the presence of noise. The OdftAlg is again endmost.

In the presence of high noise the TrglAlg loses its top most position and performs slightly
worse than SpcReass, DrvAlg and PhsVoc, which again give equal results. ParInt follows
closely, the OdftAlg only with some distance. The high noise impairs the MdctAlg more than
all the other algorithms. The mean frequency error is approximately four times as high as
with SpcReass.

SiStSiLN

Freq Ampl
µ, in cent µ, in dB

ParInt 0.077415 0.003117
TrglAlg 0.029341 0.002771
SpcReass 0.059189 0.003021
DrvAlg 0.059246 0.003024
PhsVoc 0.059156 0.003016
OdftAlg 0.719328 0.046593
MdctAlg 0.159518 0.008283

SiStSiHN

Freq Ampl
µ, in cent µ, in dB

ParInt 0.838156 0.073368
TrglAlg 0.693989 0.069515
SpcReass 0.591390 0.064072
DrvAlg 0.593009 0.064101
PhsVoc 0.591396 0.064066
OdftAlg 1.230023 0.084639
MdctAlg 2.774101 0.144906

Table 6.4.: Amplitude and frequency errors with noisy single stationary sinusoids.

To put it in a nutshell, all methods degrade in the presence of noise. The ranking between
the methods stays approximately the same as in the noiseless case. Only the MdctAlg shows
less robustness against noise compared to the other methods.

6.5.3. Two Stationary Sinusoids

The TwoStSi signal shows the spectral resolution of the analysis methods. Figure 6.3 on the
next page gives an overview of the peaks that are detected by every method. As soon as the
reference partials get too close together, the analysis algorithms are not capable any more
to distinct between them. This leads to an unstable behaviour: Either the one or the other
partial is detected, or the power of the partials is accumulated into one peak. This leads
to spurious peaks with up to double the amplitude of the input partials. The maximum
amplitude of the phantom peaks is around 6 dB.

The frequent changes of the number of detected peaks in the transition range result from
the initial phase of the two sinusoids. The initial phase of the two partials, and so the phase
difference between the two partials, is different in every frame. It is set in a way so that there
are no time signal discontinuities at the analysis frame borders.

The OdftAlg shows the best spectral resolution of approximately 1.8 bins. The frequency
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(c) TrglAlg
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(d) SpcReass
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(e) DrvAlg
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(f) PhsVoc
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(g) OddDFT
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(h) MDCT
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Figure 6.3.: Detected peaks for pairs of closely spaced stationary partials in dependence of their
frequency difference. Bottom lines show the total number of detected peaks per frame.
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resolution of the ParInt algorithm evaluates to approximately 3.3 bins, the one of TrglAlg
to 3 bins. SpcReass, DrvAlg, PlainFFT and PhsVoc all show the same resolution of approxi-
mately 2.1 bins.

One actually observes here the spectral resolution of the underlying analysis window. The
later ones all use a Hann window with a main lobe width of approximately of 4 bins, so 2 bins
towards every side of the peak. OdftAlg uses the sinusoidal window which has a significantly
smaller main lobe (see figure 5.3 on page 41). The artificially designed window for ParInt
has a wider window main lobe of around 6 bins. In the TrglAlg case on the right side of
the transition zone, the algorithm restarts to detect two partials again as soon as they have
a frequency distance of two bins, which is according to the used Hann window. For some
reason on the left side the detection fails as soon as the frequency distance is lower than three
bins.

The MdctAlg is an exception here, too: although it uses the same narrow sinusoidal window
as the OdftAlg, the frequency resolution is low. Obviously the crossproducts between the
partials strongly degrade the peak detection capability of the algorithm. The MdctAlg does
not provide stable results for closely spaced partials any more. The frequency resolution is
around 5 bins only.

The spectral resolution expresses itself as well in the mean value of the number of correctly
detected partials. As better the resolution, as more often the frequency and amplitude esti-
mation is successful. The number of correctly detected partials has to be considered carefully
when looking at the estimation accuracy, as only correctly detected peaks are considered for
calculating the estimation errors. As higher the number of correctly detected peaks, as closer
spaced partial pairs are considered. At those the impact from one partial lobe onto the other
partial is bigger, and so the estimation error increases.
SpcReass, DrvAlg and PhsVoc again give the same results. The OdftAlg has slightly

bigger estimation errors, but has a higher detection rate, whereas with ParInt and TrglAlg
it is just the other way round: their accuracy is slightly higher, therefore less partials were
correctly detected. The MdctAlg generates estimation errors comparable to the OdftAlg, but
the detection rate is the worst of all methods.

Please note, that the maximum amplitude error has an upper bound of 3 dB. If the am-
plitude differs more than 3 dB from the reference partial, the detected peak is considered as
phantom peak.

As a conclusion this test mainly shows the dependency between the spectral resolution of
the estimator and the used analysis window.

6.5.4. Single Non-Stationary Sinusoids

Again, with the non-stationary test signals Sweep, Tremolo, Vibrato and TremVib all meth-
ods except the MdctAlg clearly detect exactly one partial.1

The MdctAlg again sometimes fails to detect a partial at all, as it is unable to extract
valid parameters from the signal. This happens particularly often (for up to 10 % of the
analysis frames) when the frequency of the partial is changing within the frame. Additionally
the frequency estimation error of the MdctAlg is very sensitive to frequency modulations.
The performance degrades much more than for the other methods, so that the frequency

1Only in very rare cases with a vibrato test signal, the OdftAlg sometimes detects a second partial. But its
amplitude is almost as small as the threshold value for zeroing the transform coefficients and so negligible.
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error is approximately five times as high. The method is more resistant against amplitude
modulations.

