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Abstract

Capture of musical instruments including directivity by spherically surrounding microphone
array often leads to either overly complex radiation patterns or destructive interferences at
high frequencies. There, small differences in the distance from the instrument to each of the
microphones yield different arrival times in the captured signal and hereby large phase differ-
ences. Therefore, be it by linear triangular or spherical harmonics interpolation, frequency-
independent directional interpolation of the microphone signals can result either in spectral
degradation or in a shift of the signal energy to higher orders; especially affecting high fre-
quencies. In this work, an analysis method is proposed in order to decompose directional
signals of any measured instrument into an interference-free primal signal and a directivity
filter. Both the directivity filter and the primal source signal utilise only the short-term spec-
tral magnitude of each microphone signal in order to avoid artefacts. The magnitudes are
complemented by a simplified phase using phase-retrieval techniques.

Kurzfassung

Die Aufnahme musikalischer Instrumenten mit Richtwirkung anhand einer umhüllenden
sphärischen Mikrofon-Anordnung führt häufig entweder zu einer komplizierten Abstrahlcha-
rakteristik oder zu destruktiven Interferenzen bei hohen Frequenzen. Dabei ergeben kleine
Distanzunterschiede vom Instrument zu jedem Mikrofon eine unterschiedliche Ankunfts-
zeit und dadurch entstehen große Phasendifferenzen. Aus diesem Grund können frequenz-
unabhängige Richtungsinterpolationsverfahren für die Mikrofonsignale, sei es durch linea-
re Dreiecks- oder Kugelflächenfunktionsinterpolation, entweder zu spektralen Verschlechte-
rungen führen oder zu einer Verschiebung der Signalenergie zu höheren Ordnungen. Beides
beeinträchtigt das Ergebnis bei hohen Frequenzen. In dieser Arbeit wird eine Analyseme-
thode vorgeschlagen, um Richtungsignale beliebiger Instrumente in ein interferenzfreies Ur-
signal und in Richtwirkungsfilter zu zerlegen. Die Bestimmung von beidem, Ursignal und
Richtwirkungsfilter, basiert ausschließlich auf den Kurzzeitbetragsspektren der Mikrofon-
signale, um Artefakten zu vermeiden. Die Betragsspektren werden mit einer vereinfachten
Phase aus Phasenrekonstruktionsverfahren ergänzt.



Résumé

La captation d’instruments avec leur directivitée, à l’aide d’un réseau sphérique envi-
ronnant de microphones entraine souvent, soit une fonction de directivitée excessivement
complexe, soit des interférences destructives dans les hautes fréquences. En l’occurence,
de légères différences entre les distances source-microphones induisent des différences de
temps d’arrivée et amènent, ce faisant, à un déphasage. Pour cette raison, une interpolation
indépendante de la fréquence, que ce soit une interpolation triangulaire ou une interpola-
tion se basant sur les harmoniques sphériques, aboutit soit à une dégradation spectrale, soit
à un déplacement de l’énergie du signal vers des ordres plus élevés. Dans ce travail, une
méthode est proposée afin de décomposer n’importe quel instrument en un signal primaire
et un filtre de directivitée tout en garantissant l’absence d’interférences. Le signal primaire,
ainsi que le filtre de directivitée sont déduits uniquement à partir des spectres d’amplitudes
courts termes des microphones afin d’éviter tout artéfact. La magnitude est complétée par
une phase simplifiée en se basant sur différents algorithmes de récupération de phase.
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Chapter 1

Introduction

The study of sound source radiation has been fascinating acousticians for decades,
as its studies appear to be beneficial for different domains, such as room acous-
tics, virtual reality, acoustics simulations or music recordings. In fact, most in-
struments do not radiate sound omnidirectionally, i.e. the intensity of the radiated
signal may depend on the direction of emission, on the frequency but also on the
playing techniques or the posture of the player [Mey09]. This inherent complexity
of sound sources radiation makes its understanding, virtualisation and restitution a
great challenge, which can involve several fields from theoretical physics to psy-
choacoustic through signal processing. Perceptually, its understanding is capital, as
changes in the source radiation characteristics strongly influence the auditory expe-
rience [DKS93]. Although the direct signal emitted by the source in the direction of
the listener is crucial from a perceptual point of view, the rest of the emitted signal
is also particularly of interest, as is may reach the listener through different propa-
gation paths that depend of the surrounding environment and therefore determines
how the room ”reacts” to the source.

Among the initiators of the field, one can cite Jürgen Meyer who first investigated
the directivity of various orchestral instruments by providing the average directivity
for different frequency bands [Mey09]. By this averaging, Meyer’s model of sound
source radiation remains simplistic, but it delivers knowledge that can be of great
interest for audio recording engineers, acousticians, conductors or musicians. Nev-
ertheless, there are still many research questions, as for instance: how can concrete
directivity evolve over time? Is there a holographic virtualisation of played instru-
ments?

In this regard, the use of a more advanced mathematical radiation model is desired
in order to capture, process and restitute the instruments emission with the greatest
perceptual fidelity in a systematic way.
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Weinreich and Arnold first proposed the use of spherical expansion from spatially
discrete measurements [WA80]. The hardware designed by Weinreich and Arnold
made use of 2 microphones mounted on a very elaborated structure, that may not
necessarily enable a straightforward virtualisation of the source, however a first link
between measurement techniques and mathematical concepts of source modelling
were made.

Some of the history can be found in the dissertation of Zotter [Zot09] in Chapter 5.

In 2009, Hohl has constructed a 64-channel spherical microphone array at the In-
stitute of Electronic Music and Acoustics (IEM) in Graz to enable to measurement
of radiation up to the 7th order [Hoh09] without need of a turntable, which is quite
appropriate for the virtualisation of a musical instrument including its potentially
time-varying radiation pattern while played and its musical excitation that is difficult
to reproduce by a technical device. However, the virtualisation and auralisation of
sources based on such recordings often suffer from different spectral artefacts due to
bad centring, great size of the instrument or insufficient spatial sampling.

In recent years, some authors proposed to simplify radiation patterns based on acous-
tic centring approaches [BHPVR11, SV15, DZ10, DZ11]. Due to the computational
complexity required, acoustic centring appears to be unpractical, and alternatives
may be more attractive [Süs11,Hol14,Mit16]. Still those alternatives require further
developments and investigations.

This work aspires to propose some interesting methods that can be utilised to model
an instrument into a primal source signal and a complementary radiation filter by
replacing the signals phase by a simplified one. This phase replacement aims to
counter spectral artefacts while simplifying the directivity pattern of the instrument.

The work is organised as follows:

Chapter 2 describes some conventional techniques for radiated sound interpolation.
This section is also used to introduce the problems caused by the recorded multi-
channel signal phase and to demonstrate how a spatial phase modification could be
beneficial to compensate for the artefacts.

Chapter 3 presents some phase retrieval techniques on the sphere, which may serve
as simplification of the radiation pattern based on its spatially sampled magnitude.

Chapter 4 deals with the primal signal and radiation-filter modelling based uniquely
on the measured short-term spectral magnitude of surrounding microphones.

Perceptual evaluation of the spatial interpolation techniques, reconstructed primal
signal and virtualised instrument based on the primal source signal and radiation-
filter decomposition are undertaken in Chapter 5.



Chapter 2

Interpolation of radiated signals
from a surrounding spherical
array

When auralising multi-channel surrounding spherical array recording of instruments,
the spatial interpolation of directivity signals enables to obtain the signal radiated in
each specific direction, also for the potentially time-varying directions of an inter-
active virtual environment. For the room acoustics simulation, geometrical acoustic
models, such as image-source, ray-tracing or beam-tracing, where propagation paths
have a known radiation direction, can be fed with the interpolated signal [SS15]. This
section, discusses some basic interpolations methods suitable for surrounding micro-
phone array signals such as the hyperinterpolation by means of spherical harmonics
decomposition as well as Vector Base Amplitude Panning, and a phase-modified
version of it.

2.1 Hyperinterpolation with spherical harmon-
ics

The pressure signal emitted by a source enclosed in a sphere with radius smaller
than r can be expressed using the elementary solutions of the Helmholtz differential
equation in a spherical coordinate system for the external problem [Wil99]

x
(
ω
c
r,θ
)

=
∞∑

l=0

l∑

m=−l
aml (ω)h

(2)
l

(
ω
c
r
)
Y m
l (θ), (2.1)
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where h(2)
l (ω

c
r) denotes the spherical Hankel functions of the second kind 1, ω the

angular frequency, c the speed of sound, r the distance from the source centre and θ
the normed cartesian vector

θ =




cos(ϕ) sin(ϑ)
sin(ϕ) sin(ϑ)

cos(ϑ)


 , (2.2)

and Y m
l (θ) the real-valued spherical harmonic functions

Y m
l (ϕ, ϑ) =

√
2l + 1

2π(1 + δm)

(l − |m|)!
(l + |m|)!P

|m|
l (cosϑ)

{
cos(mϕ), m ≥ 0
sin(mϕ), m < 0

, (2.3)

where Pm
l (cosϑ) are the associated Legendre functions.

As implied by (2.1), the emitted sound field can be fully described by the frequency
dependent weighting of each spherical harmonic, the spherical wave spectrum de-
noted χml (ω

c
r) = aml (ω) · h(2)

l (ω
c
r). In the practice, this so-called spherical wave

spectrum is approximated based on discrete observations x on a surrounding sphere
with a radius r, this leads to a reduced set of spherical harmonics, namely up to
an order L < ∞. In vector notation and using n as the discrete time variable, the
spherical harmonics signals are obtained by

χ[n] = Y†x[n] (2.4)

where

Y =




Y 0
0 (θ1) Y −1

1 (θ1) Y 0
1 (θ1) · · · Y L

L (θ1)
Y 0

0 (θ2) Y −1
1 (θ2) Y 0

1 (θ2) · · · Y L
L (θ2)

...
...

... . . . ...
Y 0

0 (θΛ) Y −1
1 (θΛ) Y 0

1 (θΛ) · · · Y L
L (θΛ)


 (2.5)

and (·)† is the (Moore-Penrose) pseudo inverse.

From there, the interpolated signal of a virtual microphone x̂ at a desired position θ
can be determined by combining the signal of each spherical harmonics channel χ
from (2.4) with the following appropriate weighting [NNZ10]

x̂(n,θ) =
(
Y 0

0 (θ) Y −1
1 (θ) Y 0

1 (θ) · · · Y L
L (θ)

)
χ[n]. (2.6)

1. The choice of the Hankel function of the first or second kind is a matter of convention. In
[Wil99], Williams uses the spherical Hankel functions of the first kind due to the choice to use the
conventional definition for the space variables. The choice here is considered to be more conventional
regarding the temporal Fourier transform’s definition in signal processing.
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2.1.1 Some considerations on the radiation complexity,
source size and positioning

Unfortunately, the direct spherical harmonics expansion of spatially discrete mea-
surements may not always deliver a satisfying representation of the radiated field for
the following reasons:

— The sampling of the surrounding sphere does not always permit a high enough
spatial resolution to fully represent the directivity of the instrument, especially at
high frequencies.

— The poor centring of the instrument leads to a shift of the energy towards higher
orders, as described in [Bau11]. From a more intuitive interpretation, the transla-
tion of the source induces different times of arrival and therefore different phases
between the microphones. As depicted in Fig. 2.1, those induced phase differ-
ences can have a huge influence on linear interpolation at high frequencies; Here,
an equal weight linear interpolation of two neighbouring microphones leads to a
non-negligible signal cancellation at high frequencies.

— Most of the time, the size of an instrument is, regarding the half wave length of
the radiated signal, not negligible. For this reason, each frequency exhibits its own
different radiation centroid, which would complicate an eventual centring of the
source.

