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Abstract

Head orientation estimation is an important task for plausible perception of

virtual acoustics. To gain a reliable 3D acoustic scene via headphone playback,

tracking of the listener's head movements is a necessary feature. Micro Electro

Mechanical Systems (MEMS) o�er a cheap and su�cient possibility to track such

movements, but lack in accuracy. This work evaluates state of the art sensor

shields (BNO055, NXP 9DOF and MPU9250) and fusion algorithms for the de-

sign of an attitude and heading reference system (AHRS) on the Arduino platform.

The orientation estimation of the sensors is compared to an optical tracking system

(Optitrack Flex 13). It is shown that all sensors can achieve su�cient orientation

estimation with the right fusion algorithm and proper calibration. Their perfor-

mance di�ers in the robustness against magnetic distortions and gyroscope bias

drift. Nevertheless the BNO sensor outperforms the others with its ease of use as

it has an onboard sensor fusion.
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1 Introduction

In 2016 binaural syntheses and 3D Audio applications hit the consumer market as com-
panies like Google and Facebook enabled the possibility for spatial audio playback on
platforms like YouTube and Facebook360. To gain a convincing 3D audio reproduction
via headphone playback, tracking of the listener's head movements is necessary. Micro
Electro Mechanical Systems (MEMS) o�er a cheap and su�cient possibility to track
such movements. Due to their low cost and small size MEMS can be assembled in
nearly any device such as smart- and headphones. The disadvantage of MEMS is that
they lack in accuracy and have high noise levels. To overcome these downsides di�erent
sensors and clever processing of their signals can be used. This is called an Attitude and
Heading Reference System (AHRS). There are two typical setups used for this purpose,
an Inertial Measurement Unit (IMU) and a Magnetic, Angular Rate and Gravity sensor
(MARG). An IMU consists of a gyroscope and accelerometer, whereas a MARG uses an
additional magnetometer. Each MEMS sensor represents a di�erent three dimensional
vector pointing either towards the earth's magnetic north pole, the direction of gravity
or the derivation of an angular rotation. This results in a system with six degrees of
freedom (6DOF) for an IMU and a system with nine degrees of freedom (9DOF) for a
MARG sensor. A fusion algorithm is then used to combine the overdetermined system
of three dimensional vectors to get an optimal estimation for the true attitude of the
whole sensor shield.

The Extended Kalman �lter [Kal60] became the standard choice for sensor fusion algo-
rithms, but in 2011 Madgwick [MHV11] showed that for an AHRS the quaternion based
complementary �lter can compare with the performance of an orientation estimation by
a Kalman �lter. The quaternion based �lter also works at a much lower computational
complexity compared to the Kalman �lter. Therefore it can be used with a low cost
micro controller like the Adafruit Feather MO Bluefruit LE [Ada20] used in this work.
All the processing can be done on the MO+ core of the Adafruit Feather controller. It
also comes with a built in Bluetooh LE shield and a USB battery charger, enabling to
build a low cost standalone wireless head tracker for orientation estimation. The new
headtracker is based on the MrHeadTracker [RBR+17] presented in 2017.

This report evaluates three di�erent Arduino based sensor shields (BNO055, NXP 9-
DOF and MPU9250) [Sen16] [Sem17] [Sem15] [Inv16] and two quaternion based sensor
fusion algorithms [MHV11], [VDX15] in six and nine degrees of freedom for an AHRS.
The attitude estimations are compared with each other and with an optical tracking
system as reference (Optitrack Flex 13). All derivations of the used fusion algorithms are
quaternion based. This ensures a unique representation of a three dimensional rotation
trough its interpretation in a four dimensional hyperplane and avoids ambiguities which
in the euler representation often causes problems.

One of the most important tasks in an AHRS system is sensor calibration. Especially
magnetometers su�er from strong errors due to in�uences of unwanted magnetic �ux
e.g., headphone magnets or ferromagnetic materials such as cables, housing, or even
metallic parts in nearby furniture. Originally these algorithms [VDX15] were not designed
for head tracking, but come from Micro Aerial Vehicles (MAVs). Orientation estimation
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using low cost sensors is basically the same task for head tracking and MAVs, but in air
travel there is simple fewer unwanted magnetic �ux. This di�erence has to be regarded
separately.

2 Background theory

Section 2 is a short introduction into the principles of quaternion based mathematics
and sensor calibration. The experienced reader can skip this section.

2.1 Quaternion Representation

Quaternions are a four dimensional number system which can be used for the repre-
sentation of three-dimensional rotations. The advantages to other representations is
that quaternions are unambiguous to the means of rotations. They are mathematically
represented in the form:

q = a+ bi+ cj + dk (1)

with,
i× i = j × j = k × k = i× j × k = −1 (2)

and
i× j = k, and j × i = −k
j × k = i, and k × j = −i
k × i = j, and i× k = −j.

(3)

Where a, b, c, d are real numbers and i, j, k are fundamental quaternion units point-
ing towards the three spatial axes. This means that the set of quaternions span a 4
dimensional vector space over the real numbers, with 1, i, j, k as a basis. For simpler
notation we choose a quaternion representation which only shows the real number parts
of a quaternion as a normalised unit quaternion q with ||q|| = 1.

An arbitrary rotation of a rigid body in 3D space from observation frame A to frame B
is therefore denoted as:

B
Aq =

[
q0 q1 q2 q3

]T
=
[
cosα

2
~exsin

α
2

~eysin
α
2

~ezsin
α
2

]T
(4)

Quaternions express a rotation as a rotation angle α about a rotation axis ~e. One can
think of rotating the whole coordinate system �xed to the rigid body in observation frame
A (before the rotation) around the axis ~e, resulting in a new orientation in observation
frame B. The now rotated coordinate systems in frame A and the observation of frame
B become the same. Such a rotation is shown in Figure 1.

The inverse of a unit quaternion, for the rotation from frame B to frame A is de�ned by,

(BAq)
−1 = A

Bq =
[
q0 −q1 −q2 −q3

]T
(5)
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xA

yA

zA zB

yB
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e

Figure 1 � Quaternion rotation B
Aq of a rigid body (sensor) from frame A to B

and represents the rotation in inverse direction around the inverse rotation axis −~e.
With the quaternion representation a sequence of rotations can be described by simply
multiplying the quaternions from frame A to B and B to C.