As expected, the accuracy of all methods degrades in the presence of time variations (see
table 6.5). Again SpcReass, DrvAlg and PhsVoc perform identically well. The amplitude
and frequency errors of ParInt and TrglAlg are sometimes a little bit better, sometimes a
little bit worse than the first three methods, but basically in the same range. In contrast to
that, the OdftAlg produces clearly worse results, but still better than the MdctAlg.

Sweep

Freq Ampl
µ, in cent µ, in dB

ParInt 0.042790 0.001397
TrglAlg 0.010170 0.000667
SpcReass 0.024623 0.001309
DrvAlg 0.028425 0.001006
PhsVoc 0.027385 0.001331
OdftAlg 0.899852 0.056877
MdctAlg 1.425574 0.098121

Tremolo

Freq Ampl
µ, in cent µ, in dB

ParInt 0.046026 0.016799
TrglAlg 0.078389 0.015752
SpcReass 0.088084 0.013586
DrvAlg 0.114295 0.013591
PhsVoc 0.088171 0.013592
OdftAlg 1.108961 0.047567
MdctAlg 1.953542 0.065469

Vibrato

Freq Ampl
µ, in cent µ, in dB

ParInt 1.653547 0.003081
TrglAlg 1.540901 0.002679
SpcReass 1.335832 0.005106
DrvAlg 1.337586 0.005088
PhsVoc 1.336262 0.005109
OdftAlg 1.563133 0.084149
MdctAlg 5.403369 0.178947

TremVib

Freq Ampl
µ, in cent µ, in dB

ParInt 1.655514 0.016680
TrglAlg 1.548640 0.015060
SpcReass 1.332840 0.014120
DrvAlg 1.337831 0.014421
PhsVoc 1.333235 0.014112
OdftAlg 1.680363 0.087315
MdctAlg 5.653225 0.177485

Table 6.5.: Amplitude and frequency errors with single non-stationary sinusoids.

6.5.5. Musical Instrument Sounds

The test with the Sax, Guitar and Voice test signals gives a very mixed picture: the overall
performance of all the estimators together highly depends on the used test signal.

The following remarks apply for all analysis methods except the MdctAlg (which performs
less good in many points):

In the Guitar sound basically all partials are detected correctly. There are hardly any
missed peaks or spurious peaks. The methods perform equally well, with some better results
in the frequency estimation of ParInt and TrglAlg. The mean frequency error is less than 2%
and the mean amplitude error is below 0.33 dB for all the methods, which can be considered
as good results for a natural-like sound.

The opposite is the case in the Voice sound: The analysis methods miss approximately
20 % of the partials. A large number of these missed partials has very low amplitudes. Most
of the other ones are not detected due to the restricted spectral resolution of the analysis.
The mean amplitude of the missed partials is around -70 dB with maxima up to -13 dB. The
power of partials that were missed due to lack of spectral resolution often leads to phantom
peaks, which show up with amplitudes up to -16 dB and a mean value of -60 dB.

The mean frequency error is with 4.5 cents approximately the same for all the methods,
which compares to 12.5 cents with PlainFFT without any processing. The mean amplitude
error is for all methods almost as big as when no amplitude correction at all is conducted.
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The results perceived with the Sax sound are basically in between the two extreme cases
Guitar and Voice. The reason for the big differences are quite obvious: where the guitar
sound has a low number of partials and changes after the attack only very slowly in time,
the voice sound has much more partials and is not stationary at all. Table 6.6 summarizes
the results.

As mentioned before, the above comments do not include the MdctAlg: its detection rate
and frequency estimation accuracy is noticeably lower than with all the other methods.

Guitar

Freq Ampl DetRate
µ, in cent µ, in dB µ

PlainFFT 27.946719 0.659374 0.992
ParInt 0.824619 0.207893 0.936
TrglAlg 0.756137 0.215648 0.991
SpcReass 1.715053 0.227606 0.992
DrvAlg 1.726644 0.227958 0.992
PhsVoc 1.703284 0.226826 0.991
OdftAlg 1.886747 0.321352 0.991
MdctAlg 3.117508 0.340208 0.774

Sax

Freq Ampl DetRate
µ, in cent µ, in dB µ

PlainFFT 7.480726 0.916054 0.918
ParInt 1.270960 0.715987 0.864
TrglAlg 1.249471 0.733356 0.924
SpcReass 1.258186 0.734249 0.928
DrvAlg 1.371690 0.719767 0.927
PhsVoc 1.259803 0.734434 0.928
OdftAlg 1.306614 0.739361 0.927
MdctAlg 1.515316 0.726742 0.817

Voice

Freq Ampl DetRate
µ, in cent µ, in dB µ

PlainFFT 12.509649 0.861879 0.793
ParInt 4.421437 0.749896 0.747
TrglAlg 4.321297 0.746076 0.789
SpcReass 4.591920 0.767413 0.806
DrvAlg 4.581522 0.768416 0.806
PhsVoc 4.592742 0.766632 0.804
OdftAlg 4.619156 0.796307 0.801
MdctAlg 5.126278 0.825206 0.534

Table 6.6.: Amplitude and frequency errors and detection rate with musical instrument sounds.

6.5.6. Hann Window for all Methods

Instead of their designated windows given in 6.1, for ParInt, OdftAlg and MdctAlg a periodic
Hann window is used for signal analysis. All other methods anyway used the Hann window
already in the simulations considered beforehand. Table A.2 on page 96 in the appendix
shows the full results.

With the Hann window, the performance of OdftAlg and MdctAlg decreases dramatically.
The mean frequency errors increase up to 20 cents and 30 cents respectively. So changing
the window makes these methods basically unusable. They heavily depend on the use of the
special sinusoidal window.

