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Abstract

Multiband compressors are powerful and handy tools in the field of audio pro-
cessing, and are frequently encountered within the mastering processing chain of
audio productions. Yet up until now, no such tool existed in the world of the
multichannel 3D-audio format Ambisonics. This may be due to the high number
of channels, entailing rather tough computational demands. The goal of this work
is to discuss the stages involved in designing a multiband compressor and to re-
late the findings to a multichannel setting. In particular, crossover filter designs,
perfectly reconstructing linear-phase systems, compressor designs and the encom-
passing computational requirements are reviewed. Additionally, a VST Plug-in has
been developed over the course of this project, which has been released as part of
the IEM Plug-in suite.
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1 Dynamic Range Compression

Dynamic range compression is one of the most widely used audio processing tech-
niques and compressors are ubiquitously employed on arguably every kind of (at least
commercial-grade) audio productions. In this introductory section, we want to explore
the most common ways of controlling dynamic range, considering both single-band and
frequency selective approaches, and point out when and why one would like to employ
a particular tool in an audio production workflow.

1.1 Compressors and Limiters

While the amount of parameters as well as the adaptive and non-linear nature of dynamic
processors introduce a certain degree of complexity to the topic, the notion of an "au-
tomated fader" describes the operation of a regular compressor quite well. In essence,
the goal of compressing an audio signal is to reduce its dynamic range and thus bring
its louder and quieter parts closer together, in order to obtain a more consistent and
balanced sound. For instance, compressors can help a vocal recording, which naturally
exhibits a wide dynamic range, to compete with its accompaniment by bringing the qui-
eter parts up without overemphasizing the rest of the signal. Similarly, car entertainment
systems for example may make use of a compressor to enhance only the lower volume
parts of a whole mix during playback, which would otherwise be masked by background
noise.

Although both of these examples indicate a boost of quiet signal components, com-
pressors actually work by reducing peaks and high signal levels: if the input signal to a
compressor exceeds a predetermined threshold level, compression kicks in and reduces
it according to the ratio setting until the signal level falls below the threshold again. In
order to maintain a smoothly transitioning signal level when the gain reduction sets in or
out, the attack and release parameter control how fast the output should reach its tar-
get level after the input has crossed the threshold. In other words, these time constants
determine how quickly the compressor should react. To compensate the volume level
change, the so-called make-up gain increases the level of the compressed signal again.
This way, quiet parts are raised higher compared to the louder signal components, in
relative terms.

The widespread use of compressors stems from the fact that this type of dynamic control
is a fairly typical requirement for basically all audio material - even more so when not
just one but several audio tracks play in union. Hence, compressors are able to facilitate
the creation of a coherent mix, which generally is the ultimate goal within the context
of audio productions. Technically speaking, compressors in this sense help to adjust the
crest factor of a certain signal to better match that of another one. The application of
compressors is not limited to gain reduction though. Further objectives include creative
effects (e.g. "pumping/breathing") as well as shaping the tonal character of a sound.
However, it is this versatility of compressors that also makes them more prone to misuse.
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A special form of the compressor is called limiter. While compressors gradually increase
the amount of the applied gain reduction, limiters are designed to offer very high com-
pression ratios (typically ' 12 : 1) and are thus capable of protecting against distortion
or clipping by preventing the signal to go over a certain threshold. Limiters are there-
fore most frequently utilized for mastering purposes, and often serve to boost the mix
and squeeze out the loudest possible result, sometimes also in the form of "brick wall
limiting" (with a ratio of ∞ : 1). For this reason, limiters typically also feature an input
gain parameter (to drive the input against the threshold ceiling) as well as a look-ahead
mode of operation (to guarantee to catch signal peaks before they cause distortion).
Limiters also play an important role in broadcasting signals via frequency modulation
(FM). Broadcasters have to ensure that the signals they transmit only occupy a certain
bandwidth. As FM maps a signal and its amplitude onto the modulation of a carrier
wave’s frequency, with high amplitudes causing high frequency offsets, broadcasters can
do so by limiting the signal’s dynamic range. Another use case of limiters is to act as a
safety net during recording or a live sound setting.

1.2 Multiband Compression

Although the common mode of operation acts upon the full frequency range at once,
broadband signals often call for dynamics processing only within particular spectral re-
gions. In a musical context, overhead microphone signals from a drum set recording
might serve as a typical example - the individual sounds (i.e. cymbal vs kick-drum hits)
are likely to be fairly imbalanced and compensation of these imbalances is not within
the range of tasks standard single-band compressors are designed for. Even though
the side-chain input of regular compressors can provide some sort of frequency selective
compression - for example de-essing of sibilant consonants via a high-shelving boost of
the side-chain input of a vocal recording - there is no getting around the fact that the
compression will affect the entire frequency spectrum of the signal.

Multiband compressors allow to tackle problems that occur in both the time and fre-
quency domain by separating the signal into multiple frequency ranges (bands) using
a crossover filter network, before applying a dedicated compressor to each band and
subsequently summing them up again, as illustrated in Figure 1.

Additional application examples of multiband compressors include bass instruments,
which often require treatment in the low end whereas their higher frequency content
may be left unchanged. Level inconsistencies in the low end might as well originate from
a moving performer in combination with a microphone’s proximity effect, and can be
easily managed via a frequency selective processor. Disturbing guitar string noises or
loud breaths may be reduced in a similar fashion, if the individual compressor section
can be set such that it’s only triggered by these occurrences (and the output/makeup
gain doesn’t compensate for the gain reduction).

The benefits of multiband compression are most commonly utilized by mastering engi-
neers though, since it allows control and modification of specific parts in sum signals
which would not be feasible otherwise. For example, if the low end has to be revised,
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Figure 1: Very basic signal flow of a multiband compressor

regular compressors would cause the whole signal to "pump" on every threshold trigger,
whereas multiband compressors eliminate this side effect and affect only the targeted fre-
quency band individually. Similarly, the transient behaviour of individual spectral regions
can still be tuned at a rather late stage by taking advantage of the individual compres-
sors’ time constants. Furthermore, multiband compressors enable the application of high
overall gain reduction while maintaining an authentic sound, whereas full-band versions
would typically yield unnatural outputs. To this regard, operating multiple compressors
targeted on separate parts of the signal therefore also allows for squeezing out louder
sounding results.

Although the notion of a multiband compressor suggests the possibility of using it as a
limiter, this task is better left to its full-band counterpart. It’s impracticable to do limiting
with a multiband compressor, because it’s hard to control the summed, maximum overall
amplitude by operating on single bands in isolation.

Despite their powerful possibilities, some engineers have concerns about employing multi-
band compressors, since splitting up the signal into several bands tends to come with
processing artefacts (also with thoroughly designed linear-phase designs, e.g. due to
pre-ringing) and therefore also with the risk of losing fidelity. Naturally, a digital multi-
band compressor is heavier on the CPU compared to its full-band sibling, especially in
multichannel scenarios.

