
Stefan Riedel

Compact Spherical Loudspeaker Arrays:
New Ideas on Filter and Layout Design

Master’s Thesis

University of Technology Graz
University of Music and Performing Arts Graz

Institute of Electronic Music and Acoustics
Head: O.Univ.-Prof. Mag.art. Dipl.-Ing. Dr.techn. Robert Höldrich
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Abstract

Compact spherical loudspeaker arrays employ modal beam forming techniques
to precisely excite wall reflections. In its performance practice it turned out that
it is mostly the horizontal plane, in which walls and reflectors are close enough
to create distinct auditory objects in space. Moreover, human sound localiza-
tion is known to be more precise in the horizontal plane. This motivates the
development of mixed-order control and dedicated mixed-order arrays that
concentrate their loudspeakers in the horizontal plane. Furthermore, this thesis
presents a two-band approach for the control of spherical loudspeaker arrays. In
the lower band, spherical beamforming is feasible and fast crosstalk-cancellation
filters can be designed. In the higher band, where beamforming is impaired due
to spatial aliasing and uncontrolled interferences between the loudspeakers, an
amplitude panning approach based on AllRAD is employed.
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1. Introduction

In the late 1980s the idea of compact spherical loudspeaker arrays with control-
lable directivity was introduced by reasearchers at IRCAM and published by
Warufsel et al. [16, 12]. Today the icosahedral loudspeaker (IKO) is used as an
instrument in electro-acoustic music [21]. It is capable of creating convincing
spatial trajectories along surrounding sound reflectors and is well-approved as
a concert instrument.

In general, Platonic solids offer practical housings because of their symmetries
and small number of facets/transducers. Classically, spherical beamforming on
the dodecahedron uses 12 transducers and is limited to 2nd order Ambisonic
reproduction, while it is limited to 3rd order with the 20 transducers on an
icosahedron. Research on the topic has focused on ways to overcome the limited
resolution, e.g. array-specific acoustic radiation modes have been proposed
[11], but those modes would require a frequency-dependent beam encoding.
Alternatively, the number of transducers per surface has been increased, e.g.
to 6 on the 20 icosahedral facets [1], which, however, is only practical with
high-frequency tweeters.

Figure 1.1.: The IEM icosahedral loudspeaker array in concert.
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1. Introduction

(a) (b) (c)

Figure 1.2.: Layout of a circular array with 9 transducers (a), spherical harmonics subset
(b) and the beam pattern simulated with the spherical cap model at f=400 Hz,
array radius r = 0.21 m (c).

In the current performance practice with the IKO, mostly the horizontal beams
effectively produce auditory objects via lateral reflections from close-enough
walls and baffles. Another practical aspect is the heaviness of an array with
twenty broadband woofers, which typically requires two people to cooperate in
the staging of the array.

Therefore, the idea of a circular horizontal transducer ring seems obvious, as it
should achieve equal or better horizontal resolution, while drastically reducing
the cost and weight of the array. However, the directional definition is impaired
by erroneous vertical radiation lobes. In the horizontal plane, circular arrays
are less robust against spatial aliasing and effectively do not reach the assumed
effective order of directivity, as described in Sec. 3.3. The problem was discussed
for circular microphone arrays in [9], but the performance limitation (even
below spatial aliasing) is easily recognized from Fig. 1.2 (c).

A different concept is to distribute multiple (horizontal) first-order arrays such
as the IEM loudspeaker cubes [5, 10], which achieves Ambisonic surround sound,
but abandons the idea of a centrally staged, higher order beamformer that is
capable of controlling both direction and distance of an auditory object.

The idea discussed in this thesis is to employ mixed-order Ambisonic control and
array design to reduce the transducer amount while achieving a high horizontal
resolution. In contrast to a single horizontal ring, transducers are added on
elevated rings to achieve robustness and definition in vertical directions. Another
obvious benefit over a circular array is that beams in vertical directions can be
controlled by such mixed-order arrays and might be interesting in some venues.
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Marschall describes mixed-order Ambisonics schemes that effectively reduce
the number of microphones of an array by neglecting certain vertical spherical
harmonic modes [8] in order to maintain a high horizontal resolution. As the gap
between horizontal and overall resolution cannot be overly stressed for robust
beamforming, alternative lattice-schemes were presented in [3]. A modified
mixed-order scheme is presented here to efficiently increase the horizontal
resolution of compact spherical loudspeaker arrays.

Chapter 2 of this thesis briefly discusses fundamental concepts of Fourier
acoustics and defines the notation used throughout this thesis. In section 3.1
spherical beamforming is discussed for the general case of higher-order Am-
bisonics and for the special case of mixed-order Ambisonics. The spherical cap
modal described in section 3.2 allows for the simulation of various interesting
loudspeaker layouts and mixed-order control schemes.

Section 3.3 presents the proposed mixed-order schemes to increase the resolution
of a dodecahedral array from 2nd to 3rd order, and for an icosahedral array
from 3rd to 4th order. Additionally, new 3-ring layouts and their mixed-order
schemes are described that effectively reduce the number of transducers yielding
dedicated mixed-order layouts. For assessment, quality measures are discussed
to evaluate the effective 2D order on the horizon in comparison to the effective
overall 3D order, in order to avoid global deterioration. Both measures are
based on the rE vector. Chapter 5 presents a measurement-based, low-latency,
two-band control model. This new model allows to minimize filter length and
erroneous lobes in the high-frequency band by crossing over to AllRAD panning.
Chapter 6 verifies the approach using open measurement data.
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2. Fundamentals of Fourier
Acoustics

2.1. The Wave Equation and its Solutions

The solutions of the wave equation are fundamental to all further work and
concepts. The wave equation in the frequency domain is referred to as the
Helmholtz equation

(4+ k̃2) p = 0 , (2.1)

with the sound pressure p, the Laplace operator 4 and the wave number
k̃ = ω/c, where ω denotes the angular frequency and c is the speed of sound.
Its solution in spherical coordinates is obtained by separation of variables
(4 = 4r +4ϕ,ϑ) and consists of a term with dependence on the radius r and
a term depending on the azimuth angle ϕ and zenith angle ϑ [18].

Any traveling wave type solution to Eq. 2.1 can be described as an expansion
of these radial and angular basis functions

p(ϕ, ϑ, k̃r) =
∞∑
n=0

n∑
m=−n

(
Cnm jn(k̃r) +Dnm h

(2)
n (k̃r)

)
Y m
n (ϕ, ϑ) , (2.2)

with the real-valued spherical harmonics Y m
n (ϕ, ϑ) (order n and degree m)
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2. Fundamentals of Fourier Acoustics

Y m
n (ϕ, ϑ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pm
n (cos ϑ) ·


√

2 sin(|m|ϕ) m < 0 ,

1 m = 0 ,√
2 cos(mϕ) m > 0 ,

(2.3)

where zenithal dependence is defined by the associated legendre functions
Pm
n (cos ϑ) and azimuthal dependence by the trigonometric functions.

Physically meaningful radial solutions are the spherical Bessel function jn(k̃r)
for incoming waves and the spherical Hankel function of the second kind
h

(2)
n (k̃r) for outgoing waves. The coefficients Cnm and Dnm are called the wave

spectra. The spherical Bessel and spherical Hankel functions are derived from
the ordinary Bessel and Hankel functions as

jn(x) =
( π

2x

)1/2

Jn+1/2(x) = R{h(2)
n (x)} (2.4)

h(2)
n (x) =

( π
2x

)1/2

Hn+1/2(x) . (2.5)

For outgoing waves, as in the case of compact loudspeaker arrays, we speak of
the exterior problem and Cnm = 0. The remaining radial function, the spherical
Hankel function of the second kind h

(2)
n , is simply referred to as hn from now

on.
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2.2. The Spherical Harmonics Transform

Figure 2.1.: The real-valued spherical harmonics for orders n = 0, ..., 4.

