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Abstract

Being a mathematician and a musician (I play the flute) I found it very interesting to deal with
Pélya’s counting theory in my Master’s thesis. When reading about Pdlya’s theory I came across
an article, called ”Enumeration in Music Theory” by D. L. Reiner [11]. T took up his ideas and
tried to enumerate some other "musical objects”.

At first [ would like to generalize certain aspects of 12-tone music to n-tone music, where n is a
positive integer. Then I will explain how to interpret intervals, chords, tone-rows, all-interval-rows,
rhythms, motifs and tropes in n-tone music. Transposing, inversion and retrogradation are defined
to be permutations on the sets of "musical objects”. These permutations generate permutation
groups, and these groups induce equivalence relations on the sets of ?musical objects”. The aim of
this article is to determine the number of equivalence classes (I will call them patterns) of ”musical
objects”. Pélya’s enumeration theory is the right tool to solve this problem.

In the first chapter I will present a short survey of parts of Pdlya’s counting theory. In the
second chapter I will investigate several ”musical objects”.

Abstract

In dieser Arbeit wird der Begriff von 12-Ton Musik auf n-Ton Musik, wobei n eine naturliche
Zahl ist, erweitert. Objekte der Musiktheorie wie Intervall, Akkord, Takt, Motiv, Tonreihe, Allinter-
vallreihe und Trope werden mathematisch gedeutet. Transponieren, Inversion (Umkehrung) und
Krebs werden als Permutationen auf geeigneten Mengen interpretiert. Zwei ”musikalische Objekte”
heiflen wesentlich verschieden, falls man sie nicht durch solche Permutationen ineinander tiberfithren
kann. In die Sprache der Mathematik tubersetzt, bedeutet dies: Abzahlen von Aquivalenzklassen
(von Funktionen), wobei die Aquivalenz durch eine Permutationsgruppe induziert wird. Dieses
Problem wird von der Abzahltheorie von Pdlya und von Satzen, die in Anschluff an diese Theorie
entstanden sind, gelost. Zu diesen Satzen gehoren Theoreme von N.G. de Bruijn und das Power
Group Enumeration Theorem von F. Harary.

Im ersten Kapitel stelle ich alle grundlegenden Definitionen zusammen. Dann folgen oben
erwahnte Satze, welche hier in dieser Arbeit nicht bewiesen sind. Das daran anschliefende Kapi-
tel beschaftigt sich mit den Anzahlbestimmungen ”musikalischer Objekte”. Diese Satze sind nun
vollstandig bewiesen.

Die Grundidee zu dieser Arbeit habe ich [11] entnommen. Daraufhin habe ich versucht diese
Gedanken weiter auszubauen und die Anzahlbestimmung anderer ”musikalischer Objekte” durchzu-
fihren. Bisher hatten Musiktheoretiker und Komponisten mit verschiedenen Methoden, oder durch
Ausprobieren, solche Anzahlen bestimmt. Durch Verwendung der Theorie von Pélya soll ein System
in diese Untersuchungen gebracht werden. Fir den Anwender ist es nicht notig, die Beweise in allen
Einzelheiten zu verstehen. Er sollte jedoch mit mathematischen Schreib- und Sprechweisen vertraut
sein. Da diese Arbeit auch von Mathematikern gelesen wird, muf} sie auch allen mathematischen
Forderungen nach Exaktheit und Genauigkeit der Beweise gerecht werden.

*The author thanks Jens Schwaiger for helpful comments.



1 Preliminaries

There is a lot of literature about Pélya’s counting theory. For instance see [1], [2], [3], [9] or [10].

Definition 1.1 (Type of a Permutation) Let M be a set with |M| = m. A permutation 7 € Sy
is of the type (A1, Aa, ..., Ap), iff ® can be written as the composition of A; disjointed cycles of length
t,fori=1,...,m.

Definition 1.2 (Cycle Index) Let P be a set of |[P| = n elements and let T' be a subgroup of Sp,
denoted furtheron by I' < Sp. The cycle index of ' is defined as a polynomial in n indeterminates
x1,...,%p, defined as:

CIT;xy,...,x,):= |T|7" Z ﬁx;"(v).

yel'i=1

Lemma 1.1 (Cycle Index of the Cyclic Group) Lel Q(LE) be the cyclic group of order n generated
by a cyclic permutation of n objects, then the cycle index of Q(LE) 18

1 n
CUC 1, yen) = — 3 (B ¥,

tln
where  1s Buler’s p-function.
Lemma 1.2 (Cycle Index of the Dihedral Group) Let ﬂﬁf” be the dihedral group of order 2n and

degree n containing the permutations which coincide with the 2n deck transformations of a regular
polygon with n vertices.

1. If n = 1mod 2, then

1 n—1 1 n
CI(OE) w1, 20,y xn) = sxq@” 2 + = Z@(t)$t7~

2. If n = 0mod 2, then

1 n=2 1 n
CLIE iy o, ) = (e 0™ ) 4+ =D () ¥

tln

The main lemma in Pdlya’s counting theory is

Theorem 1.1 (Lemma of Burnside) Let P be a finite set and T' < Sp. Furthermore let B be the
set of the orbits of P under ', then

Bl =017 > x(7),

ver
where x(7y) is defined as x(7v):=|{p € P | v(p) = p}-

Theorem 1.2 (Pélya’s Theorem) Let P and F be finite sets with |P| = n, and let T < Sp. Fur-
thermore let R be a commutative ring over the rationals Q and let w be a mapping w: F — R. Two
mappings f1, f2 € F¥ are called equivalent, iff there exists some v € ' such that fi oy = fo. The
equivalence classes are called mapping patterns and are written as [f]. For every f € F¥ we define the
weight W([f) as product weight

W= I wlrw).

Any two equivalent f’s have the same weight. Thus we may define W([f]):= W(f). Then the sum of
the weights of the patterns is

S =c1(n Y ww), > w?, D w)”).
(/]

yeF yeF yeF



Theorem 1.3 (Power Group Enumeration Theorem) Lel P and F be finite sels, with |P| = n
and |F| =k, let 1 < Sp and ® < Sp. We will call two mappings fi, fo € F¥ equivalent:

fi~rfoo=3aArell Jpec® with fiom=po fs.