•–•–
•–

•–
•–

•–

•– •– •–
•–

•–•–

•–

+

(a) Interferences at low frequencies due to small time delay

•–•–

•–

•–

•–

•–

•– •– •–
•–

•–•–

•–

+

(b) Interferences at high frequencies due to small time delay

Figure 2.1 – Destructive interferences between 2 microphones through bad
source centering

Therefore, a direct hyperinterpolation of the emitted sound field does not appear to
be convenient for an interference free directional signal interpolation, in any case.
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2.2 Vector Base Amplitude Panning (VBAP)

Similarly to (2.6), where the virtual signal x̂(θ) is obtained by a linear combination
of all microphones, an efficient interpolation can also be achieved from a linear in-
terpolation of a reduced set of microphones in the vicinity of the desired position.
Initially, Ville Pullki proposed this method in [Pul97] for synthesising a virtual inci-
dent sound field from a given direction by distributing a signal to loudspeakers in its
vicinity, however it appears to be also convenient for the inverse problem, namely to
interpolate between microphone signals in the vicinity of a given direction.

The microphone array layout is decomposed into a convex hull of triangular facets,
and for each given direction, a subset of 3 microphones is used for the gain panning
on the vertices of the active facet, namely the one containing the point of interest.
For each facet ς we define the matrix Lς , containing the cartesian coordinates of the
active three microphones

Lς =
(
θς,1 θς,2 θς,3

)
. (2.7)

The gains associated to each of the three microphones can be computed as follow

g̃ς = L−1
ς θ (2.8)

and normed in order to guarantee a position independent gain

gς =
g̃ς
‖g̃ς‖

. (2.9)

The active facet ς̂ is the one whose microphones coefficients all appear non-negative.

x
y

•

•

•
•

••

θς̂ ,1

θς̂ ,2

θς̂ ,3

θ

z

Figure 2.2 – Sample configuration for a virtual microphone at θ

However, as for the hyperinterpolation, the phase difference within the selected sub-
set of microphones may also lead to destructive interferences and, therefore, entail
a low pass or comb filter characteristic in the resulting interpolated signal. To over-
come this problem, a simple phase selection strategy can be adopted as described in
Section 2.3.
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2.3 Modified Vector Base Amplitude Panning
(MVBAP)

In 2006, Hom et al. proposed a strategy for interpolating the binaural signals recorded
for different directions (Motion Tracked Binaural, or in short MTB) without energy
loss at high frequency [HAD06]. They propose different implementations that are
actually similar in the way that the linear interpolation at high frequency is restricted
to work on the short-term magnitude spectrum. The phase could either be recon-
structed with higher effort using spectrogram inversion as described in Section 4.1,
or for a faster and more efficient solution, the phase could be switched to the one
observed at the closest measurement angle.

Similarly to MTB, this cost-efficient avoidance of destructive interference is appli-
cable to the VBAP interpolation described in Section 2.2 for the interpolation of
surrounding spherical microphone signals. For simplicity, the second option was
selected and referred as Modified Vector Base Amplitude Panning (MVBAP), here.
The microphone determining the phase of the interpolated signal at high frequen-
cies is the one having the greatest gain (equivalent to the closest microphone). The
interpolation procedure with MVBAP is depicted in Fig. 2.3.

Low-pass
filter

High-pass
filter

STFT

Phase
selection ISTFT

〈·,·〉

〈·,·〉

+

xς̂ [l]

gς̂(θ)

[
∠XH

λ [k]
]

[
|XH

λ [k]|
]

∠X̂H [k]

|X̂H [k]| x̂H [l]
x̂L[l]

x̂[l]

Figure 2.3 – Interpolation procedure from the signals of selected micro-
phones subset with MVBAP.

The phase switching can also be improved in order to avoid recurrent discontinuity
when the desired position moves in the vicinity of a transition border by introducing
a small hysteresis, this is especially convenient when the desired position is noisy
(e.g. sensor based tracking) [ZFZ19].





Chapter 3

Spherical phase retrieval

As seen in Section 2.1, the expansion of the radiated sound field in spherical harmon-
ics is a powerful tool that enables the virtualisation of a measured or synthetic sound
source without the need of any information about the decoding paradigm. However,
we demonstrated that a poor centring of the instrument, or a large instruments which
induces scattering or frequency dependent eccentric centroids may lead to destruc-
tive interferences at high frequencies.

For these reason, it may be beneficial to approximate the source radiation with a
spherical harmonics expansion of the directivity with a modified phase, which would
avoid the low pass or comb-filter behaviour of the signal in the low order channels.

In this sections, the microphone signals are stacked in a complex vector x = diag{p}z,
where p = [|xλ[k]|] and z =

[
ei∠xλ

]
. The following proposed techniques consist of

determining the optimal spatial allpass vector z. The reconstructed directivity can
then be expressed in term of spherical harmonics as in (2.4),

χ = Y† diag{p}z. (3.1)

Directivity reconstruction based on simulated coefficients To depict the
reconstructed directivity based on different methods described in this section, the mi-
crophones coefficients are evaluated from a known ideal directivity pattern at some
given positions on the surrounding sphere. Hereby, the geometry is based on the
spherical 64 microphones array of the IEM [Hoh09] which is shown in Fig. 3.1, the
exact coordinates are given in Appendix A.
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y

x

z

Figure 3.1 – Geometry of the IEM 64 microphones array

3.1 Zero-phase Approximation

The simplest way to preserve the magnitude of a function while simplifying the
phase is to set its phase to zero. The approximated spherical harmonics coefficients
are therefore

χ = Y†p. (3.2)

Alternatively, a weighting can be applied onto the SH coefficients in order to reduce
the side lobes,

χ = diag{ẘ}Y†p. (3.3)

Figures 3.2 and 3.3 shows the reconstructed directivity of a perfect dipole Y 1
1 (θ)

when applying (3.2) onto the coefficients x obtained by the microphone array de-
picted in Fig. 3.1. As expected, it can be observed in Figs. 3.2 and 3.3 that the zeros
can not be reconstructed properly, unless a microphone perfectly samples it, but still,
the magnitude valleys turn out shallower around zero. However, some negative po-
larity can still occur in the vicinity of microphones with small gains due to ripple,
that will then induce zeros which do not necessarily match the desired one.
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(a) original
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0

π/2

−π/2
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Figure 3.2 – Reconstruction of the dipole directivity Y 1
1 (θ) from 64 magni-

tude points with the zero phase method.
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(b) reconstruction

0

π/2

−π/2

π

Figure 3.3 – Reconstruction of a random directivity function (L = 2) from
64 magnitude points with the zero phase method.
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3.2 Phase reconstruction based on Magnitude
Least Squares (MLS)

In his PhD dissertation, Kassakian proposed to apply convex optimisation to the
design of radiation filter [Kas06]. The high frequency magnitude preservation can
be achieved by modifying the phase of each microphone in a way that minimises the
mean square error between the all-pass filtered zero phase signal and the spherical
harmonics signal transformed back to the space domain. Thus, the phase recovery
problem can be described as

minimise
z∈CΛ

‖ diag{p}z−Yχ‖2 (3.4)

subject to diag{z∗}z = 1.

where Λ is the number of microphones.

In (3.4), χ can be approximated by the minimum-mean-square-error solution for
known diag{p}z

χ = Y† diag{p}z, (3.5)

enabling to rewrite the minimisation problem as follows

minimise
z∈CΛ

∥∥diag{p}z−YY† diag{p}z
∥∥2

(3.6)

subject to diag{z∗}z = 1.

Alternatively, a weighting diag{ẘ} can be applied on the spherical harmonics coef-
ficients in order to ensure a smooth transition of the reconstructed phase in the space
domain. The modified cost function can then be written to a more compact form

J = ‖(I−Y diag{ẘ}Y†) diag{p}z‖2 (3.7)

= zH diag{p}(I−Y diag{ẘ}Y†)H(I−Y diag{ẘ}Y†) diag{p}z (3.8)

= zHBHBz (3.9)

J = zHCz (3.10)

where
C = BHB, (3.11)

and
B = (I−Y diag{ẘ}Y†) diag{p}. (3.12)

The minimisation problem writes

minimise
z∈CΛ

zHCz (3.13)

subject to diag{z∗}z = 1,
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3.2.1 Solving MLS with gradient descent

The minimisation problem (3.13) can be solved by mean of the gradient descent
algorithm with an update step 0 ≤ µ ≤ 0.5. Hereby, the gradient of the MLS cost
function could be computed w.r.t. z

∇zJ = 2Cz (3.14)

or directly w.r.t. the angle φ after observing that

d

dφ
z =

d

dφ
(a+ ib) =

da

dφ
+ i

db

dφ
=

d cosφ

dφ
+ i

d sinφ

dφ
= − sinφ+ i cosφ = iz,

(3.15)
and

d

dφ
z∗ = · · · = −iz∗. (3.16)

The gradient of the cost function w.r.t. φ can easily be decomposed to

∂

∂φi

∑

k,l

z∗kcklzl = −iz∗i
∑

l

cilzl + izi
∑

l

cliz
∗
l , (3.17)

which leads, in the vector notation, to

∂

∂φ
zHCz = −i diag{z∗}Cz + i diag{z}CTz∗ (3.18)

= −i diag{z∗}Cz + (−i diag{z∗}CHz)∗. (3.19)

With a hermitian matrix C = CH, this simplifies to

∂

∂φ
zHCz = 2<{−i diag{z∗}Cz} = 2={diag{z∗}Cz}. (3.20)

The update rule can be decomposed as following:

1. Initialisation of the phase φ(0)

2. For each iteration step ι ∈ {1, . . . , I}, the current estimation is moved toward the
negative gradient

φ(ι) = φ(ι−1) − 2µ={diag{z∗}Cz} (3.21)

3. Compute z

z =
[
eiφ

(I)
]
. (3.22)
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Then, the directivity can be expressed in term of SH as in (3.1).

The reconstructed directivity of the dipole Y 1
1 (θ) and a random directivity of max-

imum order of L = 2 are depicted in Figs. 3.4 and 3.5 for different numbers of
iterations I with a random initial phase. The maximum order of spherical harmonics
used for the Spherical Harmonics Transformation (SHT), the masking of its coeffi-
cients and the Inverse Spherical Harmonics transformation (ISHT) implied in C (see
(3.11)) are set to maximum controlable order

⌊√
Γ − 1

⌋
= 7. The mask diag{ẘ}

consists of a max-rE weighting approximated later in (5.3).

y

0 dB
−20 dB

−40 dB

x

z

(a) original

y

0 dB
−20 dB

−40 dB

x

z

(b) reconstruction,
I = 1e2

y

0 dB
−20 dB

−40 dB

x

z

(c) reconstruction,
I = 1e5

0

π/2

−π/2

π

Figure 3.4 – Reconstruction of the dipole directivity Y 1
1 (θ) from 64 magni-

tude points with gradient descent algorithm for different numbers of itera-
tions I . The initial phase is random.
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Figure 3.5 – Reconstruction of a random directivity function (L = 2) from
64 magnitude points with gradient descent algorithm for different numbers
of iterations I . The initial phase is random.

3.2.2 Solving MLS with Semi-Definite Relaxation (SDR)

In contrast to the local optimisation, achieved with e.g. the gradient descent in Sec-
tion 3.2.1, the Newton or Gauss-Newton method, and that may converge to local
minima, semi-definite relaxation (SDR) provides an initialisation to directly con-
verge to global minimum [Kas06, LMS+10, BBE17]. After re-writing zHCz =
trace

{
zHCz

}
= trace

{
CzzH

}
and observing that the matrix Z = zzH is hermi-

tian positive semidefinite of rank one, the cost function described in (3.10) can be
expressed linearly w.r.t Z.

minimise
Z∈H<

trace{CZ} (3.23)

subject to diag{Z} = 1, rank{Z} = 1,

withH< being the set of hermitian positive semidefinite matrices

H< =
{
Z ∈ CΛ×Λ|ZH = Z,vHZv ≥ 0

}
. (3.24)

At first sight, the minimisation problem (3.23) does not differ from (3.13) in terms of
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its degrees of freedom, however Eq. (3.23) can also be relaxed by omitting the rank
constraint rank{Z} = 1 [WDM15,Kas06,LMS+10], which increases the degrees of
freedom from Λ to Λ2. This leads to the minimisation problem

minimise
Z∈H<

trace{CZ} (3.25)

subject to diag{Z} = 1,

which is known as a semi-definite relaxation problem of (3.13) (SDR).

