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Abstract 

 

This thesis attempts to recognize national variants of German in Austria and Germany using 

only prosodic features.  

An introduction to speech processing with special consideration of speech recognition and 

language identification is given. Fundamental frequency (F0) and Intensity of the speech 

signal are analyzed. Parameterization of F0 (Fujisaki, Intofit) is carried out and statistical 

features (Standard deviation, skewness, kurtosis, percentiles) are calculated from signals 

such as derivative and correlation of F0 and Intensity. 

The features are evaluated using the t-test and a simple classification algorithm using 

combinations of up to three features. Combinations with Fujisaki parameters yield the best 

results with recognition rates of 72% 

The small size of the data-corpus is a drawback of the study. 

 

 

Zusammenfassung 

 

Diese Diplomarbeit versucht allein aufgrund prosodischer Merkmale die nationalen 

Varietäten des Deutschen in Österreich und Deutschland zu unterscheiden. 

Eine Einführung in die Sprachverarbeitung mit besonderer Beachtung von Spracherkennung 

und Sprachenidentifikation wird gegeben.  

Es werden die Sprachgrundfrequenz (F0) und Sprachintensität analysiert. Methoden der 

Parametrisierung der F0 aus der Sprachsynthese werden verwendet (Fujisaki, Intofit). 

Statistische Merkmale (Standardabweichung, Skewness, Kurtosis, Perzentile) von Signalen 

wie Ableitung, Korrelation von F0 und Intensität werden berechnet. 

Die Merkmale werden mit dem t-Test und mit einem einfachen Klassifikationsalgorithmus 

evaluiert. Es werden bis zu 3 Features kombiniert, wobei Kombinationen mit Fujisaki 

Parameter die besten Ergebnisse mit Trefferquoten von 72% erzielen. 

Ein Schwachpunkt der Untersuchungen ist der kleine Datensatz von 90 Sätzen pro nationaler 

Varietät. 
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1. INTRODUCTION 
 

1.1 Why would one want to identify regional variants of 

German? 

 

German is a so-called pluricentric language with different national and regional variants 

[Muhr2000]. For speech dialog systems and speaker-independent speech recognition in 

general, special consideration of these differences is necessary. Speech recognition engines 

trained on a special regional variant have difficulties to recognize speech from a speaker 

with a different variant than the one the model is trained with. Another application is to 

choose a regional similar synthetic speaker in human-computer speech dialog systems, 

because a famil iar variant of the language is generally perceived with more sympathy than a 

very unfamiliar one. This is a fact that might influence ones wil lingness to spend money. 

As part of the SpeechDat project a corpus for telephone speech was recently acquired for 

Austrian [Baum 2000]. This opens the way to Austrian models for speech recognition. A 

preprocessor prior to the phone recognizer should decide which model of a variant of 

German is needed. This thesis is exploring how prosodic differences can be used to 

distinguish Austrian German1 from the variant of the language spoken in Germany.  

 

 

 

 

                                                   
1 In the text the variant of German spoken in the Republi c of Austria wil l be referred to as Austrian and the 

variant of German spoken in the Federal Republic of Germany wil l be referred to as German  
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1.2 Structure of this thesis 

 

After some background in human speech production and linguistic basics, specially covering 

prosody, a short glance at the different variants of the German language and specially at the 

differences between Austrian and German is taken (chapter 2). In chapter 3 a short summary 

of the field of speech processing with focus on human-computer interfaces is given. General 

principles of speech recognition including major techniques wil l be covered. A survey on 

Language Identification (LID), which reviews common approaches for LID with special 

consideration of dialect and accent recognition will be brought in chapter 4.  

Then the experiments trying to distinguish Austrian and German as spoken in the Federal 

Republic of Germany will be discussed. Extraction of F0 will be explained and different 

methods for parameterization of F0 will be introduced in chapter 5. A section is dedicated to 

the calculation of statistical features from different signals derived from F0 and intensity 

(derivative, correlation, multiplication) 

Chapter 6 covers the evaluation of the features using the t-test for the statistical features and 

a simple classification algorithm for feature combination. 

A summary and outlook concludes the thesis in chapter 7. 
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2. SOME BACKGROUND 
 

2.1 Human speech production 

 

There are three main elements for human speech production (see Figure 2.3). 

a) Power source (lungs), 

b) Phonation (larynx), 

c) Articulation (oral and nasal cavities). 

 

The source for most speech sounds is air expelled from the lungs through muscular action.  

During normal breathing the vocal folds are held apart forming a gap (glottis) to let the air 

flow freely and unless in case of some pathology, no or li ttle audible sound is created.   

 

Figure 2.1:  Vocal folds in phonation position (from [Putz+1998]) 

 

When speaking voiced sounds or singing the vocal folds (see Figure 2.1 and Figure 2.2) 

close the gap and higher pressure is built up in the lungs (subglottal pressure). This pressure 

vocal folds 

glottis 
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forces the vocal folds apart and thus lets the airflow through the glottis into the pharynx.  

The glottis forms a bottleneck for the air so the airflow speed is much higher than in the 

trachea. According to the Bernoull i law the air pressure between the vocal folds wil l be 

reduced. Consequently, the vocal folds get sucked together again and the cycle starts from 

the beginning. This vocal fold vibration is caused by both aerodynamics and the elasticity of 

muscle tissue, and is explained by the myoelastic aerodynamic theory of voicing. The 

fundamental frequency of this oscillation, which corresponds to the interruptions of the 

airflow, is determined by the length and mass of the vocal cords, and is controlled by its 

tension. For males, fundamental frequency is at about 80-200 Hz, for women at about 150-

300 Hz. This frequency is not constant, but changes over the time of an utterance. This 

frequency pattern is called intonation.  

 

Figure 2.2: Movement of the vocal cords (right ) (from [Putz+1998]) 

When whispering the vocal chords do not oscillate. They are close together, but build a 

triangular gap. The air flowing through the glottis causes noise that gives whispering its 

typical voiceless sound. 

The acoustical signal, generated by the larynx, which is rich in harmonics in case of voicing 

and broadband noise for voiceless sounds, can be modified in the vocal tract by manipulation 

of the position of the velum, teeth, tongue, lips and jaw. Depending on the position of these 

parts, different resonance frequencies occur. The vocal tract can be seen as a fil ter for the 

source signal from the larynx. Those resonance frequencies are called formants and are 

essential for the intelligibility of speech because they do not change with the fundamental 

frequency of the glottis sound. For this reason we can recognize the vowel ‘a’ at every 

different pitch.  

Non vowel like sounds are produced by narrowing the airflow passage (fricatives: e.g. ‘ f, s’) 

or by blocking the flow altogether and then suddenly releasing it again (plosives: e.g. ‘p,t’ ). 
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Figure 2.3: vocal tract 

 

Combining those possibil ities we are able to produce a theoretically infinite number of 

distinct sounds, tough in every language only a certain amount of phonemes are used. 

Growing older we loose the spontaneous abili ty to articulate other sounds than those used in 

our mother tongue. 

 

2.2 Prosody 

 

From Merriam-Webster’s' dictionary on line:  

Main Entry: pros· o· dy [' ��� ����� �	� ] ,  noun, plural: –dies 

Etymology: Middle English, from Latin prosodia accent of a syllable, from Greek prosOidia 

song sung to instrumental music, accent, from pros in addition to + OidE song -- 

more at PROS-, ODE 

Date: 15th century 

1: the study of versification; especially: the systematic study of metrical structure 

2: a particular system, theory, or style of versification 

3: the rhythmic and intonational aspect of language 

 

This section offers a short introduction to prosody (mostly according to [Neppert+1992] if 

not noted differently) and its applications to speech processing and specially dialect 

identification. 

epi pharynx 

meso pharynx 

hypo pharynx 

trachea 

vocal folds 

lanrynx 

velum 

oesophagus 

oral cavity 
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Prosody has to do with speech features that are not segmental like phones, its domain of 

interpretation is well beyond phone boundaries, concerning words, phrases and sentences. 

Therefore, prosodic characteristics are often called supra-segmentals.  

Prosody describes the relationships of amplitude, duration and fundamental frequency of 

speech. It provides very different cues for syntactic information (segmentation, resolving 

ambiguity, conversational structure), emotions, stress and dialect.  

[Neppert+1992] stated the following elements as parts of prosody: 

 

1. Fundamental frequency 

2. Duration 

3. Intensity 

4. Timbre  

5. Pauses 

6. Tempo 

7. Voice quality  

8. Musicali ty 

9. Emphasis 

 

2.2.1 Acoustic correlates of prosody 

Fundamental Frequency: 

Intonation is the variation of the fundamental frequency (F0) in a sentence or more general 

utterance. It is the most important part of prosody, because most of the prosodic information 

lies in the pitch contour. Therefore, it is the feature, which is most refered to.  

In almost every language most utterances have a downward trend, called declination after the 

first stressed word. It is normally reset at major syntactic boundaries. This effect is assumed 

to be correlated to the declining air pressure in the lungs. 

 

 

 

 

 

 

 

Figure 2.4: Declination of speech fundamental frequency 

 

Lower F0 peaks at the end of a phrase are perceived as strong as higher peaks at the 

beginning of a phrase. This is because information lies in relative value (intervals) and slopes 

of the contour.  

Fundamental Frequency is by far the most examined quali ty of prosody, possibly because it 

is easy to measure compared to other features mentioned above. 

f 

t 
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Intensity: 

Intensity correlates to the loudness of the speech signal. Accented syllables normally have 

higher intensity than others. Whereas in Germanic languages intensity is important for 

placing accents, in Romance languages there are almost no changes in intensity at accents.  

Duration: 

Duration summarizes effects as speaking rate, phone and syllable duration and rhythm. It is 

an important feature, but difficult to obtain with automatic approaches.  

2.2.2 Role of prosody in speech 

The different roles of prosody in speech can be categorized in three groups (from 

[Mixdoff1997]). 

 

linguistic (lexical, syntactic, semantic) paralinguistic non-linguistic 

•  sentence mode 

•  discourse organization (focus) 

•  segmentation (integration, 

delimitiation) 

•  disambiguation 

•  speakers 

intention, attitude 

•  age 

•  gender 

•  speakers’s background 

(native language, 

dialect, sociolect)  

•  emotional condition 

Table 2-1: Roles of prosody in speech 

The linguistic features refer to the way a message is formally coded and organized into units 

of a certain language. They correspond to the surface structure of the message on a still 

rather abstract level. The actual meaning of the message can often not be decoded without 

interpreting the underlying paralinguistic information. The question ‘Are you tired?’ is 

simply a request for being supplied with information on someone’s psychological and 

physiological condition. If asked with a concerned undertone the message may be: ‘Come 

on, you’ve been working so hard, you have to get yourself some sleep!’ With an ironical 

undertone, it may mean: ‘You lazy guy, you’ve been sleeping all day and stil l you’re tired!’  

Syntax: One basic function of prosody is to segment speech utterances into phrases and 

sentences, which help the listener to process speech in smaller units than the whole speech 

flow. 

It also signals the function of a phrase or sentence such as a question or imperative and also 

the syntactic structure as main or subordinate clause. An important role of prosody is solving 

ambiguity.  

 (1)  'Vielleicht. Am Montag bei mir. Paßt das?' 

  'Maybe. On Monday, at my place. Is that OK?' 

 (2)  'Vielleicht  am  Montag. Bei mir paßt das.' 
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  'Maybe on Monday. That's possible for me.' 

Here two equal sets of words get a different meaning through prosodic variation, i.e. it is 

prosody that dissolves the ambiguity. This is used for speech recognition and understanding 

in the German VERBMOBIL [Nöth1997]. 

Accent - Stress: Another fundamental role of prosody is the placement of accents on words 

and phrases. Thus a sentence with the same words and different prosody placing the focus on 

different words can get completely different meanings.  

Word accent can even have lexical importance. In German there are minimal pairs of words 

which are segmentally equivalent and only distinguished by the position of their word accent 

(e.g.  ‘ ’umgehen’ (to handle) vs.  ’um’gehen’ (to avoid) [Mixdorff1997]). 

Highlighting stressed syllables against a background of unstressed syllables is a primary 

function of prosody. Stressed syllables are longer, more intense, and/or have F0 patterns that 

cause them to stand out against unstressed syllables. 

Speaking style: Intonation is heavily influenced by the speaking style. Main categories are 

read, narrative and spontaneous speech. [Batliner1995] stated that spontaneous and non-

spontaneous speech can be distinguished reasonably well by looking just at prosody. 

Emotions: Different emotions and attitudes have big influence in prosody. Research is going 

on to detect emotions in speech with prosodic features [Waibel1996]. 

