
TI Project

Documentation
IEM, Graz 2017

Tim Raspel

Vector Base Amplitude Panning
VST Plugin Implementation

Supervisor
Franz Zotter

September 27, 2017

Abstract
This project paper is about implementing VBAP as a VST Plugin. VBAP (vector base
amplitude panning) is a method of positioning virtual sound sources on playback setups
with an arbitrary number of loudspeakers. The VST Plugin will have its own custom
GUI. A primary goal of the project is to establish a properly functioning plugin that al-
lows seamless panning and provides the option of presets, as well as support for custom
loudspeaker coordinates. Another explicit goal of the project is to provide a documenta-
tion on how one can set up a build environment to develop new plugins or refine existing
open-source plugins.

Contents

1 Introduction 2
1.1 Resulting VST plugin, availability, code . 2
1.2 Structure of the documentation . 3

2 VST: Virtual Studio Technology 3
2.1 Applications . 4
2.2 Overview: History . 5
2.3 Coding details . 5

3 VST implementation via JUCE framework 7

4 VBAP: Vector Base Amplitude Panning 15
4.1 Basics: 2D Panning . 15
4.2 Extension to 3D . 17

5 VBAP: Implementation as VST plugin 20
5.1 #include additional code . 20
5.2 Own classes . 22
5.3 Parameters . 23
5.4 Function members . 26
5.5 The GUI . 27
5.6 Algorithm: Hull computation . 31
5.7 Algorithm: VBAP real-time . 34
5.8 Algorithm: Orthodromic distances . 35

6 Instructions: Custom loudspeaker setup 36

7 Plugin testing 39

8 Conclusion 41

References 42

Appendix 43

1

1 Introduction
This Toningenieur-Projekt documentation is prin-
cipally about marrying two subjects: VBAP &
VST. VBAP (vector base amplidute panning) is
a method developed by Pulkki [1] for position-
ing (panning) an audio source on a system of
loudspeakers, by extending the concept of pan-
ning (commonly used in stereo or surround se-
tups) to arbitrary setups, even three-dimensional
with a multitude of loudspeakers. VST (virtual
studio technology) is the implementation frame-
work of choice. VST plugins are a standard-
ised, established possibility of adding this new
functionality (VBAP) to existing DAW2 host pro-
grams.

1.1 Resulting VST plugin, availability, code
• Plugin name: Vector Base Amplitude Panning (VBAP)
• Project period: October 2016 (announcement) — September 2017 (finish)
• Effective time frame: 5 months (research, implementation, documentation)
• Terms of use: The VBAP plugin is free (in compliance with licensing)
• Licensing: X11 (see Copyright Notice.txt in project’s source and Appendix C!)
• IDE: Microsoft Visual Studio Community 2017
• Resources:

– JUCE/Projucer v5 Personal (www.juce.com) JUCE 5 GPL license
– Eigen C++ template library (eigen.tuxfamily.org) MPL2 license
– Convex Hull Algorithm (www.newtonapples.net) GPLv3 license

• Source code: placeholder.net
• Plugin dll: placeholder.net
• Tested DAWs: Reaper 5.40 x64 (Win7)
• Tested Configs: IEM Lehrstudio, IEM Cube

Note: All the VST2 host-plugin communication is handled by JUCE code – JUCE
does not use the VST2 headers. Compiling as VST3 requires the Steinberg SDK (www.
steinberg.net/en/company/developers.html).

2

www.juce.com
eigen.tuxfamily.org
www.newtonapples.net
placeholder.net
placeholder.net
www.steinberg.net/en/company/developers.html
www.steinberg.net/en/company/developers.html

1.2 Structure of the documentation
The following content will acquaint the reader with what VST is, starting from a bird’s
eye view, eventually descending into details and facts about how to use VST and how
to create a plugin (recapturing my own approach on this project) in sections 2 and 3.
Useful information for the interested reader can also be found in a condensed Q&A in the
appendix (8).
Further on, the VBAP method is described briefly (4). After this theory review, the details
of the actual implementation are discussed in section 5. In section 6, precise instructions
are given about how the user needs to input custom loudspeaker position coordinates,
followed by some information about testing the plugin (7). The documentation ends with
a conclusion statement (8). The three appendices are A: How to make a VST plugin Q&A,
which is a condensed collection of useful information and links about how to get started
with VST, B: plugin manual is a 1-page poster format for a quick and easy reference, and
C: Copyright and Licenses is self-explanatory.

2 VST: Virtual Studio Technology
VST is an interface specification plus SDK1 introduced by Steinberg GmbH in 1996. The
idea behind it is simple and practical: Steinberg develops a DAW2 software named Cubase.
While constantly updating the program, there are some components that do not change,
but are supposed to offer their functionality in all updates yet to come. Such a component
is called plug-in, and the specification defines how the plugging-in works and also which
parts of the main program it may influence. By separating plugins from the main program,
their content can be shared among different versions of the main program or even other
(similar) programs offering this plugin interfacing capability. Additionally, developers
outside the progam developing company may create plugins of this kind to independently
enhance the capabilities of the program. Section 2.3 presents the details of this concept.

Because of this specification, Cubase quickly gained popularity. Subsequently, VST
became an established industry standard for audio plugins.

1software developement kit
2digital audio workstation. Sequencer program for audio recording & editing

3

2.1 Applications
VST plugins may be categorised into areas defining their type of functionality:

Effect plugins

Plugins of this type manipulate audio input (provided by the main “host” program), using
DSP3 techniques. Common examples are delay, chorus, compressor, reverb, auto-
tune etc. Quite often, effect plugins try to mimic legacy analogue effect boxes. They show
a graphical interface containing knobs, sliders and other sorts of controls for the user to
edit the sound in a traditional analogue fashion, while the insides of the plugin simulate
the behaviour of the analogue circuit.

Instrument plugins

These plugins are virtual instruments. They emulate the sound of real instruments, gen-
erate synthesized sounds or allow working with samples. They are usually controlled by
MIDI (substituting the input signal) to generate audio output. To tell them apart from
other plugins, they are marked with an “i” in their name: VSTi.

Analyser plugins

I came up with this third category, because there are plugins that neither manipulate nor
generate audio. They let the audio pass through, analysing it and showing information
content. These plugins are useful for advanced metering, frequency diagram illustration
etc. Common examples are FFT-Analyser, loudness metering, goniometer and pitch de-
tector (e.g., for guitar tuning).

MIDI plugins

Plugins of this fourth category transfer MIDI data only. MIDI messages are processed
and routed to VSTi or hardware devices.

3digital signal processing

4

2.2 Overview: History

1996 VST version 1.0 is released along with Cubase 3.02, containing the first inherent
VST plugins (reverb, chorus, stereo echo and auto panner).

1999 VST version 2.0 is released, introducing MIDI support and VSTi. An SDK is in-
cluded for third-party plugin developement.

2008 VST version 3.0 is released. VSTi now allow audio input, MIDI capabilities are
improved.

2011 VST is updated to 3.5, it contains articulation controls and note expression for
polyphonic MIDI arrangements.

2013 Steinberg discontinues the maintainance of VST 2.0 SDK

As of today (2017), plugins of VST 2.x standard are still most common, because DAW
developers other than Steinberg are reluctant to implement full VST3 support.

2.3 Coding details
Now we are going to plunge into the depths of VST programming. The two different per-
spectives of host and plugin will be presented briefly in this section. Extensive information
can be found in sources [2], [3] and [4].

What exactly is a VST plugin?

“In the widest possible sense a VST plugin is an audio process” [4, p.3]. It cannot operate
on its own, it needs a host application taking care of the framework like audio buffering
etc.

In terms of source code, a VST plugin is (or better starts off as) a C++ class4 called
AudioEffect (VST 1.0) or AudioEffectX (VST 2.0). The source code is platform-
independent, however, having this class obviously is not enough...

First of all, it is an abstract base class. That means that in order to create a new
plugin, you need to derive your own custom plugin class from that class to meet the VST
specification. In this base class, a bunch of methods are declared as virtual. The host
knows the names of these methods (functions), so it can call them while interacting with
the plugin. By deriving your own plugin class, you keep those names, but you may override
what the method actually does.