2.2. The Spherical Harmonics Transform

Continous Spherical Harmonics Transform

Any continous, real-valued function p(ϕ, ϑ) on the 2-sphere S2 can be expanded
in terms of the orthonormal spherical harmonics functions

p(ϕ, ϑ) =
∞∑
n=0

n∑
m=−n

ψnm Y
m
n (ϕ, ϑ) , (2.6)

ψnm =

∫∫
S2
p(ϕ, ϑ)Y m

n (ϕ, ϑ)dΩ = SHT {p(ϕ, ϑ)} , (2.7)

with the surface element dΩ = sinϑ dϑ dϕ. In case of an acoustic wave-field,
p(r0, ϕ, ϑ) is the pressure on the sphere of radius r0 and ψnm(r0) is called the
spherical wave spectrum

ψnm(r0) =

∫∫
S2
p(r0, ϕ, ϑ)Y m

n (ϕ, ϑ)dΩ. (2.8)
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2. Fundamentals of Fourier Acoustics

Discrete Spherical Harmonics Transform

The discrete spherical harmonics transform relies on a matrix formulation of the
above equations by sampling the continous functions at a limited number M of
discrete points. The number and distribution of the sampling points is crucial
for the inversion of the spherical harmonics matrix YN, which is necessary to
calculate the coefficient vector ψN

 p(ϕ1, ϑ1)
...

p(ϕM, ϑM)

 =

 Y
0

0 (ϕ1, ϑ1) . . . Y N
N (ϕ1, ϑ1)

...
...

...
Y 0

0 (ϕM, ϑM) . . . Y N
N (ϕM, ϑM)


ψ00

...
ψNN

 . (2.9)

As a requirement for a well-conditioned matrix YN the sampling points need to
be distributed appropriately (regarding the sampled set of spherical harmonics)
and the number of points M is greater or equal the number of spherical
harmonics

M ≥ (N + 1)2 . (2.10)

Formally, the condition number κ of a matrix is defined as the ratio between
the maximum and minimum value out of the set of singular values {σi} of the
matrix and is a measure of the sensitivity of the inverted matrix (κ ≥ 1).

κ(YN) =
σmax(YN)

σmin(YN)
(2.11)

Analysis. The left inverse of the spherical harmonics matrix YN is the minimum
mean-square error solution (MMSE) to the overdetermined system of equations
with M > (N + 1)2, where p is e.g. a pressure distribution recorded with a
spherical microphone array that we want to represent in terms of spherical
harmonics coefficients ψN.
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2.2. The Spherical Harmonics Transform

We minimize the squared error between our model representation pN and the
measured distribution p

min
ψN

||e||2 , with e = pN − p = YNψN − p (2.12)

∂

∂ψN

eTe = 2

(
∂

∂ψN

e

)T

e = 2Y T
N e = 2Y T

N YNψN − 2Y T
N p

!
= 0 (2.13)

ψN = (Y T
N YN)−1Y T

N p = Y +
N p = DSHT {p} . (2.14)

The left inverse (Y T
N YN)−1Y T

N inverts p = YNψN from the left side and is
referred to as encoder in Ambisonics.

Synthesis. If we are given a desired spectrum νN and need to find weights g
for M > (N + 1)2 loudspeakers (underdetermined system), the optimization
problem can be formulated to minimize the squared 2-norm of the weights

||g||2 → min , (2.15)

subject to : νN = Y T
N g . (2.16)

A cost function J(g,λ) with the Lagrange multipliers λ is formulated and
minimized:

J(g,λ) = ||g||2 + (νT
N − gTYN)λ , (2.17)

∂

∂gT
J(g,λ) = gopt − YN λ

!
= 0 ⇒ gopt = YN λ , (2.18)

∂

∂λT
J(g,λT) = νN − Y T

N g
!

= 0
g=gopt⇒ λopt = (Y T

N YN)−1 νN . (2.19)

Inserting λopt into gopt yields the right inverse YN(Y T
N YN)−1 of the spherical

harmonics matrix, which is referred to as decoder in Ambisonics

g = YN(Y T
N YN)−1 νN . (2.20)

9





3. Array Simulation and Beam
Design

3.1. Modal Beamforming and Beam Design

Directivity functions for spherical beamforming or Ambisonic panning use a
finite-order, i.e. resolution-limited, representation of a Dirac delta δ(θT

bθ − 1)
directed towards θb and evaluated in the variable direction θ,

g(θ) =
N∑
n=0

n∑
m=−n

wnm Y
m
n (θ)Y m

n (θb), (3.1)

where both of the direction unit vectors θ and θb are Cartesian unit vectors
θ = [cosϕ sinϑ, sinϕ sinϑ, cosϑ]T depending on the azimuth angle ϕ and
zenith angle ϑ; or ϕb and ϑb in case of θb. Y m

n are the spherical harmonics,
and typically, to avoid side lobes, the weights wnm are the max-rE weights
approximated by [19]:

wn = Pn
[

cos
(
π

180
137.9
N+1.51

)]
, (3.2)

Defining the vectors

yN(θ) = [Y m
n (θ)]n=0...N,m=−n...n, (3.3)

wN = [wn]n=0...N,m=−n...n, (3.4)

Eq. (3.1) can be re-expressed as

g(θ) = yN(θ)Tdiag{wN}yN(θb) , (3.5)

which defines a rotationally symmetric directivity pattern. The directivity
function of mixed-order is different by a mask M that selects a subset of fewer
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3. Array Simulation and Beam Design

spherical harmonics, see Fig. 3.2. The mask M has (N + 1)2 columns, each one
representing a spherical harmonic, and fewer rows, of which each selects one of
the harmonics to be a mixed-order component:

g(θ) = yN(θ)TMTdiag{w̃M}M yN(θb) (3.6)

= yM(θ)Tdiag{w̃M}yM(θb).

To get w̃M = [w
(M)
nm ] we choose the vector θx = [1, 0, 0]T to the x direction

w̃(M)
nm = wn

∑N
n′=n[Y

|m|
n′ (θx)]2wn′∑N

n′=n[Y
|m|
n′ (θx)]2wn′Mn′|m|

. (3.7)
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3.1. Modal Beamforming and Beam Design

(a) Full SH-set, N = 3
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(b) Horizontal cut
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(c) Vertical cut

(d) Mixed-order subset, N = 4
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(e) Horizontal cut
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(f) Vertical cut

Figure 3.1.: Full SH-set of order N = 3 (a), horizontal cut (b) and vertical cut (c) through the
rotationally-symmetric max-rE-weighted pattern of a horizontal beam. Mixed-
order SH-subset of order N = 4 (d), horizontal cut (e) and vertical cut (f) of the
mixed-order beam pattern with the corrected weights w̃. Circles indicate 0, -10,
-20 dB.

Mixed-order schemes in Fig. 3.2 and associated spherical harmonic subsets can
be controlled using either platonic layouts or new ring layouts consisting of a
horizontal ring and two elevated rings. The platonic arrays can also be seen as
3-ring layouts, with the middle ring being a zig-zag ring of loudspeakers. That
is, the dodecahedron as a 1|1̃0|1 layout and the icosahedron as a 5|1̃0|5 layout,
which yields extended mixed-order control schemes for those platonic arrays.
The coordinates of the new 3-ring layouts are given in Tab. 3.2.