Personality: Prosody is a very personal characteristic [Mersdorf1997], so it is used for 

speaker identification [Carey1996]. Gender, age-group, health status and sometimes even 

vocational cues can be communicated via prosody [Neppert1992]. 

2.2.3 Language 

Although many similar prosodic features can be found in different languages there are still 

differences between languages. [Thymé-Gobbel1996] used 220 features to distinguish 

English, Spanish, Japanese and Mandarin. These four languages were chosen since they 

represent the traditional categories of stress-timed, syllable-timed, mora-timed and tone 

languages.  

2.2.4 ToBI-Tones 

ToBI (Tones and Break Indices) -Tones is a system for transcribing and labeling the tones of 

a language. [Grice+1995] have adopted the original system, which was intended for 

American English, to German, calling it ToBIG, the Saarbrücken system. There are two 

main types of events, pitch accents and boundary tones. The system makes use of two tones, 

H and L. They can be grouped together into pitch accents and boundaries. What follows now 

is only a short introduction with the most important tone combinations. 

There are two monotonal pitch accents: 
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H* 'peak accent' an apparent tone target on the accented syllable roughly in the upper 

2/3 of the speakers range, often corresponding to a peak in F0. 

L* 'low accent' an apparent tone target on the accented syllable low in the speaker's 

range, often corresponding to a dip in F0. 

There are four bitonal ones ('* ' indicates the tone of the accented syllable): 

L*+H 'scooped accent' an apparent target low in the range followed by a peak high in the 

range. 

L+H* 'rising peak accent' an apparent low target, followed by a high target on the 

accented syllable. 

H+L* 'step-down to low' a preaccentual high or mid target followed by a target on the 

accented syllable which is clearly or very near at the bottom of the speakers range. 

H+H* 'step-down to mid' a preaccentual high target followed by a target on the accented 

syllable which is in the middle of the range. 

Boundaries can also occur in four bitonal combinations: 

L-H% a low target roughly at the end of the accented word followed by a final rise to a 

level around the middle of the speaker's range. 

L-L% an apparent target low in the range. It is not usual to discern two separate dips in 

F0 contour. 

H-L% gives a high or mid plateau continuing at the same level as the most recent H tone 

in the phrase. 

H-H% gives a plateau at the same level as the most recent H tone in the phrase, followed 

by a sharp rise at the end of the phrase. 

 

A major disadvantage of the system is that the results are highly dependent on the person 

who labels the corpus. 

 

2.3 Regional variants of German 

 

German is as mentioned above (Section 1.1) a pluricentric language. [Muhr2000] considers 

Standard German as the common part of the three national variants, which are Austrian, 

German and Swiss (see Figure 2.5). Depending on the geographical area within the countries 

further regional variants can be observed.  
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Austrian 
variant of 

German

Swiss
variant of 

German

German 
variant of 
German

Standard 
German

specific
Austrian

specific
German

specific
Swiss

 

Figure 2.5: National variants of German 

 

Concerning traditional dialect regions, in the Eastern part of Austria mainly the Middle- and 

Southern Bavarian is spoken, but the very western province Vorarlberg belongs to the 

Alemanic dialect. Between those regional variants there are major differences.  

Additionally, one has to decide between an inner-standard that is spoken in a rather close 

communication form and an out-standard, which would be used in rather formal 

communication and with people speaking a different variant of German. The latter can be 

called the Austrian variant of standard German. 

There is certain homogeneity because the same media, as television, radio programs and 

newspapers influences the whole Republic of Austria.  

2.3.1 Regional variants and Prosody  

[Gibbon1997] mentioned 10 regional standards associated with the cities Berlin, Hamburg, 

Hanover, Cologne, Frankfurt, Stuttgart, Munich, Leipzig, and Vienna for Austrian German, 

and Zurich for Swiss German sharing fundamentally the same prosodic properties with 

characteristic differences in the details. He states: 'In general, Southern dialects are 

associated with a right-displaced prominence peak; that is, the syllable perceived as being 

accented has low pitch, and a pitch rise, often followed by a peak, occurs on one of the 

following syllables (ToBI L*+H). In the standard pronunciation, the peak tends to occur on 

the accented syllable itself, though in some speech styles, such as telli ng stories to children, 

the right-displaced peak rhythm occurs.'  

[Auer+1999] analyzed differences between the local dialects of Hamburg and Berlin by 

using natural discourses. They stated some prosodic patterns that made utterances typical for 
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a speaker of the city. This research is very context related and focuses on a few selected 

utterances.  

[Schaeffler1999] performed perceptional experiments to find out whether there are prosodic 

cues in the speech signal of German dialects that are strong enough to identify the origin of 

the speaker in German. The speakers were classified in 7 dialect regions. Austrian and 

Bavarian speakers belonged to one dialect class. The utterances were delexicalized with a 

bandpass-filter between 70 Hz and 270 Hz.  10 speakers from each region were selected and 

the stimuli were 40 seconds of spontaneous monologue. Recognition rates for 

Bavarian/Austrian were well above chance level, but not clear. As a general statement it can 

be said, that there is a salient difference between northern and southern regions that could be 

used for dialect recognition by prosodic features. 

 

2.4 Differences between Austrian and German 

 

The listed differences do not claim completeness, but should give an overview of the 

dissimilarity between Austrian and German. 

2.4.1 Lexical and grammatical differences 

Most lexical differences between Austrian and German apply to cooking (Erdäpfel - 

Kartoffel, Paradeiser - Tomate, Karfiol - Blumenkohl, Faschiertes - Hackfleisch, Kren - 

Mehrrettich, …) and public administration (Stellung - Musterung, Anrainer – Anlieger, …).  

Other differences are different gender for the same word such as ‘der Akt (m.) – die Akte 

(f.)’ or different forming of plural ‘ die Erlässe – die Erlasse’ . Another difference would be 

the different form of past perfect: ‘ ich bin gelegen – ich habe gelegen’ .  As mentioned above 

it is not so easy to specify a typical Austrian variant, so some of the examples would also be 

valid in southern Germany [Weiss1999]. Specific Austrian variants are coded in the 

‘Österreichisches Wörterbuch’ [ÖWB1979] 

2.4.2 Pronunciation differences 

[Takahashi1996] investigated regional variants of German in Germany, Austria and 

Switzerland. He used two sources for his study. He started by using standard pronunciation 

dictionaries and their covering of regional variants. He then analyzed his own test speakers. 

To obtain Standard German, i.e. a correct pronunciation for the regional variant, he choose 

newsreaders and teachers of German as a foreign language.  

In the following, some of the specific pronunciation features of the Standard German of 

Austria in contrast to the Standard German of Germany are documented (see also 

[Muhr2000]). 
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Vocals: 

•  The long open vocal [ 
 ] becomes a closed [ � ], such as ‘erklärte’ , ‘Auszählung’ , 

’ordnungsgemäß’ . 

•  The short open vocals [ � , 
 ,  ] are pronounced closed [ � , � ,� ], as in ‘Mexiko’ , 

‘Ende’ , ‘wird’ , ‘dürfte’ . 

•  Articles are extremely shortened (e.g.’ die Amerikaner’  [ ������������������� ]).  

•  The suffix –er is pronounced extremely short [ � ] (‘ linker, seiner’ ) 

Consonants: 

•  k and g become palatalized in front of a vocal or an l (‘klar, keine, Gletscher’)  

•  The final syllable –ig ist pronounced [ ��� ] (e.g. ‘gleichzeitig, vorläufig’) . 

•  The voiced [ � ] becomes a voiceless lenis [z] or a voiceless [ � ] (e.g. ‘seit’ [ z], 

‘Somalia’ [ � ]). 

•  A voiceless [ � ] at the end of a word or in a weak syllable becomes a voiceless lenis 

[ � ] (as in ‘Zeit im Bild, sollte’ ). 

•  There is no glottal stop in front of word and syllable boundaries (e.g. ‘als einer’ 

[ ������
	� ��� ], ‘gab es’ [ !���"�
	� ]). 

2.4.3 Prosodic differences 

Concerning prosodic differences there is still much to explore, but maybe one of the most 

obvious dissimilarities is related to word accent. There is quite a list of words where the 

Austrian version has the accent on a different syllable as the German version, as in Kaffee A: 

[ ��#%$�� ] vs. G: [ �	#&$�� ] (coffee) or Platin A: [ '(� #)����� ] vs. G: [ '(� #*����� ] 

(platinum) 

 

2.5 Summary 

 

We have discussed human speech production consisting of power source (lungs), phonation 

(larynx) and articulation (oral and nasal cavities).  

We then explored the term prosody giving special consideration to its acoustic correlates and 

its role in speech. A short paragraph was dedicated to prosody and language. 

The problem of national and regional variants of German was presented, focusing on the 

differences between Standard Austrian and Standard German. Those differences, though 

only briefly covered, show that appropriate modeling of Austrian pronunciation could help to 

improve speech recognition performance [Baum+2000]. 
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3. SPEECH PROCESSING 
 

Speech processing has become a broad field of research including many specific areas, 

which are sometimes closely related. This chapter gives an introduction to the main areas of 

speech processing. Most of the material is taken from [O’Shaughnessy2000] if not noted 

differently. The book is an excellent introduction to speech processing, provides extensive 

references, and therefore can be used for more in-depth studies. 

 

The following topics are covered: 

•  Speech Analysis 

•  Speech Synthesis 

•  Automatic Speech Recognition 

•  Speaker Recognition 

•  Language Recognition 

•  Accent/Dialect Recognition 

 

3.1 Speech Analysis 

 

Speech Analysis is maybe the technical foundation for all other disciplines. It involves a 

transformation of a speech signal s(n) into another signal, a set of signals or a set of 

parameters, with the objective of simplification and data reduction. 

Speech analysis tries to extract relevant features while suppressing redundancy or 

irrelevance. Another goal of speech analysis is the finding of efficient representation of 

speech. Since speech analysis cannot be covered on a few pages, only methods that were 

actually used during this research are mentioned. 

There are a few main assumptions about speech signals.  First, it is usually assumed that the 

signal properties change relatively slow with time.  This allows examination of speech with 

short-time windows presuming the parameters remain constant for the duration of the 

window. Usually speech sound is assumed to stay constant for at least 10ms. This opens the 
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subject of windowing signal. But this is not to be explored here. Background can be found in 

[Oppenheim+1995]. 

In the time-domain, analysis transforms a speech signal into a set of parameter signals, 

which usually vary much more slowly in time than the original signal.  

The Zero-crossing rate (ZCR) provides very simple analysis in the time domain for spectral 

measures. In a signal s(n) such as speech, a zero-crossing occurs when s(n)=0, i.e., the 

waveform crosses the time axis.  For narrowband signals (e.g. sinusoids), ZCR is an accurate 

spectral measure. 

The ZCR can be defined as  

( )[ ] ))1(sgn())(sgn(5.0 −−= nsnsnsT , 

where the algebraic sign of s(n) is 
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The ZCR can help in voicing decisions. Most energy in voiced speech is at low frequency, 

since the spectrum of voiced glottal excitation decays at about –12 dB/Oct. In unvoiced 

sounds, broadband noise excitation excites mostly higher frequencies, due to effectively 

shorter vocal tracts. While speech is not a narrow-band signal (and thus the sinusoid example 

does not hold), the ZCR correlates well with the average frequency of major energy 

concentration. Thus, high and low ZCR correspond to unvoiced and voiced speech, 

respectively.  

Short-time energy or amplitude can help segment speech into smaller phonetic units, which 

can e.g. approximately correspond to syllables. The short-time energy is defined as 
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Short-time autocorrelation gives information about energy and periodicity of the signal. It is 

used for F0 determination and Linear Prediction. 
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Frequency domain parameters provide the most useful parameters for speech processing. 

The basic model of speech production is a noisy or periodic waveform that excites a vocal 

tract fil ter. This corresponds well to separate spectral models for the excitation and for the 

vocal tract (see Figure 3.1). 
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Figure 3.1: source-filter speech model 

 

Human hearing appears to pay much more attention to spectral aspects of speech than to 

phase or timing aspects. Thus, spectral speech analysis generally receives much more 

attention. 

Short-Time (discrete) Fourier transform (STFT) applies the discrete Fourier transform (DFT) 

to successive windows: 
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The choice of N (window length) is crucial for STFT. Low values for N give poor frequency 

resolution, but good time resolution. Large N, on the other hand, gives poor time resolution 

and good frequency resolution. As an optical speech analysis tool, the spectrogram provides 

a three dimensional representation of speech utterances using the STFT. For speech analysis 

there are two main representations. Wideband analysis displays individual pitch periods as 

vertical striations corresponding to the large amplitude at vocal cords closure. It smoothes 

the harmonic ampli tudes under each formant across a range of 300Hz, displaying a band of 

darkness for each formant. The center of each band is a good estimate for the formant 

frequency.  