There are methods that send plugin information to the host, like the name, the number
of parameters or if it is a VSTi. There are other methods that define the function of the
plugin, most importantly get/setParameter, process and processReplacing. The latter two
are called by the host all the time, manipulating the audio input stream in real-time.
Parameter changes can be accounted for within these functions as well. It might look like
this:

4user defined type or data structure – declared with keyword class – that has data and functions as
its members

5

// Apply gain to a s t e r e o input b l o c k o f audio data and ove rwr i t e the output
void MyPlugin : : p roce s sRep lac ing (f loat ∗∗ inputs , f loat ∗∗ outputs , long

sampleFrames)
{

f loat ∗ in1 = inputs [0] ;
f loat ∗ in2 = inputs [1] ;
f loat ∗out1 = outputs [0] ;
f loat ∗out2 = outputs [1] ;
f loat gain = getParameter (0) ;
while(−−sampleFrames >= 0)
{

(∗ out1++) = (∗ in1++) ∗ gain ; // r e p l a c i n g
(∗ out2++) = (∗ in2++) ∗ gain ;

}
}

When you have finished overriding (defining) the required functions, your class may
be instantiated (out of the abstract mysterious fog, a concrete object is formed). This is
achieved by the host. The host calls the constructor of your class when the user loads the
plugin into an audio track. When the user hits the play button, the host starts buffering
the content on the audio track and calls processReplacing, which, in the example above,
changes the volume of the audio.

So far so good. BUT: we are still talking about plain code here. The host can’t do
anything with C++ code lines. It needs to be compiled to something the host can make
use of... This something is platform-dependent.

• On Windows platforms, a VST plugin is a multi-threaded DLL (dynamic link li-
brary). In contrast to a static library5, a DLL can be linked to during runtime. The
concept of sharing code this way has been conceived in the early days of Windows
OS programming, because memory space was precious, and including the same func-
tionality again and again in each compiled system component had to be avoided.
Compiling it once, loading it once into dynamic memory and having all other func-
tions access it on runtime still is the core of today’s Windows operating systems.
There are several downsides to this concept (DLL Hell), but further details will be
omitted here.

• On Mac OS platforms, a VST plugin is a raw code resource (resource fork) or
a bundle. A bundle is a file directory with a defined structure and file extension
(.VST), allowing related files to be grouped together as a conceptually single item.
Concepts similar to DLL are applying here.

The compiled plugin file is placed in a directory known by the host program. The host
maintains a list of all plugins in this directory. It also manages multiple instantiations of
the same plugin, as well as saving and loading plugin states when closing and re-opening
the audio project.

5which is included and linked to at compile time

6

If you are interested in code details for VST programming (raw basics), consult sources
[4] and [2]. For more information about what is going on inside the host program, see [3].

3 VST implementation via JUCE framework
What is JUCE6?

”JUCE is a partially open-source, cross-platform C++ application frame-
work, used for the development of desktop and mobile applications. JUCE
is used in particular for its GUI and plug-in libraries. The aim of JUCE
is to allow software to be written such that the same source code will com-
pile and run identically on Windows, Mac OS X and Linux platforms. It
supports various development environments and compilers, such as GCC,
Xcode, Visual Studio and Code::Blocks.”

All that is needed to start programming a VST plugin is the JUCE library7 and having
installed one of the compatible IDEs listed in the quote above. I developed my plugin on
Windows, using Visual Studio 2017.

After unpacking JUCE, start the application Projucer. It offers you to create a new
project:

This helper guides you through the process of creating your own plugin template,
which is already compilable, which you can use as a starting point when adding your own
functionalities. Choosing Audio Plug-In will take you to the next windows, where you
can select the name for your project (the chosen name will be the name of your plugin

6see https://en.wikipedia.org/wiki/JUCE [5. September 2017, 00:21]
7available at https://www.juce.com/get-juce/download

7

https://en.wikipedia.org/wiki/JUCE
https://www.juce.com/get-juce/download

class as well, so you want to call it something more meaningful than “MyOwnPlugin”,
but let’s continue with this name for demonstration), moreover, choose the IDE in which
you want to compile the plugin later. Projucer will create and manage all relevant files to
be opened in the IDE (e.g., in Visual Studio, it will create and update the solution file).
If you change your mind about which IDE you want to use, you can still choose other
platforms later.

Clicking Create will complete the process and show you four files that have been
created for you. But before taking a look into those, go through the settings first:

It is important that you enable what you want to build. VST and AU8 are enabled
8Audio Unit, an Apple MacOS plugin format. Core Audio Utility Classes needed!

8

by default. RTAS9 and AAX10 require you to contact Avid in order to get the SDKs for
these formats. The Plugin Name and Plugin Manufacturer entries will show in the DAW’s
plugin list. The plugin’s channel configuration is something quite important: You need to
take care about how many input and output channels your plugin accepts. One way to do
so is to fix the configuration right here in the settings, e.g., put a {1, 1} for 1 input and
1 output. Otherwise you need to take care of the PreferredChannelConfigurations section
and the isBusesLayoutSupported-function in the PluginProcessor.cpp file:
#ifndef JucePlug in_PreferredChanne lConf igurat ions
bool MyOwnPluginAudioProcessor : : i sBusesLayoutSupported (const BusesLayout&

layout s)
{

[. . .]
// This i s the p l ace where you check i f the l a you t i s suppor ted .
// In t h i s t emp la te code we only suppor t mono or s t e r e o .
i f (l ayout s . getMainOutputChannelSet () != AudioChannelSet : : mono ()
&& layout s . getMainOutputChannelSet () != AudioChannelSet : : s t e r e o ())

return fa l se ;
[. . .]

}
#endif

Next on the agenda: The exporters options. You need to add the paths to extra
headers or libraries for all your exporters. Because usually, you do not want to copy entire
frameworks, SDKs or similars directly into your projects main folder (that would become
confusing quickly).

Example: You want to use the Eigen C++ template library. You download it and
place it in a location where you generally keep your project-external elements. You tell
Projucer this location. On compilation, it finds and uses those external files. That way,

9Real Time AudioSuite
10Avid Audio eXtension

9

you are not tempted to modify external code (because other projects that depend on that
code might become corrupt if you do).

If you scroll down, the options Optimization and Architecture are well worth a look.
You might want to add new configurations for different settings. Right-click on the IDE
name and select Add a new configuration. By default, there are only two configurations:
debug and release. You may want to add options for 32-bit and 64-bit architecture.

Before going into the code, here are some very important notes to remember at all
times when working with Projucer and an IDE simultaneously:
Projucer and your code editor both are accessing the same code files, and are able to
make changes to them. Making a change in Projucer (and saving) will trigger the IDE
to reload all files that have changed. Making a change in the IDE will cause Projucer to
reload as well (when returning to the Projucer window), but depending on the extent of
the modification, a crash is possible. Please take this fact into account so nothing is lost
during development.

Key rules in short (from [5] and complemented):

1. Beware of modifying your source files in Projucer and external editor simulta-
neously

2. Don’t ever put code outside of the “editable regions” in managed files (designated
by in-line comments), as they are overwritten as soon as Projucer reopens the
file in question

3. Don’t manage project settings in your development environment (always return
to the Projucer and edit settings there!!)

4. JUCE has MANY useful classes. Before building your own XYZ, use the online
class documentation to see if there is a solution already

Now we will take a look at the auto-generated code: Our very own custom (well not
yet...) plugin class is defined in the header file PluginProcessor.h. The class is named after
whatever you called your project when first creating it. It inherits from AudioProcessor
(see after the colon), which is a base class to generally wrap all plugin types you might
want to get in the end (like VST, AAX etc.). This makes the code pretty universal!

The first two declarations in the public section are the default constructor and de-
structor of the class (a basic requirement for classes in C++), followed by functions of the
AudioProcessor base class, that are to be overridden. Most important for the audio pro-
cessing will be the processBlock function. When compiling for VST format, this function’s
content (same is true for other function members) will be translated to the process and

10

processReplacing functions defined in the VST specification [4].