Practically, some freely available programs e.g. the CVX MATLAB toolbox [GB08,
GB14] can be used for semi-definite programming (SDP) minimisation problems.

According to the (3.11) and (3.12), C is real-valued, thus the optimal solution Z to
(3.25) is also real-valued. The problem could therefore be simplified by seeking the
optimal solution within the set of the symmetric real-valued semi-definite matrices

S< = {Z ∈ RΛ×Λ|ZT = Z,vTZv ≥ 0}. (3.26)

Unfortunately, due to the relaxation, the optimal matrix Z is not necessarily of rank
1, in particular if the global minimum can not be achieved by a real-valued matrix
Z. Therefore, two strategies can be adopted in order to reconstruct the phase:

Main eigenvector Define z as the main eigenvector of Z (associated to the greatest
eigenvalue). In this case, the solution assign to each microphone a phase of either
0 or π.

Random sampling If the global minimum cannot be reached by a real valued vector
z. One may compute the error obtained by different random complex linear com-
binations of the eigenvectors, wherein the variance of their random coefficients are
driven by their respective eigenvalue. z is set to the normed random vector offering
the minimum error when inserted into the cost function J in (3.10). The complex
linear combination of the eigenvalues yields a potential complex z [Kas06].

Again the directivity in term of SH is computed using (3.1).

The reconstructed dipole and random directivity using the main eigenvector of Z
as spatial allpass vector z and without further local optimisations are depicted in
Figs. 3.6 and 3.7. Again the maximum order of SH used for the SHT, masking and
ISHT is set to L = 7.
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Figure 3.6 – Reconstruction of the dipole directivity Y 1
1 (θ) from 64 magni-

tude points with the SDR method using the main eigenvector and without
further local optimisation.
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Figure 3.7 – Reconstruction of a random directivity function (L = 2) from
64 magnitude points with the SDR method using the main eigenvector and
without further local optimisation.
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3.3 Phase reconstruction based on Magnitude
Squares Least Square (MSLS)

Similarly to the MLS, one can write a minimisation problem that directly search
for the optimal SH coefficients without the need of any constraints. For a desired
decomposition, the spherical harmonics yij are real-valued yij ∈ R, with the point of
observation indexed by i and the harmonic by j. We have the following decomposion
problem when given the squared-magnitude measurement |χi|2

minimise
χ∈CΥ

∥∥|Yχ|◦2 − p◦2
∥∥2
. (3.27)

where Υ = (L+ 1)2 is the number of SH for a given maximal order L.

3.3.1 Solving MSLS with Newton descent

The cost function of the minimisation problem (3.27) can be expressed by means of
sum notation for better insight

J =
Λ∑

i=1

e2
i =

Λ∑

i=1

[∣∣p̂i
∣∣2 − |pi|2

]2

, (3.28)

where

p̂i =
Υ∑

j=1

yijχj =
Υ∑

j=1

yij(aj + ibj), (3.29)

and

|p̂i|2 =
∣∣∣

Υ∑

j,j′=1

yijχj

∣∣∣
2

=
Υ∑

j,j′=1

yijχjy
∗
ij′χ

∗
j′ . (3.30)

The expression yijy∗ij′ is hermitian symmetric, as an index exchange j ↔ j′ yields
the conjugate expression (yijy

∗
ij′) = (yij′y

∗
ij)
∗. We may use this to get

|p̂i|2 =
Υ∑

j,j′=1

[
1
2
(yijy

∗
ij′) + 1

2
(yij′y

∗
ij)
∗] (χjχ

∗
j′) (3.31)

=
Υ∑

j,j′=1

[
1
2
(yijy

∗
ij′)(χjχ

∗
j′) + 1

2
(y∗ij′yij)(χjχ

∗
j′)︸ ︷︷ ︸

j↔j′

]
(3.32)
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=
Υ∑

j,j′=1

[
1
2
(yijy

∗
ij′)(χjχ

∗
j′) + 1

2
(yijy

∗
ij′)(χjχ

∗
j′)
∗] (3.33)

=
Υ∑

j,j′=1

yijy
∗
ij′<
{
χjχ

∗
j′
}

(3.34)

|p̂i|2 =
Υ∑

j,j′=1

yijy
∗
ij′(ajaj′ − bjbj′) (3.35)

with the real and imaginary parts aj and bj .

Gradient yij is real-valued, so that yij = y∗ij . With the above, the complex cost
function J can be derived w.r.t. ak and bk.

∂J(χ)

∂ak
=

Λ∑

i=1

∂e2
i

∂ak
=

Λ∑

i=1

2ei
∂|p̂i|2
∂ak

(3.36)

=
Λ∑

i=1

2ei

Υ∑

j,j′=1

yij′yij(aj′δjk + ajδj′k) (3.37)

=
Λ∑

i=1

2ei

[ Υ∑

j′=1

yij′yikaj′ +
Υ∑

j=1

yikyijaj

]
(3.38)

=
Λ∑

i=1

4ei

Υ∑

j=1

yikyijaj (3.39)

∂J(χ)

∂ak
= 4

Λ∑

i=1

yikei<{p̂i}, (3.40)

and

∂J(χ)

∂bk
=

Λ∑

i=1

∂e2
i

∂bk
=

Λ∑

i=1

2ei
∂|p̂i|2
∂bk

(3.41)

=
Λ∑

i=1

2ei

Υ∑

j,j′=1

yij′yij(−bj′δjk − bjδj′k) (3.42)

... (3.43)

∂J(χ)

∂bk
= 4

Λ∑

i=1

yikei={p̂i}. (3.44)
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Let’s write the gradient by concatenating the real gradient and the imaginary gradient
as follows

∇J(χ) =
(

∂J(χ)
∂a1

· · · ∂J(χ)
∂aΥ

∂J(χ)
∂b1

· · · ∂J(χ)
∂bΥ

)T
, (3.45)

∇J(χ) = 4YT diag{e}χ (3.46)

where

χ =
(
<{χ}T ={χ}T

)T
(3.47)

denotes the real/complex stacked vector.

Hessian matrix Similarly to the gradient, the hessian matrix can be computed in
order to locally approximate the cost function with a second order polynomial. Thus,
the iteration step can be optimised to faster reach the local minimum.

∂2J(χ)

∂ak∂al
= 4

∂

∂al

Λ∑

i=1

Υ∑

j=1

eiyikyij aj (3.48)

= 4
Λ∑

i=1

eiyikyil + 8
Λ∑

i=1

Υ∑

j,j′=1

yilyij′yikyij aj aj′ (3.49)

= 4
Λ∑

i=1

eiyikyil + 8
Λ∑

i=1

yik<{p̂i}2yil (3.50)

∂2J(χ)

∂ak∂al
= 4

Λ∑

i=1

yik(ei + 2<{p̂i}2)yil (3.51)

∂2J(χ)

∂bk∂al
= 4

∂

∂al

Λ∑

i=1

Υ∑

j=1

eiyikyij bj (3.52)

= 8
Λ∑

i=1

Υ∑

j,j′=1

yilyij′yikyij bj aj′ (3.53)

∂2J(χ)

∂bk∂al
= 8

Λ∑

i=1

yik(<{p̂i}={p̂i})yil (3.54)

∂2J(χ)

∂bk∂bl
= −4

∂

∂bl

Λ∑

i=1

Υ∑

j=1

eiyikyij bj (3.55)
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= 4
Λ∑

i=1

ei yikyil + 8
Λ∑

i=1

Υ∑

j,j′=1

yilyij′yikyij bj bj′ (3.56)

= 4
Λ∑

i=1

eiyikyil + 8
Λ∑

i=1

yik={p̂i}2yil (3.57)

∂2J(χ)

∂bk∂bl
= 4

Λ∑

i=1

yik(ei + 2={p̂i}2)yil (3.58)

Analogously to the stacked real/imaginary expression of the gradient in (3.45), the
Hessian matrix can be expressed as follows

HJ(χ) =




∂2J(χ)

∂a2
1
· · · ∂2J(χ)

∂a1∂aΥ

∂2J(χ)
∂a1∂b1

· · · ∂2J(χ)
∂a1∂bΥ

... . . . ...
... . . . ...

∂2J(χ)
∂aΥ∂a1

· · · ∂2J(χ)

∂a2
Υ

∂2J(χ)
∂aΥ∂b1

· · · ∂2J(χ)
∂aΥ∂bΥ

∂2J(χ)
∂b1∂a1

· · · ∂2J(χ)
∂b1∂aΥ

∂2J(χ)

∂b21
· · · ∂2J(χ)

∂b1∂bΥ
... . . . ...

... . . . ...
∂2J(χ)
∂bΥ∂a1

· · · ∂2J(χ)
∂bΥ∂aΥ

∂2J(χ)
∂bΥ∂b1

· · · ∂2J(χ)

∂b2Υ




(3.59)

HJ(χ) =

(
4Y(diag{e}+ 2 diag{<{p̂}}2)YT 8Y diag{<{p̂}={p̂}}YT

8Y diag{<{p̂}={p̂}}YT 4Y(diag{e}+ 2 diag{={p̂}}2)YT

)

(3.60)

From this, the Newton method can be applied in order to iteratively converge toward
a stationary point [BV04, Kas06]. The update can be expressed in a real/imaginary
stacked form as

∆χ = −
(
HJ(χ)

)−1

∇J(χ), (3.61)

or in its complex form as

∆χ =
[

IΥ×Υ 0Υ×Υ

]
∆χ + i

[
0Υ×Υ IΥ×Υ

]
∆χ. (3.62)

Thus the new vector obtained at each iteration is updated using

χ(ι+1) = χ(ι) + µ∆χ(ι), (3.63)

where 0 < µ < 1 is an optional damping factor 1.

Some resulting reconstructions are depicted in Figs. 3.8 and 3.9 for a dipole direc-
tivity Y 1

1 and a random directivity of maximum order L = 2. Different numbers of

1. Alternatively, a simple line search can be implemented. This has the advantage to avoid con-
verging toward a local maximum and also to increase the convergence speed.
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iterations are depicted in order to give a good impression of the convergence speed
starting from a random initialisation of the spherical wave spectrum χ. Hereby the
minimisation is achieved with a damping factor of µ = 0.25 and the inversion of the
hessian matrix includes a regularisation of the form

H−1
reg = (H + ε‖H‖2I)−1, (3.64)

where ‖ · ‖2 denotes the maximum singular value of the matrix. The matrix Y is set
to a maximum order of L = 3 without any further SH weighting.

As it can be observed, the minimisation of MSLS does not necessarily converge
toward the global minimum such as in Fig. 3.8c. However, after a rapid testing, the
convergence speed appears way greater than the one obtained with gradient descent
on MLS as in Fig. 3.4.
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Figure 3.8 – Reconstruction of the dipole directivity Y 1
1 (θ) from 64 magni-

tude points by solving the MSLS problem with the Newton method.
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Figure 3.9 – Reconstruction of a random directivity function (L = 2)
from 64 magnitude points by solving the MSLS problem with the Newton
method.

3.4 Dimensionality reduction by peak-regions group-
ing

Assuming that neighbouring microphones contained in the same lobe of the directiv-
ity function share the same phase, the dimensionality of the different minimisation
problems presented above could be reduced by optimising the phase of Γ < Λ re-
gions, instead of the Λ single microphones.