Narrowband spectrograms display separate harmonics instead of pitch periods.  

They can help to analyze F0 and vocal tract excitation (see Figure 3.2). 
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Figure 3.2: Wideband and narrowband spectrograms of a sentence 

 

Linear Predictive Coding (LPC) is one of the most powerful speech analysis techniques, and 

one of the most useful methods for encoding good quality speech at a low bit rate. It 

provides accurate estimates of speech parameters, and is relatively efficient for computation. 

The underlying assumption of LPC is a speech model as in Figure 3.1, which is a source-

filter model with an excitation signal of either an impulse train or random noise. This 

excitation signal is then filtered by the vocal tract transfer function.  
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The predicted signal is calculated using an FIR fil ter: 
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Figure 3.3: Block diagram for linear prediction 

 

Linear predictive analysis is a technique aimed at finding the set of prediction coefficients 

{ αk} that minimize the mean-squared prediction error between a signal x[n] and a predicted 

signal based on a linear combination of past samples; that is  
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where ⋅  represents averaging over a finite range of values of n. Usually, the 

autocorrelation method is used to find the optimum predictor coefficients { αk} . Small 

segments of speech (usually approx. 10ms) are used to ensure that the signal doesn’ t change 

significantly during analysis.  

If the speech signal x[n] is filtered by an inverse or predictor fil ter (the inverse of an all -pole 

V(z)) 
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the output e(n) is an error signal 
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This signal (called residual) as input will synthesize the original signal perfectly.  
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From f[n] it can be determined whether the signal is voice or unvoiced and, if voiced, the 

fundamental frequency. This is how basic LPC encodes the residual. This encoding, 

however, causes quali ty loss, because the predicted fil ter is never ideal. 

Problems arise when the excitation is not purely voice or unvoiced, but something in 

between. Various efforts have been made to code the error signal. For example, CELP (Code 
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Excited Linear Prediction) is a version where the residual signal is matched to entries in a 

codebook and the entries are used for coding. 

Determining the fundamental frequency (F0) is important in many speech applications. It is 

the primary acoustic cue to intonation and stress in speech. Most low-rate voice coders 

require accurate F0 estimation for good reconstructed speech. F0 patterns are useful in 

speaker recognition and synthesis. Time domain F0 detectors have three components: a 

preprocessor  (to filter and simplify the signal via data reduction), a basic F0 extractor (to 

locate pitch epochs in the waveform), and a postprocessor (to locate errors).  

Frequency-domain methods for F0 estimation involve correlation, maximum likelihood, and 

other spectral techniques where speech is examined over a short-term window. In Section 5.1  

an auto-correlation F0 estimation method will be discussed.  

 

3.2 Speech synthesis 

 

Text-to-speech synthesis (TTS) is the automatic generation of a speech signal, starting from 

a textual (or conceptual) input and using previously analyzed digital speech data.   

Two main steps are required, first, the linguistic analysis which transfers a text to a rather 

phone orientated description including prosodic information and second, the actual speech 

wave generation.  

The text analysis consists of different stages (see Figure 3.4). The preprocessor  does the 

normalization and segmentation of the text. Numbers, special symbols, abbreviations, 

acronyms, control characters, etc. have to be handled. Punctuation is examined as a cue for 

sentence end detection. 
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Figure 3.4: Text analysis for speech synthesis (from [Dutoit1997]) 

The morphological analyzer decomposes all words into their elementary units 

(Morphemes) to be able to have a dictionary at a reasonable size. 

The syntactic analysis helps to identify the part-of-speech of every word and can then 

structure the text or sentence to be able to extract prosodic information. 

Semantic information would help to solve most of the current problems of text 

interpretation, but so far and probably for the near future there is no efficient tool to handle 

this task. 

The Letter-to-sound module then uses the already obtained information for the 

phonetization of the text. 

The most difficult part is to generate proper prosody for unrestricted text. This is one of the 

main reasons that synthetic speech still doesn’ t sound natural. 

Speech-wave production methods can be broadly divided into two categories. – those 

which predominantly model the speech signal and those which predominantly concatenate 

prerecorded speech signal. 

There are two prominent members of modeling speech – ‘articulatory synthesizers’ and 

‘f ormant synthesizers’ . Both generate a synthetic speech signal purely from parametric 

information, which drive an abstract model of production.  
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Articulatory synthesizers attempt to produce a synthetic speech by modeling the 

characteristics of the vocal tract and the speech articulators. There is still not enough 

information about the exact mechanism of the speech process, partly because there are no 

appropriate models of the speech production available. Research is going on, but no 

commercial use is made so far, because excessive computational power is necessary for real 

time applications. 

Formant synthesis looks at the acoustical properties of speech and tries to model them. The 

underlying model is most of the times a source-filter-approach (Figure 3.1).  

The second approach is to encode pieces of natural speech and put them together as needed. 

The advantage is that no complicated model of the speech signal is necessary and with the 

possibili ty of advanced techniques for modifying the signal and cheap computer memory 

concatenative synthesis is now the common approach for commercial TTS Systems. 

 

3.3 Automatic Speech Recognition 

 

Automatic speech recognition (ASR) has been much more difficult to achieve than TTS. 

When trying to let a computer recognize human speech several problems arise. Among them 

are variabili ty (time, speaker, etc.), vocabulary, continuous speech, etc. 

In theory, ASR could be as simple as a large dictionary where each entry is a digitized stored 

waveform labeled with a text pronunciation. Given an input utterance, the system would only 

search the dictionary for the closest match and find the corresponding text from a lookup 

table. Whereas this approach works for speaker dependent discrete utterance, small 

vocabulary application, for more complex systems this procedure is not feasible due to the 

immense complexity. Different applications yield very different complexity of the ASR 

system.  

 

 Discrete utterance Connected speech Continuos speech 

Speaker  

Dependent 

   

Multi  

Speaker 

   

Speaker 

Independent 

   

Table 3-1: Complexity of different recognition tasks (From [Morgan+1991])  

The many sources of var iability in human speech are a major reason for this complexity. All 

recognizer are influenced by environmental variability due to background and channel noise 

Degree of 
complexity 
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(specially for phone applications) Speaker-dependent recognizers have the least variability, 

but stil l every word is not pronounced the same all the time (Intra-speaker variabili ty). It still 

takes training time to adapt the system to a specific speaker. On the other hand, speaker-

independent systems have to cope with inter-speaker variability. Here many factors have to 

be taken into account such as gender, age, accent or dialect, style of speaking and different 

anatomy of the vocal tract. Those sources of variability are the key problems of ASR. 

 

Excursion on Problems of Dialect and Accent in ASR  

With the example of German, the different influences of dialectal coloring on ASR will be 

considered. Dialectal differences are a major problem in ASR. Depending on the region 

realization of phonemes and hence, pronunciation of words differ a lot. Not only acoustic 

deviations, but also lexical differences make it necessary to include many dialectal regions 

into an ASR system. [König1981] described several dialectal subdivisions and boundaries. 

Foreign accents may rise the problem that phonemes of the target language do not exist in 

the original language, so people might not be able to pronounce those phonemes correctly  

 

To keep the complexity, which is rising with utterance length, at a low level, segmenting 

speech into smaller units such as words syllables or phones is an important task. However, it 

is hard to find reliable cues for this task. Sudden large changes in speech spectrum or 

ampli tude help to estimate unit boundaries. For example, silence can be between words, but 

it can also be before plosives or at glottal stops. Correct endpoint detection helps to improve 

error rates and keep down computational costs. 

For performance evaluation, error rates (e.g. the percentage of words not correctly 

recognized of those spoken) or accuracy (the percentage of correctly identified words) are 

used. Cost, speed and the li kelihood of an input being rejected are other important factors. 

Speaker dependent isolated word recognition with a small vocabulary often reaches accuracy 

of >99%, but may fall to 90-95% for speaker independent connected speech applications. 

One crucial tool for speech recognition is the use of databases of speech labeled with textual 

transcriptions as training data and as evaluation tools. For German, the Bavarian Archive for 

Speech Signals (BAS) [Schiel+1999] provides different corpora including RGV1 (A 

Database for Regional Variants of German) [Burger+1998] and the SpeechDat project which 

includes an Austrian corpus [Baum+2000]. 

The crucial point of speech recognition is the problem of pattern recognition. An utterance 

has to be compared with reference data obtained through training. This data can be divided 

into two main approaches. One can view ASR from either a cognitive view, which is a 

knowledge based or expert system, or an information theoretic view. The first one tries to 

model through finding relationships between speech signals and their corresponding text 
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messages and postulating phonetic rules to explain the phenomena. It is, however, very 

difficult to model the complexity of speech in a knowledge-based system. The information 

theoretic view tries to describe speech using information derived through statistic analysis. It 

uses statistical models that maximize the likelihood of choosing the correct symbols 

corresponding to the input.  

 

3.3.1 A General Model for Speech Recognition 

A general speech recognition model is il lustrated in Figure 3.5. The major components of 

this model include: 

a) Preprocessing to normalize the speech signal  

b) Parameterization and feature extraction to identify the key components of a 

parametric representation and eliminating redundant information. 

c) Time alignment and pattern matching algorithm for performing word 

detection  

d) Language processing to select a linguistically valid word string 

 

 

  

 

  

 

 

 

 

 

 

 

Figure 3.5: General speech recognition model 

 

a) Preprocessing  

First, the speech utterances have to be normalized for example with automatic gain control 

(AGC) to reduce the influence of different recording conditions (for example through 

different distance to the microphone) or transmission channels. It has to be applied with long 

time constants to preserve prosodic information in amplitude changes. Normalization of 

temporal variations is not done at this level. 
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b) Parametric representation and Feature extraction 

The parameterization of the speech signal has the goal of efficient data reduction without 

losing information relevant for ASR.  

 

c) Pattern matching and time alignment  

At the heart of ASR lies the measurement of similarity between two windowed speech 

patterns, i.e. the representation of a frame of the input speech and a frame from a set of 

reference patterns or models (obtained during training). The comparison or evaluation 

involves finding the best match in terms of a distance between templates or deciding which 

reference model is the most likely. 

 

d) L inguistic Evaluation 

Most speech corresponds to texts, which follow linguistic rules (e.g. lexical, syntactic, 

semantic constrains). Exploiting these rules is crucial for ASR performance. 

 

3.3.2 Parametric representation and Feature extraction 

Usually successive frames of 10ms distance (see Chapter 3.1 ) are parameterized. and a 

source-filter model as in Figure 3.1 is used for the parameterization. But very often the 

excitation parameters such as the voicing decision, ampli tude and pitch are ignored in ASR, 

though recent research tries to employ those prosodic parameters to aid recognition at a 

linguistic level (Figure 3.6). [Nöth+1997] use a combination of prosodic information such as 

fundamental frequency and energy, and a word hypothesis generator following a phoneme 

recognizer to gain positions of accents and sentence boundaries. [Strom1995] uses only 

Energy and F0 of a speech signal to place the accents and sentence boundaries. Both are part 

of VERBMOBIL [Walster1996] a multidisciplinary research project by several research 

institutions in Germany. Its goal is to develop a tool for machine translation of spoken 

language from German into English and Japanese.  
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Figure 3.6: Incorporation of prosody for speech recognition (from [Nöth1997]) 

 

The spectral envelope provides the primary ASR parameters. The most common ASR 

parameters are mel-based cepstral coefficients, but LPC analysis, energies from a channel 

vocoder, reduced forms of DFT and zero-crossing rates in bandpass channels are other 

examples. They all attempt to capture in about 10 parameters enough spectral information to 

identify spoken phones.  

Now, these parameters can be reduced to features in order to decrease redundancies of the 

parameters. Such features may be subdivided into acoustic and phonetic features, depending 

of the degree of data reduction. Phonetic features have a discrete range and assign sound to 

linguistic categories, e.g. voiced or fricative; they represent major data reduction thus leading 

toward a phonemic decision. Acoustic features (e.g. formants, F0) represent an intermediate 

step between parameters and phonetic features.  

Features are fewer in number than parameters and therefore potentially more efficient for 

ASR; they are speech specific and require classification that can be erroneous. 

3.3.3 Pattern matching and time alignment  

Each parametric (or feature) pattern for a frame of speech can be viewed as an N-

dimensional vector, having N parameters/frame. If the parameters are well chosen, then 

separate regions can be established in the N-space for each segment. 
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The similarity between two patterns is often expressed via a distance, measuring how close 

the patterns are in N-space. Another popular method is statistical, where the reference 

models store probabili ty density functions (PDF) and similarity is judged in terms of the 

likelihood of the test pattern for each PDF. To handle multiframe utterances (i.e. all practical 

cases), local (frame) distance measures typically sum up to yield a global (utterance) 

distance. The reference pattern yielding the smallest distance or highest probability is usually 

chosen for the ASR output.  