Despite these reservations, multiband compression is a very useful and diverse tool, and
complements the range of audio processing equipment very well.
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2 Crossover filter design

As stated above, multiband compressors split the signal into several bands before applying
dynamic range compression to each band independently. This section deals with the
design of appropriate filter networks for this task. In the context of multichannel audio
it is crucial to bear in mind the design’s computational impact, so generally IIR filters
are preferred over FIR ones due to their efficiency. It is also desirable to keep processing
artefacts as low as possible - the output of the multiband compressor ideally preserves
the original signal, if no compression is triggered.

Digital filter design frequently adopts ideas from the analogue world (e.g. by making use
of the bilinear transform), as analogue filter topologies have a long tradition, are well
understood, and necessarily IIR. Although there are "native" digital filter banks relying
on multirate processing techniques and analysis-synthesis stages which can offer perfect
reconstruction (see e.g. [Smi11]), these typically require a filter prototype that is sim-
ply shifted in the frequency domain to separate the individual bands and are therefore
less flexible to adjust. Another possible approach would be to apply the dynamic range
compression entirely in the frequency domain, i.e. via a Short-Time Fourier Transform
and a subsequent processing upon the frequency bins (see [MV17]), however this ap-
proach introduces additional latency due to the blockwise processing, and can lead to a
whitening of the signal due to the high number of frequency bands.

2.1 Introduction to Linkwitz-Riley filters

Considerations concerning crossover filters for multiband compressors are closely con-
nected to those employed in loudspeakers with multiple drivers, with each driver "pro-
cessing" signals in its associated applicable frequency range and a subsequent "summa-
tion" of these signals in the acoustic domain. However, if the signal to be played back
contains frequencies close to or at the crossover frequency, this summation of acoustic
waves will inevitably cause constructive and destructive interferences, since drivers can-
not be mounted coincidently (as shown in Figure 2). This has several implications on
the design of (active) crossover filters: not only should they provide steep enough roll-off
rates to feed sufficiently band-limited signals to the drivers, also the resulting summed
frequency response should ideally be flat (on-axis) and the polar radiation pattern of the
loudspeaker has to be acceptable as well. Moreover, the phase response (or rather the
group delay) has to be considered.

Butterworth types are a popular choice for tackling this task - they exhibit a maximally
flat passband and a −3 dB gain at the crossover frequency (see Figure 3). A 1st-order
Butterworth filter (−6 dB/octave) is considered inappropriate, as it provides too much
out-of-band energy to the drivers. 2nd-order Butterworth crossovers (−12 dB/octave)
are 180◦ out of phase with each other at all frequencies. Flipping the polarity of one
driver can remedy this problem (by convention typically the high-pass section is inverted),
but this causes a +3 dB bump in the magnitude response at the crossover frequency.
Though going to 3rd-order (−18 dB/octave) appears to solve this problem because the
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(a) 3rd-order Butterworth alignment (b) 4th-order Linkwitz-Riley alignment

Figure 2: Polar radiation patterns of non-coincident drivers at the crossover frequency
for different filter designs [ran]. Assuming the drivers are time aligned and mounted on
top of each other along the vertical center, a 3rd-order Butterworth Allpass design (a)
translates the crossover frequency signal correctly on-axis (midway between both
drivers), but yields tilted lobes and an off-axis peak. While cancellations can not be
avoided for non-coincident drivers, the in-phase relationships of the Linkwitz-Riley
design (b) causes them to be symmetric about the on-axis plane and removes
unexpected peaks and tilts of the lobes.

sections exhibit a phase shift of 270◦ to each other and therefore compensate the +3 dB
bump, this introduces another problem since phase-shifts at the crossover frequency lead
to bad off-axis polar response characteristics. The same kind of problems recur when
higher orders are employed - each order increases the slope by 6 dB/octave and the
phase difference between the sections by 90◦.

The Linkwitz-Riley design [Lin76] addresses these problems by cascading two Butter-
worth sections, yielding a −6 dB magnitude reduction at the crossover frequency and
in-phase outputs of the high-pass and low-pass sections at all frequencies. As a re-
sult, the Linkwitz-Riley alignment shows an absolutely flat summed magnitude response,
without introducing lobing errors or tilts in the loudspeaker’s polar radiation pattern - it
acts as an all-pass, only affecting the phase. As already stated, Linkwitz-Riley filters are
constructed from a serial connection of Butterworth filters of the same order. The impli-
cation of this is that only even orders are possible for these designs - a nth-order twofold
Butterworth cascade yields a 2nth order Linkwitz-Riley filter. Any chosen order complies
with the previously described properties, though, for this to hold, the polarity of one
crossover section has to be switched with every other order. Arguably the most common
version is the 4th-order Linkwitz-Riley filter, which is shown in Figure 4. Designs beyond
8th-order exhibit increasing group delay non-linearity and are more costly and complex
to implement (at least in the analogue domain) and therefore are considered ineligible.
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(a) 1st-order BW magnitude response
(−6 dB/octave)
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(b) 1st-order BW phase response
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(c) 2nd-order BW magnitude response
(−12 dB/octave)
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(d) 2nd-order BW phase response

Frequency in Hz
10

1
10

2
10

3
10

4

M
a
g
n
it
u
d
e
 i
n
 d

B

-30

-25

-20

-15

-10

-5

0

5

10
Lowpass
Highpass
Sum

(e) 3rd-order BW magnitude response
(−18 dB/octave)
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(f) 3rd-order BW phase response

Figure 3: Magnitude and phase responses for Butterworth alignments of different
orders with a crossover frequency fc = 300Hz.
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(a) 4th-order LR magnitude response
(−24 dB/octave)
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(b) 4th-order LR phase response

Figure 4: Magnitude and phase response for 4th-order Linkwitz-Riley alignment with a
crossover frequency fc = 300Hz.

Linkwitz-Riley filters offer ideal crossover behaviour, except for the non-constant group
delay which will be discussed later on in section 2.4. The design of crossover filters for
loudspeakers typically has to incorporate knowledge about the non-ideal behaviour of
the loudspeaker components, so there is no go-to solution. This does not apply for the
design of crossovers for digital multiband compressors though and Linkwitz-Riley filters,
due to an absolutely flat magnitude response and in-phase outputs at all frequencies,
seem very well suited to the task.

2.2 Calculation of Linkwitz-Riley filters

The Butterworth connection cascade that forms the Linkwitz-Riley filter is usually split
into 2nd-order-sections, due to the favourable characteristics offered by Biquads (less
risk of serious quantization errors / instability). The calculation of Butterworth filter
coefficients in the digital domain is modelled on the analogue design and is usually
derived by making use of the bilinear-transform (see appendix A). For a second-order
transfer function of the form

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(1)

the digital filter coefficients of a 2nd-order Butterworth lowpass or highpass filter can be
determined by the expressions presented in Table 1.