The two function declarations at the bottom are quite important. They take care of
saving & restoring the plugin’s state when the DAW project is saved/loaded:
void ge tSta te In fo rmat ion (MemoryBlock& destData) ov e r r i d e ;
void s e tS ta t e In f o rmat i on (const void∗ data , int s i z e InByt e s) o ve r r i d e ;

The implementations of all these functions can be found in PluginProcessor.cpp. In
the auto-generated version, the absolute minimum is implemented. Although all the func-
tion bodies are there, they merely return a due value or don’t do anything at all (in
case of void-type functions). Exceptions: The constructor, the acceptsMidi, producesMidi
and isBusesLayoutSupported functions involve some preprocessor defines (marked by #),
which react to options you checked in the Projucer’s settings earlier (e.g., the channel
configuration).
The only function with a meaningful implementation is processBlock. It gets the number
of input and output channels, and clears output channels if there are more than inputs.
It also provides you with a writePointer to the data in the audio buffer, but then doesn’t
use it. This is quite comfortable though, because you could instantly start writing your
DSP code into the following line, like so:
for (int channel = 0 ; channel < totalNumInputChannels ; ++channel)
{

f loat ∗ channelData = b u f f e r . getWritePointer (channel) ;
// . . do something to the data . . .
int b l o c k s i z e = b u f f e r . getNumSamples () ;
for (int n = 0 ; n < b l o c k s i z e ; ++n)
{

channelData [n] ∗= 0 .1 f ; // a genera l −20 dB
}

}

11

However, JUCE framework offers a cleaner way for computing gains (amongst many other
useful things). This loop has the same effect as in the previous one:
for (int channel = 0 ; channel < totalNumInputChannels ; ++channel)
{

b u f f e r . applyGain (channel , 0 , b u f f e r . getNumSamples () , 0 . 1 f) ;
}

Here are some helpful facts about how the audio buffer works in JUCE, [8] quotes:

The same buffer is used for both input and output.
When processBlock is called, the buffer contains a number of channels which is at
least as great as the maximum number of input and output channels that this filter
is using. It will be filled with the filter’s input data and should be replaced with the
filter’s output.
So for example if your filter has a total of 2 input channels and 4 output channels, then
the buffer will contain 4 channels, the first two being filled with the input data. Your
filter should read these, do its processing, and replace the contents of all 4 channels
with its output.
Or if your filter has a total of 5 inputs and 2 outputs, the buffer will have 5 channels,
all filled with data, and your filter should overwrite the first 2 of these with its output.
But be VERY careful not to write anything to the last 3 channels, as these might be
mapped to memory that the host assumes is read-only!
If your plug-in has more than one input or output buses then the buffer passed to
the processBlock methods will contain a bundle of all channels of each bus. Use
AudiobusLayout::getBusBuffer to obtain an audio buffer for a particular bus. Note
that if you have more outputs than inputs, then only those channels that correspond to
an input channel are guaranteed to contain sensible data - e.g., in the case of 2 inputs
and 4 outputs, the first two channels contain the input, but the last two channels may
contain garbage, so you should be careful not to let this pass through without being
overwritten or cleared.
Also note that the buffer may have more channels than are strictly necessary, but you
should only read/write from the ones that your filter is supposed to be using.
The number of samples in these buffers is NOT guaranteed to be the same for every
callback, and may be more or less than the estimated value given to prepareToPlay().
Your code must be able to cope with variable-sized blocks, or you’re going to get
clicks and crashes! Also note that some hosts will occasionally decide to pass a buffer
containing zero samples, so make sure that your algorithm can deal with that!
If the filter is receiving a midi input, then the midiMessages array will be filled with the
midi messages for this block. Each message’s timestamp will indicate the message’s
time, as a number of samples from the start of the block. Any messages left in the
midi buffer when this method has finished are assumed to be the filter’s midi output.
This means that your filter should be careful to clear any incoming messages from the
array if it doesn’t want them to be passed-on.

12

Be very careful about what you do in this processBlock function callback - it’s going to
be called by the audio thread, so any kind of direct interaction with the UI (thread) is
absolutely out of the question. If you change a parameter in here and need to tell
your UI to update itself, the best way is probably to inherit from a ChangeBroadcaster,
let the UI components register as listeners, and then call sendChangeMessage() inside
the processBlock() method to send out an asynchronous message. You could also use
the AsyncUpdater class in a similar way.

Now, let’s turn to something different: The face of the plugin! The two files named
PluginEditor define what will be seen, when the plugin is compiled and opened in a host
program:

Screenshot of the template plugin’s GUI, loaded in Reaper

Nothing fancy? Hello World! may not do much, but consider that there already is a
GUI being created for you! All you need to do is start working on it – and Projucer offers
a very handy tool to create GUI components.
Usually, as you click on a GUI cpp file, the Projucers GUI editor opens automatically. The
auto-generated PluginEditor.cpp however is not compatible. In order to start creating your
own GUI, do the following:

1. Either right-click on the source folder in the file explorer or click on the round plus
button at the bottom and select Add New GUI Component.

2. In your source folder, select the PluginEditor.cpp file and overwrite it when asked to.
This will replace both editor files and make them compatible with the GUI editor
feature.

3. When clicking on PluginEditor.cpp in the file explorer again, a squared field will pop
up, under the Subcomponents tab.

4. Select the Class tab and edit the following entries:

• Class name: MyOwnPluginAudioProcessorEditor (or project name)
• Parent classes: public AudioProcessorEditor, public Timer
• Constructor params: MyOwnPluginAudioProcessor& ownerProc

13

• Member initialisers: AudioProcessorEditor(ownerProc), processor(ownerProc)

This will connect the overwritten GUI class to the PluginProcessor, because it ex-
pects this class name in the auto-generated createEditor function. The parent classes
are the ones your new GUI will inherit from (AudioProcessorEditor is necessary, the
timer may come in handy later). The constructor and initalisers are one mechanism
to have a reference of the plugin processor available in the GUI (for sending messages
or signaling parameter changes etc.). The pointer to the processor is passed in the
createEditor function.

5. Set your GUI size and select whether it shall be fixed or resizable. If you choose the
latter, you will need to take care of the resize programming!

6. Now you can go to the Subcomponents tab again, right-click on the squared area
and add new elements.

7. The last tab Code shows you what your creations in Subcomponents tab look
like in writing. If you want to add code manually, do it in the marked sections
only! Everything you write outside these sections will be erased on re-selecting
PluginEditor.cpp in the file explorer! The same is true for the PluginEditor.h.

14

8. In PluginEditor.h, edit the //[Headers] section to #include ”PluginProcessor.h” (this
is necessary for the processor reference ownerProc)

Now the plugin provides a proper basis to work with. Some hints on how to continue:
Look at the JUCE Tutorials available online, start with Tutorial: The AudioProces-
sorValueTreeState class, which introduces an elegant way of defining and managing
adjustable plugin parameters, connecting them to your GUI sliders via attachment and
also easily loading and storing them. For further improving the interaction between GUI
and audio processor, have a look at Tutorial: Listeners and broadcasters. Many more
helpful tutorials including code is available online, featuring advanced GUI design, MIDI
processing, etc.

4 VBAP: Vector Base Amplitude Panning
In this section, the VBAP method is covered, closely refering to the original source of
Pulkki [1].

Audio reproduction began monophonically. One loudspeaker emanated a pointlike
sound field. In the 1950s, (two-channel) stereophony became popular. Two loudspeakers
emenated a sound field within the space between them (on a horizontal line). Sound field
illusion was greatly enhanced hereby, because along this line, multiple sources (e.g. instru-
ments) could be placed for a widened sound perception – while maintaining localisation.

Later approaches stick to horizontal sound fields mostly, but also include holophony
and three-dimensional Ambisonics. The idea is to enhance sound reproduction to span not
only a plain (like 4.0, 5.1 etc.), but all kinds of three-dimensional spaces. Existing methods
stipulate fixed loudspeaker positioning, e.g., Ambisonics loudspeakers are strongly recom-
mended to be placed orthogonally.

VBAP allows loudspeakers to be placed arbitrarily in 2D or 3D. The number of loud-
speakers is customisable. The only requirements for the sound reproduction to work
properly are:

→ The room is not too reverberant
→ Each loudspeaker is approximately equally far away from the listener

4.1 Basics: 2D Panning
The most common method of 2D amplitude panning is called intensity panning. It is
an approximative method. Example: Two loudspeakers in a stereo setup play coherent11

signals. The listener perceives a mono source, localised more to the left or right, depending
11same signal content, different amplitude (or fixed phase-shift)

15

on how high the loudspeakers signal amplitude is. Gain factors (g1, g2) are used to shift
the sound source that way. It is then called a virtual or phantom source. When moving
this source once from left to right, its perceived loudness should be about the same during
the whole journey. To achieve this, signal power is used over raw signal amplitude:

g21 + g22 = C

Think of the parameter C (>0) as a general source volume control. Take a look
at the image. C represents the length of vector p, which indicates the position of the
virtual source. The listener head is in the origin. The vectors l1 and l2 have unit-length12

and point toward loudspeaker 1 and 2. Then, according to vector algebra, p is a linear
combination of the loudspeaker vectors:

p = g1l1 + g2l2

Stereophonic configuration formulated with vectors [1]

The equation can be re-written in matrix form, which simply means that g1 and g2
are bundled up together in a vector called g and the loudspeaker vectors are packed into
a matrix called L:

pT = g · L

[
px py

]
=

[
g1 g2

]
·
[[

l1x
l1y

] [
l2x
l2y

]]
Now, if you as the user want to control where the sound source is, you need to compute

this equation “in reverse” to get the gain factors g1 and g2. In linear algebra, this is done
12length = 1

16

in shape of a matrix inverse (signified by −1 → inversion is usually a quite troublesome
topic, but problems are naturally preempted in this context13). If this inverse exists, the
solution looks like this:

g = pT · L−1

In a final step, the gain factors need to be normalised to satisfy the first equation
(about the consistent signal power), while C is the optional volume control parameter:

gscaled =
gcalculated√

g21 + g22
·
√
C

As soon as there are more than two loudspeakers (in 2D, e.g., a 5.1 setup), the basic
method remains exactly the same, but there will be different L-matrices to choose from
(in 5.1 there will be 5), depending on between which loudspeaker pair the virtual source
is supposed to be. The procedure goes as follows according to [1]:

1. Define your direction vector p

2. Calculate the (unscaled) gain for all possible L-matrices

3. There will be exactly one gain pair with positive values14. This is the one pair
corresponding to the two loudspeakers that are supposed to play. The selected area
is called active arc.