The equivalence classes [f] are called mapping patterns. Let w be a mapping w: F — R with Q C R

such that
w(f):= [T wlr®)

peP
1s constant on each pattern. Then:

Z W([f]) = |<I)|_1 Z CI<H; £1(6), K2(6), .., Kﬂ(é))’
(/]

seD

where

Ki(8): = Z w(y) - w(b(y)) ... w8 H(y).

s (y)=y

This is the Power Group Enumeration Theorem in polynomial Form of [7].

Theorem 1.4 (de Bruijn) Let P and F be finite sets with |P| = n and |F| = k, let TT < Sp and
® < Sp. We will call two mappings f1, fo € F¥ equivalent:

fi~rfoo=3aArell Jpec® with fiom=po fs.
The equivalence classes [f] are called mapping patterns. The weight of a function f € F¥ is defined as:

W ( f);:{ (1) if [ is injective

else.

The number of patterns of injective functions s

0 0 0
I(H;—,—,... ) (®:1+ay, 1+ 200, 1+k
C 92, Ora oz, CI( +x1,1 4+ 225 + l‘k)|
Theorem 1.5 (de Bruijn [1]) Let P and F be finite sets with |P|=n and |F| =k, let T < Sp and
¢ € Sp. We will call two mappings f1, fo € F'¥ equivalent:

r1=xo=..=xp=0"

fi~ for<=3r €l with fiox = fs.
The equivalence classes [f] are called mapping patterns. Lel

V:={[f1] ¢lf1 = [/}

Furthermore let R be a commutative ring over the rationals Q and let w be a mapping w: F — R. For
every f € FF we define the weight W(f) as

W= I wlrw).

peP

Then

where



2 Applications of Pdlya’s Theory in Musical Theory

Some parts of this chapter were already discussed by D.L.Reiner in [11]. Now we are going to calculate
the number of patterns of chords, intervals, tone-rows, all-interval-rows, rhythms, motifs and tropes.
Proving any detail would carry me too far. For further information see [6].

2.1 Patterns of Intervals and Chords

2.1.1 Number of Patterns of Chords

Definition 2.1 (n-Scale) 1. If we divide one octave into n parts, we will speak of an n-scale. The
objects of an n-scale are designated as

0,1,...,n— 1.

2. In twelve tone music we usually 1dentify two tones which are 12 semi-tones apart. For that reason
we define an n-scale as the cyclic group (7,,,+) of order n.

Definition 2.2 (Transposing, Inversion) 1. Let us define T' the operation of transposing as a
permutation
T:Zy — 7y

a—T(a):=1+a.
The group (T} is the cyclic group Q(LE)
2. Let us define I the operation of inversion as
1.7, —=7Z,
a—I(a):= —a.
The group (T, I) is the dihedral group 9

Definition 2.3 (k-Chord) 1. Let k < n. A k-chord in an n-scale is a subset of k elements of Z,,.
An interval is a 2-chord.

2. Let G = Q(LE) or G = 02’3). Two k-chords Ay, Ao are called equivalent iff there is some v € GG such
thatfb 2’7@41>

Remark 2.1 1. We want to work with Pdlya’s Theorem, therefore I identify each k-chord A with
its characteristic function x 4. Two k-chords A;, Ay are equivalent iff the two functions x4, and
X4, are equivalent in the sense of Theorem 1.2.

2. Let us define two finite sets: P:= Z, and F:= {0,1}. Each function f € F¥ will be identified
with
Api={k € Zy | f(k) =1}
3. Let w: F' — R:= Q[z] be a mapping with w(1):= z and w(0): = 1, where z is an indeterminate.
Define the weight W (f) of a function f € F¥ as

k€Z,

We see that the weight of a k-chord is #*. The weight of a pattern W ([f]): = W(f) is well defined.



Theorem 2.1 (Patterns of k-Chords) 1. Let G be a permutation group on Z,. The number of
patterns of k-chords in the n-scale Z, is the coefficient of z* in

CI(G; 14, 1422 ... 14 z").

2. If G = Q(LE), the number of patterns of k-chords is

% > so(j)(:

Jlged(n,k)
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where  1s Buler’s p-function.

3. IfG = 02’3), the number of patterns of k-chords is

(3

Jlged(n,k)

)) ifn=1mod 2
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1)) tfn =0mod 2 and k =1 mod 2.

Jlged(n,k)

4. In the case n = 12 and G = Q(LE), we get the numbers in table 1 on page 23.
5. In the case n =12 and G = 79£LE>, we get the numbers in table 2 on page 23.
Proor:

1. Application of Theorem 1.2.

2. Let us calculate the coefficient of * in

CI(CT(LE);l—i—x,l—l—xz,...,l—l—x"):

w3
~—
5]
-
S
o
p—

:—ng 1—|—x %:—Zgo Zj:(

tln tln

Let k:=1 -4, then i = £. With (o) we have:
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3. Same proof as 2.

q.e.d. Theorem 2.1



2.1.2 The Complement of a k-Chord

Definition 2.4 (Complement of a k-Chord) Let A C Z,, with |A| = k be a k-chord. The comple-
ment of A4 is the (n — k)-chord 7, \ A.

Remark 2.2 1. Let G = Q(LE) or G = ﬂﬁf” be a permutation group on 7, and let 1 < k < n. There
exists a bijection between the sets of patterns of k-chords and (n — k)-chords.

PRrROOF:

The following general result holds:
Let M7 and M; be two finite sets and f a bijective mapping f: M; — M. Furthermore let ~; be
an equivalence relation on M; and m; the canonical projection

T Mi — MZ’|~,
z— m(2): = [«]

for ¢ = 1,2. In addition to this the function f satisfies

v~y = fo) ~2 f(y).
Then the function f: Mi|, — Ms|~, defined by f([2]): = [f(2)] is well defined and bijective.

In our context we have the case that M; is the set of all k-chords, My is the set of all (n — k)-
chords, ~; is induced by G and f(A):= Z, \ A, then f is a bijection between the sets of patterns
of k-chords and (n — k)-chords.
q.e.d. Remark 2.2
2. If n = 0 mod 2, the complement of an Z-chord is an 3-chord. Now I want to figure out the number
of patterns of Z-chords [A] with the property A ~ 7, \ A. Applying Theorem 1.5 we get:

Theorem 2.2 1. Let n = Omod 2. The number of patterns of % -chords which are equivalent to
their complement, s

CI(G50,2,0,2,...).
2. Ifn=12 and G = Q(LE), there are 20 patterns of 6-chords which are equivalent to thewr complement.