The number of transducers nh in the horizontal ring determines the maximum
achievable 2D-order N2D [4],

nh ≥ 2 N2D + 1. (3.8)

The number of transducers ne in the elevated rings determines how sparse

13



3. Array Simulation and Beam Design

(a) dode-o2 (b) dode-o3 (c) ico-o3 (d) ico-o4

(e) 3|9|3 (f) 4|8|4 (g) 4|9|4 (h) 5|10|5

Figure 3.2.: Control schemes for platonic and mixed-order layouts. Rows indicate the spherical
harmonics order n = 0 . . . 4 and columns indicate the degrees m = −n . . . n.
Scheme (b) also holds for the 373 layout.

our mixed-order control scheme is going to be. As a nomenclature we define
ne|nh|ne to refer to a specific layout, e.g. the 4|8|4-layout, built as pseudo-
rhombicuboctahedron speaker (see Fig.4.2).

We regard the condition number κ of the mixed-order spherical harmonics matrix
YM evaluated at the transducer coordinates θl, to ensure a well-conditioned
pseudo-inverse necessary for the array control,

YM = MYN, (3.9)

with YN = [Y m
n (θl)]

l=1...L
n=0...N,m=−n...n ,

Table 3.1 shows that all YM matrices (subsets see Fig. 3.2) are sufficiently
well-conditioned as κ(YM)�∞.

Ico. 5|10|5 4|9|4 3|9|3 4|8|4 3|7|3 Dod.

L 20 20 17 15 16 13 12
κ 2.4 1.8 1.7 1.9 1.7 2.0 1.6
N2D 4 (3) 4 4 4 3 3 3 (2)

N3D 3 ≈3 ≈3 2 ≈3 2 2

Table 3.1.: Condition number κ of YM, number of transducers L, order of horizontal control
N2D and vertical control N3D of simulated (mixed-order) layouts.

14



3.2. The Spherical Cap Model for Sound Radiation

Lay. 4|8|4 3|9|3 3|7|3 4|9|4 5|10|5
ϕ-Hor. 0:45:315 0:40:320 0:51.4:308.6 0:40:320 0:36:324
ϕ-Up. 0:90:270 20:120:260 20:120:260 0:90:270 18:72:306
ϕ-Low. 45:90:315 80:120:320 80:120:320 45:90:315 54:72:342

Table 3.2.: Coordinates of mixed-order layouts. Syntax of notation is [start:step:stop] degrees
of azimuthal coordinates of the horizontal, upper and lower ring of a layout. E.g.
0:40:320 denotes [0◦,40◦,80◦,. . . ,280◦,320◦]. Elevation coordinates are 0◦,+45◦,-
45◦ for horizontal, upper and lower ring respectively.

Figure 3.3.: Spherical cap model.

3.2. The Spherical Cap Model for Sound
Radiation

To simulate interesting layouts acoustically, a reasonably high-order N̂ = 35
model was applied that assumes moving spherical caps at the loudspeaker
positions on an otherwise rigid sphere [20], see Fig. 3.3. Cap-shaped surface
velocity distributions can be expressed in the spherical harmonics domain as
coefficients νnm(R) at a radius R that can be extrapolated to a sound pressure
at an analysis radius r by the following relation [18]:

15



3. Array Simulation and Beam Design

p(θ, k̃r) = iρ0c
N̂∑
n=0

hn(k̃r)

h′n(k̃R)

n∑
m=−n

νnm
∣∣
R
Y m
n (θ). (3.10)

with the real-valued spherical harmonics Y m
n , the spherical Hankel function of

the second kind hn and its derivative h′n, the speed of sound c, medium density
ρ0, wave number k̃ = 2πf

c
and the imaginary unit i. In our case, the velocity

coefficient νnm is computed as a sum over the L cap contributions a
(l)
nm weighted

by the velocities v(l)

νnm
∣∣
R

=
L∑
l=1

a(l)
nm v(l). (3.11)

An aperture function a(l)(ϕ, ϑ) that equals one in the area of the l-th cap
(opening angle α, direction θl) and zero on the rigid sphere is defined by.

a(l)(ϕ, ϑ) = u
(
θTθl − cos

α

2

)
, (3.12)

θ =

cos(ϕ) sin(ϑ)
sin(ϕ) sin(ϑ)

cos(ϑ)

 , θl =

cos(ϕl) sin(ϑl)
sin(ϕl) sin(ϑl)

cos(ϑl)

 , (3.13)

where the unit step function u(.) equals one for positive arguments, zero
otherwise.

To get the harmonic coefficients a
(l)
nm of a specific piston at θl we compute the

integral for an axisymmetric piston location and exploit the shift property of
the SHT . Thus, the SHT of equation (3.12) yields

a(l)
nm = SHT {a(l)(ϕ, ϑ)} = Y m

n (θl) · SHT {a(ϑ)} (3.14)

= Y m
n (θl) ·

2n+ 1

2

∫ α/2

0

Pn(cos ϑ) sinϑdϑ (3.15)

= Y m
n (θl) · an. (3.16)
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3.2. The Spherical Cap Model for Sound Radiation

The integral is computed by using a recurrence formula for the Legendre
polynomials and yields [18]

an =

{
1
2

(
Pn−1(cos α

2
)− Pn+1(cos α

2
)
)

n ≥ 1
1
2
(1− cos α

2
) n = 0

. (3.17)

The model can be written in matrix form

p(θ) = y(θ)Tdiag{h}diag{a}Y v = y(θ)TQv. (3.18)

The matrices and vectors used are defined as

h =

[
iρ0c

hn(k̃r)

h′n(k̃R)

]
n=0...N̂,m=−n...n

(3.19)

a = [an]n=0...N̂,m=−n...n (3.20)

y(θ) = [Y m
n (θ)]n=0...N̂,m=−n...n (3.21)

Y = [y(θ1)...y(θL)]. (3.22)

Now we introduce a control matrix C that yields the cap velocities v for a
desired beam pattern in the controllable mixed-order subscpace, encoded as
diag{w̃M}yM(θb),

pM(θ) = yM(θ)TQMC diag{w̃M}yM(θb). (3.23)

To match the above with Eq. (3.7) the control matrix C becomes using the
pseudo inverse (.)+,

QMC = I =⇒ C = Q+
M. (3.24)

17



3. Array Simulation and Beam Design

Figure 3.4.: Blue dots indicate the J = 5100 point t-design sampling to calculate a 3D
effective order Neff,3D for a simulated beam pattern. Red markers indicate
J = 72 equi-angular sampling points to calculate a 2D effective order Neff,2D.

3.3. Simulation of Loudspeaker Layouts

A simulation study was conducted calculating effective orders of horizon-
tal beams for the various layouts. Therefore, the simulated beam pattern
(Eq. (3.18)) was regularly sampled with a J = 5100 point t-design [6] to
calculate the energy vector rE as a measure of directivity

rE =

∑J
j=1 θj p(θj)

2∑J
j=1 p(θj)

2
. (3.25)

The effective order Neff,3D is calculated from the length ‖rE‖ of the energy
vector [4, 19]

Neff,3D =
π

180

137.9

arccos ‖rE‖
− 1.51 . (3.26)

An effective order Neff,2D is calculated by a circular, even-angular sampling
(J = 72, i.e. 5◦ steps) of the beam pattern in the horizontal plane

Neff,2D =
π

180

90

arccos ‖rE‖
− 1 . (3.27)
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3.3. Simulation of Loudspeaker Layouts

3.3.1. Low-Frequency Simulation: Modal Beamforming

The results shown in Fig. 3.5 indicate that Platonic arrays can take an order
jump in the 2D metric, although there is a slight loss in the 3D metric for the
dodecahedral layout. The simulations also show that mixed-order layouts like
the 4|8|4-layout and the 3|9|3-layout achieve equal 2D ratings compared to the
icosahedral layout, while saving 4 to 5 loudspeakers.