As a example the matrix C in the MLS minimisation problem written in (3.13) would
take the form

C = BHB (3.65)

where

B = (I−Y diag{ẘ}Y†) diag{p}H (3.66)
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and H is the [Λ× Γ] microphones grouping matrix, e.g.

H =




1 0 0 · · · 0
0 0 0 · · · 1
1 0 0 · · · 0
...

...
...

...
...

0 1 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0




(3.67)

The grouping must be quite conservative, in a sense that it is preferred to obtained
more groups than necessary instead of too few, therefore a simple heap-based maxi-
mum search with an iterative incorporation of neighbouring microphones with mono-
tone decreasing magnitude does not appear appropriate. A more ideal peak-region
segmentation could take the following form 2:

1. Create a set S1 = {1, · · · ,Λ} containing the index of all microphones, this will
represent the microphones that are not assigned to a region yet. A second set S2 is
also initialised in the same way, this will represent the pool of points in which the
current reference microphone is picked up during each loop. Note that S1 ⊂ S2 is
always valid.

2. In S2, the microphone with the maximum magnitude is set as the current reference
microphone mc.

3. If mc ∈ S1, then a new region is created. In the case where neighbouring micro-
phones build up full triangular facets, then the microphones from the facet with the
maximum average magnitude are added to the region. In the case where there is
no ”free” facet, we only add to the region the microphonemc plus its neighbouring
microphone with the greatest gain, if it is available.
If mc /∈ S1, then the available microphones in S1, that are in the neighbouring of
mc and another microphone from the same region are added to the region if their
magnitude are at most the value of one of the two microphones and at most 1.25
× the value of the other microphone.

4. S1 is updated by removing the points that just have been assigned to a region.
5. S2 is updated by removing the points that do not have any free neighbour or re-

moving mc in the case where no new point has been added to a region during this
loop.

6. Repeat from step 2, until S1 is emptied.
An example of microphones grouping from a random directivity of maximum order
L = 2 based on the above algorithm is depicted in Fig. 3.10.

2. There, the term ”neighbouring” means the microphones that share a common triangular facet
from a convex hull
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Figure 3.10 – Example of a peak region grouping for a random directivity
pattern of maximum order L = 2. The dotted line represents the polarity
change.





Chapter 4

Primal signal/radiation-filter
decomposition

The sound emission of a natural source can be seen a single-input-multiple-output
(SIMO) system, whose input consists of the so called primal signal, which contains
all emitted spectral components and the radiation filter, which describes how the
primal signal propagates in each direction depending on the frequency. The far-
field spherical wave spectrum χmn (ω) =

[
amn (ω)h

(2)
n (ω)

]
that drives the spherical

harmonics in (2.1) can be represented as a vector

χ[k] = U [k]Ψ[k], (4.1)

where U [k] represents the single channel primal source 1 and Ψ[k] the radiation filter.

Such a model based on natural source measurements should :
— consider the time variation, of the system, this includes movements/rotations of

the instrument, changes of the playing techniques and currently played note (e.g.
a given frequency propagates differently depending on the combination of opened
tone holes on wind instruments, . . . ).

— avoid the potential destructive interferences at high frequency discussed in Chap-
ter 2, even in the case of a poor source centring within the spherical microphone
array.

— yield a natural-sounding primal source signal in terms of timbral and temporal
properties (no echo, time spreading and relatively probable spectral cues, that dif-
fer much from known spectral properties of the instrument).

— yield a directivity robust against eccentric positioning of the instrument within the
spherical microphone array.

1. The letter u has been chosen after the german name Ursignal that means primal signal

37
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— yield a directivity filter ideally independent of the signal gain (the directivity pat-
tern of each frequency should be arbitrarily at 0dB for perfect omnidirectional
source).

— permit independent manipulation of both the primal source signal and directivity
filter.

— allow to reduce the directivity filter order without much spectral distortion or mag-
nitude directivity error.

This chapter proposes a straightforward framework, in which the spectrogram of
each microphone serves as a basis for both the primal source estimation (as proposed
in [Süs11,Hol14]) and the directivity-filter estimation. For both, the measured phase
component of the Short-Time Fourier Transform (STFT) of the microphones signals
is ignored and replaced by an optimum phase to avoid phase-related interference
errors.

Primal signal estimation To guarantee the presence of all the spectral compo-
nents within the estimated primal signal, the desired interference free primal source
spectrogram is defined as the lp-norm of the microphones spectrogram

|Uτ [k]| =
(

Λ∑

λ=1

|Xτ,λ[k]|p
) 1

p

, (4.2)

where Uτ [k] is the desired primal source signal spectrogram, Xτ,λ[k] the spectro-
grams of the microphones λ ∈ {1, . . . ,Λ}.
The phase of the primal signal STFT is then estimated from the spectrogram using
spectrogram inversion methods as discussed in Section 4.1. For convenience, the
primal source signal as well as its derived signals (e.g. time frames signals, STFT,
. . . ) are referred by the letters x instead of u in Section 4.1.

Directivity filter estimation The original idea of keeping the phase relations
between microphones and primal signal gave overly complicated filter, therefore the
radial filter design is elaborated from a given magnitude, then an optimum phase
is applied. The gain of the directivity filter in the space domain Pτ,λ[k] can be ob-
tained by dividing the microphones spectrogram by the desired primal source signal
spectrogram

|Pτ,λ[k]| = |Xτ,λ[k]|
|Uτ [k]| . (4.3)

For convenience, the directivity filter is then decomposed into the spherical har-
monics as introduced in Section 2.1 , for which the coefficients are denoted by the
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vector Ψτ [k]. Similarly to the primal source signal estimation, the phase still has
to be reconstructed, however, this time, not only the time and frequency dimensions
have to be taken into account, but also the space dimensions, namely across the 2-
sphere S2 representing the set of all radiation directions. Such phase reconstruction
problems have already been presented in Chapter 3 and are applicable for a single
time-frequency element. In Section 4.2, we propose a method for applying spherical
phase retrieval algorithm that is powerful enough to obtain a time varying filter as a
model.

The whole SIMO analysis framework is depicted in Fig. 4.1.

•–

•–

•–•–•–

•–

•–

•–

•– •– •–
•–

•– Spectrogram

Primal
Source

Estimation

Directivity
Filter

Estimation
∣∣Uτ [k]

∣∣xτ [n]

[
|Xτ,λ[k]|

]
Ψ̂τ [k]

Ûτ [k]

Figure 4.1 – Primal Source – Directivity Filter analysis.

4.1 Primal signal reconstruction with Spectro-
gram Inversion (SI)

The Short Time Fourier Transform (STFT) analysis of the time serie x[n] is defined
as

Xτ [k] =
M−1∑

n=0

x[n+ τR]wa[n]e
−i2πkn
M , (4.4)

where τ is time frame index, k the frequency bin index, n the time sample index, R
the hopsize in samples, M the fft-length and wa[n] the analysis window. In this work
it is assumed that wa is real and finite with a range of summation {0, . . . ,M − 1}.
A perfect reconstruction from the STFT can be achieved with the overlap and add
method

x[n] =
∞∑

τ=−∞
xτ [n− τR], (4.5)



40

where xτ [n] is the time serie of the frame τ on which the suitable synthesis window
has been applied

xτ [n] = ws

M−1∑

k=0

Xτ [k]e
i2πkn
M , ∀n ∈ {0, . . . ,M − 1}. (4.6)

In order to guarantee a perfect reconstruction, the synthesis window ws has to fulfill

∑

τ∈Z
wa[n− τR]ws[n− τR] =

1

M
. (4.7)

A corrected synthesis window obtained from a given window wa can be defined as

ws[n] =
1

M

wa[n]∑
τ∈Zwa[n− τR]2

, ∀n ∈ {0, . . . ,M − 1}. (4.8)

Note that the summation range Z used in (4.8) can be reduced to
{
−
⌈
M
R

⌉
+ 1, . . . ,

⌈
M
R

⌉
− 1
}

in our case, as wa and ws are fully supported by {0, . . . ,M − 1} and adjacent time
frames are distant from R.

When omitting the phase, we obtain the spectrogram |Xτ [n]|. Our goal is to find the
original signal x[n] without knowing the phase, by exploiting the redundancy hidden
in the overlap of adjacent time frames. As requirement, the overlapping factor M

R

must be greater than 2, in order to guarantee redundancy between adjacent time
frames.

The signal estimate is denoted x̂[n]. For this, many methods have been proposed,
some are based on iterative procedures [GL84,BZW05,ZBW06,GS08,GS10], non-
iterative [PBS17, PS16] and hybrid [PR17]. In this work, all time signals are as-
sumed to be real valued, therefore the processing of frequency bins with indices
k =

{
0, . . . ,

⌊
M
2

⌋
+ 1
}

are sufficient in all following methods.

4.1.1 Iterative methods

Griffin & Lim’s algorithm (G&L) In 1984, Griffin and Lim [GL84] proposed
a simple iterative method in order to reconstruct a signal from a spectrogram.

The algorithm is based on the observation that not every STFT X̃τ [k] is valid, in a
sense that there might not exist any time signal x̃[n] having the given STFT with
phase. From this, it has been proposed, that for any ”invalid” STFT, we can estimate
a time signal x̂[n] which minimises the mean squared error (MSE) between the in-
valid STFT X̃τ [k] and the feasible STFT of the estimated signal X̂τ [k]. The distance
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criterion to be minimised is

D(x̂[n], X̃τ [k]) =
∑

j∈Z

1

M

M−1∑

k=0

∣∣X̂τ [k]− X̃τ [k]
∣∣2, (4.9)

which, according to the Parseval’s theorem, can be expressed in the short time do-
main,

D(x̂[n], X̃τ [k]) =
∑

τ∈Z

M−1∑

n=0

[
x̂τ [n]− x̃τ [n]

]2
, (4.10)

after setting its gradient with respect to x̂[n] to zero, it can be shown that the optimal
signal takes the form

x̂[n] =

∑
τ∈Zwa[l − τR]x̃τ [l − τR]∑

τ∈Zwa[l − τR]2
. (4.11)

Therefore, an initial – potentially invalid – STFT X̃
(0)
τ [k] could be constructed by

applying a random or an arbitrary phase to a spectrogram of interest |Xτ [k]| and
compute the time signal x̂(0)

τ [l] minimising the MSE. Then, for each iteration ι ∈
{1, 2, . . . , I}, the phase φ̂(ι)

τ [k] is extracted from the STFT X̂
(ι)
τ [k] of the new esti-

mated signal and applied to the original spectrogram of interest |Xτ [k]|. It appears
that D(x̂(ι)[n], X̃

(ι)
τ [k]) decreases at each iteration and converges toward 0, although

it has not been mathematically proven yet.

Unfortunately in its original form, this algorithm is not suitable for a real-time im-
plementation as the whole time signal is required, furthermore without any adequate
initialisation of the phase, an impractical large number of iterations may be required
to ensure perceptually satisfying results, and hereby renders the algorithm slow.

Real-Time Iterative Spectrogram Inversion (RTISI) Despite the fact, that
G&L is not designed for real-time processing, it can be easily adapted for a real-time
use on streamed audio, as proposed by Beauregard et al. in 2005 [BZW05].

According to RTISI, the ιth G&L-based iteration may estimate the phase of the cur-
rent time frame ∠X(ι)

τc [k] by only using the
⌈
M
R

⌉
−1 times frames past, and the phase

values previously found for them

The algorithm can be decomposed as following for each time frame:
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1. A partial reconstruction of the signal is computed with the help of the previous⌈
M
R

⌉
− 1 overlapping time frames

x̂part,τc [n] =
τc−1∑

τ=τc−dMR e+1

x̂τ [n− τR] (4.12)

where x̂τ [n] is computed using (4.6). The partial reconstruction of those previous
frames remains unchanged in each iteration for the iterative estimation in the cur-
rent frame and therefore does only need to be computed once before starting to
iterate.