3 Ifn=12 and G = 02’3), there are 8 patterns of 6-chords which are equivalent to their complement.

Proor:
Let us define two finite sets P:= Z, and F':= {0, 1} and define a weight function by W(f):= 1 for all
f € FP. Each function f € F¥ will be identified with M;:= {k € Z, |f(k) =1} = f71({1}). The
group G defines an equivalence relation on P. Furthermore let ¢: = (0, 1) be a transposition in Sp. To
determine the number of patterns of Z-chords which are equivalent to their complement, we have to
calculate the number of patterns of functions f € F'¥ which are invariant under ¢. Using a special case

of Theorem 1.5 we get that this number is given by
CI(G; k1, K2y - -y Kp)

“i::Zj'W

ili

where

and (g1, pa, . ..) is the type of the permutation ¢. Since ¢ is of the type (0, 1), this is
CI(G;0,2,0,2,..).

q.e.d. Theorem 2.2



2.1.3 The Interval Structure of a k-Chord

In this section we use ﬂﬁf” as the permutation group acting on Z,,. The set of all possible intervals
between two differnet tones in n-tone music will be called Int(n), thus

Int(n)::{x—ylx,yEZn, r#£yt={1,2,...,n—1}.

Definition 2.5 (Interval Structure) On 7, we define a linear order 0 < 1 <2 < ... <n—1. Let
A:= {i1,ia,...,1} be a k-chord. Without loss of generality let i; < iy < ... < ix. The interval
structure of A is defined as the pattern [f4], wherein the function f4 is defined as

fa:{l,2,... k} — Int(n)

fa(l)i=iy — iy,
fa(2):=1i3 — iy,

fA(]C — 1): = ik — ik—l,

falk):= i1 — iy,
and two functions fi, f2: {1,2,...,k} — Int(n) are called equivalent, iff there exists some ¢ € ﬂECE) such
that fz = f1 o . The group ﬂECE) is generated by T and I with T(i): = i+ 1 mod k and I(i):=k+1—1i
fori=1,..., k. The differences ¢; .1 —¢; must be interpreted as differences in Z,,. They are the intervals

between the tones 7; and 7;4;.

Theorem 2.3 Let Ay:= {iy,12,...,ir} and As:={j1,ja, ..., Jx} be two k-chords with i1 < iz < ... <
ir and j1 < jo < ...< jp. Purthermore let f:= fa, and g:= fa,:{1,2,...,k} — Int(n) be constructed
as in Definition 2.5. Then

[f1=1lgl = [, ia, . ind] = [0, 52, Gk )

—: From [f] = [¢g] we derive that there exists a ¢ € ﬂECE) such that g = f o . Since ﬂECE) is generated
of T and I, we have to investigate two cases:

15t case: Let ¢ = f o T, then F(2) = g(1), f(3) = ¢(2),..., f(k) = g(k — 1) and f(1) = g(k).

Hence:
i3 — iz = j2 — J1

ig — i3 = j3 — J2

I — k-1 = Jb—1— Jk—2
i — 1 = Jr = Je-1
iy — 11 = J1 — Jk-
This can be written as
is = jo + (i2 — Jj1) (*)
iy = ja+ (iz — ja)

it = jr—1+ (fk=1 — Jr—2) ()



i1 = Jr + (i — Jr-1) (x % %)
iv = j1+ (11 — Jr).
Now I want to prove that the terms in brackets are all the same, which means:
i —Jj1=i3—Jo= ... = lf—1 — Jh—2 = ik — Jh—1 = @1 — Jk-

From () we get is—ja2 = d2—j1. Let us assume that we already know that éa—j1 = i1 —jr—2,
then (#*) implies that
Ik — Jk—1 = Tk—1 — Je—2 = %2 — J1.
Rewriting (* * *) leads to
i — Jk =t — Jk—1 = t2 — J1.

Using this we get 4141(modk) = TG2=31)j for I = 1,2, ..., k and finally
[{ila iZa .. alk}] = [{jlajZa .. a]k}]

20d cage: Let g=foT* o], then flk=1)=g(1), flk—2)=g(2),..., f(1) = g(k —1) and
f(k) = g(k). Hence:
i —th—1 = J2— J1

ip—1 — ip—2 = j3 — J2

i3 — 12 = Jr—1 — Jr—2
ig — 11 = Jr — Je—1
i — gk = J1— Jk-

This can be written as:
ir = —j1+ (ik—1 + j2)

ir—1 = —Jj2 + (ir—2 + Jjs)

i3 = —jr—2+ (iz + jr—1)
io = —jr—1+ (i1 + jr)
i1 = —jr + (ix + J1)-
In the same way as in the first case we get
-1+ Je =tk—2+tJj3=...=do+ Jr—1 = i1+ Jr = ik + J1

and this implies
i = (T o I)(jrg1-1)

for {=1,2,...,k, from which we get [{i1,%2,...,i}] = [{j1,J2, -, Je }]-
Since T and T*=1o [ generate ﬁECE), the first part of this proof is finished.

<—=: Assuming that [{i1,s,...,4c}] = [{j1,J2, .-, Jr}] we have to investigate two cases:

15 case: Let {j1,jo,...,jrx} = T{i1,ia,...,ix}. Again we have two cases:



1. Let iy <ipg < ...<idp <n—1,then T(i1) < T(i2) < ... < T(ir) < n— 1. This means
J1=T(i1), jo=T(i2),..., js = T(ir). Let the interval structure of {i1,4s,...,4;} be
[f]. For the interval structure [g] of {j1,j2,...,jx} we get

g(1) =jo—j1 =T(d2) =T(i1) = (2 + 1) = (i1 + 1) = iy — i1 = f(1)
9(2) =js—j2 =T(i3) = T(i2) = (i3 + 1) = (i2 + 1) = i3 — iz = f(2)

gk = 1) = ji — jr—1 =T(x) = T(ik—1) = (ix + 1) = ((x-1 + 1) =
=iy —ig—1 = flk—1)
gk) = j1 —Jr =T(0) = T(ix) = (i1 + 1) = (i + 1) = i1 — i = f(k).
Immediately we see that f = g and [f] = [¢].
2. Let iy <do < ...< iy =n—1 then T({) = 0, and T(%) < T({1) < T(iz) < ... <
T(ir-1), consequently j1 = T(i), jo = T(é1),..., jr = T(ix—1). Let the interval
structure of {iy,4s,...,ix} be [f]. For the interval structure [g] of {j1, 72, ..., Jr} we get

[
g(1) = jo — j1 = T(i1) = T(ix) = (i1 + 1) = (ix + 1) = i1 — i, = f(k)
9(2) = ja— o = T(in) = T(i1) = (la+ 1) = (i1 + 1) = in — iy = f(1)
9(3) = ja— ja = T(iz) = T(ia) = (i3 + 1) = (ia + 1) = i5 — i = f(2)

gk =1) = jr — jr—1=T(k-1) = T(lk-2) = (k-1 + 1) = (ir—2+ 1) =
=ip-1 —ip-2 = f(k —2)
g(k) = ji = jr = T(ix) = Tig—1) = (i + 1) = (ip—1 + 1) = ix — ig—1 = f(k — ).
Thus g = foT and [f] = [g].

