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Abstract

The acoustic design of hands-free loudspeakers integrated into mobile devices such as smartphones
and tablets is particularly challenging because of the trade-off between compactness and low-frequency
output. In contrast to the commonly employed miniature voice-coil loudspeakers, an alternative ap-
proach considers vibrating actuators attached to the display to form a vibrating-display loudspeaker.
The radiated sound field of a vibrating-display loudspeaker can be determined using acoustic mea-
surements on a fine grid in the near field and far field. Further, the individual performance depends
on the material properties of the display panel, various impedances defining the coupling to other
surfaces of the device, and the particular actuator placement, requiring repeated assessment of the
acoustic quality in the cyclic development process. To circumvent the need for extensive measure-
ments that can only be done in acoustically treated rooms and exploiting specific mountings, one can
simulate the sound radiation using laser-interferometry-based measurements of the device’s surface
vibration. This thesis studies five boundary-value-based simulation techniques: the Rayleigh I inte-
gral and the Equivalent Source Method (ESM) for half-space radiation in an infinite baffle, and taking
into account the full-space setting: ESM, the Boundary Elements Method (BEM), and a combined-
Rayleigh-integral formulation. The models are discussed and compared to sound-field measurements
and finally employed to study the overall sound radiation of an actuator-driven smartphone dummy.
The aim is to find a well-suited approach that allows for flexible application in the development pro-
cess of vibrating-display loudspeakers and to gain a better understanding of their radiated sound field.

Kurzfassung

Die Entwicklung von Einbaulautsprechern für den Einsatz in mobilen Endgeräten wie Smartphones
und Tablets beherbergt mehrere Problemstellungen. Ein Beispiel dafür ist der Kompromiss zwischen
Lautsprechergröße und tieffrequenter Schallabstrahlung. Eine Alternative zu den konventionell einge-
setzten miniatur-Tauchspulenwandlern besteht im Anbringen von Vibrationselementen (Aktuatoren)
an der Rückseite des Bildschirms. Der angeregte Bildschirm fungiert dann als schallabstrahlender
Plattenschwinger. Zur Bestimmung des abgestrahlten Schallfelds eines solchen Lautsprechers be-
darf es akustischer Nah- und Fernfeldmessungen in einem fein abgetasteten räumlichen Raster. Die
Schallabstrahlung hängt von den Materialeigenschaften, aber auch von verschiedenen Kopplungs-
impedanzen zu den anderen Außenflächen, sowie der Platzierung der Aktuatoren ab. Der zyklische
Entwicklungsprozess verlangt daher nach wiederkehrenden Messungen zur Bewertung der Qualität
des abgestrahlten Schallfeldes. Solche Messungen sind oft langwierig und erfordern Räumlichkeiten
mit entsprechender akustischer Ausstattung, sowie die Verwendung spezieller Befestigungen für das
Gerät. Allerdings kann die akustische Messung mittels Laser-Interferometer-Messung der Oberflä-
chenvibration und anschließender Simulation der Schallabstrahlung umgangen werden. Diese Arbeit
untersucht insgesamt fünf auf Randwerte basierende Simulationstechniken: das Rayleigh I-Integral
und die Äquivalentschallquellenmethode für ein Halbraumszenario, sowie Äquivalentschallquellen-
methode, Randelementemethode und eine kombinierte Formulierung der beiden Rayleigh Integrale
für ein Vollraumszenario. Die Modelle werden mit akustischen Referenzmessungen verglichen und
schlussendlich angewandt, um das Schallfeld einer Aktuator-betriebenen Smartphone-Attrappe zu
untersuchen. Ziel ist es, eine passende und flexibel einsetzbare Simulationsmethode für den Entwick-
lungsprozess der Lautsprecher zu finden und ein besseres Verständnis für deren abgestrahltes Schall-
feld zu entwickeln.
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P. Heidegger

1 Introduction

This thesis was carried out in cooperation with Sound Solutions Austria1. Sound Solutions is a leading
company in acoustics technology with focus on small-scale electroacoustic transducers. The company
provided all tested devices, adapters, and measuring infrastructure, and it contributed the research
question of this thesis.

The cyclic development process of loudspeakers requires recurring measurements to assess the acous-
tic quality of subsequent loudspeaker builds. This assessment is also necessary for loudspeakers
used in hands-free devices, such as smartphones or tablets. While the traditional voice-coil-driven
miniature loudspeakers are still the most common, a developing trend is to use vibrating-display loud-
speakers instead. A vibrating-display loudspeaker constitutes a panel2 loudspeaker that is formed by
one or more vibrating actuators attached to the display of a hands-free device. The actuators introduce
bending-wave vibrancy into the display and, via volumetric and structural coupling, into the device’s
back cover. Fig. 1.1 illustrates a vibrating-display loudspeaker, the internal coupling, and its sound
radiation.

Acoustic measurements of vibrating-display loudspeakers can be more extensive than those of voice-
coil-driven ones since here, the casing acts as an essential part of the loudspeaker. Hence, measure-
ments cannot be conducted for the isolated loudspeaker surface but must include a whole casing that
vibrates. Conventional small-scale loudspeakers are traditionally assessed by observing the acoustic
response on a single concentric position in a short distance, which is possible due to their short mea-
sures and concentric directivity pattern. By contrast, due to the comparatively large measures of the
casing, a vibrating-display loudspeaker requires acoustic measurements at larger distances, raising
the demands placed on the measurement chamber. Further, the sound radiation of panel loudspeak-
ers is more complex [1] and differs significantly from that of voice-coil loudspeakers. While panel
loudspeakers ideally exhibit diffuse-like directivity patterns [2], [3], [4], they can also produce strong
lobes at frequencies where few modes are excited in the material [5]. Hence, it is often not represen-
tative to assess the acoustic quality of vibrating-display loudspeakers only for a single observation
point. Fig. 1.2 illustrates the different directivity patterns with balloon plots of a miniature voice-coil
loudspeaker and an actuator-driven display.

Simulating the sound field from the measured surface velocities can be advantageous. Modern Laser-
Doppler vibrometers produce low measurement noise, and no additional requirement for room size,
nearby reflecting surfaces, or acoustic ground noise needs to be fulfilled. This is because the acoustic
environment is of negligible influence on structural vibration. Further, a simulation can serve for
more flexible analyses, and it is desirable to keep its cost low for, e.g., utilization in optimization.
Evaluating the sound field on multiple receiver positions without remeasuring and the ability to link
the radiated sound to surface parts allows the development of optimizing analysis tools, which are
considered to be more practical when not having to perform repeated acoustic radiation measurements.
Simulation moreover facilitates evaluating the sound radiation at arbitrarily large distances, without
the need for far-field measurements in large anechoic chambers. Three approaches appear suitable for
simulating the sound radiating from the device’s vibrating surface: The Equivalent Source Method
(ESM), Rayleigh integrals, and the Boundary Elements Method (BEM).

1Website of Sound Solutions Austria: www.sound-solutions-austria.com. Visited on: 10.05.2022
2Various names exist for this type of loudspeaker, e.g., flat-panel loudspeaker, distributed-mode loudspeaker, vibrating-

panel loudspeaker, or, when multiple actuators are used, multi-actuator panel.
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Figure 1.1 Illustration of a vibrating-display loudspeaker, showing the cross section of a hand-held
device. The vibrating actuators introduce bending waves into the front surface (i.e., the
display). The bending waves transmit to the back cover via the internal volume and
the frame. Both surfaces emanate acoustic waves into their respective half space. The
full-space sound field can be seen as a superposition of the two half spaces and wave-
diffraction effects. A possible sound radiation of the frame is neglected in the drawing.

(a) (b)

Figure 1.2 Hemispherical balloon plots, computed using the Rayleigh I integral. The shape of the
balloon plot represents the radiated sound pressure in dBSPL. The coloration shows
the relative phase to the front-centered observer position. The plots are evaluated at a
hemispherical receiver arrangement with radius r = 0.91 m, at a frequency f = 3 kHz.
(a) miniature voice-coil loudspeaker. (b) actuator-driven display.
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The Equivalent Source Method (ESM) is a simulation technique that mimics a vibrating surface by
placing compact sources in the device’s interior. A review of several frequency-domain and time-
domain ESM approaches was done by Lee [6]. In [7, Sec. O.4], the Source Simulation Technique,
a single-source ESM, is revisited in detail and developed into the ESM. The book includes sections
about numerical errors, source positioning, and variants that use spherical wave functions for higher-
order source types. The paper by Ochmann and Piscoya [8] introduces the complex sources, i.e.,
sources with complex-valued coordinates, to the ESM. The application of complex sources is further
elaborated in [9, Chap. 9]. Numerical errors in the ESM are explained in [10], [11], and [12]. The
latter suggests a treatment by a specific source constellation using a single-layer and a multi-layer
potential. Zhang et al. [13] describe a method to determine the appropriate position and number of
monopole sources, whereas Gounot and Musafir [14] introduce a global search tool for an optimal
positioning using a genetic algorithm. Another paper by Gounot and Musafir [15] aims to find an
optimal retreat distance for various planar source constellations in near-field acoustic holography.
Optimal retraction distances and source positions for curved surfaces in near-field acoustic holography
are investigated in [16]. No studies concerning the ESM for thin cuboid-like bodies could be found,
as is the case for a vibrating-display loudspeaker.

The two Rayleigh integrals are simplifications of the Kirchhoff-Helmholtz Integral, assuming an in-
finitely extended planar body and applying either a Neumann or a Dirichlet boundary. Rayleigh I
relates to the Neumann boundary and simulates the sound radiation from an infinite planar velocity
boundary condition into a half space. Rayleigh II corresponds to prescribing an infinite sound pres-
sure boundary condition, i.e., a Dirichlet boundary. There are existing open-source codes in Fortran
[17], developed by Kirkup et al [18]. In an ongoing project on the platform Researchgate, Kirkup
et al. is developing an open-source implementation in Matlab [19]. The repository provides links
to literature and Matlab tutorials. Many studies are using Rayleigh integrals concerning the sound
radiation of vibrating plates. Often, the Rayleigh integral serves as a reference for analyzing other
simulation methods [5], [20], [21]. In [22], the implementation of the Rayleigh Integral Method is
described, which includes a discretization procedure for the surface, allowing for arbitrarily shaped
edges of the planar radiators. Discretization can either be done assuming constant vibration of surface
elements, i.e., the midpoint method, or some weighted-residual approach as it is used in the Bound-
ary Elements Method. Some studies aim to simulate the sound radiation from non-planar structures
using Rayleigh integrals. In [23], a ”visible element Rayleigh integral” is proposed, aiming to simu-
late the high-frequency sound radiation from three-dimensional bodies. The formulation exploits the
projection of the body’s outwards-normal vectors onto the observer coordinate to determine which
surface part is visible to the observer. In [24], a formulation is proposed that allows for simulating
arbitrarily curved surfaces using Rayleigh integrals, using wave-field extrapolation and matrix inver-
sion. Rayleigh integrals seem promising for simulating a vibrating-display loudspeaker since they are
easy to implement and require a low computational cost. However, their boundary conditions only
allow for a half-space simulation and imply an infinitely-extended boundary. Including the contribu-
tion of the upper and lower surface appears reasonable and can be done by combining both Rayleigh
integrals and exploiting the thin structure and parallel surfaces of the device.

The Boundary Elements Method (BEM) is the most sophisticated of the three methods. For acoustic
problems, the BEM numerically evaluates the Kirchhoff-Helmholtz Integral. The BEM requires a
three-dimensional surface mesh of the device. The meshing influences the quality of the simulation,
as discussed in [25]. The BEM is accompanied by the non-uniqueness problem, which is a numerical
issue occurring due to internal resonances and must be treated in most applications [26]. A common
remedy for non-uniqueness is the ’combined Helmholtz Integral equation formulation’ (CHIEF) [27],
[28], which includes interior reference points, so-called CHIEF points, to suppress internal modes.
The theory of BEM in acoustics is extensively discussed in [29], [30]. Due to its complexity, including

3
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mesh creation, dealing with singular integrals, and inverting large matrices, implementing the BEM
is more elaborate than the two previously described methods. However, it is also the physically most
accurate when it is well tuned. Open-source implementations of the BEM exist, e.g., in Fortran [17]
and Matlab [31].

This thesis revisits the three simulation approaches and observes their application to vibrating-display
loudspeakers with measured surface vibration. The aim is to find a lightweight solution that is easy to
integrate and can be employed flexibly in the cyclic development of vibrating-display loudspeakers.
For this purpose, all simulations are implemented using the scientific programming language Matlab.
The open-source toolbox OpenBem [31] is used for the core implementation of the BEM and the open-
source finite-element platform Salome [32] is used for creating the surface mesh. The ESM and the
Rayleigh are directly implemented into Matlab without the need for external software. For the ESM, a
tailored source constellation is developed that leads to robust results taking into account the thin body.
For the Rayleigh integrals, a corresponding combined formulation is found that allows for a full-space
simulation and which is new to the author’s knowledge. All models are validated by comparison to
acoustic measurements in various constellations. Finally, the vibrating-display loudspeaker is further
investigated using custom analysis tools, such as balloon plots, field plots, and phase analysis.

The thesis is structured as follows. Chapter 2 starts by describing the mathematical fundamentals of
acoustic fields (Section 2.1), revisiting the Helmholtz equation and its fundamental solution, the free-
space Green’s function. After discussing the spatial derivatives of the Green’s function and recalling
the derivation of the Kirchhoff-Helmholtz Integral, the basic theory of the above-described simulation
approaches is discussed: The ESM in Section 2.2, the conventional Rayleigh integrals in Section 2.3,
the combined-Rayleigh formulation in Section 2.4, and finally, the BEM in Section 2.5. Chapter 3
first describes the devices under test and then discusses the measurement of surface velocities (Sec-
tion 3.2) and acoustic responses (Section 3.3). An insight into how the simulations are implemented
and their application is given in Chapter 4. Chapter 5 assesses and discusses all relevant simulation
and measurement results. Finally, the conclusion and an outlook can be found in Chapter 6.

4
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2 Theoretical Background

This chapter discusses the underlying theory necessary for simulating the sound-field radiation of
a vibrating body. At first, the general theory about the description of acoustic fields is provided,
followed by an explanation of the simulating techniques applied in this thesis: the Equivalent Source
Method (ESM), the Rayleigh integrals, and the most sophisticated technique: the Boundary Elements
Method (BEM).

2.1 Acoustic Fields

This section will derive the basic equations needed for the simulating approaches used in this the-
sis. First, the homogeneous and inhomogeneous Helmholtz equations are described, including the
characteristic equations. We discuss the free-space Green’s functions for acoustic monopoles and
dipoles. In addition to their sound pressure, we derive the gradient as what would be received by
dipole-directional observers of velocity sensors. Finally, we recall the Kirchhoff-Helmholtz integral,
which allows for solving the Helmholtz equation by relating the boundary values of a surface to the
acoustic field.

2.1.1 Euler’s equation of motion

The Euler equation of motion is derived through the law of momentum conservation [33, Chap. 1,Sec. 3.1].
The equation states that the gradient of the sound pressure ∇p must equal the negative particle
acceleration −∂v(x,t)

∂t , times the homogeneous fluid density ρ. In the frequency domain, the time-
derivative simplifies to multiplication by (jω). The Euler equation for the three-dimensional and
one-dimensional case is, respectively [34, Part 3]

∇p = −jωρv, (2.1)

∂p

∂n
= −jωρvn. (2.2)

The ∇(·) operator in Eq. (2.1) represents the gradient of a function as vector operation,

∇(·) =
[
∂(·)
∂x

,
∂(·)
∂y

,
∂(·)
∂z

]>
.

In Eq. (2.2), we symbolize the directional derivative into a single direction n>∇(·) = ∂(·)
∂n . Through-

out this thesis, we will use the equation to convert the normally-vibrating velocities on a radiator’s
surface into sound-pressure gradients and vice versa.

2.1.2 Plane waves: elementary solutions to the homogeneous Helmholtz
equation

The Helmholtz equation consists of Eq. (2.1) and the compression equation jωp = −ρc2∇>v and is
the space-frequency domain representation of a homogeneous sound field. With the definition of the

5



P. Heidegger 2.1. Acoustic Fields

acoustic wave number k2 = ω2

c2 , it states that for the sound pressure p in an obstacle- and source-free
space, (

∆ + k2
)
p = 0. (2.3)

It employs the symbol for the Laplacian that specifies the divergence of the gradient of a function,

∆(·) = ∇>∇(·) = ∂2(·)
∂x2 + ∂2(·)

∂y2 + ∂2(·)
∂z2 .

The characteristic equation for the Helmholtz equation, which any solution must fulfill if the field is
homogeneous/source-free, can be found by guessing a product of exponentials as a solution:

p = Ψejkxx+jkyy+jkzz = Ψejk
>x. (2.4)

Setting Eq. (2.4) into Eq. (2.3) yields the characteristic equation

k2 =
(
k2
x + k2

y + k2
z

)
= k>k. (2.5)

The wave vector k = [kx, ky, kz]> = kn specifies the length and direction of a wave in three-
dimensional space, where n is a unit vector that points to the direction from which the wave arrives
and is always perpendicular to the plane wave fronts. x = [x, y, z]> is the three-dimensional position
vector.

2.1.3 Green’s function: an elementary solution to the inhomogeneous
Helmholtz equation

The Helmholtz Equation Eq. (2.3) can be re-formulated to describe a homogeneous field that radiates
from a point-like sound source. Only at this source point does the equation become inhomogeneous.
We add an arbitrary source distribution δ(x) to the right-hand side of Equation 2.3 for a point source
at the origin: (

∆ + k2
)
G(||x||) = −δ(x). (2.6)

The symbol δ(x) denotes the Dirac delta, a function/distribution that is non-zero only at an infinitely
narrow volume around the coordinate x,

δ(x) = lim
ε→0

a, for ||x|| ≤ ε,
0, elsewhere,

(2.7)

and whose infinite, non-zero value yields a normalized volume integral
´
δ(x)dx = 1, i.e., a =

lim
ε→0

[
3

4πε3
]
. The elementary solution to the equation is denoted as G(||x||), and it is referred to as

harmonic free-space Green’s function. It constitutes “...the expression for the pressure per unit source
strength of a harmonic point monopole...” [35, P. 105]. Throughout this thesis, we will frequently rely
on this equation or its spatial derivatives. As of now, we will refer to it as Green’s function. The space-
frequency representation of the Green’s function can be found as [35, Sec. 6.4.2]

G(r) = e−jkr

4πr . (2.8)

6



P. Heidegger 2.1. Acoustic Fields

r signifies the distance from the origin, or, when we shift the Green’s function to a position x0, r
signifies the distance between the shifted position and the point of observation x. It is then

r = ||x− x0|| =
√

(x− x0)2 + (y − y0)2 + (z − z0)2. (2.9)

The Green’s function has several properties. First, it fulfills the principle of acoustic reciprocity,
“...because the pressure at a receiver point is unchanged by interchange of source and receiver point
locations.” [35, P. 105], i.e., it fulfills

G(||x− x0||) = G(||x0 − x||). (2.10)

Secondly, we should note that the Green’s function contains a singularity when evaluated at the source
coordinate. Third, the Green’s function fulfills Sommerfeld’s radiation condition, which “...broadly
states that the wave fronts (surfaces of uniform phase) generated by any finite source region will
become spherical at infinite distance and that no waves can approach the source region from infin-
ity”[35, P. 121]. Mathematically, this is described as [36, Sec. 4.5.4]

lim
r→∞

[
r

(
∂G(r)
∂r

+ jkG(r)
)]

= 0, (2.11)

and implies in three-dimensional space that the far-field amplitude must decay with 1
r and the phase

must propagate with e−jkr when using the signal-processing temporal Fourier transform conventions.

A balloon plot of the Green’s function, visualizing the acoustic monopole in magnitude and phase,
can be observed in Fig. 2.2 (a).

2.1.4 Gradient and directional derivative of the Green’s function

The spatial rate of change of the sound pressure is proportionally related to the particle velocity, c.f.
Eq. (2.1). Therefore, we can describe the particle velocity that is introduced by an acoustic monopole
via the gradient of the Green’s function,

∇G(r) =
[
∂G(r)
∂xi

]
. (2.12)

We can calculate the gradient of the Green’s function by the chain rule

∇G(r) = ∇r
∂G(r)
∂r

. (2.13)

Assuming the source coordinate at the origin, x0 = 0, we find that the gradient of the radial distance
to the observer is

∇r =

∂
√∑3

i=1 x
2
i

∂xi

 = x

r
. (2.14)

To derive the 1
r and e−jkr components of the Green’s function, we make use of the product rule

∂G

∂r
= ∂e−jkr

∂r

1
4πr + e−jkr

4π
∂ 1
r

∂r
= −

(
jk + 1

r

)
G(r). (2.15)
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P. Heidegger 2.1. Acoustic Fields

(a) (b)

Figure 2.1 Illustration of the normal derivative of the Green’s function; for simplicity, the z-axis is
omitted. Blue colors indicate in-phase monopoles; red colors indicate contra-phase
monopoles. Brighter circles in the background show the gradient components, and
darker circles show the resulting dipole characteristics of the normal derivative. Dashed
lines represent the notional separating plane, pointed lines the angles and projection dis-
tances. (a): Derivative of the observing coordinate ∂G(r)

∂n . Source term located in the
origin x0 = 0. (b): Derivative of the shifted source coordinate ∂G(r)

∂n0
. Observation from

the origin x = 0.

The radial derivative of the Green’s function fulfills the Sommerfeld condition, which can easily be
verified anticipating the second radial derivative from Eq. (2.25),

lim
r→∞

[
r

(
∂2G(r)
∂r2 + jk

∂G(r)
∂r

)]
= 0. (2.16)

The gradient function in Eq. (2.13) yields a [3× 1] vector, consisting of three orthogonal dipoles. In
many cases, as we will encounter in the following chapters, it is necessary to describe the spatial rate
of change of G(r) along a single direction. As in Eq. (2.2), we can find the directional derivative
by projecting a unit-length direction vector onto x. The result yields the spatial description of an
acoustic dipole, which can be considered as the superposition of two odd-symmetrically radiating
monopoles [36, Sec. 4.4]. We can consider the direction vector as the normal vector of a notional
plane that tangentially separates the two monopoles. Hence, as of now, we will refer to the directional
derivative as normal derivative ∂

∂n and the directivity vector as a normal vector n. An illustration of
the projection and the resulting dipole can be observed in Fig. 2.1 (a). A balloon plot that visualizes
the magnitude and phase of the dipole can be observed in Fig. 2.2 (b). Mathematically, the projection
is computed via the normalized scalar product of the two vectors, i.e.,

∂G(r)
∂n

= n>x

r

∂G

∂r
,

= − cos(φ)
(
jk + 1

r

)
G(r). (2.17)
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2.1.5 Directional derivatives of Green’s function with regard to both source and
receiver locations

It is now easily possible to shift the source coordinate to any position outside the origin via substituting
x to x− x0. The gradient with respect to the source coordinate is then just the negative gradient

∇0G(r) =
[
∂G(r)
∂x0,i

]
=
[
∂(x− x0)
∂x0,i

∂G(r)
∂xi

]

=
[
−∂G(r)

∂xi

]
= −∇G(r) (2.18)

Further, we can compute the normal derivative with respect to the shifted source coordinate −x0,
which will provide the Green’s function for a radiating dipole. We denote the normal vector that
specifies the orientation of the dipole as n0. Via Eq. (2.17), we obtain

Gdip(r) = ∂G(r)
∂n0

= −n>0 (x− x0)
r

∂G

∂r
,

= cos(φ0)
(
jk + 1

r

)
G(r). (2.19)

Fig. 2.1(b) shows an illustration of the normal derivative with respect to the source coordinate.

The radiated velocity of an acoustic dipole Eq. (2.19) can be described via its Hessian matrix, i.e.,

∇∇>0 G(r) = −∇∇>G(r) =
[
∂2G(r)
∂xi∂x0,j

]
. (2.20)

The directional derivative of the dipole can again be obtained via projection, now onto both n0 and
n,

∂2G(r)
∂n∂n0

= −n>
[
∇∇>G(r)

]
n0. (2.21)

For the explicit computation of the directional derivative, it is helpful to expand the vector projection
as a sum and calculate the derivative for a single entry:

∂2G(r)
∂n∂n0

=
3∑
i=1

ni
∂

∂xi

 3∑
j=1

n0,j
∂G(r)
∂x0,j

 (2.22)

=
3∑
i=1

ni
∂

∂xi

 3∑
j=1

n0,j
−(xj − x0,j)

r

∂G(r)
∂r



=
3∑
i=1

3∑
j=1

nin0,j

−1
r

∂G(r)
∂r

∂(xj − x0,j)
∂xi

− (xj − x0,j)
∂
(

1
r
∂G(r)
∂r

)
∂xi



=
3∑
i=1

3∑
j=1

nin0,j

(
−δi,j
r

∂G(r)
∂r

+ (xj − x0,j)(xi − x0,i)
r3

∂G(r)
∂r
−

(xj − x0,j)(xi − x0,i)
r2

∂2G(r)
∂r2

)
.

9



P. Heidegger 2.1. Acoustic Fields

We then insert the solution back into vector-matrix notation, where the Kronecker delta δi,j becomes
a (3× 3) identity matrix I . We define the source-to-receiver vector r = x− x0 and find

∂2G(r)
∂n∂n0

= −n>In0
r

∂G(r)
∂r

+ n>0 r

r

n>r

r

1
r

∂G(r)
∂r

− n>0 r

r

n>r

r

∂2G(r)
∂r2 , (2.23)

= − cos(η)1
r

∂G(r)
∂r

+ cos(φ0) cos(φ)
(

1
r

∂G(r)
∂r

− ∂2G(r)
∂r2

)
. (2.24)

Where the vector projections result in direction cosines of the enclosed angles, as above. The second
radial derive of the Green’s function is found via application of the product rule, resulting in

∂2G(r)
∂r2 =

∂
(
−1
r

)
∂r

G(r)−
(
jk + 1

r

)
∂G(r)
∂r

,

=
(
−k2 + 2jk

r
+ 2
r2

)
G(r). (2.25)

Finally, the second directional derivative consists of a linear combination of the entries in the Hessian,
i.e., six functions corresponding to the second-order partial derivatives ∂2

∂x2 , ∂2

∂y2 , ∂2

∂z2 , ∂2

∂x∂y , ∂2

∂x∂z ,

and ∂2

∂y∂z [36, Sec. 4.4.3]. The result shows a quadrupole behavior whose shape can be irregular and
is determined by the directions of derivatives. Representative balloon plots of quadrupoles can be
observed in Fig. 2.2 (c) and (d).

2.1.6 Kirchhoff-Helmholtz integral

The Kirchhoff-Helmholtz integral ”...establishes a relationship between the pressure p(P ) outside a
vibrating body, and the pressure p(Q) and the normal velocity v(Q) on the body”[30, P. 22]. It can
be seen as a ”...corollary of the governing partial-differential equation and of the Sommerfeld radi-
ation condition”[36, P. 209-210], rather than an acoustic boundary value problem, since the surface
pressure will be determined by the velocity distribution. Further, the pressure derivatives are related
to the velocity via the Euler equation Eq. (2.2). To emphasize this dependence, the derivation in this
section will rely on using pressure derivatives instead of normal velocities.

To derive the Kirchhoff-Helmholtz integral, we combine Eq. (2.3) and Eq. (2.6). Thereby, the former
equation is multiplied by G(r) and the latter by p(x). The terms containing the wave number cancel
out, and we find

p(x)δ(x− x0) = G(r)∆p(x)− p(x)∆G(r). (2.26)

Exploiting the reciprocity of the Green’s function, Eq. (2.26) can be transformed to an integral equa-
tion over a source volume, whereas the left-hand term results in the acoustic pressure at the point of
observation, outside the source volume [34, Sec. 13.3], [37, Chap. 6]. We obtainˆ

V0

p(x0)δ(x− x0)dV0 =
ˆ
V0

(
G(r)∆0p(x0)− p(x0)∆0G(r)

)
dV0 = p(x). (2.27)

The Kirchhoff-Helmholtz integral can then be found using Gauss’ Theorem [38, Sec. 3.8], which
transforms the volume integral to a closed surface integral. The integral then contains the field values
radiated by the (notional) sources in the source region, evaluated on the surface. The equation states

c(x)p(x) =
˛

Γ0∈∂V0

(
G(r)∂p(x0)

∂n0
− p(x0)∂G(r)

∂n0

)
dΓ0. (2.28)
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(a) (b)

(c) (d)

Figure 2.2 Balloon plots of Green’s function and derivatives. Colors represent the relative phase
to the receiving position at x0 = [0, 0, 1]>. Radii of the balloons show the normalized
levels of received sound pressures, with a zero offset of 30 dB. The Helmholtz number
is kr = 10 for all subplots. (a): Green’s function, representing an acoustic monopole.
(b): normal derivative in direction n = [0, 0, 1]>, showing a dipole. (c): second normal
derivative in same direction n = n0 = [0, 0, 1]>, showing a longitudinal quadrupole.
(d): second normal derivative in orthogonal direction n0 = [0, 0, 1]>, n = [0, 1, 0]>,
showing a lateral quadrupole.
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P. Heidegger 2.1. Acoustic Fields

Figure 2.3 Illustration of the Kirchhoff-Helmholtz integral, as two-dimensional projection; blue and
red lines illustrate dipoles sitting on the boundary, dashed lines illustrate monopoles.
Within V0, monopole and dipole layer cancel out. In V , they sum up. left: formulation
for an exterior radiation problem; right: interior radiation problem.

The right-hand side represents the superposition of a single-layer and a double-layer potential, i.e.,
surface distributions of weighted monopoles and dipoles [29, Sec. 2.1]. Dipoles are weighted with the
sound pressures on the surface, whereas monopoles are weighted with their normal derivatives. The
boundary Γ0 separates a source-free zone V and the source region V0, enclosing all source positions
x0, as in Eq. (2.27). V can either be the interior, finite volume, or the exterior, infinite volume, relating
to formulations of an interior or exterior radiation problem. Thereby, the normal vectors point to V .
c(x) takes account for a discontinuity in the equation. Inside V0, the monopole and dipole terms
cancel out, whereas, in V , the terms add up to synthesize a homogeneous sound field. An illustration
of the formulation for interior and exterior radiation problems can be found in Fig. 2.3.

On the infinitely thin surface, the resulting sound pressure diminishes because only a part of the
receiver lies in V [29, Sec. 2.1]:

c(x) =


1 x ∈ V

0 < c(x) < 1 x ∈ Γ0

0 x ∈ V0

(2.29)

If the receiver sits on an ideally smooth surface, c(x) = 1
2 [26]. Along a right-angled edge, it will

be 3
4 or 1

4 and in a right-angled corner, 7
8 or 1

8 , for an exterior and interior problem, respectively.
An illustration for the definition of c(x) can be found in Fig. 2.4. Note that in some literature [30,
Sec. 2.3], [39, Sec. 2], c(x) is formulated as the solid angle, which is due to a different normalization
of the Dirac delta used there, to

´
δ(x)dx = 4π, instead of

´
δ(x)dx = 1 as it is used here.

The Kirchhoff-Helmholtz integral constitutes a closed-surface formulation for Huygen’s principle [30,
Sec. 2.4], which ”...states that each point on the wave front of a propagating wave can be replaced
with a point source,...thus creating an array of wavelets whereby each wavelet is unaffected by the
presence of all the other wavelets.” [34, P. 605]. It is the basic equation for the BEM, which will
be covered in Section 2.5. The applications can be manifold, including sound radiation problems,
scattering and edge diffraction analysis, and modal analysis of vibrating bodies.

12
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(a) (b)

(c)

Figure 2.4 Illustration for definition of c(x), c.f. Eq. (2.29); black lines represent the surface, and
black dots the position where the Kirchhoff-Helmholtz integral is evaluated; (a): smooth
surface, half of the receiver lies in each subspace. (b): evaluation at an edge, one
quarter of the receiver lies in the inner subspace and the rest in the outer subspace. (c):
evaluation on a corner, one eighth of the receiver lies in the inner subspace and the rest
in the outer.
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2.2 Equivalent Source Method (ESM)

The ESM is a simple-to-implement simulation technique for acoustic problems, i.a. sound-radiation
problems. The basic idea is to approximate the sound radiation of a vibrating object by emulating
its surface-normal velocities via so-called equivalent sources located in the interior. If the equivalent
sources mimic the surface velocities well, their superimposed sound field aligns with the sound field
radiated by the vibrating body.

