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Abstract

Being a mathematician and a musician �I play the �ute� I found it very interesting to deal with
P�olya�s counting theory in my Master�s thesis� When reading about P�olya�s theory I came across
an article� called �Enumeration in Music Theory� by D� L� Reiner �		
� I took up his ideas and
tried to enumerate some other �musical objects��

At �rst I would like to generalize certain aspects of 	�
tone music to n
tone music� where n is a
positive integer� Then I will explain how to interpret intervals� chords� tone
rows� all
interval
rows�
rhythms� motifs and tropes in n
tone music� Transposing� inversion and retrogradation are de�ned
to be permutations on the sets of �musical objects�� These permutations generate permutation
groups� and these groups induce equivalence relations on the sets of �musical objects�� The aim of
this article is to determine the number of equivalence classes �I will call them patterns� of �musical
objects�� P�olya�s enumeration theory is the right tool to solve this problem�

In the �rst chapter I will present a short survey of parts of P�olya�s counting theory� In the
second chapter I will investigate several �musical objects��

Abstract

In dieser Arbeit wird der Begri� von 	�
Ton Musik auf n
Ton Musik� wobei n eine nat�urliche
Zahl ist� erweitert� Objekte der Musiktheorie wie Intervall� Akkord� Takt� Motiv� Tonreihe� Allinter

vallreihe und Trope werden mathematisch gedeutet� Transponieren� Inversion �Umkehrung� und
Krebs werden als Permutationen auf geeigneten Mengen interpretiert� Zwei �musikalische Objekte�
hei�en wesentlich verschieden� falls man sie nicht durch solche Permutationen ineinander �uberf�uhren
kann� In die Sprache der Mathematik �ubersetzt� bedeutet dies� Abz�ahlen von �Aquivalenzklassen
�von Funktionen�� wobei die �Aquivalenz durch eine Permutationsgruppe induziert wird� Dieses
Problem wird von der Abz�ahltheorie von P�olya und von S�atzen� die in Anschlu� an diese Theorie
entstanden sind� gel�ost� Zu diesen S�atzen geh�oren Theoreme von N�G� de Bruijn und das Power
Group Enumeration Theorem von F� Harary�

Im ersten Kapitel stelle ich alle grundlegenden De�nitionen zusammen� Dann folgen oben
erw�ahnte S�atze� welche hier in dieser Arbeit nicht bewiesen sind� Das daran anschlie�ende Kapi

tel besch�aftigt sich mit den Anzahlbestimmungen �musikalischer Objekte�� Diese S�atze sind nun
vollst�andig bewiesen�

Die Grundidee zu dieser Arbeit habe ich �		
 entnommen� Daraufhin habe ich versucht diese
Gedanken weiter auszubauen und die Anzahlbestimmung anderer �musikalischer Objekte� durchzu

f�uhren� Bisher hatten Musiktheoretiker und Komponisten mit verschiedenen Methoden� oder durch
Ausprobieren� solche Anzahlen bestimmt� Durch Verwendung der Theorie von P�olya soll ein System
in diese Untersuchungen gebracht werden� F�ur den Anwender ist es nicht n�otig� die Beweise in allen
Einzelheiten zu verstehen� Er sollte jedoch mit mathematischen Schreib
 und Sprechweisen vertraut
sein� Da diese Arbeit auch von Mathematikern gelesen wird� mu� sie auch allen mathematischen
Forderungen nach Exaktheit und Genauigkeit der Beweise gerecht werden�

�The author thanks Jens Schwaiger for helpful comments�
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� Preliminaries

There is a lot of literature about P�olya�s counting theory� For instance see ���� ���� �	�� �
� or �����

De�nition ��� �Type of a Permutation� Let M be a set with jM j � m� A permutation � � SM
is of the type ���� ��� � � � � �m
� i� � can be written as the composition of �i disjointed cycles of length
i� for i � �� � � � �m�

De�nition ��� �Cycle Index� Let P be a set of jP j � n elements and let � be a subgroup of SP �
denoted furtheron by � � SP � The cycle index of � is de�ned as a polynomial in n indeterminates
x�� � � � � xn� de�ned as�

CI���x�� � � � � xn
� � j�j��
X
���

nY
i��

x
�i���
i �

Lemma ��� �Cycle Index of the Cyclic Group� Let �
�E�
n be the cyclic group of order n generated

by a cyclic permutation of n objects� then the cycle index of �
�E�
n is

CI���E�n �x�� x�� � � � � xn
 �
�

n

X
tjn

��t
xt
n
t �

where � is Euler�s ��function�

Lemma ��� �Cycle Index of the Dihedral Group� Let ��E�n be the dihedral group of order �n and
degree n containing the permutations which coincide with the �n deck transformations of a regular
polygon with n vertices�

�� If n � � mod �� then

CI���E�n �x�� x�� � � � � xn
 �
�

�
x�x�

n��
� �

�

�n

X
tjn

��t
xt
n
t �

�� If n � � mod �� then

CI���E�n �x�� x�� � � � � xn
 �
�

�
�x�

n
� � x�

�x�
n��
� 
 �

�

�n

X
tjn

��t
xt
n
t �

The main lemma in P�olya�s counting theory is

Theorem ��� �Lemma of Burnside� Let P be a �nite set and � � SP � Furthermore let B be the
set of the orbits of P under �� then

jBj � j�j��
X
���

���
�

where ���
 is de�ned as ���
� � jfp � P
������p
 � pgj�

Theorem ��� �P�olya�s Theorem� Let P and F be �nite sets with jP j � n� and let � � SP � Fur�
thermore let R be a commutative ring over the rationals Q and let w be a mapping w�F � R� Two
mappings f�� f� � FP are called equivalent� i� there exists some � � � such that f� � � � f�� The
equivalence classes are called mapping patterns and are written as �f �� For every f � FP we de�ne the
weight W �f
 as product weight

W �f
� �
Y
p�P

w
�
f�p


�
�

Any two equivalent f �s have the same weight� Thus we may de�ne W ��f �
� � W �f
� Then the sum of
the weights of the patterns isX

�f �

W
�
�f �
�

� CI
�

��
X
y�F

w�y
�
X
y�F

w�y
�� � � � �
X
y�F

w�y
n
�
�



Theorem ��� �Power Group Enumeration Theorem� Let P and F be �nite sets� with jP j � n

and jF j � k� let � � SP and � � SF � We will call two mappings f�� f� � FP equivalent�

f� � f���� �� � � �� � � with f� � � � � � f��

The equivalence classes �f � are called mapping patterns� Let w be a mapping w�F � R with Q 	 R
such that