20d cage: Let {1,792, -, gk} = I{i1,ia, .. ., ix}. There are two cases:
1. Let 0 < 4y < dg < ... < ig, then I(ix) < I(ik-1) < ... < I(i1), thus j1 = I(ig), j2 =
I(ig—1),..., jr = I(i1). Let the interval structure of {iy,42,... 45} be [f]. For the

interval structure [¢] of {j1, j2, ..., jx} we get
g(1) = jo —j1 = I(i—1) — I(ix) = i —ip—1 = f(k = 1)
9(2) = js — jo = 1(ir—2) — I(ix—1) = tg—1 — i—2 = f(k —2)

gk =1) = jy — jz—1 = 1(i1) = I(iz) = i — v = f(1)
g(k) = g1 — jr = I(ix) — 1(i1) = 41 — i = f(k).
Hence ¢ = fOTk_1 oI and [f]=1lg].

2. Let 0= iy < iy < ... < i, then 0 = I(i1) < I(if) < I(ix-1) < ... < I(ia), thus
1 = 1(i1), j2» = I(é), js = I(ik—1),...,jr = I(i2). Let the interval structure of
{i1,42,...,1k} be [f]. For the interval structure [g] of {j1,Ja, ..., jx} we get

g(?) = j3 —j2 = I(Zk—l) — I(Zk) =iy —lp_1 = f(k - 1)
9(3) = ja—js = I(ix—2) — I(ix—1) = ig—1 — ig—2 = f(k —2)

gk =1) = jy — jx—1 = (i) = I(ia) = iz — iz = f(2)
g(k) = g1 —jr = i) — I(iz) =iz — 41 = f(1).
Hence g = fo I and consequently [f] = [¢]-



Since T" and I generate 02’3), everything is proved.
q.e.d. Theorem 2.3

Remark 2.3 If the permutation group acting on Z, is the cyclic group Q(LE), then the interval structure
of A:= {iy,42,...,1;} must be defined as the pattern [f4] in regard to C](CE):: (T} with T(z): 1+
1 mod k. The function f4 is defined as in Definition 2.5.

Remark 2.4 Let f be a function f:{1,2,...,k} — Int(n). The pattern [f] is the interval structure of
a k-chord, iff

One must interpret this sum as a sum of intervals, thus as a sum of positive integers.

Proor:
=—: Let fa be the interval structure of A:= {iy,4s,...,1x}, with i} < iy < ... < i, then
fa(l)y =iy — 14
fa(2)=1ds — iy

falk—1) =iy —iz_q
falk) =i — ip.

Because of the fact that these differences are differences in 7, and iy < i we rewrite fa(k) =
(i1 + n) — é;. Now we get:

Zf,m') =

gl

(i]'_|_1 —i]')—l—(il—l—n)—ik = (—il—l—ik)—l—(il —I—n)—ik =n.

j=1

<=: Let f be a function f:{1,2,... k} — Int(n) such that

k
>_ ) =n,
i=1
then we define
1= 0
j—1
ijr=>_ f(i) for2 < j<k.
i=1
It is easily seen, that [f] is the interval structure of {iy, is,..., 4}

q.e.d. Remark 2.4

Remark 2.5 Let z,y1,¥ys,...,y, be indeterminates over Q and let R be the ring

R:= Q[xaylayZa .. ayn]

Now I want to define a weight function
w:Int(n) = R



i w(i): = a2ty

The weight of a function f:{1,2,...,k} — Int(n) is the product weight

k N ) k
W(f): = Hw<f(l)) — Hl‘f(i)yf(i) — xz,zl f(@) Hyf(i)'
: i=1 i=1

Now we can define W([f]):= W(f). According to Remark 2.4 the pattern [f] is the interval structure
of a k-chord, iff

This is true, iff
k
W =TT
i=1
The indices of the y’s in W(f) show, which intervals occur in the k-chord.

Theorem 2.4 The tnventory of interval structures of k-chords in n-tone music s the coefficient of x™
m

n—1 n—1 n—1
Cl(ﬁgC ); E 'y, E 2y, E x?’lyi?’,...,).
i=1 i=1 i=1

PRrROOF:

Application of Theorem 1.2.
q.e.d. Theorem 2.4

Example 2.1 The inventory of the interval structures of 3-chords in 12-tone music is the coefficient of
12
z'® in

11 11 11
CI (ﬂg ); Z 'y, Z 2y, Z 1‘32312'3) :
=1 i=1 i=1
This 1s
y1?yio0 + y1(Y2yo + Ysys + vayr + ysys) + Yo ys + y2(Ysy7 + yays + ysz) + y32ys + ysyays + ya©

If you are interested in the number of patterns of 3-chords with intervals > k, then put yy:= y2: =
cooi=yYp—1:= 0 and yr:= Ypy1:= ...:= yp: = 1. In the case k = 2 there are 7 patterns of 3-chords
with intervals greater or equal 2.

If the permutation group ng) is acting on Zja, then the interval structures of 3-chords in 12-tone
music is the coefficient of z!'2 in

12 12 12
CI( :(), ); E 'y, E 'y, E l‘?’zyz’?’)
=1 i=1 i=1

This is y12y10 + 291 (Y20 + Y3Ys + Yay7 + Ys¥s) + y22ys + 2 (2ysy7 + 2vays + y52) + y32¥s + 2y3yays + ya®.



2.2 Patterns of Tone-Rows

Definition 2.6 (Tone-Row, k-Row) 1. Arnold Schonberg introduced the so called tone-rows. In
this paper I am going to give a mathematical form of his definition. Let n > 3. A tone-row in an
n-scale is a bijectiv mapping

{0 1,...on—1}y— 2,

th position in the tone-row.

f(%) is the tone which occurs in ¢
2. Let n > 3and 2 < k < n. A k-row in n-tone music is an injective mapping f: {0, 1, ..., k—1} — Z,.
Remark 2.6 1. A k-row with £ = n is a tone-row.