2. A initial estimate is made by setting x̂(0)
τc [n] = 0.

3. The estimate x̂(ι)
τc [n] from the previous iteration is overlapped and added to the

partially estimated signal x̂(ι)
part,τc [n]

x̂(ι)
sum,τc [n] = x̂part,τc [n] + x̂(ι)

τc [n− τcR]. (4.13)

4. An analysis window is applied on the reconstruction x̂sum,τc [n] at the position of
time frame xτc

x̃(ι)
τc [n] = wa[n]x̂(ι)

sum,τc [n− τcR] (4.14)

5. The new estimate x̂(ι+1)
τc [n] is computed by applying the phase of X̃(ι)

τc [k] onto the
desired magnitude |Xτc [k]|

x̂(ι+1)
τc [n] = ws[n]

∑

τ∈Z
X̃(ι)
τc [k]

|Xτc |
|X̃(ι)

τc [k]|
e

i2πkn
M , (4.15)

where

X̃(ι)
τc [k] =

M−1∑

τ=0

x̃(ι)
τc [n]e

−i2πkn
M . (4.16)

6. Repeat steps 3-5 until the maximum iteration number I is reached, the final esti-
mate of time frame xτc is

x̂τc [n] = x̂(I)
τc [n]. (4.17)

7. Proceed to the next time frame and start with step 1.

The whole process for the phase estimation of a certain time frame xτc is depicted in
Fig. 4.2.
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Figure 4.2 – Iterative phase estimation of time frame around τc by mean of
RTISI. The cyan surfaces depict the effective windowing of the signal. The
magenta lines depict the window applied by the previous processing block
(wa or ws). The dotted frame highlights the part altered by each iteration.
The gray patchs show the region of the time-frame to be committed.

Gnann & Spiertz’s Real-Time Iterative Spectrogram Inversion with Look-A-
head (GSRTISI-LA) From RTISI, many improvements can be made in order to
enhance the convergence speed with a lower computational complexity, e.g. as pro-
posed in [ZBW06, GS08, GS10]. Hereby we will focus on two improvements that
seem particularly interesting, namely

— The use of Look-Ahead time frames, introduced by Zhu et al.. Therefore, not only
the information from previous time frames is used, but also the information from
future time frames.

— The use of window compensation on partially reconstructed signal as advised by
Gnann & Spiertz.

The following procedure includes both improvements and is referred in this work as
the Gnann & Spiertz’s Real-Time Iterative Spectrogram Inversion with Look-Ahead
(GSRTISI-LA). NLA denotes the number of Look-Ahead time frames and may be
arbitrarily set to any non-negative integer smaller than or equal to the number of
future overlapping time frames

⌈
M
R

⌉
− 1. The algorithm can be decomposed into the

following steps:

1. Similarly to RTISI, the partial reconstruction x̂part,τc is computed based on the
previously estimated time frames using (4.12). A variable p is set to NLA , cor-
responding to the relative index of the currently processed time frame (p = 0
corresponds to the time frame to be committed, p = NLA indicates the latest
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look-ahead time frame).

2. The current and the NLA future time frames are overlapped and added to x̂part,τc .
It results

x̂(ι)
sum,τc [n] = x̂part,τc [n] +

τc+NLA∑

τ=τc

x̂(ι)
τ [n− τR]. (4.18)

Hereby, we assume that at least the NLA − 1 first look-ahead time frames have
been initially estimated.

3. The summed signal x̂(ι)
sum,τc is segmented at the position of the τc + p time frame.

Unlike the standard RTSI, we do not apply a simple analysis window wa but a
modified one (wã,p) in order to avoid inconsistency between the time and fre-
quency representation. In fact, the overlap and add procedure with a finite set of
time frames leads to a amplitude decay at the beginning and ending of the recon-
struction x̃(ι)

sum,τc as depicted in Fig. 4.2. An appropriate windowing would enable
to maintain a constant gain and therefore, the effective window on x̂

(ι)
τc will be

equal to the original analysis window wa.

wã,p[n] = M
wa[n]

wsum[n+ pR]
, (4.19)

where

wsum[n] =

NLA∑

τ=0

wa[n− τR]ws[n− τR]. (4.20)

This leads to
x̃(ι)
τc,p[n] = wã,p[n]x̂(ι)

sum,τc [n− τcR] (4.21)

4. Similarly to RTISI, the new estimate x̂(ι)
τc+p is computed by applying the phase of

X̃
(ι)
τc+p[k] onto the desired magnitude |Xτc+p[k]| using (4.15) and (4.16). Note that,

this time, this iteration index is not incremented.

5. Steps 2-4 are repeated from p = NLA and decreasing to 0.

6. Steps 2-5 are repeated until the number of desired iterations is reached.

7. The final estimate x̂τc is committed, as in (4.17).

The whole algorithm is depicted in Fig. 4.3.
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Figure 4.3 – Iterative phase estimation of time frame around τc by mean
of GSRTISI-LA. The cyan surfaces depict the effective windowing of the
signal. The magenta lines depict the window applied by the previous pro-
cessing block (wa, wã,p or ws). The dotted frame highlights the part altered
by each iteration. Within each iteration, p changes decreasingly from NLA

to 0. The gray patchs show the region of the time-frame to be committed.

4.1.2 Non-iterative methods

Phase Gradient Heap Integration In 2017 Pr̊uša et al. proposed an efficient
non-iterative algorithm for STFT reconstruction [PBS17]. The main idea consists
in taking advantage of the relationship between the gradient of the log-magnitude
Gabor transform to the gradient of its phase.

Using a truncated Gaussian window, where h ∈ ]0, 1[ denotes the relative height at
its truncation, we can approximate the entries of the phase gradient ∇φ = (∂φ

∂k
, ∂φ
∂τ

)
using the centred differences over the time frame and frequency bin indices τ and k

∂φτ [k]

∂k
=

γ

2RM
(log(|Xτ+1[k]|)− log(|Xτ−1[k]|)) , (4.22)

∂φτ [k]

∂τ
=
RM

2γ
(log(|Xτ [k + 1]|)− log(|Xτ [k − 1]|)) +

2πRk

M
, (4.23)
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where γ denotes the ”time-frequency ratio” of the Gaussian window 2 defined as

γ =
−π
4

M2

log(h)
. (4.24)

From the gradient∇φ, the phase can be reconstructed over the whole spectrogram by
using the trapezoidal rule and cumulative sum over a certain integration path. In or-
der to get some phase consistency between neighbouring (τ, k)-cells, the integration
path obeys to a simple heap-based rule.

Firstly, a random phase may be applied for all (τ, k)-cells beyond a certain relative
tolerance tol, in order to reduce the computational effort. The coordinates (τ, k) of
the remaining cells of the incomplete STFT are placed in a set I. An empty heap is
created, which will permit to order the (τ, k) coordinates of cells according to their
magnitude.

Until I empties (i.e. the phase of the whole STFT is estimated), the following pro-
cedure is repeated: If the heap is empty, the cell with the greatest magnitude is
identified, then its coordinates (τ, k) are removed from I, is added to the heap and
an arbitrary phase φ̂τ [k] = 0 is applied to the incomplete STFT

X̂τ [k] = |Xτ [k]| · eiφ̂τ [k]. (4.25)

Recursively, the neighbouring STFT values of the heap first cell with coordinates
(τh, kh), are given the following phase

φ̂τh [kh + 1] = φ̂τh [kh] +
1

2

(
∂φτh [kh]

∂k
+
∂φτh [kh + 1]

∂k

)
+ π, if (τh, kh + 1) ∈ I

(4.26)

φ̂τh [kh − 1] = φ̂τh [kh]−
1

2

(
∂φτh [kh]

∂k
+
∂φτh [kh − 1]

∂k

)
+ π, if (τh, kh − 1) ∈ I

(4.27)

φ̂τh+1[kh] = φ̂τh [kh] +
1

2

(
∂φτh [kh]

∂k
+
∂φτh+1[kh]

∂k

)
, if (τh + 1, kh) ∈ I (4.28)

φ̂τh−1[kh] = φ̂τh [kh]−
1

2

(
∂φτh [kh]

∂k
+
∂φτh−1[kh]

∂k

)
, if (τh − 1, kh) ∈ I (4.29)

The new cells are then added to the heap and their coordinates are removed from I.

When the heap and I are both empty, the STFT is complete and the time signal can
be reconstructed using (4.5) and (4.6).

An example of an integration path for a given spectrogram is shown in Fig. 4.4.

2. According to [PBS17, PS16], this algorithm can even be applied on non-Gabor transform, i.e.
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(a) Sample spectrogram.
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(b) Integration sequence. Gray cells
depict below-threshold magnitude,
black and white cells show bins with
estimated or missing phase respec-
tively.

Figure 4.4 – Integration path for PGHI.

Real-Time Phase Gradient Heap Integration The real-time implementation
of the PGHI (RTPGHI) is very similar to the off-line one, with the only difference
that the integration path only enables the estimation of the phase within a single time
frame at the time [PS16]. Contrary to the standard PGHI, as the phase of the previous
time frame is already estimated and won’t be modified anymore, all their values are
directly copied into the heap before the integration as shown in Fig. 4.5.

It should be noticed that according to (4.22), a look-ahead time frame is needed 3,
which will introduce a delay to fulfil the causality constraint.

when using other types of window functions, the approximate ”time-frequency” ratio can then be
computed by taking the one of the closest Gaussian window (e.g. which minimises the mean squared
error).

3. Note that a further approximation of (4.22) requiring no look-ahead time frame is also possible,
as proposed in [PS16], however it is not discussed in this work.
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Figure 4.5 – Integration path for RTPGHI.

4.1.3 Hybrid methods

As discussed in Section 4.1.1, all iterative algorithms require the use of an initial
phase estimation. Both of the non-iterative methods described above could be used
to compute an initial phase with little computational complexity, then a further con-
vergence of the phase could be achieved by using any desired iterative method.

In [PR17], Pr̊uša et al. proposed a high quality real-time spectrogram inversion by
initialising the phase with RTPGHI iteratively improving the phase estimate by mean
of GSRTISI-LA 4. This algorithm has been implemented in C++. Its source code or
a Matlab Executable File (MEX) compilation of it can be obtained from the author
on request.

An off-line implementation can also be obtained, e.g. by initialising the phase with
PGHI and then use the GL algorithm.

4. There, the latest look-ahead time frame used by GSRTISI-LA also needs a further look-ahead
time frame for its initial estimation.



F. ZAGALA: Primal signal and radiation-filter modelling 49

4.2 Directivity-filter estimation

4.2.1 Directivity gain simplification in space domain

This magnitude spectrum division in (4.3) used to determine the microphone depen-
dent directivity gain |Pτ,λ[k]| may be quite problematic under certain circumstances,
even though the primal signal possesses all spectral components, as demonstrated by
the noisiness of the cyan line in Fig. 4.7c. For this reason a regularisation appears
to be necessary. However, in the case of a sparse spectrum, such a regularisation
yield vanishing radiation filter between the relevant frequency bins. Therefore, a
magnitude spectrum smoothing based on the high-energy spectral components may
be beneficial.