Figs. 3.6 to 3.8 visualize the degrading effect of aliasing for a selection of layouts.
Beam patterns are depicted at a frequency of 200 Hz and at a higher frequency
of 800 Hz. Note that the 4|8|4-layout and the icosahedral layout create identical
horizontal beam patterns at low frequencies.
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Figure 3.5.: 2D/3D effective orders of horizontal beam. Markers indicate [200, 400, 800] Hz,
descending from north-east to south-west due to spatial aliasing. Platonic arrays
gain a full order (in 2D) with mixed-order control. The 393-array achieves
4th order in 2D rating with 5 speakers less than an icosahedral array. Longer
trajectories indicate less robustness against spatial aliasing.
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3. Array Simulation and Beam Design

(a) (b) (c) (d)

Figure 3.6.: Layout of the 3|9|3-array (a), spherical harmonics subset (b) and mixed-order
beam pattern simulated with the spherical cap model at f=200 Hz (c) and f=800
Hz (d).

(a) (b) (c) (d)

Figure 3.7.: Layout of the 4|8|4-array (a), spherical harmonics subset (b) and mixed-order
beam pattern simulated with the spherical cap model at f=200 Hz (c) and f=800
Hz (d).

(a) (b) (c) (d)

Figure 3.8.: Layout of the icosahedral array (a), spherical harmonics subset (b) and 3rd order
beam pattern simulated with the spherical cap model at f=200 Hz (c) and f=800
Hz (d).
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3.3. Simulation of Loudspeaker Layouts

3.3.2. High-Frequency Simulation: AllRAD-based Panning

So far simulations were restricted to the frequency range in which modal
beamforming is feasible. For high frequencies spatial aliasing heavily impairs
the directivity and causes erroneous side-lobes. An AllRAD-based panning
approach is simulated and compared with the classical beamforming approach
to investigate possible improvements using the loudspeaker’s naturally focused
radiation at high frequencies.

By encoding the beam direction yN(θb) with a sufficiently high order, e.g.
N = 5 or higher, Allround-Ambisonic Decoding (AllRAD) [19] approximates
VBAP [14], while remaining within the ambisonic domain. First, we decode to
a virtual layout of J = 5100 t-design points and therefore evaluate the spherical
harmonics up to order N at those points.

YN,J = [yN(θ1), . . . ,yN(θJ)]T. (3.28)

The L×J matrix G renders the J = 5100 virtual sources onto L loudspeakers

G = [g1, . . . , gJ]. (3.29)

Note that only 1, 2 or in most cases 3 values of gj are non-zero, depending
on the direction θj, with j = 1, . . . , J. As a source beam we choose a max-rE

weighted 5th or 7th order beam, see Fig. 3.9, and therefore need to apply order
dependent weights wN. We arrive at the L× (N + 1)2 panning decoder matrix
D

D =
4π

J
G YN,J diag{wN}. (3.30)

By pulling all t-design points that are within an elevation angle of e.g. β = ±15◦

onto the horizon, we can avoid energy being distributed up- or downwards
for horizontal panning directions. In particular, for the icosahedral array we
enforce pairwise panning along the the zig-zag of horizontal loudspeakers
similar to a true ring layout as seen in Fig. 3.10(c) by creating a virtual ring of
loudspeakers that is decoded to the actual zig-zag layout. Additionally, layouts
may require imaginary loudspeakers to enable a symmetric triangulation. A
valid triangulation can be achieved by finding a convex hull to the set of points,
that means finding the smallest convex set that contains the points [2]. For
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3. Array Simulation and Beam Design

(a) Panning-Beam N = 5 (b) Panning-Beam N = 7

Figure 3.9.: Max-rE beams of order N = 5 or N = 7 are sufficiently narrow to approximate
panning via AllRAD, as the magnitude of the beam pattern shows a quick
decay (yellow to blue) around the desired panning direction. Exemplary for the
4|8|4-layout.

the icosahedral array, triangulations that rely on such search algorithms are
depicted in Fig. 3.10 (a) and (c). However, we might also be interested in
non-convex triangulations such as the one depicted in Fig. 3.10 (b).

A comparison of those triangulations based on the effective order N2D,eff of
a horizontal panning direction has been conducted. The results in Fig. 3.11
indicate that a virtual ring with a modified t-design is the best solution. Al-
though the spherical cap modal is too idealistic in the high-frequency range
and absolute values might differ in reality, the order of performance is still
valid and confirmed by measurements. Especially the model-based comparison
of different arrays shown in Fig. 3.12 and Fig. 3.13 is reflected by the mea-
surement results in chapter 6. The 4|8|4-array exhibits the highest focus for
high frequencies, as it happens that beam directions are on-axis loudspeaker
directions. In between two horizontal speakers the order is likely to drop down
to values of an icosahedral array.
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3.3. Simulation of Loudspeaker Layouts

(a) Equi-Triangular (b) Zig-Zag Triangles (c) Virtual Ring

Figure 3.10.: For the icosahedral array, different triangulations have been investigated. Big
colored markers are real loudspeakers, big grey markers imaginary loudspeakers
to be downmixed. Small black dots indicate the J = 5100 t-design points. In
case of the virtual ring (c), additionally the t-design points close to the horizon
are pulled towards the horizon, to decrease the spread of energy.
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Figure 3.12.: High-frequency simulation comparing the 2D effective order of modal beam-
forming and AllRAD-based panning. The crossover for arrays simulated with a
radius r = 0.21m would be around 1 to 1.5 kHz.
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Figure 3.13.: High-frequency simulation comparing the 3D effective order of modal beam-
forming and AllRAD-based panning. The crossover for arrays simulated with a
radius r = 0.21m would be around 1 to 1.5 kHz.
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4. Array Design and
Measurements

4.1. Design of the 4|8|4-Array

We decided to build a wooden prototype of the 4|8|4-layout (r = 0.18 m,
5” Satori MW13P-4 transducers from SB Acoustics) as it can be built as a
regular polyhedron composed of equi-sided square and triangular surfaces (a
pseudo-rhombicuboctahedron, see Fig.4.1). Additionally, the number of required
D/A-converter channels to control the array is 16, which is very practical.

The series of pictures in Fig. 4.2 shows the process of glueing together the
squares and triangles. The loudspeakers are mounted into the 16 squares and
four of the triangles are used to place 4-channel NL8MPR connectors. The
bottom square is mounted with a K&M 19656 loudspeaker flange.

Figure 4.1.: Left: The Rhombicuboctahedron Middle: Exploded Rhombicuboctahedron Right:
Pseudo-rhombicuboctahedron by rotation of the bottom part. Credit: [17]
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4. Array Design and Measurements

(a) (b) (c)

(d) (e) (f)

Figure 4.2.: The building process of the pseudo-rhombicuboctahedral array.

4.2. Design of the 3|9|3-Array

Furthermore, an OpenSCAD model of a 3|9|3-array housing was created, see
Fig. 4.3, which is freely downloadable1. The housing has been 3D-printed with
a radius of r = 0.12 m and is mounted with 2.5” transducers from SB Acoustics
(SB65WBAC25-4). The 393-array only counts 15 loudspeakers (smaller and
cheaper transducers) which leads to the idea of staging the array with an
additional subwoofer and yields a new ”15 + 1” concept. The connectors and
the bottom flange are the same as for the 4|8|4-array.

1https://github.com/stefanriedel/the-393-array
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4.3. MIMO voltage-to-velocity measurements

Figure 4.3.: OpenSCAD model of the 3|9|3 housing. Top and bottom part are 3D-printed
and screwed together.