2. Two k-rows f1, fo are equivalent if f; can be written as transposing, inversion, retrogradation or
an arbitrary sequence of these operations of f.
Transposing of a k-row f is T o f, Inversion of f is / o f. According to Definition 2.2, we know

that 7 and I are permutations on Z,, and that (T, I) = 79£LE>. Actually inversion of a k-row f
should be defined as
THO) 6 o710 6 f.

Retrogradation R, is a permutation 2 € Syp 1, z—1} defined as:

O k=1 o(Lk=2)o.. .o
R_{(O,k—l)o(l,k—Q)o...o(

1,k if k=0mod?2

5
By o (B5L) if k=1 mod 2.

S
w |

M‘

Let II: = (R) < S{o1,. -1}, then [II| = 2. Retrogradation of a k-row f is defined as f o R.
3. Since II: = (R), the cycle index of II is

1,k £ : —

5 + Y22 if £k =0mod?2
CIT;y1,y2, -, yp) = %(ylk Yo )k;l i

s +wmy22 ) ifk=1mod2.
Thus two k-rows f1, fo are equivalent

— Jdp € ﬁﬁf”aa € II such that fi = po fr oo

Theorem 2.5 (Number of Patterns of k-Rows) The number of patterns of k-rows in Z, is

g 0 0
. (E).
CI(H,%1,%2,...,—6“)01(&” 142y, 1+ 220, ..., 14 nay) |

ri1=ro=..=x,=0"
This 1s
1.

() (D) (@ (2))

ifn=0mod 2 and k = 0 mod 2. For integers k,v, v > 0 the expression (k), is definied as:

(Fyor=k-(k—1) .. (k—(v—1)).

1/1 e | 1 (n
—{=.9. 2 — ! i !
(o= (2 e £ (2)),

tfn =0mod 2 and k = 1 mod 2.



tfn=1mod 2 and k = 0 mod 2.

1/ 1 (n Loeoa (258 k-1

- — B4 -27= (2 —)!

(@) (L))
ifn=1mod2 and k = 1 mod 2.

In the case n = 12 the number of patterns of k-rows is in table 3 on page 23.

Proor:
Application of Theorem 1.4.

q.e.d. Theorem 2.5

Theorem 2.6 (Number of patterns of Tone-Rows) Let n > 3. The number of patierns of tone-

rows in n-tone music is
%((n—l)!—l—(n—l)”) if n=1mod2
Hin= D+ (=213 + 1) #n=0mod2.
If n 1s in N then

n_Jn-(n=2)-...-2 4fn=0mod?2
= n-(n—2)-...-1 dfn=1mod?2.

Especially there are 9985 920 patterns of tone-rows in 12-tone music.
Proor:

This is a special case of Theorem 2.5.
1. If n = 0 mod 2, then the number of patterns of n-rows is

%(%((z)n vor(ly) + %(n! +23(0)).

[\]

Since n > 3, we have (2), = 0. Furthermore

q.e.d. Theorem 2.6



2.3 Patterns of All-Interval-Rows

Let A and B be two finite sets. The set of all injective functions f: A — B will be denoted by Inj(A, B).
For that reason the set of all tone-rows is Inj ({0, 1,...,n—1} Zn). In this chapter let n > 3.

Definition 2.7 (All-Interval-Rows) Let us define a mapping
a:Inj({O, 1,...,n— 1},Zn) —{g | ¢:{1,2,...,n—1} — Int(n)}

fr=a(f)

and a(f)(i):= f(i) — f(i = 1) for i = 1,2,...,n — 1. This is subtraction in Z,. The function «(f) is
called all-interval-row, iff «(f) is injective, that means «(f) € Inj ({1, 2,...,n— 1},Int(n)). In other
words a tone-row induces an all-interval-row, iff all possible intervals occur as differences between two
successive tones of the tone-row. The set of all all-interval-rows will be denoted as Allint(n).

Let’s define some mappings:

1.
6:Inj({1,2,...,n— 1},Int(n)) —{yg | ¢:{0,1,....n—1} = Z,}
f—=B8(f)
B(H0):=0and B(f)(0):= B(f)i — 1)+ f(i) mod nfor i = 1,2,...,n— 1. You can easily derive
that '
AN =D f() mod n
ji=1

fore=0,1,...,n— 1.

2. Letl € Z,.

G:nj({1,2,...,n =1}, Int(n)) — {g | 9:{0,1,...,n— 1} — Z,}
= B(f)
UG =D )+ mod n.

3. There is another possibility to generalize 3 by expanding its domain.
B:{flf:{l’Q""’”_l}*Iﬂt(”)} — {g|g:{0,1,...,n_1}_>zn}
f B0,
BN =Y f(7) mod n
j=1

fore=0,1,...,n— 1.

Theorem 2.7 Let f be a mapping f:{1,2,...,n— 1} — Int(n). The following statements are equiva-
lent:

1. [ 1s an all-interval-row.
2. fenj({1,2,...,n—1},Int(n)) and B(f) € Inj({0,1,...,n— 1}, Z,).

3. femj({1,2,...,n—1},Int(n)) and F(f) € j({0,1,...,n -1}, 7Z,).



4. f is injective and B(f) € Inj({O, 1,...,n— 1},Zn).

Proor:
I only want to prove that 1 is equivalent to 2.

1= 2: Let g € Inj({O, 1,...,n— 1},Zn) and f = a(g), then a(g) € Inj({l,?, R 1},Int(n)). For
0 < i < n we calculate

7 7

Ala(e)) (i) =D alg)(@) = D (9(0) — 905 = 1)) = g(i) — 9(0) mod n.

j=1 ji=1

Thus G(f) = ﬁ(a(g)) = (T9" o g). Consequently it is injective and B(f) € Inj({O,l,...,
n—1}4%,).

2 =—1: Since f € Inj({l,?, T 1},Int(n)) and 3(f) € Inj({O, 1,...,n— 1},Zn) let us calculate

() 0) = SN — A~ )= Y1)~ Y JG) = 1) mod n.

We conclude that a(8(f)) = f € Inj({1,2,...,n— 1},Int(n)), hence f is an all-interval-row.
q.e.d. Theorem 2.7
You can easily prove the following results:
1. If n = 1 mod 2, there are no all-interval-rows.

2. If n = 0 mod 2 the function f defined as
N if i =1 mod 2
@)= {—i if i =0 mod 2
1s an all-interval-row.

For the rest of this chapter let n > 4 and n = 0 mod 2.