Note that both types (lowpass and highpass) share the same denominator - the poles of
their transfer function are identical - and all zeros of lowpass and highpass are located at
−1 and +1 in the unit circle, respectively. Cascading the Butterworth filters in order to
yield Linkwitz-Riley behaviour doubles the order of the filter’s corresponding poles and
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Table 1: Coefficients for a 2nd order digital Butterworth filter, with K = tan(πfc
fs

).
fc and fs denote the desired crossover and sampling frequency, respectively.

Type b0 b1 b2 a1 a2

Lowpass K2

1+
√

2K+K2

2K2

1+
√

2K+K2

K2

1+
√

2K+K2

2(K2−1)

1+
√

2K+K2

1−
√

2K+K2

1+
√

2K+K2

Highpass 1
1+
√

2K+K2

−2
1+
√

2K+K2

1
1+
√

2K+K2

2(K2−1)

1+
√

2K+K2

1−
√

2K+K2

1+
√

2K+K2

Table 2: Coefficients for 2nd-order Allpass system equivalent to parallel connection of
4th-order Linkwitz-Riley Lowpass and Highpass filters. K = tan(πfc

fs
), with fc and fs

denoting to cutoff and sampling frequency, respectively.

b0 b1 b2 a1 a2
1−
√

2K+K2

1+
√

2K+K2

2(K2−1)

1+
√

2K+K2 1 2(K2−1)

1+
√

2K+K2

1−
√

2K+K2

1+
√

2K+K2
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(a) 4th-order LR Lowpass
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(b) 4th-order LR Highpass
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(c) Resulting parallel 4th-order Allpass system
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Figure 5: Pole-zero plots for 4th-order Linkwitz-Riley filters (with ωc = 2π · 5000Hz
44100Hz

=
= 0.7124) and for the resulting crossover Allpass system after summation of the
outputs.
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zeros, but does not change the pole-zero locations. Upon summing the Linkwitz-Riley
output sections, the poles still stay the same due to the equal denominator polynomials.
However, the zeros shift and turn the overall system into an Allpass: half of the zeros
cancel out the duplicate poles, reducing the system’s order to that of the Butterworth
filters it is composed of, whereas the other half moves to the reflections of the poles
across the unit circle. Figure 5 depicts this pole-zero analysis for the 4th-order Linkwitz-
Riley alignment. The same kind of Allpass behaviour can be observed for arbitrary orders,
with the difference being the number and the location of poles and zeros.

We can therefore describe the crossover system formed by the 2nth-order Linkwitz-
Riley filters by simply constructing an equivalent Allpass of order n. The denominator
polynomial is the same as that of the original Butterworth filter transfer functions and
the coefficients of the nominator are obtained by reversing those of the denominator,
placing the zeros at zAP = 1

p∗BW_low
= 1

p∗BW_high
= 1

p∗AP
with ∗ denoting the complex

conjugate.

2.3 Extending to multiple bands

Higher numbers of individually processable frequency bands within a multiband compres-
sor allow for more flexibility and increase its usefulness for the production of audio con-
tent. In general, additional bands can be obtained by running the output of one crossover
through subsequent ones, resulting in a tree-like network structure. All crossovers have
to be aligned so that their filters operate within the bounds of the frequency range of its
respective input signal. Considering this, one could attempt to split an input signal x[n]
into 3 bands according to the structure depicted in Figure 6. In this visualization, the
indexed LR-blocks denote Linkwitz-Riley Lowpass or Highpass filters and the resulting
band-limited signals are summed up again without any processing in between.

Although the individual filter pairs show Allpass behaviour, the overall system response
does not preserve the Allpass property. The transfer function of this system reads as
follows

H(z) = LR 1, L(z) · (LR 2, L(z) + LR 2, H(z)) + LR 1, H(z)

= LR 1, L(z) · AP2(z) + LR 1, H(z) (2)

with AP2(z) denoting an Allpass equivalent to the LR2 system. The phase shift intro-
duced to the low-band path by the second crossover disrupts the Linkwitz-Riley property
of in-phase relationships between outputs at all frequencies, which in turn causes destruc-
tive interferences around the crossover frequencies - in this case, around the crossover
frequency of the LR1 filter pair. Note that the impact of these interferences are depen-
dent on the ratio of the crossover frequencies, fc1

fc2
, of the two independent LR-Allpass

systems to each other, as well as the order of the chosen Linkwitz-Riley alignment. With
fc1 ≈ fc2 and 4th-order filters, the composite magnitude will exhibit a strong notch
around fc1 , since system LR2 will shift the phase approximately 180◦ relative to LR1
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+

LR1L

x[n]

LR1H

y[n]

LR2L LR2H

+

∧
=

x[n]

LR1L

AP2

LR2H

+

y[n]

Figure 6: 3-band filterbank network structure and an equivalent structure that replaces
one parallel Linkwitz-Riley system by a 2nd-order Allpass. Note that the resulting
overall system will exhibit out-of-phase relationships and undesirable interferences,
since the Allpass affects the phase of only one and not both signal paths. If the
crossover frequency of the two Linkwitz-Riley systems are close to each other, these
interferences become particularly severe.

and only one half of the overall system is affected by this change (see Figures 4 and 8).
If fc1 � fc2 (or fc1 � fc2 , depending on the desired signal path), then the deviation
will turn out less significant, since the introduced phase shift will approach 360◦ (or 0◦,
respectively) for 4th-order LR systems.

Inserting an Allpass equivalent to the LR2 system in the filterbank’s upper-band path
resolves this problem. We can now write the total resulting transfer function as

H(z) = LR 1, L(z) · (LR 2, L(z) + LR 2, H(z)) + LR 1, H(z) ·AP2(z)

= (LR 1, L(z) + LR 1, H(z)) · AP2(z)

= AP1(z) · AP2(z) (3)

Figure 7 illustrates this solution.

Following this intuition, we can extend the filterbank to multiple bands, by applying
Allpass filters that compensate for phase shifts introduced by crossovers of different
branches of the filter tree to all outputs. In the 4-band case as seen in Figure 9, the
transfer functions H1(z) - H4(z) for each individual band (indexed from from lowest to
highest according to the frequency range) would then correspond to:

H1(z) = LR 1, L(z) · LR 2, L(z) · AP3(z)

H2(z) = LR 1, L(z) · LR 2, H(z) · AP3(z)

H3(z) = LR 1, H(z) · LR 3, L(z) · AP2(z)

H4(z) = LR 1, H(z) · LR 3, H(z) · AP2(z)
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Figure 7: 3-band filterbank with compensating Allpass in the upper-band path and the
equivalent description of the overall system as a serial Allpass connection.
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Figure 8: Total magnitude and phase responses for a 3-band filterbank system with
4th-order Linkwitz-Riley filters, without a compensating Allpass filter. Note that the
system exhibits a strong notch if the crossover frequencies are close to each other, due
to the uncompensated phase shifts.
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Figure 9: Equivalent 4-band filterbank structures with compensating Allpasses to
ensure in-phase relationships of the resulting overall system. Since the Allpasses of
structure (a) are inserted in both paths (high- and lowpass) of the corresponding
Linkwitz-Riley (LR) system, we can push the Allpasses upwards and insert it just before
the LR filters, resulting in the equivalent but computationally more efficient structure
shown in (b).