4.3. MIMO voltage-to-velocity measurements

To measure the crosstalk between the loudspeakers that are mounted in a
common housing, voltage-to-velocity measurements are conducted by means
of Laser-Doppler-Vibrometry (see Fig. 4.4). Later in Sec. 5.4 a crosstalk-
cancellation filter is designed based on the L× L MIMO system of measured
frequency responses.

Velocity measurements are free from environmental noise and valid for low- to
mid-range frequencies until the modal breakup of a loudspeaker cone. As we
are measuring at a single, central point of the transducer the measurement does
not properly characterize the behaviour at high frequencies. The measurement
data is freely available for download2.

2http://phaidra.kug.ac.at/o:77571, http://phaidra.kug.ac.at/o:77568
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4. Array Design and Measurements

(a) (b)

Figure 4.4.: MIMO voltage-to-velocity measurements with a laser-doppler vibrometer aiming
at the center of a loudspeaker cone. All loudspeakers are excited with an expo-
nentially swept-sine and the crosstalk is measured at the loudspeaker the LDV
is aimed at.
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Figure 4.5.: Loudspeaker velocity measurements of the 3|9|3-array. Active paths are shown in
blue, their regularized mean in red and passive paths (due to acoustic crosstalk)
are shown in grey.
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4.4. MIMO voltage-to-sound pressure measurements

4.4. MIMO voltage-to-sound pressure
measurements

Directional impulse response (DIR) measurements from all of the L loudspeakers
to a surrounding spherical microphone array with an effective number of
R = 648 measurement points are conducted. The measurements are used to
later evaluate the directivity of the arrays and also for an overall timbral
equalization (Sec. 5.6).

The loudspeaker array is positioned on a remotely-controllable turntable and
surrounded by a semi-circular microphone array of 18 microphones, see Fig. 4.6.
By rotating the loudspeaker array in 10◦ steps a measurement resolution of
10◦ × 10◦ (azimuth × zenith) is achieved, see Fig. 4.7. The result is a set of
L× 648 impulse responses. The measurement data is available in the Spatially
Oriented Format for Acoustics (SOFA) and can be downloaded 3.

(a) (b)

Figure 4.6.: MIMO sound pressure measurements with a surrounding microphone array.

3http://phaidra.kug.ac.at/o:77431, http://phaidra.kug.ac.at/o:77567
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4. Array Design and Measurements

Figure 4.7.: Sampling layout of the MIMO sound pressure measurements (taken from [13]).
The figure shows the R = 36 · 18 = 648 sampling points, resulting in a 10◦ × 10◦

(azimuth and zenith) resolution.
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5. Filter Design for
Variable-Directivity Control

5.1. System Overview and Two-Band Approach

As shown in the control overview, figure 5.1, a two-band approach is proposed.
Since we’re sampling the sphere at discrete points, we’re only able to control
the soundfield up to a certain frequency, the spatial aliasing frequency. From
there on the beamforming will be heavily impaired. Around this spatial aliasing
frequency, we set the crossover to a panning approach. To stay within the
ambisonic workflow and framework, an AllRAD [19] based approach is presented.
By encoding sufficiently high (e.g. 5th or 7th order), we can use this relatively
narrow encoding beam as a panning direction.

Linkwitz-Riley

AllRAD-

Crossover

Radiation-Control

15 SISO

SH/Beam Weights
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16× 15 MIMO

Driver-Matching
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Figure 5.1.: Two-band control system diagram.
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5. Filter Design for Variable-Directivity Control

5.2. Linkwitz-Riley Band Splitting

A Linkwitz-Riley crossover is composed of a parallel high-pass and low-pass
cascade of Butterworth filters. A single butterworth filter shows a -3 dB drop at
the cut-off frequency fc, a cascade of two thus exhibits -6 dB which yields a flat
response when adding up the two bands of the crossover. For our filter design
we used a Linkwitz-Riley filter of 6th order, cascading two Butterworth filters of
3rd order. This is useful to get a steep crossover between the beamforming-band
and the panning-band.

A thorough definition of the Butterworth filters is useful as the regularization
filterbank in subsec. 5.3.2 is also designed from Butterworth filters. The transfer
function for an nth order Butterworth lowpass filter is given as

Ln (sc) =
1

Dn (sc)
, (5.1)

with the denominator Dn(s) being a Butterworth polynomial with the normal-
ized frequency sc = i ω

ωc

Dn (sc) =

n
2∏

k=1

[
s2
c + 2 sc cos

(
2k − 1

2n
π

)
+ 1

]
n = even ,

Dn (sc) =

n−1
2∏

k=1

[
s2
c + 2 sc cos

(
2k − 1

2n
π

)
+ 1

]
(sc + 1) n = odd . (5.2)

A butterworth highpass filter is given by lowpass-highpass transformation
replacing sc with 1/sc in the above equations:

Hn(sc) = Ln(1/sc) . (5.3)

For example, a second-order highpass filter is derived to
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5.2. Linkwitz-Riley Band Splitting
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Figure 5.2.: Linkwitz-Riley Crossover of different orders at fc = 1 kHz.

H2(sc) = L2(1/sc) =
1

(1/sc)2 +
√

2 (1/sc) + 1
=

s2
c

s2
c +
√

2 sc + 1
. (5.4)

A single Linkwitz-Riley crossover of (2n)th order C2n(sc) is then defined as a
parallel section of cascaded Butterworth filters

C2n(sc) = Ln(sc)
2 + (−1)nHn(sc)

2 . (5.5)
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5. Filter Design for Variable-Directivity Control

5.3. Radial and Angular Control for the
Beamforming Band

In our actual filter design we apply a regularization filterbank diag{r} to the
control matrix C in Eq. (3.24) to limit the loudspeaker excursion. Moreover,
we can separate the matrix into a well-conditioned frequency-independent
decoder Y +

M , see Tab. 3.1, and a diagonal component diag{f} that contains the
regularized inverse of diag{hM}, the inverse of diag{aM} as well as the weights
w̃M

C̃ = (diag{hM} diag{aM}YM)+ diag{w̃M} diag{r}
= Y +

M diag{f} = Y T
M (YMY

T
M )−1 diag{f}. (5.6)

The regularization is based on the limited-excursion design presented in [21]
and employs a low-latency filterbank described in [7].

5.3.1. Angular Control

The frequency independent L× nM decoder matrix Y +
M computes L velocities

from an input pattern composed of nM mixed-order harmonics

Y +
M = Y T

M (YMY
T

M )−1 . (5.7)

5.3.2. Radial Control

A direct inversion of the radial component diag{hM} leads to instable filters,
see fig. 5.3. We need to apply a filterbank diag{r} that stabilizes the radial
filters to achieve a limited loudspeaker excursion, while maintaining constant
loudness throughout the frequency range.

Unlimited radial filters exhibit slopes of 1/fn+1. To limit the excursion instead
of velocity |xl| < xmax, we need an additional factor 1/f , as the excursion is
defined as the integral of the velocity. This yields high-pass limitation filters
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5.3. Radial and Angular Control for the Beamforming Band

12.5 25 50 100 200 400 800 1.6k

0

20

40

60

80

100

 frequency / Hz

 r
a

d
ia

l 
fi

lt
e

rs
 /

 d
B

 

 

n=0

n=1

n=2

n=3

n=4

Figure 5.3.: Radial filters up to 4th order for rv = 0.21m.

with slopes of fn+2, but if we want to only drive efficiently radiated modes, it
is necessary to use slopes of at least fn+3.

A low-latency implementation is built of cascaded (second-order section) but-
terworth filters (Linkwitz-Riley, see. Sec. 5.2). For this reason, we can only
design even order slopes.