C
Aq = C

Bq ⊗ B
Aq (6)

2.1.1 Multiplication

If p represents the rotation from frame B to C and q represents the rotation from frame
A to B, their multiplication is de�ned by:

C
Bp⊗ B

Aq = p⊗ q =


p0q0 − p1q1 − p2q2 − p3q3

p0q1 + p1q0 + p2q3 − p3q2

p0q2 − p1q3 + p2q0 + p3q1

p0q3 + p1q2 − p2q1 + p3q0

 (7)

It is important to mention that quaternion multiplication is a non-commutative operation,
therefore the order of multiplication changes the orientation.

C
Bq ⊗ B

Aq 6= B
Aq ⊗ C

Bq. (8)

2.1.2 Matrix notation

Another useful notation is the quaternion rotation B
Aq in 3x3 matrix form R(BAq) de�ned

as:

R(BAq) =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (9)
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2.1.3 Vectors in quaternion representation

As mentioned in section 1 all sensors generate a three dimensional vector as output,
but the fusion algorithm works in quaternion domain. Therefore we need a vector ~v in
quaternion form which can be expressed as a unit quaternion vq like:

vq =
[
0 ~v

]T
=
[
0 vx vy vz

]T
(10)

With this representation unit quaternions can be applied to operate rotations for a 3D
vector from the observations in frame A to frame B,

B~vq = B
Aq ⊗ A~vq ⊗ B

Aq
−1 (11)

where the superscripts correspond to the reference frame of the vectors and ⊗ is the
quaternion multiplication.

2.2 IMU and MARG

As mentioned in the introduction, an internal measurement unit (IMU) as well as a
Magnetic, Angular Rate and Gravity sensor (MARG) consist of multiple sensors which
measure the orientation of a rigid body. They comprise magnetometers, accelerometers
and gyroscopes. Magnetometers measure the local magnetic �eld of the earth and output
a vector m which points to the magnetic north as a reference. Similarly accelerometers
measure the force of gravity and use it as a reference. The output data is a vector a
which points towards the normal of the surface of earth. Lastly gyroscopes measure
the angular velocity ω of a rigid body which can be integrated to get the change of
orientation over time. In theory one could only use a gyroscope to calculate the attitude
of the sensor 1, but due to requirements of cheap and small sensors, like the MEMS, they
su�er from high noise levels and insu�cient calibration. The solution to this problem is
combining di�erent sensors and use a sensor fusion algorithm. For this there are �lters
based on statistical models like the Kalman �lter or simple deterministic ones like the
complementary �lter and the gradient descent algorithm, which are explained later in
section 2.3.

2.2.1 Magnetometer

As mentioned above, magnetometers measure the magnetic �eld of the earth and point
to the direction of north. In comparison to a normal compass magnetometers incorporate
a third dimension in the measurement of magnetic �ux. The local magnetic �ux Sm
at the sensor frame and the true earth magnetic �eld Eh are de�ned in the same way
Valenti,Dryanovski and Xiao did in their work [VDX15]. A detailed explanation on how
their algorithm works can be found later in section 3:

Sm = [mxmymz]
T , with ||m|| = 1 (12)

1. If all initial conditions of the sensor are known.
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Eh = [hxhyhz]
T , with ||h|| = 1 (13)

For the later derivation of the fusion algorithms all vectors are normalised to unit length.
The measured quantity is micro tesla (mT ). One gross disadvantage of magnetometers
is theneed for proper calibration, since magnetic �ux can be distorted by any metallic
object, cable wires or even the power current used by the sensor shield. More on how
calibration works can be found in section 2.4.

2.2.2 Accelerometer

Next, accelerometers measure the earth gravitation in m
s2

as the proper acceleration to its
resting frame. The schematic setup of an accelerometer is a mass, attached to springs
in all three dimensions, mounted in a closed reference case. Yet it is to keep in mind
that the actual sensor is a MEMS. Deducted from the schematics, an accelerometer will
measure 9.81m

s2
= 1g if positioned on the surface of earth. In free fall it will measure

zero acceleration. Similarly to the magnetometer we de�ne the measured acceleration
in the sensor frame Sa as a unit vector

Sa = [axayaz]
T , with ||a|| = 1 (14)

and the true earth gravitational acceleration Eg like:

Eg =
[

0 0 1
]

(15)

Accelerometers o�er a solid reference for the orientation of the sensor frame. In the most
fusion algorithms they are used as a �rst step to rotate the sensor frame to a known
orientation in one dimension, parallel to the earth's surface. The output signal tends to
be corrupted by high-frequency noise, but if needed it can be smoothed with a low-pass
�lter.

2.2.3 Gyroscope

Finally, gyroscopes measure the change of angular velocity Sω around the three sensor
frame axis in rad/s. Then the output is integrated to get the orientation of the sensor.
The underlying physical principle is that a vibrating object tends to continue vibrating
in the same plane even if its support rotates. The Coriolis e�ect causes the object to
exert a force on its support, and by measuring this force the rate of rotation can be
determined. The angular velocity is also de�ned as:

Sω = [ωxωyωz]
T (16)

Although a single gyroscope sensor would be able to measure the orientation of the
sensor frame, given it's initial attitude, gyroscopes produce large errors due to the MEMS
technology. Further errors propagate through the integration, resulting in a drift over
time. Consequently a gyroscope only shows su�cient approximation of orientation over
very short time but su�er a drift in the heading direction over long time, resulting in an
insu�cient orientation estimation. This is the main reason for the need of sensor fusion
algorithms.
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Figure 2 � Block diagram of a classical complimentary �lter adapted from [MHP05]

2.3 Sensor fusion

Sensor fusion utilizes the idea of combining di�erent sensors and therefore minimizing
the particular disadvantages of each.

2.3.1 Complementary �lter

The simplest approach is a complementarity �lter which uses an analysis of the di�erent
sensor signals in the frequency domain and later combining them to obtain a better
estimation of a particular quantity. In the case of an AHRS the output data of a
gyroscope and an accelerometer are used for fusion. The measured gyroscope data has a
growing low frequency drift due to high noise levels and the necessary integration process,
which additional adds up the error over time. A high pass �lter (HP) can improve the
signal quality and therefore the whole estimation. Accelerometers are sensitive against
linear acceleration and the output can be improved by using a low pass �lter (LP) to
smoothen the signal. Finally both signals get fused together forming an all pass �lter
with a constant magnitude,

LP (s) +HP (s) = 1 (17)

ensuring that the cross over frequency of the LP matches the cross over frequency of
the HP �lter. A simple complimentary �lter can be designed by classical control system
techniques like a proportional (P) and or proportional integrating (PI) controller. Figure2
shows a blockdiagram of such a �lter. The corresponding system equation is given by

x̂(s) =
C(s)

s+ C(s)
a(s) +

s

C(s) + s

ω(s)

s
(18)

with x̂ being the estimation of the orientation, C(s) = k for a proportional gain and
C(s) = k + 1

λ
for a PI controller. The proportional gain k can be tuned depending on

the signals' frequency characteristics.