3. f € Allint(n) implies 3(f)(n — 1) = 5.

4. f € Allint(n) implies f(1) # 5 and f(n — 1) # 5.
Remark 2.7 1. On Int(n) we have the following permutations:
I:Tnt(n) — Int(n)

J—=I{j):=n—j
I stands for inversion. I is of the type (1,5 —1,0,...).

In the case n = 12 there is a further permutation called
Q:Int(n) — Int(n)

J—Q():=5-jmod12.
Q) stands for quartcircle symmetry. Since ged(5,12) = 1, @ is a permutation on Z,, and since
5-0=0, @ is a permutation on Int(n). @ is of the type (3,4,0,...,0). You can easily prove that
(To@)(y) = (QoI)j) =7-jmod 12 and that it is of the type (5,3,0,...,0). To @ is called

quintcircle symmetry.



2. On the set {1,2,...,n— 1} retrogradation R is a permutation, defined as

R::(1,71—1)0(2,71—2)0...0(%_1’g+1)o(

n
3
3. If f € Allint(n), then To f, fo R are in Allint(n). Furthermore if n = 12 then Q o f € Allint(12).

4. For that reason we can define the following permutations on Allint(n).
o1, ¥R, eg: Allint(n) — Allint(n)
feei(f)i=1of
frer(f):=foR
fr=vq(f)=Qof.
For ¢g we need the assumption that n = 12.
5. It is easy to prove that these permutations commute in pairs and that p;% = pr? = pg? = id.

6. In [4] there is a further permutation £ called exchange at %. It is defined as
E: Allint(n) — Allint(n)
[ E(f)

and

(
ifi=n— f=Y

(z —n+ f_l(%)) ife>n— f_l(%)
I have already mentioned, that f(1) # % and f(n —1) # 5. Since f € Allint(n) is bijective, there
exists exactly one j, such that 1 < j < n—1and f(j) = 5. The values of the function E(f)(i)

fori=1,2,....n—1are f(j+1),f(j+2),....f(n=1),f(j) = %, f(1), f(2),..., f(j —1). The
permutation £ is defined for n > 4, but in the case n = 4 we have £ = pg.

|3
~—

Now I want to prove that E is well defined. According to Theorem 2.7 we have to prove that
ﬁ(E(f)) is injective, in the course of which 6(E(f)) (0):= A(f) (f_l(%)) Fori<n— f~'(%) we

derive

BEW D =Y BN +8H(7(5) =

=Y UG ) +ANUTE) = ADUT G + ).

Especially . ) N N
BED) (=171 G5) =) =80 -1 =5,
and for that reason
BB (= 171(5) = BEWD) (=1 () =) + BN =17 (3) =
25‘1'550:50[)(0)
For i > n — f_l(%) we calculate
} n i—(n=f71 (%)) n

BEE) O =FEN) -1 G+ Y EOm-f(G)+0) =

ji=1



i—(n—f"' (%)
=0+ > fO)=ANG-nt TG

ji=1
Thus everything 1s proved.
7. The following formulas hold: F oy =¢roE, Eopg =pqgoF, Fopr=¢rok and E* = id.

8. Let us define three permutation groups on Allint(n).
Gi:= (¢1,9R), G2:= (o1, ¢Rr, E) und Gs: = (¢1, ¢Rr, E, 9g). For G5 we must assume n > 6, and
for G5 we must assume n = 12. We calculate that |G| = 4, |G2| =8, |G3| = 16.

Remark 2.8 (Counting of All-Interval-Rows) Let
1,02, B 1, Y1, Y2, ooy Yne 1y 21, 22, -+ Znel
be indeterminates over Q. Furthermore let f be a mapping f:{1,2,...,n — 1} — Int(n). We define:
R:=Qley, @2, ..., Bn1,21,22, -, Zn—1]

and

n—1
W)= ] wi(£(3).
:=1
The functions w; are defined as
w;:Int(n) = R

n—1
Jr=wi(j)= 2 H z,0.

vi=i

After calculating W(f) you have to replace terms of the form z,7 by Yjmodn- Then you get W(f) €

Qly1,v2, -+, Yn—1,%1,22, - - -, Zn—1]. According to Theorem 2.7 f is an all-interval-row, if and only if,
n—1
W(f) = H Yizi
i=1
Proor:

f 1s an all-interval-row, if and only if, f and B(f) are injective. The function f is injective, iff W(f) is
divisible by H?:_f zi. According to the construction of W( f) the power of #; is 23:1 f) = B(f)(z) mod
n. Thus

n—1

W) =TT zr@ws000)

=1

and the function B(f) is injective, iff W(f) is divisible by H?:_f y;. Consequently the number of all-
interval-rows in n-tone music is the coefficient of H?:_f YiZ; 1N

n—1 n-—1 n—1

. J
5=,
i=1 j=1 k=i 7 =Ysjmodn

q.e.d. Remark 2.8

Remark 2.9 For ¢ € (G or G5 or G35 we want to calculate

X(p):= [{f € Allint(n) | ¢(f) = f}I.



After some calculations we can derive that there are only 4 permutions ¢ such that x(¢) # 0

In
Remark 2.8 we calculated x(id). The value of x(¢1 o ¢r) is the coefficient of H?:_f Yi 2z 1In

(Zz]zn]ka 1;[ )%I:In =

-2

Ty?=Yjimodn

Now let n = 12. In order to calculate x(pg o V o ¢r) you must compute

Z(H oo ([T T o+ 11" I 7).

i=1 j=2i j=i j=i+6 j=t j=i46
i—1 n—1
5kmodl2
H( E Zkzskmodqu‘l H L1 )
i— k=1
ji=1 kata b0} =5 1=2{—j
i+5 n—1 11 11

oial P . _ .
j=2i4 kals 60} =5 =1242i—j

k 5kmodl2
H( g Zkzskmodqu‘l H x?me ))

Then substitute y;moq12 for 2,7 and find the coefficient of Hul Yi %5 -

Theorem 2.8 (Number of Patterns of All-Interval-Rows) The number of patterns of all-inter-
val-rows in regard to G; fori=1,2,3 1s

1. %(X(id) + x(pr 0 goR)) fori=1.

2. s(x(id) + x(pr o @r) + x(proV)) fori=2.

3. Fori=3 we calculate
1 .
75 (D) + x(pr o or) + x(pro V) + x(pgoproV)) =

1
= 75(3856 + 176 + 120 + 120) = 267.