If the same compensating Allpass terms apply to bands generated by the same 2-band
complementary crossover, the Allpasses can be pushed up the tree, resulting in less
filters, easing the computational requirements of the multiband compressor (see Figure
9b). A formalization of this method can be found in [FF10].

2.4 Dealing with phase distortion

The use of Linkwitz-Riley filters provides in-phase relationships in the passbands, yet
their phase response is not linear and the group delay non-constant. This degrades the
transparency of the overall system. Figure 10 shows the group delay displacement for
Linkwitz-Riley Allpass systems. The distorting effect is more prominent at low crossover
frequencies and drops with increasing fc. The human auditory system is undoubtedly
capable of perceiving phase distortions (see e.g. [LPV82], [Koy00]), however, the effects
are found to be very subtle and audibility heavily depends on many factors, including
mainly the nature of the source signal, the acoustic listening environment, and the
extent of the phase distortion itself. Moderate phase deviation in high-complexity, real-
world signals (like music) played back via an immersive, multichannel sound system like
Ambisonics, will be practically inaudible. Nevertheless, keeping the phase response of the
overall system flat is a meaningful goal, if the costs to reach this goal do not outweigh
the benefits.

Despite considerable efforts to tackle this issue, phase compensation remains a problem
difficult to solve, if real-time processing scenarios are of the concern. Even with the
Allpass, that describes the phase shift introduced by the system, at hand (as in our
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Figure 10: Group delay in milliseconds for 4th-order Linkwitz-Riley filters at different fc

case), reversing its effect is not a trivial task. Due to their IIR nature (and the zeros
lying outside the unit circle, see Fig. 5c), simple inversion of the Allpass filters, and
thus yielding systems with an inverse phase response capable of compensating the phase
shift perfectly, is impossible, as the systems obtained in this manner can in no way be
stable and causal. Approximating a stable and causal IIR Allpass with inverse phase
relationships is possible, but involve expensive optimisations. This is impractical for real-
time applications, because the crossover frequencies of the multiband compressor should
be easily adjustable on the fly. Furthermore, even if the used optimization schemes are
very fast or the crossover frequencies are predefined, the required filter order will likely
be too high for utilization in a multi-channel context. Needless to say, the employment
of phase compensating FIR filters becomes virtually impossible as well, since the needed
filter order will be considerably higher in this case.

An alternative approach to mimic linear-phase IIR systems, is to filter twice - after a
standard forward pass, the intermediate signal is time-reversed and run through the filter
again, which compensates the filter’s phase shift and group delay distortions. With
regard to the double Butterworth sections that constitute Linkwitz-Riley filters, this
seems convenient and works well for offline scenarios, however, the method becomes
much less usable if real-time processing is considered. Applying this scheme in an online
fashion has been proposed in [PC91] and various extensions to this approach exist (e.g.
[DPL98], [AB07]). But the block-wise processing of the successively time-reversed signal
and the reset of the filter states at every step inevitably induces corruptions of the
magnitude response (alongside a fixed amount of processing delay).

Although utilizing linear-phase filters in the first place would avoid the whole issue en-
tirely, they often pose new problems. If the phase response of the filter shall be linear,
its impulse response must be symmetric. This has two major implications. First, the
system has to be FIR, as symmetry is not a feasible requirement for one-sided (causal)
infinite series. FIR filters typically need much higher filter orders to describe systems
comparable to IIR ones, hence increasing the computational load and decreasing their
applicability accordingly, which becomes especially critical if the rigorous demands of
multichannel environments have to be met (e.g. 7th-order Ambisonics has 64 channels
per band). Secondly, since the axis of symmetry will usually carry the most prominently
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weighted impulse, symmetric impulse responses frequently exhibit pre-ringing artefacts -
audible side effects, particularly striking with transient sounds.

Reversing the phase distortions introduced by an IIR filter can also be addressed with
an FIR Allpass that approximates the inverse phase response. Note that, apart from
trivial perfect delays, constant-magnitude Allpass behaviour can only ever be approxi-
mated by FIRs. [Vic16] describes an implementation using a similar approach in order
to attain linear phase systems. A simple intuition for the design of such an FIR is to
truncate the original infinite impulse response, flipping it in time (rendering it acausal)
and adding a sufficiently long bulk delay. However, to approximate FIR Allpasses, suf-
ficiently high orders are needed, which becomes especially problematic if low crossover
frequencies have to be captured, as illustrated by Fig. 11. Filter lengths of at least 512
samples are recommended, if the magnitude as well as the phase response are to be
modelled appropriately. Apart from the immense computational requirements within a
multichannel application, these filters introduce latencies that scale with the filter order,
and the resulting delay will therefore be intolerably high. The time-domain filtering of-
fers another point of view regarding the FIR Allpass approximation. The overall system
can be described by convolving the impulse response of the filterbank network with the
coefficients of the compensation filter, which is a time reversed version of this impulse
response. Due to the time-reversal, this correspond to a cross-correlation. In the ideal
case (with infinitely long response times), it can be seen as autocorrelation, yielding a
symmetric (and therefore linear-phase) system, which basically acts as an ideal delay. By
making the FIR longer, we can approach this ideal case. Note that pre-ringing will be
less of an issue with Allpass FIRs, since the overall system approximates a perfect delay
and we can expect a spike surrounded by very small values in its neighbourhood.

Given a described group delay, the filter might as well be constructed by integrating
over the group delay and applying an inverse Fourier transform to a complex exponential
constructed with the resulting phase response. Again, the applicability of such schemes
to multichannel settings is limited by the computational requirements of FIRs, even if
techniques like fast convolution are leveraged.
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Figure 11: Magnitude responses of FIR Allpasses of different orders, approximating a
2nd-order Allpass with fc = 100Hz, designed using a truncated, time-reversed IIR
impulse response.
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3 Compressor design

Among the standard audio effects (like equalization, panning, reverb, ...), dynamic range
compression is often considered the most complex, in terms of usage as well as realization,
probably due to the fact that compressors are both adaptive (depending on the input) and
nonlinear processors. Also, the number of parameters is comparatively high, including
threshold, ratio, knee, attack, release, make-up gain, optionally look-ahead and hold.
Moreover, at least for the time constants, there’s often a lack of clear definition and
it’s not agreed upon what the parameters exactly do. Many design choices have to be
made, shaping the behaviour and sound, which can differ significantly between different
compressors. This section, which is basically a summary of the analysis conducted
in [GMR12], gives an overview of the main building blocks of digital compressors. In
general, a compressor reduces a signal’s dynamic range, with the degree of compression
depending on the level of the so-called side-chain signal. Fig.12 shows a very basic
compressor layout.