The results are not as bad with ParInt. Nevertheless its frequency and amplitude errors
are higher than for all the other conventional methods then. The detection rate for closely
spaced sinusoids is quite low, too. Only for the musical instrument sounds (Sax, Guitar,
Voice) the method still performs comparable to the other estimators, although the detection
rate is getting worse there as well.
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6.5.7. Sinusoidal Window for all Methods

The performance of the estimators in the case of that for given circumstances the sinusoidal
window (square root of a shifted Hann window) should be used is verified, too. This window
is commonly applied in conjunction with the modified discrete cosine transform. The full
results are provided in table A.3 on page 102 in the appendix.

The ParInt and TrglAlg estimators do not work well anymore with this analysis win-
dow. Even with the simple SiStSi and SiStSiMF test signals the peak detection with the
ParInt method is not reliable anymore. In a high number of frames the partial is missed.
With the TrglAlg at least all partials are detected, but the frequency estimation errors are
unacceptably high.

Again, the group of the three conventional estimators SpcReass, DrvAlg and PhsVoc gives
almost identical results. They all degrade with the use of this window. The accuracy com-
pared to the other two methods based on shifted Fourier transforms depends on the test
signal:

For the noiseless single stationary sinusoids the MdctAlg provides more accurate estimations
than SpcReass, DrvAlg and PhsVoc. The results of the OdftAlg are again not convincing
with these test signals.

As more noisy the signal gets, as more the MdctAlg degrades and finally gives in the
SiStSiHN tests the worst results.

The spectral resolution of SpcReass, DrvAlg and PhsVoc improves according to the in-
creased resolution of the window. The results are as good as with the OdftAlg. Again the
spectral resolution of the MdctAlg is quite bad and results in a low detection rate. Figure 6.4
on the next page gives an overview.

For the time-varying test signals the group of SpcReass, DrvAlg and PhsVoc gives through-
out the best results, closely followed by the OdftAlg. The MdctAlg shows significantly bigger
estimation errors.

The test with the the synthesized musical instrument sounds Sax, Guitar and Voice gives a
surprise: Although the OdftAlg did not perform particularly good with the synthetic signals,
it here provides by far the best peak detection rate, combined with the smallest frequency and
amplitude errors. The SpcReass, DrvAlg and PhsVoc show lower accuracies and detection
rates. The MdctAlg again highly degrades with increasing complexity of the sound.

6.5.8. Conclusion

The following list gives a short and slightly simplified overview on the achieved results:

PlainFFT The plain FFT without any post-processing is included for reference only. Do not
seriously consider this as a parameter estimator, except a very low accuracy is sufficient.

ParInt The parabolic interpolation only gives good results when the specially designed win-
dow (the inverse FFT of a parabola) is used. Its performance degrades with the use of
different windows. Other estimation methods become more favourable then.

TrglAlg When using the Hann window, the triangular algorithm outperforms the other
methods. With other analysis windows by far not as good results are achieved.
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(a) PlainFFT
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(b) ParInt
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(c) TrglAlg
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(d) SpcReass
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(e) DrvAlg
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(f) PhsVoc
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(g) OddDFT
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(h) MDCT
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Figure 6.4.: Detected Peaks for pairs of closely spaced stationary partials in dependence of their
frequency difference. Bottom lines show the total number of detected peaks per frame.
The sinusoidal window is used for all analysis methods.
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SpcReass, DrvAlg, PhsVoc The three linear phase evolution based estimators provide the
best overall quality. Although they do not provide the most accurate results for every
test, they combine a high flexibility with a low computational effort and perform com-
parably well for all test methods and, what is even more important, with all tested
analysis windows.
Although their functional principles are very different, these three methods perform in
all tests identically well. One can arbitrary select one of them. The actual choice then
depends on which implementation fits best in the given framework. The computational
effort is comparable, as they all three require a second FFT of the same length. If
a sliding window approach with a small hop size is used anyway, the PhsVoc method
might be computationally advantageous.

OdftAlg The use of this estimator is only beneficial if for given circumstances the sinusoidal
window (square root of a shifted Hann window) has to be applied. The analysis of
musical instrument sounds shows the best results then.

MdctAlg This method is only recommendable if following prerequisites are fulfilled:

1. Due to external circumstances you want to use the sinusoidal window (square root
of a shifted Hann window).

2. You have a very clean and static signal.

The performance degrades very quickly in the presence of noise and time-variations.
Additionally the spectral resolution is dissatisfactory.
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Improvements

Chapter 6 confirmed the high practicality and accuracy of the well-established DFT based
estimators like the spectrum reassignment method, the derivative algorithm and the phase
vocoder method. The implemented ODFT and MDCT estimation algorithms showed signifi-
cant limitations.

7.1. Parabolic Interpolation Between ODFT Coefficients

We showed in chapter 5.1 the need for and estimator based on ODFT coefficients. The
survey revealed one limitation of the OdftAlg: the frequency estimation does not converge
to the true value in the case of very ‘clean’ test signals. As the ODFT spectrum is very
similar to the DFT spectrum, we try a parameter estimation based on the ODFT and using
parabolic interpolation. Similar to the naming introduced before we call this estimation
method OdftParInt.

The method follows exactly the same procedure as the conventional DFT based parabolic
interpolation ParInt, which is described in section 4.1.3 on page 27.