4. As calculating the gain is already part of the previous step, all that is left to do now
is the normalisation.

5. If you are moving the source, you need to keep a copy of the old gain, and cross-fade
those to the newly calculated gains for a smooth transition.

4.2 Extension to 3D
Proceeding to three dimensions is an easy step. Because the equations of the 2D description
hold for 3D as well. The only differences: All vectors have a third entry now, thus the
L-matrix is 3x3. And the selected area (where the virtual source is located) is not an arc,
but a surface segment cut out of a unit sphere (active triangle):

13because two loudspeakers being in the exact same location is physically impossible; two loudspeakers
facing towards each other is a very undesirable setup; and meeting the equidistance restraint of VBAP,
collinearity cannot occur either

14for implementation it is recommended to allow for slightly negative values (numeric stability)

17

Sample config: loudspeaker triangle for 3D panning [1]

Let’s extend the 2D equations to 3D (same order as before):

g21 + g22 + g23 = C

p = g1l1 + g2l2 + g3l3

This equation is even exactly the same, only the dimensions have changed:

pT = g · L

[
px py pz

]
=

[
g1 g2 g3

]
·

l1xl1y
l1z

 l2xl2y
l2z

 l3xl3y
l3z

Thus, the reversed equation doesn’t change either:

g = pT · L−1

gscaled =
gcalculated√
g21 + g22 + g23

·
√
C

Just as in 2D – going from stereo to 5.1 – in 3D there will probably be more than
3 loudspeakers (actually an absolute minimum of 4 is required to even form a three-
dimensional object). So the active triangle amongst many possible triangles (L-matrices)
must be selected. The procedure is the same as in 2D (compute all possible triplets and
select the one with exclusively positive gain).

18

Sample config: 5 loudspeakers, 3 triangles, selection [1]

Some remarks: If some loudspeakers in the setup do not fulfil the equidistance assump-
tion, they can be compensated for using another individual gain and time-adjustment (e.g.,
sample delay). The effect of varying distances impacts the sound reproduction the more
the smaller the triangle is. This is given either if lots of loudspeakers are used in the setup,
or if the setup is not evenly spread with some triangles being really small.

VBAP has three important properties, which are a nice treat, because the method
automatically takes care of those special cases:

1. If p points directly to a loudspeaker (this means p = li), only this particular loud-
speaker (i) plays the signal.

2. If p points directly to the line connecting two loudspeakers of the triangle, the signal
is played only by those two particular loudspeakers, automatically applying the laws
of 2D.

3. If p points directly to the centre of a triangle, then g1, g2 and g3 are equal.

These properties ensure maximal localisation sharpness with the (any) given loud-
speaker configuration.

19

5 VBAP: Implementation as VST plugin
This section will resume at the point where section 3 ended. Specific steps taken to give
the JUCE plugin template the function of VBAP as described in the previous section 4
will be presented.

θ[n] φ[n]

Spherical to Cartesian

Source Position G64x1[n− b]

s[n] VBAP
Gain
Fade

y1[n]
y2[n]
y3[n]

.

.

.

y64[n]

1 input channel
(mono source)

64 output channels

Preset Convex Hull

Custom loudspeaker
coordinates

User text input (GUI)

[x y z]T

G64x1[n]

#channels

Abstract signal flow graph of the VBAP plugin

The signal flow graph gives an overview of what the implementation does internally. It
might be helpful for a better understanding, especially of the advanced sections 5.6 and 5.7.

The input signal s[n] is a mono signal (the first channel of the buffer is assumed to
be the input). The user controls the VBAP processing by choosing the phantom source
position via elevation θ and azimuth angle ϕ during runtime. The user also selects the
loudspeaker configuration, either as a preset or a custom one, using the GUI’s textbox
input (see section 6 for instructions). VBAP computes gains for all channels. 64 channels
are the maximum number of channels. The first ’#channels’ channels are multiplied by
the gain provided by VBAP (using linear interpolation between gains of the current G[n]
and the G[n-b] of the previously processed block), the remaining channels are cleared of
any garbage content (they are silent).

5.1 #include additional code
Natively, C++ offers many nice features. Obviously, not everything is just handed to
you in a “predigested ready-to-use way”. As for the VBAP method (4), vector and ma-
trix representation of certain values is asked for. C++ has the std::vector template. The

20

std::vector is a container, storing elements sequentially, taking care of its (dynamic) size
on its own. The elements can be any kind of data structure, so with std::vector, you can
manage a bunch of classes, or structs, or simple types like int or float.

Mathematical vector and matrix arithmetic is not intended for the std::vector. But
since a matrix inversion and several special multiplications are needed for the core algo-
rithm, why not look for public license C++ code that already exists and that does what
is required? The most versatile possibility is the Eigen template library15. It provides
vector and matrix types of all shapes and sizes, including all basic linear algebra opera-
tions you could wish for (normalize, dot, cross, sum, inverse...). There is even a translation
table16 from MATLAB to Eigen (if you are prototyping in MATLAB).

And we need something to manage the loudspeaker configuration of VBAP, a 3D
construct similar to the one shown in the most recent image. This kind of construct is
called convex hull.

Examplary 3D hull algorithm.
Image source: i.vimeocdn.com/video/539916739_1280x960.jpg

Out of a 3D point cloud, a convex hull algorithm finds the outmost points and connects
them to form triangular surfaces, wrapping the inner points. The hull consists of infor-
mation about which points form those surfaces, and/or additional information about the
surface (face normal vector) or the connecting border lines. Having a convex hull makes
managing the VBAP’s “active triangle” much easier, especially for arbitrary loudspeaker
configurations. The public C++ code used in this plugin is the Newton Apple Wrap-
per, found in [6].

Since Eigen and Newton Apple Wrapper are not part of the C++ standard libraries,
the compiler does not know yet where to find them. Add the path to their directories in
the Projucers Exporter setting as described in section 3. Also add the implementation file
(.cpp) as an existing file to your project (in the Projucer’s File explorer).

15eigen.tuxfamily.org/index.php?title=Main_Page
16eigen.tuxfamily.org/dox/AsciiQuickReference.txt

21

i.vimeocdn.com/video/539916739_1280x960.jpg
eigen.tuxfamily.org/index.php?title=Main_Page
eigen.tuxfamily.org/dox/AsciiQuickReference.txt

// so f a r we add to inc l ude :
#include <vector>
#include <../ Eigen/Dense>
#include ”NewtonApple_hull3D . h”

// o ther s tandard headers f o r c e r t a i n f u n c t i o n s :
#include <algorithm>
#include <cmath>
#include <numeric>

// two c l a s s e s w r i t t en on my own :
#include ” LockedStr ing . h”
#include ” Vi r tua lSpeakerClas s . h”

5.2 Own classes
During plugin development, the issue of threading came up. The JUCE plugin template is
destined for multi-threading. One thread is assigned to compute the core DSP functions
of the plugin only, while the other thread is concerned with everything happening in the
GUI. In this plugin’s design it is necessary that core and GUI exchange data. This opens
up the possibilitiy of data race / race conditions. It is enough for a race condition
to occur that a single thread attempts to change the shared data while the rest of the
threads can either read or change it. This is undefined behaviour! The content of that
shared data is haphazard, depending on which thread accesses first – this is decided at
runtime by the thread scheduler, which means the access order could change all the time.
In the best case, your data becomes garbage (bad enough!), in the worst case applications
using the plugin will crash. However there are methods to avoid this issue.