Level Detection | Timing/Ballistics | Gain Computation

x[n]

xS[n]

y[n]

g[n]

Figure 12: A basic feedforward compressor layout. xS[n] denotes the side-chain input,
which is usually just a copy of the actual input signal x[n].

3.1 Level detection

The gain computation depends on the estimated level of the side-chain signal. There
are two basic methods to calculate this level: RMS-detection and peak-detection.

RMS-Detection. The root-mean-square measurement represents a smoothed average
over the signal. It is also closely related to the perceived loudness of the signal, which
is a desirable property of level detectors. However, it’s calculation, given by

yL[n] =

√√√√√ 1

N

N
2
−1∑

m=−N
2

x2
S[n−m], (4)

introduces an additional parameter N , as well as a latency of N/2 samples. In real-time
implementations (as in many analogue RMS-based compressors) the RMS-estimate is
therefore often approximated by exponentially smoothing the estimate via "leaky inte-
gration", a special case of a first order IIR lowpass filter

yL[n] =
√
α y2

L[n− 1] + (1− α)x2
S[n] (5)
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with α (0 ≤ α < 1) denoting a smoothing coefficient. We will see that this first order
difference equation bears resemblance to smoothed level estimates using peak detectors.
In fact, several studies suggest that the general behaviour for peak- and RMS-detection
is the same, and differences only correspond to a scaling of smoothing coefficients /
time-constants. For these reasons, the focus is on peak-detectors.

Peak-Detection. In the digital domain, a simple and intuitive estimate of the current
level is the full-wave rectified signal value, corresponding mathematically to the absolute
value function:

yL[n] = |xS[n]| (6)

In order to avoid serious jumps in the output signal, the calculated gains are required to
transition gradually across time. Continuous-time peak detectors of analogue compres-
sors yield smoother estimates and are based on relatively simple RC -circuits, which is also
how the attack and release time-constants are introduced to dynamic range controllers
(with τ = RC).

Time-constants. We can enforce the smoothing condition by filtering the estimates
of the level detector, e.g. using an exponential moving-average filter (one-pole lowpass
filter)

y[n] = αy[n− 1] + (1− α)x[n] (7)

with a step response of

y[n] = 1− αn for x[n] = 1, n ≥ 1. (8)

A time-constant τ is defined as the time it takes for a system to reach 1− 1
e
≈ 63% of

its final value. With y[τfs] = 1 − 1
e
and the given step response, we can calculate the

filter coefficient α via

α = e
−1
τfs (9)

where fs represents the sampling frequency.

As already stated, the time-constants originate from analogue RC components, and
standard digital designs are derived from analogue ones (see [GMR12] for details on the
derivation), all resulting in variants of this first-order filtering. Directly deriving from
a simple analogue peak-detector consisting of a diode, two resistors (attack in serial
and release in parallel), and a parallel capacitor, and assuming ideal components, is
problematic, as this level detection scheme only gives correct estimates if the release
time-constant τR is significantly higher than the attack parameter τA. Additionally, τA
is slightly scaled by the release time, resulting in faster attack-times than expected when
using a short τR.
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Solving this problem in the analogue domain yields the so-called decoupled peak detector
circuit, which, transferred to the digital world, writes as

y1[n] = max(xT [n], αR y1[n− 1]) (10)
yT [n] = αA yT [n− 1] + (1− αA) y1[n] (11)

where xT and yT respectively stand for input and output of the smoothing filter (also
called timing or ballistics section). The parameters αA and αR denote the attack and
release coefficients, respectively, and are calculated using relationship 9. However, as can
be seen from the given equations, the release envelope is now conditioned on the attack
envelope. A good estimate of the resulting effective release-time is τR,eff ≈ τA + τR.

Solving the problem solely in a digital environment, we can simply introduce a conditional
operator, which fixes these problems:

yT [n] =

{
αA yT [n− 1] + (1− αA)xT [n] xT [n] > yT [n− 1]

αR yT [n− 1] xT [n] ≤ yT [n− 1]
(12)

This branching detector not only corrects for the flawed level estimation, also the attack
and release times now take on the intended values.

Nevertheless, both variants still suffer from an incorrect behaviour concerning the release
phase, which is inherited from the analogue design. The full release-time is imposed upon
the signal only if this signal experiences a drop to zero after a peak. If it settles on an
intermediate value, the release envelope will be cut off at this point, resulting in a much
shorter release-time. However, we can adjust both filter variants to compensate this
behaviour and to always use the full release-time. The smooth decoupled peak detector
can then be written as

y1[n] = max(xT [n], αR y1[n− 1] + (1− αR)xT [n]) (13)
yT [n] = αA yT [n− 1] + (1− αA) y1[n] (14)

and the smooth branching detector as

yT [n] =

{
αA yT [n− 1] + (1− αA)xT [n] xT [n] > yT [n− 1]

αR yT [n− 1] + (1− αR)xT [n] xT [n] ≤ yT [n− 1]
(15)

The difference between these smooth and non-smooth filter versions can also be assessed
via a total harmonic distortion (THD) measurement. Since the release envelope of the
non-smooth versions ends abruptly, the THD can be significantly reduced by making
use of the full release envelope via these smoothing modifications. Furthermore, the
decoupled detectors slightly outperforms the branching ones in terms of THD, since the
branching introduces a discontinuity, and therefore distortion, at the release phase inset.
Also the so-called effective compression ratio is higher for the decoupled variants, as the
area under their release envelope is slightly larger. As already discussed, the trade-off
are incorrect effective release-times.
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3.2 Gain computation

In an analogue compressor, a VCA (voltage controlled amplifiers) attenuates the input
signals to the compressor proportionally to an external control voltage coming from the
side-chain. This control signal is generated by the gain computer according to the static
compression characteristic defined by the threshold T, the ratio R and the knee width W
(see Fig.13). When the input exceeds a threshold level, the gain is reduced corresponding
to the ratio of input to output. Sometimes the inverse ratio is given instead - the slope
(ratio of output to input). IfW, given in dB, is greater than zero, the characteristic is said
to have a soft knee (rather than a hard knee), which smooths the transition between the
two operation modes at the threshold point via interpolation by "distributing" the knee
width equally to both sides (should be at least 2nd-order interpolation). Consequently,
the relationship between the input level of xG and the target level yG (both in dB, since
the parameters are usually given in dB as well) is described by the following equations:

yG =


xG (xG − T ) < −W

2

xG +
( 1
R
−1) (xG−T+W

2
)2

2W
|(xG − T )| ≤ W

2

T + xG−T
R

(xG − T ) > W
2

(16)

Figure 13: An exemplary compressor characteristic, with a threshold of −20 dB, a ratio
of 5 : 1, a soft knee width of 20 dB and a make-up gain of +10 dB.