Instead of the DFT the ODFT of the input signal is applied. We can compute the ODFT by
using a fast FFT implementation. The ODFT of and input signal x[n] which is windowed by
a window function w[n] is given by equation 3.12 and repeated here. The following equation
shows an computationally effective way to compute the ODFT by transforming it to a DFT
with a modified window:

XODFT(k) =
N−1∑
n=0

w[n]x[n]e−j 2π
N

n(k+ 1
2
) =

N−1∑
n=0

w[n]e−j π
N

nx[n]e−j 2π
N

nk (7.1)

=
N−1∑
n=0

w′[n]x[n]e−j 2π
N

nk with w′[n] = w[n]e−j π
N

n (7.2)

This is the DFT of the input signal x[n] windowed by a modified window w′[n]. The complex
valued w′[n] is a phase shifted version of the original window w[n] and can be computed once
beforehand. The DFT of the then complex valued sequence w′[n]x[n] is finally computed
using a standard FFT algorithm.

For the parabolic interpolation the same equations as before are used. Only the final
frequency estimation has to be increased by 0.5 frequency bins.

The OdftParInt method is included in the simulations and its results can be found again
in the tables A.1, A.2 and A.3 in the appendix. The same parameters as for the ParInt
method were used.
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As expected, OdftParInt provides basically the same results as the conventional ParInt
throughout all the tests. Using the specially designed parabolic window the OdftParInt
provides much better results than the OdftAlg.

Unfortunately this does not help for the setting described in 5.1: for the intended applica-
tion in MDCT based audio coders, a sinusoidal window or a KBD window has to be used.
But the parabolic interpolation methods highly degrade with the use of these windows. It
might be helpful to adopt one of the SpcReass, DrvAlg or PhsVoc methods to the use of the
ODFT transform. But even in the case they would then give as good results as with the
conventional DFT, they would not outperform the OdftAlg (see section 6.5.7 on page 72 and
table A.3).

Let us nevertheless take a closer look at the frequency estimation errors of the two parabolic
interpolation methods with DFT and ODFT. As before we denote the input partial’s fre-
quency l = l0 + ∆l by its integer part l0 and its fractional part ∆l. We expect a systematic
error of the frequency estimation. The accuracy should depend on the position ∆l of the
input partial between two frequency bins.

Figure 7.1 plots the absolute value of the the frequency error of the estimation of single
stationary sinusoids. The integer frequency of the input sinusoid is varied in 50 steps in
between l0 = 12 and l0 = 502 bins (with N = 1024). The fractional frequency ∆l is varied in
200 steps from ∆l = 0 to ∆l = 1. This results in a total number of 8000 analysed sinusoids,
which were analysed by parabolic interpolation between the DFT coefficients (ParInt) using
the specially designed parabola IFFT window.

Figure 7.1.: Frequency error of ParInt for stationary sinusoids (N = 1024, l0,min = 12).

The plot clearly shows a dependency between the estimation error and the fractional fre-
quency. The estimation error is in general biggest in-between two frequency bins (∆l = 0.5).
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Varying the integer frequency, the estimation error increases towards the boundaries of the
frequency spectrum. This is caused by the increasing influence of the side lobes of the nega-
tive mirror peaks, which disturb the estimation. The slightly asymmetrical shape along the
∆l = 0.5 axis results as well form the negative mirror peaks: at the high integer frequencies,
the partials with ∆l > 0.5 are closer to their mirror peaks than those with ∆l < 0.5. For par-
tials with low integer frequencies it is just the other way round. It is more than noteworthy,
that the biggest estimation errors occur in the interval 0.25 ≤ ∆l ≤ 0.75.

The same plot is given in figure 7.2 using parabolic interpolation between the ODFT coef-
ficients (OdftParInt). The same obsevations as before can be made, except that everything
is shifted by 0.5 frequency bins. The biggest estimation errors now occur in the intervals
0 ≤ ∆l ≤ 0.25 and 0.75 ≤ ∆l ≤ 1 with the maximum errors at ∆l = 0, so just in the areas
where the DFT method has low frequency errors.

Figure 7.2.: Frequency error of OdftParInt for stationary sinusoids (N = 1024, l0,min = 12).

We therefore propose an improvement to the widely used parabolic interpolation that tries
to suppress the influence of the negative mirror peaks by combining the two ODFT and DFT
based methods. We will denote this method by DualParInt.

The new method basically performs the parabolic interpolation algorithm in parallel for
the DFT and ODFT coefficients. Then the results of one or the other method are used,
depending on the just estimated fractional frequency ∆l.

So after applying the parabola IFFT window on the input signal, its DFT and ODFT
coefficients are computed. The resulting spectra are searched for local maxima. We only
keep peaks that are present in both spectra. Then frequency and amplitude of every peak is
computed independently from both spectra with parabolic interpolation as described before.
We arbitrary choose the DFT based fractional frequency estimation ∆ldft as selection criterion
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for the final estimation value: if ∆ldft is within the interval 0.25 ≤ ∆ldft ≤ 0.75, the frequency
and amplitude estimation values obtained from the ODFT spectrum are used for that peak.
Otherwise the estimation values obtained from the DFT spectrum are assigned.

Figure 7.3 shows the resulting frequency estimation error. The same test signals as de-
scribed above are used. Please note the different scaling of the frequency error axis. The
maximum error for these test signals is approximately ten times smaller than in figure 7.1
and 7.2.

Figure 7.3.: Frequency error of DualParInt for stationary sinusoids (N = 1024, l0,min = 12).

This DualParInt estimation method is as well included in our simulation results presented
in tables A.1, A.2 and A.3 in the appendix. With the specially designed IFFT parabola
window and the stationary low-noise signals the results are significantly better than with
ParInt and OdftParInt. With increasing complexity of the sound (time variations, high
noise, . . . ) other disturbances become dominant. They then overrule the influence of negative
mirror peaks in the estimation, which is the issue we addressed here, and the difference to
the ParInt becomes negligible.

In the same way, another source of error that becomes dominant is the use of a different
window than the IFFT of a parabola. We use now a periodic Hann window for analysis of
the same signals as before. The frequency estimation error of the ParInt method is plotted
in figure 7.4 on the following page.