One of them is using atomic variables. This special type of variables ensures that the
situation is well-defined if multiple threads race at it. The result of an operation (stored
in an atomic variable) however may still cause problems. For example in if-statements
depending on that variables value: Another thread changes the value, while the important
thread will not execute the if-statement’s code, because in this instant the condition is not
met. But: For basic signaling and error code exchanges between threads, atomics work
just fine in case of this specific plugin (see 5.3).

The class LockedString implements another method of avoiding race conditions.
Since atomics are available only for primitive types int and bool and exchanging whole
strings of text between GUI and core is desired, a threadsafe string data type is asked
for. The string stored in the LockedString class as a private member can only be read
or written using special getter / setter functions called tryWriteLockedString or tryRead-
LockedString. They impose a Mutex17 on the process of reading or writing the string
variable by locking the access for as long as it takes to finish this process. As long as

17mutual exclusion

22

one thread is occupied with that string, no other thread will be allowed to operate on it
simultaneously. The JUCE framework provides CriticalSection class and ScopedLock to
achieve this mutex (code example18).

The virtualspeaker class is much simpler. It represents loudspeakers that are not
part of the real configuration, but additional (virtual) ones, which are being created occa-
sionally to improve the implemented VBAP method. It keeps track of how many virtual
loudspeakers there are (by ID) and stores the neighbouring real loudspeakers (also by ID).
More details will be revealed in the hull computation section 5.6. The two class functions
implement the saving and restoring of instances contents (for the plugins get- & setState-
Information functions).

5.3 Parameters
The plugin’s main parameters are the azimuth and the elevation angle, which together
define the position of the phantom source. These two are intended to be adjusted (also
automated) by the user. There are two slider wheels on the GUI for this purpose. As
mentioned in the final paragraph of section 3, the most elegant implementation would be
using the AudioProcessorValueTreeState. A tutorial is available online on the JUCE
website. Here is the VBAP plugin’s implementation:

To use an AudioProcessorValueTreeState object, you can store one in your processor
class (in PluginProcessor.h): Add AudioProcessorValueTreeState parameters; in the private
section. This way, “parameters” will have the same lifetime as the processor.

The AudioProcessorValueTreeState CONSTRUCTOR requires a reference to the Au-
dioProcessor subclass that it will be attached to, and a pointer to an UndoManager object:
parameters (*this, nullptr). Add this statement to the initialisation list of the plugin’s con-
structor: VbapAudioProcessor::VbapAudioProcessor() : parameters (*this, nullptr) – as the
template’s constructor already starts the initialisation list with the BusesProperties and
AudioChannelSet, instead of “:” the parameter statement is appended after it, separated by
“,” followed by the constructor function opening bracket “{” (I explicitly mention this here,
because this syntax may lead to huge problems if you choose to fix the channel configura-
tion in the project settings! Then the added parameter statement causes a million compiler
errors, because the #ifndef block is ignored and there is no “:” to start the initialisation list!

18www.juce.com/doc/group__juce__core-threads#gacedaa6fb1373c96d2d15e7a617a5cec8

23

www.juce.com/doc/group__juce__core-threads#gacedaa6fb1373c96d2d15e7a617a5cec8

This is how the parameters are set:
// − − − − − − − − − − − Managing p l u g i n s parameters − − − − − − − − − − −
//
// AudioProcessorValueTree : : createAndAddParameter (”ID” ,
// ”Name” ,
// ” Labe l s u f f i x ” ,
// Range ,
// De fau l t va lue ,
// Conversion func ,
// Conversion func)
//

parameters . createAndAddParameter (
” polar_angle ” ,
” PolarAngle ” ,
S t r ing (TRANS(”␣\xb0”)) , // degree symbol (U+00B0)
NormalisableRange<f loat >(−90.0 f , 90 .0 f) ,
0 . 0 f ,
nu l lp t r ,
n u l l p t r) ;

parameters . createAndAddParameter (
” azimuth_angle ” ,
”AzimuthAngle” ,
S t r ing (TRANS(”␣\xb0”)) ,
NormalisableRange<f loat >(−180.0 f , 180 .0 f) ,
0 . 0 f ,
nu l lp t r ,
n u l l p t r) ;

• ID should be a unique identifier for this parameter. Think of this as being a variable
name; it can contain alphanumeric characters and underscores, but no spaces.

• Name is the name that will be displayed on the screen.

• Label suffix allows you to specify a suffix (for example ”dB” for gain in decibels or
”Hz” for frequency parameters).

• Range of values that will be represented by the parameter is specified using a
NormalisableRange<float> object to set the minimum and maximum values for the
parameter. This may also specify a skew-factor to make the transition between
minimum and maximum non-linear (see Tutorial: The AudioParameter classes).

• The final two nullptr arguments in this call createAndAddParameter() function are
optional conversion functions to convert between the value and the text that you
want to represent that value (and vice versa). Specifying a nullptr value as either
or both of these arguments uses the default conversion functions (which simply
convert a floating point value to a string and a string back to a floating point value
respectively).

24

The final step after configuring the parameters is to initialise the ValueTree within
the AudioProcessorValueTreeState. This is stored in the state public member within the
AudioProcessorValueTreeState object. This ValueTree object needs an identifier to be
valid (which is used as part of the conversion to XML that we will use to save plugin
states, see setStateInformation in PluginProcessor.cpp). So directly beneath the previous
code (within the plugin’s constructor), add

parameters . s t a t e = ValueTree (I d e n t i f i e r (”VBAPPARMETERDATA”)) ;

”VBAPPARMETERDATA” is the name of the XML object storing the state informa-
tion. At this point the processor is ready to use the AudioProcessorValueTreeState object.
However, the two parameters are not yet connected to the GUI sliders. As it is directly
related to the ValueStateTree, the parameter-to-slider attachment is shown here: Simply
add this thing called SliderAttachment to the GUI component class:
// Dec la ra t i ons in P lug inEdi tor . h (or in t h i s s p e c i f i c case TimsGUI . h)
[. . .]
private :

// [UserVar iab les] −− You can add your own custom . . .
AudioProcessorValueTreeState& valueTreeState ;

ScopedPointer<SliderAttachment> polarAttachment ;
ScopedPointer<SliderAttachment> azimuthAttachment ;
// [/ UserVar iab les]

// I n s t a n t i a t i o n s in P lug inEdi tor . cpp cons t ruc t o r
[. . .]
// auto−generated s l i d e r o b j e c t s us ing the GUI Edi tor f e a t u r e . . .
// ” p o l a r s l i d e r ” and ” a z i m u t h s l i d e r ” need to e x i s t p r i o r to attachment
addAndMakeVisible (p o l a r s l i d e r = new S l i d e r (” P o l a r S l i d e r ”)) ;
addAndMakeVisible (a z imuths l i d e r = new S l i d e r (” AzimuthSl ider ”)) ;
[. . .]

// [Constructor] You can add your own custom s t u f f here . .
polarAttachment = new Sl iderAttachment (valueTreeState , ” polar_angle ” ,

∗ p o l a r s l i d e r) ;
azimuthAttachment = new Sl iderAttachment (valueTreeState , ” azimuth_angle ” ,

∗ az imuths l i d e r) ;
// [/ Constructor]

Now the plugin’s parameters are linked to the sliders. The specific values will be needed
in core processing. They may be accessed within the processBlock core function via:
f loat current_polar = ∗ parameters . getRawParameterValue (” polar_angle ”) ;
f loat current_azimuth = ∗ parameters . getRawParameterValue (” azimuth_angle ”) ;

Then there are all these other plugin-internal variables, that are not visible from the
outside. Here is a short list and explanation what they are for:

25

Eigen::Vector3f srco; ”old” source position
LockedString MessageContainer; stores the GUI’s TextBox content
LockedString CoordInputContainer; stores GUI input text for verification
LockedString ActiveLspContainer; stores the active Lsp IDs for GUI display
Atomic<int> polflag_a; vital flag to get Azi/Ele right!
Atomic<int> coordflag; errorflag for user input processing
Atomic<int> precisionflag; saves the state of the GUI presision button
Atomic<int> selectedslotflag; saves the state of selected combo box slot
Atomic<int> saveflag; 1: Reaper project was saved,

0: Custom ComboBox may be set once more
→ this flag must not be saved in XML!