W �f
� �
Y
p�P

w
�
f�p


�
is constant on each pattern� Then�X

�f �

W
�
�f �
�

� j�j��
X
���

CI
�
��	��

� 	��

� � � � � 	n�



�
�

where
	i�

� �

X
y�F

�i�y��y

w�y
 
w
�

�y


�

 � � � 
w

�

i���y


�
�

This is the Power Group Enumeration Theorem in polynomial Form of 	
��

Theorem ��	 �de Bruijn� Let P and F be �nite sets with jP j � n and jF j � k� let � � SP and
� � SF � We will call two mappings f�� f� � FP equivalent�

f� � f���� �� � � �� � � with f� � � � � � f��

The equivalence classes �f � are called mapping patterns� The weight of a function f � FP is de�ned as�

W �f
� �
n

� if f is injective
� else�

The number of patterns of injective functions is

CI
�

��
�

�x�
�
�

�x�
� � � �

�

�xn

�
CI��� � � x�� � � �x�� � � �� � kxk


��
x��x������xk�	

�

Theorem ��
 �de Bruijn ���� Let P and F be �nite sets with jP j � n and jF j � k� let � � SP and
� � SF � We will call two mappings f�� f� � FP equivalent�

f� � f���� �� � � with f� � � � f��

The equivalence classes �f � are called mapping patterns� Let

Y � � f�f �
������f � � �f �g�

Furthermore let R be a commutative ring over the rationals Q and let w be a mapping w�F �R� For
every f � FP we de�ne the weight W �f
 as

W �f
� �
Y
p�P

w
�
f�p


�
�

Then X
�f ��Y

W
�
�f �
�

� CI���	�� 	�� � � � � 	n
�

where
	i� �

X
y�F

�i�y��y

w�y
 
w
�
��y


�

 � � � 
w

�
�i���y


�
�



� Applications of P�olya�s Theory in Musical Theory

Some parts of this chapter were already discussed by D�L�Reiner in ����� Now we are going to calculate
the number of patterns of chords� intervals� tone�rows� all�interval�rows� rhythms� motifs and tropes�
Proving any detail would carry me too far� For further information see ����

��� Patterns of Intervals and Chords

����� Number of Patterns of Chords

De�nition ��� �n
Scale� �� If we divide one octave into n parts� we will speak of an n�scale� The
objects of an n�scale are designated as

�� �� � � � � n� ��

�� In twelve tone music we usually identify two tones which are �� semi�tones apart� For that reason
we de�ne an n�scale as the cyclic group �Zn��
 of order n�

De�nition ��� �Transposing� Inversion� �� Let us de�ne T the operation of transposing as a
permutation

T �Zn � Zn

a �� T �a
� � � � a�

The group hT i is the cyclic group �
�E�
n �

�� Let us de�ne I the operation of inversion as

I�Zn � Zn

a �� I�a
� � �a�

The group hT� Ii is the dihedral group �
�E�
n �

De�nition ��� �k
Chord� �� Let k � n� A k�chord in an n�scale is a subset of k elements of Zn�
An interval is a ��chord�

�� Let G � �
�E�
n or G � �

�E�
n � Two k�chords A�� A� are called equivalent i� there is some � � G such

that A� � ��A�
�

Remark ��� �� We want to work with P�olya�s Theorem� therefore I identify each k�chord A with
its characteristic function �A� Two k�chords A�� A� are equivalent i� the two functions �A� and
�A� are equivalent in the sense of Theorem ����

�� Let us de�ne two �nite sets� P � � Zn and F � � f�� �g� Each function f � FP will be identi�ed
with

Af � � fk � Zn
����f�k
 � �g�

	� Let w�F � R� � Q�x� be a mapping with w��
� � x and w��
� � �� where x is an indeterminate�
De�ne the weight W �f
 of a function f � FP as

W �f
� �
Y
k�Zn

w
�
f�k


�
�

We see that the weight of a k�chord is xk� The weight of a pattern W ��f �
� � W �f
 is well de�ned�



Theorem ��� �Patterns of k
Chords� �� Let G be a permutation group on Zn� The number of
patterns of k�chords in the n�scale Zn is the coe�cient of xk in

CI�G� � � x� � � x�� � � � � � � xn
�

�� If G � �
�E�
n � the number of patterns of k�chords is

�

n

X
jjgcd�n�k�

��j


� n
j

k
j

�
�

where � is Euler�s ��function�


� If G � �
�E�
n � the number of patterns of k�chords is���������	

��������


�
�n

� X
jjgcd�n�k�

��j

�n
j
k
j

�
� n
� �n���

�

� k� �

��
if n � � mod �

�
�n

� X
jjgcd�n�k�

��j

�n
j

k
j

�
� n
�n
�
k
�

��
if n � � mod � and k � � mod �

�
�n

� X
jjgcd�n�k�

��j

�n
j

k
j

�
� n
�n
� ��

� k� �

��
if n � � mod � and k � � mod ��

�� In the case n � �� and G � �
�E�
n � we get the numbers in table � on page �
�

�� In the case n � �� and G � �
�E�
n � we get the numbers in table � on page �
�

Proof�

�� Application of Theorem ����

�� Let us calculate the coe�cient of xk in

CI���E�n � � � x� � � x�� � � � � � � xn
 �

�
�

n

X
tjn

��t
�� � xt

n
t �

�

n

X
tjn

��t


n
tX

i�	

�
n
t

i

�
xt�i� ��


Let k� � t 
 i� then i � k
t
� With ��
 we have�

�

n

X
tjn

��t

nX
k��
tjk

� n
t
k
t

�
xk �

�

n

nX
k�	

X
tjn
tjk

��t


� n
t
k
t

�
xk �

�
nX

k�	

�

n

X
tjgcd�n�k�

��t


� n
t
k
t

�
xk�

	� Same proof as ��

q�e�d� Theorem ���



����� The Complement of a k
Chord

De�nition ��	 �Complement of a k
Chord� Let A 	 Zn with jAj � k be a k�chord� The comple�
ment of A is the �n � k
�chord Zn nA�

Remark ��� �� Let G � �
�E�
n or G � �

�E�
n be a permutation group on Zn and let � � k 
 n� There

exists a bijection between the sets of patterns of k�chords and �n� k
�chords�

Proof�

The following general result holds�
Let M� and M� be two �nite sets and f a bijective mapping f �M� �M�� Furthermore let �i be
an equivalence relation on Mi and �i the canonical projection

�i�Mi �Mij�i

x �� �i�x
� � �x�

for i � �� �� In addition to this the function f satis�es

x �� y �� f�x
 �� f�y
�

Then the function �f �M�j�� �M�j�� de�ned by �f ��x�
� � �f�x
� is well de�ned and bijective�

In our context we have the case that M� is the set of all k�chords� M� is the set of all �n � k
�
chords� �i is induced by G and f�A
� � Zn nA� then �f is a bijection between the sets of patterns
of k�chords and �n� k
�chords�

q�e�d� Remark ���

�� If n � � mod �� the complement of an n
� �chord is an n

� �chord� Now I want to �gure out the number
of patterns of n

� �chords �A� with the property A � Zn nA� Applying Theorem ��� we get�

Theorem ��� �� Let n � � mod �� The number of patterns of n
� �chords which are equivalent to

their complement� is
CI�G� �� �� �� �� � � �
�

�� If n � �� and G � �
�E�
n � there are �� patterns of ��chords which are equivalent to their complement�


� If n � �� and G � �
�E�
n � there are � patterns of ��chords which are equivalent to their complement�

Proof�
Let us de�ne two �nite sets P � � Zn and F � � f�� �g and de�ne a weight function by W �f
� � � for all
f � FP � Each function f � FP will be identi�ed with Mf � � fk � Zn

����f�k
 � �g � f���f�g
� The
group G de�nes an equivalence relation on P � Furthermore let �� � ��� �
 be a transposition in SF � To
determine the number of patterns of n

� �chords which are equivalent to their complement� we have to
calculate the number of patterns of functions f � FP which are invariant under �� Using a special case
of Theorem ��� we get that this number is given by

CI�G�	�� 	�� � � � � 	n


where
	i� �

X
jji

j 
 �j

and ���� ��� � � �
 is the type of the permutation �� Since � is of the type ��� �
� this is

CI�G� �� �� �� �� � � �
�

q�e�d� Theorem ���



����� The Interval Structure of a k
Chord

In this section we use �
�E�
n as the permutation group acting on Zn� The set of all possible intervals

between two di�ernet tones in n�tone music will be called Int�n
� thus

Int�n
� � fx� y
����x� y � Zn� x 
� yg � f�� �� � � �� n� �g�

De�nition ��
 �Interval Structure� On Zn we de�ne a linear order � 
 � 
 � 
 � � � 
 n � �� Let
A� � fi�� i�� � � � � ikg be a k�chord� Without loss of generality let i� 
 i� 
 � � � 
 ik� The interval
structure of A is de�ned as the pattern �fA�� wherein the function fA is de�ned as

fA� f�� �� � � � � kg � Int�n


fA��
� � i� � i��

fA��
� � i
 � i��

� � �

fA�k � �
� � ik � ik���

fA�k
� � i� � ik�

and two functions f�� f�� f�� �� � � � � kg � Int�n
 are called equivalent� i� there exists some � � �
�E�
k such

that f� � f� ��� The group �
�E�
k is generated by �T and �I with �T �i
� � i� � mod k and �I�i
� � k� �� i

for i � �� � � � � k� The di�erences ij���ij must be interpreted as di�erences in Zn� They are the intervals
between the tones ij and ij���

Theorem ��� Let A�� � fi�� i�� � � � � ikg and A�� � fj�� j�� � � � � jkg be two k�chords with i� 
 i� 
 � � � 


ik and j� 
 j� 
 � � � 
 jk� Furthermore let f � � fA� and g� � fA� � f�� �� � � �� kg � Int�n
 be constructed
as in De�nition ���� Then

�f � � �g� �� �fi�� i�� � � � � ikg� � �fj�� j�� � � � � jkg��

Proof�

��� From �f � � �g� we derive that there exists a � � �
�E�
k such that g � f ��� Since �

�E�
k is generated

of �T and �I� we have to investigate two cases�

�st case� Let g � f � �T � then f��
 � g��
� f�	
 � g��
� � � � � f�k
 � g�k � �
 and f��
 � g�k
�
Hence�

i
 � i� � j� � j�

i� � i
 � j
 � j�

� � �

ik � ik�� � jk�� � jk��

i� � ik � jk � jk��

i� � i� � j� � jk�

This can be written as
i
 � j� � �i� � j�
 ��


i� � j
 � �i
 � j�


� � �

ik � jk�� � �ik�� � jk��
 ���




i� � jk � �ik � jk��
 �� � �


i� � j� � �i� � jk
�

Now I want to prove that the terms in brackets are all the same� which means�

i� � j� � i
 � j� � � � � � ik�� � jk�� � ik � jk�� � i� � jk�

From ��
 we get i
�j� � i��j�� Let us assume that we already know that i��j� � ik���jk���
then ���
 implies that

ik � jk�� � ik�� � jk�� � i� � j��

Rewriting �� � �
 leads to

i� � jk � ik � jk�� � i� � j��

Using this we get il���modk� � T �i��j��jl for l � �� �� � � � � k and �nally

�fi�� i�� � � � � ikg� � �fj�� j�� � � � � jkg��

�nd case� Let g � f � �T k�� � �I � then f�k � �
 � g��
� f�k � �
 � g��
� � � � � f��
 � g�k � �
 and
f�k
 � g�k
� Hence�

ik � ik�� � j� � j�

ik�� � ik�� � j
 � j�

� � �

i
 � i� � jk�� � jk��

i� � i� � jk � jk��

i� � ik � j� � jk�

This can be written as�
ik � �j� � �ik�� � j�


ik�� � �j� � �ik�� � j



� � �

i
 � �jk�� � �i� � jk��


i� � �jk�� � �i� � jk


i� � �jk � �ik � j�
�

In the same way as in the �rst case we get

ik�� � j� � ik�� � j
 � � � � � i� � jk�� � i� � jk � ik � j�

and this implies
il � �T ik�j� � I
�jk���l


for l � �� �� � � � � k� from which we get �fi�� i�� � � � � ikg� � �fj�� j�� � � � � jkg��

Since �T and �T k�� � �I generate �
�E�
k � the �rst part of this proof is �nished�

��� Assuming that �fi�� i�� � � � � ikg� � �fj�� j�� � � � � jkg� we have to investigate two cases�

�st case� Let fj�� j�� � � � � jkg � Tfi�� i�� � � � � ikg� Again we have two cases�



�� Let i� 
 i� 
 � � � 
 ik 
 n � �� then T �i�
 
 T �i�
 
 � � � 
 T �ik
 � n� �� This means
j� � T �i�
� j� � T �i�
� � � � � jk � T �ik
� Let the interval structure of fi�� i�� � � � � ikg be
�f �� For the interval structure �g� of fj�� j�� � � � � jkg we get

g��
 � j� � j� � T �i�
 � T �i�
 � �i� � �
 � �i� � �
 � i� � i� � f��


g��
 � j
 � j� � T �i

 � T �i�
 � �i
 � �
 � �i� � �
 � i
 � i� � f��


� � �

g�k � �
 � jk � jk�� � T �ik
 � T �ik��
 � �ik � �
� �ik�� � �
 �

� ik � ik�� � f�k � �


g�k
 � j� � jk � T �i�
� T �ik
 � �i� � �
� �ik � �
 � i� � ik � f�k
�

Immediately we see that f � g and �f � � �g��

�� Let i� 
 i� 
 � � � 
 ik � n � �� then T �ik
 � �� and T �ik
 
 T �i�
 
 T �i�
 
 � � � 


T �ik��
� consequently j� � T �ik
� j� � T �i�
� � � � � jk � T �ik��
� Let the interval
structure of fi�� i�� � � � � ikg be �f �� For the interval structure �g� of fj�� j�� � � � � jkg we get

g��
 � j� � j� � T �i�
 � T �ik
 � �i� � �
 � �ik � �
 � i� � ik � f�k


g��
 � j
 � j� � T �i�
 � T �i�
 � �i� � �
 � �i� � �
 � i� � i� � f��


g�	
 � j� � j
 � T �i

 � T �i�
 � �i
 � �
 � �i� � �
 � i
 � i� � f��


� � �

g�k � �
 � jk � jk�� � T �ik��
 � T �ik��
 � �ik�� � �
� �ik�� � �
 �

� ik�� � ik�� � f�k � �


g�k
 � j� � jk � T �ik
 � T �ik��
 � �ik � �
� �ik�� � �
 � ik � ik�� � f�k � �
�

Thus g � f � �T and �f � � �g��

�nd case� Let fj�� j�� � � � � jkg � Ifi�� i�� � � � � ikg� There are two cases�

�� Let � 
 i� 
 i� 
 � � � 
 ik� then I�ik
 
 I�ik��
 
 � � � 
 I�i�
� thus j� � I�ik
� j� �
I�ik��
� � � � � jk � I�i�
� Let the interval structure of fi�� i�� � � � � ikg be �f �� For the
interval structure �g� of fj�� j�� � � � � jkg we get

g��
 � j� � j� � I�ik��
 � I�ik
 � ik � ik�� � f�k � �


g��
 � j
 � j� � I�ik��
� I�ik��
 � ik�� � ik�� � f�k � �


� � �

g�k � �
 � jk � jk�� � I�i�
� I�i�
 � i� � i� � f��


g�k
 � j� � jk � I�ik
� I�i�
 � i� � ik � f�k
�

Hence g � f � �T k�� � �I and �f � � �g��

�� Let � � i� 
 i� 
 � � � 
 ik� then � � I�i�
 
 I�ik
 
 I�ik��
 
 � � � 
 I�i�
� thus
j� � I�i�
� j� � I�ik
� j
 � I�ik��
� � � � � jk � I�i�
� Let the interval structure of
fi�� i�� � � � � ikg be �f �� For the interval structure �g� of fj�� j�� � � � � jkg we get

g��
 � j� � j� � I�ik
� I�i�
 � i� � ik � f�k


g��
 � j
 � j� � I�ik��
 � I�ik
 � ik � ik�� � f�k � �


g�	
 � j� � j
 � I�ik��
� I�ik��
 � ik�� � ik�� � f�k � �


� � �

g�k � �
 � jk � jk�� � I�i�
� I�i

 � i
 � i� � f��


g�k
 � j� � jk � i�i�
� I�i�
 � i� � i� � f��
�

Hence g � f � �I and consequently �f � � �g��



Since T and I generate �
�E�
n � everything is proved�

q�e�d� Theorem ��	

Remark ��� If the permutation group acting on Zn is the cyclic group �
�E�
n � then the interval structure

of A� � fi�� i�� � � � � ikg must be de�ned as the pattern �fA� in regard to �
�E�
k � � h �T i with �T �i
� � i �

� mod k� The function fA is de�ned as in De�nition ����

Remark ��	 Let f be a function f � f�� �� � � � � kg � Int�n
� The pattern �f � is the interval structure of
a k�chord� i�

kX
i��

f�i
 � n�

One must interpret this sum as a sum of intervals� thus as a sum of positive integers�

Proof�

��� Let fA be the interval structure of A� � fi�� i�� � � � � ikg� with i� 
 i� 
 � � � 
 ik� then

fA��
 � i� � i�

fA��
 � i
 � i�

� � �

fA�k � �
 � ik � ik��

fA�k
 � i� � ik�

Because of the fact that these di�erences are di�erences in Zn and i� 
 ik we rewrite fA�k
 �
�i� � n
� ik� Now we get�

kX
j��

fA�j
 �
k��X
j��

�ij�� � ij
 � �i� � n
� ik � ��i� � ik
 � �i� � n
� ik � n�

��� Let f be a function f � f�� �� � � � � kg � Int�n
 such that

kX
i��

f�i
 � n�

then we de�ne
i�� � �

ij � �

j��X
i��

f�i
 for � � j � k�

It is easily seen� that �f � is the interval structure of fi�� i�� � � � � ikg�
q�e�d� Remark ���

Remark ��
 Let x� y�� y�� � � � � yn be indeterminates over Q and let R be the ring

R� � Q�x� y�� y�� � � � � yn��

Now I want to de�ne a weight function
w� Int�n
 �R



i �� w�i
� � xiyi�

The weight of a function f � f�� �� � � � � kg � Int�n
 is the product weight

W �f
� �
kY
i��

w
�
f�i


�
�

kY
i��

xf�i�yf�i� � x
P

k

i��
f�i�

kY
i��

yf�i��

Now we can de�ne W ��f �
� � W �f
� According to Remark ��� the pattern �f � is the interval structure
of a k�chord� i�

kX
i��

f�i
 � n�

This is true� i�

W �f
 � xn
kY
i��

yf�i��

The indices of the y�s in W �f
 show� which intervals occur in the k�chord�

Theorem ��	 The inventory of interval structures of k�chords in n�tone music is the coe�cient of xn

in

CI
�
�
�E�
k �

n��X
i��

xiyi�

n��X
i��

x�iyi
��

n��X
i��

x
iyi

� � � � �

�
�

Proof�

Application of Theorem ����
q�e�d� Theorem ���

Example ��� The inventory of the interval structures of 	�chords in ���tone music is the coe�cient of
x�� in

CI
�
�
�E�

 �

��X
i��

xiyi�

��X
i��

x�iyi
��

��X
i��

x
iyi


�
�

This is

y�
�y�	 � y��y�y
 � y
y� � y�y� � y�y�
 � y�

�y� � y��y
y� � y�y� � y�
�
 � y


�y� � y
y�y� � y�



If you are interested in the number of patterns of 	�chords with intervals � k� then put y�� � y�� �
� � � � � yk��� � � and yk� � yk��� � � � � � � yn� � �� In the case k � � there are � patterns of 	�chords
with intervals greater or equal ��

If the permutation group �
�E�
�� is acting on Z��� then the interval structures of 	�chords in ���tone

music is the coe�cient of x�� in

CI
�
�
�E�

 �

��X
i��

xiyi�

��X
i��

x�iyi
��

��X
i��

x
iyi


�
�

This is y��y�	��y��y�y
 �y
y� �y�y� �y�y�
�y�
�y��y���y
y� ��y�y� � y�

�
�y

�y� ��y
y�y� �y�


�



��� Patterns of Tone�Rows

De�nition ��� �Tone
Row� k
Row� �� Arnold Sch�onberg introduced the so called tone�rows� In
this paper I am going to give a mathematical form of his de�nition� Let n � 	� A tone�row in an
n�scale is a bijectiv mapping

f � f�� �� � � � � n� �g � Zn

i �� f�i
�

f�i
 is the tone which occurs in ith position in the tone�row�

�� Let n � 	 and � � k � n� A k�row in n�tone music is an injective mapping f � f�� �� � � �� k��g � Zn�

Remark ��� �� A k�row with k � n is a tone�row�

�� Two k�rows f�� f� are equivalent if f� can be written as transposing� inversion� retrogradation or
an arbitrary sequence of these operations of f��

Transposing of a k�row f is T � f � Inversion of f is I � f � According to De�nition ���� we know

that T and I are permutations on Zn� and that hT� Ii � �
�E�
n � Actually inversion of a k�row f

should be de�ned as
T f�	� � I � T�f�	� � f�

Retrogradation R� is a permutation R � Sf	�������k��g de�ned as�

R� �

�
��� k � �
 � ��� k� �
 � � � � � �k� � �� k� 
 if k � � mod �

��� k � �
 � ��� k� �
 � � � � � �k�
� � k��� 
 � �k��� 
 if k � � mod ��

Let �� � hRi � Sf	�������k��g� then j�j � �� Retrogradation of a k�row f is de�ned as f �R�

	� Since �� � hRi� the cycle index of � is

CI��� y�� y�� � � � � yk
 �

�
�
��y�k � y�

k
� 
 if k � � mod �

�
��y�k � y�y�

k��
� 
 if k � � mod ��

Thus two k�rows f�� f� are equivalent

�� �� � ��E�n �� � � such that f� � � � f� � ��

Theorem ��
 �Number of Patterns of k
Rows� The number of patterns of k�rows in Zn is

CI
�

��
�

�x�
�
�

�x�
� � � � �

�

�xk

�
CI���E�n � � � x�� � � �x�� � � � � � � nxn


��
x��x������xn�	

�

This is

��
�

�



�

�

�
��
k � �

k
� �
k

�

 
��n

�
k
�

�
�

�n��
�
k
�

���
�

�

�n

��
n

k

�
k � �

k
� �
k

�

 

�n
�
k
�

���
�

if n � � mod � and k � � mod �� For integers k� v� v � � the expression �k
v is de�nied as�

�k
v� � k 
 �k � �
 
 � � � 

�
k � �v � �


�
�

��
�

�

�
�

�

 � 
 �

k��
�

�n��
�

k��
�

�
�
k � �

�

 �

�

�n

�
n

k

�
k 

�
�

if n � � mod � and k � � mod ��




�
�

�

�
�

�n

�
n

k

�
k �

�

�
�
k
�

�n��
�
k
�

�
�
k

�

 

�
�

if n � � mod � and k � � mod ��

��

�

�

�
�

�n

�
n

k

�
k �

�

�
�
k��
�

�n��
�

k��
�

�
�
k � �

�

 

�
�

if n � � mod � and k � � mod ��

In the case n � �� the number of patterns of k�rows is in table 
 on page �
�

Proof�
Application of Theorem ����

q�e�d� Theorem ���

Theorem ��� �Number of patterns of Tone
Rows� Let n � 	� The number of patterns of tone�
rows in n�tone music is �	



�
�

�
�n� �
 � �n� �
  

�
if n � � mod �

�
�

�
�n� �
 � �n� �
  �n� � �


�
if n � � mod ��

If n is in N then

n  �

�
n 
 �n� �
 
 � � � 
 � if n � � mod �
n 
 �n� �
 
 � � � 
 � if n � � mod ��

Especially there are � ��� ��� patterns of tone�rows in ���tone music�

Proof�
This is a special case of Theorem ����

�� If n � � mod �� then the number of patterns of n�rows is

�

�

��

�

�
��
n � �

n
� �
n

�

 
�

�
�

�n

�
n � �

n
� �
n

�

 
��
� ��


Since n � 	� we have ��
n � �� Furthermore

�
n
� �
n

�

 � � 
 � 
 � 
 � � � 
 �n� �
 
 n � n  �

��
 can be written as

�

�
�
�

�
n  
 �

�

�

� �

n
�n � n  


�
�

�

�

�
�n � �
 � �n� �
  �

n

�
� �


�
�

�� If n � � mod �� then the number of patterns of n�rows is

�

�

� �

�n
n �

�

�
�
n��
� �

n� �

�

 
�

�
�

�

�
�n� �
 � �n� �
  

�
�

q�e�d� Theorem ���



��� Patterns of All�Interval�Rows

Let A and B be two �nite sets� The set of all injective functions f �A� B will be denoted by Inj�A�B
�
For that reason the set of all tone�rows is Inj

�
f�� �� � � �� n� �g� Zn

�
� In this chapter let n � 	�

De�nition ��� �All
Interval
Rows� Let us de�ne a mapping

�� Inj
�
f�� �� � � �� n� �g� Zn

�
� fg

����g� f�� �� � � �� n� �g � Int�n
g

f �� ��f


and ��f
�i
� � f�i
 � f�i � �
 for i � �� �� � � � � n � �� This is subtraction in Zn� The function ��f
 is
called all�interval�row� i� ��f
 is injective� that means ��f
 � Inj

�
f�� �� � � � � n � �g� Int�n


�
� In other

words a tone�row induces an all�interval�row� i� all possible intervals occur as di�erences between two
successive tones of the tone�row� The set of all all�interval�rows will be denoted as Allint�n
�

Let�s de�ne some mappings�

��
�� Inj

�
f�� �� � � � � n� �g� Int�n


�
� fg

����g� f�� �� � � � � n� �g � Zng

f �� ��f


��f
��
� � � and ��f
�i
� � ��f
�i � �
 � f�i
 mod n for i � �� �� � � �� n� �� You can easily derive
that