3.3 Compressor topologies

There are two basic system designs: feedforward and feedback topologies. Fig.12 depicts
the basic feedforward case, with the gain g[n] being applied after the calculations in
the side-chain path. If the side-chain input xS[n] should equal the input signal x[n],
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then it’s possible to reverse this relationship, so that the gain is applied first and the
resulting signal is fed back to the side-chain input. This approach had been originally
adopted in early analogue compressors, since the side-chain processing circuit has to be
accurate over only a limited dynamic range compared to the forward path, minimizing
possible inaccuracies in the gain stage. For digital implementations though, this aspect is
irrelevant. Note that the backwards topology is not compatible with look-ahead designs
and does not allow operation as a limiter either. Transferred to the dB domain, with
ydB = gdB + xdB, and using equation 16, the feedforward hard-knee gain calculation for
the case xG > T can be formulated as

gdB = (
1

R
− 1) (xdB − T ) (17)

whereas the gain for the feedback topology follows

gdB = (1−R) (ydB − T ). (18)

This implicates, that feedback topologies need to attain an impractical infinite negative
amplification to act as a perfect limiter (R =∞ : 1), while this is poses no problem for
the feedforward case, which instead even enables to apply over-compression. There exists
also an alternative feedback topology, that relies on the assumption that the previous
gain value will be close to the actual gain value, which allows to have an external side-
chain signal in combination with a feedback design. However, most modern compressors
are based on the feedforward approach, since they are more stable and predictable.

3.4 Timing placement

The sound of the compressor is also significantly influenced by the arrangement of the
building blocks. Especially the placement of the ballistics smoothing filter has to be
considered. The inputs and outputs of the level, timing and gain computation stage are
labelled xL → yL, xT → yT and xG → yG, respectively. The make-up gain in dB is
denoted by the character M .

A straightforward way to implement the side-chain processor is to do the level detection
and timing in the linear domain and applying the compression characteristic in the log-
domain.

xT [n] = yL[n] (19)
xG[n] = 20 log(yT [n])

gdB[n] = yG[n]− xG[n] +M

The timing section operates on the full dynamic range and needs some time to charge up
to the threshold level, as well as to fade out the signal beneath the threshold. However,
the gain computer will be zero once the level is found to be below the threshold level.
This creates a lag in the attack trajectory and a discontinuity in the release envelope.
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In order to tackle this problem and turn the system back into a return-to-threshold type,
we can instead smooth a signal which is biased at the threshold level:

xT [n] = yL[n]− 10
T
20 (20)

xG[n] = 20 log(yT [n] + 10
T
20 )

gdB[n] = yG[n]− xG[n] +M

On the downside, this causes troubles if soft knee characteristics are required.

An alternative placement of the ballistics in the linear domain, is to put it after the gain
stage. This way, the control signal itself gets smoothed, yielding a return-to-threshold
type without depending on a fixed threshold.

xG[n] = 20 log (yL[n])

xT [n] = 10
yG[n]−xG[n]+M

20 (21)
g[n] = yT [n]

Placed in the linear domain, the smoothing filter lets the envelope decay exponentially.
This produces a corresponding linear decrease in the log domain - a constant release rate
of decibels per time. This implies that release times will differ for different degrees of
compression. However, human perception in general tends to happen logarithmically, as
is the case for the human ear. Thus, placing the timing section in the log domain creates
a more subtle and smoother compression effect, and makes the envelope trajectory
independent of the actual amount of compression.

xG[n] = 20 log(yL[n]) (22)
xT [n] = xG[n]− yG[n]

gdB[n] = M − yT [n]
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Figure 14: Visualization of a compressor’s behaviour including the final gain reduction
(ballistics already applied). The threshold is set to −20 dB, the ratio to 2 : 1, no
make-up gain is applied.
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4 Implementation

The main objective of this work was to develop a VST plug-in, that enables to do
multiband compression for Ambsionic productions (up to 7th-order). This plug-in has
been released under the IEM plug-in suite1, which is publicly available under the GNU
General Public License v3.0, and has been created with the JUCE2 framework, which
abstracts away basically all communication to the host and allows convenient devel-
opment of multi-platform tools. This section reviews some of the design choices and
implementation details.

4.1 Utilizing SIMD

Splitting the signal into, in this case, 4 bands, is achieved by running it through 4th-order
Linkwitz-Riley filters and 2nd-order Allpass filters (as discussed in sections 2.2 and 2.3).
The used 4th-order filters give a reasonable trade-off between computational complexity
and roll-off rate, are frequently encountered in crossover networks, and can be easily
implemented using a cascade of 2nd-order Butterworth IIR filters. The DSP module of
JUCE eases the implementation of these filtering operations and provides handy classes
for this purpose, facilitating the Transposed Direct-Form II structure.

However, upon investigating the filterbank topology of Fig.9b, one can anticipate heavy
computational requirements if it is to be incorporated within a multichannel setting:
successful separation of a 7th-order Ambisonic source signal, entailing 64 channels, with
six 4th-order Linkwitz-Riley sections (= twelve 2nd-order Butterworth sections) and two
2nd-order Allpass filters per channel requires 64 · (12 + 2) = 896 2nd-order IIRs. This
corresponds to (5+4)·896 = 17920 multiply and addition operations per sample, ignoring
the computational load of the subsequent dynamics processing and signal summation of
the resulting 64 · 4 = 256 signals. A naive implementation would thus cause a serious
computational bottleneck.

Fortunately though, since all filter operations on the individual channels equal each other,
we can optimize this code by exploiting data parallelism mechanisms of hardware pro-
cessors via SIMD instructions (Single Instruction - Multiple Data), which are supported
by most CPUs nowadays. In contrast to multi-core processing which allows to do very
different tasks at the same time, SIMD is a parallel computing method that facilitates
vector operations by executing the same instruction over multiple data. Therefore, uti-
lizing this technique enables to significantly speed up digital signal processing tasks. For
example, the cost of element-wise addition of 8 floats to 8 other floats is similar to the
cost of adding 2 floats. There are of course limitations to this method, e.g. a code full
of control flow statements may hinder effective vectorization since the lock-step style
processing prevents any inter-synchronization. However, as the filtering process is co-
herent for all channels, SIMD can be effectively leveraged for our purposes. So instead
of fetching operands and executing multiply and addition operations of the filter bank

1https://plugins.iem.at/
2https://juce.com/

https://plugins.iem.at/
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sequentially for all audio channels, we can direct the processor to load samples of dif-
ferent channels and process them simultaneously, with both instructions done in parallel
by distributing data among several compute nodes.