2.3.2 Kalman �lter

Another approach is a �lter based on a statistical model of the input signal, the Kalman
�lter (KF). It has been shown in many publications [Suh10], [MXB+01], [VDX15] that the
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Kalman �lter is the benchmark for orientation estimation and sensor fusion algorithms.
The following fusion algorithm example of an AHRS was done in the work from Feng, Li
and Liu in [FLX+17], but the mathematical theory behind is the same for every Kalman
�lter. Therefore, it should give a proper idea of what an KF could look like and show the
complexity behind it. The �rst step for a Kalman �lter design is to de�ne the process
model, in particular the state vector and state equation.

Xk =
[
q0 q1 q2 q3

]T
(19)

q̇ = Ω(ω)q (20)

where

Ω(ω) =


0 −ωx −ωy −ωz
ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

 (21)

Next the observation model needs to be de�ned:

Zk =
[
cq0

cq1
cq2

cq3

]T
(22)

The superscript c denotes a calculated quaternion from the accelerometer and magne-
tometer data. Additionally the process noise covariance matrix Qk and the measurement
noise covariance matrix Rk need to be calculated. Finally, the steps of the Kalman �lter
fusion can be calculated.

The computation starts with some initial conditions:

X̂0 = E(X0) (23)

P 0 = E((X0 − X̂0)(X0 − X̂0)T ) (24)

The next step is to project the state and covariance estimates from time step k − 1 to
step k:

X̂
−
k+1 = E(Ωk∆T )Xk (25)

P−k+1 = E(Ωk∆T )P kE(Ωk∆T )T + Qk (26)

with the superscript − denoting the projection and ∆T indicating the discrete time.
Then, the Kalman gain is calculated as:

Kk+1 = P−k+1(P−k+1 + Rk+1)−1 (27)

The �nal step is to obtain the posterior error covariance estimate:

X̂k+1 = X̂
−
k+1 +Kk+1(Zk+1 − X̂

−
k+1) (28)

P k+1 = (I −Kk+1)P−k+1 (29)

where Zk+1 is the computed quaternion estimation like in equation 22. From the process
of the Kalman �lter mentioned above, we can obtain the optimal estimated quaternion
and �nally calculate the 3D attitude of the body. Despite all advantages of the Kalman
�lter, it is very computationally complex and still susceptible to bad magnetometer
calibration like the other fusion algorithms. Moreover it was shown in [VDX15] that
fusion algorithms based on deterministic approaches match up to the performance of
Kalman �lters.
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2.3.3 Gradient descent

Many optimization algorithms exist but the gradient descent algorithm is one of the
simplest to implement and compute. It is a �rst order iterative optimization algorithm
for �nding the local minimum of an error function f(EqS−E q̂S) and then taking a step
towards the negative error function curvature, �nding an optimal solution. Despite a
random starting orientation, the algorithm converges after a few iterations towards the
minimum and remains a su�cient estimation. Therefore �nal implementations of the
fusion algorithms on the M0+ chip are done as a gradient descent algorithm as shown
from Madgwick in his internal report related to [MHV11] and [VDX15].

Figure 3 � Illustration of gradient descent on a series of level sets, graphic from [?]

2.4 Magnetic calibration

Magnetometers need to be calibrated after �nal mounting for their planned application,
because until then, wide variations in accuracy can occur. In particular even mounting
the sensor e.g., on a pc board can add physical stresses that can easily result in a shift
of calibration. Investigations into the e�ect of magnetic distortions on an orientation
sensor's performance have shown that substantial errors may be introduced by sources
including electrical appliances, metal furniture and metal structures within a buildings
construction [?]. Also declination errors, those in the horizontal plane relative to the
earth's surface can become a problem and cannot be corrected without an additional
reference of heading. Inclination errors, those in the vertical plane relative to the earth's
surface, may be compensated for as the accelerometer provides an additional measure-
ment of the sensor's attitude.

For calibration, the ideal response surface for a three-axis magnetometer is a sphere
centered at the 3D origin. The response surface is the projection of the measured
magnetometer data points to the three dimensional room. Insu�cient calibration means
that sensor data projected to either the xy-, xz- or yz-plane results in a point cloud
which has either an o�set to the origin or the edge of the cloud is not a perfect circle,
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but it is skewed. Calibration can be split in two steps, the hard and soft iron error
compensation. Note that only distortion sources which are �xed relative to the rigid
body can be compensated. This is the same for soft and hard iron errors.

2.4.1 Hard iron error

Hard iron errors represent magnetic �eld sources, which add or subtract to the earth's
magnetic �eld measurements in the sensor. Examples of this type of error are with
permanent magnets or power supply currents. Like shown in Figure 4, using the polar
plot representation of the xy plane, hard iron errors that remain �xed to the sensor result
in a shift to the origin of the response surface. The hard iron errors can easily be �xed
by adding a constant o�set to the respective axis.

-1 -0.5 0 0.5 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

calibrated

uncalibrated

Figure 4 � x-y magnetometer plot with hard-iron errors

2.4.2 Soft iron error

Soft iron errors represent the magnitude and direction change that the earth's magnetic
�eld experiences when near ferromagnetic objects. Further soft iron distortion is the
result of material that in�uences a magnetic �eld but doesn't generate one itself. Figure
5 shows a polar plot representation of an soft iron error, which results in a skew, elliptic
response surface (edge) in the xy-plane. The distortion produced by soft-iron materials
is dependent upon the orientation of the material relative to the sensor and the magnetic
�eld. Thus, soft-iron distortion cannot be compensated with a simple constant. Instead
a more complicated procedure is required.