Compared to figure 7.1 the absolute frequency error is now much bigger and constant over
the entire frequency range. The integer frequency has basically no more influence. The error
only depends on the position of the partial between two frequency bins. This traces back to
the fact that the error is caused by the interpolation itself: the used Hann window is by far
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Figure 7.4.: Frequency error of ParInt for stationary sinusoids (N = 1024, l0,min = 12, Hann win-
dow).

not parabolic anymore.
As the plot shows, the frequency error is systematically predictable. It so might be possible

to improve the estimation with the help of an error correction function that depends on the
fractional frequency only.

The frequency error is very low for ∆l = 0 and ∆l = 0.5. This is because as long as
the window shape is symmetric around the centre, the parabolic interpolation always gives
correct values there by definition. The frequency errors do not become zero at these fractional
frequencies though. They only converge to the values shown in figure 7.1 for same ∆l, because
the influence of the mirror peaks is of course still present.

7.2. Direct Fitting of the Analysis Window Main Lobe

The common idea of all interpolation methods is, that the spectrum basically consists of
a sum of modulated and scaled analysis window Fourier transforms. For single stationary
sinusoids the spectrum of the windowed signal consists of the shape of the analysis window
in the frequency domain, shifted to the frequency and scaled to the amplitude of the input
partial.

For a given analysis window the classic interpolation based methods theoretically derive an
analytic expression that describes the spectrum as a function of the input partial’s frequency
and amplitude. Then the given spectrum values are put into the equation and frequency and
amplitude of the input partial remain the only unknown. Usually it is too difficult to resolve
this expression for the unknown quantities. Therefore the equation for the window main lobe
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is approximated by an analytically less complex function.
We want to circumvent this approximation and therefore approach the problem the other

way round: We again use the analytic expression of the shape of the windowed sinusoid in
the frequency domain. We then modify the two parameters amplitude A and frequency l of
the expression to make it match the actual spectrum around a local maximum as closely as
possible.

This process could be visualized by moving the window main lobe along the x-axis and
rescaling it in a way that the spectrum values around a peak all lie on the window main lobe.
With a single sinusoid only and neglecting negative mirror frequencies this can be perfectly
achieved. The apex of the so positioned window main lobe then determines the amplitude and
frequency estimation. In the non-ideal situation the lobe is positioned in a way to minimize
the amplitude differences between the spectrum coefficients and the according main lobe
values in a least squared error sense. Again, to maintain comparability to the estimation
methods introduced before, we consider three consecutive samples of the frequency spectrum,
although considering more samples would improve the stability of the estimation.

Let us again assume an input sinusoid x[n] with frequency l = l0 + ∆l and amplitude A
as given in equation 5.1. The input signal is windowed by a window w[n], whose magnitude
response we denote by |W (ω)| with ω = 2π

N (k + ∆k). It is an even function, so |W (ω)| =
|W (−ω)|. The DFT spectrum XDFT(k) of the windowed sinusoid has a local maximum at
k = l0. Similar to equation 4.3 we define an amplitude scaling factor α = A

2 . Figure 7.5
illustrates the considered setup.
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Figure 7.5.: DFT spectrum of a windowed sinusoid with fractional frequency ∆l = 0.3 and the scaled
window magnitude response.

Obtained from the figure the amplitudes |X̂DFT(k)| of the DFT coefficients are given by:

|X̂DFT(l0 − 1)| = α|W (2π
N (∆l + 1))| (7.3)

|X̂DFT(l0)| = α|W (2π
N ∆l)| (7.4)

|X̂DFT(l0 + 1)| = α|W (2π
N (∆l − 1))| (7.5)

We now want to numerically fit the analytic expression of the window main lobe into the
three DFT samples points. It is equivalent to determining the amplitude scaling factor α
and the frequency shift ∆l. In practice, the window shape will not exactly fit into the given
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points. We then want to determine ∆l and α in a way to minimize the squared error of
the curve fitting. We could define the error as a function of two variables. This could then
be minimized by one of the mathematically highly developed non-linear least-squares (LS)
optimization methods like the Gauss-Newton or the Levenberg-Marquardt method [8].

∆l has a non-linear influence on the error, as |W (ω)| is a non-linear function. Fortunately α
is a linear term which can be removed from the error function by considering ratios instead of
the absolute values. The optimization in two variables is therefore reduced two a minimization
in one variable, which is computationally much more inexpensive.

We therefore consider the ratios γl and γr between the maximum peak and its neighbours.
With the theoretical amplitudes |X̂DFT(k)| the left and right-hand side window main lobe
ratios are given by:

|X̂DFT(l0)|
|X̂DFT(l0 − 1)|

=
|W (2π

N ∆l)|
|W (2π

N (∆l + 1))|
= γl (7.6)

|X̂DFT(l0)|
|X̂DFT(l0 + 1)|

=
|W (2π

N ∆l)|
|W (2π

N (∆l − 1))|
= γr (7.7)

The quadratic error Qe between the spectrum values and the scaled and shifted Fourier
representation of the window as function of only ∆k = k − l0 and with the DFT spectrum
values |XDFT(k)| evaluates to:

Qe(∆k) =

∣∣∣∣∣ |XDFT(l0)|
|XDFT(l0 − 1)|

−
|W (2π

N ∆k)|
|W (2π

N (∆k + 1))|

∣∣∣∣∣
2

+

∣∣∣∣∣ |XDFT(l0)|
|XDFT(l0 + 1)|

−
|W (2π

N ∆k)|
|W (2π

N (∆k − 1))|

∣∣∣∣∣
2

(7.8)
Qe(∆k) has a minimum at ∆k = ∆km. Neglecting negative mirror frequencies again, the

local minimum is at ∆km = ∆l, the fractional frequency of the input sinusoid. So the final
frequency estimation is given by l0 + ∆km with lo being the position of the local maximum.
The minimum of Qe is numerically determined, using an algorithm that is based on Golden
Section search and parabolic interpolation [25]. The search interval for the minimization of
Qe(∆k) can be restricted to −0.5 ≤ ∆k ≤ 0.5.