Several techniques relate to the ESM but use different name conventions. While the terms Source
Simulation Technique, Multipole Method, or Spherical Wave Synthesis relate to a single equivalent
source lying at the origin [7, Sec. O.4], the terms Equivalent Source Method (ESM), Wave Superposi-
tion Method, and Method of Fundamental Solutions are used when systems of sources are employed
[6].

A difficulty in using the ESM lies in determining an appropriate number, kind, and positioning of
equivalent sources for the underlying problem [10], [11], [12], [13], [16]. After these preconditions
are defined, the simulation carries out two steps: calibrating the source strengths to fulfill the boundary
conditions and synthesizing the sound field by superimposing the radiated sound fields of each source.

2.2.1 Synthesizing the sound field

To begin with, let us resume the inhomogeneous Helmholtz equation for a single source, Eq. (2.6).
Due to the linearity of the Helmholtz equation, it is possible to synthesize sound fields by superim-
posing weighted elementary solutions. Using the Green’s function Eq. (2.8), we can thus distribute
acoustic monopoles in space and calculate their total radiated sound pressure to a single location
simply via vector multiplication:

p(x) =
K∑
k=1

G(ri)qi = g>q. (2.30)

The vector g = [G(r1), . . . , G(rK)]> holds Green’s functions while q contains the complex-valued
source strengths.

2.2.2 Calibrating the source strengths

Let us assume a convex-shaped vibrating body whose normal surface velocities are known on L
discrete surface nodes, i.e.,

vn(x) =
∑L
l=1 vn,lδ(xl), vn = [vn,1, . . . , vn,L]> . (2.31)

For a single position, the velocity radiated by the equivalent sources can be obtained via the projection
of the pressure gradient, c.f. Section 2.1.5, and exploiting the Euler equation Eq. (2.2). This yields

vn = 1
−jωρ

h>q, (2.32)

with h =
[
∂G(r1,...,rK)

∂n

]>
holding the normal derivatives of the Green’s function , c.f. Eq. (2.17).

To determine the source strengths, Eq. (2.32) is expanded to an equation system that evaluates all L
surface nodes:

vn = 1
−jωρ

Hq, (2.33)
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with

H =


∂G(r11)
∂n1

· · · ∂G(r1K)
∂n1

...
. . .

...
∂G(rL1)
∂nL

· · · ∂G(rLK)
∂nL

 . (2.34)

If H is a regular matrix and K = L, i.e., the same amount of sources and surface nodes are used, the
source strengths can be found directly via matrix inversion:

q = −jωρH−1vn (2.35)

If K 6= L, or H singular, the matrix inversion is not feasible and other solutions have to be found.
The Moore-Penrose pseudo inverse constitutes a generalization of the matrix inverse [40, Sec. 5.6]

q = −jωρH†vn, (2.36)

and solves the over-determined or under-determined equation systems so that

argmin
q
||Hq − vn||. (2.37)

If L > K and H is of full rank, the equation system is over-determined. In this case, the unique
optimal solution is the left inverse of H

H† =
(
HHH

)−1
HH, (2.38)

H†H = I. (2.39)

IfK > L or H is singular, the system is under-determined and
(
HHH

)−1
cannot be computed. The

pseudo inverse must fulfill an additional constraint here, where a common approach is to minimize
the vector length [40, Sec. 5.7]

argmin
q
||q||. (2.40)

A solution to this approach is the right inverse [41, Sec. A.4]

H† = HH
(
HHH

)−1
, (2.41)

HH† = I. (2.42)

Using Matlab, computation of the pseudo inverse can be done via the command pinv(). Solving
the whole equation system while minimizing the norm of the least-squares solution can be done
via lsqminnorm(). For computation of a non-singular system that is either fully determined or over-
determined, the backslash operator \ is recommended [42, Sec. 2].

2.2.3 The condition number of the ESM

Several measures exist to assess the quality of the equation system [10], [12]. The matrix condition
number is a measure to quantify the system’s overall quality. The condition number measures how

15



P. Heidegger 2.2. Equivalent Source Method (ESM)

near to singular the matrix is, i.e., how much the perturbations in the equation, e.g., due to limited
numerical precision, are magnified for the sound-field reproduction [43, Sec. 2.9]. It can be computed
via

κ(H) = ||H|| ||H−1||, (2.43)

where ||H|| denotes a matrix norm, which is not strictly defined in this context. The so-called spectral
condition number applies the 2-Norm, i.e., inserts the largest singular value for ||H|| and its recip-
rocal smallest singular value for ||H−1|| [7, Sec. O.4.5.2], [43, Sec. 2.9]. Computing the 2-Norm,
requires a singular value decomposition, which can be of high computational cost for large matrices.
Other matrix norms, such as the Frobenius norm, do not require a singular value decomposition, but
when applied to Eq. (2.43), they require explicit computation of the matrix inversion. In Matlab,
the command cond(), takes account for computation of the condition number, while it is possible to
specify the intended norm in the arguments of the function.

The condition number has a value of one for a perfectly conditioned and symmetric matrix, and it
diverges for a singular matrix. It can be seen as a ”...relative error magnification factor. Changes in
the right-hand side can cause changes κ times as large in the solution.”[43, P. 17]. An ill-conditioned
matrix can be regularized, e.g., via truncated singular value decomposition [13]. The regularization
assures that small singular values are ignored in the matrix inversion.

Surface reproduction error
Another quantity to assess the reproduction quality is the normalized surface reproduction error,
which can be determined for a single position via

εv = |vsurf − vrep|
|vsurf |

. (2.44)

If the surface velocity is perfectly reproduced, εv = 1. A large reproduction error, however, may still
yield good simulation results in the far field [11].

While neither of these error measures can predict the overall quality of the simulation, they assess the
quality of the equation system. Hence, they serve as indicators for an adequate or inadequate source
positioning cf. Section 2.2.4.

2.2.4 Placing the equivalent sources: exploiting parallel surfaces and thin layout

Not every constellation of equivalent sources leads to an appropriate sound-field reproduction. The
number, position, and source type influence the quality of the output [8]. While many applications of
the ESM use a large number of normal-distributed sources and despite the existence of approaches for
automatic optimization of the source positioning [14], [13], careful consideration of the underlying
problem can lead to a well-suited result.

Several issues must be considered when choosing the number of sources, their positions, and their
type. If the equivalent sources form a closed interior surface, internal resonances can cause a non-
unique solution at resonance frequencies. A remedy can be the combination of single-layer and
double-layer potentials, as described in [12]. Another option would be an alignment that does not
form a closed surface at all or one that comprises only resonances at frequencies beyond the range
of interest. Further, it has been shown that equivalent sources lying too close to a surface node lead
to a lack of generalization for the surface reconstruction, i.e., the reproduction error is small when
evaluated directly on the nodes but grows large in between the nodes [10]. Bai et al. [15] observes
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an optimal retraction distance for equivalent sources in acoustic near-field holography and finds an
optimal retraction distance of 0.4 to 0.5 times the source spacing for a planar source arrangement.

As for choosing the number of sources, the unavoidable cross-talk between sources and surface nodes
leads to a trade-off. Especially the sound from sources of simple directivity shapes, such as monopoles
and dipoles, will be received at more than one node and could thus lead to coupling in the equation
system. A higher density of sources or surface nodes will thus lead to a higher condition number of
the matrix. By contrast, a low number of sources might not be capable of reconstructing structural
radiation patterns of higher complexity [13].

Regarding the source type, one should keep in mind that higher-order sources produce stronger near
fields than lower-order ones. Thus, if surface nodes lie within the near fields of the sources, higher-
order sources dominate in the matrix inversion. When regularization is employed, only the higher-
order sources remain.

Central planar monopole and dipole layer in thin box
The above reasons necessitate trade-offs for the choice regarding the sources’ number, order, and
position, particularly when simulating bodies of small measures. In this thesis, the challenge was
to find a well-suited source constellation to reproduce the structural radiation of a thin cuboid. An
appropriate solution could be found by exploiting the parallel surfaces of the cuboid.

First, the number of source positions is set to equal the number of surface nodes for obtaining a full set
of equations. The matrix condition for such a setup diverges quickly if the source constellation does
not fit the velocity pattern and no regularization is applied. According to [12], a well-conditioned
matrix can be obtained by assuring that every source position has a single node to which its Euclidean
distance is smaller than to any other node, i.e.,

||re,i − rs,j ||
∣∣∣
j 6=i

> ||re,i − rs,j ||
∣∣∣
j=i
, (2.45)

where re,i is the position vector from the origin to the the ith surface node and rs,j to the jth equivalent
source.

It is not always straightforward to find a source constellation that satisfies Eq. (2.45). Especially
corners of a body can lead to difficulties, as illustrated in Fig. 2.5. For determining suitable source
positions, consider the thin cuboid with measures lx > ly � lz . Due to the small lz , let us assume
the sound radiated sideways can be considered negligible. For further simplification, assume the
nodes of the upper and lower surface be equal in (x, y) coordinates. To satisfy Eq. (2.45), place one
source to each respective (x, y) coordinate. The remaining degrees of freedom are the source type
and z coordinate of the sources. Again, we remember that lz is small and hence, try to maximize the
distance between sources and surface nodes. However, retracting the sources towards the center is
only possible up to some extent, as the matrix condition worsens with the upper and lower sources
approaching each other. Avoiding the cross-talk between upper and lower sources while maximizing
the distance to the surface nodes, we place a single layer of source positions at the center. Each source
position holds a monopole and a dipole oriented normally to the (x, y) plane, as illustrated in Fig. 2.6.

Exploiting the even-symmetric radiation of monopoles and the odd-symmetric radiation of dipoles
regarding the z coordinate, we decompose the upper and lower surface velocities into even-symmetric
and odd-symmetric parts via

vn+(x)
∣∣∣
u

= ve(x)
∣∣∣
u

+ vo(x)
∣∣∣
u
,

vn−(x)
∣∣∣
l

= ve(x)
∣∣∣
u
− vo(x)

∣∣∣
u
,
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Figure 2.5 Cross-section of a cuboid with surface nodes (blue) and equivalent sources (red), il-
lustrating the problem of simulating a thin cuboid; the constellation does not satisfy
Eq. (2.45), as it has too many sources. The surface nodes at the corners would have to
be left out, or additional sources in the corners would have to be placed. If |rs − re| is
reduced, the generalization error grows. By contrast, the up-down cross-talk increases if
the sources are retracted towards the center. A higher number of sources also increases
the cross-talk.

ve(x)
∣∣∣
u

=
vn+(x)

∣∣
u

+ vn−(x)
∣∣
l

2 ,

vo(x)
∣∣∣
u

=
vn+(x)

∣∣
u
− vn−(x)

∣∣
l

2 , (2.46)

where u stands for the z coordinate of the upper surface and l for the lower. We restrict the sources to
emulate only their individual part of the radiation and obtain two separate, fully determined equation
systems that can be solved as in Eq. (2.35):

qm = −jωρH−1
m ve, (2.47)

qd = −jωρH−1
d vo, (2.48)

where Hm is similar to Eq. (2.34). Hd holds the second-order derivatives of the Green’s function, cf.
Eq. (2.24)

Hd =


∂2G(r11)
∂n ∂n0

· · · ∂2G(r1K)
∂n ∂n0

...
. . .

...
∂2G(rK1)
∂n ∂n0

· · · ∂2G(rKK)
∂n ∂n0

 . (2.49)

Note that separating the equation system as described does not increase its overall size. The symmetry
relations allow solving the equations concerning only one of the surfaces. The boundary conditions
on the other surface will inherently be satisfied.

Using the determined source strengths from Eqs. (2.47) and (2.48), the sound pressure at a single field
point can be synthesized as a superposition of monopoles and dipoles

p(x) = g>mqm − g>d qd, (2.50)

18



P. Heidegger 2.3. Rayleigh Integrals

Figure 2.6 A single layer of source positions inside the thin cuboid; centered green circles represent
acoustic monopoles, and off-center blue and red circles represent dipoles. All source po-
sitions satisfy Eq. (2.45) since the surface nodes on the sides are ignored. The retraction
distance is maximized while the up-down cross-talk is zero.

where gm holds the Green’s functions for each source-receiver combination and gd its normal deriva-
tives with respect to the source coordinate:

gm = [G(r1), . . . , G(rK)]> , (2.51)

gd =
[
∂G(r1)
∂n0

, . . . ,
∂G(rK)
∂n0

]>
. (2.52)

While the above-described source constellation leads to a reliable simulation output, one should re-
member that the formulation does not include the sound radiated sideways. Thus, it is only expected
to be valid for thin bodies. The common approach to include the side surfaces would be to let the
equivalent sources form an inner surface hull using a combination of monopoles and dipoles, as sug-
gested in [12]. Another option would be to include the side-surface velocities as additional constraints
for Eqs. (2.47) and (2.48) and solve the over-determined equation system as in Eqs. (2.36) and (2.38).
However, these attempts were discarded, as none seemed to yield a good reproduction of the measured
sound field, even when varying the relative number of sources or applying matrix regularization.

2.3 Rayleigh Integrals

When we consider a radiation scenario, the Kirchhoff-Helmholtz integral Eq. (2.28) represents a
generic form to relate the boundary values of a notional body to the radiated sound pressure in a
field. This universality, however, also comprises the drawback of computational complexity when the
structure is of complex shape. Further, it is sometimes neither necessary nor desired to compute the
sound radiation of a single body into a full, free space. The simulation of electroacoustic transducers
would be an example, as they are often measured in large baffles where they radiate only into a
half-space.

To simplify the Kirchhoff-Helmholtz integral, let the volume be an infinitely expanded plane in
[x, y, z = 0]> that is closed by an infinitely large hemisphere that reaches towards z → +∞. Further,
let the normal derivatives head into the volume. The hemisphere’s contribution to the sound field van-
ishes at finite observation points since the Green’s functions fulfill Sommerfeld’s radiation condition.
The remaining equation is [44, Sec. 2.1.6]

p(x) =
¨ ∞

−∞

(
G(||[x− x0, y − y0, z]||)

∂p([x0, y0, z0 = 0]>)
∂nz0

−

p([x0, y0, z0 = 0]>)∂G(||[x− x0, y − y0, z]||)
∂nz0

)
dx0dy0. (2.53)
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Note that the normal derivatives are denoted ∂
∂nz0

, as the plane is aligned horizontally and all other
contributions vanish. The function arguments are written explicitly to indicate that all source positions
are lying on the plane at z0 = 0. Eq. (2.53) splits the infinitely large full space into two half spaces.
While this would technically allow for half-room simulations, we need to provide both the sound
pressure and its derivative continuously along with the entire (x, y) plane a valid result. Hence, we
seek alternative Green’s functions that allow eliminating one of the two quantities.

The so-called Rayleigh integrals can be derived from Eq. (2.53) correspondingly. For the derivation,
the image source principle is exploited to obtain either a Neumann or a Dirichlet boundary condition
for the Green’s functions on the plane. A Neumann boundary generally prescribes values to the
normal derivative of a boundary value. We refer to a homogeneous Neumann boundary when all
values of the normal derivatives are to be zero, which represents an infinitely extended, rigid wall
in the acoustic sense. By contrast, a Dirichlet boundary condition prescribes the boundary values
directly instead of their derivatives. Again, we refer to a homogeneous Dirichlet boundary when all
values are to be zero. In the acoustic sense, this results in a so-called pressure-release boundary. [34,
Sec. 13.2, Sec. 13.6] [38, Sec. 9.3] [44, Sec. 2.1.6]

For a Green’s functions with an inherent Neumann boundary on the (x, y) plane, let the boundary
extend to infinity and separate two symmetrically aligned free-space Green’s functions. Both are
driven by the same weight. If we take the limit ∆z → 0 for the distance of the monopoles to the
boundary, they will contribute equally to the sound field at any observation point. The Neumann
Green’s function GN (r) for the infinite plane will thus be the superposition of two collocated free-
space Green’s functions, i.e., the free-space Green’s function times two. Considering the acoustic
monopole Eq. (2.8) and its normal derivative Eq. (2.17), we obtain

GN (r) = lim
∆z→0

(
G(r+) +G(r−)

)
= 2G(r), (2.54)

∂GN (r)
∂nz

∣∣∣∣∣
0

= ∂G(r+)
∂nz+

∣∣∣∣∣
0

+ ∂G(r−)
∂nz−

∣∣∣∣∣
0

= z − z0
r

∂G(r+)
∂r−

∣∣∣∣∣
0

− z − z0
r

∂G(r−)
∂r−

∣∣∣∣∣
0

= 0. (2.55)

The derivatives’ contributions cancel when evaluated at the (x, y) plane due to the opposite sign of
derivation in the two half spaces. Using Eq. (2.54), we can form the first Rayleigh Integral, which al-
lows for a sound-field synthesis by prescribing only the pressure derivative. Using the Euler equation
Eq. (2.2), the pressure derivative can be replaced by the normal velocity on the plane

p([x, y, z > 0]>) = 2
¨ ∞

−∞

∂p(x0)
∂nz0

G(r)dx0dy0,

= −2jωρ
¨ ∞

−∞
vz(x0)G(r)dx0dy0. (2.56)

A Green’s function with an inherent Dirichlet boundary can be obtained similarly. This time, we apply
a minus sign to the lower monopole so that it radiates with an inverse phase. Due to the inversion, the
direct superposition of the Green’s functions vanishes when evaluated on the (x, y) plane. In contrast,
their derivatives will add up due to the opposite directions of derivation. Hence, we can define the
Dirichlet-Green’s function

∂GD(r)
∂nz

= lim
∆z→0

(
∂G(r+)
∂nz+

− ∂ (G(r−))
∂nz−

)
,

= lim
∆z→0

(
z − z0
r

∂G(r+)
∂r+

− −(z − z0)
r

∂G(r−)
∂r−

)
= 2∂G(r)

∂nz
, (2.57)
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GD(r)
∣∣∣
0

= G(r+)
∣∣∣
0
−G(r−)

∣∣∣
0

= 0. (2.58)

The second Rayleigh integral is then formed using Eq. (2.57):

p([x, y, z > 0]>) = −2
¨ ∞

−∞
p(x0)∂G(r)

∂nz0
dx0dy0. (2.59)

The two Rayleigh integrals allow for simulating the radiated sound pressure of an infinite planar
radiator in the half space. Their advantage is that only one quantity, pressure or velocity, has to be
known. The other quantity will be inherently correct. While it is possible to prescribe values on
a finite region A on the (x, y) plane, the boundary values on the infinite complementary region Ā
are inherently set to 0, as either the corresponding homogeneous Neumann or Dirichlet boundary
condition holds.

We can numerically approximate the integrals by finite sums to compute the Rayleigh integrals. The
approximation allows for computing the equations via matrix multiplications. We assume equally-
spaced source positions on a rectangular grid, with position steps ∆x, ∆y. The discrete Rayleigh
integrals for the upper half-space are then

Rayleigh I: p([x, y, z > 0]>) = −2jωρ ∆x∆y g>v0, (2.60)

Rayleigh II: p([x, y, z > 0]>) = −2 ∆x∆y h>p0, (2.61)

where K is the number of source positions. v0 and p0 are [K × 1] vectors containing the discrete

boundary values on the (x, y) plane. g = [G(r1), . . . , G(rK)]> and h =
[
∂G(r1)
∂nz0

, . . . , ∂G(rK)
∂nz0

]>
hold the Green’s functions for each source-to-receiver combination and their normal derivatives in z
direction, respectively.

2.4 A Combined Rayleigh-Integral Formulation

The Rayleigh integrals Eq. (2.56) and Eq. (2.59) are valid only in a half space. Whereas they can be
deployed for both half spaces separately, no energy can travel through the boundary. Eq. (2.53) would
allow for a full-space simulation, but we are required to provide both sound pressure and velocity on
the boundary, which is not practical in most applications. This section introduces a formulation that
combines the two Rayleigh integrals. The hope is to find a solution that enables energy transfer
through the boundary plane by linking the plane’s upper and lower vibrating velocities.

For this purpose, consider the boundary as an infinitely expanded planar radiator whose vibration
velocities can be measured on both sides. Further, let the vibrating velocities vz±(x0) be the superpo-
sition of two layers of monopoles: one single-potential layer, which represents a Neumann boundary,
and one double-potential layer, which forms a Dirichlet boundary as described, cf. Section 2.3. The
velocities can thus be decomposed into an even-symmetric and an odd-symmetric part via Eq. (2.46).
Due to the linearity of the Helmholtz equation, we can assume the sound pressure in the field as a
superposition of the two Rayleigh integrals. The combined expression for the Rayleigh integrals is
then

p(x) = 2
¨ ∞

−∞

(
−jωρ ve(x0)G(r)− po(x0)∂G(r)

∂nz0

)
dx0dy0, (2.62)

which differs to Eq. (2.53) only in the prescribed values and the applied Euler equation. ve stands
for the even-symmetric velocity and po for the odd-symmetric sound pressure in the plane. For dis-
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crete signals, we can again approximate the integrals as vector multiplications, assuming K source-
positions:

p(x) = 2 ∆x ∆y
(
−jωρg>ve − h>po

)
. (2.63)

Where ∆x and ∆y are the equally-spaced discrete steps between the source positions in the (x, y)
plane. ve and po are [K×1] vectors containing the even-symmetric velocities and the odd-symmetric
sound pressures respectively. g and h are as in Eqs. (2.60) and (2.61).

2.4.1 A Fourier-based approach to obtain the odd-symmetric sound pressure

The evaluation is based on velocity measurements available for the front and backside of the device.
In Eq. (2.62), we can directly insert the even-symmetric velocities into the first Rayleigh integral.
However, we still need to find a sound pressure distribution from the measured, odd-symmetric veloc-
ities for the second Rayleigh integral.

Sound pressure and particle velocity are related via the Euler equation Eq. (2.2). So the clue lies in
finding the integral of the odd-symmetric velocity in the field concerning z. To get there, we take a
detour into the so-called k space that can be used to model sound propagation. Let us first consider
the Rayleigh integrals as 2D linear convolution operations:

p([x, y, z > 0]>) = −2jωρ (v(x0) ∗ ∗G(r)) , (2.64)

p([x, y, z > 0]>) = −2
(
p(x0) ∗ ∗∂G(r)

∂nz

)
. (2.65)

Next, we consider the Fourier-convolution theorem in 2D. The theorem states that a linear convolution
simplifies to a multiplication in the Fourier domain (k space). For two functions g(x) and f(x), we
can denote the convolution correspondingly as [45, Sec. 2.10] [46, Sec. 4.4]:

g(x) ∗ ∗f(x) = F−1
x,y

{
Fx,y

{
f(x)

}
Fx,y

{
g(x)

}}
, (2.66)

where Fx,y
{
·
}

is the spatial 2D Fourier transform and F−1
x,y

{
·
}

its inverse.

We want to combine Eq. (2.64) and Eq. (2.65) so that we can temporarily get rid of the inverse Fourier
transform and solve the equation in k space. For the velocity, we can directly Fourier transform the
measured data. As for the Green’s function, we find by comparison that the derivative ∂

∂nz
transforms

to multiplication with jkz . Considering the (Fourier-) synthesis equation for the k-space Green’s
function lying in the origin [37, Sec. 4.5]

G(||x||) = 1
(2π)3

˚ ∞

−∞
G(k)ejk

>xdkxdkydkz, (2.67)

where the spatial wave numbers are defined as in Eq. (2.5). To find the k-space Green’s function,
Eq. (2.67) can be substituted into the Helmholtz equation Eq. (2.6)

(∆ + k2)G(k) = −1, (2.68)

which leads to

G(k) = −1
k2 − k2

x − k2
y − k2

z

= −1
k2 − k>k

. (2.69)

22



P. Heidegger 2.4. A Combined Rayleigh-Integral Formulation

The same approach leads to the formulation for the Green’s function in kx,y space, i.e., that is depen-
dent on the planar wave numbers kx and ky and the position on the z axis. The synthesis equation for
kz → z is

G(kx, ky, z) = 1
2π

ˆ ∞
−∞

G(k)ejkzzdkz, (2.70)

and points out that the normal derivative in z becomes

∂G(kx, ky, z)
∂nz

= jkzG(kx, ky, z). (2.71)

For the purpose of finding the sound pressure, we do not need to calculate Eq. (2.70) explicitly. This
is getting more obvious when we combine the Fourier-transformed Eq. (2.64) and Eq. (2.65):

−2jωρ v(kx, ky, z = 0) G(kx, ky, z) = −2jkz p(kx, ky, z = 0) G(kx, ky, z). (2.72)

The Green’s functions in Eq. (2.72) cancel, and finally, we obtain a formulation for the desired sound
pressure via Fourier synthesis:

p([x, y, z = 0]>) = ωρF−1
x,y

{Fx,y{v([x, y, z = 0]>)
}

kz

}
. (2.73)

2.4.2 Determine the outwards-normal wave number kz

In a next step, we have to determine what is unknown in Eq. (2.73), the wave number in z-direction,
kz . To do so, we reformulate the characteristic equation Eq. (2.5), so that kz is the dependent variable:

kz = ±
√
k2 − k2

x − k2
y. (2.74)

Eq. (2.74) contains all mathematically possible solutions for kz . However, not all solutions are valid
for every physical situation; hence, we have to choose a subset of solutions. We have four situations:
plane waves and evanescent waves, propagating either into the positive or the negative half space. The
waves should propagate outwards from the plane and must fulfill the Sommerfeld condition, therefore
also vanish at r → ±∞. A supersonic bending wave, which corresponds to k2 ≥ k2

x + k2
y , will result

in a real-valued kz [45, Sec. 2.6]. In this case, a harmonic plane wave with the exponent e−jkz |z|

is being radiated from the plane. This wave must be directed outwards, which we have defined in a
negative exponent. Hence, to obtain ={−jkz|z|} < 0, the real part must be <{kz} ≥ 0. A subsonic
bending wave, where k2 < k2

x + k2
y , causes kz to be imaginary. Here, an evanescent wave with a real-

valued exponent will be radiated. The exponent must satisfy <{−jkz|z|} < 0 to vanish at infinity.
The claim is here for the imaginary part ={kz} < 0, so that the imaginary-valued kz = −j|kz| forms
a negative sign when multiplied by −j. We can conclude the only valid solutions as

kz = ∗
√
k2 − k2

x − k2
y, (2.75)

where ∗
√
· denotes the complex conjugate of the positive root, causing a positive real- and a negative

imaginary-part. Note that Eq. (2.75) is only valid for z ≥ 0. There is no need to specify kz for z < 0
here, since Eq. (2.73) is evaluated only at z = 0.
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2.4.3 Dealing with irregularities at tangential waves

Even though we are already able to compute the odd-symmetric sound pressure on the (x, y) plane
using Eq. (2.73) and Eq. (2.75), there is another trouble spot we have to consider. The issue occurs
when the characteristic equation Eq. (2.5) is fulfilled for waves that travel tangentially along the (x, y)
plane without an outwards-normal component. Tangential waves occur at coincidence frequency,
where a bending wave propagates with the speed of sound. In this case, k2 = k2

x + k2
y so that kz = 0,

which causes the division by kz in Eq. (2.73) to diverge.

An explanation for this phenomenon can be given considering the two Rayleigh integrals Eqs. (2.56)
and (2.59). By substituting Eq. (2.73) into Rayleigh II, we try to emulate its radiated sound pressure
using Rayleigh I. There is a directivity mismatch between the Dirichlet Green’s function Eq. (2.58),
representing an acoustic dipole, and the Neumann Green’s function Eq. (2.54), representing a monopole.
This mismatch is compensated viaGN (kx, ky, z) = GD(kx,ky ,z)

jkz
in the kx,y space. GD(r) is zero when

evaluated on the (x, y) plane, implying that also GD(kx, ky, z)
∣∣
0 = 0. Hence, no strictly tangential

waves can occur. As GN (r) is omnidirectional, it allows for tangential-wave propagation and thus
is non-zero when the characteristic equation is fulfilled in the horizontal plane. The factor 1

jkz
must

thus grow towards infinity to compensate the inequality.

A more physical argument for the incorrect modeling of tangential waves can be given, considering
the (x, y) plane as a vibrating plate. The mathematical model assumes ”...the normal velocity of the
plate to be continuous with the fluid velocity in contact with it. However, a plane wave traveling
parallel to the plate has only a fluid velocity parallel to the plate (in the direction of travel) and zero
normal velocity.”[45, P. 31]

The declared problem can be mitigated by introducing a lower barrier ε, allowing kz only to shrink to
a minimum value:

k̂z =

kz |kz| ≥ |ε|,ε |kz| < |ε|.
(2.76)

Replacing kz by k̂z is a rather simple remedy, but there remains a trade-off when choosing ε. Large
values distort the result in a non-physical and non-linear manner, while small values are not capable
of smoothing the peaks sufficiently.

Regularization of kz
A more sophisticated approach to regularize a very similar problem is presented by Pagavino et al.
[47, Sec. 2.4.1]. Pagavino treated the Fourier-based calculation of sound fields from prescribed ve-
locities [45, Sec. 2.9]. Eq. (2.73) is the same equation but with a missing exponential term because
we evaluate only at positions z = 0. This paragraph is devoted to briefly presenting Pagavino’s
regularization procedure applied for Eq. (2.73).

In the beginning, it is informative to write down the inverse Fourier transform. We denote kz(kx, ky)
to emphasize the dependencies of the variable:

p([x, y, z = 0]>) = ωρ

4π2

¨ ∞

−∞
v(kx, ky, z = 0) 1

kz(kx, ky)
ejkxx+jkyydkxdky. (2.77)

As we usually have to deal with discrete signals of finite length instead of infinite, continuous ones,
Eq. (2.77) must be discretized. Assume v[kxn , kym , z = 0] being the 2D discrete Fourier transform
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of the equally-spaced sampled velocities on the (x, y) plane. A discrete form of the integral is then

p([x, y, z = 0]>) = ωρ

4π2

∑
n

∑
m

v[kxn , kym , z = 0] 1
kz[kxn , kym ]ejkxnx+jkymy ∆kx ∆ky, (2.78)

where kxn = n∆kx and kym = m∆ky are the sampled wave number bins in the (kx, ky) plane.

The discretization, however, comprises a drawback. A singularity in Eq. (2.77) is, in theory, infinitely
narrow since pure-tangential waves only occur exactly at the coincidence frequency. By contrast, the
discretized wave-number bins in Eq. (2.78) might lead to kz ≈ 0 on a broader frequency band due to
truncation of the values.

A remedy to prevent the occurrence of these near-singular values is to separate the discretization into
two parts. For every other but the 1

kz
term, the sampling approach works fine as it does not lead to

singularities. For 1
kz

, an alternative discretization must be found.

The alternative discretization is done in two steps. First, the sampled 1
kz [kxn ,kym ] is interpolated,

using a two-dimensional interpolation function. Second, the integral is evaluated analytically over
the extent of the interpolation function. The integration assures that a sporadically occurring singular
bin of 1

kz [kxn ,kym ] is smoothed before it can distort the outcome.

The interpolation function can be a two-dimensional rectangular function that is centered to the re-
spective wave-number bin and has an extend of lx,y∆kx,y, i.e., (lx,y ∈ R+) times a wave-number step
in both dimensions of the (kx, ky) plane:

((n,m)+lx,y)∆kx,y∏
((n,m)−lx,y))∆kx,y

(kx, ky) =

1, for ((n,m)− lx,y)∆kx,y ≤ kx,y ≤ ((n,m) + lx,y)∆kx,y,
0, otherwise.

(2.79)

where we concluded the two dimensions into a comma-separated notation. Hence, (n,m) corresponds
to the nth and mth bin of kx and ky. kx,y and lx,y represent the wave numbers and extent of the
interpolation function in both dimensions. Including the interpolation function into Eq. (2.78) leads
to

p([x, y, z = 0]>) = −jωρ4π2

∑
n

∑
m

v[kxn , kym , z = 0]ejkxnx+jkymy · · ·

¨ ((n,m)+lx,y)∆kx,y

((n,m)−lx,y)∆kx,y

1
−jkz[kxn , kym ]dkxdky, (2.80)

where a factor −j−j is added to comply Pagavino’s notation.