But how can the CPU be instructed to utilize SIMD and vectorize the relevant opera-
tions? One possibility is to rely on the compiler to auto-vectorize the code. If certain
optimization flags are set, compilers will try to recognize certain patterns and estimate
the benefits and costs of vectorizing these. The compiler must prove that the vector-
ized code has the same semantics as the scalar code and it doesn’t always succeed in
doing so, even if the code is perfectly vectorizable for a human being. While there
are ways to help the compiler finding this proof (e.g. sticking to conventional loop
constructs or using certain keywords/intrinsics), it remains a compiler-specific black art
and the generated code will be virtually unportable. Additionally, in order to make sure
the code has eventually been optimized, the compiler report or resulting assembly code
has to be checked. Therefore, explicit vectorization (e.g. via pragmas or SIMD-type
libraries) is usually preferred - the programmer gains full control and the code can be
made microarchitecture-agnostic.

Conveniently, JUCE offers a templated wrapper class SIMDRegister<Type> around a
type, which is to be used with the target platform’s native SIMD register, regardless of
the specific processor and SIMD instruction set. All primitive types (as well as complex
types) and most operations on these types are supported, and the processor classes of
the DSP module are also able to operate on this wrapper. In our case, the signal samples
and the filter coefficients should be declared to be of this wrapped type, if we want to
utilize SIMD. We can query if the target machine’s SIMD architecture with a macro
provided by JUCE and get the size of the CPU’s SIMD register too, like this:

#if JUCE_USE_SIMD
using filterOperandType = SIMDRegister<float>;
static constexpr int filterRegisterSize = SIMDRegister<float>::size();

#else
using filterOperandType = float;
static constexpr int filterRegisterSize = 1;

#endif

Load and store operations to the SIMD registers are most efficient if the respective data is
aligned to the vector register boundaries. We can ensure this by interleaving the samples
of the channels before filtering, putting one sample of filterRegisterSize successive
channels next to each other into the SIMD register at once. If the number of channels is
not a multiple of the filterRegisterSize, then the remaining slots in the interleaved
channel vector are simply filled with zeros. After filtering and applying the dynamic range
compression, the samples have to be deinterleaved in a similar fashion. Fig.15 depicts this
procedure. The following code snippet demonstrates how this can be achieved within the
JUCE framework. Note that we need

⌈
numChannels

filterRegisterSize

⌉
distinct filter banks for this to

work, with each filter object holding the states of filterRegisterSize different channels
(filter coefficients however are the same). Table 3 displays the significant increase in
performance, when utilizing SIMD, with the plug-in being in 7th-order mode.
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SI 1 SI 2 SI 3 SI 1 SI 2 SI 3 SI 1 SI 2 SI 3 SI 1 SI 2 SI 3 SI 1 SI 2 SI 3 SI 1 SI 2 SI 3 SI 1 SI 2 SI 3

SI 1 SI 1 SI 1 SI 1 SI 2 SI 2 SI 2 SI 2 SI 3 SI 3 SI 3 SI 3 SI 1 SI 1 SI 1 0 SI 2 SI 2 SI 2 0 SI 3 SI 3 SI 3 0

interleave

process Filter bank 1 Filter bank 2

SO 1 SO 1 SO 1 SO 1 SO 2 SO 2 SO 2 SO 2 SO 3 SO 3 SO 3 SO 3

de-interleave
SO 1 SO 2 SO 3 SO 1 SO 2 SO 3 SO 1 SO 2 SO 3 SO 1 SO 2 SO 3

SO 1 SO 1 SO 1 0 SO 2 SO 2 SO 2 0 SO 3 SO 3 SO 3 0

SO 1 SO 2 SO 3 SO 1 SO 2 SO 3 SO 1 SO 2 SO 3

Figure 15: Illustration of the data interleaving procedure used to efficiently utilize
SIMD. The first line depicts the input buffer consisting of 7 channels highlighted with
different colors, each of which contains 3 samples. These are then interleaved to blocks
of 4 samples, which corresponds to the size of the SIMD register (assuming SSE
instruction set and single-precision floats). Since the number of channels is not a
multiple of the SIMD register size, half of the SIMD registers (right side) have to be
zero padded. After running them through the filter banks (which have the same filter
coefficients but different states), the samples are de-interleaved accordingly and written
to the output buffer.

// Interleave
const int numSimdFilters = 1 + (numChannels - 1) / filterRegisterSize;
int partial = numChannels % filterRegisterSize;

if (partial == 0)
{

for (int i = 0; i < numSimdFilters; ++i)
{

interleaved[i]->clear();
juce::AudioDataConverters::interleaveSamples (

buffer.getArrayOfReadPointers() + i*filterRegisterSize,
reinterpret_cast<float*> (interleaved[i]->getChannelPointer (0)),
L, filterRegisterSize);

}
}
else
{

// - interleave as before until numSimdFilters-1
// - interleave the remaining channels with zeros
...

}
// do filtering operations
...
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Table 3: Comparison of performance metrics between implementations differing in the
use of SIMD instructions. The results are obtained using time profiling for a period of
60 seconds, which takes a snapshot of the current call stack each millisecond. If a
method happens to be in the snapshot, the count of the method is increased. The
results are then multiplied by the time interval. processBlock is the main processing
method of the audio callback, Filter operations include all processing concerning the
filterbank. CPU usage was quantified using a performance meter within the digital
audio workstation Reaper. The subsequent dynamic range compression within each
band has been bypassed. Measurements were conducted on a Macbook Pro 6,2, which
uses a 2,4 GHz Intel Core i5 with SSE4.1 and SSE4.2. For comparison, the average
CPU usage of plug-ins of the IEM plug-in suite is (very roughly speaking) at about
2.6%, for 7th-order Ambisonics.