Practically, a simple two-way non-linear filter is applied on the frequency domain of
the microphone spectrum and the primal source before computing the relative gain.
This filter is referred as a Skirt-filter and represented by the operator Sk{·}.
The skirt filter applies a decaying slope onto the maxima of the magnitude spectrum
with a decay rate specified by α[k] ∈ ]0, 1[. The block-diagram of its one-way ver-
sion is depicted in Fig. 4.6, the two-way version used here is obtained running the
spectrum through the skirt operator in reverse order 5.

max

z−1

X[k]

×

• X̃[k]

α[k]

Figure 4.6 – One-way skirt filter with frequency dependent parameter α[k]

The frequency dependent parameter α[k] is set to achieve a constant decaying slope,
therefore the filter parametrisation can be reduced to a single frequency independent
parameter β

αk = e
−1
β . (4.30)

The resulting magnitude spectrum of the radiation filter for each microphone direc-
tion can be expressed as follows

|Pτ,λ[k]| = Skβ{|Xτ,λ[k]|}
Skβ{|Uτ [k]|} . (4.31)

5. In Fig. 4.6, the z−1 element depicts the unit saving the value of the previous frequency bin and
not the value of the previous time instant, as it is commonly used in the literature.
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As an example, Fig. 4.7 presents the original and simplified magnitude spectrum of
a microphone and the corresponding primal source as well as the their relative gains.
It can be observed that the resulting gain curve is quite smooth and appears to be a
great candidate for the radiation-filter design.

In contrast to the traditional filter bank (e.g. third octave filter bank) with fix band-
width, the proposed method has the benefit to be signal dependent and to segment
the short term magnitude spectrum into regions adapted to the frequency content.
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(a) Magnitude spectrum of microphone 1
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(b) Magnitude spectrum of primal source
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(c) Magnitude spectrum of radiation filter at the position of microphone 1

Figure 4.7 – Magnitude spectrum of microphone 1, primal signal and their
corresponding radiation filter. Original gain Simplified gain by ap-
plying a Skirt filter with factor β = 0.1
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4.2.2 Phase estimation for frequency regions

The simplified magnitude spectrum of the primal source helps to segment the spec-
trum of the radiation filter into regions of common directivity patterns. The spatial
spherical phase of this regions that represent the directivity of several frequency bins
gathered can be determined separately. For those regions, the local minima of the
primal source magnitude spectrum with skirt delimit the frequency regions, while
the magnitude values of the radiation filter are obtained at the local maxima. Those
values are used for the spherical phase retrieval algorithm.

As the retrieved absolute phase is not necessarily consistent with the previous time
frame, it may be desired to rotate the phase of the microphones in a given frequency
region ν and current time frame τc in order to best match the phase retrieved in
the previous time frame τc−1. Hereby, the use of the main eigenvector from the
phase matrix Z obtained with the SDR method which deliver a binary phase (0 or π)
appears relevant, as a simple appropriate polarity inversion is sufficient. To achieve
this, the following scalar product can be computed

ρν = <
{
zτc−1 [kν,max]

}T<{zτc [kν,max]} (4.32)

where kmax is the frequency bin of the peak of the frequency region ν and current
time frame τc. The sign of ρν determines wether the polarity of the microphones has
to be inverted for the frequency region ν. Thus, a phase of 0 or π is assigned to each
microphone for each frequency region and time frame. Figure 4.8a depicts such a
retrieved phase for microphone 1.

The second step is to ”smooth” the phase in order to avoid discontinuity in the signal
that may lead to a spectral whitening or other non-linear artefacts. By taking into
account that the phase is either 0 or π, a simple 2 dimensional Gaussian filter can
be applied into the real part of the complex phasor zτ [k] of each microphone, then
the allpass properties of z can be retrieved by applied the arccos function onto the
smoothed real part

φ̂τ [k] = arccos (<{zτ [k]} ∗ ∗ G) , (4.33)

where G denotes a discrete Gaussian kernel of arbitrary variance. The resulting
phase for microphone 1 is shown in Fig. 4.8b. It can be observed, that due to the
non-injectivness of the cos function, the image of the arccos function is restricted to
[0, π], therefore the retrieved phase also lies within [0, π].

Apart from the cancellation of spectral artefacts, the smoothing also offers a steadi-
ness of the directivity that is appreciable for visualisation, especially in the absence
of a radiated signal where the radiation filter tends toward a monopole instead of a
noisy directivity pattern.
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Figure 4.8 – Retrieved phase for microphone 1 from an alto saxophone
recording by selecting the main eigenvalue of the SDR solution.
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4.2.3 Some considerations on the impulse response com-
pactness

The energy of the resulting SH impulse responses (IR) obtained from the phase op-
timisation process described above appears to be concentrated against the first and
last sample. As this would lead to a strong echo, the IR is simply shifted in a circular
way (i.e. complex linear modulation in the frequency domain) in order to concentrate
the energy in the centre. The price to be paid is an additional delay corresponding
to the half length of the IR. A compaction of the filter into a ”minimum-phase”-like
SIMO-radiation-filter would be a great help, however such a solution could not be
found during this work. Though, as it will be shown in Sections 5.3.1 and 5.3.2, the
proposed definition yields perceptually very satisfactory results.





Chapter 5

Perceptual evaluation

5.1 Perceptual evaluation of interpolation meth-
ods on a sampled sphere

The different directional interpolation methods described in Chapter 2 are investi-
gated with the help of a short listening experiment. This experiment stands as a
demonstration of the interference problems described in Section 2.1.1 and therefore
illustrates the problematics that motivate this work.

The experiment consists of a multi stimuli test, where the subject has to rate the
similarity of interpolated signals obtained with different algorithms with a reference.
Ratings were given by means of some sliders on a GUI implemented in MATLAB.

The different interpolation methods are described in Chapter 2 and consist of VBAP,
MVBAP, hyperinterpolation with SH of order L = 3 (referred as HI-L3) and hyper-
interpolation with SH of order L = 7 (referred as HI-L7). All of them are based
on simulated microphone signals that are obtained by applying an appropriate delay
and gain depending on their relative position to the virtual source and its directivity
(assuming an amplitude decay of 1/d and a speed of sound of c = 343 ms−1). The
geometry of the array is given in Appendix A and depicted in Fig. 3.1 while the
virtual source consists of an ideal dipole, oriented toward the x-direction and shifted
from the microphone array centre by (0.1 m, 0.2 m, 0 m).

All stimuli played by the source consisted of a looped 3 s audio signal of either pink
noise, speech, guitar and tablas recording.

The virtual microphone which determines the signal to be rated was rotated on the
transverse plane, at an arbitrary distance of 1 m from the centre of the microphone
array, starting a ϕstart = π

2
and rotating anti-clock-wisely at a frequency of 0.5 Hz
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and stopping therefore at ϕend = −π
2

.

The investigated signals were obtained by applying an interpolation block-wisely
with a half-cos window of length M = 512 and an hopsize of R = 256, while
the reference signal was obtained by directly weighting the stimulus according to
the directivity of the ideal source for each sample. Both low and high frequency
channels of the MVBAP algorithm were obtained with a second order Linkwitz-
Riley filter pair with a cross frequency of 2 kHz [LV83].

Seven expert listeners from the IEM took part on the test and had to rate the (4 meth-
ods + 1 reference) × 4 stimulus types × 2 repetitions = 40 samples, which lasted
about 15 min per subject. This leads to 56 values for each interpolation method.

The experiment results, grouped according to stimulus type, are depicted in the form
of confidence intervals for the median in Fig. 5.1. This representation aspires to give
a better overview of the subject answers.

The null-hypothesis that the mean-rank of each interpolation method is equal, is
tested with the help of a Wilcoxon signed-rank test. The resulting p-values are shown
in Table 5.1 and lead to a rejection of the null-hypothesis for each pair of method.
Thus the average rank gives us a good indication of the quality of the restitution.

Regarding the hyperinterpolation, it seems that the quality of the restitution benefits
from an increase of the SH order. In fact, an increase of the order leads to a narrower
weighting beam; the microphones far from the desired direction – which potentially
have a greater relative phase difference – contribute less to the interpolated signal,
thus leading in a reduction of the destructive interference. However, according to
Fig. 5.1, a 7th order hyperinterpolation might not be sufficient to obtain a satisfactory
restitution of the source.

On the other hand, the VBAP methods has the benefit to reduce even more the con-
tribution of distant microphones (with potentially destructing potential) by limiting
itself to the 3 closest microphones. Therefore the destructive interferences can be
avoided up to a higher frequency, thus increasing the spectral quality. However, with
steady broadband signals such as pink noise, this method has the disadvantage to
create strong audible artefacts when rapidly moving the interpolation direction, as
the destructive interferences are strongly direction depedent.

Finally MVBAP outperforms all other methods. This confirms that a microphone
signal interpolation employing a clever phase modification is promising for a more
transparent virtualisation of the source.
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Figure 5.1 – Perceived quality for different spatial interpolation methods.
The large points depict the estimated median and the whiskers depict 95%
confidence intervals of the median. • Pink noise, • Speech, • Guitar,
• Tablas.

5.2 Perceptual evaluation of reconstructed pri-
mal source signal using RTPGHI + GSRTISI-
LA

In order to evaluate the perceptual quality of a reconstructed primal source signal
using the spectrogram inversion discussed in Sections 4.1.2 and 4.1.3, two simple
listening experiments were conducted.

The first focuses on the perceived quality of a monophonic signal reconstructed from
its spectrogram using RTPGHI+GSRTISI-LA to find the best spectrogram parame-
ters and for the tested sounds. The second experiment is conducted in order to eval-
uate the quality of a reconstructed primal signal from a multichannel recording by
the means of spectrogram inversion and other strategies.

5.2.1 Optimal/required spectrogram parameters

In order to determine the optimal parameters to be used in RTPGHI+GSRTISI-LA to
reconstruct a time signal with an acceptable computational complexity, different pa-
rameters were perceptualy evaluated in different scenarios. While some parameters
are kept identical to those used in [PS16, PR17] as the usage of Gaussian window
truncated at 1% of the height, the relative tolerance was arbitrary set to tol = 10−3.
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Method VBAP MVBAP HI-L7 HI-L3 rank

VBAP 3.11
MVBAP 2.11e−6 2.10
HI-L7 1.32e−6 5.97e−10 3.74
HI-L3 2.31e−9 7.94e−11 3.48e−10 4.78

reference 5.23e−10 4.02e−7 8.40e−11 5.92e−11 1.28

Table 5.1 – Average rank of each interpolation method and p-values ob-
tained with a Wilcoxon signed-rank test when mixing all types of stimuli
together. Gray cells depict the p-values which lead to a rejection of the null-
hypothesis with a significance level of α = 0.05. Redundant p-values are
not shown.

Apart from these fixed parameters, there remains many degree of freedoms to be
analysed as the length of the analysis window M , the overlapping factor Ov = M

R

and the number of iterations I 1.

A MUlti Stimuli with Hidden Reference and Anchor (MUSHRA)-like test was de-
signed with a Graphical User Interface (GUI) in MATLAB.

The ranges of the investigated independent variables were selected from an informal
comparative listening test. The different variables consist of all combinations of
window length M ∈ {512, 1024, 2048, 4096, 8192} and overlapping factor Ov ∈
{4, 8} plus hidden reference and anchor.

Different treatments were used in a full-factorial design, combining the numbers of
iterations I ∈ {0, 3, 10} and the type of stimulus, among a speech signal, a clean
electric guitar recording and a tablas recording.

For each type of stimulus, the anchor consisted of a reconstruction without iteration.
The window length used for the anchor signals was set to 512 samples for the speech
and guitar and 8192 samples for the tablas.

Nine expert subjects took part in the listening test and had to rate (5 × 2 + 2 = 12
blocks) ×(3× 3 = 9 treatments) = 108 samples once.

All results are grouped for each number of iteration and type of stimuli and depicted
separately in Fig. 5.2 in order to avoid plotting all treatment combinations. The
choice to depict the medians and their 95% confidence intervals over the mean is
motivated by the strong floor and ceiling effect observed. Furthermore it offers a
robust confidence interval – although quite conservative due to the small amount of
dataset – , which is insensitive against outliers.