Euclidean and Mahalanobis distances: 

In ASR involving templates, each unknown test utterance is converted to an N-parameter test 

template, to be compared with reference templates to find the closest match. The similarity 

of two templates is inversely proportional to the distance in N-space between points 

corresponding to the templates. The most common distance measure is the Euclidean 

distance (or L2-norm): 

∑
=

−=−−=
N

i

ii
T yxyxyxyxd

1

2
2 )()()(),( //////  

Another common speech distance in the Mahalanobis or covariance-weighted distance, 

)()(),( 1 yxWyxyxd T ////// −−= − , 

where W is a positive-definite matrix that allows different weighting for individual 

parameters depending on their utili ty in identifying the speech segments in N-space. 

Despite the advantages of the Mahalanobis distance in weighing properly, ASR often uses 

the Euclidean distance or a LPC distance, because in is difficult to reliably estimate W from 

limited training data. Moreover the latter two distances require only N multiplications for an 

N-dimensional parameter vector vs. N2 multiplications with the Mahalanobis distance.  

Stochastic similarity measures: 

The Mahalanobis distance has origins in statistical decision theory. If each utterance of a 

word represents a point in N-space, the many possible pronunciations of that word describe a 

multivariate PDF in N-space. Assuming ASR among equally li kely words and maximum 

likelihood as the decision criterion, Bayes’  rule specifies choosing the word whose PDF is 

most likely to match the test utterance. Because of the difficulty of estimating accurate PDFs 

from a small amount of training data, many systems assume a parametric form of PDF, e.g. 

Gaussian, which can be simply and fully described by a mean vector µ and a covariance 

matrix W. Since ASR parameters often have unimodal distributions resembling Gaussians, 

the assumption can be reasonable. 

The distance measures in the previous paragraph are general and can be used with many sets 

of parameters such as LPC or Cepstral parameters. 
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Dynamic time warping 

The dynamic time warping (DTW) procedure combines alignment and distance computation 

in one dynamic programming procedure. DTW finds an optimal path through a network of 

possibili ties in comparing two multiframe templates, using the Bellman optimality principle. 

DWT aligns a test template as a whole with each reference template by finding a time 

warping that minimizes the total distance measure, which sums the individual frame 

distances in the template.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Dynamic time warping from [O’Shaugnessy2000] 

3.3.4 Networks for speech recognition 

Networks in ASR employ a rather statistical representation of acoustic information. Let us 

have isolated word recognition (IWR) as an example: model each word with a succession of 

phonetic states i (corresponding roughly to phones), linked by transitions specified by 

likelihoods aij. This probabil ity of a phonetic segment j following segment i governs the 

transition between the states representing those two sounds. Consider pass as an example 

word, where states for [ 0 ] closure (silence), [ 0 ] burst, [ 021 3 ] aspiration [ 3 ], and [ 4 ] might be 

chosen via coarse segmentation or other technique. To allow for the chance that the [ 0 ] burst 

and/or aspiration may be missing the aij may vary considerably, they typically correspond to 

the frequency of actual transitions in the training data.  

For IWR each input utterance is evaluated by each word network, to find the network most 

likely to have generated the word. Instead of searching a DTW space for a path of minimal 

distance, each network is searched for the path maximizing the product of all transition 

probabili ties between states corresponding to the test utterance. 
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Popular approaches are Hidden Markov Models [Rabiner1989] or Neural Networks 

[Morgan1991]. 

 

Hidden Markov Models   

Rabiner presents an excellent introduction to Hidden Markov Models (HMMs) in his tutorial 

[Rabiner1989]. 

The key assumption of the statistical approach to speech recognition is that speech can be 

modeled statistically during an automatic process. By examining an ensemble of training 

speech data, a probabili stic that characterizes the entire ensemble is created. The resulting 

model, which represents each speech unit (word or sub unit), is more powerful and general 

than a template. 

In the HMM formalism, speech is assumed to be a two-stage probabilistic process. In the 

first part of the two-stage process, speech is modeled as a sequence of transitions though 

states. The states are not themselves directly observable (hidden), but are manifest by 

observations, or features. Second, the observations in any state are not deterministic, but are 

specified by a probabili stic density function over the space of features. The power and 

flexibility of the statistical approach comes from this two-stage modeling procedure. 

a3,3

a1,2a1,1

a3,1

a2,2
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Figure 3.8: 3-state Hidden Markov Model 

As shown in Figure 3.8, a HMM is characterized by the following: 

1. N, the number of states in the model. We denote the individual states as S={S1, S2,…, 

SN} , and the state time t as qt. 

2. M, the number of distinct observations per state. We denote the individual symbols as V 

= { v1, v2, …, vM} . 

3. The state transition probability distribution A0{ ai,j} where  

ai,j =  P [ q t+1 = Si | q t = Sj ] 1 ≤ i, j ≤ N 
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 For the special case where any state can reach any other state in a single step, we have ai,j 

> 0 for all i,j. This is called an ergodic HMM. In ASR left-right HMMs are very 

common because time depended properties can be modeled very well.  

Only state transitions from left to right are allowed (Figure 3.9). 

1 32 4

 

Figure 3.9: Left-fright HMM 

4. The observation symbol probability distribution in state j, B={ bj(k)} , where  

Bj(k) = P [vk at t | qt = Sj ] 1≤ j ≤ N 

  1≤ k ≤ M 

5. The initial state distribution π = { πi} , where 

πi = P [ q1 = Si ]  1≤ j ≤ N 

Given appropriate values of N, M, A, B and π, the HMM can be used as a generator to give 

an observation sequence:  

O= O1 O2 … OT 

For convenience usually a compact notation for a HMM is used: 

λ = (A, B, π) 

Given a HMM there are three basic problems which have to be solved should the model be 

useful in real-world applications:  

Problem 1:  Given the observation sequence O= O1 O2 … OT, and a model λ = (A, B, π), 

how do we efficiently compute P(O|λ), the probability of the observation 

sequence, given the model. → The Baum-Welch forward-backward algorithm 

may be used to find the probabilit y P(O|Mk) of generating the observation 

sequence O from the model Mk  

Problem 2:  Given the observation sequence O= O1 O2 … OT, and a model λ, how do we 

choose a corresponding state sequence Q=q1, q2, …, qT which is optimal in 

some meaningful sense  (i.e., best ‘ explains’ the observations)? → There is a 

well know Viterbi dynamic programming solution. 

Problem 3:  How do we adjust the model parameters λ =(A, B, π) to maximize P(O|λ) → 

The model parameters are found by an iterative procedure known as Baum–

Welch re-estimation. An initial HMM is assumed, and the Baum-Welch 

forward-backward algorithm is carr ied out to find the state occupation 

probabil ities as a function of time. 
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HMMs can be used to model phones, words or larger speech units. A phone HMM might use 

three states to represent to, in order, an initial transition spectrum from a prior phone, a 

spectrum from the phone’s presumed steady state, and a final transition spectrum to a 

following phone. 

3.3.5 Language modeling  

Language models (LM) appear on a lexical (or phonotactic), a syntactic and possibly on  a 

semantic level. 

Since the phonemic composition of words in most languages is highly restricted (e.g., the 

sequences /tz/ and /sd/ are illegal in English syllables), a word level language model is 

applied. Normally given a history of prior (recognized) words in an utterance, the number of 

words P that an ASR must consider as possibly coming next is much smaller that the 

vocabulary size V. P is called the perplexity of a language model. LMs are stochastic 

descriptions of text, usually involving li kelihoods of local sequences of N consecutive words 

in training texts. 

n-gram Models 

Typically, N-gram models estimate the li kelihood of each word, given the context of the 

preceding N-1 words, e.g. bigram models use statistics of word pairs and trigrams model 

word triplets. Unigrams are simply prior li kelihoods for each word, independent of context. 

These probabili ties are determined by analysis of large amounts of text, and are incorporated 

into a Markov language model. 

3.3.6 Summary 

We have covered some basic principles of speech recognition. Even though only some topics 

were covered, the complexity of the task is obvious.  

Most current ASR uses statistical pattern recognition, applying general models as structures 

to incorporate knowledge about speech in terms of reference models. The parameters of the 

models are estimated during a training procedure, in which speakers utter words or 

sentences, which may be repeated during actual ASR.  

Alternative approaches such as cognitive methods, which incorporate knowledge on human 

speech production and perception, decreasing hardware (e.g. memory) cost will i mprove 

future ASR performance. 
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3.4 Speaker Recognition 

 

There are two main Speaker recognition applications:  

•  Verifying a persons identity prior to admission to a secure facility or to a 

transaction over the telephone 

•  Association a person with a voice, e.g. in audio-conferences 

Other applications could include identification of the persons gender, emotions in speech 

[Waibel1996], accent or dialect of a speaker and the language being spoken. The latter wil l 

be covered extensively in Chapter 4.   

There are two main areas in speaker recognition, first automatic speaker verifi cation (ASV) 

and second automatic speaker identifi cation (ASI).2 ASV only has to evaluate the test 

pattern with one reference model and a binary decision whether the test speech matches the 

model of the claimant has to be made. ASI, on the other hand, requires choosing which of N 

known voices best matches a test voice. 

When focusing on the identity of a speaker there are three sources of variation among 

speakers: differences in vocal cords and vocal tract shape, differences in speaking style 

(including variations in both target positions for phonemes and dynamic aspects of 

coarticulation such as speaking rate), and differences in what speakers choose to say. 

Two classes of error occur: false acceptance when the system incorrectly accepts an 

impostor during ASV or identifies a wrong person during ASI, and false rejections, when the 

system rejects a true claimant in ASV or incorrectly finds no match in ASI. 

Analysis techniques are similar for speech and speaker recognition since both involve pattern 

recognition of speech signals, but in speaker recognition only one decision is necessary 

compared to ASR where decisions are made for every phone or word. Templates or models 

are not focused on text, but on speakers. The considered features include prosodic properties, 

LPC and cepstral coefficients.  

Main approaches are either utilizing features using long time averages (e.g. means and 

variances of F0, ampli tude or LPC coefficients) or comparing specific sound with a test 

template of e.g. phones. Two other categories are text dependent or text independent 

solutions.  

 

 

 

 

                                                   
2 ASV/I wil l be used for discussions applying both to ASV and ASI 
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3.4.1 Prosodic cues for speaker identification 

[Carey+1996] have util ized prosodic features based on pitch and energy contour for speaker 

identification. Gender was identified with 98% accuracy using the mean pitch parameter 

alone. Consequently, mean pitch was also used for identification of unknown speakers. 

Additionally they used the first four statistics, mean, variance, skewness, kurtosis, of the 

pitch and energy and their first two derivatives. The mean and variance of the length of the 

voiced speech segments were added to these. Those features were tested to draw the seven 

best ones for classification using Linear Discriminant Analysis. 

They then combined the prosodic system with a system using spectral envelope parameters 

employing a fil terbank with 19 fil ters. The log power outputs were transformed into twelve 

cepstral coefficients and twelve delta cepstral coefficients at a frame rate of 10 ms. Hidden 

Markov Models were used for classification. The spectral envelope yielded better results 

than the prosodic features. However, the latter were much more robust to signal degradation 

than the spectral envelope. 

[Waibel1996] used two sets of features to recognize the emotional state of a speaker. The 

first set consists of 7 global statistics of the pitch signal such as mean, standard deviation, 

minimum, maximum, range, slope and speaking rate. 

The pitch contour for the second feature set was smoothed using piecewise cubic splines. 

The derived features were statistics related to rhythm, the smoothed pitch signal and its 

derivative, individual voiced parts and slopes. 
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4. LANGUAGE IDENTIFICATION 
 

Language Identification (LID) can be seen as a subset of the field of speaker recognition, 

because it gains personal information about the speaker. A more specialized application is 

the problem of dialect or accent identification.  

Applications for LID are dialog systems, especially in multilingual countries or multili ngual 

translation systems. Instead of trying to recognize a speech utterance in all possible language 

and choosing the most likely output it is computationally more efficient to first identify the 

language spoken and then to apply the right ASR system. 

Another application would be for emergency telephone services to aid operators if an LID 

front-end can route a call to the appropriate person. 

 

4.1 Useful Cues for LID 

 

In comparison to ASR where most of the information lies in small portions of the speech, for 

LID these units are not enough and larger segments have to be considered. 

[Muthusamy+1994] list several sources of information for language identification: 

•  Acoustic Phonetics: Phonetic inventories differ from language to language. Even when 

languages have identical phones, the frequencies of occurrence of phones differ across 

languages. 

•  Prosodics: Languages vary in terms of the duration of phones, speech rate and the 

intonation (pitch contour). Tonal languages (i.e. languages in which the intonation of a 

word determines its meaning) such as Mandarin and Vietnamese have very different 

intonation characteristics than stress languages such as English or German. 