The remaining error Qe(∆km) is a good estimate, how well the window main lobe fits into
the spectrum. As a consequence it is used as a criteria to decide if the detected peak is
considered as a partial or if it is induced by e. g. noise. So the least square error Qe(∆km)
has to be smaller than a certain threshold athr. Otherwise the peak is discarded. In practice
a value of athr = 0.01 gives satisfactory results.

As with all the other methods the amplitude estimation is based on the frequency estima-
tion and calculated using equation 4.31 on page 33.

In order to improve performance, instead of the analytic expression for |W (ω)| a lookup
table for the Fourier representation of the window can be used. It is so possible to compute
the ratios γl and γr for equation 7.8 beforehand. Then two ways are possible:

1. Qe(∆k) is computed for all discrete values of ∆ki and the ∆ki is selected that corre-
sponds to the smallest quadratic error.

2. The minimum of Qe(∆ki) is numerically determined, using a minimization algorithm
that considers the discrete nature of ∆ki.
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In this case the resolution of the lookup table is the limiting factor for the accuracy with
clean signals.

These methods are included in the comparisons. Using the direct window fitting with the
analytical expression for the main lobe, the method is referred to as DirWinFitAnal. In
the case of the table lookup, the name is DirWinFitTbl. For the lookup table, the Fourier
representation of the window is oversampled by a factor of 212 again. Tables A.1,A.2 and A.3
in the appendix show the full results. For the first test run with the windows best suitable
to the algorithms, the periodic Hann window is used.

Both methods perform comparably well in all tests. Especially with the SiStSi test signals
they clearly outperform the other methods. Only the TrglAlg can keep up with them, but
it degrades heavily with other analysis windows. The DirWinFit algorithms perform good
with the sinusoidal window, too. In the SiStSiMF case, the amplitude error is practically zero
with DirWinFitAnal, as it uses the analytical shape for the amplitude correction. All the
other methods use a lookup table here. This test signal as well reveals the limited resolution
of the DirWinFinTbl method, as the frequency error does not converge to zero.

With the SiStSiHN signals with high noise level, the methods SpcReass, DrvAlg and
PhsVoc perform equally well or slightly better than the DirWinFit algorithms. The former
seem to be slightly more stable against the influence of noise.

In the test for the spectral resolution TwoStSi the detection rate of the DirWinFit algorithm
is similar to the other ones that include a shape criteria. The accuracy is significantly better
here, though. Figure 7.6 gives an overview of the detected peaks of the two methods with
both the sinusoidal and the Hann window.

(a) DirWinFitAnal (Hann Window)
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(b) DirWinFitAnal (Sine Window)
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(c) DirWinFitTbl (Hann Window)
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(d) DirWinFitTbl (Sine window)
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Figure 7.6.: Detected Peaks for pairs of closely spaced stationary partials in dependence of their
frequency difference. Bottom lines show the total number of detected peaks per frame.

With the Sweep and Tremolo signals the performance is best with the DirWinFit methods.
With Vibrato, TremVib and the musical instrument sounds, the performance is comparable
to the best of the other methods tested before.

With the use of the sinusoidal window (square root of a shifted Hann window) for all
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methods the OdftAlg came out ahead for the musical instrument sounds before. This is
not the case anymore compared to the DirWinFit methods. They provide highest accuracy
combined with good detection rates. As well with all the other test signals the DirWinFit
methods provide comparable or significantly better results.

The degradation of the DirWinFirTbl method against DirWinFitAnal is noticeable but
not big, and depends on the used test signal. The level of impairment is traceable by the
resolution of the lookup table. It is a direct trade-off between accuracy and computational
effort and can so be easily scaled according to the application.

Similarly to figure 7.1 on page 76 we plot in figure 7.7 the absolute value of the the
frequency error of the estimation of single stationary sinusoids. The integer frequency of the
input sinusoid is varied in 50 steps in between l0 = 3 and l0 = 52 bins (with N = 1024). The
fractional frequency ∆l is varied in 200 steps from ∆l = 0 to ∆l = 1. This results in a total
number of 8000 analysed sinusoids, which were analysed by DirWinFitAnal using a periodic
Hann window.

Figure 7.7.: Frequency error of DirWinFitAnal for stationary sinusoids (N = 1024, l0,min = 3, Hann
window).

When comparing this figure to the ones before, it is important to take into consideration
that the frequency error is plotted for much lower frequencies, starting from l0 = 3 instead of
l0 = 12. For the same frequencies the error is much smaller than before. The discontinuity
at the fractional frequency ∆l = 0.5 results from the change of the position of the local
maximum from one bin to the next higher one.

Although the error is on a much lower level, we have basically the same situation again as
shown in section 7.1: The estimation error is biggest in-between two frequency bins (∆l =
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0.5) and is caused by the influence of the negative mirror peaks. We therefore could again
simultaneously perform an ODFT analysis with direct fitting of the window and use its results
for the values with a fractional frequency within 0.25 ≤ ∆l ≤ 0.75. Due to time restrictions
this experiment was not conducted anymore, but an improvement in the frequency error
estimation for low frequencies similar to the one shown with figure 7.3 is expected.

7.3. Removal of Mirror Frequencies

In section 7.1 we showed an effective way to reduce the impairment of the estimation induced
by the negative mirror frequencies. Therefore we applied a combined analysis based on both
the DFT and the ODFT.