2.4.3 Error compensation

In summation, magnetic error compensation for an AHRS breaks down to calculating a
rotation matrix S shown in equation 30, scaling it along the main diagonal and adding
an o�set vector H to the measured magnetic �eld M . It is important to note that if
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Figure 5 � x-y magnetometer plot with soft-iron errors

hard-iron e�ects are present, compensation for these distortions must be applied prior to
correcting for soft-iron distortions. The calculation of the rotation matrix in 3D space is
not scope of this work. The software used for this is MotionCalApplication designed
by Paul Sto�regen and can be downloaded here 2. Further information about rotation
matrix calculation in the 3D space can be found in Kupiers book [?].

 M̂x

M̂y

M̂z

 =

 S11 S12 S13

S21 S22 S23

S31 S32 S33

×
 Mx

My

Mz

+

 Hx

Hy

Hz

 (30)

The ˆ symbol in equation 30 indicates the updated and error compensated magnetic
sensor data.

2.5 Orientation

In general there are six degrees of freedom for a rigid body moving in three-dimensional
space. Three of them describe the relative position of the moving object, left-right,
up-down, back and front. The other three describe the rotation. The result of the head-
tracker performance will be split into three rotation components around their respective
axis. These 3 rotations are normally de�ned as yaw, pitch and roll like shown in Figure
6.

3 Fusion algorithms

As mentioned above, sensor fusion utilizes the idea of combining di�erent sensors, and
therefore, minimizing the particular disadvantages of each. This work compares the
sensor fusion algorithm developed from Sebastian Madgwick [MHV11], which is based

2. https://github.com/PaulStoffregen/MotionCal.git
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Figure 6 � Head orientation in yaw, pitch and roll

on the complimentary �lter from Robert Mahony [MHP05], with the fusion algorithm
designed by Valenti, Dryanovski and Xiao [VDX15]. The �rst approach is based on a
�rst order gradient decent algorithm, the second is a closed form solution and both are
implemented in 6DOF (without magnetometer data) and 9DOF (with magnetometer
data). They address the same problem, the gyroscope drift, but di�er in the processing
of the measurement data for the correction step.

3.1 Madgwick fusion algorithm

This section points out the most important derivation steps for Madgwicks fusion al-
gorithm. In this work from now on it is referred to as the complementary �lter. For a
detailed explanation how the algorithm works one should read section 3. of Madgwicks
internal report 3 or [MHV11].

The complementary �lter consists of two main parts, �rst the orientation from angular
rates measured from gyroscope data and second the orientation from vectors measured
from the accelerometer and magnetometer. To get an unambiguous orientation estima-
tion solution those two parts need to be combined via sensor fusion.

3.1.1 Orientation from angular rate (gyroscope)

First the orientation of the earth frame relative to the sensor frame at time t, SEqω,t is
computed by numerically integrating the quaternion derivative S

Eq̇ω,t. This is done by
multiplication with the quaternion. The gyroscope measures the angular rate of change
Sωt in the sensor frame which is then multiplied with the quaternion estimate of the
previous orientation S

Eq̂est,t−1 and the sampling period.

3. https://x-io.co.uk/open-source-imu-and-ahrs-algorithms (accessed: 24.06.2020)
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S
Eqω,t = S

Eq̂est,t−1 + S
Eq̇ω,t∆t (31)

= S
Eq̂est,t−1 + (

1

2
S
Eq̂est,t−1 ⊗ Sωt)∆t (32)

In this equations ∆t is the sampling period, ⊗ denotes the quaternion multiplication
as shown in equation (7), Sωt is the measured angular rate by the gyroscope and the
subscript ω denotes the orientation calculation from angular rates.

3.1.2 Orientation from vectors (accelerometer and magnetometer)

In order to �nd an orientation estimation from accelerometer and magnetometer readings
an optimisation problem needs to be solved. The main idea is to �nd an objective function
f(SEq̂,

Ed̂, Sŝ) which is minimised to �nd an optimum solution.

min
S
E q̂∈R4

f(SEq̂,
Ed̂, Sŝ) (33)

With S
Eq̂ is the orientaion of the sensor, Ed̂ is a prede�ned reference direction of the

�eld in the earth frame and Sŝ is the measured direction of the �eld in the sensor frame.

Finding an optimum solution in linear algebra is to �nd the minimum through it's Jaco-
bian:

∇f(SEq̂,
Ed̂, Sŝ) = JT (SEq̂,

Ed̂)f(SEq̂,
Ed̂, Sŝ) (34)

Many optimisation algorithms exist but the gradient descent algorithm is one of the
simplest to both implement and compute, which leads to the following equation:

S
Eqk+1 = S

Eq̂k − µ
∇f(SEq̂k,

Ed̂, Sŝ)

||∇f(SEq̂k,
Ed̂, Sŝ)||

(35)

||...|| denotes the quadratic norm L2, k denotes discrete time steps, ∆t are the time
steps and µ is the step size. The step size and time step parameter de�ne how fast and
if the algorithm converges to its optimum at all, so they need to be chosen with caution.

3.1.3 Physical assumptions about the sensors measurements

Next a few assumptions about the physical measurements of the sensors need to be
done. Like shown in equation (15) we take the assumption that gravity only has a
vertical component, normal to the earth surface in the z-axis for the accelerometer,

Eg =
[

0 0 0 1
]

(36)
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and the measured direction of the �eld is therefore de�ned as:

Sâ =
[

0 ax ay az
]

(37)

For the magnetometer it can be assumed, that the earth's magnetic �eld only has
components in one horizontal axis and the vertical axis, the vertical component due to
the inclination of the �eld. This follows,

Eb =
[

0 bx 0 bz
]

(38)

and the measured direction of the magnetic �eld is therefore de�ned as

Sm̂ =
[

0 mx my mz

]
(39)

The measurement of gravity or the earth's magnetic �eld alone will not provide a unique
orientation of the sensor. To do so, the measurements and reference directions of both
�elds need to be combined. With this assumptions the gradient decent algorithm can
be simpli�ed to,

S
Eq∇,t = S

Eq̂est,t−1 − µ
∇f
||∇f ||

(40)

where the sub-script ∇ indicates that the quaternion is calculated using the gradient
descent algorithm, t denotes the estimation at a moment in time and∇f is the combined
optimisation of the accelerometer and magnetometer objective function and its Jakobian:

∇f =

{
JT
g (SEq̂est,t−1)∇f g(SEq̂est,t−1,

Sât)

JT
g (SEq̂est,t−1,

E b̂t)∇f g(SEq̂est,t−1,
Sât,

E b̂t,
Sm̂t)

(41)

3.1.4 Fusion: Complimentary �lter

The fusion then combines the quaternion calculations SEq∇,t and
S
Eqω,t like,

S
Eqest,t = γt

S
Eq∇,t + (1− γt)SEqω,t, with 0 ≤ γt ≤ 1 (42)

where γt is a weight applied to each orientation. An optimal value of γt can be de�ned as
that value, which ensures the weighted divergence of SEqω,t to be equal to the weighted
convergence of SEq∇,t. This means, the accelerometer and magnetometer compensate
the error caused by the gyroscope drift. Moreover in the original paper [MHV11], a
single parameter β was introduced as a �lter gain, which represents all zero mean gyro-
scope measurement errors, expressed as the magnitude of a quaternion derivative, and
therefore, is the sole weighting factor in the �lter.