Using the definition of Butterworth filters with the normalized frequency
sc = s

ωc
= i ω

ωc
and the cut-off frequencies wc for c = 0, ..., 4 we get a filterbank

of Linkwitz-Riley bandpass crossovers

B0(s) = H2(s0)2 L2(s1)2 , (5.8)

B1(s) = H2(s1)2 L3(s2)2 , (5.9)

B2(s) = H3(s2)2 L3(s3)2 , (5.10)

B3(s) = H3(s3)2 L4(s4)2 , (5.11)

B4(s) = H4(s4)2 . (5.12)

Figure. 5.2 depicts the phase responses of even-order Linkwitz-Riley crossovers,
as we find them in our regularization filterbank. Since bands of different cut-off
frequencies and slopes exhibit different (shifted) phase responses, the addition
of those bands leads to notches in the sum response at the frequency where the
phase differs by 180 degrees.

A solution is to ensure that all bands have the same phase response by applying
allpass-filters that correct the phase of every bandpass to a common phase
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5. Filter Design for Variable-Directivity Control

response. So far, the phase of Bj(s) is composed of two slopes, except B4(s)
which is just a highpass and has just one slope.

We are adding to each of these bandpass filters the phase of the other Linkwitz-
Riley crossovers. For example, B0(s) has the slopes at s0 and s1 and we are
going to add the phase of the crossovers at s2, s3 and s4.

First we define an allpass filter An(s) that exhibits a flat magnitude response
and the phase shift of a (2n)th order Butterworth lowpass as

An(sc) =
D∗n(sc)

Dn(sc)
, (5.13)

where Dn is the nth order Butterworth polynomial and (.)∗ denotes complex
conjugation.

The allpass filterbank Ãj(s) is then given by

Ã0(s) = A3(s2)A3(s3)A4(s4) , (5.14)

Ã1(s) = A2(s0)A3(s3)A4(s4) , (5.15)

Ã2(s) = A2(s0)A2(s1)A4(s4) , (5.16)

Ã3(s) = A2(s0)A3(s1)A3(s2) , (5.17)

Ã4(s) = A2(s0)A3(s1)A3(s2)A3(s3) (5.18)

and the phase corrected bandpass filterbank B̃j(s), that sums up to a nearly
flat magnitude response (see. Fig. 5.4), denotes to

B̃j(s) = Bj(s) Ãj(s) j = 0, . . . , 4 . (5.19)

The sum of these bandpass filters might deviate in magnitude from a perfectly
flat response, as only single crossover pairs are complementary. Deviations are
corrected however by a minimum-phase filter (see Sec. 5.6). We discretize the
frequency response and introduce the discrete frequency bin k = 1, ...,NFFT.

To ensure constant amplitude of radiated sound (acoustic free-field normal-
ization) across the bands of the filterbank we need to normalize the weights
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Figure 5.4.: Filterbank for the regularization of the radial filters.

applied to the spherical harmonics. We compute the normalization factors cj,
that depend on the max-rE weights wn,N as follows

wn,N = Pn
[

cos
(
π

180
137.9

N+1.51

)]
n = 0, . . . ,N (5.20)

cj =

j∑
n=0

wn,j (2n+ 1) j = 0, . . . , 4 (5.21)

The band-dependent weights are stacked into the matrix [wn,j] to define the
weight vectors wj:

[wn,j] =


w0,0 w0,1 w0,2 w0,3 w0,4

0 w1,1 w1,2 w1,3 w1,4

0 0 w2,2 w2,3 w2,4

0 0 0 w3,3 w3,4

0 0 0 0 w4,4

 =
[
w0 w1 w2 w3 w4

]
. (5.22)

Applying the normalization yields the weight vectors w̃j for a constant ampli-
tude across all bands

w̃j =
wj

cj
j = 0, . . . , 4 . (5.23)
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5. Filter Design for Variable-Directivity Control

We define the vector of non-regularized far-field radial filters H−1
n , which are

depicted in Fig. 5.3,

hinv(k) = [Hn(k)−1]n=0...4 Hn(k) =
ρ0c

k̃

in

h′n(k̃R)eik̃R
, (5.24)

with the wave number k̃ relating to the discrete frequency bin k = 1, ...,NFFT

k̃ =
2π

c

k

NFFT

fs , (5.25)

and a vector that consists of the order-dependent cap model coefficients an

a = [a0, . . . , a4] , (5.26)

to compute the jth band of regularized radial filters:

fj(k) = B̃j(k)hinv(k) diag{w̃j}diag{a}−1 . (5.27)

Lastly, we sum the bands together (as it is a parallel section of Linkwitz-
Riley crossovers) and end up with order dependent regularized radial filters as
depicted in Fig. 5.5.

f(k) =
4∑
j=0

fj(k) = [fn(k)]n=0,...,4 . (5.28)

We expand it to account for the (2n+ 1) degrees within an order n and apply
our mixed-order projection matrix M :

fN(k) = [fn(k)]n=0...N,m=−n...n , (5.29)

fM(k) = M fN(k) . (5.30)

To verify the radial filters and the cut-off frequencies we plot the maximum
excursion in dB for every band and for the sum of all bands, see Fig. 5.6.
Therefore, we encode B = 120 beam directions (t-design), apply the radial
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Figure 5.5.: Limited radial filters.
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Figure 5.6.: Limited driver excursion.

filterbank and decode to L velocities. By multiplying with 1/(i2π k
NFFT

fs) we
integrate the velocity vmax,j(k) and get the excursion xmax,j(k)

vmax,j(k) = max{Y +
M diag{fj(k)}Ybeam} , (5.31)

xmax,j(k) =
vmax,j(k)

i2π k
NFFT

fs
, (5.32)

vmax(k) = max{Y +
M diag{f(k)}Ybeam} , (5.33)

xmax(k) =
vmax(k)

i2π k
NFFT

fs
. (5.34)
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5. Filter Design for Variable-Directivity Control

5.4. MIMO Crosstalk-Cancellation

By mounting the loudspeakers in a common enclosure, the large air volume
represents less stiffness at low frequencies, but we face acoustic crosstalk. That
is, if one transducer is driven by a signal, the others will vibrate passively. This
is undesirable, as we need to control the transducers independently to achieve
modal beamforming. Formally, our L× L MIMO system T can be described
as

v(ω) = T (ω) u(ω). (5.35)

In the following, the frequency dependence of all MIMO and SISO systems is
dropped to increase readabiltiy.

v1

v2
...
vL

 =


T11 T12 . . . T1L

T21 T22 . . . T2L
...

...
. . .

...
TL1 TL2 . . . TLL

 ·

u1

u2
...
uL

 (5.36)

A system inversion yields the voltage signals u for a decoupled control of cone
velocities.

u = T−1 · v (5.37)

A full system inversion, that results in both flat magnitude responses of the
direct paths and crosstalk-cancellation over the whole frequency range can lead
to acausal filters and unfeasibly long impulse responses in the time domain.
Regarding the crosstalk-cancellation, we can effectively reduce the complexity
of the inverted system by discarding frequencies above and below certain cut-
off frequencies. For the direct paths, we only equalize the drivers to a mean
response. A flat response can be created in the very end of the control chain
and is not necessary to be achieved by the MIMO canceller.

The active responses equalized to the mean response Hmean yield the SISO
equalizers Heq,l,

TllHeq,l = Hmean, for l = 1, . . . ,L, (5.38)

heq = [Heq,l]l=1,...,L
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5.4. MIMO Crosstalk-Cancellation

that are applied to get the equalized MIMO system

Teqd = T diag{heq} (5.39)

=


Hmean T12Heq,2 . . . T1LHeq,L

T21Heq,1 Hmean . . . T2LHeq,L
...

...
. . .

...
TL1Heq,1 TL2Heq,2 . . . Hmean


= HmeanI + [Teqd − diag{diag{Teqd}}]
= Teqd,active + Teqd,passive .