An analytic solution for the remaining integral in Eq. (2.78) can be found by using polar coordinates
so that the planar wave numbers are described by a radius r and a polar angle ϕ(r). The integral can
then be simplified, assuming ϕ(r) to vary approximately linear within the region of two corners of
the interpolation function. The transformed expression for a single bin in the (kx, ky) plane is then

Υ =
ˆ r4

r1

1

−jk ∗
√

1−
(
r
k

)2 r∆ϕ(r)dr, (2.81)

where Υ is the regularized outcome of the integral and r1...4 are the four radii defining the edges of the
interpolation function. ∆ϕ(r) is here the maximum angular change within the region of interpolation.
r = [kx, ky]> is the position vector in the (kx, ky) plane and r its length.
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Abbildung 29 – Geometrische Interpretation der radialen Integration über ein rechtecki-
ges Segment im 1. Quadranten unterhalb der 45� Diagonale (links); Winkeländerung in
Abhängigkeit der Position des Rechtecksegments

Die von den Radien erzeugten Kreisbögen weisen bei größeren Ortswellenzahlen inner-
halb eines Rechtecks eine derart geringe Krümmungen auf, dass diese gut durch eine Ge-
rade approximiert werden können. Durch diese Annäherung lässt sich der schematische
Verlauf der resultierenden Winkeländerung �'(r) für einen wachsenden Wellenzahlradi-
us grob in drei Bereiche unterteilen: Eine monoton steigende Flanke (r1  r  r2), ein
konstantes Intervall (r2  r  r3) und eine monoton fallende Flanke (r3  r  r4). Die
Winkeländerung �'(r) entspricht somit näherungsweise einer trapezförmigen Funktion,
welche sich wiederum durch zwei lokal begrenzte Rampenfunktionen mit reziproker Stei-
gung und einer Rechteckfunktion ausdrücken lässt. Werden die konstanten und linearen
Terme der entsprechenden Funktionen getrennt integriert, so lassen sich in allen Fällen
wieder analytische Lösungen finden. Das Teilintegral, das als abschnittsweise durchge-
führte radiale Glättung des Wurzelterms interpretiert werden kann, lässt sich in drei Teile
unterteilen

Ipol =

r4Z

r1

r

�jk ⇤

r
1 �

h
r
k

i2
�'(r)dr =

r2Z

r1

r

�jk ⇤

r
1 �

h
r
k

i2
�'

(r � r1)

(r2 � r1)
dr

+�'

r3Z

r2

r

�jk ⇤

r
1 �

h
r
k

i2
dr +

r4Z

r3

r

�jk ⇤

r
1 �

h
r
k

i2
�'

(r4 � r)

(r4 � r3)
dr = I12 + I23 + I34

(85)

Im folgenden Abschnitt werden die Lösungen der Teilintegrale für die einzelnen Abschnit-
te angeführt.

Figure 2.7 Illustration of the four edge-radii and the approximated angular change, from [47,
P. 45]; left: a segment in the lower-left quadrant of the kx,y-plane, showing the radii
defining the extent of the interpolation function. The skewed lines represent the lin-
earized angular change. Right: Angular change as a function of the edge radii for three
different positions in the kx,y-plane.

To solve Eq. (2.81) analytically, Pagavino decomposed the integral into three intervals. Each interval
shows a characteristic behavior of ∆ϕ(r). In the interval r1-r2, ∆ϕ(r) grows steadily. For r2 -r3,
it approximately remains constant and for r3-r4, it diminishes steadily. Fig. 2.7 shows a screenshot
from [47, P. 45], illustrating radii and angular change in the (kx, ky) plane.

The analytic integration of the three parts leads to the following equations. The radii r1...4 and the
maximum angular change∆ϕ(r) are derived via geometrical considerations, as illustrated in Fig. 2.7.
The radii are expressed as functions of the discrete wave-number steps. The maximum angular change
is computed as the angle between the edge r2, and a spot c, where the horizontal line (r3− r1) is cut
by a circle that is drawn from the origin with a radius r2. We obtain:

r1 =
√

[∆kx (n− lx)]2 + [∆ky (m− ly)]2 r2 =
√

[∆kx (n− lx)]2 + [∆ky (m+ ly)]2

r3 =
√

[∆kx (n+ lx)]2 + [∆ky (m− ly)]2 r4 =
√

[∆kx (n+ lx)]2 + [∆ky (m+ ly)]2
, (2.82)

∆ϕ(r) = ϕ2 − ϕc = arctan
(
ky(r2)
kx(r2)

)
− arctan

(
ky(r3)
kx(c)

)

= arctan
(
∆ky (m+ ly)
∆kx (n− lx)

)
− arctan

 ∆ky (m− ly)√
(r2)2 − (∆ky (m− ly))2

 , (2.83)

Υ2,3 = ∆ϕ(r)k
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 , (2.84)

Υ1,2 = k∆ϕ(r)
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]}, (2.86)

Υ = Υ1,2 + Υ2,3 + Υ3,4
4 lxly ∆kx∆ky

. (2.87)

Note that Eqs. (2.82) to (2.87) differ from the results in [47]. One difference is that Pagavino used
a constant factor l = 1

2 to define the extent of the interpolation function. Further, the normalization
term 1

4 lxly ∆kx∆ky
is added to Eq. (2.87), the complex-conjugate square roots are exchanged for the

negative ones in Eqs. (2.84) to (2.86), and some formal typos are fixed. These modifications were
necessary for the simulation to comply with the acoustic reference measurement.

Eq. (2.87) solves Υ only within the lower-left quadrant of the (kx, ky) space. Hence, we must apply
some further modifications to obtain a complete solution. First, consider that Υ diverges at (m,n) =
(0, 0). For this single wave-number bin, we can exchange the value by the non-regularized 1

kz
since

there is no bending wave that could enforce a tangential wave in the air. Next, for finding a solution
in the three other quadrants of the (kx, ky) plane, we can circumvent the explicit computation by
exploiting the symmetries of the k space. k-space expressions for the Green’s function or its derivative
are always rotationally symmetric, i.e., they contain the same amplitude for any azimuthal plane wave
of the same zenith propagation angle. Let us conclude the result using matrix notation

Υtot =

 Υ ↔ (Υ)
l (Υ) 	 (Υ)

 , (2.88)

where the first entry of the matrix is replaced by 1
−jkz [0,0] . Hereby, Υ contains the solution for all

bins up to the Nyquist bin: (0, 0) < (n,m) ≤ (N,M)
2 . The↔ (·) operator indicates a left-to-right flip

of the matrix after deletion its zeroth column. l (·) is an up-down flip of the matrix after deletion of
its zeroth row. 	 (·) indicates a rotation by 180◦, after deletion both the zeroth column and row.

The regularized equation for obtaining the desired sound pressure on the plane can finally be stated
as an inverse 2D discrete Fourier transform

p([x, y, z = 0]>) = −jωρ4π2

∑
n

∑
m

v[kxn , kym , z = 0]Υtot[n,m]ejkxnx+jkymy

= −jωρ iFFTkx,ky

[
FFTx,y

[
v[xn, ym]

]
Υtot[n,m]

]
, (2.89)
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Figure 2.8 Full-space frequency responses of the smartphone dummy, simulated without regular-
ization of kz , with a lower barrier ε = 0.3, and with Pagavino’s regularization using
the parameters defined in Section 4.2.4. The frequency response is evaluated in 10 cm
distance in the front-center of the device

where v[xn, ym] is the velocity function, sampled at the coordinates (xn, ym) = (n∆x,m∆y).
FFTx,y denotes the 2D fast Fourier transform with respect to the (x, y) coordinate and iFFTkx,ky

its inverse.

The effect of regularizing kz can be observed in Fig. 2.8, which shows frequency responses evaluated
using the combined-Rayleigh formulation. Without regularization, the frequency response contains
ripples that are not physical. Applying a lower barrier for kz as defined in Eq. (2.76) results in
a smoother curve that, however, still contains some of the ripples. By contrast, the curve that uses
Pagavino’s regularization does not yield such ripples and matches well with the acoustic measurement
(cf. Chapter 5).

2.4.4 Approximating the linear convolution

In a final step, consider that the two Rayleigh integrals express a 2D linear convolution of infinite-
length signals. In contrast, Eq. (2.89) forms a 2D circular convolution of finite-length signals [46,
Sec. 4.4]. Hence, formulation suffers from the inherent periodicity of the discrete Fourier transform
that replicates the signals to an infinite extent [48, Sec 8-3.1].

A common remedy is to pad the signal with zeros, pushing the replicas apart. For a linear convolution
of finite-length signals, it would be sufficient to pad both signals to a length [48, Sec 5-4.3.2]

L(a ∗ b) = La + Lb − 1. (2.90)

In our case, the zero-padded and Fourier-transformed velocity function v[kxn , kym ] determines the
length of kz[kxn , kym ]. Further, the inverse-Fourier-transformed 1

−jkz
does not yield zeros outside the

vibrating region, but shows some exponential-decay bathtub shape. We thus need to add more zeros
than stated in Eq. (2.90) for approximating the linear convolution appropriately. Fig. 2.9 depicts the
inverse-transformed 1

−jkz
for various lengths of kz , showing that a higher number of padded zeros

broadens the function spatially.
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Figure 2.9 Inverse-Fourier-transformed 1
−jkz

for a two-dimensional case along the x axis, with a
spatial step size of ∆x = 5 mm. The number of bins determines the spatial extend of
the function.

Here, too, a trade off concerning the number of padded zeros has to be made. While increasing the
number enhances the approximation to a linear convolution, it also increases the computational cost.
Additionally, the extent of the interpolation function must be adjusted so that the finer resolved 1

−jkz

is smoothed sufficiently.

A problem with zero padding signals is the discontinuity occurring at the borders between signal and
padded zeros. The discontinuity represents a convolution with a rectangular window and impacts
the resulting wave-number spectrum. The common remedy is multiplying the signal with another
window function to smooth the transition. The topic of windowing is beyond the scope of this thesis.
Detailed listings of window functions and correction factors can be found in [49] and [50].

While zero padding is a standard procedure in signal processing, it also comprises a drawback: the
window introduces a loss of information in the primary signal, especially at high frequencies. A rem-
edy here can be so-called wave-field extrapolation, i.e., extrapolating the signal with values other than
zero [51]. The extrapolated function allows for applying a broader window that does not influence the
primary signal, e.g., a Tukey window [50, Sec. 4.22] with an onset at the original limit of the signal.
Common methods of wave-field extrapolation are so-called border padding, and linear-predictive bor-
der padding [52]. Border padding is very similar to zero padding, except that here signal is padded
by the repeated boundary values. Linear-predictive border padding uses some method of linear pre-
diction, e.g. a polynomial fit [53], [54]. Fig. 2.10 illustrates the principles of zero padding, border
padding, and linear-predictive border padding for a one-dimensional case.
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Figure 2.10 Illustration of zero padding and wave-field extrapolation. Dashed gray lines repre-
sent the borders of the signal. Steady gray lines show the non-windowed signal and
extrapolations, red lines illustrate window functions. Black lines show the resulting,
extrapolated and windowed curves. From left to right: zero padding, border padding,
linear-predictive border padding.

2.5 Boundary Elements Method (BEM)

To begin with, the Kirchhoff-Helmholtz integral Eq. (2.28) is restated here, after replacing the pres-
sure gradient via the Euler equation Eq. (2.2):

c(x)p(x) = −jωρ
˛

Γ0

vn(x0)G(r)dΓ0 −
˛

Γ0

p(x0)∂G(r)
∂n0

dΓ0. (2.91)

The idea behind the BEM in acoustics lies in solving Eq. (2.91) numerically, as analytical solutions
can only be found for a limited set of simply shaped surfaces [30, Sec. 4]. The numerical integration
requires a surface mesh, i.e., discretization of the boundary into smaller elements of simple shape,
mostly triangular or quadrilateral elements. The BEM covers aspects that this thesis cannot cover,
such as numerical integration and how to treat singular integrals. Thus, unlike the formerly described
methods, additional software is employed for its core computation. The open-source software Salome
[32] is used for computing the surface mesh, and the open-source Matlab toolbox OpenBem [31] takes
care of loading/checking the mesh and computing the BEM matrices. This section discusses some key
points of BEM theory required for understanding its application to the underlying exterior radiation
problem. Interested readers are referred to [55], [29], and [30].

2.5.1 Discretizing the boundary

The first step for the numerical computation is discretizing the shape of the body and discretizing the
prescribed velocities and sound pressures. The discretization can be done via the collocation method
of weighted residuals [55, Sec. 1.3], which approximates the equation with a function that satisfies
the boundary values at a set of discrete positions, i.e., the collocation points. The discretization is
termed isoparametric if the boundary values and the surface are treated equally [30, Sec. 4.4.3].

The discretization of a three-dimensional body decomposes its surface into a mesh of smaller ele-
ments. The closed surface integral then breaks up into a sum of integrals over the surface elements

c(x)p(x) =
L∑
l=1

(
−jωρ

ˆ
Γl

vn(xl)G(rl) dΓl

)
−

L∑
l=1

(ˆ
Γl

p(xl)
∂G(rl)
∂n0

dΓl

)
, (2.92)

whereas l indicates the lth surface element. In the simplest case, assuming constant surface elements,
the continuous functions of the boundary values can be directly pulled out of the integrals, and we
can thus rewrite Eq. (2.92) as vector products,

c p = m>vn − d>p. (2.93)
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Figure 2.11 Illustration of a quadratic quadrilateral element, showing its nine surface nodes. The
image is drawn in the style of [29, P. 93, Fig. 3].

Where the vn and p contain the grid points for each surface element and m> and d> comprise the
integrals of the monopole and dipole terms in the Kirchhoff-Helmholtz integral, respectively:

ml = −jωρ
´

Γl
G(rl)dΓl, dl =

´
Γl

∂G(rl)
∂n0

dΓl. (2.94)

Taking account of non-constant quantities over a single surface element can be done by approximating
the continuous functions via a sum of weighted basis functions [29, Sec. 2.2]:

f(x) ≈
K∑
k=1

φk(x)fk. (2.95)

Where f(x) is a place holder for the sound pressure or velocity and f1...K are the extracted values on
the collocation points. φk(x) are basis functions.

For surface elements of non-constant shape, e.g., linear or quadratic elements, the elements can be
defined by a superposition of Lagrangian polynomials:

x =
K∑
k=1

Nk(η1, η2)Pk, (2.96)

where the positions P1...K hold the coordinates of the so-called surface nodes of a single element.
The Lagrangian polynomialsNk(η1, η2) have a value of one only at a single node and zero at all other
nodes [29, Sec. 5.2]. They are often termed ’shape functions’ when used in this context [30, Sec. 4.7].
Fig. 2.11 illustrates definition of the surface nodes and the coordinates (η1, η2) of a quadratic quadri-
lateral element.

2.5.2 Calibrating the sound pressure boundary values

In many practical applications only one quantity is known, either the normal velocity or the pressure
on the surface. The other quantity is inherently determined by the nature of the Kirchhoff-Helmholtz
integral, c.f. Section 2.1.6. Hence, the boundary-elements procedure is usually done in two steps:
calibration of the dependent quantity and subsequent computation of the desired problem.

In this thesis, we consider a radiation problem with prescribed normal velocities. For the calibration,
we evaluate Eq. (2.93) on all collocation points, so that the m and d vectors expand to L×Lmatrices
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of the form

M =


m1,1 . . . m1,L

...
. . .

...

mL,1 . . . mL,L

 ,D =


d1,1 . . . d1,L

...
. . .

...

dL,L . . . dL,L

 . (2.97)

c expands to an L× L diagonal matrix, holding the position-dependent constants for the surface, c.f.
Eq. (2.29). The surface pressures are then determined via matrix inversion,

p = (C + D)−1 Mvn. (2.98)

The sound pressure on a single point in the field can finally be determined via Eq. (2.93) using the
determined set of values.

2.5.3 Non-uniqueness and CHIEF points

When evaluated on the (smooth) surface, the interior and exterior formulation of the Kirchhoff-
Helmholtz integral comprise the same integral terms for monopoles and dipoles, except for the
inverted sign in the dipole part. This relationship leads to a non-physical behavior in the BEM
when computing an exterior radiation problem, which is known as the non-uniqueness problem [29,
Sec. 7.1]. Internal resonances for a Dirichlet (p = 0) or a Neumann (vn = 0) boundary lead to
near-singular entries in the m and d vectors of Eq. (2.93) for the interior formulation, distorting the
exterior radiation problem since the resonances do not occur in the outer field. The frequencies at
which the non-uniqueness problem occurs are often termed irregular frequencies.

A simple remedy to the non-uniqueness problem is the Combined Helmholtz Integral Equation For-
mulation (CHIEF), first proposed by [27]. The clue is to add so-called CHIEF points to the exterior
radiation problem. The CHIEF points are located in the interior volume and serve as additional con-
straints for the equation system, forcing the sound pressure to zero at their location. The resulting
over-determined equation system can then be solved using a least-squares approach [29, Sec. 7.2],
i.e., minimizing the norm of the equation

p =
(
(C + D)H (C + D)

)−1
(C + D)H Mvn,

= (C + D)†Mvn, (2.99)

where (·)† denotes the Moore-Penrose pseudo inverse, and (·)H is the Hermitian-transposed of a
matrix.

Application of the CHIEF method comprises a major drawback: the constraints hold only for the
discrete positions of the CHIEF points. Hence, there remains the possibility of a non-zero field
aside from the CHIEF points. The major difficulties lie, therefore, in ”...the determination of the
number of good CHIEF points needed to ensure a unique solution, ...and how to choose good CHIEF
points.” [30, P. 116]. A good CHIEF point adds ”...an additional constraint to the original system of
equations...”[30, P. 116], i.e., it does not coincide with a nodal surface of internal resonance.

The conditions are often determined via a trial-and-error procedure, while there exist indicators for
sufficiently many good CHIEF points, such as the condition number of the pseudo inverse or the inte-
rior velocity potential, as suggested by [28]. Thus, careful consideration of the positioning can save
time and workload in the process of finding an acceptable solution. As Seybert et al. find:
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”As the nodal surfaces of an arbitrary body do not have any regular pattern (e.g.,the nodal
surfaces will not, in general, be equally spaced), it seems that a uniform pattern of CHIEF points is
appropriate. On the other hand, a body with parallel surfaces ... has equally spaced nodal surfaces;
in this case, the CHIEF points should not be spaced at regular intervals.” [28, Sec. V]
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3 Data Acquisition

Before being able to run the simulation, we need to acquire the vibration velocities. Additionally, we
need to verify the validity of the simulations and hence, must conduct acoustic reference measure-
ments. This chapter describes the measurement processes for obtaining the surface velocities and the
reference sound pressure. Beforehand, the tested device is introduced. All measurements took place
at Sound Solutions in Vienna. The company has provided the infrastructure, including the devices
under test, appropriate mountings, and adapters.

3.1 Tested Devices

The device under test was a smartphone dummy with vibrating actuators attached to the inner side of
its display and side lengths of 15.55 cm× 7.26 cm× 1.1 cm. The components of the dummy are

• a front display,

• a transparent back cover,

• an aluminum frame,

• an aluminum block to dampen interior vibrations,

• two miniature loudspeakers in enclosures (not used in the project),

• two vibrating actuators of type ’SiDiAc 102, TR280’, with resonance frequency at 180 Hz,

• wiring that ends in an RJ-45 bucket outside.

Photographs of the dummy are shown in Fig. 3.2.

As a reference case, additional measurements of a miniature voice-coil loudspeaker of type ’Man-
ticore HX617’ were conducted. These measurements provide an alternative boundary condition to
verify the half-space simulation more broadly and serve as a cross-check, as they are expected to
be less prone to errors compared to the half-space measurements of the smartphone dummy. The
Manticore has a size of 1.5 cm × 1.1 cm × 0.2 cm. Fig. 3.1 shows a photograph of the Manticore
loudspeaker.

3.2 Scanning the Surface Vibration

We used a Polytec PSV-I-680 QTec Laser-Doppler Vibrometer with the proprietary Polytec data acqui-
sition software to scan the surface velocities. Pictures of the measurement setups are in the appendix
Fig. A.1, Fig. A.2 and Fig. A.3.

Two potentially impairing factors had to be considered. The first factor was the translucency of
surfaces. The display consists of multiple, variably translucent layers, which could induce errors in
the measurements since the laser beam could shine through some of the layers. For the transparent
back cover, the laser beam shined through the entire surface. Hence, a layer of adhesive paper had to
be applied to both surfaces.

The second factor was the mechanical coupling between the ground and the smartphone dummy.
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Figure 3.1 Frontal view of the 1.5 cm× 1.1 cm× 0.2 cm Manticore loudspeaker that was used as
an alternative verification for the half-space simulations.

(a) (b)

(c)

Figure 3.2 Photographs of the 15.55 cm× 7.26 cm× 1.1 cm smartphone dummy. (a): Front view,
showing the display; (b): right frame and cable; (c): backside view; the white markers
highlight the vibrating actuators.
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The actuators induce vibration in all surfaces, as the dummy forms a closed box whose surfaces are
coupled mechanically and volumetrically. The coupling can become problematic when a passively
vibrating surface connects to another rigid surface. Sound Solutions provided a mounting that places
the dummy onto two elastic rubber bands. This elastic suspension, with a resonance frequency of
about 12 Hz, assured that the coupling does not distort the measurements in the frequencies of interest.
The mounting is depicted in Fig. A.1 (b).

Additional rubber bands were used to clamp the dummy to an upright position for scanning the side
surfaces, as depicted in Fig. A.2. Pretests yield that the frame velocities were about 20 dB lower than
those of the display and back cover. Hence, the effect of coupling was considered negligible when
measuring the frame velocities.

The surfaces were sampled into meshes of equidistant, quadrilateral elements. The display and the
back cover were measured at 31× 17 positions. The long and short frames were measured at 31× 3
and 17 × 3 positions. Considering the measures of the dummy, the spatial resolution was about
0.5 cm × 0.43 cm × 0.37 cm. Screenshots from the built-in camera of the Polytec laser during the
scans are in the appendix, Figure A.2. Note that the meshes include some invalid positions, which
had to be treated in the subsequent data handling, cf. Chapter 4.

As a preparation for the data handling, it was also important to define axes for the dummy so that every
scanned position could be assigned to the correct position in the model later on. An abstraction of the
dummy’s alignment for each surface scan is depicted in Fig. 3.3. All settings for the scans were set in
the Polytec data-acquisition software. As excitation signals, periodic chirps that range from 50 Hz to
25 kHz were used. The amplitude of the chirp was set to 0.5 V. The data as complex frequency data
was saved in ’.fbd’-files. For the Fourier transform, 12775 frequency bins and rectangular windows
were set. No averaging was used. Screenshots of the settings can are in the appendix, Figs. B.1
and B.2.

For the alternative verification case with the Manticore voice-coil loudspeaker, 13× 7 positions were
used to scan the front plate, excluding the torus. The chirp was set to an amplitude of 0.1 V, while all
other settings remained as in Figs. B.1 and B.2. An appropriate mounting with an open back volume
was used. Pictures of the measurement are shown in Fig. A.3. Fig. 3.4 shows the mean of absolute
amplitudes for normalized frequency spectra of the vibrating velocities on the phone’s surfaces and
the Manticore.

A proprietary software tool of Sound Solutions called Dive was used for transferring the ’.fbd’ files
to Matlab. The tool allows opening the .fbd-files, selecting scan points and channels, and applying
a frequency-bin reduction to pre-selected frequency scales. There are options for export in various
data formats, such as ’.xls’ or ’.csv’. Dive is compiled from a Matlab source code, which allowed for
adaptation for exporting the data in ’.mat’-file format. In the Dive settings, the bin reduction was set
to an ’R320’, a logical continuation of the Renard-series-based ISO-R frequency scales that contains
320 bins per decade. The data of each surface scan was exported to four files containing the absolute
value and phase of the vibrometer-velocity channel and the voltage reference channel, listed for the
coordinates of each scan position.

36



P. Heidegger 3.2. Scanning the Surface Vibration

+Y

+X

+Z

+Z

+X

-Y

-Y

+X

-Z

-Z

+X

+Y

-Z

-Y

+X

	
Sc

an
 h

ea
d

-Z

+Y

-X

back cover

right frame left frame

upper frame lower frame

	
Sc

an
 h

ea
d

	
Sc

an
 h

ea
d

	
Sc

an
 h

ea
d

	
Sc

an
 h

ea
d

display

	
Sc

an
 h

ea
d

display

display

displaydisplay

Figure 3.3 Illustration of the phone’s placement for each surface scan, showing a plan view;
scanned surfaces are: display (upper-left), back cover (upper-right), right frame (mid-
left), left frame (mid-right), upper frame (lower-left), and lower frame (lower-right im-
age); The axes show the defined coordinate system for the phone’s dimensions: height
in X , width in Y , and depth in Z;
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(a)

(b)

Figure 3.4 Frequency response of the overall surface vibration as the average of absolute velocities,
normalized by the input voltage reference in dB; (a) surfaces of the smartphone dummy;
(b) front plate of the voice-coil Manticore loudspeaker used as an alternative verification
case for the half-space simulations;
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3.3 Acoustic Measurements

To provide reference curves to assess the simulated sound pressures, we performed measurements of
the acoustic frequency response in three different scenarios:

1. the smartphone dummy in half space,

2. the Manticore coice-coil loudspeaker in half space as an alternative verification case,

3. the smartphone dummy in full space.

The first two setups were measured in laboratory 1. Two different baffles were used, a mobile and
a fixed baffle. The mobile baffle provides a pivoted arm as a microphone holding, allowing for
measurements at off-center positions. By contrast, the fixed baffle has an attached guide for the
microphone, keeping the recording position to the acoustic center of the tested device. Both baffles
had measures of 71.8 cm× 76.2 cm. Exemplary photographs during the measurements are shown in
Fig. 3.5.

The scenario of the smartphone dummy in half space has mainly been observed using the mobile
baffle. There were two factors that could potentially influence the result and therefore had to be con-
sidered for choosing the microphone positions. First, the distance between the center of the dummy
and the closest edge of the baffle is 30.3 cm. Therefore, it is likely that diffracted waves could impair
the recording. Secondly, as described in the previous section, the vibrating actuators induce vibration
not only to the display but into all surfaces of the dummy. Since the dummy is clamped into the baffle
via an adapter, there is a chance that radiating bending waves are being excited in the baffle. Due to
these factors, we chose the microphone position to be in the acoustic center of the device, at 10 cm
distance. This position allowed for a cross check with the fixed baffle.

The alternative verification case of the Manticore voice-coil loudspeaker has been measured in the
fixed baffle, in distances of 1 cm, 2 cm,3.16 cm, 5 cm, and 10 cm. The fixed baffle is designed
to be used for measuring miniature loudspeakers, such as the Manticore, and has been optimized by
Sobtzick [56]. This scenario could hence be considered being less prone to errors.

The smartphone dummy has been suspended for the third scenario, hanging down vertically from a
frame. The suspension consisted of two duct tapes that were attached to the frame. This positioning
aimed to reduce the mechanical coupling between mounting and phone. To gain an overview of the
all-around radiation of the dummy, we used a turntable. The turntable was set to rotate between
270 ° and 90 ° and the phone was re-positioned for measuring the back side. The measurement
chamber here was laboratory 3, which has a room height of 2.8 m. The farthest-possible distance
between microphone and a reflecting surface was 1.3 m. To prevent possible impairments due to
room reflections, a microphone distance of 10 cm was chosen. We repeated the procedure three times
to check for reproducibility. Photographs during the measurement are shown in Fig. 3.6.

The installed APX-500 measurement systems were used for the data acquisition, combined with Brüel
and Kjaer Type 2670 microphone pre-amplifiers and corresponding 1/4-inch microphone capsules. As
excitation signals served the built-in logarithmic sweep of the APX-500 system. The sweep was set
to range from 20 Hz to 20 kHz, in a duration of 2 s. Averaging was set to 3 sweeps per measurement.
The voltage setting of the sweep was set to 250 mVRMS, 200 mVRMS, and 400 mVRMS, for the
dummy in the baffle, the manticore in the baffle, and the dummy in a free field scenario. The exported
impulse responses were saved in a ’.mat’ format.

The impulse responses were windowed using a two-sided Tukey tapered cosine window with a cosine
fraction of 0.5. The on-set time was set to−2 ms and the off-set time to 80 ms. As the window length
of time TW corresponds to a minimal applicable frequency difference ∆f = 1

TW
, it was chosen to be

large enough for resolving the audible frequency spectrum: ∆f = 1
80 ms = 12.5Hz. Filtering out all
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(a) (b)

Figure 3.5 Exemplary photographs during half-space measurements; (a): smartphone dummy,
mounted in the mobile baffle; (b): alternative verification case with the Manticore voice-
coil loudspeaker in the installed baffle;

(a) (b)

Figure 3.6 Exemplary photographs during the full-space measurements; (a): full setup; (b): closer
photograph showing the smartphone dummy hanging upright in the mounting;
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Figure 3.7 Frequency response of the alternative verification case with the Manticore voice-coil
loudspeaker, as sound pressure normalized by the input voltage in dBSPL; the micro-
phone position is in the acoustic center of the loudspeaker.

reflected sound waves would have required a window shorter than TW = 2.6 m−0.1 m
343 m

s
= 7.3 ms [57],

whereas the resulting frequency resolution ∆f = 137 Hz does not resolve the actuators’ resonance
frequency fres = 180 Hz correctly. As the measurements did not show any comb-filter shapes as
would be typical for occurring reflections, it seemed reasonable to choose the larger window. The
on-set time was set to include the on-set transient. The cosine fraction was chosen arbitrarily.

The windowed impulse responses were Fourier-transformed into the frequency domain, using 51552
FFT-bins. The same processing was applied to the voltage reference. The reference was then used
for normalizing the sound pressure via complex division in the frequency domain. The normalized
frequency spectra were smoothed using a Savitzky-Golay filter [58] with a window size of 50 bins.
Finally, the frequency bins were reduced using spline interpolation to match the frequency scale of
the exported velocities. As a result, frequency responses of the Manticore are depicted in Fig. 3.7.
Fig. 3.8 shows the minimum, maximum, and mean curves of repeated measurements for exemplary
measurement setups of the phone.
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(a)

(b)

(c)

Figure 3.8 Frequency response of the smartphone dummy, as sound pressure normalized by the in-
put voltage in dBSPL; shown are the mean, minimum and maximum curves of repeated
measurements. The microphone position is in the acoustic center of the device, at 10 cm
distance. (a): half-space measurement; (b): full-space measurement in front of the de-
vice; (c): full-space measurement at the device’s back side.
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4 Implementation of the Software

This chapter discusses how the simulation models are implemented in Matlab and roughly explains
their usage. In the beginning, the pre-processing of the acquired velocities and the structure of the
extracted data are described. Next, auxiliary functions used in the models and for the data handling
are outlined, followed by ESM, Rayleigh integrals, and BEM implementation. The final section is
about implementing custom plotting functions that aim to ease the analysis of the device’s radiation
behavior.