Time spent in methods

SIMD CPU usage processBlock Filter operations

no ∼9.3% 19.9 s 18.6 s
yes ∼3% 4.16 s 3.05 s

4.1.1 SIMD instruction set extensions

As stated above, basically all modern computers - at least all those one would want to
produce audio on - support SIMD. In fact, the first instruction set for the x86 archi-
tecture to be widely deployed was introduced back in 1997. However, this instruction
set (called MMX ) provided only integer operations. Over time, the SIMD instruction
set has been extended and the registers have grown. The Streaming SIMD Extensions
(SSE ), introduced in 1999, adds support for single-precision floating point operations
by adding 8 or 16 (depending if a 32 or 64 bit system is used) 128-bit registers (called
XMM), which allows to process 4 floats within one compute cycle. SSE2 extends the
possible data types the XMM registers can hold and defines corresponding operations.
SSE3 and SSSE3 add even more SIMD instructions, including support for "horizontal"
operations - operations on distinct data that is stored in the same single register. SSE
version 4 is another major enhancement, and is split into the subsets SSE4.1 and SSE4.2,
which contribute 47 and 7 new instructions, respectively. In 2008, Intel proposed the
Advanced Vector Extensions (AVX), which expands the width of the SIMD registers
(now called YMM) from 128 bit to 256 bit and introduces many new features, e.g. 3
operand instructions which allow different destinations of results from 2 operands. In-
struction prefixes allow backwards compatibility to SSE, which now uses the lower half
of the 256 bit registers. AVX2 expands most integer commands to 256 bits and adds
fused multiply-accumulate (FMA) operations. The newest version, introduced in 2013,
is AVX-512, which widens the SIMD register size to 512 bits and is thus able to process
up to 16 single-precision floats with a single instruction.
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4.2 Phase compensation
Initially, the goal was to create a perfectly reconstructing multiband compressor, how-
ever, this conception has been dismissed, since it turned out to be quite difficult to
preserve the original phase within the multichannel setting. As previously discussed in
section 2.4, there are several approaches to phase compensation but none seems to be
particularly well suited, because they either introduce imperfect magnitude responses
or add extraordinarily heavy computational load and/or complexity. Given the low sen-
sibility of the human ear to phase distortions and the relatively subtle impairments of
the phase by Linkwitz-Riley crossovers, the costs seem to outweigh the benefits in the
multichannel case.
Table 4 shows performance measures for an implementation that includes a 512-tap phase
compensating FIR allpass filter, inserted into the processing chain right before writing
the signal back into the output buffer of the audio callback. The allpass is derived from
an impulse response, that describes the behaviour of the whole filterbank network, which
is obtained from a cascade of 3 2nd-order IIR allpasses (see 2.3). The impulse response
is truncated after 512 samples and time-reversed. The FIR has been implemented with
the fast convolution algorithm, which is more efficient than straightforward time-domain
filtering, if the filter is of a high (≥ 64) order. Compared to the results of the SIMD
implementation in Table 3, a striking increase in computational load can be observed,
exemplifying the infeasibility of phase compensation. Moreover, this version of the plug-
in produces serious audible glitches when the crossover frequencies are varied.

Table 4: Performance measurements for a phase-compensating version of the plug-in,
using a 512-tap FIR Allpass implemented with fast convolution. The filterbank itself is
optimized with SIMD instructions. Again, time profiling is performed for 60 seconds of
processing, like in Table 3, and compressors are bypassed. Additionally, the host has
been set to enforce a block size of 512 samples.

Time spent in methods

Phase compensation CPU usage processBlock Filter operations

yes ∼8.1% 16.75, s 3.1 s
no ∼3% 4.16 s 3.05 s

4.3 Compressor design
The class Compressor, originally designed for the OmniCompressor and Directional-
Compressor plug-ins, holds the processing logic for the dynamic range compression. It
comprises of a peak-detector and a smooth branching ballistics filter, placed in the log-
domain after the actual gain computer. This ensures accurate attack and release times,
and yields an envelope that decays independent from the current compression gain, as
discussed in section 3. In order to preserve the spatial image of the Ambisonic sig-
nal, only the omni channel (W -channel) of each band serves as the side-chain input to
the compressors and the calculated gain is applied to all channels within the respective
frequency band.
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4.4 User interface

Considerable amount of work also went into the design and implementation of the graph-
ical user interface (GUI), which is shown in Fig. 16.

The frequency bands are visualized using the magnitude responses of the correspond-
ing crossover filters. Since the signal processing does not actually need the 4th-order
Linkwitz-Riley coefficients, they have to be computed via a (hard-coded) convolution of
the Butterworth coefficients before the magnitude responses can be obtained. These are
then drawn to the screen using the Path classes provided by JUCE.

Furthermore, they are displaying the gain changes introduced by the individual compres-
sors and are updated every 50 milliseconds. As redrawing the Paths is not the cheapest
of operations, the Message Thread, which is responsible for rendering the GUI on the
CPU, will be strained to an undesirable extent. Thus, the design of the FilterBankVi-
sualizer strives to only update the visualizations if necessary. The GUI also features an
option to display the resulting total magnitude, but it is hidden by default, because the
total magnitude will change pretty much all of the time, resulting in higher CPU drain.

All individual compressor characteristics are visualized as well. For convenience, each
frequency band has its own parameter section and also features a meter displaying the
current amount of gain reduction. Additionally, master controls were added, which
enable the user to adjust parameters of all bands simultaneously, without breaking the
ratios between them.

Figure 16: Screenshot of the GUI for the MultiBandCompressor.
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5 Summary

This work described procedures with regard to the design of frequency selective dy-
namic range compression tools, in particular multiband compressors, for computationally
demanding multi-channel environments, like Ambisonics. After introducing the corre-
sponding concepts of dynamics processing in section 1, crossover filters for multiband
compressors have been discussed, with a focus on the popular 4th-order Linkwitz-Riley
design. Additionally, it has been shown that linear-phase filter banks can hardly be re-
alized in this multichannel framework, mostly due to their computational requirements,
which has eventually been proven in the concluding section of this work. In the following,
design considerations regarding digital dynamic range compression have been concisely
discussed in section 3. Finally, the observations and choices made during implementing
such a tool have been presented, with a focus on the utilization of single-instruction-
multiple-data (SIMD) parallelism as well as its substantial effect on performance.
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A Calculation of Digital Butterworth coefficients

The equation for an analogue normalized 2nd order Butterworth low-pass filter with
crossover frequency Ωc and unity DC gain can be written as [Orf95]

H(s) =
1

s2

Ω2
c

+
√

2 s
Ωc

+ 1
(23)

.

Multiplying by Ω2
c and pre-warping the crossover frequency by setting Ωc , ωc = 2

T
K

with K = tan(πfc
fs

) results in:

H(s) =
( 2
T

)2K2

s2 + 2
T
K
√

2s+ ( 2
T

)2K2
(24)

Now we can apply the bilinear transform given by s = 2
T

1−z−1

1+z−1 .

H(s) =
( 2
T

)2K2

( 2
T

)2(1−z−1

1+z−1 )2 + ( 2
T

)2K
√

21−z−1

1+z−1 + ( 2
T

)2K2
(25)

The ( 2
T

)2 terms cancel out and after multiplying by (1 + z−1)2 and expanding the
polynomials we arrive at

H(s) =
K2(1 + 2z−1 + z−2)

(1− 2z−1 + z−2) +K
√

2(1− z−2) +K2(1 + 2z−1 + z−2)
(26)

.

and we can again expand the terms and group them into coefficients with regard to the
powers of z like so:

H(s) =
K2 + 2K2z−1 +K2z−2

1 +
√

2K +K2 + 2(K2 − 1)z−1 + (1−
√

2K +K2)z−2
(27)

Finally, we normalize for a unity a0 coefficient.

H(s) =

K2

1+
√

2K+K2 + 2K2

1+
√

2K+K2 z
−1 + K2

1+
√

2K+K2 z
−2

1 + 2(K2−1)

1+
√

2K+K2 z
−1 + 1−

√
2K+K2

1+
√

2K+K2 z
−2

(28)

The LR-Highpass filter coefficients can be derived in a similar fashion.
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