Finally the system equation can be written as

S
Eqest,t = S

Eq̂est,t−1 +

[
S
Eq̇ω,t − β

∇f
||∇f ||

]
∆t, (43)
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Figure 7 � Block diagram representation of the complete orientation �lter for an
IMU(6DOF) implementation, graphic taken from [MHV11]

with

S
Eq̇ω,t =

1

2
S
Eq̂est,t−1 ⊗ Sωt. (44)

Figure 7 shows the corresponding block diagram for the complementary �lter in 6DOF
without the magnetometer implementation. Only the objective function∇f(SEq̂,

Ed̂, Sŝ)
would change with a 9DOF implementation and the magnetometer in use. In his original
work Madgwick also designed a magnetic distortion and gyroscope bias drift compensa-
tion for a MARG(9DOF) implementation. The factor q

||q|| stands for the unit quaternion

normalisation and z−1 is a �rst order discrete time delay block.

3.2 Good Attitude

This section points out the most important derivation steps for Valenti, Dryanovski and
Xiaos fusion algorithm. In this work it is referred to as the good attitude �lter. For
a detailed explanation on how the algorithm works the reader is referred to [VDX15].
The de�nition of the system is based on the same approach presented in [MHV11] and
they use the same sensor measurement data. Also all quaternions are normalised to unit
quaternions. In the literature, the quaternion derivative from an angular rate measure-
ment is usually calculated for the forward quaternion S

Eq, that is, the one representing
the orientation of the sensor frame with respect to the earth frame. Valenti, Dryanovski
and Xiao used the inverse orientation, but it can be shown that they are the same be-
sides the contrary point of view. They also de�ned the local frame with the letter L and
the global frame with G. For better compatibility to the complimentary �lter from the
previous section, the local and global reference in their derivations is substituted with
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the sensor frame, indicated by the letter S and the earth frame indicated by the letter
E respectively.

Their approach is to align the global coordinate frame E with the magnetic north.
Speci�cally, the global frame's x-axis points in the same direction as the local magnetic
�eld (the z-axis remains vertical). Obviously, this global frame is only "�xed" in the case
when the local magnetic �eld does not change its heading [VDX15]. Furthermore in
their derivations they decompose the quaternion rotation S

Eq into two separate auxiliary
quaternions, which makes the performance of the algorithm more robust to magnetic
disturbance and linear acceleration problems. The objective is to �nd the rotation S

Eq
that positions the sensor frame parallel to the earth surface, qacc, and secondly rotates
the sensor only around the z-axis, qmag, to point the heading direction to the north of
the magnetic �eld.

S
Eq = qacc ⊗ qmag (45)

As a result, the calculations from the accelerometer only perform a rotation in the
pitch and roll angle. The magnetometer only in�uences the rotation about the yaw
angle. Besides, no gradient descent algorithm is necessary. Additionally an adaptive gain
calculation is developed, but this is not relevant for human head movements, because it
only addresses very fast non-gravitational acceleration. With this sensor fusion algorithm
one doesn't need to calibrate the headtracker before using it, because the initial state
of the sensor is already calculated from the acceleration and magnetometer readings
in one single step. Futher, they adopt a low-pass �lter to separate the bias from the
actual angular velocity measurements. To avoid �ltering useful information, the low-pass
�ltering is applied only when the sensor is in a steady-state condition that is previously
checked.

The main objective is de�ned as,{
RT (SEq)Sa = Eg

RT (SEq)Sm = Eh
(46)

with RT (SEq) being the rotation matrix de�ned in equation 9, Sa is the acceleration
data, Sm are the magnetometer measurements, Eg is the earth's gravitation and Eh is
the magnetic �eld of the earth frame. This system, however, is overdetermined - each of
the two equations provides two independent constraints on the orientation S

Eq , whereas
the orientation only has three degrees of freedom. The solution is to modify the second
equation so it has only one constraint left, to point to the positive earth xz-half-plane
EΠzx+ . {

RT (SEq)Sa = Eg

RT (SEq)Sm ∈ EΠzx+
(47)

They further de�ne qmag to have only a single degree of freedom:

qmag =
[
q0mag 0 0 q3mag

]
(48)
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3.2.1 Quaternions from accelerometer readings

To �nd the auxiliary quaternion qacc one has to solve the equation

R(SEq)Eg = Sa (49)

resulting in:

R(qacc)R(qmag)

0
0
1

 =

axay
az

 . (50)

The representation of the gravity vector in the global frame only has a component on the
z-axis; therefore, any rotation about this axis does not produce any change on it. [VDX15]
So one can rewrite equation 50 and expand the multiplication from the rotation matrix,
leading to: 

2(q1accq3acc + q0accq2acc) = ax

2(q2accq3acc − q0accq1acc) = ay

q2
0acc − q

2
1acc − q

2
2acc + q2

3acc = az

(51)

This system is underdetermined and has therefore in�nite solutions. To solve this, one
can set q2 = 0 or q3 = 0 zero, following that the solution has a singularity at az = ∓1.
The �nal formulation of qacc that avoids the singularity problem can be obtained by
combining both solutions, as follows:

qacc =


[ √

az+1
2
− ay√

2(az+1)

az√
2(az+1)

0

]T
, az > 0[

− ay√
2(1−az)

√
1−az

2
0 ax√

2(1−az)

]T
, az < 0

(52)

E�ectively, the singularity problem is solved by having two separate formulations for qacc
depending on the hemisphere in which a is pointing. It is important to mention that
qacc is not continuous at the point az = 0, but this will not be an issue due to the
formulation of qmag.