4.1 Preprocessing the Velocity Data

In a first step, the .mat files containing velocities and voltages of each surface scan must be loaded
into Matlab and prepared so that every scanned position assigns to its corresponding positions on the
model. Three functions do the main work of preparing the data:

• prepare_polytec_data()

• create_box()

• extract_and_interpolate()

prepare_polytec_data() is the high-level function that takes the scan names, the measures of the de-
vice, and the number of scan positions as arguments and calls the other two functions with hard-coded
arguments so that the data is assigned correctly if the smartphone is measured as suggested in Fig. 3.3.
The function contains options for plotting the scan positions and saving the prepared data into a struct.
Listing 4.1 shows the function call of prepare_polytec_data() with the plot and save flags set to zero.
Note that it is possible to specify the surface scans of only the first, the first and second, or all surfaces.
The data is created in the same way for all three options, but the velocities of not specified surfaces
are set to zero. The complete function is listed in the appendix, in Listing C.1.

create_box() creates a number of equidistant positions for the six surfaces of a box and returns their
positions and corresponding outwards-normal vectors. The box is centered with respect to the (x, y)
coordinate, and the surface corresponding to the display is at z = 0. All other surfaces are at z ≤ 0.
A scatter plot of such a box created for the scans used in this thesis is depicted in Fig. 4.1.

extract_and_interpolate() does the actual work of assigning the data and is called once for each sur-
face. Here, the .mat files of velocity and voltage are loaded (cf. Section 3.2) and assembled into a
matrix of complex-valued, normalized velocities. The scan positions from the Polytec measurements
are extracted and mapped using linear equations to fit the box’s coordinates. The resulting grid still
deviates in some fraction of a millimeter from the exactly equidistant grid on the box’s surface. Hence,
the velocities are then interpolated to the box positions, which is necessary for the symmetry assump-
tions we have to take in the following sections. Finally, all outlying or left-out scan points that result
from the equidistant measurement of a device with rounded corners are treated (cf. Fig. A.2). The
velocities of the outliers are set to the mean of their two nearest neighbors, as shown in Fig. 4.2. The
left-out scan points on the frame are extrapolated using Matlab’s interp2() function after inserting
auxiliary positions with zero velocity at a farther distance, as illustrated in Fig. 4.3. The complete
function is listed in the appendix, in Listing C.2.
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Figure 4.1 Scatter plot created with create_box(); the box has the measures of the smartphone
dummy described in Section 3.1. Blue dots represent the front/back cover in (31 × 17)
positions; red dots the upper/lower frame in (17× 3) positions; black dots the left/right
frame in (31 × 3) positions. The axes are defined as depicted in Fig. 3.3 and specified
in m.

Listing 4.1 Function call of prepare_polytec_data()
1 % measures of the phone
2 height = 0.156;
3 width = 0.0725;
4 depth = 0.011;
5 measures = [height ,width , depth ];
6 % how many positions have been measured in each axis
7 n_sources = [31 ,17 ,3];
8 % load scans
9 scannames = [" scan_display ";" scan_back ";" scan_frame_low ";

10 " scan_frame_up ";" scan_frame_left ";" scan_frame_right "];
11 [Q,n_vecs ,grids ,V,f] = prepare_polytec_data (scannames ,measures ,...
12 n_sources ,0 ,0 ,0);

Data structure
Finally, variables that are commonly used and uniformly named throughout the code examples should
be explained briefly. We start with the variables returned by prepare_polytec_data():

• Q is a six-element cell array. Each cell holds a (3×NQi) matrix holding the three-dimensional
position coordinates, whereas NQi is the number of scan positions for the ith surface.

• n_vecs is a six-element cell array, also holding matrices of size (3×NQi). The matrices contain
the three-dimensional coordinates of the outwards-normal vectors of each position.

• grids is a (2× 6)-element cell array, containing meshgrids for each surface.

• V is a six-element cell array. Each cell holds a (Nf × NQi) matrix with the complex-valued
velocities data for each position Q and frequency in f.

• f is a (Nf × 1) matrix holding the frequency scale of the extracted data. The frequency scale
must equal for all exported surface scans.

Each cell consistently corresponds to one surface:
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(a) (b)

Figure 4.2 Surface plot of the absolute surface velocities on the front display of the smartphone
dummy at f = 1 kHz. (a): outliers in the corners not treated; (b): outliers set to the
mean of their two nearest neighbors.

Figure 4.3 Scatter plot of the mapped positions corresponding to the right frame of the smartphone
dummy. Black circles indicate the assigned positions on the box surface; blue circles
are the mapped positions of the velocity scan; red stars indicate the auxiliary positions
that allow for extrapolating the surface vibration to the outer edges of the box. The axes
are defined as in Fig. 3.3.
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• cell 1: front cover (display),

• cell 2: back cover,

• cell 3: lower frame,

• cell 4: upper frame,

• cell 5: left frame,

• cell 6: right frame;

Other commonly used variables are:

• P as a (3×NP ) matrix holding the three-dimensional coordinates of all receiver positions,

• measures as a three-element vector holding the measures of the device in the (x, y, z) coordi-
nates,

• n_sources as a three-element vector specifying the number of scan positions in (x, y, z) coordi-
nates,

• c, ρ as scalars holding the speed of sound and the air density, respectively, and

• p as a (Nf ×NP ) matrix holding the resulting sound pressures for each frequency and receiver
position.

4.1.1 Auxiliary functions

Four auxiliary functions evolved during this thesis. These functions are either incorporated into the
simulation models or utilized for the analysis. Hence, they should be briefly discussed in this subsec-
tion.

First is the above described create_box(), which can also be called independently and allows for quick
and flexible creation of a box with an equidistant rectangular grid. The function supports specifying
indents for the grids so that they do not reach the edges of the box. Further, a retraction distance
can be specified, which can be used for creating a smaller box. The retraction distance was used
in the ESM to observe equivalent sources’ positioning. An additional flag ’centerandcalcdA’ causes
create_box() to specify the mid-point coordinates of each quadrangle of the grids and to return the
area of each quadrangle as well. A flag ’plotbox’ creates a scatter plot of the box. A grid representing
the scan positions on the smartphone dummy’s display and the corresponding mid-point positions
computed using create_box() with the ’centerandcalcdA’ flag is shown in Fig. 4.4. The usefulness
of create_box() emphasizes when it is used in combination with another auxiliary function interpo-
late_box(), which interpolates the velocities assigned to the surface grids of one box to the surface
grids of another box. interpolate_box() exploits Matlab’s interp2() function and the Modified Akima
interpolation method (Makima) [42, Chap. 8]. Points on the new grid that lies outside the old grid are
extrapolated by adding points with zero velocity outside the old grid and interpolating between the
old grid and the added points (cf. Fig. 4.3). The distance is specified with the optional ’extrapdist’
parameter. The two functions serve to adjust the grid density without remeasuring. Additionally, they
are used to interpolate the measured scan points to the mid-point positions and compute the area of
the quadrangle surface elements when computing the Rayleigh integrals. Exemplary calls for both
functions are shown in Listing 4.2. The complete functions are listed in the appendix, Listings C.3
and C.4.

Another auxiliary function, evaluate_G_dGdn_d2Gdn2(), computes the free-space Green’s function
and its first-order and second-order derivatives for an arbitrary number of source-receiver combi-
nations. The first-order derivative is computed concerning the source coordinate and the second-
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Figure 4.4 Scatter plot of the (31 × 17) scan positions of at the display (blue) and the (30 × 16)
mid-point positions computed with create_box() and the ’centerandcalcdA’ flag.

order derivative concerning the receiver coordinate. evaluate_G_dGdn_d2Gdn2() is based on the
function evaluate_G_dGdn() written by Franz Zotter and Hannes Pomberger. It is adapted to sup-
port evaluating the first-order derivative with respect to the source coordinate and the second-order
derivative with respect to the receiver coordinate. All models, except for the BEM, rely on evalu-
ate_G_dGdn_d2Gdn2() for computing the Green’s function and its derivatives. An exemplary func-
tion call is shown in Listing 4.3. The function is listed in the appendix, Listing C.5.

As the analysis tools described in Section 4.3 require evaluating the sound field at specific coordinates,
the fourth auxiliary function defineReceivers() was written to simplify the assignment of receiver
positions. The function supports modes for a spherical and a hemispherical receiver alignment, as
used for the full-space and half-space balloon plots, as well as cross-sectional alignments as required
for the field plots. The receiver alignment is directly plotted in a scatter plot with the additional’ show’
flag. An exemplary function call is shown in Listing 4.4. The corresponding scatter plot is depicted
in Fig. 4.5. The complete function is in the appendix, Listing C.6.

Listing 4.2 Function calls of create_box() and interpolate_box() that creates a new box and interpolates
the old velocities to the new grid.

1 % no indents to the edges
2 indents = [0 ,0 ,0];
3 % no retraction from the surfaces
4 indents = [0 ,0 ,0];
5 % compute mid - point positions and the area of the quadrangle elements
6 centerandcalcdA = 1;
7 % scatter plot of the assigned positions
8 plotbox = 1;
9 [Q_new , n_vecs_new ,grids_new ,dA] = create_box (measures , n_sources ,indents ,retract ,...

10 centerandcalcdA , plotbox )
11 % interpolate
12 [ V_new ] = interpolate_box (grids ,grids_new ,V)

Listing 4.3 Excemplary function call for evaluate_G_dGdn_d2Gdn2().
1 % compute Green ’s functions and derivatives from the front surface to some pre - defined receiver coordinates P.
2 [G,dGdn , d2Gdn2 ] = evaluate_G_dGdn_d2Gdn2 (Q{1}. ’ ,P.’,w/c, n_vecs {1}. ’ , n_vecs_P .’);
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Figure 4.5 Scatter plot of the spherical receiver arrangement created in Listing 4.4; the sphere has
a radius of r = 0.1 m and consists of 20 horizontal rings with 30 receiver positions
at each ring; blue circles represent the receiver positions; the red circle indicates the
origin.

Listing 4.4 Function call of defineReceivers() for creating a spherical receiver arrangement.
1 % number of receivers in a single horizontal ring
2 n_rec_hor = 30;
3 % number of horizontal rings
4 n_rec_vert = 20;
5 % ’omni ’ for sphere
6 mode = ’omni ’;
7 % plot
8 show = 1;
9 % radius of the sphere

10 r = 0.1;
11 P = defineReceivers (r,n_rec_hor , n_rec_vert ,mode ,show);

4.2 Implementation of the Simulation Models

The simulations are packed into functions so that a single function call computes the frequency re-
sponse over the specified frequency range and for multiple receiver positions. This section provides
an insight into how the five approaches are implemented.

4.2.1 Half-space ESM

The half-space ESM is computed using the function calcESM(). The function call is shown in Listing
4.5. The complete function is listed in the appendix, Listing C.7. The algorithm involves the following
steps:

1. Assign the positions of the equivalent-source layer. The (x, y) coordinates are set to equal
the scan positions on the upper surface. The retraction distance to the upper surface is set to
0.5-times the average source spacing in (x, y), which is based on the findings in [15].
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2. Compute the Green’s function’s first-order derivatives via evaluate_G_dGdn_d2Gdn2(), using
the equivalent-source positions as source coordinate and the positions at the upper surface as
receiver coordinate. Solve Eq. (2.35) using Matlab’s backslash operator for obtaining the source
strengths.

3. Compute the Green’s functions via evaluate_G_dGdn_d2Gdn2(), using the equivalent-source
positions as source coordinate and the field points in P as receiver coordinates. Solve Eq. (2.30)
for obtaining the field sound pressures.

Listing 4.5 Function call for the half-space ESM.
1 p = calcESM (P,Q,n_vecs ,V,f,c,rho ,measures , n_sources );

4.2.2 Full-space ESM

The full-space ESM is computed using the function calcESM_full(). The function call is shown in
Listing 4.5. The complete function is listed in the appendix, Listing C.8. The algorithm involves the
following steps:

1. Assign the positions of the equivalent-source layer. The (x, y) coordinates are set to equal the
scan positions on the upper surface. The retraction distance is set to 0.5-times the device’s
depth.

2. Separate the even-symmetric and odd-symmetric parts of the surface velocities via Eq. (2.46).

3. Compute the Green’s function’s first-order and second-order derivatives via evaluate_G_dGdn_d2Gdn2(),
using the equivalent-source positions as source coordinate and the positions at the upper sur-
face as receiver coordinate. Solve Eqs. (2.47) and (2.48) using Matlab’s backslash operator for
obtaining the source strengths.

4. Compute the Green’s functions and first-order derivatives via evaluate_G_dGdn_d2Gdn2(), us-
ing the equivalent-source positions as source coordinate and the field points in P as receiver
coordinates. Solve Eq. (2.50) for obtaining the field sound pressures.

Listing 4.6 Function call for the full-space ESM.
1 p = calcESM_full (P,Q,n_vecs ,V,f,c,rho , measures );

4.2.3 Rayleigh I integral

The function call for computing the half-space radiation using the Rayleigh I integral is shown in
Listing 4.7. The complete function is listed in the appendix, Listing C.9. The algorithm involves the
following steps:

1. Create a grid containing the mid-points of each quadrangle using create_box() with the ’cen-
terandcalcdA’ flag.

2. Interpolate the velocities to the new grid using interpolate_box().

3. Compute the Green’s functions via evaluate_G_dGdn_d2Gdn2(), using the positions at the
upper surface as source coordinate and the field points in P as receiver coordinates. Solve
Eq. (2.60) for obtaining the field sound pressures.

Listing 4.7 Function call for the Rayleigh I integral.
1 p = calcRayleigh (P,V,f,c,rho ,grids ,measures , n_sources );
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4.2.4 Combined-Rayleigh formulation

Investigating the combined-Rayleigh formulation led to a function calcReileigh_full() that includes
three modes of extrapolation and an option for regularizing kz either using Pagavino’s method or the
lower-barrier method (cf. Section 2.4.3). An exemplary call of calcReileigh_full() is shown in Listing
4.8. The complete function is listed in the appendix, Listing C.10. The algorithm for computing the
combined-Rayleigh formulation involves the following steps:

1. Create a grid containing the mid-points of each quadrangle using create_box() with the ’cen-
terandcalcdA’ flag.

2. Interpolate the velocities to the new grid using interpolate_box().

3. Separate the even-symmetric and odd-symmetric parts of the surface velocities via Eq. (2.46).

4. Extend the odd-symmetric velocities to at an appropriate length, either using zero padding or
wave-field extrapolation (cf. Section 2.4.4).

5. Transform the extended odd-symmetric velocities into the (kx, ky) space via 2D FFT.

6. Compute the wave-number bins (kx1 . . . kxN , ky1 . . . kyM ):

kx,y = 2π(n,m)
(N̂ , M̂)∆x

,

(n,m) ∈
{

0, 1, . . . , (N̂ , M̂)
2 ,−(N̂ , M̂)

2 + 1,−(N̂ , M̂)
2 + 2, · · · − 1

}
, (4.1)

where (N̂ , M̂) are the FFT lengths in (x, y).

7. Compute kz , as in Eq. (2.75).

8. Apply a regularization:

• If the lower-barrier method is used: limit kz as in Eq. (2.76) and solve Eq. (2.73) using
the inverse 2D FFT.

• If Pagavino’s integral is used:

• Compute Υtot:

a) compute Eq. (2.82) - Eq. (2.87),

b) truncate and flip Υ and unite to Υtot, as in Eq. (2.88).

Solve Eq. (2.89) using the inverse 2D FFT.

9. Crop the result to keep only the original bins → obtain the odd-symmetric pressures at the
surface.

10. Compute the combined-Rayleigh Integral, as in Eq. (2.63):

a) Compute the Green’s functions via evaluate_G_dGdn_d2Gdn2(), using the positions at
the upper surface as source coordinates and the field points in P as receiver coordinates.
Solve Eq. (2.60) for obtaining the field sound pressures of the even-symmetric part.

b) Compute the first-order derivatives of the Green’s functions via evaluate_G_dGdn_d2Gdn2(),
using the positions at the upper surface as source coordinate and the field points in P as
receiver coordinates. Solve Eq. (2.61) for obtaining the field sound pressures of the odd-
symmetric part.

c) Superimpose the two Rayleigh integrals.
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Several degrees of freedom had to be considered for the implementation: the FFT length in both
dimensions, the type of extrapolation, the window, which regularization to use, and the parameters
of the regularization, i.e., the lower barrier’s value or the extent of the interpolation function. A well-
working model could be found using Pagavino’s method and frequency-dependent zero padding that
adjusts the number of padded bins for a higher and a lower frequency region. For frequencies below
400 Hz, the grid is padded to the next-higher power of two than five times the device’s measures, i.e.,
(256× 128) bins in (x, y). Above 400 Hz, the next-higher power of two than three times the device’s
measures, i.e., (128 × 64) bins in (x, y), yielded better results. The extent lx,y of the interpolation
function is set to adapt to the FFT length, keeping a constant ratio of two to the device’s measures:

2∆(x, y) (N,M) = 2π
∆kx,y 2lx,y

, (4.2)

lx,y = π

2 ∆kx,y ∆(x, y) (N,M) , (4.3)

where ∆(x, y) (N,M) are the device’s measures in (x, y). A rectangular window is applied in this
model since other window functions seemed to worsen the results.

Listing 4.8 Function call for the combined Rayleigh formulation.
1 p = calcRayleigh_full (P,V,f,c,rho ,grids ,measures , n_sources );

4.2.5 BEM

The open-source Matlab toolbox OpenBem [31] has been used for the core computation of the BEM.
This subsection discusses the application of OpenBem for the simulations in this thesis. The proce-
dure of computing the BEM involves the following steps:

1. Create a mesh.

2. Compute the BEM matrices, i.e., the matrices used for solving the sound pressures on the
surface.

3. Assign the boundary values to the mesh.

4. Add CHIEF points to the BEM matrices and compute the surface pressures.

5. Compute the BEM field matrices, i.e., the matrices used to solve the field’s sound pressures.

6. Compute the sound pressures in the field.

Operations 2-5 must be done for each frequency separately, which makes the standard BEM inefficient
when a high frequency range is desired.

OpenBem does not support three-dimensional mesh creation, so the mesh must be created using
additional software. In this thesis, the open-source platform Salome [32] was used to create a model
with the exact measures of the smartphone dummy. The model was meshed using the ’Netgen 2D’
algorithm in Salome. A mesh with 1263 linear elements and 548 nodes seemed to be a reasonable
trade-off between performance and accuracy. A screenshot of the mesh is depicted in Fig. 4.6. The
selected properties for the meshing algorithm and more detailed properties of the created mesh can
be found in the appendix, Fig. B.3.

The created mesh must be transferred to Matlab. OpenBem supports the import of meshes in the
Gmsh (’.msh’) file format. However, Salome does not support the Gmsh format, and thus, the mesh
needs to be converted. The conversion has been done via the open-source meshing software Gmsh
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Figure 4.6 Screenshot of the mesh used for the BEM simulations. The mesh has 1263 linear ele-
ments and 547 nodes.

[59]. The .msh file is then read via readgeomGMSH(), checked for errors via meshcheck(), and its
outwards-normal vectors are computed via normals(), as shown in Listing 4.9.

After the mesh is loaded, the BEM matrices can be computed using the function OpenBem’s TriQuad-
Equat() function. As this must be done for every frequency separately, the computation time can grow
quickly to an impracticable amount if a high frequency range should be computed. Computing the
matrices for the mesh in Fig. 4.6 and for 862 frequencies took more than ten hours on a modern lap-
top. Thus, it is reasonable to save the matrices after computation into .mat files. Using the ’-v7.3’ flag
allows storing files larger than 2 GB. Listing 4.10 shows how the matrices are computed and stored.

In the next step, the BEM matrices are used to compute the surface sound pressures, which are
then used along with the velocities to compute the sound pressure in the field. These steps have
been concluded to a single function calc_BEM_radiation(), allowing for computing the field sound
pressures for all frequencies in a single code line. The function call of textitcalc_BEM_radiation() is
shown in Listing 4.11. The complete function is listed in the appendix, Listing C.11. The algorithm
involves the following steps:

1. Create the coordinates of 20 CHIEF points. Their positions are randomly distributed inside the
device using Matlab’s rand() function and with an indent of 2 mm to the borders.

2. Assign the surface velocities to the OpenBem model. This is done for each surface separately,
using Matlab’s interp2() function and the Makima interpolation method.

3. Compute the additional matrix entries for the CHIEF points via OpenBem’s point() function
and add them to the BEM matrices.

4. Solve for the sound pressure, as in Eq. (2.99) using Matlab’s backslash operator.

5. Determine the BEM field matrices via point() and compute the sound pressures, as in Eq. (2.93).

Note that no seed for creating a pseudo-random distribution that sustains over multiple function calls
was used. The 20 CHIEF points were sufficient for avoiding non-uniqueness over multiple function
calls.
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Listing 4.9 Load the .msh mesh file into Matlab using OpenBem. The syntax is partially adopted
from the OpenBem tutorial scripts.

1 % specify mesh file
2 msh = ’path_to_mesh .msh ’;
3 % read mesh file
4 [nodesTMP , elementsTMP ]= readgeomGMSH (msh);
5 % check for errors in the mesh
6 [nodesb , topologyb ]= meshcheck (nodesTMP , elementsTMP ,0 ,0);
7 % extract number of nodes
8 M=size(nodesb ,1);
9 % extract number of faces

10 N=size(topologyb ,1);
11 clear nodesTMP elementsTMP ;
12 % compute outwards - normal vectors
13 [ nvect ]= normals (nodesb ,topologyb ,’n’); % ’n’ for not plotting the mesh

Listing 4.10 Compute and store the BEM matrices using OpenBem.
1 % initialize cell arrays to store the BEM matrices for each frequency
2 A_cell = cell(size(f));
3 B_cell = cell(size(f));
4 % loop through every frequency
5 for ii = 1: length (f)
6 % compute current wave number
7 k = 2* pi*f(ii)/c;
8 % Calculate the BEM matrices for solving the pressures on the surface
9 [A,B]= TriQuadEquat (nodesb ,topologyb ,k ,1); % 1 for dealing with near - singular integrals

10 A_cell {ii} = A;
11 B_cell {ii} = B;
12 end
13 % store the results using .mat -file version 7.3 , which allows for storing files larger than 2GB
14 save(’path_to_store_A .mat ’,’A_cell ’,’-v7 .3 ’);
15 save(’path_to_store_B .mat.mat ’,’B_cell ’,’-v7 .3 ’);

Listing 4.11 Function call for computing the sound field using OpenBem.
1 p = calc_BEM_radiation (A_cell ,B_cell ,nodesb , topologyb ,grids ,measures ,V,P,f,c,rho);

4.3 Analysis Tools

Three plotting functions have been implemented to evaluate the simulation models and investigate the
device’s overall radiation behavior. The functions are briefly explained in this section.

plotFR() plots the frequency response of multiple curves and includes three subplots. The subplots
show the sound pressure’s linear magnitude in Pa, its logarithmic magnitude in dBSPL, and its angle
in rad. The function allows for specifying custom limits for the frequency axis and the magnitude
in dBSPL, whereas the limits in the linear-magnitude plot adjust automatically to the limits specified
in dBSPL. Additionally, the function allows for specifying custom legend entries. An exemplary
function call that plots the frequency response of two sound-pressure curves is shown in Listing 4.12.
The corresponding frequency-response plot is depicted in Fig. 4.7. The complete function can be
found in the appendix, Listing C.12.

The function balloonPlot() creates a balloon plot for observing the three-dimensional directivity pat-
terns of the device, where the radius of the balloon plot corresponds to the logarithmic magnitude
of the sound pressure radiated in that direction. balloonPlot() is designed to be used along with the
spherical or hemispherical receiver positions created in defineReceivers(). It is possible to plot the
balloon either in dBSPL, or in dB normalized to the maximum magnitude. For the normalized plot,
an offset can be specified for the origin so that only the specified dynamic range is plotted and lower
values are truncated. The coloration of the balloon plot can indicate either the magnitude, or the angle
of the radiated sound pressure in that direction. For the angle coloration, the front-centered position
is used as the reference angle of 0◦. Exemplary function calls that plot balloon plots in two config-
urations are shown in Listing 4.13. The corresponding plots are depicted in Fig. 4.8. The complete
function can be found in the appendix, Listing C.13.
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Figure 4.7 Frequency response plot created with plotFR() that corresponds to the function call in
Listing 4.12. The curves show the simulated half-space radiation of the display and the
back cover, evaluated at a centered position in 10 cm distance.

With fieldPlot(), cross-section plots of the sound field are possible in two modes. The mode ’p’, which
is the default, plots an image plot of the sound pressure in dBSPL. The mode ’I’ computes the sound
intensity and plots its real part in dBI, plus an overlay quiver plot that indicates the direction of the
effective energy flow. fieldPlot() allows for specifying custom titles and the range for the coloration in
dB. It is designed to work with the receivers created by defineReceivers() with the ’fieldx’ or ’fieldy’
mode. An exemplary function call that creates a sound-pressure field plot and an intensity field plot
is shown in Listing 4.14. The corresponding plots are depicted in Fig. 4.9. The complete function can
be found in the appendix, Listing C.14.

Listing 4.12 Exemplary function call for plotting frequency response curves with plotFR().
1 % define receiver
2 P = [0;0;0.1];
3 % compute radiation
4 p1 = calcRayleigh (P,V(1) ,f,c,rho ,grids ,measures , n_sources );
5 p2 = calcRayleigh (P,V(2) ,f,c,rho ,grids ,measures , n_sources );
6 % frequency limits
7 xlims = [100 ,20000];
8 % magnitude limits in dBSPL
9 ylims = [10 ,68];

10 % legends for two curves
11 legends = [’front cover ’; ’back cover ’];
12 % plot p1 and p2 over the frequency scale in f
13 plotFR (f ,[p1 ,p2],legends ,xlims , ylims );
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(a) (b)

Figure 4.8 Balloon plots created with balloonPlot() that correspond to the function call in Listing
4.13; (a): hemispherical balloon plot in dBSPL; (b): spherical balloon plot that is
normalized to its maximum magnitude and has a phase-indicating coloration.

(a) (b)

Figure 4.9 Field plots created with fieldPlot() that correspond to the function call in Listing 4.14;
(a): cross-section field plot of the sound pressure level in dBSPL; (b): cross-section field
plot of the intensity in dBI with overlaid quiver plot to indicate the intensity’s direction
at every receiver coordinate.
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Listing 4.13 Exemplary function calls for creating balloon plots with balloonPlot().
1 % choose a single frequency bin
2 ff = f (510) ; % =2000 Hz
3 % extract velocities for this frequency
4 v = {V{1}(f==ff ,:) ,V{2}(f==ff ,:) ,...
5 V{3}(f==ff ,:) ,V{4}(f==ff ,:) ,...
6 V{5}(f==ff ,:) ,V{6}(f==ff ,:) };
7
8 % define receivers ...
9 % evaluation distance

10 r_eval = 0.10;
11 % number of receivers for each elevation step
12 n_rec_hor = 30;
13 % number of horizontal rings
14 n_rec_vert = 25;
15 % create a hemisphere
16 P_hemi = defineReceivers (r_eval , n_rec_hor , n_rec_vert , ’hemi ’);
17 % create a and a full sphere
18 P_full = defineReceivers (r_eval , n_rec_hor , n_rec_vert , ’omni ’);
19
20 % compute the sound pressures for the full sphere , using combined Rayleigh
21 p_raylf = calcRayleigh_full (P_full ,v,ff ,c,rho ,grids ,measures , n_sources );
22 % and the ones on the hemisphere , using the simple Rayleigh
23 p_raylh = calcRayleigh (P_hemi ,v,ff ,c,rho ,grids ,measures , n_sources );
24
25 % example balloon plots
26 balloonPlot (p_raylh , P_hemi , n_rec_hor , 0 ,0 ,0 ,...
27 " Hemisphere , dBSPL ");
28 balloonPlot (p_raylf , P_full , n_rec_hor ,1 ,30 ,1 ,...
29 "Sphere , normalized with angle - dependent coloration ");

Listing 4.14 Exemplary function calls for plotting a sound-pressure field plot and an intensity field
plot with fieldPlot().

1 % choose a single frequency bin
2 ff = f (174) ; % =180 Hz
3 % extract velocities for this frequency
4 v = {V{1}(f==ff ,:) ,V{2}(f==ff ,:) ,...
5 V{3}(f==ff ,:) ,V{4}(f==ff ,:) ,...
6 V{5}(f==ff ,:) ,V{6}(f==ff ,:) };
7
8 % define receivers ...
9 % number of receivers in horizontal axis

10 n_rec_hor = 40;
11 % number of receivers in vertical axis
12 n_rec_vert = 40;
13 % extent of the field plot in +-m
14 r = 0.3;
15 % create receiver matrix in a cross section along the y axis
16 P = defineReceivers (r,n_rec_hor , n_rec_vert ,’fieldy ’);
17
18 % compute sound pressures using some model
19 p = calcRayleigh_full (P,v,ff ,c,rho ,grids ,measures , n_sources );
20
21 % choose custom coloration in dB
22 rng = [30 ,60];
23
24 % sound pressure field plot in dBSPL
25 fieldPlot (p,P, n_rec_vert ," Sound - pressure field plot",rng)
26 % intensity field plot in dBI
27 fieldPlot (p,P, n_rec_vert ," Intensity field plot",rng ,’I’ ,2*pi*ff ,rho)
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5 Discussion of the Simulation Results

This chapter is devoted to assessing the quality of the full-space ESM, the combined-Rayleigh for-
mulation, and the BEM as the three full-space simulation models, as well as the half-space ESM and
the Rayleigh I integral as the two half-space models. The chapter is divided into three sections. The
first section concerns the full-space simulations, where simulated frequency responses are compared
to acoustic reference measurements at four positions. The full-space models are further investigated
by observing their radiated intensity fields and three-dimensional directivity patterns at selected fre-
quencies. Section two assesses the half-space simulations by comparing the simulated and measured
frequency responses of the smartphone dummy and, as an alternative verification case, the Manticore
voice-coil loudspeaker. In section three, the computational cost of all five models is compared in
terms of the elapsed computation time for a reference problem.

5.1 Full-Space Simulations

The first scenario to be assessed is the smartphone dummy in full space. The full-space sound field
is more complex than the half-space one due to wave diffraction effects that occur at the edges of the
device, which raises the question if the three models can reproduce these effects. Hence, this scenario
is investigated in more depth than the half-space one.

5.1.1 Comparison of measured and simulated frequency responses

The frequency responses are assessed at four receiver positions: 1) centered in front of the device,
2) centered at its backside, 3) 60◦ rotated around the y axis, and 4) 60◦ rotated around the x axis.
All positions are in 10 cm distance to the device’s center. Their coordinates are shown in Table 5.1.
As already mentioned in Chapter 3, the acquired sound pressures of the acoustic measurement and
the velocity scan are normalized by the driving voltage of the corresponding measurements. Hence,
the resulting frequency responses are comparable despite their different excitation signals. Further,
the ρ and c constants were computed to match the environment of the acoustic measurement using a
function of the OpenBem toolbox, amb2prop(). The values used in the simulations are ρ = 1.18 kg

m3

and c = 346.7 m
s . The frequency responses are compared in terms of their logarithmic magnitude in

dBSPL and the phase mismatch

∆φ = φmeas − φsim, (5.1)

where φmeas and φsim are the unwrapped angles of the measured and simulated frequency responses.
The overall frequency responses of all four positions can be found in the appendix Figs. D.1 to D.4.
More detailed graphics are presented and discussed in the following paragraphs.

The magnitude responses at the front-center position 1 are shown in Fig. 5.1 (a), where all three
models show good overall compliance to the acoustic reference. The logarithmic magnitude deviates
less than±1.5 dB from 237 Hz–3.45 kHz. The deviation is less than±2.5 dB from 173 Hz–12.1 kHz
and grows with increasing frequency above 12.1 kHz. The acoustic reference shows more ripples in
the high-frequency region above 12.1 kHz, where ESM and Rayleigh seem to keep track of the
reference. The BEM curve plunges above 12.1 kHz. Below 173 Hz, the ESM stays within ±2 dB
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Table 5.1 Evaluated positions for comparing the frequency responses of full-space measurements
and simulations.

Nr. Position
Cartesian coordinates (in m)

x y z

1 front, center 0 0 0.1
2 back, center 0 0 −0.111
3 60◦ rotated y axis 0.087 0 0.05
4 60◦ rotated x axis 0 −0.087 0.05

down to 61 Hz. In this low-frequency region, the BEM appears to underestimate the magnitude
by about −3 dB. The combined-Rayleigh formulation shows the highest deviation in this region at
142 Hz, but converges towards the BEM at low frequencies < 80 Hz.

Observing the phase mismatch in Fig. 5.2 (a) yields that all three models deviate less than ±π
8 rad

from 200 Hz–3.55 kHz. The absolute phase mismatch constantly grows towards higher frequencies
but stays within ±π

4 rad until 11.2 kHz for all models. Below 200 Hz, the ESM stays within the
±π

8 rad bound. BEM and Rayleigh show their negative peaks at 169 Hz, whereas the BEM converges
towards the ESM at lower frequencies, and the combined-Rayleigh formulation exhibits a larger phase
shift.