•  Phonotactics: Phonotactics refers to the rules that govern the combinations of the 

different phones in a language. There is a wide variance in phonotactic rules across 
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languages. For example the phone cluster /sr/ is very common in the Dravidian language 

Tamil, whereas it is not a legal cluster in English. 

•  Vocabulary: Conceptually the most important difference between languages is that they 

use different sets of words – that is, their vocabularies differ. Thus, a non-native speaker 

of English is likely to use the phonemic inventory, prosodic patterns and even 

(approximately) the phonotactics of her/his native language, but will be judged to speak 

English if the vocabulary used is that of English 

 

4.2   Multi-language speech corpora 

 

A major reason for research progress in the last 10 years was the availabil ity of multi-

language speech corpora [Muthusamy+1992] to capture the many sources of variability 

within and across languages. These include variability due to speaker differences (e.g. age, 

gender, dialect), microphones, telephone handsets, communication lines, background noise 

and the language being spoken. It is also important that the corpus contains a wide variety of 

speech from each speaker, ranging from fixed-vocabulary utterances to natural, continuous 

speech. The availability of such a corpus in the public domain enables researchers to study 

languages and to develop, evaluate and compare multi-language recognition algorithms. 

The OGI Multi-language Telephone Speech Corpus was designed specifically for language 

ID research. It consists of spontaneous and fixed-vocabulary utterances in 11 languages: 

English, Farsi, French, German, Hindi, Japanese, Korean, Mandarin, Spanish, Tamil and 

Vietnamese.  

 

4.3 Human performance 

 

Human performance was studied by [Muthusamy+1994a]. One experiment with 

monolingual English speakers was done with 10 languages. After some training, the people 

were able to identify languages with accuracy ratings from 39% (Korean) to 86% (German 

and French) using just 6-second excerpts. English scored 100%. An additional experiment 

was performed where some subjects were able to speak more than one language and there 

were native speakers of every language tested. Overall performance increased and listeners 

who knew more languages tended to perform better. The subjects noted to use the following 

cues for the recognition task: 

•  Special phones or phone-combinations were linked to certain languages. 

•  East Asian languages were associated with special intonation (tones). 
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However, it is still not clear which cues humans use to identify or distinguish unknown 

languages. 

 

4.4 Common Approaches 

 

[Muthusamy+1994] described several approaches to LID. Much progress has been made in 

ASR using stochastic models such as Hidden Markov Models (HMM) or Artificial Neural 

Networks (NN). These approaches are being used in recent LID as well.  

The easiest approach is to model an entire language by a single stochastic model, such as an 

ergodic HMM. Because a single HMM cannot model the complexity of a language, this 

approach has not been very successful. 

The basic idea of the system by [Lamel+1994] is similar to the above approach. It is to train 

not just one but a set of large phone-based ergodic HMMs for each language and to identify 

the language as that associated with the model set having the highest acoustic li kelihood. 

Using the 10-language OGI telephone speech corpus, the overall identification rate is 59.2% 

with 10s of signal. They note that this technique has also been successfully applied to gender 

and speaker identification and has other possible applications such as dialect identification. 

The most popular approach to LID is to look at the phoneme inventory of the languages. 

Some phonemes do only exist in a certain language while others have subtle differences in 

realizations in languages. There are also differing frequencies of occurrence of the same 

phonemes. 

 

4.4.1 Single phone recognizer followed by language 

modeling (PRLM) 

 

One way would be to use a phone recognizer which can be either language independent 

[Hazen+1997], [Corredor-Ardoy+1997] or for one specific language [Zissmann1996], 

[Caseiro+1998]. The language independent implementation uses a phone inventory that 

covers all the phones of the language to be identified, whereas for the language specific 

approach a phone recognizer for a specific language, for example English is used for all 

speech utterances.  
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Figure 4.1: Phone Recognizer followed by language modeling 

 

The phone recognizer offers a phone string that includes either all phonemes of the 

languages or just the phones the recognizer is trained with. This phone string is then fed into 

language specific models. Those can be trained for language l by running training speech for 

language l into the phone recognizer and computing a model for the statistics of the phones 

and phone sequences that are produced by the recognizer. N-grams can be used to model the 

language. [Zissmann1996] counted the occurrence of n-grams, which are subsequences of n 

symbols. Training was performed by accumulating a set of n-gram histograms, one per 

language, under the assumption that different languages will have different n-gram 

histograms. They then used interpolated n-gram language models to approximate the n-gram 

distribution as the weighted sum of the probabili ties of the n-gram, the (n-1)-gram, etc. Then 

the log-li kelihood for every language was calculated and the decision was made with a 

maximum likelihood classifier. 

[Hazen+1997] employed the concept as shown in Figure 4.1 but additionally incorporated 

the fundamental frequency and segment duration. They then used three different models for 

the language li kelihoods. The language model is very similar to the implementation by 

[Zissmann1996], as described above. The acoustic model accounts for the different acoustic 

realizations of the phonetic elements that may occur across languages.  

 

 

 

 

 

 

 

 

Figure 4.2: Language Model 
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The prosodic model captures the differences that can occur in prosodic structures of different 

languages due to the stress or tone patterns created by variations in the phone durations and 

F0 contour. For each frame, a fundamental frequency and a voicing probability are 

estimated. Then the logarithm is taken for all voice frames and the mean is subtracted. 

Additionally a delta F0 is calculated. Since no well-developed techniques for automatical 

capturing and understanding of word- and sentence- level prosodic information were 

available, their prosodic model only captured simple statistical information about the 

fundamental frequency and segment duration information of an utterance. They used two 

separate models for fundamental frequency and segment duration, assuming statistical 

independence. 

They incorporated all models into the system by optimizing weighting factors for different 

utterance lengths.  As the length of the test utterance increases, the weights of the acoustic, 

duration and prosodic models generally decrease. This effectively gives the language model 

more weight for longer utterances.  

Evaluation by the NIST19943 test yielded the following results with 11 languages of the OGI 

Multi-Language telephone speech corpus: 

 

Set of models 

10 s utterances 

Accuracy 

45 s utterances 

Accuracy 

Complete system 65,3% 78,1% 

Language model 62,7% 77,5% 

Acoustic model 49,0% 53,5% 

Duration model 31,7 44,4% 

F0 model 12,4% 20,9% 

Table 4-1: Performance of complete system and individual components 

 

Performance for very short utterances (~ 1 s) was dominated by the acoustic model. The F0-

model generally yielded a rather poor performance. For increased performance 

[Hazen+1997] suggested models that are more sophisticated. 

4.4.2 Parallel phone recognizers followed by a language 

model 

Parallel phone recognizers followed by a language model (PRLM) have either a phone 

recognizer for each language to be identified or any number of phone recognizers of 

arbitrary languages. [Zissman1996] used phone recognizers for English, Japanese and 

                                                   
3 A standardized test by the US National Institute of Standards and Technology  
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Spanish to identify Farsi, French and Tamil. A phoneme string for N languages is calculated 

and then modeled with each of the language models. Computationally this approach is of 

course much more intensive than the previous solution. [Navrátil1999] employed a similar 

model but like [Hazen+1997] he additionally used an acoustic model to take into account 

different pronunciations of the same phone in different languages and a prosodic model 

which uses segment duration. 

 

 

 

 

 

 
   

 

 

 

 

Figure 4.3: Parallel Phoneme Recognizer followed by Language modeling 

[Zissmann1996] introduced another model, the parallel phone recognition (PPR) that allows 

the phone recognizer to use the language-specific phonotactic constraints during the Viterbi 

decoding process rather than applying those constraints after phone recognition is complete, 

the lost likely phone sequence identified during recognition is optimal with respect to some 

combination of both the acoustics and phonotactics. The disadvantage of this system is that it 

needs phonetically labeled speech for every language to be recognized. 
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Figure 4.4: Parallel Phone Recognizer (PPR) 

[Zissmann1996] also performed experiments using gender dependent acoustic models for 

phone recognition, including duration tagging, where average phone durations were 

compared with tested phones. Both improved the performance of the above systems. 
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4.4.3 Prosodic and Duration Approaches 

As mentioned above [Hazen+1997] stated, that the prosodic model didn’ t contribute much to 

the overall performance of their system.  

[Muthusamy1994] considered more complex prosodic models, which take into account the 

pitch variation within and across the different segments marked by a broad-category 

classifier. He also extracted features indicative of speech rate and syllabic timing. Again, 

these prosodic features were found to be marginally useful.  

[Foil1986] examined both formant and prosodic feature vectors, finding that formant 

features were generally superior.  

[I tahashi+1999] used two different methods of parameterizing F0-contours and combined it 

with statistical analysis. Their approach was to approximate the fundamental frequency by a 

set of polygonal lines  

kkkk bttay +−= − )( 1   k = 1, 2, …, K 

where ak  is the slope of the line segment k, bk is the intercept, and tk-1 is the boundary 

between the adjacent line segment. The parameters ak and bk were determined so as to 

minimize the mean square error between y(t) and F0(t). 

F0 patterns show hat-li ke shapes suggesting that an exponential function is expected to be 

more suitable for approximation: 
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Their statistical features were related to F0 and speech power (standard deviation, skewness 

and kurtosis) additionally correlation coefficients of F0 and speech power were used. For the 

parameterization, statistical features were calculated as well . Additionally to the F0-contour 

12 mel cepstral, 12 delta mel cepstral coefficients and a delta power were calculated 

(referred to as MCC). This method is based on an ergodic HMM using MCC as segmental 

information. One HMM was used for each language. For training and evaluation the OGI-TS 

corpus (10 languages) [Muthusamy1992] was used. Recognition rates were 25.5% / 28.0% 

for the F0-line / exponential model and 55.5% / 56% for a 32 / 64 state HMM M CC model. 

The best combined result gave 68.5% accuracy. A suitable weighting factor for the influence 

of F0 and MCC is important for optimal recognition rates. Performance of MCC HMMs is 

far better than the F0-contour, but as an additional feature, the latter is still improving 

performance. 

[Thymé-Gobbel+1996] presented the most promising approach. They performed syllable 

segmentation and extracted pitch and ampli tude contour information on a syllable-by-

syllable basis and included a statistical module, which computes inter-syllable relationships 
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in the pitch and amplitude information. They used 224 individual features such as moving 

averages, deltas, standard deviation, and correlation of measures in the following classes: 

•Pitch Contour (shape of pitch contour on a syllable) 

•Differential Pitch (pitch differences between syllables) 

•Size (distance between syllables and syllable duration) 

•Differential size (differenced distance between syllables and syllable duration) 

•Amplitude (shape of amplitude contour on a syllable) 

•Differential Ampli tude (ampli tude differences between syllables) 

•Rhythm (low frequency FFT of amplitude envelope, syllables per second within 

breath group) 

•Phrase Location (initial/mid/final in breath group; relative phrase position based on 

syllable distance rations) 

Pair-wise language discrimination was performed between English, Spanish, Japanese and 

Mandarin. These languages represent the traditional categories of stress-timed, syllable-

timed, mora-timed and tone language. 

The most prominent feature is the pitch (and to a lesser extend deltaPitch). Combinations of 

location and pitch and delta pitch seem to be most important for LID. The weakest 

distinctions involve amplitude and differential amplitude, suggesting that using amplitude 

features is a very poor LID strategy.  

The best result was Mandarin versus Spanish using pitch features and phrase location scoring 

86% recognition rate. 

[Cummins+1999] used ∆F0 and ∆Amplitude-envelope modulation for discriminating among 

languages. They do not compute a featural representation of the speech signal in advance; 

instead, the variables were presented as a time series to a novel recurrent neural network. It 

employed a Long Short-Term Memory model, to overcome the shortcomings of recurrent 

neural networks when including temporal information.  

 [Thymé-Gobbel+1996] chose their four languages, because they include stress-, syllable-, 

mora-timed and tone languages. This research included German, because it is considered to 

have a prosodic system very similar to English and it thus allows testing the expectation of 

maximal confusabili ty for prosodically similar languages. 

Pair-wise discrimination based on ∆F0 and/or ∆Env yielded the following mean results (50% 

is chance performance, standard deviation in brackets): 
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% correct ∆ F0 and ∆Env 

 German Spanish  Japanese  Mandarin 

English 55.7 (2.3)  53.8 (5.0)  64.9 (1.2)  63.2 (1.8) 

German -  52.7 (1.3)  67.3 (2.1)  68.7 (2.6) 

Spanish  -  -  67.3 (1.9)  72.7 (2.7) 

Japanese  -  -  -  60.8 (2.0) 

Table 4-2 5 6�7 8 9 : ; 8	< = >�7 9 ? @ : >�7 ; 8�A ? < 8 < B C D�E F F ? < @ D G�9 8 C H I	J K L�@ H B	J M H N  
It is evident that the network is quite successful at discriminating among typologically 

distinct languages that is any pair from Mandarin, Japanese and either English, German or 

Spanish. However, performance is much worse within the group of the three Indo-European 

languages. Perhaps surprisingly, Spanish is not easily distinguished from English and 

German, despite the rhythmic difference. 