We here want to discuss another approach which uses the concept of analytic signals: A
signal is called ‘analytic’ if its Fourier transform is zero for negative frequencies. For a real
signal s(t) let us denote its corresponding analytic signal sa(t) by:

sa(t) = s(t) + jsh(t) (7.9)

This is a complex signal. Its real part is the original signal s(t). The imaginary part sh(t) is
s(t) phase shifted by π

2 . For e. g. a cosine signal s(t) = cos(ωt) the corresponding analytic
signal sa(t) is given by Euler’s equation:

sa(t) = ejωt = cos(ωt) + j sin(ωt) (7.10)

In order to verify that the frequency error in figure 7.7 on the preceding page is indeed
caused by negative mirror frequencies, we perform the same test but using the analytic signals
of the same frequencies and amplitudes as complex input signals. As they have by definition
no negative frequencies, the frequency error shown in that figure should vanish. According
to equation 7.10 we therefore replace the a sin(. . .) terms in the test signal computations by
a
2ej(...).

The resulting frequency error fully confirms the assumption: it is very small and constant
over the integer frequency l0. The absolute value of the frequency error is around 10−7 Hz
only.

Of course we can easily create analytic signals for test signals with known frequency content.
But the computation of the analytic signal of an arbitrary real input signal is not as straight
forward.

The required phase-shifted signal sh(t) is in theory obtained by applying the Hilbert trans-
form on s(t). A concise treatment of the Hilbert transform is given in [29]. The continuous-
time transform equation is given by [39]:

sh(t) =
1
π

∞∫
τ=−∞

s(τ)
t− τ

dτ (7.11)

We performed tests with the most common practical discrete-time Hilbert transformers.
They did not improve the estimation performance. Numerous research was undertaken in the
past about the computation of the analytic signal of a given real-valued signal [39, 41, 20].

Mainly two approaches are common for practical Hilbert transformers, based on the discrete
Fourier transform or based on filter design techniques.
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To obtain the analytic signal sa(n) of a signal s(n), the discrete Fourier transform based
methods compute the FFT of s(n). In the resulting spectrum the coefficients which belong to
negative frequencies are replaced with zeros. The result is subject to an inverse FFT, which
gives the analytic signal sa(n).

But this is an approximation only. Zeroing the negative coefficients removes the signal
components with negative frequencies in the corresponding negative frequency range. But it
does not remove the contributions of the negative frequencies in the positive frequency range.
They are caused by the side lobes of the analysis window when performing the DFT. These
contributions become bigger for lower frequencies and they are exactly the disturbing factor
that we initially wanted to address. As a consequence it is not surprising that with this kind
of Hilbert transformers no improvement for the parameter estimation at low frequencies is
achieved.

The MATLAB hilbert() functionc is based on this principle. The analytic signal sa(n)
of a discrete-time sinusoid s(n) = sin(2π0.0022n) is computed. The real part of sa(n) is
the signal s(n) itself. The imaginary part and its computed approximation are plotted in
figure 7.8.

0 100 200 300 400 500 600 700 800 900 1000
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Figure 7.8.: Output of a FFT based Hilbert transformer: Theoretical value and approximation of the
imaginary part of the analytic signal of a pure sinusoid.

The second approach regards the Hilbert transformer as a 90-degree phase shifter and
applies standard filter design techniques to obtain an appropriate filter. The demands are
similar to those of an ideal low-pass filter or an ideal band-limited differentiator. As known
from digital filter theory, in practice only approximations are possible.

The most commonly used method is the Parks-McClellan algorithm. It provides FIR
Hilbert transformer approximations which have a phase shift of exactly 90 degrees and an
equiripple magnitude approximation. IIR filter realizations, which have beside a magnitude
response error as well a phase response error, often consist of two all-pass systems. The phase
responses of the all-pass filters are designed so that they differ by 90 degrees. Such a system
is often referred to as a ‘phase splitter’. [29]

Figure 7.9 on the following page shows a typical example of a Hilbert transformer mag-
nitude plot. There is a certain transition zone between the stop-band and the pass-band.
Furthermore the magnitude response shows some ripple in the pass-band. The figure results
from a FIR Hilbert transformer designed with the complex Remez algorithm as described in
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[20]. The length of the complex impulse response is 22, the passband ripple is 0.74 dB and
the stopband attenuation is 21 dB.

Figure 7.9.: Magnitude response of a one-sided FIR Hilbert transformer [20].

The figure reveals, why as well these kinds of Hilbert transform approximations do not
improve parameter estimation. The undesired effect of negative mirror frequencies mainly
shows up at very low (or very high) frequencies. But just there is as well the transition zone
of the Hilbert transform filter, which prevents accurate estimation results in this frequency
range. Furthermore the pass-band magnitude ripple impairs the estimation over the whole
frequency range.

In conclusion the theoretical concept of the Hilbert transform looks very appealing. In
practice only approximations of the analytic signal can be obtained. Unfortunately the
specific nature of the approximation error prevents an improvement of the frequency or
amplitude estimation.
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Summary

High accuracy when extracting sinusoid parameters from harmonic sounds is an important
key element in the analysis of sounds for additive synthesis. This report gives an compre-
hensive overview on the most common DFT based parameter estimators and evaluates their
estimation results by means of synthesized test signals with known frequency content. The
best and very similar results achieve the estimators which take in one or the other way into
account the linear phase evolution of a stationary sinusoid, namely the derivative algorithm,
the spectrum reassignment and the phase vocoder methods.