3.2.2 Quaternions from magnetometer readings

In the �rst step, the rotation qacc was calculated and can now be applied before the
calculation of rotation from the magnetometer readings qmag, leading to an intermediate
state where the z-axis is now �xed to the normal of the earth's surface, but with unknown
yaw angle. This is shown as

RT (qacc)
Sm = l, (53)

with Sm being the sensor frame magnetic �eld vector and l being the rotated magnetic
�eld vector. Next, it is to �nd the quaternion qmag that rotates the vector l into the
vector that lies on the EΠzx+ plane using the following system equation:

RT (qmag)

lxly
lz

 =

√Γ
0
lz

 (54)
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where
Γ = l2x + l2y (55)

This rotation will only change the heading component of the orientation without a�ecting
the roll and pitch components. Therefore, in presence of magnetic disturbances, their
in�uence is only limited on a�ecting the heading angle. In the same way like shown
in section 3.2.1, one can solve this system by expanding the multiplication from the
rotation matrix leeding to the solution:

qmag =

[
ly

√
2
√

Γ+lx
√

Γ
0 0

√
Γ+lx

√
Γ√

2Γ

]T
(56)

It is easy to see, that this solution again has a singularity for lx < 0 and lz = 0. This
can be prevented by �ipping the vector l about 180◦ when lx < 0. The �nal solution
again has two cases:

qmag =


[ √

Γ+lx
√

Γ√
2Γ

0 0 ly
√

2
√

Γ+lx
√

Γ

]T
, lx > 0[

ly
√

2
√

Γ−lx
√

Γ
0 0

√
Γ−lx

√
Γ√

2Γ

]T
, lx<0

(57)

Figure 8 � Block diagram of the Good Attitude �lter for a MARG implementation (with
magnetometer data), graphic from [VDX15]
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3.2.3 Fusion: Good Attitude �lter

Finally, the delta quaternions ∆qacc and ∆qmag can be calculated to correct the rotation
estimation from angular readings S

Eqω. The singularity does not matter because the
correction quaternions are applied every time step and therefore only small changes, not
in the range of singularity's, appear. The predicted quaternion S

Eqω is corrected by the
two delta quaternions leading to the �nal solution:

S
Eq = S

Eqω ⊗∆qacc ⊗∆qmag (58)

As the delta quaternions are a�ected by the accelerometer's high frequency noise and
magnetic disturbances, before applying it to the predicted quaternion, they are scaled
down by using an interpolation with the identity quaternion qI . Two di�erent scaling
interpolations are implemented, the linear interpolation (LERP) and the spherical linear
interpolation (SLERP) shown in [VDX15]. LERP is used for little noise levels, if ∆q0acc >
ε with ε = 0.9 and SLERP for higher noise levels.

The reader should keep in mind, that the indices for the local and global frame in Figure
8 need to be substituted like, L = S and G = E because the graphic was taken from
the original work from [VDX15].

4 Assembly and sensor shields

The whole processing and sensor fusion for the orientation was done on the Adafruit
Feather M0+ Bluefruit. It is an all-in-one Cortex M0+ Arduino-compatible mircro con-
troller with Bluetooth Low Energy and built in USB and battery charging. For iOS
Bluetooth Low Energy works out of the box, but for windows you need to install third
party software (MIDIberry 4 and loopMidi 5) to use the tracker e.g. with a DAW, like
Reaper. This is due to missing drivers for MIDI over bluetooth on the windows platform.

The Feather M0+ uses an ATSAMD21G18 ARM Cortex M0+ processor, clocked at 48
MHz and at 3.3V logic. It has a 256K of FLASH (8x more than the Atmega328 or
32u4) and 32K of RAM (16x more than the Atmega328 or 32u4). Additionally, it comes
with built in USB, so it has USB-to-Serial program and debug capability built in with
no need for an FTDI-like chip. Figure 9 shows the mircro controller and its pinout. All
three sensors were connected to a Feather M0+ controller each. To start tracking only
four connections needed to be done - the Vin pin and the ground GND - to connect
the sensors with the power supply of the micro controller and the SCL (Serial Clock)
and SDA(Serial Data) - to enable data transmission over I2C. Additionally all mirco
controllers were connected to a push button to reset the orientation and start tracking
at the same time. Figures 10, 11 and 12 show the sensors used in this work.

The sensors in use were all mounted on a pcb board to ensure that the same rotation is
performed during the measurements simultaneously. Tracking elements for the optical

4. https://www.microsoft.com/en-us/p/midiberry/9n39720h2m05?activetab=pivot:

overviewtab

5. http://www.tobias-erichsen.de/software/loopmidi.html
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Figure 9 � Adafruit Feather M0+ Bluefruit and pinout

Figure 10 � BNO055 sensor shield from Adafruit

reference system were also mounted on the pcb board. The �nal test setup is shown
in Figure 13. Additionally, it was discovered, that even loose cables on a bread board
can cause disturbances for the magnetometer measurements. For speci�c sensor char-
acteristics and features like zero rates, sensitivities, baud rates and sensor resolutions,
the reader is referred to the data sheet of the respective sensor. All sensors were set to
the same ranges, ±250dps for the gyroscope, 2G for the accelerometer and full-scale,
depending on the sensor, for the magnetometer. A detailed analysis on gyroscope zero
drift rates and how to interpret details on the manufactures data sheet can be found
here 6. The review points out that the NXP sensor should outperform all other sensors
in the zero drift and is therefore the most precise. This assumption will be taken into
account for the analysis of the fusion performance.

6. https://learn.adafruit.com/comparing-gyroscope-datasheets/overview
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Figure 11 � NXP Precision 9DOF sensor shield from Adafruit

Figure 12 � MPU9250 sensor shield from Sparkfun

Figure 13 � pcb board with all sensors connected to an Adafruit Feather M0+ each and
reference points mounted on the board for optical tracking
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Table 1 � Fusion algorithms setups used for the measurements

measurements/sensors: BNO MPU NXP

1-3 Good Attitude Good Attitude Good Attitude
4-6 internal Madgwick MARG Madgwick MARG
7-9 internal Madgwick IMU Madgwick IMU