1. Note that RTPGHI + GSRTISI-LA with I = 0 corresponds to RTPGHI
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(a) Perceived quality for different numbers of iterations, all stimuli
together. • I = 0, • I = 3, • I = 10.

excellent

good

moderate

poor

very poor ••

•

M
51
2O

v
4

•

•
•

M
51
2O

v
8

••

•

M
10
24

O
v
4

•••

M
10
24

O
v
8

•
•

•

M
20
48

O
v
4

•••

M
20
48

O
v
8

•

•

•

M
40
96

O
v
4

•

•

•

M
40
96

O
v
8

•
•

•

M
81
92

O
v
4

•
•

•

M
81
92

O
v
8

•••

an
ch

or

•••

re
fe

re
nc

e

(b) Perceived quality for different stimuli, all iteration numbers together.
• Speech, • Guitar, • Tablas.

Figure 5.2 – Perceived quality for different STFT parameters. The large
points depict the estimated median and the whiskers depict 95% confidence
intervals of the median.
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After a rapid overview, 2 parameters combinations, namely (M = 1024, Ov = 8)
and (M = 2048, Ov = 8) (referred respectively as M1024Ov8 and M2048Ov8 ) appear
to outperforms the others groups. This is confirmed by testing the null-hypothesis
that their mean ranks are both equal to those of the others groups.

A Wilcoxon signed-ranked test is used to test this hypothesis on all paired formed by
both the two groups M1024Ov8 and M2048Ov8 and the other groups (21 pairs testing)
when all treatments are considered.

From Table 5.2, it can be confirmed that both the groups M1024Ov8 and M2048Ov8
deliver the best general results compared to other (M,Ov)-combinations when mix-
ing all treatments together (I , type of stimuli) as their average ranking is better and
significantly different from the other groups.

M 1024 2048
rank

Ov 8 8

512
4 3.62e−12 8.47e−12 8.62
8 1.34e−8 5.02e−8 5.50

1024
4 9.32e−14 1.27e−13 7.78
8 3.00

2048
4 2.24e−11 4.73e−13 6.01
8 8.75e−1 2.93

4096
4 3.38e−14 8.94e−14 7.79
8 1.38e−8 2.27e−10 5.08

8192
4 5.73e−15 6.49e−15 10.10
8 1.93e−14 6.48e−14 7.45

anchor 1.79e−15 2.24e−15 11.35
reference 4.67e−3 7.08e−3 2.40

Table 5.2 – Average rank of each (M,Ov)-group and p-values obtained with
a Wilcoxon signed-rank test when mixing all treatments (I , type of stimuli)
together. Gray cells depict the p-values which lead to a rejection of the null-
hypothesis with a significance level of α = 0.05. Redundant p-values are
not shown.

Further investigations on the influence of the number of iterations on both these
groups are undertaken with 15 additional Wilcoxon signed-rank tests. As shown
in Table 5.3, groups with an iteration greater than 0 score significantly better than
groups without any iteration with respect to their ranking.

However, despite the significant improvement of the quality by increasing the num-
ber of iterations, the results obtained without any iterations appear very satisfying,
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especially for non-expert listeners (e.g. the 95% confidence range for the median
of the perceived quality of (M1024Ov8 , I = 0) is [0.84, 1] and 77% of its values are
greater than 0.8). Therefore, regarding the high computational cost of each itera-
tion, it was decided to discard the iterative part of the algorithm in the following
experiment.

Furthermore, despite the non-significant difference between (M1024Ov8 , I = 0) and
(M2048Ov8 , I = 0), the window length M = 2048 was preferred for the following
experiments.

M,Ov 1024, 8 2048, 8
rank

i 0 3 10 0 3

1024, 8
0 4.50
3 3.18e−3 3.17
10 2.29e−3 7.33e−1 2.78

2048, 8
0 2.79e−1 1.49e−1 1.23e−2 4.20
3 7.90e−3 1.27e−1 9.77e−2 2.35e−1 3.37

10 3.76e−3 8.55e−1 6.07e−1 7.40e−3 1.23e−1 2.98

Table 5.3 – Average rank of each (M,Ov, I)-group and p-values obtained
with a Wilcoxon signed-rank test when mixing all types of stimuli to-
gether. Gray cells depict the p-values which lead to a rejection of the null-
hypothesis with a significance level of α = 0.05. Redundant p-values are
not shown.

5.2.2 Perceived quality of the reconstructed primal signal

Section 5.2 demonstrated that, when RTPGHI(+GSRTISI-LA) is well parametrised,
the signal reconstructed from its spectrogram is perceptualy extremely similar to
the original one. The question remains wether this can be used to accomplish a
satisfactory primal signal estimation from a modified spectrogram under physical
situations, which could be obtained by combining the individual spectrogram of each
microphone together.

Again, the evaluation consists of a MUSHRA-like test where the perceived quality
of primal signals estimated from different methods is assessed.

Hereby a simulation is designed to compute the signal of a circular microphone
array for a source emitting a reference signal with controlled position, orientation,
movement and directivity.
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Simulated microphone signals for testing The geometry of the array is de-
picted in Fig. 5.3 and consists of 15 microphones uniformly positioned on a circle
of 1.2m radius. According to the source characteristics (position, orientation, move-
ment, directivity), each microphone signal is computed by applying the following
instructions:

— The distance taken into account is computed by applying a 1/d linear gain, where
d is the source-microphone distance and the right delay according to a speed of
sound of 343 m s−1,

— The Doppler shift, induced by the movement of the source is modeled by an ade-
quate frequency modulation of the signal, this is implemented by a simple signal
interpolation (e.g. using the interp1 function in MATLAB),

— The directivity of the source is modelled by applying a gain corresponding to
the direction of the microphone relatively from the local coordinate system of
the source described by its position and orientation. Assuming the directivity
pattern of the source h(θ) being rotationally symmetric, the gain at microphone λ
associated to the directivity of the source can be described as

gλ = h(φ) = h

(
arccos

( 〈(mλ − s),ds〉
‖mλ − s‖ · ‖ds‖

))
(5.1)

where mλ is the position vector of the λth microphone, s the position vector of the
source, ds the vector representing the orientation of the source.

Architecture of the experiment Different alternatives for the determination of
the primal signal are investigated:

— The signal of two microphones have been selected (mic 1, mic2, drawn in cyan in
Fig. 5.3),

— An estimation of the primal signal by use of the mean of all microphones spectro-
grams (referred as SI l1),

— An estimation of the primal signal by use of the generalised mean with exponent
10 of all microphones spectrograms (referred as SI l10),

— The mean signal obtained by superposing the microphone signals in the time-
domain (referred as time mix).

Different conditions are modelled, the source is either fix at the position (0.2 m,
0.1 m) and pointing toward the x-direction (referred as off-centre) or following the
movement/rotation described in Fig. 5.3 (referred as moving). The source directivity
is either omnidirectional or directional. Hereby, directional is modelled by combin-
ing the microphone signal obtained with an omnidirectional source below 800 Hz
and the microphone signal obtained with a source of Lb = 5th order max-rE beam
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directivity above 800 Hz. This rotational symmetric directivity is described as

h(φ) =

Lb∑

l=0

2l + 1

4π
alPl(φ), (5.2)

where the coefficients al can be approximated as following [ZF12]

al ≈ Pl

(
cos

(
137.9◦

Nb + 1.51

))
. (5.3)

The junction between the low frequency and high frequency directivity is made
by mean of a second order Linkwitz-Riley filter pair to ensure a smooth transi-
tion [LV83].

The anchor signal for each scenario corresponds to the linearly mixed time signal,
when the source is moving rapidly (2 Hz anti-clockwise rotation on a circle of 0.4 m
radius centred on (0.2 m, 0.1 m). The source orientation rotates in the clock-wise
direction with a frequency of 0.6 Hz).
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(d) from 3 to 4 s

Figure 5.3 – Source movement used in the simulation. The source posi-
tion defined a by 0.2 Hz anti-clockwise rotation on a centred circle of 0.4 m
radius. The source orientation rotates in the clock-wise direction with a
frequency of 0.3 Hz.

All stimuli consist of the same guitar loop used in the previous experiments.

The 7 groups (5 strategies + 1 anchor + 1 reference) for all 4 conditions (2 move-
ments ×2 directivity) with 2 repetitions leads to 56 samples per test person.

Seven expert listeners took part in the test, their results are depicted in Fig. 5.4.

Both groups SI l1 and SI l10 are compared to others with a Wilcoxon signed rank test
by testing the null-hypothesis that their average ranking are identical. The results are
depicted in Table 5.4.

SI l10 appears to obtain the best results with mic 1 together according to their average
ranking, however the use of an individual microphone appears not to be an optimal
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solution especially for a directional source moving or pointing away from the micro-
phone, since spectral elements may not all reach the microphone with an equal gain.
The better results of SI l10 over SI l1 for a directional source can be explained by
the fact, that the generalised mean of the spectrograms with a high exponent enables
a better conservation of the spectral elements that are less well represented in the
space domain, on average.
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Figure 5.4 – Perceived quality of the estimated primal signal for different
methods. The large points depict the estimated median and the whiskers
depict 95% confidence intervals of the median. • omnidirectional moving,
• omnidirectional off-centre, • directional moving, • directional off-

centre.

5.3 Perceptual evaluation of primal source/radiation-
filter decomposition methods

After demonstrating the great potential of the primal signal estimation by means of
phase retrieving algorithm introduced in Section 4.1, the perceived quality of the
whole primal signal/directivity-filter estimation algorithm described on Chapter 4,
is evaluated in this section. To this end, two perceptual tests are conducted in a
virtual free field environment and in a virtual reverberant environment respectively.
Again, both experiments are based on simulated microphone signals as described
in Sections 5.1 and 5.2.2 which has the benefit to provide a reference signal for
comparison. The virtual array consists of the IEM 64 microphones array whose
geometry is given in Appendix A and Fig. 3.1.
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SI l-1 SI l-10 rank

mic 1 5.51e−3 1.28e−1 3.13
mic 2 2.61e−1 3.79e−5 3.72
SI l-1 3.78
SI l-10 1.77e−6 3.00
mix time 8.55e−10 7.96e−11 5.71
anchor 7.49e−11 6.94e−11 6.92
reference 1.02e−9 7.87e−8 1.73

Table 5.4 – Average rank of each group and p-values obtained with a
Wilcoxon signed-rank test when mixing all treatments (source movement
and directivity) together. Gray cells depict the p-values which lead to a
rejection of the null-hypothesis with a significance level of α = 0.05. Re-
dundant p-values are not shown.

5.3.1 Perception under free-field conditions

In this experiment, the test persons were asked to rate different virtual source mod-
elling algorithms similarly to the experiment described in Section 5.1 with some
variations. Contrary to the experiment on the spatial interpolation in Section 5.1,
the test persons were free to move the virtual microphone around the source with
the help of a GUI implemented in Pure data. The global quality of the restitution
of each source model, compared to the reference, was rated with sliders on a GUI
implemented in MATLAB. The source properties used of the microphone signals
simulation was identical to Section 5.1, i.e. positioning at (0.1 m, 0.2 m, 0 m) and
dipole directivity corresponding to the SH Y 1

1 .

The auralisation techniques consist of:
— A direct SHT of the microphone signals with order 3. The resulting SH signal

of the source after re-synthesis is weighted according to the max -rE approxima-
tion given in (5.3). The interpolation is done linearly with an update every 20 ms
between consecutive directions. This model is referred as HI-L3.

— A direct SHT of the microphone signals with order 7 and max -rE weighting. This
model is referred as HI-L7.

— A zero phase variant of the primal signal/radiation-filter modelling of order 3.
The primal signal was obtained with RTPGHI+GSRTISI-LA and its parameters
M = 2048, R = 256, gaussian window with truncation at 1 %, tol = 1e − 3,
I = 20 on a l2 normed spectrogram. The gain of the radiation-filter was obtained
with a skirt filter with parameters β = 0.1 and a max -rE weighting was applied
on the resulting synthesised SH signal. The interpolation is done linearly with
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an update every 20 ms between consecutive directions. This model is referred as
ZP-L3.