The magnitude responses of the back-side position 2 are depicted in Fig. 5.1 (b). The acoustic refer-
ence of position 2 shows the most ripples of all four measurements, especially at higher frequencies
> 3 kHz. The three models keep track of the measurement up to 2 kHz, deviating by less than±2 dB.
Their absolute deviation increases above 2 kHz, and the simulations appear to lose the measurement’s
track above 3.5 kHz. At low frequencies, the combined-Rayleigh formulation underestimates the mea-
surement and exceeds the ±2 dB bound below 167 Hz. ESM and BEM stay within the ±2 dB bound
down to 86 Hz.

The phase mismatch of position 2 is shown in Fig. 5.2 (b). The three models stay within ±π
8 rad up

to 1.01 kHz and within ±π
4 rad up to 5 kHz. Towards lower frequencies, the combined-Rayleigh

formulation yields a higher phase mismatch than ESM and BEM and exceeds the ±π
8 rad below

137 Hz.

Fig. 5.3 (a) shows the magnitude response of position 3. The three models stay within a ±2 dB
bound from 230 Hz–2.7 kHz. The models do not completely resolve the attenuation pattern in the
measurement at frequencies after the peak/notch pattern, between 2.2 kHz and 3 kHz. The BEM
differs here by +5 dB, Rayleigh and ESM differ by +3.5 dB. All three models follow the comb-filter
shape that is in the measurements above 3 kHz. Again, the BEM appears to follow the measured curve
less accurately than the other two. The BEM again plunges towards higher frequencies, starting at
14 kHz. Interestingly, the negative peaks of the notches are slightly shifted towards lower frequencies
in the simulations. For example, the notch at 6.8 kHz in the Rayleigh and ESM curves compared
to 7.05 kHz in the acoustic measurement. At lower frequencies < 230 Hz, the combined-Rayleigh
formulation stays within the ±2 dB bound down to 166 Hz. ESM and BEM differ by +3 dB at the
180 Hz peak. Below that peak, the BEM follows the measurement down to 100 Hz.

The corresponding phase mismatch of position 3 can be observed in Fig. 5.4 (a). All three models stay
within ±π

8 rad from 186 Hz–2.46 kHz, and within ±π
4 rad from 86 Hz–8.13 kHz. An exception is

one notch around 7 kHz, where the frequency shift of the negative peak causes a large phase mismatch.
All three models drift off towards high frequencies > 8.13 kHz. At low frequencies, < 315 Hz, the
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(a)

(b)

Figure 5.1 Measured and simulated full-space frequency responses of the smartphone dummy, as
sound pressure normalized by the input voltage in dBSPL; evaluated at two positions
in 10 cm distance; (a): centered in front of the device (position 1); (b): centered at the
back side (position 2);
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(a)

(b)

Figure 5.2 Phase mismatch of the full-space simulations and acoustic reference measurements, eval-
uated at four positions in 10 cm distance; (a): centered in front of the device (position
1); (b): centered at the back side (position 2);

ESM appears to reproduce the measured phase most accurately.

Finally, the magnitude responses of position 4 are shown in Fig. 5.3 (b). Here, ESM and Rayleigh stay
within ±2 dB deviation to the reference from 142 Hz–4.25 kHz. The BEM yields a higher deviation
around the 180 Hz peak, with the maximum deviation of 4.6 dB at 175 Hz. The simulations appear to
follow the ripples of the acoustic reference that occurs at frequencies > 4.25 kHz until about 8 kHz.
Here, the BEM stays within ±4 dB and the other two within ±6 dB deviation. All models seem to
lose the track above 8 kHz.

Position 4’s phase mismatch is depicted in Fig. 5.4 (b). The frequency range of the ±π
8 rad bound is

158 Hz–3.3 kHz for the ESM, 172 Hz–3.3 kHz for the combined-Rayleigh formulation, and 172 Hz–
2.06 kHz for the BEM. The ±π

4 rad bound is up to 4.5 kHz for all models. Again, the absolute
mismatch continuously increases towards high frequencies.

To sum up, a good overall sound-field reproduction is obtained from about 230 Hz–2 kHz, which is
the region where all three models deviate by less than ±2 dB from the acoustic reference at all four
positions. The reproduction of the back-side sound field is not accurate above 2 kHz and fails above
3.5 kHz. However, the front side seems to be sufficiently reproduced to at least 4 kHz at position
4. Here, the reproduction fails above 10 kHz with ESM and Rayleigh and above 8 kHz with the
BEM. Positions 1 and 3 are well reproduced to at least 14 kHz with the ESM and Rayleigh, whereas
the BEM seems to fail to reproduce high frequencies above 10 kHz. Regarding low frequencies
< 230 Hz, the peak at the actuator resonance frequency 180 Hz is resolved within ±2 dB deviation,
except for the BEM at position 4 with +4.6 dB and BEM and ESM at position 3, with +3 dB. The
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(a)

(b)

Figure 5.3 Measured and simulated full-space frequency responses of the smartphone dummy, as
sound pressure normalized by the input voltage in dBSPL; evaluated at two positions
in 10 cm distance; (a): in front of the device with 60◦ rotation angle around the y
axis (position 3); (b): in front of the device, with 60◦ rotation angle around the x axis
(position 4);
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(a)

(b)

Figure 5.4 Phase mismatch of the full-space simulations and acoustic reference measurements, eval-
uated at four positions in 10 cm distance; (a): in front of the device with 60◦ rotation
angle around the y axis (position 3); (b): in front of the device, with 60◦ rotation angle
around the x axis (position 4);

deviation of all models generally grows below that resonance peak.

The mismatch towards low frequencies might be partially explained by observing Fig. 3.8. The graph
reveals that the acoustic measurements are not well reproducible below 150 Hz. Further, note that the
measurements were repeated without changing the position in the room. The room influence could
thus be even larger than observed in Fig. 3.8.

Another impairing factor in the low-frequency region might be acoustic leakage in the smartphone
dummy. An acoustic leak causes parts of the interior sound field to escape to the exterior. As the
interior sound field is responsible for the volumetric coupling between the display and the back cover,
the leak results in lower vibration amplitudes at the back cover. In such a case, the escaped acoustic
energy contributes to the total sound field outside. However, as the simulation models only rely on
the surface velocities, their computed sound fields might differ. A leak between the frame and the
back cover of the smartphone dummy was found during the development of this thesis. The leak
caused a stronger destructive interference at the actuator’s resonance in the acoustic measurements
while causing a weaker interference in the simulations due to the less-vibrating back cover. This
effect resulted in a large deviation of 17 dB at 180 Hz. Even though that leak could be identified and
sealed for the final evaluation, the presence of smaller acoustic leaks in the device cannot be ruled
out.

Towards high frequencies, the quality of the simulations seems to decrease with the amount of back-
surface radiation involved. Position 2 yields the worst results, followed by position 4, which is at
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a greater distance to the device’s edges than position 3. Position 1 yields the best results. For an
explanation, let us consider Fig. 3.4 (a). The graph shows the averaged absolute sums of the device’s
surfaces, where the back cover and the frames pass into a noise-like shape above 10 kHz. This
might have two causes: 1) the vibration amplitudes are too low to be captured by the laser; 2) the
wavelengths are too short to be captured accurately with the scanned grid.

Investigating the measured velocity distribution in terms of its phase at the back cover revealed that,
indeed, the back cover vibrates in more complex patterns than the display. The more complex patterns
might stem from the different materials used in the back cover, which is made out of a single layer
of plastic compared to the multi-layer structure of a display, or from the different fixation applied
for the two surfaces. While the display is merely glued to the device’s frame, the back cover is
additionally fixated with eight screws, as observable in Fig. 3.2. The screws might form bending-
wave nodes at their location, splitting the plate modes into smaller wavelengths. The spatial resolution
of the velocity scan might thus not be sufficient for resolving the waveforms at high frequencies.
After the Nyquist/Shannon theorem, two elements per wave are sufficient for resolving a wave in the
Fourier transform. However, one might require more than two elements to obtain a solution within
certain error bounds. This is demonstrated by Marburg [25] for the BEM and might partially apply
to Rayleigh and ESM. Hence, the spatial resolution might be insufficient to resolve the back-cover
vibration even below 10 kHz. Further, consider that the BEM mesh in Fig. 4.6 has variably sized
elements that grow towards the surface’s center. The elements partially exceed the scanned mesh size,
which might explain the BEM’s inferior performance towards high frequencies. Fig. 5.5 shows the
scanned phase angle distribution of the normal velocity of the front display and the back cover, at
5 kHz, 10 kHz, and 15 kHz.
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(a) display, f = 5 kHz (b) back cover, f = 5 kHz

(c) display, f = 10 kHz (d) back cover, f = 10 kHz

(e) display, f = 15 kHz (f) back cover, f = 15 kHz

Figure 5.5 Image plots showing the smartphone dummy’s phase angle distribution of the normal
velocity at its display and back cover, illustrating the bending waves occurring in the
surfaces.
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5.1.2 Investigating the spatial sound fields

This subsection provides a deeper insight into the spatial sound field of the smartphone dummy by
evaluating balloon plots and intensity-field plots created with balloonPlot() and fieldPlot() (cf. Sec-
tion 4.3). One central point is to investigate whether the models can reproduce wave diffraction to link
the upper and the lower half-space radiation. Even though the BEM, as the more sophisticated and
more approved method, should be capable of reproducing wave diffraction, this cannot be granted for
the here employed single-source-layer ESM and the combined-Rayleigh formulation. The following
paragraphs discuss the spatial sound fields at the valid frequency limits found in Section 5.1.1: 230 Hz
and 2 kHz. Balloon plots and intensity-field plots at other frequencies are shown in the appendix, Figs.
D.7 to D.24.

Figs. 5.6 to 5.8 show intensity-field plots and balloon plots at 230 Hz for the ESM, the combined-
Rayleigh formulation, and the BEM, respectively. Considering the intensity fields, the circumferential-
shaped turbulences formed by the arrows represent the energy flow between the upper and the lower
half space. All three models appear to allow energy transferring through the (x, y) boundary plane.
The turbulences are more pronounced at lower frequencies, cf. Figs. D.7 to D.12, which might be
due to an increasing phase shift between the upper and lower surface vibration and the longer wave-
lengths at lower frequencies. One can observe that the extent of the circumferential turbulences is
generally shorter in the combined-Rayleigh formulation than in ESM and BEM, which might be a
hint that the wave diffraction is less resolved in the Rayleigh field. The balloon plots in Figs. 5.6
to 5.8 show that the ESM yields the largest phase shift between front-side and back-side radiation.
The combined-Rayleigh formulation shows the lowest phase shift. The phase shifts correspond to the
turbulences in the intensity fields, where the ESM yields the most intensive turbulences at r = 10 cm
distance origin.

The intensity-field plots and balloon plots at 2 kHz are depicted in Figs. 5.9 to 5.11. The field plots
of ESM and Rayleigh reveal a higher similarity, whereas the BEM appears to produce smoother
transitions in the intensity field. All three models yield a drop in magnitude towards the lower-right
corner and towards the central-left side edge. These drops in magnitude are also mapped at the
lower-right and central-left sides of the balloon plots, where the highest phase shifts and the lowest
magnitudes are observable. The balloon plot of the BEM yields a smaller phase shift at its lower-right
side, which corresponds to the smoother field plot in this region. However, a smoother sound field of
the BEM cannot be generally assumed, as plots at higher frequencies Figs. D.16 to D.24 indicate.

To sum up, the spatially radiated sound fields of all three models are comparable within the valid fre-
quency range of 200 Hz–2 kHz. The graphs in the appendix show that ESM and combined-Rayleigh
formulation maintain similar sound fields up to 15 kHz. The BEM increasingly deviates above 2 kHz,
which might be explained by insufficient spatial sampling at the surfaces, as already described in Sec-
tion 5.1.1. At low frequencies ≤ 200 Hz, the turbulences in the BEM and ESM fields appear more
similar than in the combined-Rayleigh formulation.

A reason for the smaller turbulences in the combined-Rayleigh formulation might be its inherent
assumption of a planar source. The display and the back cover radiate from z = 0 in this formulation,
resulting in 180◦ edge angles at the surface boundaries. By contrast, the BEM accurately models the
device’s depth of 1.1 cm and thus maintains the 90◦ edge angles at the upper and lower surface. The
ESM represents a special case. Even though the single source layer is a planar radiator containing
monopoles and dipoles similar to the combined-Rayleigh formulation, the model includes the depth of
the device. The equivalent sources sit z = −0.55 cm and mimic the display and back-cover velocities
at their original positions in z. Since the frame velocity is not modeled in this ESM, a clear definition
of an edge angle cannot be stated. However, we may assume that the three models imply different
conditions at the edges, which could determine their performance in resolving wave diffraction.
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(a)

(b)
Figure 5.6 Spatial full-space sound field of the smartphone dummy, computed by the ESM, at

230 Hz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40 × 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated at
30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot are
(left to right): (z, y, x).
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(a)

(b)
Figure 5.7 Spatial full-space sound field of the smartphone dummy, computed by the combined-

Rayleigh formulation, at 230 Hz. (a): acoustic intensity field of the cross-section along
the x axis, at y = 0. The field is evaluated at a (40× 40) grid in a range of ±20 cm. (b)
balloon plot with angle-dependent coloration, plotted with balloonPlot(). The balloon
plot is evaluated at 30× 30 positions, at r = 0.1 m distance to the device’s center. The
axes of the plot are (left to right): (z, y, x).
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(a)

(b)
Figure 5.8 Spatial full-space sound field of the smartphone dummy, computed by the BEM, at

230 Hz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40 × 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated at
30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot are
(left to right): (z, y, x).
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(a)

(b)

Figure 5.9 Spatial full-space sound field of the smartphone dummy, computed by the ESM, at 2 kHz.
(a): acoustic intensity field of the cross-section along the x axis, at y = 0. The field is
evaluated at a (40 × 40) grid in a range of ±20 cm. (b) balloon plot with angle-
dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated at 30×
30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot are (left
to right): (z, y, x).
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(a)

(b)

Figure 5.10 Spatial full-space sound field of the smartphone dummy, computed by the combined-
Rayleigh formulation, at 2 kHz. (a): acoustic intensity field of the cross-section along
the x axis, at y = 0. The field is evaluated at a (40×40) grid in a range of±20 cm. (b)
balloon plot with angle-dependent coloration, plotted with balloonPlot(). The balloon
plot is evaluated at 30× 30 positions, at r = 0.1 m distance to the device’s center. The
axes of the plot are (left to right): (z, y, x).
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(a)

(b)

Figure 5.11 Spatial full-space sound field of the smartphone dummy, computed by the BEM, at
2 kHz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40× 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated
at 30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot
are (left to right): (z, y, x).
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5.2 Half-Space Simulations

The computed frequency responses of the ESM and the Rayleigh I integral are compared to the acous-
tic reference measurements for assessing the half-space simulations. The comparison is made for two
scenarios: 1) the smartphone dummy in 10 cm distance, and 2) the Manticore voice-coil loudspeaker
as an alternative verification case in 3.16 cm distance. The receiver is positioned in the center of the
devices for both scenarios. As in Section 5.1, the frequency responses are normalized by the driving
voltage and the constants used in the simulations are ρ = 1.18 kg

m3 and c = 346.7ms . The following
paragraphs discuss the deviations between the simulations and the measurements in terms of their
magnitude response, as depicted in Fig. 5.12, and their phase mismatch according to Eq. (5.1), de-
picted in Fig. 5.13. The overall frequency responses of the two scenarios, plotted with the function
plotFR(), can be found in the appendix: Figs. D.5 and D.6.

Considering the magnitude response of the smartphone dummy in Fig. 5.12 (a) reveals large devia-
tions between the simulations and the acoustic measurement below 585 Hz. In this lower frequency
region, the acoustic reference yields ripples that are mostly not followed by the simulated curves, e.g.,
the peaks at 320 Hz, 362 Hz, and 422 Hz. The actuator-resonance peak at 180 Hz is resolved by the
simulations but appears +5.7 dB louder in the acoustic reference. At 565 Hz, the simulations show
a peak that does not occur in the reference. The simulations then stay within a ±3.5 dB bound to
the acoustic reference from 585 Hz–3.53 kHz. From 3.8 kHz–18.75 kHz, the deviation stays within
±2.5 dB. The notch around 3.63 kHz is more distinct in the simulations, where the ESM reaches
−4.9 dB and the Rayleigh I integral −2.8 dB below the reference.

The phase mismatch in of the smartphone dummy in Fig. 5.13 (a) remains within ±π
8 rad from

607 Hz–3.68 kHz and within ±π
4 rad from 453 Hz–7.4 kHz. The absolute mismatch continuously

increases towards higher frequencies, which indicates that the microphone might have been slightly
displaced in the acoustic measurement. At low frequencies < 453 Hz, the mismatch grows large,
which is in accordance with the high deviations in the magnitude plot.

Observing the alternative verification case with the Manticore voice-coil loudspeaker in Figs. 5.12
and 5.13 (b), the magnitude response of the simulations stay within±1.5 dB deviation to the acoustic
measurement from 75 Hz–7.45 kHz. From 7.45 kHz–14.5 kHz, the simulations underestimate the
reference by up to −5.7 dB. The deviation then stays within ±2.5 dB from 14.5 kHz–20 kHz. The
phase mismatch also shows good results here, remaining within ±π

8 rad from 70 Hz–7.75 kHz.

Note that the acoustic half-space measurement of the smartphone dummy is more prone to errors than
that of the Manticore, as the baffle and the measurement chamber are optimized for the measurement
of miniature voice-coil loudspeakers (cf. Section 3.3). The smaller measures of the Manticore allow
for a shorter measurement distance, which reduces the influence of reflected or diffracted waves
occurring in the room and at the baffle edges. Further, the adapter plate that integrates the Manticore
into the baffle was optimized by Sobtzick [56] to attenuate bending waves and is more advanced than
that of the smartphone dummy. While the Manticore adapter plate is a three-layer composition of
aluminum and bitumen, the adapter plate used for the smartphone dummy is a simple aluminum plate.
Hence, the smartphone dummy might transmit bending waves more easily into the baffle than the
Manticore. In a subsequent investigation, the Polytec vibrometer was used to observe the vibration
of the smartphone dummy clamped in its adapter plate without the baffle. The fundamental plate
resonance was identified around 320 Hz, which corresponds to the strong peak in Fig. 5.12 (a).

Regarding the significant deviation from 7.45 kHz–14.5 kHz in the Manticore magnitude response in
Fig. 5.12 (b), a consultation with the acoustic engineers at Sound Solutions revealed that the higher
magnitude in the reference measurement is likely due to pressure accumulation that occurs between
the microphone capsule and the loudspeaker. The simulation models do not cover this phenomenon.
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(a)

(b)

Figure 5.12 Measured and simulated half-space frequency responses as sound pressure normalized
by the input voltage in dBSPL; measured at centered positions in front of the devices;
(a): smartphone dummy measured in 10 cm; (b): Manticore voice-coil loudspeaker as
alternative verification case, in 3.16 cm distance;

73



P. Heidegger 5.2. Half-Space Simulations

(a)

(b)

Figure 5.13 Phase mismatch of the half-space simulations and acoustic reference measurements,
evaluated at centered positions in front of the devices; (a): smartphone dummy mea-
sured in 10 cm; (b): Manticore voice-coil loudspeaker as alternative verification case,
in 3.16 cm distance;
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5.3 Assessing the Computational Cost

Finally, this section discusses the computational cost in terms of the retarded time for computing the
sound radiation of the smartphone dummy. For the experiment, the sound field is evaluated at ten
receiver coordinates on a horizontal ring in the upper half space, at 1 m distance. The models are
evaluated at ten frequencies, reaching from 51 Hz–20 kHz. Evaluating multiple frequencies seemed
necessary due to the matrix inversions in the BEM and the ESM, as the computation time of matrix-
inversion algorithms can vary with the condition of the matrix. The computation times of BEM and
ESM might thus be frequency-dependent, as the inverted matrices contain Green’s functions. The
experiment was repeated five times to avoid outliers that could occur due to the complex resource
allocation in modern computers.

The median retarded times of the five repetitions are plotted over the ten evaluated frequencies in
Fig. 5.14. The graph shows that all models vary in their efficiency over frequency. However, the
frequency-dependent variation is small compared to the absolute computation times: ±7.3 ms for the
combined-Rayleigh formulation, ±14.3 ms for the full-space ESM, ±8.8 ms for the BEM, ±1.7 ms
for the Rayleigh I integral, and ±15.3 ms for the half-space ESM.

Considering the small frequency dependence, further discussing the average computation time for a
single frequency is reasonable. Fig. 5.14 reveals that the two Rayleigh-integral methods outperform
ESM and BEM. As expected, the Rayleigh I integral is with an average of 7.3 ms the most efficient
model, as it does not contain matrix inversions and is less complex than the combined-Rayleigh
formulation. The half-space ESM, on average, requires 78 ms for a single frequency, i.e., 10.7 times
the Rayleigh I integral. As for the full-space models, the ESM computation lasts on average 106 ms,
which is 4.9 times the combined-Rayleigh formulation, which takes 21.6 ms. The BEM is by far the
least efficient and lasts on average 531 ms, which is 24.6 times the combined-Rayleigh formulation
or 5 times the full-space ESM.

Figure 5.14 Retarded time of the five simulation models for computing the radiated sound pres-
sures of the smartphone dummy at ten receiver positions; the curves show the median
retarded time of five repeated computations, over multiple frequencies.
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6 Conclusion and Outlook

This thesis successfully developed and implemented five models for simulating the radiated sound
field of a hand-held device with a vibrating-display loudspeaker. It recalled the underlying theory
required for the implementation and application of the simulation models, and it discussed the source
code and code examples that demonstrate their application. Further, it implemented three custom
plotting functions for analyzing the radiation behavior of the device under test: a frequency-response
plot, a balloon plot, and a cross-section field plot function. The models and the plotting functions were
implemented in the scientific programming language Matlab and rely on typical boundary-velocity-
based simulation approaches, the Rayleigh integrals, the Equivalent Source Method (ESM), and the
Boundary Elements Method (BEM).

The Rayleigh I integral and the ESM with a single, flat layer of monopoles were exploited to simulate
the half-space radiation scenario of the display in an infinite baffle. For simulating the full-space
sound field that considers the device’s front-side and back-side surface, two custom models that ex-
ploit the parallel surfaces and the thin structure of the device were suggested: 1) the ESM with a single
source layer of monopoles and dipoles that emulate the even-symmetric and odd-symmetric vibration
patterns of the upper and lower surface vibration; 2) a combined-Rayleigh formulation that is novel to
the author’s knowledge; the formulation uses the Rayleigh I integral to emulate the even-symmetric
patterns and exploits Fourier-based methods to insert the odd-symmetric vibration patterns into the
Rayleigh II integral. As the third and more generic full-space model, a surface mesh of the device
under test was created and simulated with the BEM while exploiting the open-source Matlab toolbox
OpenBem for the core implementation.

The thesis described the tested devices, a smartphone dummy with two vibrating actuators attached
to its display and a miniature voice-coil loudspeaker that provides an alternative boundary condi-
tion/verification case for the half-space simulations. Further, the thesis documented the measurement
procedure for acquiring the surface velocities and the acoustic reference frequency responses of the
devices. The models were assessed by comparing simulated frequency responses to acoustic reference
measurements.

The comparison of frequency responses revealed that all models succeeded in producing valid results
at a certain frequency range. The two half-space models were evaluated and compared at a single
position in the front-center of the smartphone dummy, where the curves deviated by less than±3.5 dB
from 585 Hz–3.53 kHz and by less than ±2.5 dB from 3.8 kHz–18.75 kHz. A higher deviation at
lower frequencies could be partially linked to insufficient damping of bending-wave transmission to
the baffle in the acoustic measurement. The alternative verification case using the Manticore voice-
coil loudspeaker could confirm the validity of both half-space models towards lower frequencies,
where the simulations deviated by less than ±1.5 dB to the reference from 75 Hz–7.45 kHz.

The three full-space models were assessed at four positions: three in the front and one at the back side
of the device. Concluding all four positions, the three models deviated by less than ±2 dB in a range
from 230 Hz–2 kHz. At higher frequencies, the front-side simulations appeared to match better the
reference than the back-side simulations, which could be partially reasoned by more complex and low-
amplitude vibration patterns occurring in the back cover, combined with a possibly too low spatial
resolution in the velocity scan. The frequency responses at the centered-front position, for example,
stayed within a range of ±1.5 dB from 237 Hz–3.45 kHz and ±2.5 dB from 173 Hz–12.1 kHz. The
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combined-Rayleigh formulation and the ESM approach even revealed acceptable results at the front-
center position above 12.1 kHz. The BEM failed to reproduce the curve above 12.1 kHz, possibly
due to the partially larger elements used in the BEM mesh.

The full-space models were further evaluated by investigating the balloon plots of the sound pressure
and the acoustic-intensity field plots. The three models yielded comparable spatial sound fields within
the overall valid frequency range of 200 Hz–2 kHz. Above 2 kHz, the ESM and the combined-
Rayleigh formulation remained similar, whereas the BEM increasingly deviated from the other two
models. Observing low frequencies ≤ 200 Hz revealed more similarities between BEM and ESM.
All simulation models were identified to allow energy transfer between the upper and the lower half-
space. This energy transmission is especially intriguing for the combined-Rayleigh formulation, as it
suggests that the formulation might be capable of reproducing the correct boundary conditions outside
the region of prescribed values in the horizontal plane.

The computational cost of the five simulation models was demonstrated in terms of the retarded
time for computing the sound pressures of a predefined setup. The Rayleigh-integral-based models
outperformed the others: the combined-Rayleigh formulation appeared 4.9 times faster than the full-
space ESM and 24.6 times faster than the BEM. The Rayleigh I integral was 10.7 times faster than
the half-space ESM.

Outlook
It has been demonstrated that the combined-Rayleigh formulation and the ESM with a single source
layer of monopoles and dipoles are both capable of simulating the full-space sound radiation from a
hand-held device with a vibrating-display loudspeaker. Presumably, the two approaches could also
be applied to other thin structures, whereas they are expected to comprise different characteristics.

The ESM with the described source constellation might be applicable to simulating shapes with par-
allel surfaces that are non-flat, provided that the orientation of the dipoles is adjusted accordingly.
Further studies could observe the application of this equivalent-source constellation to such non-flat
objects. Another characteristic of this constellation is that it is expected to produce sufficiently exact
simulations only for devices/vibrating objects with a certain depth. While thin surfaces might cause
distortions due to the singularities at the equivalent source’s origin, thick surfaces might worsen the
condition of the ESM matrix. Investigating these thickness limits and linking them to the required
number of sources/reference points could thus enhance the applicability of this ESM.

The combined-Rayleigh formulation is expected only to perform well simulating flat vibrating objects.
Presumably, it performs best when employed on an infinitely thin object. Here, a possible investiga-
tion would concern the maximum depth of a vibrating object that still produces valid results with the
combined-Rayleigh formulation. Further, converting the odd-symmetric velocities into surface sound
pressure requires setting multiple parameters, such as the number of zeros padded, the window used,
the kind of wave-field extrapolation, or the size of the interpolation function for the regularization. Fu-
ture studies could investigate these parameters and find rules that allow for a more generic application
of the combined-Rayleigh formulation. Additionally, future work could implement more advanced
numerical integration techniques to enhance the numerical accuracy of this formulation.
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Appendix A Photographs and Screenshots

(a)

(b)

Figure A.1 Photographs of the measurement setup for the velocity scans; (a): measuring table; (b):
smartphone dummy with applied adhesive paper on mounting;
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(a) display (b) back cover

(c) right frame (d) left frame

(e) upside frame (f) downside frame

Figure A.2 Screenshots during the velocity scans of the smartphone dummy; An adhesive paper is
applied to the display and the back cover. Due to the equidistant mesh and the rounded
corners of the device, some scan points have to be extrapolated later on: (a)-(b): out-
lying scan points in the corners; (c)-(f): scan points at the edges, the cable, and the
rubber bands are left out.
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(a) (b)

Figure A.3 Pictures during a velocity scan of the additional verification case using the Manticore
voice-coil loudspeaker. Only the plate is scanned. Scan positions at the translucent
torus are left out. (a): Manticore loudspeaker in mounting; (b): screenshot from the
Polytec system;
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Appendix B Settings

Figure B.1 Settings screenshots in the Polytec data-acquisition software, part 1;
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Figure B.2 Settings screenshots in the Polytec data-acquisition software, part 2;
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(a)

(b)

Figure B.3 Properties of the surface mesh used for the BEM computation; (a): mesh info; (b):
construction settings;

83



P. Heidegger

Appendix C Listings

Listing C.1 Listing of the function prepare_polytec_data().
1 function [Q,n_vecs ,grids ,V,f] = prepare_polytec_data (scannames ,measures ,...
2 n_sources_meas ,save_data , check_scanpoints , check_index , meas_indents )
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % [Q,n_vecs ,grids ,V,f] = prepare_polytec_data (scannames ,measures ,...
5 % n_sources_meas ,save_data , check_scanpoints , check_index , meas_indents )
6 %
7 % function that extracts and prepares the measurements , in a way that the
8 % data can be handled by the acoustic simulation tools . It does so by
9 % extracting the data from the dive - exported ’.mat ’ files and interpolating

10 % the data to querry points that lie on the surface of a box with the
11 % chosen measures . The box is created by calling the function ’create_box ’.
12 % the data is being extracted by calling the function ’extract_and_interpolate () ’.
13 % This function connects the two embedded functions and takes care of the
14 % correct function calls for each surface , so that every measured position
15 % gets assigned to the correct position on the box.
16 % the measurement of the surfaces follows the convention :
17 % - cover front : display -> up; cable -> left
18 % - cover back: display -> down; cable -> left
19 % - frame down: display -> to engineer ; cable -> down
20 % - frame up: display -> to engineer ; cable -> up
21 % - frame left: display -> to engineer ; cable -> left
22 % - frame right : display -> to wall; cable -> left
23 %
24 % Inputs :
25 % scannames ... names of the ’.mat ’ files of the dive -export , as string
26 % array . The order is: [ front ;back;down;up;left; right ]
27 % The frame is set to have 0 velocity on all querry
28 % points and all frequencies , if only one or two strings
29 % are in scannames . If only one string is in scannames ,
30 % the back cover is also set to be 0;
31 % measures ... measures of the device in order [height ,width , depth ]
32 % n_sources_meas ... number of measurement points for each surface in
33 % [n_height ,n_width , n_depth ];
34 % save_data ... optional bool. If 1, the function additionally saves
35 % the data to a .mat file
36 % check_scanpoints , check_index ... optional bool variables that allow
37 % for plotting the scan positions and
38 % indexing and normal vectors .
39 % meas_indents ... optional ( n_measurements x 2) bool matrix ,
40 % specifying if the surface has been measured to the
41 % edges (0) or with an indent of one mesh distance
42 % (1). The rows specify the surface , the first column
43 % specifies the indent of the longer axis , the second
44 % column specifies the indent of the shorter axis of
45 % the surface .
46 % Outputs :
47 % Q ... 6- element cell array , containing positions for each surface in
48 % (3 x n_Q) matrices .
49 % n_vecs ... 6- element cell array , containing outwards - normal vectors
50 % for each surface in (3 x n_Q) matrices .
51 % grids ... {2 x6}- element cell array , containing 2D meshgrids of
52 % positions for each surface
53 % V ... 6- element cell array , containing velocity data for each point
54 % in Q and frequency in f (n_f x n_Q) matrices .
55 % f ... frequency scale as (n_f x 1) matrix . Must be the same for each
56 % surface .
57 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58 % Author : Patrick Heidegger ; heidegger . patrick@gmail .com
59 % Company : Institute of Electronic Music and Acoustics , Graz &
60 % Sound - Solutions Austria , Vienna
61 % Year: 2021/2022
62 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63
64 if nargin < 7
65 meas_indents = [0 ,0;0 ,0;1 ,0;1 ,0;1 ,0;1 ,0];
66 end
67 if nargin < 6
68 check_index = 0;
69 end
70 if nargin < 5
71 check_scanpoints = 0;
72 end
73 if nargin < 4
74 save_data = 0;
75 end
76
77 % measures of the phone - approximate indent of measurement
78 height = measures (1);
79 width = measures (2);
80 depth = measures (3);
81 % indents of the interpolated querry points
82 indent_q = [0.00 ,0.00 ,0.00];
83 % create box with specified sources and outwards facing normal vectors
84 [Q,n_vecs , grids ] = create_box (measures , n_sources_meas ,...
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85 indent_q ,[0 ,0 ,0] ,0);
86
87 if length ( scannames ) <3
88 frame_is_zero = 1; % if 1, assumes frame to be 0. if 0, takes measured data
89 else
90 frame_is_zero = 0;
91 end
92 %% front cover
93 % %%%%%%%% set name of scan
94 scanname = scannames {1};
95 % %%%%%%%%
96 % %%%%%%%% state , how many sources are measured for each column
97 sources_per_column = n_sources_meas (2);
98 % %%%%%%%%
99 % %%%%%%%% state , if the measurement has indents