% correct ∆F0 

 German Spanish  Japanese  Mandarin 

English 53.8 (2.1)  54.3 (3.5)  65.9 (1.4)  63.3 (0.8) 

German -  54.2 (2.1)  73.3 (1.6)  71.7 (2.1) 

Spanish  -  -  73.1 (2.2)  68.0 (1.3) 

Japanese  -  -  -  52.0 (2.2) 

Table 4-3: Results of Neural Nets ProsodiD�E F F ? < @ D G�9 8 C H I	J K L  
Given only F0 as input, performance in most discrimination tasks is as good or better as in 

the two-input model. In particular, performance on comparisons involving any one of the 

Indo-European languages and either Mandarin or Japanese is still reliably above chance, 

often showing slight, though hardly significant improvement. 

 

% correct ∆Env 

 German Spanish  Japanese  Mandarin 

English 51.4 (2.5)  60.0 (2.5)  51.7 (2.6)  59.8 (2.5) 

German -  53.9 (2.1)  59.2 (2.0)  60.7 (4.3) 

Spanish  -  -  60.7 (1.6)  52.1 (1.6) 

Japanese  -  -  -  60.4 (1.4) 

Table 4-4: Results of Neural Nets Prosodic Approa D G�9 8 C H I	J M H N  
A point to note is the improvement shown in discriminating Spanish and English when ∆Env 

alone is used as input. It is li kely that the poorer performance in the 2-input task can be 

attributed to the harder task of both learning to discriminate based on ∆Env and 
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simultaneously learning to ignore the apparently irrelevant ∆F0 input. It is surprising that the 

German/Spanish task does not show a similar improvement in the single input case. 

To sum up, F0 is the most useful prosodic discriminant as noted by [Thymé-Gobbel+1996], 

but discimination performance is highly dependent on language specific factors. It is 

interesting that English and German are not being discriminated by neither of all three 

approaches. 

 

4.5 Accent Identification4 

 

There have been very few attempts to identify dialects or accents. The task differs from 

language identification by the fact that all speakers are speaking the same target language. 

However, the speakers with foreign accents are expected to import some of the acoustic and 

phonological features from their first languages into the speech production process. So 

differences can be acoustic and phonotactic due to the phoneme substitutions and 

approximations. 

[Kumpf+1996] described a system for automatic foreign accent identification for Australian 

English speech. The classifier is designed to process continuous speech and to discriminate 

between native Australian English speakers and two migrant speaker groups with foreign 

accents, whose first languages are Lebanese Arabic (LA) and South Vietnamese (SA).  

The system is a Parallel Phoneme Recognition as described in Section 4.4.2 and 

[Zissman1996]. The speech signal is represented by the observation sequence of feature 

vectors O={ o1, o2, …, oT} with T being the number of frames in the utterance The feature 

vector consisted of 12 MFCC coefficients, 12 delta MFCC coefficients, log energy and delta 

log energy. For each accent dependent recognizer a phoneme HMM set λA (3 state left to 

right topology) and a language model (phoneme bigram model) LA are trained on the speech 

of accent A. During testing a Viterbi decoder finds for each recognizer the most likely state 

sequence representing the speech utterance incorporating the HMM and language model and 

assigns the log li kelihood scores SA = log P〈O|λA, LA〉  to the proposed phoneme sequences. 

The maximum likelihood criterion is then applied to choose the recognizer with the highest 

likelihood score as the most probable to represent the accent of the test utterance 

{ }AA
A

LOPA ,logmaxarg λ=  A ∈  { AuE, LA, SV}  

 

                                                   
4 Accent will be referred to people who have a different native language than the spoken one; dialect will be seen 

as a regional variant of one language. 
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Figure 4.5: Accent classification system [Kumpf+1996] 

 

This system reached an average classification rate for three accents of up to 84.2% correct.  

[Hansen+1995] presented a system for foreign accent identification of American English. 

They suggested that normal speech production consists of a sequence of movements in some 

articulatory feature space from one source generator to another. Actual speech production 

consists of a ‘neutral’ speech feature production path which must be traversed to produce a 

given word or utterance.  
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Figure 4.6: Sample Source Generator paths for American English under neutral and foreign accent conditions as 

projected an articulatory feature space (from [Hansen1995]) 

 

They claim that one develops a speaking style while acquiring language skil l up to the age of 

16, which consists of phoneme production, articulation, tongue movement and other 

physiological phenomena related to the vocal tract. In general a foreign speaker preserves 

this speaking style while learning a second-language, and therefore substitutes phonemes 

from his native language when he encounters a new phoneme in the second language. For 

accented speech this path through the feature space is somewhat deviated from the normal 

path. 

In order to characterize the change in speech production due to accent in an articulatory 

space, a series of features was considered: Frame power, zero-crossing rate, LP reflection 

coefficients, autocorrelation lags, log-area-ratios, line-spectral pair frequencies, LP and FFT 

cepstrum coefficients, F0, formants location and bandwidths. Though there are significant 
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variations in pitch for the different accent, the most distinct features for classification were 

on phonemic level. 

For an unknown open speech sequence for Neutral American English, German, Turkish and 

Chinese accent a recognition rate of 81,5% was achieved. 

[Teixeira+1996] proposed a three-stage recognition system, in which the first stage decides 

about the speaker’s gender, the second stage classifies the speaker’s accent, and the final 

stage uses recognizer systems corresponding to the decisions made in the previous stages. 

Concerning the accent identification stage, they used an HMM technique similar to 

[Lamel+1994]. Global score for discrimination of 6 European language accents of English is 

65.4%. 

4.6 Summary 

 

Language Identification including Accent and Dialect Identification was covered in this 

chapter. Human performance and potential cues for LID were discussed. A multi-language 

corpus, which enhances comparabili ty of research, was presented.  

Then common approaches to LID were covered, such as a single phone recognizer followed 

by language modeling, a parallel phone recognizer followed by a language model and a 

parallel phone recognizer. Then some specific prosodic approaches were presented. The 

chapter concluded by introducing work about Accent identification. 
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5. FEATURE EXTRACTION 
 

The Data used for this research is provided by Forschungszentrum Telekommunikation 

Wien5 (ftw). The database GeveAT is taken from the SpeechDat-AT, a telephone speech 

database for Austrian German [Baum2000]. The German speakers are taken from the 

SpeechDat-AT database as well, since the SpeechDat criteria allow 5% non-native speakers. 

The speech file format is 8bit, 8kHz, A-law speech files, uncompressed. 17 speakers from 

each Austria and Germany were provided. For each of the speakers 10 sentences were 

recorded. Every sentence was spoken by at least both an Austrian and a German speaker.  

Because some of the speakers were not optimal for the task of discerning the origin of the 

speaker the data set was reduced to 10 speakers (7 male / 3 female).  

 

The first task was to extract prosodically relevant parameters. As seen above, fundamental 

frequency and intensity contour are the most obvious features. In order to extract the 

intensity contour the a-law files were converted to wav-files. Duration features are much 

harder to obtain, because in this case segmentation information such as phoneme or syllable 

length are needed. Since these features had not been provided, duration features were not 

tested. 

 

5.1 Fundamental Frequency Tracking 

 

Extracting the fundamental frequency of a speech signal can be achieved in several ways. 

For this task, Praat phonetics tools6 were used. This is a toolbox for speech research, 

including features as spectrogram, LPC, Cepstral-analysis, PSOLA, formant and pitch 

                                                   
5Vienna Telecommunication Research Center  
6 Praat can be obtained from: http://www.fon.hum.uva.nl/praat/  



Feature extraction 

- 51 - 

tracking. The pitch-tracking algorithm performs acoustic periodicity detection based on an 

accurate auto-correlation method, as described in [Boersma1993].  

This method is more accurate, noise-resistant and robust than methods based on cepstrum or 

combs, or the original auto-correlation methods. Its key point is the fact that if one wants to 

estimate a signal’s short-term auto-correlation function on the basis of a windowed signal, 

the auto-correlation function of the windowed signal has to be divided by the auto-

correlation function of the window. 

 

5.1.1 Theoretical Background 

Ideally, the best candidate for the acoustic pitch period can be found using the position of the 

maximum of the auto-correlation function of the sound, and the degree of periodicity from 

the relative height of this maximum. However, the problem is, that sampling and windowing 

cause inaccuracies concerning the position and height of the maximum.  

The auto-correlation of a time signal x(t) as a function of the lag τ is defined as: 

( ) ∫ +≡ dttxtxrx )()( ττ
 

If there is a maximum outside 0 and the height of the harmonic strength rx(τmax) is large 

enough the signal is periodic and in consequence there exists a lag T0, called the period. The 

fundamental frequency is then defined as F0=1/T0.  

The short-term auto-correlation is estimated from a short windowed segment of the signal. 

This gives estimates F0(t) for the local fundamental frequency and R0(t) for the harmonic 

strength.  

If there are strong harmonic components in the signal, the highest maximum of the auto-

correlation of the windowed signal is rather at a lag that corresponds to the first formant than 

to the fundamental frequency. Therefore, the pitch estimate from the auto-correlation would 

be too high. A solution to this problem is to compute the normalized auto-correlation of the 

window function and to divide the auto-correlation of the signal by the auto-correlation of 

the window (See Figure 5.1).  
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Figure 5.1: Pitch tracking using corrected autocorrelation (from [Boersma1993]) 

 

The corrected auto-correlation is: 
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For every frame, a certain number of candidates (peaks in the auto-correlation function) are 

stored. A post-processing algorithm, considering cost for voicing threshold, octave jumps, 

voiced/unvoiced changes, etc., seeks the best path through the candidates. 

The following arguments had to be applied: 

Time step: the measurement interval, in seconds.  

Minimum pitch: candidates below this frequency will not be recruited. This parameter 

determines the length of the analysis window.  

The default arguments for the best path algorithm were used as suggested by praat. For male 

speakers the minimum frequency was 75 Hz and the maximum was 220 Hz. For female 

speakers the expected fundamental frequency was between 100 Hz and 350 Hz. For all 

samples a time step of 10 ms was used. 

After the pitch tracking a smoothing algorithm was applied with either 8 Hz or 1 Hz 

bandwidth. 

 

 

 

 

x(t)     multiplied by  w(t)  gives  a(t) 

ra(τ)     divided by  rw(τ)  gives  rx(τ) 
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5.1.2 Pitch-post-processing 

Human pitch perception is rather logarithmical. Consequently, the logarithm of the 

fundamental frequency is taken and transformed to MIDI-Numbers (A2=110Hz=MIDI#36). 

This explains why peaks at the end of the downward trend (declination) of an utterance (see 

Figure 2.4) are perceived as strong as the higher peaks at the beginning. 

For statistical analysis, the usual downward trend of an utterance is removed by subtraction 

of the 1st order regression line. This is also to reduce speaker dependencies, specially 

concerning gender. 

 

5.2 Parametric Description of the F0-contour 

 

The following pages describe attempts to model the F0 contour using a parametric 

description. All of the models are originated in speech synthesis and they are used for 

modeling the pitch contour for synthesized speech.  

 

5.2.1 TILT-Analysis 

The Til t-Analysis7 is a phonetic model of intonation parametric representation of a pitch 

contour using three parameters for intonational events: duration, amplitude and til t (for the 

shape) [Taylor2000]. Intonational events can be either pitch accents (denoted a) or boundary 

tones (b). 

The Til t-Analysis is based on the rise/fall /connection (RFC) model. In this model, presented 

by [Taylor1995], each intonational event is characterized by four parameters: rise amplitude, 

rise duration, fall amplitude and fall duration. If an event has only a rise component, its fall 

ampli tude and duration are set to 0. Likewise, when an accent only has a fall . The sections of 

contour between events are called connections (denoted c) and are also described by 

ampli tude and duration. 

In [Taylor2000] it is shown, that the RFC mechanism is not ideal in that the RFC parameters 

for each contour are not as easy to interpret and manipulate as one might like. Additionally, 

the parameters are highly correlated and therefore it is possible to reduce the set of 

parameters to three by transforming the four RFC parameters into three Til t parameters, 

namely duration, amplitude and tilt itself. 