To what extent the numerical differences in the estimation errors have impact on the
perceived quality, was not part of this thesis. On the one hand this effect depends not only
on the choice of the analysis parameters, but as well highly on the other elements of the
analysis stage. This includes in particular the peak tracking algorithm and its compatibility
to the parameter estimation stage. Additionally this would imply the accomplishment of
listening tests.

Nevertheless the software implementation provides a good device to compare new frame-
based parameter estimators to the common ones. New methods that are in development can
be easily included into the frame work, and they will get tested with the same signals. By
this the effectiveness of new approaches for common test signals becomes immediately visible.

Based on this framework we investigated methods based on shifted transforms. In order to
understand the functional principles, we showed the close relations between the DFT, ODFT
and MDCT. The ODFT estimation algorithm provides good results and might be beneficial
for the psycho-acoustic model in MDCT based audio coding. The MDCT-based algorithm
was extended to detect multiple sinusoids and provides as the only method the possibility to
extract partials directly from MDCT coefficients. Furthermore we were able to improve the
parabolic interpolation method by exploiting different distributions of the estimation error
when using DFT and ODFT.

In this report additionally a new approach was developed, which aims to pursue optimum
DFT magnitude interpolation without loosing the possibility to freely choose the analysis
window. This was achieved by directly fitting the analytic expression of the analysis window
main lobe into the DFT spectrum. The approach was confirmed by including it into the above
framework: it outperforms the other estimators. At the moment the high computational
costs of this method prevent its use in standard real-time environments. But there are many
applications which do not require analysis in real-time and so can benefit from the outstanding
accuracy of this approach (e. g. for the extraction of reference data for additive synthesizers).

Further research might include initial phase estimation into the survey, improve the sta-
bility of the MDCT algorithm against noise and closely spaced neighbouring peaks, and
generalize the combined DFT/ODFT approach for use with other estimators.
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A.1. Software Implementation

All methods and tests as described in chapters 6 and 7 were implemented in Mathworks’
Matlab. The code was written in Matlab 6.5 R13 and exemplarily tested on Windows XP,
Redhat Linux and Apple OS-X platforms.

During the implementation importance was attached to the basic principles of software
engineering and coding style. All computations are highly vectorized. The source code is
well documented, the input and output variables are clearly specified, and many additional
explanations are given where appropriate. The following naming scheme was consistently
used:

• Functions are named and written like ‘FunctionName(...)’.

• Files are named according to the contained function ‘FunctionName.m’.

• Constants are written like ‘CONSTANT’.

• Scalars are written like ‘scalar_variable’.

• Vectors and matrices are written like ‘VectorOrMatrix’.

The entire program design is highly modular and hierarchically partitioned: All units and
analysis methods are implemented in separate functions, which are themselves reusable in
other programs. Furthermore high attention was paid to the fact that it is easy to integrate
further analysis methods, test signals and analysis windows. Only a very small number of
files have to be modified therefore. Simple step-by-step instructions on how to do this are
enclosed with the source code.

Program Control

The file ‘PeakExtraction.m’ is the central function which controls the simulations and in-
cludes all parameter settings. No parameters are passed to this function, it is supposed to
be directly and manually edited. This function controls the complete data flow, calls the
subsidiary functions and passes the appropriate parameters to the analysis methods.

The file starts with a section for enabling or disabling certain analysis methods or test
signals for the comparisons by commenting out the corresponding name of the method or
test signal. As some methods require rather long computation time, it is recommendable
practice not to compute all methods and test signals at a time as long as it is not necessary.
Furthermore the plotting of some illustrative figures can be enabled or disabled.

It follows a long list of parameters for the analysis methods. Beside the parameters N and
fs, which are common to all methods, the parameters are saved in the structure ‘APrm’. Its
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field designators are named by the scheme ‘APrm.pf_AM’, with ‘pf’ being the functionality of
the parameter and ‘AM’ being the analysis method the parameter belongs to. The names that
are used for the analysis methods, test signals and analysis windows are defined in the files
‘ErrorResNames.m’ and ‘WindowNames.m’, which are applied as ‘C’-style include-files in most
of the source files.

The consecutive section of the main function computes the test signals. Each signal
‘TestSigs’ is passed to the sub-function ‘DoAnalysis()’. In there the test signals are passed
on to the parameter estimators. These are enclosed in functions (files) that are named by the
parameter estimator name with a prefix ‘PE_’. A wrapper between the matrix- and vector-
based signal representation is demonstrated in the ‘PE_TrglAlg.m’ file, as the implementation
for the triangle algorithm was taken over from a vector-based framework. The detected peaks
‘EstdPeaks’ are reviewed according to section 6.3.

From the remaining peaks ‘FiltPeaks’ the estimation errors are measured and stored in
the multi-dimensional array ‘ErrorRes’. In this array all information about the estimation
results for all analysis methods and test signals is collected. After all tests are carried out,
the ‘ErrorRes’ array is converted to a human-readable format and saved in the sub-folder
‘results’ into the plain-text file ‘ErrorRes.txt’. The file is overwritten every time the
program is executed.

As many Matlab functions as e. g. ‘fft()’ operate not only on vectors but as well column-
wise on matrices, the signal representation is chosen accordingly: the framed signal is stored
in a two-dimensional matrix. Every column of the matrix represents one signal frame. As a
consequence the number of rows of the matrix equals the frame length, and the number of
columns equals the number of frames the signal consists of. All signal and estimation data
is passed between the functions in similarly structured matrices.

A.2. Simulation Results

The following tables show the full simulation results as discussed in chapter 6. The amplitude
error is given in dB in terms of power, the frequency error in cents (see section 6.4).

In table A.1 on the next page for every method the window which gives best results in
terms of estimation accuracy is used. The periodic Hann window was applied for table A.2
on page 96. With the sine window used for every method, the results are given in table A.3
on page 102.
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