Atomic<int> go_signal; checked in VbapAudioProcessor::timerCallback()
calls refreshLspSetup(), suspends processing!

std::vector<Eigen::Vector3f> originalLspCoord; stores input coordinates as a first instance
(after GUI read in)

std::vector<R3> current_pts; definite point coordinates + IDs
std::vector<R3> current_pts_ext; definite point coordinates + IDs (extended hull)
std::vector<R3> current_pts_ext_pre; copy needed, as NAW resorts current_pts_ext...
std::vector<Tri> current_tris; holds faces of the hull + IDs + normal vectors
std::vector<Tri> current_tris_ext; holds faces of the extended hull + IDs + normals
std::vector<Eigen::Vector2i> lspOrder; (x) NAW ID and (y) original ID
std::vector<Eigen::Vector2i> lspOrder_ext; (x) extern NAW ID and (y) extern ID
std::vector<float> dim_factor; special factor for each virtual Lsp (gain weight)
std::vector<int> virtual_IDs; self-explaining
std::vector<virtualspeaker> virtual_Lsp; holds the ID of each virtual Lsp and most

importantly its neighbours!
Eigen::Matrix<float, 64, 1> G_final; fixed 64x1 float vector, for ”old” gain values

in order to enable gain fading

5.4 Function members
A fair share of functions has been added to the plugin class. They can be categorised into
groups depending on what they do:

functions around the hull computation
computeEverythingHull(); everything concerning the hull computation
isThisVirtual(); quick check if some Lsp is virtual (by ID)
comb(int N, int K); returns all N-choose-K combinations listed as vector
setCurrentPts(); sets the loudspeaker coordinate configuration
setCurrentPtsExt(); sets the configuration, virtuals being added
setCurrentTris(); computes the (real) convex hull
setCurrentTrisExt(); computes the (extended, virtual) convex hull
getCorrectChannelOrder(); necessary because NAW resorts the Lsps...
getCorrectChannelOrderExt(); again when recalculated including virtuals

26

verifyGUIinput(); checks GUI input coordinates, gives error messages
refreshLspSetup(); wrapper function, calls verifyGUIinput(), then

comuteEverythingHull()
fullResetToIEM(); resets the whole plugin to IEM, in case something

went wrong

functions around processBlock
getSourcePositionUpdate(); calculates the phantom source position (based on

current slider state)
calculateHullGain(); implements VBAP method (see 4)
polarRotationSign(); vital function to get Azimuth/Elevation right!
linspace(); MATLAB function “linspace” ported to C++

conversions of all sorts
convertCarthesianToSpherical();
convertSphericalToCarthesian();
R3toVector3f(); R3: struct format used in Newton Apple Wrapper
Vector3ftoR3();
MultiVector2iToStdVectorInt();
juceToEigenVector3(); JUCE Vector3D<float> to Eigen::Vector3f

message string generating functions... (continued in this column)
generatePtsInfoMsg(); generatePtsExtInfoMsg();
generateTrisInfoMsg(); generateTrisExtInfoMsg();
generateOrderInfoMsg(); generateOrderExtInfoMsg();
generateLInfoMsg(int i); generateGfinalInfoMsg();
generateDimfactorInfoMsg(); generateVirtualLspInfoMsg();
showMatrixValuesLin(); generateCustomCoordinatesMsg();
generateCoordinatesMsg(); generateVirtualCoordinatesMsg();

showSelectedMessages(); a wrapper function for all the above

XML for get/setStateInformation
createXmlState(); turns whole plugin (variables) into an XML element
readXmlState(); restores the entire state of the plugin

The implementation of these functions may be accessed in the project’s code provided on
the IEM server (GIT).

5.5 The GUI
The plugin obtains its own GUI. I start off after overwriting the default “Hello World”
GUI of the plugin template (see 3). Components are added using the Projucer’s GUI
Editor feature. Notice that there are certain elements missing compared to the GUI of
the loaded plugin. This is due to the fact that the Projucer can only show elements that
are created and maintained in the Subcomponents tab. However, some desired behaviour
could not be achieved this way. So if modifications need to be made, there are several
ways of doing that:

27

1. If you simply want to change the styles and appearances of the components, you can
create your own custom look using the JUCE LookAndFeel class19.

2. If you want standard components to behave differently, you can make your own
class, inheriting from existing components.

3. If it is just a tiny detail that cannot be done in the GUI Editor (and not worth creat-
ing an entire class for it), create the component anyway and move the auto-generated
code (Code tab) to the user-defined areas like //[Constructor_pre] or //[UserPreSize].
It won’t show in the Subcomponents tab anymore, but it will be visible in the plugin
after compilation.

The third method is used for the head image inside the elevation circle and the Group-
Components wrapping the x-y-z position information and the active loudspeaker display
on the right bottom side. The head image (just like the background and the azimuth head)
is created in the Graphics tab, selecting New Image and setting the image source. In order
to assign an image file, add the file in the Resources tab, it will then show in the image
source choices. Beware: All images will be cached in the plugin’s final file (dll/bundle).
Take quantity and image resolution into account!

The elevation head is supposed to rotate along with the slider knob’s movement in
a specific way. JUCE has the AffineTransform class which provides a function to rotate
images. It is important to set the centre position, around which the image will rotate:
headimage−>setTransform (Aff ineTransform : : i d e n t i t y . ro ta ted (0 . 0 f , 1 1 0 . 0 f , 1 3 0 . 0 f

)) ;
headimage−>se tCent r ePos i t i on (110 , 130) ;

The GroupComponent elements are moved to the //[Constructor_pre] section simply
because they would block the label components displaying x, y, z and the active loud-
speaker IDs. This way, they are placed on a layer below the displayed information.

19Tutorial: www.juce.com/doc/tutorial_look_and_feel_customisation

28

www.juce.com/doc/tutorial_look_and_feel_customisation

What is the user allowed to control?

The two main controls are the two sliders adjusting the phantom source position (see 5.3).
The GUI intends to visualise this: The slider knobs actually mimic the source position,
and the heads inside each slider’s cirlce represent the listener. Now, as the knob is moved,
the played sound will be perceived at the location indicated by the relative head-knob
positioning. Intuitive control is granted to the user (without the need for expensive 3D
modelling). The sliders are both fully rotational: seamless arbitrary circular movements
become possible this way. Some tweaks have to be made though:

The azimuth angle is mathmatically defined in the range ∈ [0, 2π], so a full circle is the
appropriate way of representing this range. However, there are two problems: 1. It would
be much more intuitive to define the zero-angle right in front of the head’s eyes. So a range
of ∈ [−π,+π] is chosen instead. 2. Coordinate systems are commonly given right-handed
orientation: The angle is defined to increase on counter-clockwise rotation and decrease
on clockwise rotation. Translated: Moving the azimuth knob to the left causes the audio
to move right and vice versa. The quickest way of fixing this is to invert the sign of the y
coordinate when converting the elevation and azimuth to Cartesian coordinates.

The elevation angle is mathmatically defined in the range ∈ [0, π], which is sufficient for
unique representation in spherical coordinates. In this case as well, the zero-angle shall lie
in front of the head’s eyes: new range ∈ [−π/2,+π/2]. Unfortunately, this range spans
only half a circle – and the slider components do not allow for jumps – if the desired
value went beyond the sliders end position, it would just stop right there. The solution I
came up with is stretching the range to a full circle. This way, when going beyond +π,
the value will automatically jump to −π, ensuring the required smoothness in phantom
source positioning. A new issue is caused by this: Moving the elevation knob to a visual
90◦ results in an actual value of 45◦ because of the stretching. So if the head is fixed (like
in the azimuth case), the relative position will be wrong. The scaling is the reason why
the head image is made to rotate. A complicated custom function manages this rotation.
It also takes into account that when the azimuth knob is in a position behind the azimuth
head, it should also be displayed as being behind the elevation head! The same is true
vice versa: If the elevation angle makes a jump (surpassing the range), the azimuth slider
will jump as well (by 180◦).

The high precision button activates the phantom source movement feature described
in section 5.8. It applies only if the source movement is very fast – for instance steep au-
tomation jumps. In this case, the standard gain fade is replaced by orthodromic distance
interpolation: intermediate source points (an estimated number of 1 to 8) are inserted
between the old and the new source position based on how far they are apart – using
the shortest path on a spherical surface. This procedure will be computationally more
expensive while being more precise in terms of location, however it will perform this ex-
tra computation exclusively if the source movement within one block of buffered audio

29

is sufficiently far. In usual applications, this extra feature won’t be necessary, so it is
recommended to leave it switched off.