Proor:
Application of the Lemma of Bunside, Theorem 1.1.

q.e.d. Theorem 2.8

2.4 Patterns of Rhythms

Definition 2.8 (n-Bar, Entry-time, k-Rhythm) An important contribution in a composition is a

bar. Usually a lot of bars of the same form follow one another. If you know the smallest rhythmical

subdivision of a bar, you can figure out how many entry-times (think of rhythmical accents played on
a drum) a bar holds. If there are n entry-times in a bar, I call it an n-bar. In mathematical terms an
n-bar is expressed as the cyclic group Z,. We can define cyclic temporal shifting S as a permutation

S:Zy — 7y,



t St):=t+1.
Retrogradation R (temporal inversion) is defined as
R Z, — Z,
t— R(t): = —t.
The group {S) is Q(LE) and (S, R) = 79£LE>. A k-rhythm in an n-bar is a subset of k elements of Z,,. The

permutation groups Q(LE) or ﬂﬁlE) induce an equivalence relation on the set of all k-rhythms. Now we
want to calculate the number of patterns of k-rhythms. We get the same numbers as in Theorem 2.1.

Theorem 2.9 (Patterns of k-Rhythms) 1. Let G be a permutation group on Z,. The number
of patterns of k-rhythms in the n-bar Z, is the coefficient of * in

CI(G; 14, 1422 ... 14 z").

2. If G = Q(LE), the number of patterns of k-rhythms is

% > so(j)(:

Jlged(n,k)

N ESIESN b
N

where  1s Buler’s p-function.

3. IfG = 79£LE>, the number of patterns of k-rhythms is

%( Z W(J)(g)'i'n( ?é]l )) ifn=1mod 2
Jlged(n,k) ’

%( Z @(])(g)'i'n(g)) tfn =0mod 2 and k = 0 mod 2
Jlged(n,k) ! 2

(Y ei(D+nEy)) #n=0mod2 and k=1mod2.
Jlged(n,k) ! 2

2.5 Patterns of Motifs
Definition 2.9 (k-Motif) 1. Now I want to combine both rhythmical and tonal aspects of music.

2. Assume we have an n-scale and an m-bar, then the set M
MZI{(l‘,y) | T EZmayEZn}:Zm X Zn

is the set of all possible combinations of entry-times in the m-bar 7, and pitches in the n-scale
Zyn. Furthermore let G be a permutation group on M. In Remark 2.11 we are going to study two
special groups (G. The group G defines an equivalence relation on M:

(21,51) ~ (22, y2): <= g € G with (22, 2) = g(x1,1).
In addition to this we have |M|=m - n.

3. Let 1 <k <m-n. A k-motifis a subset of k elements of M.
Remark 2.10 Let f be a mapping f: M — {0,1}. Now we identify f with the set

My:={(z,y) € M | f(x,y) =1}.



This means: f is the characteristic function of M;. The function f is the characteristic function of a
k-motif < |M;| = k. Two functions fi, fo: M — {0, 1} are defined equivalent

fi~ fo:<=dg € G with f, = f1 0 g.
Let f; be the characteristic function of the k-motif M; for ¢ = 1,2, then we have:

fi ~ fa <= dg € G with ¢(M2) = M;.

Now w(0): =1 and w(1): = z define a weight function w:{0,1} — Q[x], where # is an indeterminate
over Q. In addition to this let

peM

Now we can say: f is the characteristic function of a k-motif <= W (f) = =*.

Theorem 2.10 (Number of Patterns of k-Motifs) The number of pallerns of k-molifs in an n-
scale and in an m-bar is the coefficient of % in

CI(G; 142, 1+2% .. 14+2™").

Proor:
This completely follows Pélya’s Theorem 1.2.
q.e.d. Theorem 2.10

Remark 2.11 (Special Permutation Groups) Now I want to demonstrate two examples for group
G.

1. In Definition 2.2 we had a permutation group Gs = Q(LE) or Gy = ﬂﬁlE) acting on the n-scale
Z,. Moreover in Definition 2.8 there was a permutation group G = Q(nE) or G = ﬂ&f) defined
on the m-bar Z,,. For that reason, we define the group GG as G:= G1 ® G2. Two elements
(x1,y1), (£2,y2) € M are called equivalent with respect to G, iff there exist ¢ € G1 and ¢ € Ga,
with

(w2, 52) = (@, ) (@1, y1) = (p(@1), ¥(y1)).

Because of the fact that we know how to calculate the cycle index of G; ® G, we can compute
the number of patterns of k-motifs.

2. In the case m = n, we can define another permutation group G, as it is done in [8]. The group G
is defined as

G:=(T,S, 04 | A€ GL(2,Z,)),
with

()= (5)=1(5)

The multiplication A - (2) stands for matrix multiplication. The set G1(2, Z,,) is the group of

all regular 2 x 2-matrices over 7.

You can easily derive the following results:



(a) T = S" =idy and TV #idy and S7 #idy for 1 < j < n.
(b) ToS =S8oT. In addition to this T ¢ (S} and S ¢ (T).
(c) Let 0 <i,j <n, then: T 0 S/ ¢ (4 |AEG1(2,ZH)),iﬂi¢OOrj¢O.

(d) Let A:= (Ccl Z), then: @4 0 TF o §' = T(eltdk) o Glal+bk) ¢ o)

(e) G is the group of all affine mappings Zat — 7,7

Although we know quite a lot about the group G, I could not find a formula for the cycle index
of G for arbitrary n.

Example 2.2 Let us consider the case, that n = m = 12.

1. If GG 1s defined as GG: = ﬂﬁf” & 02’3), then we derive
CI(G, L1,T2,..., 1‘144) =
= 51%(1‘%44 + 1222425° + 361“111‘;0 + 147x§2 + 8253 + 242522° + 6023° + 9622* + 192212).

By applying Theorem 2.10, the number of patterns of k-motifs is the coefficient of z* in
1L+ 2+ 4822 + 93723 4+ 312612% + 840 0062°19 392 66926 4 38156128127 + 6532510 7092° +
98 700 483 548x° + 1332424 197 746210 + . . ..