��f
�i
 �
iX

j��

f�j
 mod n

for i � �� �� � � � � n� ��

�� Let l � Zn�
��� Inj

�
f�� �� � � � � n� �g� Int�n


�
� fg

����g� f�� �� � � � � n� �g � Zng

f �� ���f


���f
�i
 �
iX

j��

f�j
 � l mod n�

	� There is another possibility to generalize � by expanding its domain�

!��
�
f
����f � f�� �� � � � � n� �g � Int�n


�
�
�
g
����g� f�� �� � � �� n� �g � Zn

�
f �� !��f
�

!��f
�i
 �
iX

j��

f�j
 mod n

for i � �� �� � � � � n� ��

Theorem ��� Let f be a mapping f � f�� �� � � � � n� �g � Int�n
� The following statements are equiva�
lent�

�� f is an all�interval�row�

�� f � Inj
�
f�� �� � � � � n� �g� Int�n


�
and ��f
 � Inj

�
f�� �� � � �� n� �g� Zn

�
�


� f � Inj
�
f�� �� � � � � n� �g� Int�n


�
and ���f
 � Inj

�
f�� �� � � �� n� �g� Zn

�
�



�� f is injective and !��f
 � Inj
�
f�� �� � � � � n� �g� Zn

�
�

Proof�
I only want to prove that � is equivalent to ��

� �� �� Let g � Inj
�
f�� �� � � �� n� �g� Zn

�
and f � ��g
� then ��g
 � Inj

�
f�� �� � � � � n� �g� Int�n


�
� For

� � i 
 n we calculate

�
�
��g


�
�i
 �

iX
j��

��g
�j
 �
iX

j��

�
g�j
 � g�j � �


�
� g�i
 � g��
 mod n�

Thus ��f
 � �
�
��g


�
� �T�g�	� � g
� Consequently it is injective and ��f
 � Inj

�
f�� �� � � ��

n� �g� Zn
�
�

� �� �� Since f � Inj
�
f�� �� � � � � n� �g� Int�n


�
and ��f
 � Inj

�
f�� �� � � � � n� �g� Zn

�
let us calculate

�
�
��f


�
�i
 � ��f
�i
 � ��f
�i � �
 �

iX
j��

f�j
 �
i��X
j��

f�j
 � f�i
 mod n�

We conclude that �
�
��f


�
� f � Inj

�
f�� �� � � � � n� �g� Int�n


�
� hence f is an all�interval�row�

q�e�d� Theorem ���

You can easily prove the following results�

�� If n � � mod �� there are no all�interval�rows�

�� If n � � mod � the function f de�ned as

f�i
� �
n
i if i � � mod �
�i if i � � mod �

is an all�interval�row�

For the rest of this chapter let n � � and n � � mod ��

	� f � Allint�n
 implies ��f
�n � �
 � n
� �

�� f � Allint�n
 implies f��
 
� n
� and f�n � �
 
� n

� �

Remark ��� �� On Int�n
 we have the following permutations�

I� Int�n
 � Int�n


j �� I�j
� � n� j�

I stands for inversion� I is of the type ��� n� � �� �� � � �
�

In the case n � �� there is a further permutation called

Q� Int�n
 � Int�n


j �� Q�j
�� � 
 j mod ���

Q stands for quartcircle symmetry� Since gcd��� ��
 � �� Q is a permutation on Zn� and since
� 
 � � �� Q is a permutation on Int�n
� Q is of the type �	� �� �� � � � � �
� You can easily prove that
�I � Q
�j
 � �Q � I
�j
 � � 
 j mod �� and that it is of the type ��� 	� �� � � �� �
� I � Q is called
quintcircle symmetry�



�� On the set f�� �� � � � � n� �g retrogradation R is a permutation� de�ned as

R� � ��� n� �
 � ��� n� �
 � � � � � �
n

�
� ��

n

�
� �
 � �

n

�

�

	� If f � Allint�n
� then I � f � f �R are in Allint�n
� Furthermore if n � �� then Q � f � Allint���
�

�� For that reason we can de�ne the following permutations on Allint�n
�

�I � �R� �Q� Allint�n
 � Allint�n


f �� �I�f
� � I � f

f �� �R�f
� � f �R

f �� �Q�f
� � Q � f�

For �Q we need the assumption that n � ���

�� It is easy to prove that these permutations commute in pairs and that �I
� � �R

� � �Q
� � id�

�� In ��� there is a further permutation E called exchange at n
� � It is de�ned as

E� Allint�n
 � Allint�n


f �� E�f


and

E�f
�i
� �

�	


f
�
f���n� 
 � i

�
if i 
 n� f���n� 


n
� if i � n� f���n� 

f
�
i � n� f���n� 


�
if i � n� f���n� 
�

I have already mentioned� that f��
 
� n
� and f�n� �
 
� n

� � Since f � Allint�n
 is bijective� there
exists exactly one j� such that � 
 j 
 n � � and f�j
 � n

� � The values of the function E�f
�i

for i � �� �� � � �� n� � are f�j � �
� f�j � �
� � � � � f�n � �
� f�j
 � n

� � f��
� f��
� � � � � f�j � �
� The
permutation E is de�ned for n � �� but in the case n � � we have E � �R�

Now I want to prove that E is well de�ned� According to Theorem ��� we have to prove that
��
�
E�f


�
is injective� in the course of which ��

�
E�f


�
��
� � ��f


�
f���n� 


�
� For i 
 n� f���n� 
 we

derive

��
�
E�f


�
�i
 �

iX
j��

E�f
�j
 � ��f

�
f���

n

�


�

�

�
iX

j��

f
�
f���

n

�

 � j

�
� ��f


�
f���

n

�


�
� ��f


�
f���

n

�

 � i

�
�

Especially
��
�
E�f


��
n� f���

n
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�
� ��f
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 �

n

�
�

and for that reason
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For i � n� f���n� 
 we calculate

��
�
E�f


�
�i
 � ��

�
E�f


��
n � f���

n

�


�

�

i��n�f���n� ��X
j��

E�f

�
n� f���

n

�

 � j

�
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� � �

i��n�f���n� ��X
j��

f�j
 � ��f

�
i � n� f���

n

�


�
�

Thus everything is proved�

�� The following formulas hold� E � �I � �I �E� E � �Q � �Q �E� E � �R � �R �E and E� � id�

�� Let us de�ne three permutation groups on Allint�n
�
G�� � h�I � �Ri� G�� � h�I � �R� Ei und G
� � h�I � �R� E� �Qi� For G� we must assume n � �� and
for G
 we must assume n � ��� We calculate that jG�j � �� jG�j � �� jG
j � ���

Remark ��� �Counting of All
Interval
Rows� Let

x�� x�� � � � � xn��� y�� y�� � � � � yn��� z�� z�� � � � � zn��

be indeterminates over Q� Furthermore let f be a mapping f � f�� �� � � � � n� �g � Int�n
� We de�ne�

R� � Q�x�� x�� � � � � xn��� z�� z�� � � � � zn���

and

W �f
� �
n��Y
i���

wi

�
f�i


�
�

The functions wi are de�ned as
wi� Int�n
 �R

j �� wi�j
� � zj

n��Y
���i

x�
j �

After calculating W �f
 you have to replace terms of the form x�
j by yjmodn� Then you get �W �f
 �

Q�y�� y�� � � � � yn��� z�� z�� � � � � zn���� According to Theorem ��� f is an all�interval�row� if and only if�

�W �f
 �
n��Y
i��

yizi�

Proof�
f is an all�interval�row� if and only if� f and !��f
 are injective� The function f is injective� i� �W �f
 is

divisible by
Qn��

i�� zi� According to the construction of �W �f
 the power of xi is
Pi

j�� f�j
 � !��f
�i
 mod
n� Thus

�W �f
 �
n��Y
i��

zf�i�y���f��i�

and the function !��f
 is injective� i� �W �f
 is divisible by
Qn��

i�� yi� Consequently the number of all�

interval�rows in n�tone music is the coe�cient of
Qn��

i�� yizi in

n��Y
i��

�n��X
j��

zj

n��Y
k�i

xk
j
����

x�j�yjmodn

�

q�e�d� Remark ���

Remark ��� For � � G� or G� or G
 we want to calculate

���
� � jff � Allint�n

������f
 � fgj�



After some calculations we can derive that there are only � permutions � such that ���
 
� �� In

Remark ��� we calculated ��id
� The value of ���I � �R
 is the coe�cient of
Qn��

i�� yizi in

n
� ��Y
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j �� n
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�
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���
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�

Now let n � �� The value of ���I � V 
 is the coe�cient of
Qn��

i�� yizi in

n
���Y
i��

�n��X
j��
j �� n

�
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�
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n��Y
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�
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n
�

���
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�

Now let n � ��� In order to calculate ���Q � V � �R
 you must compute

�X
i��



z�

��Y
j��i

xj
�z
z


� ��Y
j�i

xj



��Y
j�i��

xj

 �

��Y
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��Y
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i��Y
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� n��X
k��

k��f�����g

zkz�kmod��

��Y
l�j

xl
k

��Y
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�kmod��
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� n��X
k��

k��f�����g

zkz�kmod��

��Y
l�j

xl
k

��Y
l�����i�j

xl
�kmod��
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�

Then substitute yjmod�� for x�j and �nd the coe�cient of
Q��

i�� yizi�

Theorem ��� �Number of Patterns of All
Interval
Rows� The number of patterns of all�inter�
val�rows in regard to Gi for i � �� �� 	 is

�� �
�

�
��id
 � ���I � �R


�
for i � ��

�� �
�

�
��id
 � ���I � �R
 � ���I � V 


�
for i � ��


� For i � 	 we calculate

�

��

�
��id
 � ���I � �R
 � ���I � V 
 � ���Q � �R � V 


�
�

�
�

��
�	 ��� � ��� � ��� � ���
 � ����

Proof�
Application of the Lemma of Bunside� Theorem ����

q�e�d� Theorem ���

��� Patterns of Rhythms

De�nition ��� �n
Bar� Entry
time� k
Rhythm� An important contribution in a composition is a
bar� Usually a lot of bars of the same form follow one another� If you know the smallest rhythmical
subdivision of a bar� you can �gure out how many entry�times �think of rhythmical accents played on
a drum
 a bar holds� If there are n entry�times in a bar� I call it an n�bar� In mathematical terms an
n�bar is expressed as the cyclic group Zn� We can de�ne cyclic temporal shifting S as a permutation

S�Zn � Zn



t �� S�t
� � t � ��

Retrogradation R �temporal inversion
 is de�ned as

R�Zn � Zn

t �� R�t
� � �t�

The group hSi is �
�E�
n and hS�Ri � �

�E�
n � A k�rhythm in an n�bar is a subset of k elements of Zn� The

permutation groups �
�E�
n or �

�E�
n induce an equivalence relation on the set of all k�rhythms� Now we

want to calculate the number of patterns of k�rhythms� We get the same numbers as in Theorem ����

Theorem ��� �Patterns of k
Rhythms� �� Let G be a permutation group on Zn� The number
of patterns of k�rhythms in the n�bar Zn is the coe�cient of xk in

CI�G� � � x� � � x�� � � � � � � xn
�

�� If G � �
�E�
n � the number of patterns of k�rhythms is

�

n

X
jjgcd�n�k�

��j


� n
j

k
j

�
�

where � is Euler�s ��function�


� If G � �
�E�
n � the number of patterns of k�rhythms is���������	
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�
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k
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�
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��
if n � � mod � and k � � mod ��

��� Patterns of Motifs

De�nition ��� �k
Motif� �� Now I want to combine both rhythmical and tonal aspects of music�

�� Assume we have an n�scale and an m�bar� then the set M

M � � f�x� y

����x � Zm� y � Zng � Zm � Zn

is the set of all possible combinations of entry�times in the m�bar Zm and pitches in the n�scale
Zn� Furthermore let G be a permutation group on M � In Remark ���� we are going to study two
special groups G� The group G de�nes an equivalence relation on M �

�x�� y�
 � �x�� y�
��� �g � G with �x�� y�
 � g�x�� y�
�

In addition to this we have jM j � m 
 n�

	� Let � � k � m 
 n� A k
motif is a subset of k elements of M �

Remark ���� Let f be a mapping f �M � f�� �g� Now we identify f with the set

Mf � � f�x� y
 �M
����f�x� y
 � �g�



This means� f is the characteristic function of Mf � The function f is the characteristic function of a
k�motif �� jMf j � k� Two functions f�� f��M � f�� �g are de�ned equivalent

f� � f���� �g � G with f� � f� � g�

Let fi be the characteristic function of the k�motif Mi for i � �� �� then we have�

f� � f� �� �g � G with g�M�
 � M��

Now w��
� � � and w��
� � x de�ne a weight function w� f�� �g � Q�x�� where x is an indeterminate
over Q� In addition to this let

W �f
� �
Y
p�M

w
�
f�p


�
�

Now we can say� f is the characteristic function of a k�motif ��W �f
 � xk�

Theorem ���� �Number of Patterns of k
Motifs� The number of patterns of k�motifs in an n�
scale and in an m�bar is the coe�cient of xk in

CI�G� � � x� � � x�� � � � � � � xm�n
�

Proof�
This completely follows P�olya�s Theorem ����

q�e�d� Theorem ����

Remark ���� �Special Permutation Groups� Now I want to demonstrate two examples for group
G�

�� In De�nition ��� we had a permutation group G� � �
�E�
n or G� � �

�E�
n acting on the n�scale

Zn� Moreover in De�nition ��� there was a permutation group G� � �
�E�
m or G� � �

�E�
m de�ned

on the m�bar Zm� For that reason� we de�ne the group G as G� � G� � G�� Two elements
�x�� y�
� �x�� y�
 � M are called equivalent with respect to G� i� there exist � � G� and � � G��
with

�x�� y�
 � ��� �
�x�� y�
 � ���x�
� ��y�

�

Because of the fact that we know how to calculate the cycle index of G� � G�� we can compute
the number of patterns of k�motifs�

�� In the case m � n� we can de�ne another permutation group G� as it is done in ���� The group G

is de�ned as
G� � hT� S� �A

����A � Gl ��� Zn
i�

with
T �M �M�

x

y

�
�� T

�
x

y

�
� �

�
x

y � �

�
S�M �M�

x

y

�
�� S

�
x

y

�
� �

�
x� �
y

�
�A�M �M�

x

y

�
�� �A

�
x

y

�
� � A

�
x

y

�
�

The multiplication A 


�
x

y

�
stands for matrix multiplication� The set Gl ��� Zn
 is the group of

all regular �� ��matrices over Zn�

You can easily derive the following results�



�a
 Tn � Sn � idM and T j 
� idM and Sj 
� idM for � � j 
 n�

�b
 T � S � S � T � In addition to this T 
� hSi and S 
� hT i�

�c
 Let � � i� j 
 n� then� T i � Sj 
� h�A
����A � Gl ��� Zn
i� i� i 
� � or j 
� ��

�d
 Let A� �

�
a b

c d

�
� then� �A � T k � Sl � T �cl�dk� � S�al�bk� � �A�

�e
 G is the group of all a�ne mappings Zn
� � Zn

��

Although we know quite a lot about the group G� I could not �nd a formula for the cycle index
of G for arbitrary n�

Example ��� Let us consider the case� that n � m � ���

�� If G is de�ned as G� � �
�E�
n � �

�E�
n � then we derive

CI�G�x�� x�� � � � � x���
 �

� �
���

�x���� � ��x��� x
�	
� � 	�x��x

�	
� � ���x��� � �x��
 � ��x�
x

�	
� � ��x
�� � 
�x��� � �
�x����
�

By applying Theorem ����� the number of patterns of k�motifs is the coe�cient of xk in
� � x � ��x� � 
	�x
 � 	� ���x� � ��� ���x��
 	
� ��
x� � 	�� ��� ���x� � � �	� ��� ��
x� �

� ��� ��	 ���x
� � 		� ��� �
� ���x�	 � � � ��

�� If G� � hT� S� �A
����A � Gl ��� Zn
i� I computed the cycle index of G with a Turbo Pascal program

as
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�
�� �

�� ���x��x
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By applying Theorem ����� the number of patterns of k�motifs is the coe�cient of xk in ��x��x��
��x
����x��� ���x���� ���x����� ��
x��� 	�� �	�x��
� �
� ��	x
�� �
� 	�� 
��x�	� � � ��

For k � �� �� 	� � these numbers are the same as in ���� In the case k � � however� it is stated that
there exist � �	� di�erent patterns of ��motifs� while here we get � ��� of these patterns�

��� Patterns of Tropes

De�nition ���� �Trope� �� If you divide the set of �� tones in ���tone music into � disjointed
sets� each containing � elements� and if you label these sets as a �rst and a second set� we will
speak of a trope� This de�nition goes back to Josef Matthias Hauer� Two tropes are called
equivalent� i� transposing� inversion� changing the labels of the two sets or arbitrary sequences of
these operations transform one trope into the other�



�� For a mathematical de�nition let n � � and n � � mod �� A trope in n�tone music is a function

f �Zn � F � � f�� �g such that jf���f�g
j � jf���f�g
j �
n

�
�

f�i
 � k is translated into� The tone i lies in the set with label k� Furthermore T and I are

permutations on Zn as in De�nition ���� The group hT� Ii is ��E�n � Two tropes f�� f� are called
equivalent� if and only if�

�� � ��E�n �� � S� such that f� � ��� � f� � ��

	� Let x and y be indeterminates over Q� De�ne a function w�F � Q�x� y� by w��
� � x and
w��
� � y� For f � FZn the weight of f is de�ned as product weight

W �f
� �
Y
x�Zn

w
�
f�x


�
�

A function f �Zn � F � � f�� �g is a trope� i� W �f
 � x
n
� y

n
� �

Theorem ���� �Patterns of Tropes� Let � be Euler�s ��function� The number of patterns of tropes

in regard to �
�E�
n is������	
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In ���tone music there are 
� patterns of tropes� �See 	���� Hauer himself calculated that there are ��
patterns of tropes� because in his work the permutation group acting on Zn was the cyclic group hT i�

Proof�
We want to use Theorem ��	 which says�

X
�f �

W ��f �
 �
�

jS�j

X
��S�

CI
�
��E�n ����� �
� ���� �
� � � �� ��n� �


�
�

where
��m��
� �

X
y�F

�m�y��y

w�y
 
w
�
��y


�

 � � � 
w

�
�m���y


�
�

The number of patterns of tropes is the coe�cient of x
n
� y

n
� in

�

�

�
CI���E�n �x� y� x� � y�� � � � � xn � yn
 � CI���E�n � �� �xy� �� �x�y�� � � � � �� �x

n
� y

n
� 

�
�

This can be transformed into the formula above�
q�e�d� Theorem ����

��� Special Remarks on ���tone music

In addition to the operations of transposing T and of inversion I we can study quartcircle� and quintcircle
symmetry in ���tone music�



Remark ���� �Quartcircle Symmetry� The quartcircle symmetry Q is de�ned as

Q�Z�� � Z��

x �� Q�x
� � �x�

Q is a permutation on Z��� since gcd��� ��
 � �� Furthermore

�� Q 
� hI� T i�

�� Q � T � T � �Q�

	� Q � I � I �Q � �x� which is called the quintcircle symmetry�

�� Q� � idZ�� �

�� Let G be G� � hI� T�Qi� Each element � � G can be written as

� � T k � Ij �Ql

such that k � f�� �� � � � � n� �g� j � f�� �g� and l � f�� �g�

�� The cycle index of G� � hI� T�Qi is

CI�G�x�� x�� � � � � x��
 �

�
�

��

�X
tj��

��t
xt
��
t � �x��x



� � 	x��x

�
� � �x��x

�
� � ��x�� � �x�
x� � �x
� � �x��

�
�

This group G is an other permutation group acting on Z�� with a musical background� The question
arises� how to generalize the quartcircle symmetry of ���tone music to n�tone music� Should we take
any unit in Zn or only those units e such that e� � � "
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