The toggle button in the GUI’s title (between the curled braces) allows the user to
switch between VBAP and VBIP. As is known from previous explanations, the ’A’ in
VBAP stands for ’Amplitude’ – because the gain computed by VBAP is used unmodified
as described in section 4. The new ’I’ stands for ’Intensity’ and takes the square root of
the VBAP’s gain computation before continuing with the normalisation.

The operation of the menu, textbox & buttons deserves its own special place. Details
will be explained there (6). A short overview: Selecting a menu preset will suspend audio
processing and trigger convex hull computation and loudspeaker coordinate setup. When
finished, the Show All button may display information about the current configuration
in the textbox. Selecting the custom menu will display input format instructions in the
textbox. The Verify Input button is available to be pressed now, it triggers configura-
tion computations when clicked. The textbox will show messages over the process of the
computation and reveal possible errors. If something goes wrong, the plugin will reset
itself to the first preset. Adding presets is not possible, but the custom configuration is
saved for this particular effect instance when the audio project is saved in the host program.

The GUI has (is) a timer object (introduced when overwriting the default PluginEditor
files, see 3). Now its usefulness is examined: timer provides the function timerCallback,
which is called at regular intervals while the plugin is running. The interval is set in
the GUI constructor (in the user-defined section!) by startTimer(50); the value being the
time interval in milliseconds. 50 has been chosen because it translates to 20 frames per
seconds: the callback function exclusively updates the GUI display (head rotation, coordi-
nates, active loudspeakers and textbox), so this is a reasonable trade-off between wasting
computational resources and stuttering visuals.

Remarks: For each instance of sliders, buttons and menues (and other components
created in the Subcomponents tab) there is a vital function that takes care of what happens
if this specific component is activated or used or clicked etc.; and Projucer auto-generates
code lines – they just need to be filled with something meaningful. The functions in
question are:

• TimsGUI::buttonClicked()

• TimsGUI::comboBoxChanged()

• TimsGUI::sliderValueChanged()

• etc.

Some of the atomic flags introduced in section 5.3 are intended to be set by the GUI,
so that the processor is informed of certain changes. The polflag_a is needed for correct

30

conversion from spherical to Cartesian coordinates involving the concept of the slider
angles described earlier. The selectedslotflag saves the currently active menu entry (the
plugin processor needs to know this for save & restore). The precisionflag indicates whether
the high precision feature is active (info directly for the core processing). And most
importantly the go_signal tells the core of the plugin to start re-computing the loudspeaker
configuration (immediate asynchronous message exchange between plugin core and GUI!
See section 5.2 to learn about the dangers surrounding data exchange between threads).

5.6 Algorithm: Hull computation
Now, the go_signal is given either if a menu preset is selected or if the user has entered his
own coordinates and hits the Verify Input button. In any case, the following procedure is
exactly the same: The core processing of the plugin is suspended (as operating on partially
complete configuration data is quite dangerous) and the LockedString type instance called
CoordInputContainer filled with the requested data (= coordinates of either the presets
or the custom user input, both as a JUCE String).

The LockedString is the threadsafe method of transfering string data from the GUI
thread to the core processing thread. The go_signal makes sure that the string data is
processed only after the data write is complete. Making the plugin core realise that it
needs to start the new configuration computation is actually the exact same method al-
ready applied in the GUI: a timer! The core plugin class also inherits from the JUCE
Timer class, and its callback function checks whether the go_signal is set. If it is, the com-
putation process is executed. The interval of this timer however is far more generously
spaced, because re-computation is expected to happen very rarely (maybe once or twice
when starting a new audio project). So excessive checking is to be avoided at all cost –
because this checking will impede the audio thread. On the other hand, the user shouldn’t
need to wait for too long after having decided on a configuration. The trade-off value of
1 check per second seems reasonable.

As a first step, the refreshLspSetup() function is called from within the timer callback.
It is a wrapper function for the entire configuration computation process. These inner
functions are executed sequentially:

1. clear() — any and all variables involved in the convex hull computation are cleared
for a fresh start

2. verifyGUIinput(...) — is executed, the CoordInputContainer.tryReadLockedString() be-
ing read and passed as the argument as to what is supposed to be verified. Within the
function, the string argument is parsed and converted into an std::vector<Eigen::Vec-
tor3f>. Many things can go wrong as soon as arbitrary user input is involved. This
function makes sure that no user input can crash the plugin. In the end, it returns
a bool true, if everything went according to plan.

31

3. This bool is checked to determine, if execution may continue as planned. If not, a
failsafe resets the plugin to the default menu preset (so that at least processing can
be resumed; otherwise the plugin will never leave the suspended state).

4. If the bool is true, the giant function computeEverythingHull() is executed. During
the process, various messages (error or success) will be generated and appended to
the content of what the user sees in the GUI textbox. In any case of error occurance,
the plugin will be reset to the default menu preset.

5. The convex hull is computed based on the current coordinates (in setCurrentTris();
the Newton Apple Wrapper Algorithm is used, see [6]). The result is a list of “Tri”
entities (managed by an std::vector), a “Tri” is a data struct defined in the convex
hull algorithm. It contains data about each triangular face of the computed convex
hull, like the three corner points (representing the loudspeakers in the setup that
span those triangles, see illustrations in section 4), the normal vector of the surface
and the border lines of the triangle.

6. The convex hull algorithm re-sorts all coordinates before calculating the hull. So
in order to actually use the calculation result, at least the original order needs
to be known, so the corresponding results can be re-associated. This is done in
getCorrectChannelOrder(); which links the “NAW” IDs to the original IDs.

This convex hull would already work. But there are certain problems to be expected in
audio reproduction: Although the convex hull always consists of triangles, some of these
triangles may come to lie in the same plane. For a satisfying audio localisation it is
recommended to take these cases into account.

Example: Four points 18, 19, 23 and 24 of the hull lie in the same plane – they span
a rectangle, which is tragically divided into two triangles. In case the source is in the
middle of the rectangle, only the two diagonally opposite loudspeakers (connected by the
common border line) will play – whereas all four corner loudspeakers should be active in

32

this situation. The plugin must thus detect these cases, implement a solution (v7), and
translate this solution onto the actual current louspeaker configuration.

7. The surface normals of the triangles are compared. In order to do this and not miss
anything, all possible combination pairs are gathered in a huge vector container.
Using these combinations, the normals are checked pair-wise if they are parallel. If
they are, this particular combination is saved in sameplanes.

8. Only unique combinations are rectangles. If triangle IDs occur multiple times, there
are more than 4 corner points in the same plane. This case is assumed to occur only
in the bottom-most layer of speakers (ground plane). For this case, there is a special
virtual speaker assigned later. If this case occurs anywhere else, it is ignored and left
untouched – the default triangles will handle these cases just fine. The sameplanes
variable is reduced to only contain combinations representing rectangles.

9. The centre of each rectangle is computed. A virtual loudspeaker is created right
there (with a tiny offset towards the outside of the hull as to guarantee it will be
part of the new – extended – convex hull). Each virtual loudspeaker has an ID
(continuing after the last ID of a real loudspeaker), a dim-factor (see section 5.3),
and a list containing the neighbouring real loudspeakers.

10. A special virtual speaker is created at a position below the ground level if every
z coordinate > 0 — which is usually the case20. This will spread the audio signal
among all groundlayer loudspeakers accordingly, as soon as the elevation angle slider
claims negative elevation (i.e., depression). A dim-factor of 0.5 is assigned so the
audio will fade as the elevation approaches -90◦. It is important to note that the
listener position must always be inside the convex hull for the VBAP algorithm to
find active triangles.

11. The new extended convex hull is computed, including the new virtual speakers. Once
again, the algorithm re-sorts, so the order needs to be restored (getCorrectChannelOr-
derExt()).

All variables required for the real-time VBAP computation are set now. The routine
returns to the refreshLspSetup() wrapper function and resumes processing, using the new
configuration.

20because nobody in his right mind would mold speakers into the room’s floor... — all joking aside:
The listener is always assumed to be in the origin of the coordinate system. But if an elevated listener
position is intended (the listener is dangling in the air in the middle of the room for some reason... joking
re-enabled!), coordinates with z < 0 may occur. Then the special virtual speaker will not be inserted.

33

5.7 Algorithm: VBAP real-time
This sections briefly describes the implementation of the VBAP method (see equations
in section 4) encompassing the functions prepareToPlay() and processBlock(). The most
prominent parameters are the position of the phantom source and the loudspeaker
gains associated with it. VBAP is computed in a block-wise fashion, comparing position
data (to determine if a new gain computation is even required) and fading gains. So before
the block processing begins, an “old” version of the position as well as the gain vector are
necessary. That is why – in prepareToPlay() – the slider values are read once to calculate
the old source position srco, and, for this position, calculate the corresponding gain vector
G_final.