2. I G:={T,5, ¢4 | A€ Gl(2,7,)), T computed the cycle index of G with a Turbo Pascal program

as
CI(G, L1,T2,..., 1‘144) =

= 66?}%(1‘%44 + 18272230 4 36018233 + 24213237 + 7223025 + 4823218218 4 6482 7425° +
4322240221528 1+ 19221825227 + 921025t + 72216210215 + 54216232 + 108216256 + 2592212255 +
172821223%21% + 1728212082828 + 115221228282l xial, + 12829245 + 38427232 L% +
16225258 4+ 129625220215 + 9722523232 + 1 9442822215 + 6 9122521°227 + 46082523 izl s, +
6481210 + 4322123218 + 5 18421232216 + 34562 21025282, + 3888z 2232 4+ T 7762 25210 +
2592xtr2z3t + 5 184xtr2xizls + 4608232321521 + 1382423232322 + 307223237 +
9 216l‘?l‘éll‘é8 +1 728l‘%l‘%7l‘i7 + 13 8241‘%1‘21‘21‘%1‘?2 + 10 3681‘%@1‘25 + 20 7361‘%1‘21‘21‘%6 +
1 1529:11“219:336%0 + 3 4569:11“219:31%2 +9 2161‘11‘21‘31‘%1 + 27 648l‘1l‘2l‘3l‘§3 +6 9121‘11‘31‘31‘%8 +
13824z 23xg23, + 20 7367 232322210 + 414722 w32drsxd, + 3 174252 + 2208235218 +
66242320 + 4608z 225282, + 372628232 + 745225280 + 25922523 + 5 184xdrial’ +
7224238 + 1008232} + 9288x1%21% + 2553625728 + 2688x3 w2, + 129625220 +
10752252327, + 3283223222 4+ 3456252025, + 13824222227, + 38 40023° + 36 86421225, +
4147225280 + 883222% + 6 1442 %2, + 3993628 + 18 4322522, + 49 152212 + 24 57625,).

By applying Theorem 2.10, the number of patterns of k-motifs is the coefficient of 2* in 1424522+
2623 + 2162 +2 0242° 427 80626 + 417 20927 46 345 73525 + 90 590 7132°4+1 190 322 956204 . . ..

For k = 1,2, 3,4 these numbers are the same as in [§]. In the case k = 5 however, it is stated that
there exist 2032 different patterns of 5b-motifs, while here we get 2024 of these patterns.

2.6 Patterns of Tropes

Definition 2.10 (Trope) 1. If you divide the set of 12 tones in 12-tone music into 2 disjointed
sets, each containing 6 elements, and if you label these sets as a first and a second set, we will
speak of a trope. This definition goes back to Josef Matthias Hauer. Two tropes are called
equivalent, iff transposing, inversion, changing the labels of the two sets or arbitrary sequences of
these operations transform one trope into the other.



2. For a mathematical definition let n > 4 and n = 0 mod 2. A trope in n-tone music is a function
fi 2 — Fi={1,2} such that |f~1({1})] = [F~1({2})] = 2

f(#) = k is translated into: The tone i lies in the set with label k. Furthermore T and I are

permutations on Z, as in Definition 2.2. The group (7,1} is 02’3). Two tropes fi, fo are called
equivalent, if and only if,

dm e ﬂﬁf” Jp € Sy such that fo = ¢ o fio7.

3. Let # and y be indeterminates over Q. Define a function w: FF — Qz,y] by w(l):= x and
w(2): = y. For f € FZ» the weight of f is defined as product weight

W= [ wf@).

rTEZL,
A function f: 7, — F:={1,2} is a trope, iff W(f) = zZy*.

Theorem 2.11 (Patterns of Tropes) Let ¢ be Buler’s p-function. The number of patterns of tropes
wm regard to ﬂﬁlE) 15

%(%(Zso(t)(;f) + Y so(t)ﬁ) +(3) +2%—1) if n =0 mod 4

t=0mod2
(i(Zs@ WD+ D so(t)ﬁ) + <:§:Z> +2%—1) ifn=2mod 4.
tl T tEDtlnnod2

In 12-tone music there are 35 patterns of tropes. (See [5].) Hauer himself calculated that there are 44
patterns of tropes, because in his work the permutation group acting on Z, was the cyclic group {T').

Proor:
We want to use Theorem 1.3 which says:

S W) —%Z CLOE AL, ), A2, 9), -, A, ),
71

€52

where

A(m, @)= Z w(y) - w(e(y) .. wle™ (y).
v’g(eyZ;:y

The number of patterns of tropes is the coefficient of % y% in
1 n on
5 (Cl(ﬁgE); ety 2l +y? 24 y) 4+ CL0); 0, 22,0, 2222, .0, 2x5y5)).

This can be transformed into the formula above.
q.e.d. Theorem 2.11

2.7 Special Remarks on 12-tone music

In addition to the operations of transposing 7" and of inversion I we can study quartcircle- and quintcircle
symmetry in 12-tone music.



Remark 2.12 (Quartcircle Symmetry) The quartcircle symmetry @) is defined as

1.

Q: 212 — Z1o
z— Q(x): = bx.
@) is a permutation on 714, since ged(5,12) = 1. Furthermore
Q¢ (I,T).
QoT =T50Q.

2.
3.

Qol =10 = Tx,which is called the quintcircle symmetry.
Q? =idy,,.
Let G be G:=(I,T,Q). Each element ¢ € G can be written as
o=T"oll o
such that k € {0,1,...,n—1},j€{0,1},and [ € {0,1}.
The cycle index of G: = (I, T, Q) is
CI(G; 21, 29,...,212) =

1 12
= — (Z o) e, T + 2e0xd + 3rted + 6xad 4+ 11a + 4ades + 625 + 41‘%) .

This group G is an other permutation group acting on 712 with a musical background. The question
arises, how to generalize the quartcircle symmetry of 12-tone music to n-tone music. Should we take
any unit in 7, or only those units e such that e? =17



k |123456789101112
#ofpatterns|1 6 19 43 66 80 66 43 19 6 1 1

Table 1: Number of patterns of k-Chords in 12-tone music with regard to Q(LE)

3 4 5 6 7 8 9 10 11 12

|12
6 12 29 38 50 38 29 12 6 1 1

7t of patterns |

1
1

Table 2: Number of patterns of k-Chords in 12-tone music with regard to 02’3).

k |2 3 4 5 6 7
# of patterns | 6 30 275 2000 14060 83280
k | 38 9 10 11 12

# of patterns | 416880 1663680 4993440 9980160 9985920

Table 3: Number of patterns of k-rows in 12-tone music.
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Working for my doctorial thesis I succeeded in constructing complete lists of orbit representatives
of k-motifs for £ = 1,2,...,8 under the action of the permutation group of the second item of example
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