To obtain short crosstalk cancellation filters, regularization is applied. As
mentioned, the filter complexity can be reduced significantly by bandpass
filtering the passive system matrix before the inversion.

The lower and upper cut-off frequencies of the bandpass determine the range
that we wish to achieve crosstalk-cancellation.

Passive paths are linear-phase band-passed for regularization

T̃eqd = Teqd,active + Teqd,passive HBP , (5.40)

and altogether, the SISO equalizers times the filtered inverse T̃−1
eqd times the

mean response yields a matching and crosstalk cancelling system Xc

Xc = diag{heq} T̃−1
eqd Hmean. (5.41)

Ideally, in the frequency range of the bandpass (HBP = 1, so T̃eqd = Teqd) this
equalization yields a crosstalk-cancelled system matching the active responses,
applied from the voltage side:

TXc = T diag{heq} T̃−1
eqd Hmean (5.42)

= T diag{heq}diag{heq}−1 T−1 Hmean

=


Hmean 0 . . . 0

0 Hmean . . . 0
...

...
. . .

...
0 0 . . . Hmean

 .
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Figure 5.7.: Crosstalk-Cancellation performance for the 3|9|3-array, all curves relative to
mean active response. Cut-off frequencies fb1 = 100 Hz and fb2 = 2.9 kHz. Active
paths are shown in blue. Passive paths in grey.

Fig. 5.7 shows the crosstalk-cancellation performance for the 3|9|3-array. The
mean active path has been subtracted to show that within the bandpass
frequency range (fb1 = 100 Hz to fb2 = 2.9 kHz) we have little deviation
between active responses and significant cancellation of up to 20 dB. The
bandpass regularization of the crosstalk paths before system inversion has a
beneficial effect on impulse response length of the cancellation filters as shown
in Fig. 5.8.

5.5. High-Frequency AllRAD Panning

In the high-frequency band we employ AllRAD-based panning that approxi-
mates VBAP while remaining in the ambisonics domain (see Subsec. 3.3.2).
The decoder was derived in Eq. (3.30) to

D =
4π

J
G YN,J diag{wN} . (5.43)
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Figure 5.8.: Bandpass filtering of passive paths before the inversion (regularized inversion)
yields short and causal direct-path impulse responses for the crosstalk-canceller.

To compensate the phase delay of the lower band, that is caused by the
crosstalk canceller and the Linkwitz-Riley crossover a simple group delay has to
be applied to the high-frequency band. The amount of samples nd is calculated
by cross-correlation and yields d(k) = exp{−ik 2π

NFFT
nd}.

5.6. Band Summation and Timbral Equalization

For every frequency bin k we evaluate the following matrix computations

H1(k) = HHP(k) D d(k) , (5.44)

H2(k) = HLP(k) Xc(k) Y +
M diag{f(k)} , (5.45)

H(k) = [H1(k) +H2(k)] E(k) . (5.46)

The last block in the processing chain is the timbral on-axis beam equalization
E(k). It flattens the response of the mean of all on-axis beams (beams directed
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towards one of the loudspeakers). This equalization does not influence the beam
pattern, but linearizes the timbral quality of the loudspeaker array.

It is based on directional impulse response (DIR) measurements from all of the
L loudspeakers to a surrounding spherical microphone array with an effective
number of R = 648 measurement points, where each path of the MIMO system
is described by an impulse response of nIR = 1024 samples.

The idea is to combine the measurements with our specific control filters H
and thus have access to the magnitude response of the radiated beams. A filter
is then designed that equalizes the response.

The definition of the following matrices is helpful:

P (k) = [Prl(k)]l=1...L
r=1...R [R× L] (5.47)

Ymic = [Y m
n (θr)]

n=0...Nmic,m=−n...n
r=1...R [R× (Nmic + 1)2] (5.48)

YL = [Y m
n (θl)]

l=1...L
n=0...N,m=−n...n [(N + 1)2 × L] (5.49)

Yeval = [Y m
n (θl)]

n=0...Nmic,m=−n...n
l=1...L [L× (Nmic + 1)2] , (5.50)

where P (k) is the R× L MIMO measurement matrix in the frequency domain
at the frequency bin k and Ymic is a matrix of spherical harmonics sampled at
the R microphone positions up to the analysis order Nmic = 17. YL and Yeval

are the on-axis beam-encoding and on-axis sound-pressure evaluating matrices,
sampled up to the orders N and Nmic respectively.

First, the DIR measurements are encoded into the spherical harmonics domain
with an analysis order Nmic = 17

PSH(k) = Y +
micP (k) . (5.51)

Now we combine the control filters H(k) with the measurements by frequency-
domain MIMO filtering to obtain a (Nmic+1)2×(N+12) systemW that describes
the transmission from an input pattern of (N + 1)2 spherical harmonics to an
acoustically measured pressure spectrum of (Nmic + 1)2 spherical harmonics
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W (k) = PSH(k)H(k) . (5.52)

We can apply far-field extrapolation filters to the system W (measured pressure
spectrum at R = 0.75 m)

h(k) =

[
in+1

k̃ hn(k̃R) eik̃R

]
n=0...Nmic,m=−n...n

k̃ =
2π

c

k

NFFT

fs , (5.53)

Wr�(k) = diag{h(k)}W (k) . (5.54)

Because we have a fully characterized system in the SH-domain, we can investi-
gate any combination of encoded beam directions and analysis directions. As we
are interested in the frequency response of the L on-axis beams we encode these
directions into a (N + 1)2×L matrix YL and right-multiply to our transmission
system Wr�.

Finally, we evaluate the pressure spectrum at the directions of the loudspeakers
to obtain a matrix of L × L frequency responses (L on-axis beams to the
identical L directions of interest)

PL×L,r�(k) = YevalWr�(k)YL . (5.55)

With this L × L transmission matrix we can compute either a diffuse-field
response or a free-field response (using only the diagonal elements of the MIMO
matrix). The free-field response PFF(k) is calculated by averaging over all the
on-axis responses

PFF(k) =

√√√√ 1

L

L∑
l=1

|Pll(k)|2 . (5.56)
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For the diffuse-field response we average twice, first for every beam direction
over the L output paths. After that, we average the L diffuse beam responses
to a single diffuse-field response PDF(k)

PDF(k) =

√√√√ 1

L2

L∑
l=1

L∑
j=1

|Plj(k)|2 . (5.57)

As our equalizer E(k) we choose the regularized inverse of the 12th-octave
smoothed free-field response PFF(k), as depicted in Fig. 5.9. The frequency
response is reconstructed as a minimum-phase response from the desired mag-
nitude response. We therefore compute the real cepstrum p̃ which is an even
real-valued signal, as we apply an inverse DFT to a real magnitude spectrum

p̃[n] = IDFT {ln |E(k)|} . (5.58)

Thus, to make the frequency response minimum-phase, we create a purely
causal cepstrum by applying a window function that effectively adds the
acausal cepstral coefficients to the causal ones (flip non-minimum phase zeros
into the unit circle) without altering the magnitude response. [15]

p̃causal[n] =


2 · p̃[n] 1 ≤ n ≤ NFFT/2− 1

p̃[n] n = 0 ∧ n = NFFT/2

0 n < 0

, (5.59)

for n = [0, . . . ,NFFT/2,−NFFT/2 + 1, ...,−1] . (5.60)

We obtain the minimum-phase impulse response by the following inverse trans-
formations:

Emin.ph.[k] = exp
(
DFT { p̃causal[n] }

)
, (5.61)

emin.ph.[n] = IDFT {Emin.ph.[k] } . (5.62)
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Figure 5.9.: On-axis timbral beam equalization. A regularized inverse magnitude response
(black) is created from the free-field response (grey). By making the inverse
filter minimum-phase we get a low-latency impulse response (black) in the
time-domain.
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6. Directivity Plots and Array
Comparison