100 indent_long = meas_indents (1 ,1);
101 indent_short = meas_indents (1 ,2);
102 corners_not_valid = 1;
103 % %%%%%%%%
104 % %%%%%%%% state , if Y has to be flipped
105 flip_x = 0;
106 flip_y = 0;
107 % %%%%%%%% if not symmetrically around 0
108 offset_y = 0;
109 % %%%%%%%%
110 % %%%%%%%%
111 interpolate_left_out = 0;
112 % %%%%%%%%
113 [Vint , fex] = extract_and_interpolate (scanname ,...
114 sources_per_column ,height ,width ,offset_y , grids {1 ,1} , grids {2 ,1} , flip_x ,flip_y ,...
115 indent_long , indent_short , corners_not_valid ,...
116 interpolate_left_out , check_scanpoints );
117 V{1} = Vint;
118 f{1} = fex;
119
120 % only if there is data for the frame provided , extract ...
121 % if not , set querry points to 0
122 if length ( scannames ) >=2
123 %% back cover
124 % %%%%%%%% set name of scan
125 scanname = scannames {2};
126 % scanname = ’phone_scan_back_500mV_adhesive ’;
127 % %%%%%%%%
128 % %%%%%%%% state , how many sources are measured for each column
129 sources_per_column = n_sources_meas (2);
130 % %%%%%%%%
131 % %%%%%%%% state , if the measurement has indents
132 indent_long = meas_indents (2 ,1);
133 indent_short = meas_indents (2 ,2);
134 corners_not_valid = 1;
135 % %%%%%%%%
136 % %%%%%%%% state , if Y has to be flipped
137 flip_x = 0;
138 flip_y = 1;
139 % %%%%%%%% if not symmetrically around 0
140 offset_y = 0;
141 % %%%%%%%%
142 [Vint , fex] = extract_and_interpolate (scanname ,...
143 sources_per_column ,height ,width ,offset_y , grids {1 ,2} , grids {2 ,2} , flip_x ,flip_y ,...
144 indent_long , indent_short , corners_not_valid ,...
145 interpolate_left_out , check_scanpoints );
146 V{2} = Vint;
147 f{2} = fex;
148 else
149 V{2} = zeros (size(f{1} ,1) ,n_sources_meas (1)* n_sources_meas (2));
150 f{2} = f{1};
151 end
152
153 % only if there is data for the frame provided , extract ...
154 % if not , set querry points to 0
155 if length ( scannames ) >=3
156 %% frame , down side
157 % %%%%%%%% set name of scan
158 scanname = scannames (3);
159 % %%%%%%%%
160 % %%%%%%%% state , how many sources are measured for each column
161 sources_per_column = n_sources_meas (3);
162 % %%%%%%%%
163 % %%%%%%%% state , if the measurement has indents
164 indent_long = meas_indents (3 ,1);
165 indent_short = meas_indents (3 ,2);
166 corners_not_valid = 0;
167 % %%%%%%%%
168 % %%%%%%%% state , if Y has to be flipped
169 flip_x = 0;
170 flip_y = 1;
171 % %%%%%%%% if not symmetrically around 0
172 offset_y = -depth /2;
173 % %%%%%%%%
174 [Vint , fex] = extract_and_interpolate (scanname ,...
175 sources_per_column ,width ,depth ,offset_y , grids {1 ,3} , grids {2 ,3} , flip_x ,flip_y ,...
176 indent_long , indent_short , corners_not_valid ,...
177 interpolate_left_out , check_scanpoints );
178 if frame_is_zero == 1
179 Vint = zeros (size(Vint));
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180 end
181 V{3} = Vint;
182 f{3} = fex;
183
184 %% frame , up side
185 % %%%%%%%% set name of scan
186 scanname = scannames (4);
187 % %%%%%%%%
188 % %%%%%%%% state , how many sources are measured for each column
189 sources_per_column = n_sources_meas (3);
190 % %%%%%%%%
191 % %%%%%%%% state , if the measurement has indents
192 indent_long = meas_indents (4 ,1);
193 indent_short = meas_indents (4 ,2);
194 corners_not_valid = 0;
195 % %%%%%%%%
196 % %%%%%%%% state , if Y has to be flipped
197 flip_x = 1;
198 flip_y = 1;
199 % %%%%%%%% if not symmetrically around 0
200 offset_y = -depth /2;
201 % %%%%%%%%
202 [Vint , fex] = extract_and_interpolate (scanname ,...
203 sources_per_column ,width ,depth ,offset_y , grids {1 ,4} , grids {2 ,4} , flip_x ,flip_y ,...
204 indent_long , indent_short , corners_not_valid ,...
205 interpolate_left_out , check_scanpoints );
206 if frame_is_zero == 1
207 Vint = zeros (size(Vint));
208 end
209 V{4} = Vint;
210 f{4} = fex;
211
212 %% frame , left side
213 % %%%%%%%% set name of scan
214 scanname = scannames (5);
215 % %%%%%%%%
216 % %%%%%%%% state , how many sources are measured for each column
217 sources_per_column = n_sources_meas (3);
218 % %%%%%%%%
219 % %%%%%%%% state , if the measurement has indents
220 indent_long = meas_indents (5 ,1);
221 indent_short = meas_indents (5 ,2);
222 corners_not_valid = 0;
223 % %%%%%%%%
224 % %%%%%%%% state , if Y has to be flipped
225 flip_x = 0;
226 flip_y = 0;
227 % %%%%%%%% if not symmetrically around 0
228 offset_y = -depth /2;
229 % %%%%%%%%
230 [Vint , fex] = extract_and_interpolate (scanname ,...
231 sources_per_column ,height ,depth ,offset_y , grids {1 ,5} , grids {2 ,5} , flip_x ,flip_y ,...
232 indent_long , indent_short , corners_not_valid ,...
233 interpolate_left_out , check_scanpoints );
234 if frame_is_zero == 1
235 Vint = zeros (size(Vint));
236 end
237 V{5} = Vint;
238 f{5} = fex;
239 %% frame , right side
240 % %%%%%%%% set name of scan
241 scanname = scannames (6);
242 % %%%%%%%%
243 % %%%%%%%% state , how many sources are measured for each column
244 sources_per_column = n_sources_meas (3);
245 % %%%%%%%%
246 % %%%%%%%% state , if the measurement has indents
247 indent_long = meas_indents (6 ,1);
248 indent_short = meas_indents (6 ,2);
249 corners_not_valid = 0;
250 % %%%%%%%%
251 % %%%%%%%% state , if Y has to be flipped
252 flip_x = 0;
253 flip_y = 1;
254 % %%%%%%%% if not symmetrically around 0
255 offset_y = -depth /2;
256 % %%%%%%%%
257 [Vint , fex] = extract_and_interpolate (scanname ,...
258 sources_per_column ,height ,depth ,offset_y , grids {1 ,6} , grids {2 ,6} , flip_x ,flip_y ,...
259 indent_long , indent_short , corners_not_valid ,...
260 interpolate_left_out , check_scanpoints );
261 if frame_is_zero == 1
262 Vint = zeros (size(Vint));
263 end
264 V{6} = Vint;
265 f{6} = fex;
266 else
267 V{3} = zeros (size(f{1} ,1) ,n_sources_meas (2)* n_sources_meas (3));
268 V{4} = zeros (size(f{1} ,1) ,n_sources_meas (2)* n_sources_meas (3));
269 V{5} = zeros (size(f{1} ,1) ,n_sources_meas (1)* n_sources_meas (3));
270 V{6} = zeros (size(f{1} ,1) ,n_sources_meas (1)* n_sources_meas (3));
271 f{3} = f{1};
272 f{4} = f{1};
273 f{5} = f{1};
274 f{6} = f{1};
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275 end
276
277 if save_data == 1
278 % assign data to a struct
279 data.Q = Q;
280 data. n_sources = n_sources_meas ;
281 data. measures = measures ;
282 data. n_vecs = n_vecs ;
283 data. grids = grids ;
284 data. indents = indent_q ;
285 data.V = V;
286 data.f = f{1};
287 save(’./ data.mat ’,’data ’)
288 end
289 try if any(diff(sum( cell2mat (f) ,1) ,1,2) >0)
290 warning (’not all measurements have same frequency range !’)
291 end
292 catch
293 warning (’not all measurements have same frequency range !’)
294 end
295 f = f{1};
296 %%
297 % check scanpoints and indexing
298 if check_index == 1
299 figure (101)
300 sides = [" Front "," Back "," Down ","Up"," Left "," Right "];
301 cols = ["b","b","r","r","k","k"];
302 for ii = 1: length (Q)
303 scatter3 (Q{ii }(1 ,:) ,Q{ii }(2 ,:) ,Q{ii }(3 ,:) , ...
304 5,cols(ii))
305 hold on
306 quiver3 (Q{ii }(1 ,1) ,Q{ii }(2 ,1) ,Q{ii }(3 ,1) , ...
307 n_vecs {ii }(1 ,1) /100 , n_vecs {ii }(2 ,1) /100 , n_vecs {ii }(3 ,1) /100 ,...
308 ’Color ’,cols(ii))
309 text(Q{ii }(1 , floor ( length (Q{ii }) /2))+ n_vecs {ii }(1 ,1) /200 ,...
310 Q{ii }(2 , floor ( length (Q{ii }) /2))+ n_vecs {ii }(2 ,1) /200 ,...
311 Q{ii }(3 , floor ( length (Q{ii }) /2))+ n_vecs {ii }(3 ,1) /200 , ...
312 sides (ii),’Color ’,cols(ii))
313 text(Q{ii }(1 ,1)+ n_vecs {ii }(1 ,1) /200 ,...
314 Q{ii }(2 ,1)+ n_vecs {ii }(2 ,1) /200 ,...
315 Q{ii }(3 ,1)+ n_vecs {ii }(3 ,1) /200 , ...
316 ’start ’,’Color ’,cols(ii))
317 text(Q{ii }(1 , end)+ n_vecs {ii }(1 ,1) /200 ,...
318 Q{ii }(2 , end)+ n_vecs {ii }(2 ,1) /200 ,...
319 Q{ii }(3 , end)+ n_vecs {ii }(3 ,1) /200 , ...
320 ’end ’,’Color ’,cols(ii))
321 end
322 title (’querry positions with indexing and normal vectors ’)
323 grid on
324 axis equal
325 end
326 end
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Listing C.2 Listing of the function extract_and_interpolate().
1 function [Vint , f] = extract_and_interpolate (scanname , sources_per_column ,...
2 size_x ,size_y ,offset_y ,Xq ,Yq ,flip_x ,flip_y ,indent_x ,indent_y ,...
3 corners_not_valid , interpolate_left_out , check_scanpoints )
4 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 % [Vint , f] = extract_and_interpolate (scanname , sources_per_column ,...
6 % size_x ,size_y ,offset_y ,Xq ,Yq ,flip_x ,flip_y ,indent_x ,indent_y ,...
7 % corners_not_valid , interpolate_left_out , check_scanpoints )
8 %
9 % Extracts data from polytec measurement , maps positions to fit the

10 % specified size and interpolates it to specified querry points .
11 % The mat - files containing the velocity and voltage data should be arranged
12 % in folders
13 % Inputs :
14 % scanname ... name of the polytec scan
15 % sources_per_column ... how many measured points are in each column
16 % size_x ... size in x- dimension
17 % size_y ... size in y- dimension
18 % offset_y ... if the measured points should not be interpolated to querry
19 % points that are symmetrically around 0: states the offset
20 % in y-axis
21 % Xq ,Yq ... grids of querry points
22 % flip_x , flip_y ... flips the respective axis
23 % indent_x , indent_y ... takes 1, if the measurement of the respective axis
24 % has an indent . Assumes to be the indent of the same
25 % size as the mean distance between measured points
26 % in the respective direction . Assumes values of 0
27 % for the velocity at edge points .
28 % corners_not_valid ... takes 1, if the 4 measured points in the corners
29 % are not valid e.g. lie out of the object ’s
30 % dimensions
31 % check_scanpoints ... if 1, plots a scatterplot of the mapped measurement
32 % positions , the position grid and the interpolated
33 % positions
34 %
35 % Outputs :
36 % Vint ... (n_f x n_Q) Matrix , containing velocity data for the all
37 % positions on the surface in for each frequency f.
38 % f ... (n_f x 1) frequency vector
39 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 % Author : Patrick Heidegger ; heidegger . patrick@gmail .com
41 % Company : Institute of Electronic Music and Acoustics , Graz &
42 % Sound - Solutions Austria , Vienna
43 % Year: 2021/2022
44 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
45
46 % load data from relative folder positions
47 filename = "./ Data/ Velocity /"+ scanname +" _abs_ ";
48 velocity_data_abs = load( filename ). data2write ;
49 filename = "./ Data/ Velocity /"+ scanname +" _phase_ ";
50 velocity_data_phase = load( filename ). data2write ;
51 filename = "./ Data/ Voltage /"+ scanname +" _abs_ ";
52 voltage_data_abs = load( filename ). data2write ;
53 filename = "./ Data/ Voltage /"+ scanname +" _phase_ ";
54 voltage_data_phase = load( filename ). data2write ;
55
56 % extract frequency , complex velocities and source positions
57 % frequencies
58 f = velocity_data_abs (4: end ,1);
59 % complex velocities and voltages
60 velocity = velocity_data_abs (4: end ,2: end).* exp (1i* velocity_data_phase (4: end ,2: end));
61 voltage = voltage_data_abs (4: end ,2: end).* exp (1i* voltage_data_phase (4: end ,2: end));
62 % velocity over voltage ; multiply by -1 because Polytech has a default
63 % normal direction inwards
64 V = velocity ./ voltage ;
65 % positions
66 pos_x = velocity_data_abs (2 ,2: end);
67 pos_y = velocity_data_abs (3 ,2: end);
68 % make grids valid for interpolation , by setting to mean x- and
69 % y- positions and insert edge positions into grids for interpolation
70 Xgrid = buffer (pos_x , sources_per_column );
71 Ygrid = buffer (pos_y , sources_per_column );
72
73 % take account for left out scanpoints by adding artificial ones
74 if interpolate_left_out
75 thresholdx = abs(mean(mean(diff( Xgrid )))/2);
76 thresholdy = abs(mean(mean(diff( Ygrid )))/2);
77 while any(abs(diff( Xgrid ))>thresholdx ,’all ’) &&...
78 any(abs(diff( Ygrid .’).’)>thresholdy ,’all ’)
79 indx = find(abs(diff( Xgrid )) >1E -4 ,1)+ sources_per_column ;
80 pos_x = [ pos_x (1: indx -1) ,pos_x (indx -1) ,pos_x (indx:end)];
81 indy = find(abs(diff( Ygrid .’).’) >1E -4 ,1)+ sources_per_column ;
82 pos_y = [ pos_y (1: indy -1) ,...
83 pos_y (indy - sources_per_column ) ,...
84 pos_y (indy:end)];
85 Xgrid = buffer (pos_x , sources_per_column );
86 Ygrid = buffer (pos_y , sources_per_column );
87 V = [V(: ,1: indy -1) ,zeros (size(V ,1) ,1),V(:, indy:end)];
88 disp(’attention : left -out scanpoints are set to zero before interpolation ’)
89 % Vgrid = buffer (V(1 ,:) ,sources_per_column );
90 end
91 end
92
93 sources_per_row = size(Xgrid ,2);
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94 if indent_x == 1
95 indent_x = abs(mean(diff( Xgrid (1 ,:))));
96 end
97 if indent_y == 1
98 indent_y = abs(mean(diff( Ygrid (: ,2))));
99 end

100 % take median for robustness outliers
101 validXgrid = repmat ( median (Xgrid ,1) ,sources_per_column ,1);
102 validYgrid = repmat ( median (Ygrid ,2) ,1, sources_per_row );
103 % scale positions to fit actual size
104 kx = size_x /( max( validXgrid (:))-min( validXgrid (:))+2* indent_x );
105 dx = size_x /2-kx *( max( validXgrid (:)+ indent_x ));
106 validXgrid = validXgrid *kx+dx;
107 ky = size_y /( max( validYgrid (:))-min( validYgrid (:))+2* indent_y );
108 dy = ( size_y /2+ offset_y )-ky *( max( validYgrid (:))+ indent_y );
109
110 validYgrid = validYgrid *ky+dy;
111 % take account for indents
112 % add points in far distance , so that extrapolation does not force to 0
113 if indent_x ~= 0
114 factor = 10;
115 validXgrid = [ validXgrid (: ,1) -factor * indent_x *kx , validXgrid ,...
116 validXgrid (:, end)+ factor * indent_x *kx ];
117 validYgrid = [ validYgrid (: ,1) ,validYgrid , validYgrid (:, end)];
118 end
119 if indent_y ~= 0
120 factor = 10;
121 validXgrid = [ validXgrid (1 ,:); validXgrid ; validXgrid (end ,:) ];
122 validYgrid = [ validYgrid (1 ,:)+ factor * indent_y *ky; validYgrid ;...
123 validYgrid (end ,:) -factor * indent_y *ky ];
124 end
125 % flip if needed
126 if flip_y == 1
127 validYgrid = flipud ( validYgrid );
128 end
129 if flip_x == 1
130 validXgrid = fliplr ( validXgrid );
131 end
132
133 % interpolate ...
134 Vint = zeros ( length (f),length (Xq (:)));
135 for ii = 1: length (f)
136 Vgrid = reshape (V(ii ,:) ,sources_per_column , sources_per_row );
137 if corners_not_valid == 1
138 % set corner points to mean of next points , to avoid big
139 % discontinuities
140 Vgrid (1 ,1) = ( Vgrid (1 ,2)+ Vgrid (2 ,1))/2;
141 Vgrid ( sources_per_column ,1) = ( Vgrid ( sources_per_column ,2) +...
142 Vgrid ( sources_per_column -1 ,1))/2;
143 Vgrid (1, sources_per_row ) = ( Vgrid (2, sources_per_row )+...
144 Vgrid (1, sources_per_row -1))/2;
145 Vgrid ( sources_per_column , sources_per_row ) = ...
146 ( Vgrid ( sources_per_column -1, sources_per_row )+...
147 Vgrid ( sources_per_column , sources_per_row -1))/2;
148 end
149 % set far -away points to zero and let interp do the rest ...
150 if indent_x ~= 0
151 Vgrid = [ zeros (size(Vgrid ,1) ,1),Vgrid ,...
152 zeros (size(Vgrid ,1) ,1)];
153 end
154 if indent_y ~= 0
155 Vgrid = [ zeros (1, size(Vgrid ,2)); Vgrid ;...
156 zeros (1, size(Vgrid ,2))];
157 end
158 Vgridint = interp2 ( validXgrid , validYgrid ,Vgrid ,Xq ,Yq ,’makima ’ ,0);
159 Vint(ii ,:) = Vgridint (:);
160 end
161 if check_scanpoints == 1
162 figure
163 scatter3 ( pos_x *kx+dx , pos_y *ky+dy , zeros (size( pos_x )) ,10,’b’)
164 scatter ( Xgrid (:)*kx+dx , Ygrid (:)*ky+dy ,10 , ’b’)
165 hold on
166 text( pos_x *kx+dx +0.001 , pos_y *ky+dy +0.001 , zeros (size( pos_x )),string (1: length ( pos_x (:))),’Color ’,’b’)
167 scatter3 ( validXgrid (:) ,validYgrid (:) , -0.05* ones(size( validXgrid (:))) ,10,’r’)
168

↪→ text( validXgrid (:) +0.001 , validYgrid (:) +0.001 , -0.05* ones(size( validXgrid (:))),string (1: length ( validXgrid (:))),’Color ’,’r’)
169 scatter3 (Xq (:) ,Yq (:) , -0.1* ones(size(Xq (:))) ,10,’k’)
170 text(Xq (:) +0.001 , Yq (:) +0.001 , -0.1* ones(size(Xq (:))),string (1: length (Xq (:))),’Color ’,’k’)
171 grid minor
172 axis equal
173 legend (" original "," valid "," querry ")
174 end
175 end
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Listing C.3 Listing of the function create_box().
1 function [pos ,n_vecs ,grids ,dA] = create_box (size_box ,n_srcs ,ind ,d ,...
2 centerandcalcdA , plotbox )
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % [pos ,n_vecs ,grids ,dA] = create_box (size_box ,n_srcs ,ind ,d ,...
5 % centerandcalcdA , plotbox )
6 %
7 % creates a box with equally spaced positions on each surface and assigns
8 % normalvectors in outward direction . With centerandcalcdA , this function
9 % assumes the equally spaced positions as nodes of quadrilateral surface

10 % elements . It outputs then also the area of each surface element and
11 % sets the positions to the mid point of the elements .
12 %
13 % Inputs :
14 % size_box ... size of the box as 1x3 matrix for (x,y,z)
15 % n_srcs ... number of sources as 1x3 matrix for (x,y,z)
16 % ind ... indents of sourcepositions as 1x3 matrix for (x,y,z)
17 % d ... retraction distance , to make the box smaller . 1x3 matrix for (x,y,z)
18 % centerandcalcdA ... ( optional ) assumes the positions as nodes of
19 % quadrilateral elements , sets the output
20 % positions to the center of the elements and
21 % calculates the area of each element .
22 % plotbox ... ( optional ) scatter plot of the positions
23 %
24 % Outputs :
25 % Qe ... 1x6 -cell array with source positions for: top ,bottom ,left ,
26 % right ,up ,down side. (front ,back ,down ,up ,left , right on the phone )
27 % n_vecs_Qe ... 1x6 -cell array containing respective normal - vectors
28 % grids ... 2x3 -cell array containing the grids of each surface of the
29 % box. the first row of cells contains the longer axes ,
30 % the second row contains the shorter axes
31 % dA ... if centerandcalcdA = 1, outputs the area for each
32 % quadrilateral element in a 1x6 -cell array
33 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34 % Author : Patrick Heidegger ; heidegger . patrick@gmail .com
35 % Company : Institute of Electronic Music and Acoustics , Graz &
36 % Sound - Solutions Austria , Vienna
37 % Year: 2021/2022
38 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
39
40 size_x = size_box (1);
41 size_y = size_box (2);
42 size_z = size_box (3);
43
44 n_x = n_srcs (1);
45 n_y = n_srcs (2);
46 n_z = n_srcs (3);
47
48 d_x = d(1);
49 d_y = d(2);
50 d_z = d(3);
51
52 ind_x = ind (1);
53 ind_y = ind (2);
54 ind_z = ind (3);
55
56 pos = cell (1 ,6);
57 n_vecs = cell (1 ,6);
58 grids = cell (2 ,6);
59
60 pos_x = linspace (- size_x /2+ d_x+ind_x , size_x /2-d_x -ind_x ,n_x);
61 pos_y = linspace (- size_y /2+ d_y+ind_y , size_y /2-d_y -ind_y ,n_y);
62 pos_z = linspace (- size_z +d_z+ind_z ,0-d_z -ind_z ,n_z);
63
64 % front , back
65 [X,Y] = meshgrid (pos_x , pos_y );
66 Y = flipud (Y);
67
68 if centerandcalcdA == 1
69 % interpolate to mid - values and calculate dA values
70 Xm = ([ zeros (size(X ,1) ,1),X]+[X, zeros (size(X ,1) ,1)]) /2;
71 Xm = Xm (2: end ,2: end -1);
72 Ym = ([ zeros (1, size(Y ,2));Y]+[Y; zeros (1, size(Y ,2))]) /2;
73 Ym = Ym (2: end -1 ,2: end);
74 dX = diff(X, 1, 2);
75 dX(end ,:) = [];
76 dY = diff(Y, 1, 1);
77 dY(:, end) = [];
78 dA_grid = abs(dX .* dY);
79 dA {1} = dA_grid (:);
80 dA {2} = dA_grid (:);
81 X = Xm;
82 Y = Ym;
83 end
84 pos {1} = [X(:) ,Y(:) ,zeros (size(X(:)))-d_z ]. ’;
85 pos {2} = [X(:) ,Y(:) ,-size_z *ones(size(X(:)))+d_z ]. ’;
86 n_vecs {1} = [0;0;1].* ones(size(pos {1}));
87 n_vecs {2} = -[0;0;1].* ones(size(pos {2}));
88 grids {1 ,1} = X;
89 grids {2 ,1} = Y;
90 grids {1 ,2} = X;
91 grids {2 ,2} = Y;
92 clear X Y Xm Ym
93
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94 % down , up
95 [Y,Z] = meshgrid (pos_y , pos_z );
96 Z = flipud (Z);
97 if centerandcalcdA == 1
98 % interpolate to mid - values and calculate dA values
99 Ym = ([ zeros (size(Y ,1) ,1),Y]+[Y, zeros (size(Y ,1) ,1)]) /2;

100 Ym = Ym (2: end ,2: end -1);
101 Zm = ([ zeros (1, size(Z ,2));Z]+[Z; zeros (1, size(Z ,2))]) /2;
102 Zm = Zm (2: end -1 ,2: end);
103 dY = diff(Y, 1, 2);
104 dY(end ,:) = [];
105 dZ = diff(Z, 1, 1);
106 dZ(:, end) = [];
107 dA_grid = abs(dY .* dZ);
108 dA {3} = dA_grid (:);
109 dA {4} = dA_grid (:);
110 Y = Ym;
111 Z = Zm;
112 end
113 pos {3} = [(- size_x /2+ d_x)*ones(size(Y(:))),Y(:) ,Z(:) ]. ’;
114 pos {4} = [(+ size_x /2- d_x)*ones(size(Y(:))),Y(:) ,Z(:) ]. ’;
115 n_vecs {3} = -[1;0;0].* ones(size(pos {3}));
116 n_vecs {4} = [1;0;0].* ones(size(pos {4}));
117 grids {1 ,3} = Y;
118 grids {2 ,3} = Z;
119 grids {1 ,4} = Y;
120 grids {2 ,4} = Z;
121 clear Y Z Ym Zm
122
123 % left , right
124 [X,Z] = meshgrid (pos_x , pos_z );
125 Z = flipud (Z);
126 if centerandcalcdA == 1
127 % interpolate to mid - values and calculate dA values
128 Xm = ([ zeros (size(X ,1) ,1),X]+[X, zeros (size(X ,1) ,1)]) /2;
129 Xm = Xm (2: end ,2: end -1);
130 Zm = ([ zeros (1, size(Z ,2));Z]+[Z; zeros (1, size(Z ,2))]) /2;
131 Zm = Zm (2: end -1 ,2: end);
132 dX = diff(X, 1, 2);
133 dX(end ,:) = [];
134 dZ = diff(Z, 1, 1);
135 dZ(:, end) = [];
136 dA_grid = abs(dX .* dZ);
137 dA {5} = dA_grid (:);
138 dA {6} = dA_grid (:);
139 X = Xm;
140 Z = Zm;
141 end
142 pos {5} = [X(:) ,( size_y /2- d_y)*ones(size(X(:))),Z(:) ]. ’;
143 pos {6} = [X(:) ,(- size_y /2+ d_y)*ones(size(X(:))),Z(:) ]. ’;
144 n_vecs {5} = [0;1;0].* ones(size(pos {5}));
145 n_vecs {6} = -[0;1;0].* ones(size(pos {6}));
146 grids {1 ,5} = X;
147 grids {2 ,5} = Z;
148 grids {1 ,6} = X;
149 grids {2 ,6} = Z;
150 clear X Z Xm Zm
151
152 if nargin >= 6
153 if plotbox == 1
154 figure
155 for ii = 1: length (pos)
156 scatter3 (pos{ii }(1 ,:) ,pos{ii }(2 ,:) ,pos{ii }(3 ,:) ,’b’,’.’)
157 hold on
158 axis equal
159 end
160 end
161 end
162 end
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Listing C.4 Listing of the function interpolate_box().
1 function [ V_new ] = interpolate_box (grids_old ,grids_new ,V_old , extrapdist )
2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % [ V_new ] = interpolate_box (grids_old ,grids_new ,V_old , extrapdist )
4 %
5 % interpolates the velocities of from the old positions to new positions on
6 % a box of the same size. Extrapolates the surface functions , if new
7 % positions lie outside the old ones.
8 %
9 % Inputs :

10 % grids_old ... 2x3 -cell array containing the grids of each surface of
11 % the box , for the old positions . The first row of cells
12 % contains the longer axes , the second row contains the
13 % shorter axes.
14 % grids_new ... 2x3 -cell array containing the grids of each surface of
15 % the box , for the new positions . The first row of cells
16 % contains the longer axes , the second row contains the
17 % shorter axes.
18 % V_old ... cell array , containing velocity data for the old
19 % positions , for each frequency f. Each cell contains a
20 % (n_f x n_Q) matrix . The cell array can contain 1-6
21 % elements , containing the values for the surfaces in order :
22 % front ,back ,down ,up ,left , right . If only n <6 entries are
23 % provided , the output will conatin 0- values for the
24 % non - provided surfaces .
25 % extrapdist ... ( optional ) parameter that has an influence on the
26 % extrapolation . Extrapolation is done inserting
27 % far - distant positions with a velocity of 0. extrapdist
28 % is an integer specifying how far (in times of a mean
29 % distance ) this positions are apart from the edge
30 % positions . By default , extrapdist =4
31 %
32 % Outputs :
33 % V_new ... 6- element cell array , containing velocity data for the new
34 % positions , for each frequency f. Each cell contains a
35 % (n_f x n_Q) matrix . The surface order is: front ,back ,down ,
36 % up ,left , right .
37 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 % Author : Patrick Heidegger ; heidegger . patrick@gmail .com
39 % Company : Institute of Electronic Music and Acoustics , Graz &
40 % Sound - Solutions Austria , Vienna
41 % Year: 2021/2022
42 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
43
44 V_new = cell (1 ,6);
45 if nargin < 4
46 extrapdist = 0;
47 end
48 for ii = 1: length ( V_old )
49 dx = extrapdist *mean(mean(abs(diff( grids_old {1,ii } ,1 ,2))));
50 dy = extrapdist *mean(mean(abs(diff( grids_old {2,ii } ,1 ,1))));
51 nx = size( grids_old {1,ii } ,1);
52 ny = size( grids_old {2,ii } ,2);
53 minx = min(min( grids_old {1,ii }));
54 maxx = max(max( grids_old {1,ii }));
55 miny = min(min( grids_old {2,ii }));
56 maxy = max(max( grids_old {2,ii }));
57 for iii = 1: size( V_old {ii } ,1)
58 v_old = V_old {ii }(iii ,:);
59 v_old = reshape (v_old ,size( grids_old {1,ii }));
60 if extrapdist == 0
61 X = grids_old {1,ii };
62 Y = grids_old {2,ii };
63 else
64 % add far - distant zeros for extrapolation
65 X = [ones(nx +2 ,1)*(-dx+minx) ,...
66 [ grids_old {1,ii }(1 ,:); grids_old {1,ii }; grids_old {1,ii }(end ,:) ] ,...
67 ones(nx +2 ,1) *( dx+maxx)];
68 Y = [ones (1,ny +2) *( dy+maxy);...
69 [ grids_old {2,ii }(: ,1) ,grids_old {2,ii}, grids_old {2,ii }(: , end) ];...
70 ones (1,ny +2) *(-dy+miny)];
71 v_old = [ zeros (1, size(v_old ,2) +2);
72 [ zeros (size(v_old ,1) ,1),v_old , zeros (size(v_old ,1) ,1)];
73 zeros (1, size(v_old ,2) +2) ];
74 end
75 vn = interp2 (X,Y,v_old , grids_new {1,ii}, grids_new {2,ii}," makima " ,0);
76 V_new {ii }(iii ,:) = vn (:);
77 end
78 end
79 end
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Listing C.5 Listing of the function evaluate_G_dGdn_d2Gdn2(). The function is based on Zotter’s and
Pomberger’s evaluate_G_dGdn().