— A second zero phase variant, this time with a maximal order of 7. This model is
referred as ZP-L7.

— A 3rd order modelling using the same primal signal as the zero phase variant and
a radiation filter obtained with semi definite relaxation as described in Chapter 4.
The phase of each frequency region is obtained from the main eigenvector of the
optimal Z matrix and smoothed with a Gaussian kernel with a standard deviation
of 5 along the time frames and 3 along the frequency bins (see Section 4.2.2). A
max -rE weighting is also applied on the resulting SH signal. The interpolation
is done linearly with an update every 20 ms between consecutive directions. This
model is referred as SDR-L3.

— the MVBAP method, which scored best in Section 5.1 is also present for com-
parison. The interpolation is undertaken on 128 samples long half-cos windowed
time-frames with an overlap of 64 samples. The cut-off frequency was set to
4 kHz.

A total of 6 expert listeners from the IEM took part on the experiment. Each one of
them had to rate (6 methods + 1 hidden reference)× 4 stimulus types× 2 repetitions
= 56 samples, the experiment lasted about 15 min.

The results are presented in Fig. 5.5 in the form of confidence intervals for the me-
dian for each stimuli type separately to give the reader a good overview of the rat-
ings. The null-hypothesis that the average rank of each method is equal was tested
by using the Wilcoxon signed-rank test, whose results are presented in Table 5.5.

Despite the non-significant difference between ZP-L3 and MVBAP or HI-L7, ZP-
L7 seems to deliver an overall better virtualisation of the source than the methods
implying a direct hyperinterpolation of microphone signal (HI-L3 and HI-L7 as well
a MVBAP).

The phase retrieving primal signal/radiation-filter model SDR-L3 appears to outper-
form all other models significantly, which indicates an overall better spectral and
directivity experience.

5.3.2 Perception in a reverberant field

One of the motivations to model natural sound sources is to include them in a virtual
environment that can be auralised (e.g. for virtual reality purposes or artistic works).
For this reason, the perceived quality of such models might be particularly interesting
to investigate in such environments. In this experiment, the virtualised sources from
the previous experiment Section 5.3.1 (i.e. HI-L3, HI-L7, MVBAP, ZP-L3, ZP-L7
and SDR-L3) are inserted in a virtual shoe-box room by means of an image source
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Figure 5.5 – Perceived quality of the radiated signal in free field for dif-
ferent source auralisation methods. The large points depict the estimated
median and the whiskers depict 95% confidence interval of the median.
• Pink noise, • Speech, • Guitar, • Tablas.

Method HI-L3 HI-L7 MVBAP ZP-L3 ZP-L7 SDR-L3 rank

HI-L3 6.34
HI-L7 1.53e−6 4.97

MVBAP 1.28e−4 8.57e−1 5.05
ZP-L3 4.66e−5 3.12e−1 1.82e−1 4.77
ZP-L7 1.69e−8 2.22e−4 5.32e−5 5.26e−6 3.71

SDR-L3 1.63e−9 2.40e−9 1.63e−9 2.24e−9 8.72e−9 2.07
reference 1.11e−9 1.57e−9 1.63e−9 1.62e−9 2.24e−9 1.03e−7 1.08

Table 5.5 – Average rank of each source auralisation method in a free field
environment and p-values obtained with a Wilcoxon signed-rank test when
mixing all types of stimuli together. Gray cells depict the p-values which
lead to a rejection of the null-hypothesis with a significance level of α =
0.05. Redundant p-values are not shown.

model. Additionally to those models, the primal signal as an omnidirectional source
is also provided for comparison to all other techniques and is referred as Omni.

Two positions are investigated, namely directly in the zero’s direction of the dipole
with a distance of 3 m (position A) and another one at a distance of about 4.6 m and
40◦ from the dipole direction (position B). Both virtual scene are depicted in Fig. 5.6
and the rays up the 5th order are represented with a width and color depending of the
reflexion order. The resulting signal at the listener is computed with the help of the
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room encoder from the IEM Plug-in Suite. The room has the dimension 7 m × 8 m
× 6 m, the first 100 reflections were computed and each reflections lead to a gain
reduction of 1 dB and a bass and high frequency attenuation modelled by two first
order shelving filters of −2.5 dB @ 99 Hz and −5 dB @ 8 kHz respectively.

The scenes are restituted binaurally in a static way using the Neumann KU100
Head Related Transfer functions (HRTF) based on the decoding strategy proposed
in [SZH18]. Practically, this was computed using the binaural decoder VST plug-in,
also from the IEM Plug-in Suite. As headphones a pair of Sennheiser HD650 was
used.

The ratings are based on the overall listening experience, therefore the test person
could assess either the spectral properties, temporal properties, the perceived locali-
sation or any other spatial cues that seem important to him.
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(b) Listener at position B

Figure 5.6 – Geometry of the virtual environment. The reflections are rep-
resented up to the 5th order.

Six experts listeners from the IEM took part on the experiment has to rate (6 methods
+ 1 reference) × 4 stimulus types × 2 positions × 2 repetitions = 112 samples that
resulted in a test of about 25 min.

The confidence intervals for the median are depicted for all 4 stimulus type and
positions in Figs. 5.7 and 5.8 respectively. The results of the Wilcoxon signed rank
test, testing the hypothesis that all methods share the same average rank are presented
in Table 5.6.
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All groups appear to be significantly different, and the method proposed in this work
(i.e. SDR-L3) deliver the best rank.

Interestingly, the increase of the order used for the direct SHT of the microphones
(HI-L3 and HI-L7) did not lead to an amelioration of the restitution quality, despite
the fact that the Sections 5.1 and 5.3.1 showed the opposite under free-field condi-
tions.

An other interesting observation is that the omnidirectional restitution of the primal
signal lead to a better rating from the participant when taking all positions into con-
sideration. Actually, after a short informal comparison of the stimuli, even if the spa-
tial cues of the omnidirectional source might not represent well the reference source,
the accuracy of its spectral properties are preferred against the distorted spectrum of
SH expansion of the microphone signals.

Both the sources with a zero-phase radiation filter (ZP-L3 and ZP-L7) offer a signifi-
cantly better listening experience than Omni, HI-L3 and HI-L7, despite less accurate
than SDR-L3.
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Figure 5.7 – Perceived quality of the radiated signal in reverberant environ-
ment for different source auralisation methods. The large points depict the
estimated median and the whiskers depict 95% confidence intervals of the
median. • Pink noise, • Speech, • Guitar, • Tablas.
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Figure 5.8 – Perceived quality of the radiated signal in reverberant en-
vironment for different positions. The large points depict the estimated
median and the whiskers depict 95% confidence intervals of the median.
• Position A • Position B.

Method HI-L3 HI-L7 Omni ZP-L3 ZP-L7 SDR-L3 rank

HI-L3 5.62
HI-L7 5.55e−13 6.86
Omni 4.21e−3 4.13e−17 5.12
ZP-L3 2.29e−16 1.78e−17 5.94e−12 3.78
ZP-L7 8.87e−17 1.78e−17 7.04e−15 4.65e−3 3.46

SDR-L3 1.78e−17 1.64e−17 2.15e−17 9.34e−17 6.76e−15 2.01
reference 1.73e−17 1.74e−20 1.78e−17 2.60e−17 3.81e−17 5.45e−13 1.15

Table 5.6 – Average rank of each source auralisation method in a virtual
reverberant environment and p-values obtained with a Wilcoxon signed-rank
test when mixing all types of stimuli together. Gray cells depict the p-values
which lead to a rejection of the null-hypothesis with a significance level of
α = 0.05. Redundant p-values are not shown.



Chapter 6

Conclusion and outlook

In this work, I proposed a new signal-processing framework in order to virtualise
musical instruments by means of a surrounding spherical microphone array, by de-
composing the source signal into a monophonic primal signal and a radiation filter.
Perceptually, this method has proved to enable a highly qualitative virtualisation.

Hereby complicated centring algorithm can be avoided by simply replacing the sig-
nals phase by a more simplistic one. On the one hand, the primal signal can be
estimated by retrieving the phase of a generalised mean of the microphones spectro-
grams, thus avoiding destructive interferences by using non-greedy algorithms such
as Real-Time Phase Gradient Heap Integration. On the other hand, the radiation fil-
ter can be estimated by retrieving a simplified phase for each microphone and signal
dependent-frequency regions using different strategies.

While other spatial interpolation algorithms such as the Modified Vector Base Am-
plitude Panning already appear convenient for avoiding spectral artefacts due to com-
plicated phase patterns, the proposed global interpolation method has the benefit to
offer a compact radiation signal in the form of a spherical wave spectrum, which
can be useful for some auralisation techniques (e.g. with a variable directivity loud-
speaker).

A simplification of my global method, requiring zero-phase radiation filter also
yields perceptually satisfactory results, even though such a virtualisation require
higher orders than the original source for a perceptually comparable result.

In a listening experiment, I have shown that the proposed method (primal signal
estimated by means of RTPGHI + GSRTISI-LA and a 3rd order radiation filter es-
timated region-wisely by solving an MLS problem with SDP) clearly outperformed
other methods such as those involving the 3rd and 7th order zero-phase radiation-filter
approximation or the 3rd and 7th order hyperinterpolation of the microphone signals
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under both free field and reverberant conditions. In the free field case, the result are
also significantly better than those obtained using MVBAP.

Of course the full potential of the proposed approach has not been completely ex-
plored, however this method offers a very promising alternative to other overly com-
plicated acoustic centring-based algorithms.

Some improvement could consist of achieving a faster convergence for the spherical
phase retrieval algorithm. The method providing time consistency of the radiation
filter could be extended to complex spectral values, as it is now only implemented
for binary phase (0 or π). Furthermore the compactness of radiation-filter IR could
be optimised by a suitable phase simplification over frequency (”minimum-phase”).
The spherical phase optimisation has not been tested for peak-region grouping; here
some improvements could be undertaken in order to avoid erroneous microphone
grouping.
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Chapter A

IEM microphone array geometry

λ ϕ ϑ

1 0.00 165.00
2 90.03 89.88
3 78.08 147.79
4−167.16 28.44
5 164.49 49.17
6 14.28 67.70
7 176.93 120.13
8−107.65 88.46
9 68.12 103.55

10 65.14 51.09
11 137.41 166.12
12 136.43 23.02
13 96.90 37.66
14 −98.43 161.01
15 −52.34 143.80
16−101.75 58.86
17−169.14 98.77
18−179.07 74.28
19 55.55 124.80
20 −43.09 45.64
21 154.73 141.37
22 −11.67 53.12

λ ϕ ϑ

23 32.88 142.88
24 −58.48 89.15
25 143.99 117.91
26 −62.76 117.23
27−153.16 78.95
28 −85.88 104.31
29 150.47 71.12
30 −14.16 25.69
31−151.23 119.03
32 161.65 95.11
33 −33.21 96.74
34 −34.32 122.12
35 −36.49 71.92
36 −83.61 79.09
37−116.75 114.24
38 −9.42 109.50
39−105.14 7.70
40 20.91 117.53
41 114.6 105.90
42−134.27 95.61
43 115.16 78.25
44 −91.78 131.07

λ ϕ ϑ

45 26.52 44.55
46 −79.63 34.32
47−129.24 68.39
48 90.34 120.00
49−124.43 39.43
50−126.76 138.3
51 128.95 52.70
52−158.41 52.65
53 15.32 93.09
54 65.72 78.34
55 41.24 69.42
56 −8.35 81.27
57 93.99 62.89
58 −5.55 137.63
59 41.35 97.80
60 52.29 21.81
61 136.13 92.25
62 −67.33 60.37
63−164.35 147.58
64 116.94 135.04

Table A.1 – Geometry of the IEM 64 microphones array in spherical coor-
dinates, the angles are given in degrees
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