A single parameter can be used to model the shape of the event. This tilt  value is calculated 

as: 

                                                   
7 Tilt is part of the Edinburgh Speech Tools Library, which is provided by the Centre for Speech Technology, 

University of Edinburgh. It can be obtained from http://www.cstr.ed.ac.uk/projects/speech_tools.html. 
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The amplitude parameter is the size of the F0 excursion of the event: 

fallriseevent AAA +=  

The duration is the sum of the rise and fall duration: 

fallriseevent DDD +=  

 

F0 position is the F0 distance from the baseline (usually 0 Hz) to the middle of the event. 

Time position is where the event is located in time. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Examples of 5 events with varying values of tilt 

 

Using Tilt, the problem arise that a label file for the intonational events is needed. This file is 

normally created by hand, which cannot be consistently done by different labelers. I have not 

succeeded in finding an automatic labeling tool. 

 

5.2.2 Intofit 

Intofit8 is, like Til t, a parametric description of F0-contours, originally to be used for speech 

synthesis. It is a maximum-based model, assuming the F0-maxima to be the most important 

points of the intonation contour [Heuft+1995]. Each F0-contour is parameterized describing 

                                                   
8 Intofit was developed at the ‘ Institut für Kommunikationsforschung und Phonetik’ at the University of Bonn, 

Germany and can be obtained from http://www.ikp.uni-bonn.de/~tpo/intofit.html . 
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only its maxima: for each maximum, approximated by cos2 functions, four parameters are 

given. First, the maximum is located precisely in time, relative to the onset of the accented 

vowel assigned to it. This distance is called delay. 

The second parameter is, the height of the maximum (amplitude) is described as a percentage 

value between top and baseline. The third and forth parameter describe the steepness of the 

contours preceding (left slope) and following (right slope) the maximum.  

 

 

 

 

 

 

 

 

Figure 5.3: Intofit parameters (from [Heuft+1995]) 

The intonational events for Intofit were obtained assuming all accents were represented by 

pitch maxima down to a certain threshold. This is linguistically not correct. For this reason 

the delay parameter is always set to zero, but the F0-contour could be approximated quite 

correctly (Figure 5.4).  

In Table 5-1 the Algorithm for finding the Intofit parameters is described. For the slope 

parameters an optimization by minimizing mean squared errors was performed. A weighing 

factor emphasizes the distance close to the maximum, because deviations close to the 

minimum are perceptional less relevant. 

 

1.  Finding the maximum close to the accented vocal 

2.  Calculation of distance between vocal onset and position of maximum 

3.   Determination of relative amplitude, related to top and baseline 

4.  Calculation of optimal slope parameter between previous minimum and current 

maximum. 

5.  Calculation of optimal slope parameter between current maximum and the following 

minimum. 

Table 5-1: Calculation of Intofit parameter (from [Portele+1995]) 

It is to mention though, that quite often the approximation algorithm didn’ t find a correct 

fitting. Most of the time, the peaks of the fitted-contour were below the original peaks.  
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Figure 5.4: Original and (Into-)fitted F0-contour (log-domain) 

Originally, Intofit uses linear frequency, but because speech is perceived rather 

logarithmically, a logarithmical input was used as well . Then for every speaker one mean 

intofit feature set was calculated (see Figure 5.5).  
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Figure 5.5: Log- Intofit-features: amplitude vs. falling slope 
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5.2.3 The Fujisaki - Model 

The Fujisaki-model ([Fujisaki1983] and [Mixdorff1997]) aims at modeling the generation 

process of F0 and explaining the physical and physiological properties behind it. It views a 

F0 contour as the filtered sum of two components: word level accent commands and phrase-

level utterance commands. Thus the F0 contour, F0(t), of a sentence can be expressed by 
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jaj
j γβ β−+−=  Equation 5-2 

and 

)()( tutetG t
ipi

αα −=  Equation 5-3 

u(t) = unit step function 

respectively indicate the step response function of the corresponding control mechanism to 

the phrase and accent commands. The αi’s and βj’s are expected to be fairly constant within 

a sentence, or among utterances of an individual speaker. I and J are the number of phrase 

and accent commands, T0i and T3i denote the onset and end, respectively, of the ith phrase 

command, while T1j and T2j denote the onset and end, respectively of the jth accent 

command. In the absence of pauses within a spoken sentence, the offset times T3i for all 

phrase commands are assumed to be the same for all i’s within an utterance. On the other 

hand, the accent commands are constrained not to overlap each other.  
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Figure 5.6: Block diagram of the Fujisaki-model 
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To extract the features the program ‘autofuji ’ by Hansjörg Mixdorff was used 

[Mixdorff1999]. Fujisaki-model parameters are estimated from an ESPS-waves-based F0 

contour9 in a multi-step procedure, consisting of a quadratic spline styli zation, a component 

separation by fil tering followed by command initialization. Then the initial parameter 

configuration is optimized in a three-pass hil l-climb. In the latter part of the procedure, 

parameters for accent and phrase components are first optimized separately, then further 

optimized together using the spline contour as the target and ultimately fine-tuned with a 

weighted version of the extracted contour as the target (See Figure 5.7). 
 

0 .5 1 1 .5 2 2 .5 3 3 .5 4 

0 

50 

100 

150 

tim e [s ] 

fr
e

q
u

e
n

c
y 

[H
z] 

Figure 5.7: Components of Fujisaki Model 

Several possible ranges for α and β were evaluated and finally α=2 and β=20 yielded the 

best results. [Mixdorff1983] already suggested those values for German.  

This leaves two variables Aa and Ap as features for the identification of the different dialect 

groups. Since there can be several accent and phrase components per utterance, 

representative values for each sentence were calculated. Best results offered a median 

computation so that there is one median Aa and Ap value for every sentence (Figure 5.8).  

For some sentences, the Ap output of the autofuji-program was not calculated, which is 

obviously wrong. Additionally some abnormal program terminations have occurred. Those 

errors may be caused by the missing voicing degree, which was not available. However, the 

                                                   
9 Since ESPS-waves was not available, the missing degree of voicing parameter was substituted with a binary 

value. This might decrease the performance achieved. 
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involved datasets were still used, because Aa was accurately calculated. This was taken care 

of by setting the median value of the invalid Ap components to zero. 
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Figure 5.8: Fujisaki Parameters Ap vs. Aa 

5.2.4 LPC-Coefficients 

This approach is also rooted in intonation modeling for speech synthesis. [Mersdorf1999] 

proposed a system where LPC-Coefficients for speaker dependent modeling of intonation 

were used. The LPC-Intonation model consists of the following stages:  

•  F0-postprocessing: Outliners are removed  

•  Interpolation: For the LPC analysis a continuous, derivable representation of the F0 

contour is recommended. They suggest a cubical spline interpolation assuming a ‘virtual 

F0’ in unvoiced segments (see Figure 5.9). The interpolation is motivated by the 

assumption that temporary switching into unvoiced excitation only interrupts a 

continuous speaker’s intonational gesture [Mersdorf1997].   

 

 

 

 

 

 

Figure 5.9: Example for vitual F0 (jenes, jedes); from [Mersdorf1997] 
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•  Analysis: The analysis consists of an 8th order LPC of the interpolated contour over the 

whole sentence. For the whole speech material a single set of individual fil ter 

coefficients can be buil t by computing the arithmetical mean value for each coefficient.  

•  Approximation of command excitation and (re)synthesis are then used to generate an 

excitation signal for the resynthesis of a synthetic intonation contour. This can then be 

applied to synthetic speech using PSOLA or similar techniques.  

In Figure 5.10 it is overt that there are quite significant differences in the impulse response of 

different speakers using 8th order LPC coefficients. 
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Figure 5.10: Speaker individual Impulse responses (Austrian speakers) 

These are mean impulse responses for individual speakers. The idea proposed now is that 

significant differences between Austrian and German speakers can be expected. Instead of 

averaging over single speakers, mean filter parameters are calculated for all Austrian and all 

German speakers.  
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Figure 5.11: Average Austrian and German impulse response 

 

Figure 5.11 shows that the differences are far less significant than with single speakers.  

The frequency response (Figure 5.12) does not show any differences either. 
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Figure 5.12: Frequency response of average LPC-Coefficients 

 

Further analysis proved that LPC-Coefficients provide no useful features for the discerning 

of Austrian and German. 
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5.2.5 Peaks and Intervals 

The most simple form of obtaining a data reduced representation of the pitch contour is to 

find minima and maxima. This was done in the log-domain; therefore intervals are given in 

semitones.    
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Figure 5.13: minima & maxima of F0-contour 

The histogram of the mean intervals between a maximum and a minimum suggests a 

possible distinctive feature (Figure 5.14.). 
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Figure 5.14: Histogram of mean Intervals 
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5.3 Intensity 

 

Additionally, an intensity contour was calculated in MatLab with the following algorithm 

(RMS):  

[ ] ∑
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The values of the sound wave are squared and then summed over a window length of 160 

samples (20ms). The hopsize used was 10 ms (80samples). 

From the linear intensity contour the logarithm was taken { 20*log10 (X[n])} . For 

normalization the maximum of each file was set to 80dB. It was then stored as a Praat 

Intensity-Tier file. 

 

5.4 Statistical Features 

 

Very little useful information is available from intonation research, which could lead to more 

knowledge-based features. Statistical features might be a possible approach.  

Percentiles (P10, 25, 50, 75, 90), standard deviation, skewness, kurtosis were calculated for 

the following signals: 

•  F0-Contour: The logarithm was taken, converted to MIDI-numbers and to detrend the 

data (see Section 2.2.1 ) the first regression line was subtracted. 

•  Delta F0-Contour : It is said that a lot of prosodic information lies in slopes and 

intervals (see Section 2.2.1 ), so delta-F0 could provide some useful information. 

•  Intensity-Contour  (framesizes=160/20ms): Intensity is said not to be very useful 

according to [Thymé-Gobbel+1996], but there is still some information encoded in the 

intensity contour. Because of background noise the file is much longer than the actual 

speech. This fact was taken into account by assuming that the actual speech-length is 

from the first to the last voiced frame. This segment was used to analyze the intensity-

contour. 

•  Delta I ntensity-Contour  (framesizes=160/20ms): The length was calculated as above 

and the difference was computed. 

•  AutoCorrelation(F0): Auto-correlation provides spectral information about the 

F0 contour. This function was computed on the logarithmical and detrended F0-contour. 

•  AutoCorrelation(I ntensity): The auto-correlation function was computed on the 

logarithmical and detrended Intensity-contour 



Feature extraction 

- 64 - 

•  CrossCorr elation(F0,I ntensity (lin/log)): Cross-correlation shows dependencies 

between F0 and intensity contour. It is expected that Austrian and German show 

different patterns in interaction between F0 and intensity. 

•  F0*Intensity-Contour  (lin/log): This was computed as just an additional feature that 

might show dependencies between F0 and intensity.  

•  Voiced Ratio: One widely acknowledged difference between German and Austrian 

pronunciation is the voicing of consonants [see Section 2.4.2 ]. Austrians rarely use 

voiced consonants such as [ O , P , Q ,…], but substitute them with their voiceless 

counterpart. Even though this is not a clearly prosodic feature, it is assumed that in 

German speech the voiced rate must be higher than in Austrian utterances. Two different 

approaches were made. First the Praat voicing decision was utilized by computing the 

ratio of the number of voiced frames to the number of all frames of an utterance. An 

alternative way was the computation of the zero-crossing rate (see Section 3.1 ) 

 

5.5 Summary 

 

This chapter explored how to get features, which are relevant for classification of Austrian 

and German using prosody. Two acoustical characteristics are explored, fundamental 

frequency and intensity. Two different parameterizations of fundamental frequency are 

applied, Infofit and Fujisaki. Both offer interesting results.  

For both, F0 and intensity several signals such as delta, correlation, etc are calculated and 

then statistically evaluated, using the t-test. 

Processing time of the most important calculations is shown in Table 5-2. The system used 

was an Intel Pentium III – 500 MHz with 192 MB RAM. Values are in % of real-time. It has 

to be noted, that the statistical features from Section 5.4 are calculated in MatLab, which is 

rather slow. Optimizations could decrease the processing time. 

Task 
processing time 

% of real-time 

Pitch Tracking 33% 

Intofit 10% 

Fujisaki 40% 

Statistical Features  

(for each signal) 

<5% 

Table 5-2:Processing time    
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See a summary of the feature extraction in Figure 5.15. 
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Figure 5.15: Summary of feature extraction 

 

  

 

 

 

 



Evaluation 

- 66 - 

 

 

 

 

 

 

 

 

6. EVALUATION 
 

After extracting features from the signal, there has to be made a decision which features are 

used for discerning the language groups, to achieve the best performance. Not all features 

mentioned in the previous chapter can improve the classification task.  

 

6.1 Classification algorithm 

 

There are many algorithms to classify signals around, but since this would have exceeded the 

scope of this thesis I only used one simple classifier, keeping in mind of course, that a better-

suited algorithm would have lead to increased performance. For comparison a standard 

MatLab Multi-Layer-Perceptron is used for the best results. 