5 Experiments

The above mentioned fusion algorithms were tested on three di�erent orientation sensors
shields, (BNO055, NXP 9-DOF and MPU9250) [Sen16] [Sem17] [Sem15] [Inv16] con-
nected to an Adafruit Feather M0 Bluefruit LE micro processor. Both implementations
of Madgwicks complimentary �lter for IMU (6DOF) and MARG (9DOF) were tested on
the MPU9250 and NXP sensor shields, the Good Attitude Filter in 9DOF was tested on
all sensor shields and the intern sensor fusion of the BNO055 shield in 9DOF was tested
too. All attitude estimations are compared with each other and with an optical tracking
system as reference (Optitrack Flex 13). The raw sensor data and the orientation in yaw,
pitch, roll angles were transmitted via a serial print command of the Arduino boards via
USB and then written to a text (.txt) �le with a small software application, OptiAnd-
SerialToFile, written by Daniel Rudrich. This script opens the serial port connected to
the PC or Mac and directly writes the SerialPrint() commands of the Arduino to a text
�le with some delimiter in a (.csv) like form, so it can be imported and analysed in
Matlab. Additionally, the measurement data from the optical reference system is also
written to �le. Upfront, all sensors were calibrated for soft and hard iron errors with the
help of Paul Sto�regens MotionCalApplication 7. Before each measurement the sensors
were put in an idle state, then moved by hand in a �gure of eight pattern to enable
self calibration and bias estimations. To start measurements at the exact same time a
button was built on the pcb-board, which when pressed, starts a routine on the Arduino
board to reset the orientation to a known state de�ned by the gravity vector of the
accelerometer and prints the name of the sensor, e.g: MPU in the serial bus, which then
triggers the OptiAndSerialToFile script to start writing to the �le.

Three movements were performed for every sensor setup - an isolated rotation into
every yaw pitch and roll angle - idle state at the beginning, then slow �gure of eight
movements, ending in an idle state again - and starting with slow movements getting
faster. The test setups can be seen in the following table:

All sensor were initially set to a sampling frequency of 100Hz for the data input, but
this is not the same as the fusion output data rates. The performance of the sensor
fusion drastically relies on the correct time steps ∆t. Therefore time stamps needed to
be implemented in the arduino code, actually calculating the time steps ∆t from one
�lter update to the next. This is because in both sensor fusion algorithms in the predic-
tion step for the orientation from angular readings the attitude estimation is numerical
integrated with the factor ∆t, which leads to errors if the integration time is not correct.

7. https://github.com/PaulStoffregen/MotionCal.git
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Table 2 � Measured sampling frequency ranges from timestamps of the di�erent sensor
setups

BNO MPU NXP OPTI

15-28 Hz 19-27 Hz 16-21 Hz 109-119 Hz

It was shown in Madgwicks internal report, section 5.4, that the algorithm performance
increases with higher sampling frequencies till about 50Hz. In their work [MHV11] they
�rst recorded the data set and afterwards applied the fusion algorithm with di�erent sam-
pling frequencies ranging from 1− 512Hz. Performing the fusion on a micro controller
chip, like the M0+ limits the achievable sampling frequency to about 20Hz. Perhaps
this could be improved with some optimisation of the source code. The averaged sam-
pling frequencies in this experiment were calculated from the measurement time stamps
(time passed, from one data entry written to �le to the next) for each of the 9 di�erent
measurements ranging from:

The optical reference system runs on a sampling frequency of 120Hz. Although in the
measured data it seems like, that when there is very little change in orientation, e.g idle
state measurements 2.,5. and 8., data is not written every time.

6 Results

6.1 Raw measurements

To ensure that the raw sensor data from accelerometer, gyroscope and magnetometer
readings is correct and all vectors have the same orientation in the x-y-z axis, the
measured vectors are compared to true raw sensor data calculated from the quaternion
representation of the optical reference system. For the accelerometer this is achieved by
rotating the quaternions with the gravity vector g and then transforming the spherical
coordinates to cartesian.

g =

 0
0

9.80665

 (59)

The same must be done for the gyroscope, but here the quaternion �rst needs to be
derived to get the orientation vector. In quaternion domain this is done by left multiplying
the reference quaternion qreft with the previous one qreft−1 :

qdiff = qTreft−1
⊗ qreft (60)

Calculating the true magnetometer data works the same way like for the accelerometer,
only the gravitational vector needs to be exchanged with a vector m that points to
the magnetic north. For this a sample from the idle state measurement was extracted.
Finally the true magnetic vector needs to be scaled with the local magnetic �eld constant
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Figure 14 � NXP precision 9DOF sensor data with reference calculated from optical
tracking system in cartesian coordinates

Table 3 � Summed and normalised RMS errors of the sensor data compared to the
reference signal

BNO NXP MPU

accel gyro mag accel gyro mag accel gyro mag
0.0101 0.0051 0.0386 0.0105 0.0055 0.0383 0.0094 0.0043 0.0395

which was assumed to be about 40µT in Graz, Austria.

m =

 −17.2584
−12.0579
−44.0009

 (61)

Figure 14 represents the NXP sensor with Good Attitude sensor fusion, which shows a
good match of the raw sensor data with the calculated from the optical reference system.
The small o�set for the magnetometer comes from the assumption of the local magnetic
�eld strength of 40µT . It can be neglected, because this is just a �rst evaluation step,
to see if the measured data of all sensors is in the right orientation. This is done for all 9
measurements and all sensor shields to ensure correct data. The summed and normalised
RMS errors from the reference signal to the measured sensor data for all 9 measurements
are shown in the following table, but it is to note, that for the magnetometer this is just
a rough assumption.

The RMS error for the MPUs gyro and accelerometer is lower than the error of the
two others. Furthermore no signi�cant di�erences between raw sensor data could be
detected.
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6.2 Euler and Quaternion interpretation problems

During the evaluation process a few problems occurred with plotting the data, both
for the Euler and quaternion representation. Although quaternions are unambiguous
to rotations, frame alignment can be achieved extrinsic or intrinsic. Depending on the
reference system the attitude can be described with two di�erent vectors and rotation
angles, facing opposite directions. Following, that the w−x−y−z quaternion trajectories
of an orientation estimation from one sensor to another can di�er, despite representing
the same rotation. In such a case the trajectories are mirrored towards the respective
axis and the corresponding quaternions would look like,

qsensor1 =
[
qw qx qy qz

]T
and qsensor2 =

[
−qw −qx −qy −qz

]T
, (62)

both representing the same rotation, just another way around. If one transforms this
quaternions to yaw, pitch and roll angles 360◦ jumps occur in the plots. To ensure that
all rotations are represented in the same way, the quaternions were multiplied by −1 if the
sign of the w-channel was negative. Meaning that all sensors are aligned extrinsic with
the reference system. Figure 15 shows a rotation along the yaw, pitch and roll angles
for all three sensors using the Good Attitude algorithm in quaternion representation.
All sensors were corrected to the same reference. Although good performance is shown
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Figure 15 � Measurement 1: Rotation towards the yaw, pitch and roll angles for all three
sensors using the Good Attitude algorithm in quaternion representation