1 function [G,dGdn ,d2Gdn2 ,cosphi0 ,r]= evaluate_G_dGdn_d2Gdn2 (Xsrc ,Xeval ,k,n_vec_src , n_vec_eval )
2 % [G,dGdn ,d2Gdn2 ,cosphi0 ,r]= evaluate_G_dGdn_d2Gdn2 (Xsrc ,Xeval ,k,n_vec_src , n_vec_eval )
3 % evaluates Green ’s function for the 3D Helmholtz equation in free space
4 % as well as it ’s first and ( optionally also) second derivative along
5 % arbitrary direction vectors for source and receiver .
6 %
7 % The first derivative is being computed as ’derivative of the source ’ and
8 % the second as ’derivative of the receiver ’. As the radius is
9 % r=sqrt ((x-x0)^2+(y-y0 ^2) +(z-z0)^2) , n_vec_src specifies the direction of

10 % derivation for x0 ,y0 ,z0 and n_vec_eval for x,y,z
11 %
12 % Inputs :
13 % Xsrc ... Qx3 , containing the source positions
14 % Xeval ... Lx3 , contatining the points of observation
15 % k ... wavenumber = omega /c
16 % n_vec_src ... Qx3 , normal vectors of all sources
17 % n_vec_eval ... Lx3 , normal vectors of all receivers ( second
18 % derivative direction )
19 %
20 % Outputs :
21 % G ... QxL Green ’s functions
22 % dGdn ... QxL first derivatives of Green ’s function , evaluated
23 % along the vectors n_vec_src
24 % d2Gdn2 ... QxL second derivatives , the first evaluated along
25 % n_vec_src and the second
26 % cosphi0 ... QxL source angles
27 % r ... QxL radii between sources and receivers
28 %
29 % Franz Zotter , Hannes Pomberger , 2015
30 % Edit by Patrick Heidegger 2021
31
32 n_src = size(Xsrc , 1);
33 n_eval = size(Xeval , 1);
34
35 % Components of the position difference vector :
36 DX = repmat ( Xeval (: ,1) ,1, n_src )-repmat (Xsrc (: ,1).’,n_eval ,1);
37 DY = repmat ( Xeval (: ,2) ,1, n_src )-repmat (Xsrc (: ,2).’,n_eval ,1);
38 DZ = repmat ( Xeval (: ,3) ,1, n_src )-repmat (Xsrc (: ,3).’,n_eval ,1);
39 % vectorized into L*Q x 3
40 R = [DX (:) DY (:) DZ (:) ];
41 clear DX DY DZ
42
43 % distances between all L points of observation and all source points
44 r = sqrt(sum ((R).^2 ,2));
45
46 % calculate G, dGdr and d2Gdr2
47 G = exp (-1i*k.*r) ./(4* pi .*r);
48 if nargin > 3
49 dGdr = -(1i*k + 1./r).*G;
50 d2Gdr2 = (-(k^2) + (2*1i*k)./r + 2./(r.^2)).*G;
51 % calculate dGdn ...
52 % normalizing the L*Q x 1 position difference vectors by the distance
53 eR = R./ repmat (r ,1 ,3); % normalize coordinates to vectorlength 1
54 % take the vectorlength only along the normalvector axis
55 nvsx = repmat ( n_vec_src (: ,1).’,n_eval ,1);
56 nvsy = repmat ( n_vec_src (: ,2).’,n_eval ,1);
57 nvsz = repmat ( n_vec_src (: ,3).’,n_eval ,1);
58 % vectorize
59 nvs = [nvsx (:) ,nvsy (:) ,nvsz (:) ];
60 % compute angle
61 cosphi0 = dot(nvs ,eR ,2);
62 dGdn = -cosphi0 .* dGdr;
63 if nargin > 4
64 % calculate d2Gdn2 ...
65 % find directivity angles between normalvectors as well as radial
66 % directions
67 cosphi = dot( repmat ( n_vec_eval ,n_src ,1) ,eR ,2);
68 coseta = dot( repmat ( n_vec_eval ,n_src ,1) ,nvs ,2);
69 d2Gdn2 = -coseta ./r.* dGdr + cosphi .* cosphi0 .*( dGdr ./r - d2Gdr2 );
70 d2Gdn2 = reshape ( d2Gdn2 .’,n_eval , n_src ).’;
71 end
72 % reshape to (Q x L) matrix
73 dGdn = reshape (dGdn.’,n_eval , n_src ).’;
74 r = reshape (r.’,n_eval , n_src ).’;
75 cosphi0 = reshape ( cosphi0 .’,n_eval , n_src ).’;
76 end
77 G = reshape (G.’,n_eval , n_src ).’;
78 end
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Listing C.6 Listing of the function defineReceivers().
1 function [P] = defineReceivers (r,n_rec_hor , n_rec_vert ,mode ,show , dirspan )
2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % [P] = defineReceivers (r,n_rec_hor , n_rec_vert ,mode ,show , dirspan )
4 %
5 % Creates a set of positions (sphere , hemisphere , a single point with
6 % surrounding positions aligned as a part of a sphere , or a cross - section ).
7 %
8 % Inputs :
9 % r ... radius of the sphere ( assuming the sphere is centered to the

10 % origin ) as a scalar
11 % n_rec_hor ... number of receiver positions along a horizontal ring as
12 % a scalar
13 % n_rec_vert ... number of horizontal rings as a scalar
14 % mode ... can be either :
15 % ’dir ’ ... either a single position at [0;0; r] or
16 % multiple receivers aligned around [0;0; r]
17 % ’omni ’ ... a full sphere
18 % ’hemi ’ ... hemisphere in z >=0
19 % ’fieldx ’ ... creates n_rec_hor points in x and
20 % n_rec_vert points in z, at y=0 and for a
21 % region of -r to r
22 % ’fieldy ’ ... creates n_rec_hor points in y and
23 % n_rec_vert points in z, at x=0 and for a
24 % region of -r to r
25 % show ... if 1 plots a scatter plot to show the receivers . Adds a red dot
26 % for the origin
27 % dirspan ... ( optional ) the directional span of the receivers in
28 % degree . Allows for creating only receivers on a part of a
29 % sphere or hemisphere . Only working for mode=’dir ’.
30 %
31 % Outputs :
32 % P ... (3 x n_rec ) matrix containing the three - dimensional coordinates
33 % of all receivers
34 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35 % Author : Patrick Heidegger ; heidegger . patrick@gmail .com
36 % Company : Institute of Electronic Music and Acoustics , Graz &
37 % Sound - Solutions Austria , Vienna
38 % Year: 2021/2022
39 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 if strcmp (mode ,’dir ’)
41 if dirspan == 0
42 P = [0;0; r];
43 return
44 end
45 if nargin < 6
46 dirspan = 0;
47 else
48 dirspan = dirspan *pi /180;
49 end
50 phi = 0:1/ n_rec_hor *pi:pi -pi/ n_rec_hor ;
51 phi_mtx = repmat (phi.’,1, n_rec_vert );
52 theta = linspace (pi/2- dirspan ,pi /2+ dirspan , n_rec_vert );
53 theta_mtx = repmat (theta ,n_rec_hor ,1);
54 elseif strcmp (mode ,’omni ’)
55 theta = linspace (-pi/2,pi/2, n_rec_vert );
56 theta_mtx = repmat (theta ,n_rec_hor ,1);
57 phi = linspace (-pi ,pi , n_rec_hor );
58 phi_mtx = repmat (phi.’,1, n_rec_vert );
59 elseif strcmp (mode ,’hemi ’)
60 theta = linspace (0,pi , n_rec_vert );
61 theta_mtx = repmat (theta ,n_rec_hor ,1);
62 phi = linspace (0,pi , n_rec_hor );
63 phi_mtx = repmat (phi.’,1, n_rec_vert );
64 elseif strcmp (mode ,’fieldx ’)
65 px = linspace (-r,r, n_rec_hor );
66 pz = linspace (-r,r, n_rec_vert );
67 [Px ,Pz] = meshgrid (px ,pz);
68 Pz = flipud (Pz);
69 P = [Px (:) ,zeros (size(Px (:))),Pz (:) ]. ’;
70 if nargin >= 5 && show == 1
71 figure
72 scatter3 (P(1 ,:) ,P(2 ,:) ,P(3 ,:))
73 hold on
74 scatter3 (0 ,0 ,0)
75 axis equal
76 end
77 return
78 elseif strcmp (mode ,’fieldy ’)
79 py = linspace (-r,r, n_rec_hor );
80 pz = linspace (-r,r, n_rec_vert );
81 [Py ,Pz] = meshgrid (py ,pz);
82 Pz = flipud (Pz);
83 P = [ zeros (size(Py (:))),Py (:) ,Pz (:) ]. ’;
84 if nargin >= 5 && show == 1
85 figure
86 scatter3 (P(1 ,:) ,P(2 ,:) ,P(3 ,:))
87 hold on
88 scatter3 (0 ,0 ,0)
89 axis equal
90 end
91 return
92 else
93 error (’unknown mode!’)

94



P. Heidegger

94 end
95 x = cos( phi_mtx ).* cos( theta_mtx );
96 y = sin( phi_mtx ).* cos( theta_mtx );
97 z = sin( theta_mtx );
98 P = r.*[x(:) ,y(:) ,z(:) ]. ’;
99 if nargin >= 5 && show == 1

100 figure
101 scatter3 (P(1 ,:) ,P(2 ,:) ,P(3 ,:))
102 hold on
103 scatter3 (0 ,0 ,0)
104 axis equal
105 xlabel (’X in m’, ’Interpreter ’, ’Latex ’)
106 ylabel (’Y in m’, ’Interpreter ’, ’Latex ’)
107 zlabel (’Z in m’, ’Interpreter ’, ’Latex ’)
108 end
109 end
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Listing C.7 Listing of the function calcESM() that computes the half-space sound radiation with the ESM
approach.

1 function [p] = calcESM (P,Q,n_vecs ,V,f,c,rho ,measures , n_sources )
2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % [p,q] = calcESM_full (P,Q,n_vecs ,V,f,c,rho , measures )
4 %
5 % computes the sound pressure for a half - space simulation using the
6 % equivalent source method . The equivalent sources are
7 % aligned as a single layer containing monopoles . The retraction distance
8 % is computed as the mean of the grid distance in x and y.
9 %

10 % Inputs :
11 % P ... (3 x n_rec ) matrix , containing the coordinates of all
12 % receiver positions
13 % Q ... (2 -6) -element cell array , containing the source positions for all
14 % surfaces . Only the upper ( first entry ) and lower ( second
15 % entry ) are needed for full - space simulation .
16 % n_vecs ... (1 -6) -element cell array containing the normal vectors of
17 % measurement source positions . Only one entry ( upper
18 % surface ) is needed
19 % V ... (2 -6) -element cell array , containing velocity data for each point
20 % in Q and frequency in f (n_f x n_Q) matrices .
21 % f ... frequency scale as (n_f x 1) matrix
22 % c ... speed of sound
23 % rho ... air density
24 % measures ... measures of the device in order [height ,width , depth ]
25 % n_sources ... number of positions for each surface in
26 % [n_height ,n_width , n_depth ] (only the first two entries
27 % are needed ;
28 %
29 % Outputs :
30 % p ... (n_f x n_rec ) matrix containing the results for each frequency
31 % and receiver .
32 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33 % Author : Patrick Heidegger ; heidegger . patrick@gmail .com
34 % Company : Institute of Electronic Music and Acoustics , Graz &
35 % Sound - Solutions Austria , Vienna
36 % Year: 2021/2022
37 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38
39 if length (f) ~= size(V{1} ,1)
40 error (’V must have the same number of entries as f!’)
41 end
42
43 % extract values of first surface
44 Q = Q{1};
45 V = V{1};
46 n_vecs = n_vecs {1};
47
48 % compute equivalent source positions . Set layer distance to ~0.5 times the
49 % grid distance
50 griddist = measures ./ n_sources ;
51 d = ( griddist (1)+ griddist (2))/2;
52
53 Qe = Q- repmat ([0;0;0.5* d],1, size(Q ,2));
54 n_vec_Qe = n_vecs ;
55
56 % initialize sound pressure
57 p = zeros ( length (f),size(P ,2));
58 % loop through frequencies
59 for ii = 1: length (f)
60 disp ([ ’Calculating frequency response : f=’, num2str (f(ii))]);
61 f_curr = f(ii);
62 w = 2* pi*f(ii);
63 v = V(f== f_curr ,:) .’;
64
65 % green ’s functions to front plate
66 [a, dGdn_front ] = ...
67 evaluate_G_dGdn_d2Gdn2 (Qe.’,Q.’,w/c, n_vec_Qe .’);
68
69 % evaluate source strengths
70 q = (-1i*w*rho)*( dGdn_front .’\v);
71
72 % calculate resulting sound pressures for all points in P
73 [G,dGdn] = evaluate_G_dGdn_d2Gdn2 (Qe.’, P.’,w/c, n_vec_Qe .’);
74 p(ii ,:) = G.’*q;
75 end
76 end
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Listing C.8 Listing of the function calcESM_full() that computes the full-space sound radiation with the
ESM apprach.

1 function [p] = calcESM_full (P,Q,n_vecs ,V,f,c,rho , measures )
2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % [p,q] = calcESM_full (P,Q,n_vecs ,V,f,c,rho , measures )
4 %
5 % computes the sound pressure using the equivalent source method ,
6 % exploiting parallel surfaces of a thin cuboid . The equivalent sources are
7 % aligned as a single layer , containing monopoles to emulate the
8 % even - symmetric and dipoles to emulate the odd - symmetric sound pressure .
9 %

10 %
11 % Inputs :
12 % P ... (3 x n_rec ) matrix , containing the coordinates of all
13 % receiver positions
14 % Q ... (2 -6) -element cell array , containing the source positions for all
15 % surfaces . Only the upper ( first entry ) and lower ( second
16 % entry ) are needed for full - space simulation .
17 % n_vecs ... (1 -6) -element cell array containing the normal vectors of
18 % measurement source positions . Only one entry ( upper
19 % surface ) is needed
20 % V ... (2 -6) -element cell array , containing velocity data for each point
21 % in Q and frequency in f (n_f x n_Q) matrices .
22 % f ... frequency scale as (n_f x 1) matrix
23 % c ... speed of sound
24 % rho ... air density
25 % measures ... measures of the device in order [height ,width , depth ]
26 %
27 % Outputs :
28 % p ... (n_f x n_rec ) matrix containing the results for each frequency
29 % and receiver .
30 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 % Author : Patrick Heidegger ; heidegger . patrick@gmail .com
32 % Company : Institute of Electronic Music and Acoustics , Graz &
33 % Sound - Solutions Austria , Vienna
34 % Year: 2021/2022
35 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36
37 if length (f) ~= size(V{1} ,1)
38 error (’V must have the same number of entries as f!’)
39 end
40
41 % compute equivalent source positions
42 Qe = Q{1} - repmat ([0;0; measures (3) /2] ,1 , size(Q{1} ,2));
43 n_vec_Qe = n_vecs {1};
44
45 % initialize sound pressure
46 p = zeros ( length (f),size(P ,2));
47 % loop through frequencies
48 for ii = 1: length (f)
49 disp ([ ’Calculating frequency response : f=’, num2str (f(ii))]);
50 f_curr = f(ii);
51 w = 2* pi*f(ii);
52 v = {V{1}(f== f_curr ,:).’,V{2}(f== f_curr ,:) . ’ ,...
53 V{3}(f== f_curr ,:).’,V{4}(f== f_curr ,:) . ’ ,...
54 V{5}(f== f_curr ,:).’,V{6}(f== f_curr ,:) . ’};
55 % split into in - phase and contra - phase part of velocities of front and
56 % back surface
57 v_inphase = (v{1}+v{2}) /2;
58 v_contraphase = (v{1} -v{2}) /2;
59
60 % green ’s functions to front plate
61 [a, dGdn_front , d2Gdn2_front ] = ...
62 evaluate_G_dGdn_d2Gdn2 (Qe.’,Q{1}. ’ ,w/c, n_vec_Qe .’, n_vecs {1}. ’);
63
64 q_monop = (-1i*w*rho)*( dGdn_front .’\ v_inphase );
65 q_dip = (-1i*w*rho)*( d2Gdn2_front .’\ v_contraphase );
66
67 % calculate resulting sound pressures for all points in P
68 [G,dGdn] = evaluate_G_dGdn_d2Gdn2 (Qe.’, P.’,w/c, n_vec_Qe .’);
69 p(ii ,:) = G.’* q_monop -dGdn .’* q_dip ;
70 end
71 end
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Listing C.9 Listing of the function calcRayleigh() that computes the half-space sound radiation using the
Rayleigh I integral.

1 function [p] = calcRayleigh (P,V,f,c,rho ,grids ,measures , n_sources )
2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % [p] = calcRayleigh (P,V,f,c,rho ,grids ,measures , n_sources )
4 %
5 % Calculation of the Rayleigh I integral (with neumann boundary conditions ),
6 % for each frequency f.
7 %
8 % Inputs :
9 % P ... (3 x n_rec ) matrix containing the three - dimensional coordinates

10 % of all receiver positions
11 % V ... cell array with at least 1 cells , containing the velocity data
12 % for the upper ( first entry ) surface in (n_f x n_Q) Matrix form ,
13 % containing velocity data for the all positions on the surface
14 % in for each frequency f.
15 % f ... (n_f x 1) frequency vector
16 % c ... speed of sound
17 % rho ... air density
18 % grids ... {2 x1 } -{2 x6}- element cell array , containing 2D meshgrids of
19 % positions for each surface (only the first column is
20 % needed )
21 % measures ... measures of the device in order [height ,width , depth ]
22 % n_sources ... number of measurement points for each surface in
23 % [n_height ,n_width , n_depth ]
24 %
25 % Outputs :
26 % p ... (n_f x n_rec ) matrix containing the results for each frequency
27 % and receiver .
28 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 % Author : Patrick Heidegger ; heidegger . patrick@gmail .com
30 % Company : Institute of Electronic Music and Acoustics , Graz &
31 % Sound - Solutions Austria , Vienna
32 % Year: 2021/2022
33 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34
35 if length (f) ~= size(V{1} ,1)
36 error (’V must have the same number of entries as f!’)
37 end
38
39 % set source positions to the center of nodes and calculate dA elements .
40 [Q,n_vecs ,gridsint ,dA] = create_box (measures ,n_sources ,...
41 [0 ,0 ,0] ,[0 ,0 ,0] ,1 ,0);
42 % only use values on the upper surface of the box
43 n_vecs = n_vecs {1};
44 Q = Q{1};
45 dA = dA {1};
46
47 % interpolate velocities of the upper surface
48 Vint = interpolate_box ( grids (: ,1) ,gridsint (: ,1) ,V(1) ,0);
49 V = Vint;
50 clear gridsint Vint
51
52 % initialize p
53 p = zeros ( length (f),size(P ,2));
54 for ii = 1: length (f)
55 disp ([ ’Calculating frequency response : f=’, num2str (f(ii))]);
56 w = 2* pi*f(ii);
57 v = V{1}(f==f(ii), :).’;
58
59 % compute Green ’s functions
60 G = evaluate_G_dGdn_d2Gdn2 (Q.’,P.’,w/c, n_vecs .’);
61
62 % compute sound pressures in the field
63 p(ii ,:) = -2*1i*w*rho*G. ’*(v.* dA);
64 end
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Listing C.10 Listing of the function calcRayleigh_full() that computes the full-space sound radiation using
the combined-Rayleigh formulation.

1 function [p] = calcRayleigh_full (P,V,f,c,rho ,grids ,measures ,n_sources ,mode ,tol)
2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % [p] = calcRayleigh_full (P,V,f,c,rho ,grids ,measures ,n_sources ,mode ,tol)
4 %
5 % Computes the combined Rayleigh integral , using front - and back -side
6 % velocities of two parallel ( ideally overlaying at z=0) surfaces .
7 % Comprises three different modes for computation of the odd - symmetric
8 % sound pressure on the surfaces
9 %

10 % Inputs :
11 % P ... (3 x n_rec ) matrix containing the three - dimensional coordinates
12 % of all receiver positions
13 % V ... cell array with at least 2 cells , containing the velocity data
14 % for the upper ( first entry ) and lower ( second entry ) surfaces
15 % in (n_f x n_Q) Matrix form , containing velocity data for the all
16 % positions on the surface in for each frequency f.
17 % f ... (n_f x 1) frequency vector
18 % c ... speed of sound
19 % rho ... air density
20 % grids ... {2 x2 } -{2 x6}- element cell array , containing 2D meshgrids of
21 % positions for each surface (only the first two are used
22 % measures ... measures of the device in order [height ,width , depth ]
23 % n_sources ... number of measurement points for each surface in
24 % [n_height ,n_width , n_depth ]
25 % mode ... specifies the kind of zero padding / wavefield
26 % extrapolation .
27 % mode=’’ ... no zero padding / wavefield extrapolation
28 % (not recommended )
29 % mode=’lpbp ’ ... linear predictive border padding
30 % mode=’zp ’ ... zero padding
31 % mode=’azp ’ ... adaptive zero padding . Switches the
32 % amount of zeros at 400 Hz. seems to yield the best results
33 % ( recommended )
34 % tol ... if specified , the function uses tol as a lower bound for kz
35 % and does not regularize using Pagavino ’s integral .
36 %
37 % Outputs :
38 % p ... (n_f x n_rec ) matrix containing the results for each frequency
39 % and receiver .
40 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
41 % Author : Patrick Heidegger ; heidegger . patrick@gmail .com
42 % Company : Institute of Electronic Music and Acoustics , Graz &
43 % Sound - Solutions Austria , Vienna
44 % Year: 2021/2022
45 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
46
47 if length (f) ~= size(V{1} ,1)
48 error (’V must have the same number of entries as f!’)
49 end
50
51 % set adaptive zero padding as default
52 if nargin < 9
53 mode = ’azp ’;
54 end
55
56 % create a new box with interpolated positions so that every position is in
57 % the center of a quadrilateral element ...
58
59 % assure an odd number of nodes in each dimension , so that the number of
60 % source positions will be even ( needed for mode lpbp)
61 if strcmp (mode ,’lpbp ’)
62 n_sources = ceil( n_sources /2) *2 -1;
63 end
64 % set source positions to the center of nodes and calculate dA elements .
65 [Q,n_vecs ,gridsint ,dA] = create_box (measures ,n_sources ,...
66 [0 ,0 ,0] ,[0 ,0 ,0] ,1 ,0);
67
68 % we only need the coordinates of the upper surface
69 Q = Q{1};
70 % interpolate velocities to the newly assigned positions
71 Vint = interpolate_box ( grids (: ,1: length (V)),gridsint (: ,1: length (V)),V ,0);
72 V = Vint;
73 grids = gridsint ;
74 clear gridsint Vint
75
76 % extract the number of bins in both dimensions and set the desired
77 % size for wavefield extrapolation or zero padding
78 lenx = size( grids {1 ,1} ,2);
79 leny = size( grids {1 ,1} ,1);
80 if strcmp (mode ,’’)
81 lenfftx = lenx;
82 lenffty = leny;
83 end
84
85 if strcmp (mode ," zp ") || strcmp (mode ," azp ")
86 padfactor = 5; % times the original size added for wavefield extrapolation
87 lenfftx = 2^( nextpow2 (lenx* padfactor ));
88 lenffty = 2^( nextpow2 (leny* padfactor ));
89 % window for zero padding
90 winx = hann(lenx).’;
91 winy = hann(leny).’;
92 win = winy ’* winx;
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93 % apparently , no window works better ......
94 win = ones(size(win));
95 % pre assign zero - padded function
96 v_contpad = zeros (lenffty , lenfftx );
97 % compute correction factor
98 nowin = v_contpad ;
99 nowin (1: leny ,1: lenx) = 1;

100 winc = nowin ;
101 winc (1: leny ,1: lenx) = win;
102 corrfac = rms(nowin ,’all ’)/rms(winc ,’all ’);
103 end
104
105 if strcmp (mode ," lpbp ")
106 % for linear - predictive border padding as wavefield extrapolation ...
107 % create new grids with 15 times the size
108 padfactor = 1; % times the original size added for wavefield extrapolation
109 lenpadx = leny* padfactor ;
110 lenpady = lenx* padfactor ;
111 lenfftx = lenx +2* lenpadx ;
112 lenffty = leny +2* lenpady ;
113 % determine the extrapolation size so that the extrapolated field is
114 % larger than the zero - padded one
115 extra_size = ceil(max (( lenx+ lenpadx * padfactor *2) ./[ n_sources (1) ,n_sources (2) ]));
116 [Qpad ,n_vecspad , gridspad ] = create_box ( extra_size *measures ,...
117 ( extra_size * padfactor +1)*n_sources ,[0 ,0 ,0] ,...
118 [0 ,0 ,0] ,1 ,0);
119 % we only need the grids for the front side
120 gridspad = gridspad (1:2 ,1);
121 clear Qpad n_vecspad
122
123 % create tukey window for extrapolated part
124 mididx = [ floor ( lenffty /2+1) ,floor ( lenfftx /2+1) ];
125 frac = 1/2;
126 winx = create_window (- mididx (2) +(1: lenfftx ) ,...
127 -floor (lenx /2) ,floor (lenx /2) ,frac ,1);
128 winy = create_window (- mididx (1) +(1: lenffty ) ,...
129 -floor (leny /2) ,floor (leny /2) ,frac ,1);
130 win = winy ’* winx;
131 % energy window correction so that the energy is equal to the
132 % zero -padded , non - windowed signal
133 nowin = zeros (lenffty , lenfftx );
134 nowin ( lenpady +1: lenpady +leny , lenpadx +1: lenpadx +lenx) = 1;
135 corrfac = rms(nowin ,’all ’)/rms(win ,’all ’);
136 end
137
138 % initialize p
139 p = zeros ( length (f),size(P ,2));
140 % constant for switch of zero -pad size in adaptive zero padding
141 aaa = 1;
142 % loop through every frequency in f
143 for ii = 1: length (f)
144 disp ([ ’Calculating frequency response : f=’, num2str (f(ii))]);
145 % assign values for current frequency
146 w = 2* pi*f(ii);
147 k = w/c;
148 v = {V{1}(f==f(ii) ,:).’,V{2}(f==f(ii) ,:). ’ ,...
149 V{3}(f==f(ii) ,:).’,V{4}(f==f(ii) ,:). ’ ,...
150 V{5}(f==f(ii) ,:).’,V{6}(f==f(ii) ,:). ’};
151
152 % compute in - phase and contra - phase part of velocities of front and
153 % back surface
154 v_inphase = (v{1}+v{2}) /2;
155 v_contraphase = (v{1} -v{2}) /2;
156
157 % compute radiation from in - phase part via Rayleigh I
158 [G,dGdn] = evaluate_G_dGdn_d2Gdn2 (Q.’,P.’,w/c, n_vecs {1}. ’);
159 p_inphase = -2*1i*w*rho*G. ’*( v_inphase .* dA {1});
160 % ---------
161 % the rest of this function is to obtain the pressures on the surface
162 % by filtering the contraphase velocities in (k_x ,k_y) space ...
163 % reshape the velocities to form the 2D grid
164 v_cont = reshape ( v_contraphase ,size( grids {1 ,1}));
165
166 if strcmp (mode ," lpbp ")
167 % linear - predictive border padding as wavefield extrapolation ...
168 % extrapolate
169 [Vext] = interpolate_box ( grids (1:2 ,1) ,gridspad ,{ v_cont (:) . ’} ,...
170 floor (( n_sources (2)+ n_sources (1))));
171 vext = reshape (Vext {1} , size( gridspad {1 ,1}));
172 % truncate to size of padded v
173 mididx = [ floor (size(vext ,1) /2+1) ,floor (size(vext ,2) /2+1) ];
174 truncidxx = mididx (2) +(- floor (lenx /2) +1- lenpadx :...
175 floor (lenx /2)+ lenpadx );
176 truncidxy = mididx (1) +(- floor (leny /2) +1- lenpady :...
177 floor (leny /2)+ lenpady );
178 vexttrunc = vext(truncidxy , truncidxx );
179 % window and apply correction factor
180 vexttruncwin = win .* vexttrunc * corrfac ;
181 V_cont = fft2( vexttruncwin );
182 end
183
184 if strcmp (mode ,’zp ’)
185 % zero padding only ...
186 % window the signal
187 v_cont = v_cont .* win* corrfac ;
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188 % 2D zero -pad
189 v_contpad (1: leny ,1: lenx) = v_cont ;
190 V_cont = fft2( v_contpad );
191 end
192
193 if strcmp (mode ,’azp ’)
194 % adaptive zero padding , switches padfactor at 400 Hz
195 if aaa == 1
196 if f(ii) > 400
197 % padfactor is a paramater describing the amount of zeros added . E.g., a
198 % padfactor =10 means zero - padding to the closest higher power of 2 to 10
199 % times the signal in x and y.
200 padfactor = 3;
201 lenfftx = 2^( nextpow2 (lenx* padfactor ));
202 lenffty = 2^( nextpow2 (leny* padfactor ));
203
204 % window for zero padding
205 winx = hann(lenx).’;
206 winy = hann(leny).’;
207 win = winy ’* winx;
208 % apparently , no window works better ...
209 win = ones(size(win));
210 % pre assign zero - padded function
211 v_contpad = zeros (lenffty , lenfftx );
212 % compute correction factor
213 nowin = v_contpad ;
214 nowin (1: leny ,1: lenx) = 1;
215 winc = nowin ;
216 winc (1: leny ,1: lenx) = win;
217 corrfac = rms(nowin ,’all ’)/rms(winc ,’all ’);
218 aaa = 0;
219 end
220 end
221 % window the signal
222 v_cont = v_cont .* win* corrfac ;
223 % 2D zero -pad
224 v_contpad (1: leny ,1: lenx) = v_cont ;
225 V_cont = fft2( v_contpad );
226 end
227
228 if strcmp (mode ,’’)
229 % no wavefield extrapolation or zero padding
230 V_cont = fft2( v_cont );
231 end
232
233 % calculate (kx ,ky) axes
234 dx = abs(diff( grids {1 ,1} ,1 ,2));
235 dx = dx (1 ,1);
236 kx = 2* pi/ lenfftx /dx *[(0: lenfftx /2) ,(- lenfftx /2+1: -1) ];
237 dy = abs(diff( grids {2 ,1} ,1 ,1));
238 dy = dy (1 ,1);
239 ky = 2* pi/ lenffty /dy *[(0: lenffty /2) ,(- lenffty /2+1: -1) ];
240 [Kx ,Ky] = meshgrid (kx ,ky);
241
242 % if tol is specified , use lower bound as regularization
243 if nargin > 9
244 % compute kz ...
245 Kz = conj(sqrt (1 -( Kx .^2+ Ky .^2)/k^2));
246 phiKz = angle (Kz);
247 AKz = abs(Kz);
248 AKz(AKz <tol) = tol;
249 Kz = k*AKz .* exp (1i* phiKz );
250 % negative sign so that we obtain a form (-1i*Kz) in denominator
251 Ps = -1i*w*rho .* V_cont ./( -1i*Kz);
252 ps_direct = ifft2 (Ps);
253 % direct for comparison / debugging of regularization
254 ps_direct = ps_direct (1: leny ,1: lenx);
255 p_contraphase = -2* dGdn . ’*( ps_direct (:) .* dA {1});
256
257 % if tol is not specidied , regularize using Pagavino ’s approach
258 else
259 % compute kz ...
260 Kz = conj(sqrt (1 -( Kx .^2+ Ky .^2)/k^2));
261 phiKz = angle (Kz);
262 AKz = abs(Kz);
263 Kz = k*AKz .* exp (1i* phiKz );
264 % negative sign so that we obtain a form (-1i*Kz) in denominator
265 Ps = -1i*w*rho .* V_cont ./( -1i*Kz);
266
267 % regularize kz using a rectangle interpolator ...
268 % wavenumber bins
269 lx = 0:1: lenfftx /2;
270 ly = 0:1: lenffty /2;
271 [Lx ,Ly] = meshgrid (lx ,ly);
272 % differential (kx ,ky)
273 dkx = diff(kx (1:2) );
274 dky = diff(ky (1:2) );
275
276 % set the side lengths of the rectangle interpolator to be include
277 % an area that with side lengths two times the device ’s measures
278 regsizex = pi /( dkx*dx*lenx)/2;
279 regsizey = pi /( dky*dy*leny)/2;
280
281 % compute radii of the corners of the interpolator for each
282 % wavenumber bin
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283 r1 = sqrt (( dkx *(Lx - regsizex )) .^2+( dky *(Ly - regsizey )).^2);
284 r2 = sqrt (( dkx *(Lx - regsizex )) .^2+( dky *( Ly+ regsizey )).^2);
285 r3 = sqrt (( dkx *( Lx+ regsizex )) .^2+( dky *(Ly - regsizey )).^2);
286 r4 = sqrt (( dkx *( Lx+ regsizex )) .^2+( dky *( Ly+ regsizey )).^2);
287 % compute maximum angular change for each wavenumber bin
288 dphi = atan2 (dky *( Ly+ regsizey ),dkx *(Lx - regsizex )) - ...
289 atan2 (dky *(Ly - regsizey ),sqrt(r2 .^2 -( dky *(Ly - regsizey )).^2));
290 % analytic solutions for the three parts of the integral
291 I12 = k.* dphi ./(r2 -r1) .*(...
292 k /2*(( r2/k).*( - sqrt (( r2/k).^2 -1)) -...
293 (r1/k).*( - sqrt (( r1/k).^2 -1))+...
294 log ((( - sqrt (( r2/k).^2 -1))+( r2/k)) ./...
295 ((- sqrt (( r1/k).^2 -1))+( r1/k))))...
296 -r1 .*(( - sqrt (( r2/k).^2 -1)) -(-sqrt (( r1/k).^2 -1))));
297 I23 = dphi .*k.*(( - sqrt (( r3/k).^2 -1)) -(-sqrt (( r2/k).^2 -1)));
298 I34 = k.* dphi ./(r4 -r3) .*(...
299 -k /2*(( r4/k).*( - sqrt (( r4/k).^2 -1)) -...
300 (r3/k).*( - sqrt (( r3/k).^2 -1))+...
301 log ((( - sqrt (( r4/k).^2 -1))+( r4/k)) ./...
302 ((- sqrt (( r3/k).^2 -1))+( r3/k))))...
303 +r4 .*(( - sqrt (( r4/k).^2 -1)) -(-sqrt (( r3/k).^2 -1))));
304 % combine to total regularized function ...
305 Itot = I12+I23+I34;
306 Itot (1 ,:) = I23 (1 ,:);
307 Itot (: ,1) = I12 (: ,1)+I34 (: ,1);
308 % mirror and combine to matrix
309 Itotcombined = [Itot , fliplr (Itot (1: end ,2: end -1));
310 flipud (Itot (2: end -1 ,1: end)), rot90 (Itot (2: end -1 ,2:end -1) ,2)];
311 % normalize
312 Itotcombined = Itotcombined ./(4* regsizex * regsizey *dkx*dky);
313
314 % compute the sound pressures on the surface (in k space )
315 Psreg = -1i*w*rho .* V_cont .* Itotcombined ;
316 % for kx=ky =0 take results without regularization
317 Psreg (1 ,1) = Ps (1 ,1);
318 % inverse fft to obtain the surface pressures
319 ps = ifft2 ( Psreg );
320 % extract the only valid values
321 ps = ps (1: leny ,1: lenx);
322 % compute rayleigh integral from resulting ps and include
323 p_contraphase = -2* dGdn . ’*( ps (:) .* dA {1});
324 end
325 % adding resulting pressures
326 p(ii ,:) = p_inphase + p_contraphase ;
327 end
328 end
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Listing C.11 Listing of the function calc_BEM_radiation() that computes the sound radiation using
OpenBem. The syntax is partially adopted from the OpenBem tutorial scripts.