The main purpose of a classifier is to decide which class a specific data sample with a certain 

feature vector belongs to (see Figure 6.1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: principle of classification from [Korl1999] 
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The algorithm used was to split the whole range of data into sections of equal size or equal 

percentiles. For each section the number of samples of a class (Austrian/German) from the 

training data determined which class the section belonged to. Then the test was performed on 

another set of data (Figure 6.2). Samples that lie in the according area are counted as correct 

recognition. The class distribution has only limited impact on the class boundaries, because 

only squares are used. Placing the boundaries in a way that data distribution is considered 

could lead to better performance. 

 

  

a b
 

Figure 6.2: a) Determine class boundaries using training data  b) Applying test data  

 

6.2 Feature Evaluation 

6.2.1 T-Test on all Statistical Features 

Since there are many statistical features, the t-test [Hartung1998] is a possible way to 

determine which of those are worth taking a further look at. To find out which of the features 

calculated contain information that can be used to determine whether two samples from a 

normal distribution (in this case Austrian and German) could have the same mean when the 

standard deviations are unknown but assumed equal. The t-test assumes normal distribution 

of the data, which we suppose, applies to our feature set. The calculated value signifi cance is 

the probability that the observed value of T could be as large or even larger by chance under 

the null hypothesis that the mean of x is equal to the mean of y. Small values of signifi cance 

cast doubt on the validity of the null hypothesis. That indicates that the mean could be 

different. 

The calculating the t-test yielded the following significance level: 
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 Features P10 P25 Median P75 P90 StdDev Skew Kurtosis 

 01 F0 0.0422 0.0997 0.2261 0.0837 0.3661 0.2218 0.7473 0.0696 

 02 Int 0.8797 0.1796 0.8024 0.8392 0.2732 0.7824 0.6258 0.4663 

 03 Int1 0.5747 0.1464 0.6763 0.4276 0.1432 0.4587 0.3186 0.0488 

 04 DeltaF0 0.0487 0.0046 0.5412 0.0192 0.0092 0.1267 0.5029 0.7360 

 05 Delta Int 0.9231 0.6649 0.6735 0.8878 0.8246 0.3762 0.7891 0.4114 

 06 Delta Int1 0.6134 0.7776 0.0427 0.0926 0.7281 0.7301 0.9748 0.1905 

 07 Acf F0 0.1510 0.1709 0.1346 0.3012 0.7132 0.3015 0.0767 0.1534 

 08 Acf Int 0.6989 0.3665 0.9128 0.2909 0.6047 0.7951 0.5501 0.7564 

 09 Xcorr 0.9688 0.7286 0.4313 0.1742 0.6728 0.8012 0.5330 0.0105 

 10 Xcorr log 0.9932 0.5527 0.3145 0.1626 0.6220 0.7150 0.6061 0.0057 

 11 Xmult 0.3412 0.4502 0.1605 0.2567 0.9533 0.4289 0.3278 0.5973 

 12 Xmult lin 0.9020 0.5197 0.8719 0.5901 0.8462 0.6223 0.9055 0.6260 

 13 Xmult log 0.1729 0.6506 0.1331 0.3574 0.5946 0.2370 0.6695 0.8594 

 14 ZeroXing 0.8409 0.3859 0.2307 0.1611 0.5284 0.0395 0.1418 0.2472 

Table 6-1: Significance of the statistical features 

 

First conclusions can be drawn from the significance of the features. 

The F0 contour  as expected offers some significant differences between the two national 

variants. The intensity contour  provides very li ttle differences apart from the kurtosis of the 

lesser-smoothed contour. Delta F0 seems to be a very interesting signal providing very 

significant percentiles, however for delta intensity only one feature is significant (again the 

lesser smoothed contour). The auto-correlation of F0 and the cross-correlation both 

provide only one significant features. Multiplication of the signals does not lead to useful 

differences, so this approach is left out. The zero-crossing rate offers only one significant 

feature as well. 

As mentioned above [Thymé-Gobbel+1996] found pitch and delta-pitch the most useful 

features, which comply with our results, where features from those signals perform best 

compared to other signals (see scatter-plot in Figure 6.3). 
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Figure 6.3: Statistical features F0-P75 vs. deltaF0-P90 

 

6.2.2 Feature combination 

In order to choose the features, the result of the t-test in section 6.2.1 , scatter plots and 

histograms were used. The most potential features found were then used as input for the 

classifier, as explained above.  

For statistical features, the t-test gave a first decision criterion, which limited the number of 

useful features. Further analysis showed that only those signals carrying more than just one 

significant feature in the t-test were able to provide information for the discrimination of the 

regional variants. The scatter-plots of the parameterized features already suggested potential 

for possible distinctive features.  

The potential features were then used in a pair wise combination test. The classification 

algorithm used 90% of the data set to train the classifier and 10% of the data for testing. Due 

to the small size of the database, the whole procedure was repeated 50 times with each time 

different randomly chosen data samples for testing. Different numbers of division of the 

data-range (with equal size and using percentiles) were tested; finally, five sections with 

equal size per feature yielded the best results. See Table 6-2 for averaged results. 
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Fujisaki Intofit F0 DeltaF0 
 

Aa Ap Amplitude rising falling P10 P75 P25 P90 

mean Interval 63 55 61 57 54 60 64 64 57 

Fujisaki Aa - 65 66 57 52 62 62 53 65 

Fujisaki Ap - - 52 58 53 64 62 68 56 

Intofit Amplitude - - - 61 62 60 62 59 57 

Intofit rising - - - - 62 62 54 57 56 

Intofit falling - - - - - 51 54 54 50 

F0 P10 - - - - - - 65 52 56 

F0 P75 - - - - - - - 63 66 

dF0 P25 - - - - - - - - 62 

Table 6-2: Pair wise feature combination: Recognition rates in % 

 

Figure 6.4 shows the classification using the two Fujisaki parameters; Figure 6.5 shows 

Fujisaki Ap versus deltaF0 P25, as examples for well classified features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Classification of Fujisaki AP vs. Fujisaki AA: Dots show classification 
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German 
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Figure 6.5: Classification of Fujisaki Ap vs. deltaF0 P25 Parameter 

To the best combinations from above a third feature was added using only 4 sections per 

feature this time. Again, linear division yielded slightly better results than the percentile 

division. See Table 6-3 for results. 

 

Fujisaki Intofit F0 DeltaF0  mean 

Interval Aa Ap Ampl rising falling P10 P75 P25 P90 

Fujisaki Aa  

Fujisaki Ap 
71 - - 59 54 60 71 72 69 54 

Fujisaki Aa 

Intofit Amplitude 
64 - - - 64 60 72 68 62 63 

Fujisaki Aa 

deltaF0 P90 
68 - - - 51 51 66 64 61 - 

Fujiskai Ap  

deltaF0 P25 
59 - - 57 57 60 57 57 - 54 

F0 P10 

F0 P75 
59 65 55 60 54 57 - - 58 58 

F0 P75 

deltaF0 P90 
59 - 60 62 59 56 - - 56 - 

Table 6-3: Triple feature combination: Recognition rates in % 

 

Combinations with more than three features didn’ t improve the recognition performance. 

This is expected, because then we either get a sparse matrix (e.g. consider four feature 

  

Austrian 
German 
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combinations: If using four sections per feature the matrix contains 256 elements which is 

more than there are sentences in our data set) or in case of using fewer divisions per feature, 

differentiation gets very poor. 

6.2.3 Alternative Evaluation with MLP 

For comparison, a standard MatLab Multi-Layer Perceptron (MLP) algorithm was used to 

get alternative results. 

The MLP had one hidden layer with 40 elements. Testing was done as above with 90% of 

the data used for training and 10% for testing. 50 different test-data sets were randomly 

choose and the result is an average over all 50 classifications. Those results are compared 

with the best ones those from above. 

 

Features Simple Classification MLP 

Fujisaki Aa, Ap, mean Interval 71 % 68% 

Fujisaki Aa, Ap, F0 P10 71 % 64 % 

Fujisaki Aa, Ap, F0 P75 72 % 69 %  

Fujisaki Aa, Intofit Ampl, F0 P10 72 % 70% 

Table 6-4: Comparison of results 

The MLP yields lower accuracy rates, probably the small data-set was not enough to train 

the MLP. However, distinction above chance level can be observed.  

 

6.3 Discussion 

 

This chapter introduced a simple classifier, which was used for the final feature-evaluation. 

Combinations of two and three features were evaluated. Combinations with Fujisaki features 

are superior to other groups. With either the mean interval feature or F0 percentiles they 

reach recognition rates above 70%. Overall processing time for the used features remains 

within real-time. 

Considering prosodic approaches in the past, the current results seem to be very promising. 

[Thymé-Gobbel+1996] scored best with Mandarin versus Spanish reaching 86%. It is to 

mention, that Mandarin and Spanish are linguistically very different languages, so 

distinguishing is easer than identifying similar languages or variants of one language. This is 

the reason [Cummins+1999] included German to the language set already used by [Thymé-

Gobbel+1996] to compare prosodically similar languages. They scored 55.7% for English 

versus German, which is practically chance level. 
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[I tahashi+1999] and [Hazen+1997] used prosodic features for identification of 10/11-

languages and scored 28% / 20,9% correct recognition. 

The reasonably good results of my examinations have to be handled carefully. The major 

shortcoming of this research is the size of the data-set. Because of the amount of information 

that lies in prosody, e.g. syntax, semantics, speakers intention, emotions, etc. (see Table 2-1) 

a large database would be necessary to validate the results of my research.  
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7. SUMMARY AND DISCUSSION 
 

7.1 Discussion and Outlook 

 

Where do we go from here? In Section 6.3 it was mentioned that the database was not 

suff icient for a reliable result. During the research some shortcomings of the database arose:  

•  The most important improvement would be to have much more speakers. 14 males and 

6 females are statistically not representative for approximately 100 milli on German-

speaking people. The problem is that speech corpora are very expensive. 

•  The German speakers were all living in Austria. There is no information how long they 

have been li ving there for. This leaves the question how this influenced their prosody. 

This point is emphasized because the main reason for omitting speakers was that 

Germans sounded rather Austrian.  

•  Another critical point of the database was that it all was read speech [Batliner1995]. 

Spontaneous speech is expected to have the most characteristic prosody concerning 

Austrian or German. However, having an application such as a phone data access system 

in mind, there wil l not be spontaneous sentences as well.   

Further research should be done on a big dataset covering a wide variety of speakers from all 

of Germany and Austria.   

For real life applications, the national variant of Switzerland would have to be included as 

well. This would require speech corpus for German, including all national and regional 

variants. Currently there is no such database available. 

Even though recognition rates were quite promising compared to previous work, it is still 

clear that using prosodic features alone cannot be a reliable system. I don’ t expect prosodic 

features alone to offer reliable cues, due to the multitude of information that is transported 

via suprasegmentals (Table 2-1). Nevertheless, it can be used to improve phoneme-based 

systems. 
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Best performance is expected, when including lexical information and using a much more 

sophisticated prosodic analysis, as seen in [Nöth+1997]. Then syntactic and maybe semantic 

information can be considered. However, the computational cost would rise considerably, 

because all possible national variants had to be considered for phoneme recognition. 

Whereas now, all calculations can easily be done in real-time. 

Of course, additional work has to be done in finding an optimal classifier that improves the 

recognition rates above. 

 

7.2 Summary 

 

It is useful for ASR applications to distinguish between an Austrian and a German speaker to 

improve performance. Because of possible degradation of information on phoneme level, an 

approach was chosen, which is less sensitive to disturbances on the transmission channel. 

Using suprasegmental features seems to be a possible method.  

The speech fundamental frequency (F0) and speech intensity were calculated. Various 

possibili ties to parameterize the F0-contour, such as Tilt, Intofit, Fujisaki, LPC-coefficients 

and F0-peaks were investigated  

Additionally different signals derived from F0 and Intensity, such as delta, auto-correlation, 

cross-correlation, multiplication were calculated and then used for statistical analysis 

(standard deviation, skewness, kurtosis, percentiles). Those features were then evaluated 

using a standard t-test. Percentiles of Pitch and delta Pitch proved to be the most useful 

features. 

Along with Intofit, Fujisaki and mean-intervals those features were used for pair wise 

classification. Combinations with three features left the Fujisaki features, Intofit Ampli tude, 

mean Intervals and the F0 percentiles (P10, P75) as the most potential features reaching 

recognitions rate of above 70%.  

Figure 7.1 gives an overview of the most useful features. 

Some improvements of the research were mentioned, the most important of all the size of the 

speech corpus.  
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Figure 7.1: Overview of useful features  
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