In this chapter a measurement-based evaluation of beam patterns is conducted.
Recalling the definition of the system W (k) from Sec. 5.6,

PSH(k) = Y +
micP (k) (6.1)

W (k) = PSH(k)H(k) , (6.2)

we can investigate any combination of encoded beam direction and analysis
directions. As we are interested mostly in horizontal beams, we encode a beam
of horizontal direction θb and evaluate it by expanding the pressure spectrum
on a horizontal or vertical cut with a resolution of one degree, resulting in a
360× 1 sound pressure vector p(k)

p(k) = YevalW (k)yb , (6.3)

using the following matrices

P (k) = [Prl(k)]l=1...L
r=1...R [R× L] (6.4)

Ymic = [Y m
n (θr)]

n=0...Nmic,m=−n...n
r=1...R [R× (Nmic + 1)2] (6.5)

yb = [Y m
n (θb)]n=0...N,m=−n...n [(N + 1)2 × 1] (6.6)

Yeval = [Y m
n (θj)]

n=0...Nmic,m=−n...n
j=1...360 [360× (Nmic + 1)2] , (6.7)

(6.8)
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6. Directivity Plots and Array Comparison

where Yeval is now the matrix of spherical harmonics used to evaluate horizon-
tal/vertical cuts. As we are interested in the directivity of a beam we compute
the squared magnitude of each element of the complex-valued pressure vector
p(k) and normalize for every frequency bin k to display a directivity in relative
decibels as seen in the following plots.

pplot,j(k) = 20 · log10

( |pj(k)|
|pmax(k)|

)
j = 1, ..., 360 (6.9)

The following plots compare the new mixed-order plus AllRAD control with
traditional control, based on the acoustic MIMO measurements, see Sec. 4.4.
First we investigate two platonic arrays, a low-cost dodecahedral array, seen in
Fig. 6.1, and the IEM IKO2 icosahedral array in Fig. 6.2. It is visible that beams
become significantly narrower in the range of 300 to 800 Hz and modal break-up
in the high-frequency range is less prominent. For the new mixed-order arrays
the AllRAD approach shows improvements as horizontal beam directions can
be on-axis loudspeaker directions (Fig. 6.3). A comparison of on-axis panning
versus in-between two loudspeakers is shown in Fig. 6.7 for the 393-array and
reveals expectable side-lobes that effectively widen the beam pattern above 4
kHz.

Comparing the different arrays, we can see that the smaller 3|9|3-array is
octave-shifted in its directivity, namely achieves 4th order beamforming between
500 and 2000 Hz and that the new ring layouts generally prevent a break-up
of the beam pattern for high-frequencies (see horizontal and vertical cuts in
Figs. 6.5 and 6.6). Informal listening tests confirmed this to have an audible,
beneficial effect on the localization of broadband signals.

Finally, with Fig. 6.8 it is proven that the erroneous vertical off-axis radiation
at high frequencies and horizontal beam directions is not caused by the AllRAD
approach, but is inherent to platonic layouts.
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Figure 6.1.: Horizontal cut of horizontal beams ϕ = 0◦ , θ = 90◦. Colorbar indicates relative
dB, normalized to 0 dB for every frequency. Crossover to AllRAD panning at 1
kHz.

Figure 6.2.: Horizontal cut of horizontal beams ϕ = 0◦ , θ = 90◦. Colorbar indicates relative
dB, normalized to 0 dB for every frequency. Crossover to AllRAD panning at 1
kHz.
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Figure 6.3.: Horizontal cut of horizontal beams ϕ = 0◦ , θ = 90◦. Colorbar indicates relative
dB, normalized to 0 dB for every frequency. Crossover to AllRAD panning at 1
kHz.

Figure 6.4.: Horizontal cut of horizontal beams ϕ = 0◦ , θ = 90◦. Colorbar indicates relative
dB, normalized to 0 dB for every frequency. Crossover to AllRAD panning at
2.9 kHz.
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Figure 6.5.: Horizontal cut of horizontal beams ϕ = 0◦ , θ = 90◦. Colorbar indicates relative
dB, normalized to 0 dB for every frequency. Sorted by increasing number of
transducers from left to right. The 4|8|4-layout significantly reduces side-lobes at
high frequencies, while saving 4 loudspeakers compared to an icosahedral array.

Figure 6.6.: Vertical cut of horizontal beams ϕ = 0◦ , θ = 90◦. Colorbar indicates relative
dB, normalized to 0 dB for every frequency. Sorted by increasing number of
transducers from left to right. Mixed-order ring layouts prevent the (vertical)
off-axis radiation for horizontal beams at high frequencies.
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Figure 6.7.: Horizontal cut of horizontal beams ϕ = 20◦ vs. ϕ = 0◦ , θ = 90◦. Panning
directions in between two loudspeakers (left) cause side-lobes above 4 kHz in
comparison to on-axis panning directions (right).

Figure 6.8.: Vertical cut of horizontal beams ϕ = 0◦ , θ = 90◦. The off-axis radiation for
horizontal beams at high frequencies is not due to AllRAD panning, but inherent
to platonic layouts.
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7. Conclusion

This thesis presented mixed-order control and high-frequency panning that
are meant to enrich beamforming with compact spherical loudspeaker arrays.
To evaluate the improvements, effective horizontal 2D and global 3D order
measures were introduced that confirmed that the horizontal directivity of the
dodecahedron can be increased from an effective second to third order, and
for the icosahedron from third to fourth, with only negligible impact on the
effective 3D directivity order.

New mixed-order layouts were introduced that are composed of three loud-
speaker rings. The dedicated mixed-order layouts save transducers while achiev-
ing equal or higher beam orders in the horizontal plane. They are especially
suited for the AllRAD panning as horizontal panning directions can be on-axis
loudspeaker directions.

This work is a first step towards manufacturing affordable electroacoustic instru-
ments using accurate spherical beamforming for both home-studio rehearsal and
electroacoustic chamber music performances. Material cost and manufacturing
time can be significantly reduced through 3D-printed housings and a reduced
number of smaller, but high quality loudspeakers with a frequency range from
100 Hz to 20 kHz. An overall material cost below 800 euros and an overall
weight of three kilograms make the 3|9|3-array prototype a highly mobile and
affordable beamformer instrument.

Further work should consider designing a suitable and compact amping/interface
solution that enables easy transportation of the overall system. Lastly, a
psychoacoustic evaluation of the new arrays would be interesting regarding the
overall increased directivity for horizontal beam directions, which enabled some
(typically broadband) sounds to be localized even in room corners behind the
listener during first informal listening experiments.
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Appendix A.

Additional Simulated Beam
Patterns
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Appendix A. Additional Simulated Beam Patterns

(a) (b) (c)

Figure A.1.: Layout of the icosahedral array (a), spherical harmonics subset (b) and mixed-
order beam pattern simulated with the spherical cap model at f=200 Hz (c).

(a) (b) (c)

Figure A.2.: Layout of the dodecahedral array (a), spherical harmonics subset (b) and mixed-
order beam pattern simulated with the spherical cap model at f=200 Hz (c).
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Appendix B.

Directivity Plots of IKO1 and
IKO3
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Appendix B. Directivity Plots of IKO1 and IKO3

Figure B.1.: Horizontal cut of horizontal beams ϕ = 0◦ , θ = 90◦. Colorbar indicates relative
dB, normalized to 0 dB for every frequency.

Figure B.2.: Horizontal cut of horizontal beams ϕ = 0◦ , θ = 90◦. Colorbar indicates relative
dB, normalized to 0 dB for every frequency.
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