1 function [p,p_surface , v_surface ] = calc_BEM_radiation (A_cell ,B_cell ,...
2 nodesb ,topologyb ,grids ,measures ,V,P,f,c,rho)
3 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % [p, p_surface , v_surface ] = calc_BEM_radiation (A_cell ,B_cell ,nodesb ,...
5 % topologyb ,grids ,measures ,V,P,f,c,rho)
6 % function that computes the radiated sound pressure for the dummy phone ,
7 % using OpenBem (http :// www. openbem .dk).
8 %
9 % Inputs :

10 % A_cell , B_cell ... A and B-matrices , pre - computed using the openBEM
11 % function
12 % ’[A,B, CConst ]= TriQuadEquat (nodesb , topologyb ,k, nsingON )’
13 % nodesb , topologyb ... mesh nodes and topology of the loaded mesh ,
14 % pre - computed using the openBEM functions
15 % ’[nodesTMP , elementsTMP , elementsQUAD ]= readgeomGMSH ([ fileGEOMsphere ’.msh ’]);
16 % [nodesb ,topologyb , segms ]= meshcheck (nodesTMP , elementsTMP ,0 ,0);’
17 % grids ... cell - array with surface grids of all surfaces , containing points of
18 % measured or interpolated velocities . Surface order :
19 % {front ,back ,down ,up ,left , right }
20 % measures ... (1 x 3) vector containing measures of the phone in
21 % (height ,width , depth )
22 % V ... cell - array with complex vibrating velocities for each surface .
23 % Each cell contains (n_f x n_points ) matrix , for each frequency
24 % and point .
25 % P ... (3 x n_rec ) matrix containing 3D- coordinates of all receiver
26 % positions
27 % f ... (n_f x 1) frequency vector
28 % c ... speed of sound
29 % rho ... air density
30 %
31 % Outputs :
32 % p ... (n_f x n_rec ) calculated pressures for each frequency and
33 % receiver points
34 % p_surface ... surface pressures , as used for radiation calculation
35 % v_surface ... interpolated surface velocities for the mesh , as used
36 % for radiation calculation
37 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
38 % Author : Patrick Heidegger ; heidegger . patrick@gmail .com
39 % Company : Institute of Electronic Music and Acoustics , Graz &
40 % Sound - Solutions Austria , Vienna
41 % Year: 2021/2022
42 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
43 if length (f) ~= size(V{1} ,1)
44 error (’V must have the same number of entries as f!’)
45 end
46
47 % create 20 randomly distributed CHIEF points inside the interior domain :
48 ind = 0.002;
49 nchief = 20;
50 CHIEFpoint =[( measures (1) -2* ind)*rand(nchief ,1) -measures (1) /2+ ind , ...
51 ( measures (2) -2* ind)*rand(nchief ,1) -measures (2) /2+ ind ,...
52 ( measures (3) -2* ind)*rand(nchief ,1) -measures (3)+ind ];
53 M=size(nodesb ,1);
54
55 v_surface = zeros (M, length (f));
56 p_surface = zeros (M, length (f));
57 p = zeros ( length (f),size(P ,2));
58 for ii = 1: length (f)
59 % assign surface velocities
60 disp ([ ’Assigning velocities to mesh nodes : f=’, num2str (f(ii))]);
61 % assign interpolated values from measurement
62 v = zeros (M ,1);
63 % reverse order since so that points of front and back side are not overritten
64 for iii = size(grids ,2) : -1:1
65 switch iii
66 % front
67 case 1
68 node_idx = find( round ( nodesb (: ,3) ,3) ==0);
69 querrynodes = nodesb (node_idx ,1:2) ;
70 % back
71 case 2
72 node_idx = find( round ( nodesb (: ,3) ,3)== round (- measures (3) ,3));
73 querrynodes = nodesb (node_idx ,1:2) ;
74 % down
75 case 3
76 node_idx = find( round ( nodesb (: ,1) ,3)== round (- measures (1) /2 ,3));
77 querrynodes = nodesb (node_idx ,2:3) ;
78 % up
79 case 4
80 node_idx = find( round ( nodesb (: ,1) ,3)== round ( measures (1) /2 ,3));
81 querrynodes = nodesb (node_idx ,2:3) ;
82 % left
83 case 5
84 node_idx = find( round ( nodesb (: ,2) ,3)== round (- measures (2) /2 ,3));
85 querrynodes = [ nodesb (node_idx ,1) ,nodesb (node_idx ,3) ];
86 % right
87 case 6
88 node_idx = find( round ( nodesb (: ,2) ,3)== round ( measures (2) /2 ,3));
89 querrynodes = [ nodesb (node_idx ,1) ,nodesb (node_idx ,3) ];
90 end
91 vnodes = interp2 ( grids {1, iii}, grids {2, iii } ,...
92 reshape (V{iii }(f==f(ii) ,:),size( grids {1, iii })) ,...
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93 querrynodes (: ,1) ,querrynodes (: ,2) ,’makima ’ ,0);
94 v( node_idx ) = vnodes ;
95 end
96 v_surface (:,ii) = v;
97
98 %% calculate surface pressures
99 disp ([ ’Calculating surface pressures : f=’, num2str (f(ii))]);

100 % f_idx = find(f==f(ii));
101 k = 2* pi*f(ii)/c;
102 % Include CHIEF points :
103 [Aex ,Bex ]= point (nodesb ,topologyb ,k, CHIEFpoint );
104 % Extend A and B matrices to include CHIEF points ’ coefficients
105 A=[ A_cell {ii }; Aex ];
106 B=[ B_cell {ii }; Bex ];
107 % Solve for surface pressures
108 B=1i*k*rho*c*B;
109 ps=A\(B* v_surface (:,ii));
110 p_surface (:,ii) = ps;
111
112 %% calculate pressures on field points
113 disp ([ ’Calculating frequency response : f=’, num2str (f(ii))]);
114 k = 2* pi*f(ii)/c;
115 % Calculate field points
116 [Afp ,Bfp ,Cfp ]= point (nodesb ,topologyb ,k,P.’,1);
117 p(ii ,:) =( Afp* p_surface (:,ii) -1i*k*rho*c*Bfp* v_surface (:,ii)).* Cfp /(4* pi)^2;
118 end
119 end
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Listing C.12 Listing of the function plotFR().
1 function [fig] = plotFR (f, p, legends ,xlims , ylims )
2 % [fig] = plotFR (f, p, legends ,xlims , ylims )
3 %
4 % plots the frequency response in Pa , dBspl and angle .
5 %
6 % Inputs :
7 % f ... (n_f x 1) frequency vector
8 % p ... (n_f x n_rec ) vector containing the sound pressures for one
9 % n_rec receivers

10 % legends ... ( n_rec x 1) string array containing the legend entries ,
11 % interpreted as LaTex syntax
12 % xlims ... ( optional ) limits for the x axes in Hz
13 % ylims ... ( optional ) limits for the y axes , in dBspl . Only affecting
14 % the first two subplots
15 %
16 % Outputs :
17 % fig ... figure handle
18 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19 % Author : Patrick Heidegger ; heidegger . patrick@gmail .com
20 % Company : Institute of Electronic Music and Acoustics , Graz &
21 % Sound - Solutions Austria , Vienna
22 % Year: 2021/2022
23 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24 if nargin < 4
25 xlims = ’auto ’;
26 ylims = ’auto ’;
27 elseif nargin < 5
28 ylims = ’auto ’;
29 else
30 ylims = 10.^( ylims ./20) *20E -6;
31 end
32
33 fig = figure ;
34 sgtitle (’Frequency response ’,’Interpreter ’,’latex ’)
35 subplot (3 ,1 ,1)
36 semilogx (f, abs(p))
37 ylabel (’$\left |\ frac{p}{U}\ right |$ in $\frac {\ mathrm {Pa }}{\ mathrm {V}}$’,’Interpreter ’,’latex ’)
38 xlabel (’$f$ in Hz ’,’Interpreter ’,’latex ’)
39 grid on
40 ylim( ylims )
41 ylims = ylim;
42 xlim( xlims )
43 xlims = xlim;
44 subplot (3 ,1 ,2)
45 semilogx (f, 20* log10 (abs(p)/20E -6))
46 ylabel (’$\left |\ frac{p}{U}\ right |$ in $\ mathrm {dB_{SPL }}$’,’Interpreter ’,’latex ’)
47 xlabel (’$f$ in Hz ’,’Interpreter ’,’latex ’)
48 grid on
49 ylim (20* log10 (abs( ylims )./20E -6))
50 xlim( xlims )
51 subplot (3 ,1 ,3)
52 semilogx (f, angle (p))
53 ylim ([-pi -pi /10 , pi+pi /10]) ;
54 yticks ([-pi , -pi/2, 0, pi/2, pi ])
55 set(gca ,’TickLabelInterpreter ’,’latex ’);
56 yticklabels ({ ’$- \pi$ ’; ’$- \pi /2$’; ’$0$ ’; ’$\pi /2$’; ’$\pi$ ’})
57 ylabel (’$arg\left (\ frac{p}{U}\ right )$ in rad ’,’Interpreter ’,’latex ’)
58 xlabel (’$f$ in Hz ’,’Interpreter ’,’latex ’)
59 grid on
60 legend (legends , ’Location ’, ’southwest ’,’Interpreter ’,’latex ’)
61 xlim( xlims )
62 end
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Listing C.13 Listing of the function balloonPlot().
1 function [fig] = balloonPlot (p, P, n_rec_hor , full ,offset , phasecolor , titleaddon )
2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % [fig] = balloonPlot (p, P, n_rec_hor , full ,offset , phasecolor , titleaddon )
4 %
5 % creates a 3D balloon surface plot for each position in P. The radius of
6 % the baloon in each direction is assigned to the respective dB_spl of the
7 % sound pressures in p.
8 %
9 % Inputs :

10 % p ... (n_f x n_rec ) matrix containing the sound pressures for each
11 % frequency and receiver
12 % P ... (3 x n_rec ) matrix containing the 3D coordinates of the
13 % receiver positions
14 % n_rec_hor ... number of receiver positions along a horizontal ring as
15 % a scalar (must be the same as used for
16 % defineReceivers ())
17 % full ... scalar value . If 1, a full sphere is plotted . Otherwise , a
18 % hemisphere is plotted
19 % offset ... when offset >0, the balloon plot is normalized to a
20 % maximum of 0dB. The value of offset then specifies the
21 % offset of the origin , in dB. E.g., offset =30 scales the
22 % balloon so that -30dB lie in the origin and all values
23 % below -30dB are not considered .
24 % phasecolor ... allows for coloration according to the angle , instead
25 % of amplitude . The 0 angle is set to the front center .
26 % titleaddon ... ( optional ) adds an additional text to the title , is
27 % interpreted as LaTex syntax
28 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 % Author : Patrick Heidegger ; heidegger . patrick@gmail .com
30 % Company : Institute of Electronic Music and Acoustics , Graz &
31 % Sound - Solutions Austria , Vienna
32 % Year: 2021/2022
33 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
34
35 fig = figure ;
36
37 % scale each receiver in distance , representing the resulting sound pressure
38 angp = angle (p);
39 % scaling for dBspl
40 p = 20* log10 (abs(p)/20E -6);
41
42 % add titleaddon
43 if nargin <= 6
44 titleaddon = ’’;
45 end
46
47 % manage limits
48 if offset > 0
49 p = p - max(p) + offset ;
50 p(p <0) = 0;
51 if full == 1
52 rng = [-offset , offset ];
53 else
54 rng = [0, offset ];
55 end
56 else
57 if full == 1
58 rng = [-max(p(:)),max(p(:))];
59 else
60 rng = [0, max(p(:))];
61 end
62 end
63
64 % create the radius of the balloon
65 dist = sqrt(P(1 ,:) .^2+P(2 ,:) .^2+P(3 ,:) .^2);
66 P_plot = P.* repmat (p ,3 ,1) ./ repmat (dist ,3 ,1);
67
68 % assign colorvalues according to pressure
69 if phasecolor ==1
70 % if the phasecolor is plotted , normalize so that 0 phase is in the
71 % front center
72 P_front = [0;0; dist (1) ];
73 P_dist = sqrt(sum (( P_front -P).^2 ,1));
74 P_idx = find( P_dist == min( P_dist ) ,1);
75 C_ref = angp (1, P_idx );
76 C = angp - C_ref ;
77 % wrap phase
78 C(C<-pi) = 2* pi+C(C<-pi);
79 C(C>pi) = -2*pi+C(C>pi);
80 % reshape for plot
81 C = buffer (C, n_rec_hor );
82 else
83 C = buffer (p, n_rec_hor );
84 end
85 % surface plot
86 X = buffer ( P_plot (1 ,:) , n_rec_hor );
87 Y = buffer ( P_plot (2 ,:) , n_rec_hor );
88 Z = buffer ( P_plot (3 ,:) , n_rec_hor );
89 surf(X, Y, Z, C)
90 % set title
91 title ([ ’Balloon plot ’,titleaddon ],’Interpreter ’,’latex ’)
92 axis equal
93 % set limits
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94 xlim ([- rng (2) , rng (2) ]);
95 ylim ([- rng (2) , rng (2) ]);
96 zlim ([- abs(rng (1)), rng (2) ]);
97
98 if offset > 0
99 tcks = round ( linspace (-rng (2) ,rng (2) ,9));

100 xticks (tcks);
101 yticks (tcks);
102 zticks (tcks);
103 xtcks = abs( xticks )-offset ;
104 ytcks = abs( yticks )-offset ;
105 ztcks = abs( zticks )-offset ;
106 xticklabels ( string ( xtcks ));
107 yticklabels ( string ( ytcks ));
108 zticklabels ( string ( ztcks ));
109 else
110 tcks = round ( linspace (-rng (2) ,rng (2) ,9));
111 xticks (tcks);
112 yticks (tcks);
113 zticks (tcks);
114 xtcks = abs(tcks);
115 ytcks = abs(tcks);
116 ztcks = abs(tcks);
117 xticklabels ( string ( xtcks ));
118 yticklabels ( string ( ytcks ));
119 zticklabels ( string ( ztcks ));
120 end
121 % add origin
122 hold on
123 scatter3 (0 ,0 ,0)
124 hold off
125 % define color range and colorbar
126 if phasecolor ==1
127 colormap (’hsv ’)
128 caxis ([-pi ,pi ]);
129 colorbar (’Ticks ’, [-pi ,-pi/2,0,pi/2,pi ] ,...
130 ’Ticklabels ’ ,{’$ -\ pi$ rad ’,’$ -\ frac {\ pi }{2}$ rad ’,’$0$ rad ’ ,...
131 ’$\frac {\ pi }{2}$ rad ’,’$\pi$ rad ’},’TickLabelInterpreter ’, ’latex ’)
132 elseif offset > 0
133 caxis ([0 , offset ]);
134 c = colorbar ;
135 c. TickLabelInterpreter = ’latex ’;
136 c. TickLabels = string ((- flip(c. Ticks )))+" dB ";
137 else
138 c = colorbar ;
139 c. TickLabelInterpreter = ’latex ’;
140 c. TickLabels = string ((c. Ticks )) + ...
141 " dB$\ mathrm {_{SPL }}$";
142 end
143
144 if offset == 0
145 xlabel (’dB$\ mathrm {_{SPL }}$’,’Interpreter ’, ’latex ’)
146 zlabel (’dB$\ mathrm {_{SPL }}$’,’Interpreter ’, ’latex ’)
147 ylabel (’dB$\ mathrm {_{SPL }}$’,’Interpreter ’, ’latex ’)
148 else
149 xlabel (’dB ’,’Interpreter ’, ’latex ’)
150 zlabel (’dB ’,’Interpreter ’, ’latex ’)
151 ylabel (’dB ’,’Interpreter ’, ’latex ’)
152 end
153 end
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Listing C.14 Listing of the function fieldPlot().
1 function [figs] = fieldPlot (p,P, n_rec_vert , titleaddon ,col_range ,mode ,w,rho)
2 % [figs] = fieldPlot (pfield ,Pfield , n_rec_vert , titleaddon , col_range )
3 %
4 % Image plot in the cross section of the sound field . The sound field is
5 % interpolated to a mesh size of 1mm , using spline interpolation . Two
6 % options are possible : plotting the sound - pressure magnitude in dBSPL or ,
7 % with mode=’I’, plotting the real part of the acoustic intensity and a
8 % corresponding quiver plot to show the direction of the effective energy
9 % flow

10 %
11 % Inputs :
12 % p ... (1 x n_rec ) matrix containing sound pressures corresponding to
13 % the positions in P
14 % P ... (3 x n_rec ) matrix containing the three - dimensional coordinates
15 % of the receivers
16 % n_rec_vert ... number of positions in the vertical axis. Must be the
17 % same as specified in defineReceivers (). Needed to
18 % create a grid
19 % titleaddon ... ( optional ) adds an additional text to the title , is
20 % interpreted as LaTex syntax
21 % colrange ... ( optional ) specifies the range of coloration in dB.
22 % can be left out or specified as ’auto ’ for automatic
23 % coloration , or stated as a 2- element vector holding the
24 % lower and upper limits for the coloration .
25 % mode ... ( optional ) can be either ’p’, for the default sound - pressure
26 % magnitude plot. Or ’I’, for the intensity plot.
27 % w ... angular frequency , must be specified if mode is ’I’
28 % rho ... air density , must be specified if mode is ’I’
29 % Outputs :
30 % figs ... figure handle
31 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
32 % Author : Patrick Heidegger ; heidegger . patrick@gmail .com
33 % Company : Institute of Electronic Music and Acoustics , Graz &
34 % Sound - Solutions Austria , Vienna
35 % Year: 2021/2022
36 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37
38
39 if nargin < 4
40 titleaddon = ’’;
41 end
42 % create grids
43 P(P(: ,1) ==0 ,:) = [];
44 X = buffer (P(1 ,:) ,n_rec_vert );
45 Z = buffer (P(2 ,:) ,n_rec_vert );
46 % calculate dBSPL and create grid
47 if nargin < 6 || strcmp (mode ,’p’)
48 % grid of sound pressures in dBSPL
49 plotfun = buffer (20* log10 (abs(p)/20E -6) ,n_rec_vert );
50 mode = ’p’;
51 elseif strcmp (mode ,’I’)
52 % compute the acoustic intensity
53 pgrid = buffer (p, n_rec_vert );
54 stepx = 2* max(max(X))/size(X ,2);
55 stepy = 2* max(max(Z))/size(X ,1);
56 vgridx = diff(pgrid ,1 ,2)/ stepx /( -1i*w*rho);
57 vgridy = diff(pgrid ,1 ,1)/ stepy /( -1i*w*rho);
58 Igridx = pgrid (: ,1:end -1) .* conj( vgridx );
59 Igridx = Igridx (1: end -1 ,:);
60 Igridy = pgrid (1: end -1 ,:) .* conj( vgridy );
61 Igridy = Igridy (: ,1:end -1);
62 % get rid of the elements for which the gradient is not computed
63 X = X(1: end -1 ,1:end -1);
64 Z = Z(1: end -1 ,1:end -1);
65 %
66 Igridlen = sqrt(real( Igridx ).^2+ real( Igridy ).^2);
67 plotfun = 10* log10 (( Igridlen /1E -12));
68 end
69 % interpolate to a resolution of 1mm
70 [Xint ,Zint] = meshgrid (min(X(:)) :0.001: max(X(:)),min(Z(:)) :0.001: max(Z(:)));
71 Zint = flipud (Zint);
72 plotfunint = interp2 (X,Z,plotfun ,Xint ,Zint ,’spline ’);
73
74 figs = figure ;
75 if nargin < 5
76 imagesc ([ min(Xint (:)),max(Xint (:))],[ min(Zint (:)),max(Zint (:))] ,...
77 plotfunint )
78 elseif strcmp ( string ( col_range ), ’auto ’)
79 imagesc ([ min(Xint (:)),max(Xint (:))],[ min(Zint (:)),max(Zint (:))] ,...
80 plotfunint )
81 else
82 % define color range
83 crange = [ col_range (1) ,col_range (2) ];
84 imagesc ([ min(Xint (:)),max(Xint (:))],[ min(Zint (:)),max(Zint (:))] ,...
85 plotfunint , crange )
86 end
87 title ([ ’Field plot ’,titleaddon ],’Interpreter ’,’latex ’)
88 c = colorbar ;
89 c. TickLabelInterpreter = ’latex ’;
90 xlabel (’Horizontal axis in m’,’Interpreter ’,’latex ’)
91 ylabel (’Vertical axis in m’,’Interpreter ’,’latex ’)
92 grid on
93 yticklabels ( string ( yticks * -1))
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94 xticklabels ( string ( xticks *1))
95 axis equal
96 if strcmp (mode ,’I’)
97 % custom ticklabels for colorbar
98 c. TickLabels = string ((c. Ticks )) + ...
99 " dB$\ mathrm {_{I}}$";

100 hold on
101 % scale arrows
102 Igridxquiv = flipud (real (( Igridx ))./ Igridlen );
103 Igridyquiv = flipud (real (( Igridy ))./ Igridlen );
104 % quiver plot
105 q = quiver (X,Z, Igridxquiv , Igridyquiv ,3/4) ;
106 q. Color = ’black ’;
107 else
108 % custom ticklabels for colorbar
109 c. TickLabels = string ((c. Ticks )) + ...
110 " dB$\ mathrm {_{SPL }}$";
111 end
112 end
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Appendix D Additional Simulation Results

Figure D.1 Overall measured and simulated full-space frequency responses of the smartphone
dummy, as sound pressure normalized by the input voltage; the receiver is in the front-
center of the device, in 10 cm distance (position 1 in Table 5.1);
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Figure D.2 Overall measured and simulated full-space frequency responses of the smartphone
dummy, as sound pressure normalized by the input voltage; the receiver is in the back-
center of the device, in 10 cm distance (position 2 in Table 5.1);
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Figure D.3 Overall measured and simulated full-space frequency responses of the smartphone
dummy, as sound pressure normalized by the input voltage; the receiver is in front
of the device with 60◦ rotation angle around the y axis, in 10 cm distance (position 3 in
Table 5.1);
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Figure D.4 Overall measured and simulated full-space frequency responses of the smartphone
dummy, as sound pressure normalized by the input voltage; the receiver is in front
of the device with 60◦ rotation angle around the x axis, in 10 cm distance (position 4 in
Table 5.1);
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Figure D.5 Overall measured and simulated half-space frequency responses of the smartphone
dummy, as sound pressure normalized by the input voltage; the receiver is in the front-
center of the device, in 10 cm distance (position 1 in Table 5.1);
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Figure D.6 Overall measured and simulated half-space frequency responses of the alternative veri-
fication case using the Manticore voice-coil loudspeaker, as sound pressure normalized
by the input voltage; the receiver is in the front-center of the device, in 3.16 cm distance;
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(a)

(b)

Figure D.7 Spatial full-space sound field of the smartphone dummy, computed by the ESM, at
100 Hz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40 × 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated
at 30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot
are (left to right): (z, y, x).
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(a)

(b)

Figure D.8 Spatial full-space sound field of the smartphone dummy, computed by the combined-
Rayleigh formulation, at 100 Hz. (a): acoustic intensity field of the cross-section along
the x axis, at y = 0. The field is evaluated at a (40×40) grid in a range of±20 cm. (b)
balloon plot with angle-dependent coloration, plotted with balloonPlot(). The balloon
plot is evaluated at 30× 30 positions, at r = 0.1 m distance to the device’s center. The
axes of the plot are (left to right): (z, y, x).
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(a)

(b)

Figure D.9 Spatial full-space sound field of the smartphone dummy, computed by the BEM, at
100 Hz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40 × 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated
at 30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot
are (left to right): (z, y, x).
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(a)

(b)

Figure D.10 Spatial full-space sound field of the smartphone dummy, computed by the ESM, at
180 Hz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40× 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated
at 30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot
are (left to right): (z, y, x).
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(a)

(b)

Figure D.11 Spatial full-space sound field of the smartphone dummy, computed by the combined-
Rayleigh formulation, at 180 Hz. (a): acoustic intensity field of the cross-section along
the x axis, at y = 0. The field is evaluated at a (40×40) grid in a range of±20 cm. (b)
balloon plot with angle-dependent coloration, plotted with balloonPlot(). The balloon
plot is evaluated at 30 × 30 positions, at r = 0.1 m distance to the device’s center.
The axes of the plot are (left to right): (z, y, x).
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(a)

(b)

Figure D.12 Spatial full-space sound field of the smartphone dummy, computed by the BEM, at
180 Hz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40× 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated
at 30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot
are (left to right): (z, y, x).
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(a)

(b)

Figure D.13 Spatial full-space sound field of the smartphone dummy, computed by the ESM, at
1 kHz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40× 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated
at 30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot
are (left to right): (z, y, x).
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(b)

Figure D.14 Spatial full-space sound field of the smartphone dummy, computed by the combined-
Rayleigh formulation, at 1 kHz. (a): acoustic intensity field of the cross-section along
the x axis, at y = 0. The field is evaluated at a (40×40) grid in a range of±20 cm. (b)
balloon plot with angle-dependent coloration, plotted with balloonPlot(). The balloon
plot is evaluated at 30 × 30 positions, at r = 0.1 m distance to the device’s center.
The axes of the plot are (left to right): (z, y, x).
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(b)

Figure D.15 Spatial full-space sound field of the smartphone dummy, computed by the BEM, at
1 kHz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40× 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated
at 30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot
are (left to right): (z, y, x).
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(a)

(b)

Figure D.16 Spatial full-space sound field of the smartphone dummy, computed by the ESM, at
3.84 kHz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40× 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated
at 30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot
are (left to right): (z, y, x).
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(a)

(b)

Figure D.17 Spatial full-space sound field of the smartphone dummy, computed by the combined-
Rayleigh formulation, at 3.84 kHz. (a): acoustic intensity field of the cross-section
along the x axis, at y = 0. The field is evaluated at a (40 × 40) grid in a range of
±20 cm. (b) balloon plot with angle-dependent coloration, plotted with balloonPlot().
The balloon plot is evaluated at 30×30 positions, at r = 0.1 m distance to the device’s
center. The axes of the plot are (left to right): (z, y, x).
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(b)

Figure D.18 Spatial full-space sound field of the smartphone dummy, computed by the BEM, at
3.84 kHz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40× 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated
at 30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot
are (left to right): (z, y, x).
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(b)

Figure D.19 Spatial full-space sound field of the smartphone dummy, computed by the ESM, at
6.8 kHz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40× 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated
at 30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot
are (left to right): (z, y, x).
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(b)

Figure D.20 Spatial full-space sound field of the smartphone dummy, computed by the combined-
Rayleigh formulation, at 6.8 kHz. (a): acoustic intensity field of the cross-section
along the x axis, at y = 0. The field is evaluated at a (40 × 40) grid in a range of
±20 cm. (b) balloon plot with angle-dependent coloration, plotted with balloonPlot().
The balloon plot is evaluated at 30×30 positions, at r = 0.1 m distance to the device’s
center. The axes of the plot are (left to right): (z, y, x).
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(a)

(b)

Figure D.21 Spatial full-space sound field of the smartphone dummy, computed by the BEM, at
6.8 kHz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40× 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated
at 30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot
are (left to right): (z, y, x).
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(a)

(b)

Figure D.22 Spatial full-space sound field of the smartphone dummy, computed by the ESM, at
15 kHz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40× 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated
at 30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot
are (left to right): (z, y, x).
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(a)

(b)

Figure D.23 Spatial full-space sound field of the smartphone dummy, computed by the combined-
Rayleigh formulation, at 15 kHz. (a): acoustic intensity field of the cross-section along
the x axis, at y = 0. The field is evaluated at a (40×40) grid in a range of±20 cm. (b)
balloon plot with angle-dependent coloration, plotted with balloonPlot(). The balloon
plot is evaluated at 30 × 30 positions, at r = 0.1 m distance to the device’s center.
The axes of the plot are (left to right): (z, y, x).
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(a)

(b)

Figure D.24 Spatial full-space sound field of the smartphone dummy, computed by the BEM, at
15 kHz. (a): acoustic intensity field of the cross-section along the x axis, at y = 0.
The field is evaluated at a (40× 40) grid in a range of ±20 cm. (b) balloon plot with
angle-dependent coloration, plotted with balloonPlot(). The balloon plot is evaluated
at 30× 30 positions, at r = 0.1 m distance to the device’s center. The axes of the plot
are (left to right): (z, y, x).
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