for all three sensors, the plot doesn't give straightforward information about the actual
rotation. A representation in Euler angles provides more readability of the orientation
estimation. As mentioned above, the down side of this representation is that periodic
jumps occur when the measured rotations exits the ±180◦ range of the atan2 function,
which is used to transform quaternions to the yaw and roll angle. Such jumps are shown
in Figure 16 in the yaw angle for the NXP sensor (yellow line) at about 15 seconds and
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in the roll angle for the OptiTrack system (blue line) at about 13 seconds. Additionally,
ambiguities occur again, meaning that a rotation in Euler representation can be achieved
in multiple ways, depending on the rotation order along its respective axis. An example
of such an ambiguity is shown in Figure 16 for the reference system compared to all
three sensors at about 13 seconds. If one compares Figure 16 and 15 it is not easy
to see that both represent the exact same rotation in two di�erent forms. This points
out the problem with representing a 3D rotation in a two dimensional space. The Euler
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Figure 16 � Measurement 1: Rotation towards the yaw, pitch and roll angles for all three
sensors using the Good Attitude algorithm in Euler representation

angle representation has the advantage that the decoupled yaw, pitch, roll angles may
be more easily interpreted or visualised, but it fails to describe the coupling between each
of the parameters and will subject to large and erratic errors if the Euler angle sequence
reaches a singularity. On the other hand, the quaternion representation is a theoretical
number system which doesn't show a direct connection between the measurements and
the rotation performed in the real world.

In literature, the performance of an orientation estimation typically is given in RMS
values of the Euler representation. In this work such a calculation is not trivial. This
is because during the measurements the ±180◦ boundaries for unambiguous data was
not kept in mind. One could calculate RMS values from the quaternion representation,
but due to non-linearities this doesn't provide signi�cant results either. Therefore, the
evaluation was done solely qualitatively.

6.3 Sensor performance evaluation

To compare the sensors with each other the Good Attitude fusion algorithm was imple-
mented on each Adafruit board and three measurements were performed, yaw-pitch-roll,
idle state and fast movements, like described in section 5. The �rst measurements from
1-3 are shown in Figure 16, 17,18. One can see, that for a normal use case like in
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Figure 17 � Idle state measurement for all three sensors using the Good Attitude algo-
rithm in Euler representation
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Figure 18 � Fast �gure of eight measurement for all three sensors using the Good Attitude
algorithm in Euler representation
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measurement 1 (Figure 16), all sensors perform su�ciently for a AHRS. The BNO and
NXP sensor overestimate the orientation up to 15◦ if there is a high de�ection in the
roll angle, whereas the MPUs performance is very similar to the reference system. No
drift in the yaw angle is detected for the idle state measurement in Figure 17 but the
convergence of the MPU sensor is slower than for the others. Finally in measurement 3
it is shown that all sensors struggle when facing very fast attitude changes. In this case
the MPUs performance is the worst of the three.

6.4 Fusion algorithm evaluation

All fusion algorithms are implemented with the raw BNO sensor data to compare them
with each other and the internal fusion of the BNO shield. Figure 19 shows that the
internal sensor fusion of the BNO sensor outperforms all the others. This is the only
fusion working out of the box. The Good Attitude fusion algorithm gives a solid orienta-
tion estimation for all tested sensors. Due to the decoupled design of magnetometer and
accelerometer it is also more robust to magnetic disturbances than the BNO sensor in
9DOF. The Madgwick sensor fusion has a drift in the yaw angle in every implementation
varying from 0.35◦

s
for 9DOF to 1◦

s
for 6DOF if calculated on the Adafruit M0+ chip.

The Madgwick implementation in Figure 19 is done directly on the PC and shows a drift
of 5◦

s
which is the worst performance of the whole measurement set. It is assumed that

such large drifts only occur due to some unknown error in the sensor fusion performed
on the PC, but the problem couldn't be found. The Madgwick algorithm in 9DOF per-
formed directly onboard the Adafruit Feather M0+ chip provides su�cient orientation
estimation for an AHRS.
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Figure 19 � Comparison between fusion algorithms (BNO intern, Good Attitude and
Madgwick), with the BNO raw data, performing a rotation along the yaw, pitch and roll
angles in Euler representation
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7 Conclusion

In this work two fusion algorithms and three state of the art orientation sensor shields,
the BNO055, NXP 9DOF and MPU9250 were tested and compared to each other.
Beginning with the raw sensor data from accelerometer, gyroscope and magnetometer
readings the di�erences in measurement performance are neglectable for an AHRS. All
three sensors provide su�cient raw sensor data to perform a good orientation estima-
tion. Only the MPU sensor su�ers in accuracy if exposed to fast changes in attitude.
As a result the orientation estimation mainly depends on the fusion algorithm and addi-
tional signal processing steps, like gyroscope bias estimation and �lter gain adjustments.
Magnetometer calibration needs to be addressed with caution, because it is the main
cause for estimation errors in every 9DOF sensor. The Good Attitude fusion algorithm
gives a solid orientation estimation for every tested sensor and measurement scenario
leading to a good choice for a fusion algorithm. Additional it provides better stability
against magnetic disturbances, than the other fusion algorithms due to its decoupled
design. Neither the less, the build in fusion algorithm of the BNO055 shield outper-
forms all other sensors. Its main advantage is that it works out of the box. Particularly
the 6DOF mode of the sensor shield, provides drift free orientation estimation without
typical magnetometer calibration and magnetic distortion problems, because it doesn't
use the magnetometer at all. The only disadvantage of the BNO sensor shield is its
price (≈ 32$) which is twice the amount as for the NXP and MPU sensor shields. All
this leads to the conclusion, that the choice of the actual sensor is not as important
as the fusion algorithm and the out of the box usability e.g., with the BNO sensor.
Moreover if possible no magnetometers should be used for attitude estimation of a rigid
body. The BNO sensor demonstrates that drift free orientation estimation is possible
with only 6DOF. It is assume that this can be achieved with on the �y sensor calibration
and smart gyroscope drift compensation, but further investigations need to be done.
Perhaps inverse engineering the BNO sensor could lead to new insights.
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