In processBlock(), the first thing to do is check the host application’s channel config-
uration. VBAP requires exactly one input (monophonic) and outputs depending on the
number of loudspeakers. For reasons of lacking time, a sophisticated channel management
has been substituted by the simple work-around of requesting the maximum number of
channels available in any host program so far (64) and occupying only those needed, si-
lencing the remainder by a zero gain multiplication. The plugin assumes 64 channels to
be given. If they aren’t, it won’t process anything.

There are several more checks in place: If the input buffer is empty, nothing needs to
be done, the output will also be empty using a simple clear command. If there is no source
movement, nothing new needs to be computed, the old gain is simply applied to the buffer.

If the source did move slightly (or if the precision button is disabled), the gain will
be recomputed by the calculateHullGain() function implementing the VBAP method. All
zero gain entries will clear the corresponding channel, while non-zero gain values will be
crossfaded (old to new gain value, linear) using the JUCE buffer.copyFromWithRamp()
function. This will be the most common situation during processBlock.

Else (if the source did move more rapidly or the precision button is enabled), the princi-
ple of orthodromic distance will be applied (see next section). But in order to conclude this
section, here is a brief description of the VBAP implementation in calculateHullGain():

34

• Current source position vector passed as input argument

• Local gain vector G created (will later be the return value)

• A loop cycles through the entire extended convex hull, searching all triangular sur-
faces one after the other, picking the VBAP matrix L each time and computing
the gain triple (vector) g (see equations in section 4), until it finds one (the one)
possessing all positive values > 0. The loop may stop early now.

• If the toggle switch is enabled, the square root of the gain vector is taken element-
wise (rendering it an intensity panning). Otherwise, the gains are left unmodified.

• Gains are then normalised.

• An if-statement checks whether there is a virtual loudspeaker involved in the selected
triangle. If so, the (real existing) neighbours of this virtual are retrieved, and the
gain of this virtual is split among all neighbours according to sound intensity law.
If not so, normal hull and extended hull are the same in this spot. The correction
of the loudspeaker order needs to be applied here, otherwise there will be complete
gain chaos (this happened during early testing!). G is filled with those gain values
at the indices corresponding to the appropriate channels to which the loudspeakers
are routed.

• Finally a gain compensation of a fixed -1 dB is applied (because tests revealed that
the method including virtual extensions may cause slight overshoot under extreme
circumstances).

As a last step in processBlock, depending on which entry in G_final is non-zero, the
active loudspeakers are determined and packed into the dedicated LockedString for thread-
safe GUI access and display.

5.8 Algorithm: Orthodromic distances
This algorithm is my own little addition to improve the real-time VBAP. It has been
prototyped and testet in MATLAB before implementing it in C++.

Two points (given in spherical coordinates, with elevation θ and
azimuth ϕ) are lying on a unit sphere (radius = 1). Then the shortest
distance between these two points – taking the path on the spheric
surface – is defined by the arc segment enclosed by their central angle.
It is called orthodromic distance or great-circle distance. Using the
spherical law of cosines, it is calculated in the following manner:

d = arccos(cos(θA)cos(ϕA)cos(θB)cos(ϕB)+

cos(θA)sin(ϕA)cos(θB)sin(ϕB)+

sin(θA)sin(θB))

35

The distance influences how many intermediate points are inserted. If processBlock
goes for the orthodromic interpolation, it has checked source movement already, which is
great enough to justify at least 1 intermediate point. The number of points lies between
1 and 7, defined empirically by:

n = round(5 ·
√
d− 1)

The spacing is equidistant. The intermediate points are calculated by defining a corre-
sponding equidistant time spacing and evaluating the arc (trajectory) at each step, using
a Gram-Schmidt orthonormal basis to get Cartesian coordinates in the result (for com-
patibility with computeHullGain).

The audio buffer is split into segments in accordance to the time spacing. The VBAP
method is applied in each segment separately, resulting in a far more accurate source
movement.

6 Instructions: Custom loudspeaker setup
The most pleasant quality of vector base amplitude panning is that it can be applied to
literally any loudspeaker configuration. This section clarifies the regulations for correct,
acceptable coordinate input in the plugin’s GUI. A short version can be found in the ap-
pendix plugin manual.

Selecting the Custom slot in the preset menu will – in contrast to the other presets – not
instantly calculate a configuration, but provide information about the input format in the
textbox:

Enter custom speaker setup:
→ use carth. coordinates [x,y,z] (float)
→ last ’;’ signifies the end.

36

→ Format:
9.23985295, 7.38439853, 13.92850935;
...
2.98938455, 4.92838593, -7.92839521;

In order to avoid any misinterpretations of your input, make sure to clear the entire
content of the textbox before pasting your own coordinates. It is recommended you stick
to the format rules as precisely as possible (although the program takes care of some minor
errors). The separating comma between the coordinate entries is absolutely necessary, as
is the semicolon concluding every coordinate (the spaces are optional). The parser reads
through the whole input string and stops at the very last semicolon (signifying the last
coordinate). Each segment in between separators is read in as a floating point variable
and stored in a vector container holding the entire coordinate matrix.

The values in those segments may be zero, negative zero, already normalised values,
values sharing the same unit of length (e.g., metres, inches, feet, yards...) up to a magni-
tude of 100, positive or negative sign.

Clicking the Verify Input button will trigger the computation. The pasted coordi-
nates will be kept in the textbox contents, messages about the computation progess will
be added at the top. In case something is wrong, you will get specific information about
it, so you can look at the pasted string again and retry.

Once your coordinates have been accepted, they also become normalised if necessary.
Normalisation includes removing a possible z-coordinate offset so that the ground layer of
loudspeakers lies approximately in the xy-plane. Virtual speakers will be added if neces-
sary. Hit the Show All button to attain all information about the convex hull of your
configuration. The coordinates will also be displayed in this information package, so noth-
ing is lost.

If you save your audio project in the DAW host, the plugin’s state will be saved as
well. It will remember that you selected the Custom slot and will restore your input
configuration in your next mixing sessions. Should you, however, decide to change the
selected slot to one of the presets (or hit the Clear & Reset button), the plugin will
forget your custom input, and on reselecting the Custom slot it will show the format
message again. You will need to re-enter your input in this case. It is recommended you
keep your own configurations, e.g., in textfiles as a backup.

Last but not least, here is some MATLAB code to help you generate coordinate input
(in case the approximate loudspeaker positions in azimuth and elevation are known).
The generated coordinates are following the input rules of the plugin and are already
normalised:

37

% Enter your custom coordinates as azimuth and elevation
Azi = [0 30 -30 45 -45 90 -90 135 -135 180];
Ele = [0 0 0 45 45 0 0 0 0 55];

Setup = zeros(size(Azi,2),3);

for h = 1:size(Azi,2)
xs = cosd(Azi(h)).*cosd(Ele(h));
ys = sind(Azi(h)).*cosd(Ele(h));
zs = sind(Ele(h));

Setup(h,:) = [xs ys zs];
end

norms = sqrt(sum(abs(Setup).^2,2));

Setup_normed = repmat(1./norms,1,3) .* Setup;

X = Setup_normed;

for i = 1:size(X,1)
fprintf('%.8f, %.8f, %.8f;\n',X(i,1),X(i,2),X(i,3));

end

To provide a complete example of what a valid user input configuration coordinate set
looks like, the output of the above MATLAB code is printed below:

1.00000000, 0.00000000, 0.00000000;
0.86602540, 0.50000000, 0.00000000;
0.86602540, -0.50000000, 0.00000000;
0.50000000, 0.50000000, 0.70710678;
0.50000000, -0.50000000, 0.70710678;
-0.00000000, 1.00000000, 0.00000000;
0.00000000, -1.00000000, 0.00000000;
-0.70710678, 0.70710678, 0.00000000;
-0.70710678, -0.70710678, 0.00000000;
-0.57357644, -0.00000000, 0.81915204;

Note: The input values do not need to have as many decimal places as in the example.
It is however recommended for them to contain the decimal point, because for a yet
unknown reason, if the input is for instance 0, 0, 1;, it will not be recognized by the
verification. Try 0.0, 0.0, 1.0; instead.

38

7 Plugin testing
This section hints at how to properly test a plugin. The testing goes way beyond solv-
ing compiler errors, because the plugin is a dynamic library built for runtime operation.
Having spent lots of time dealing with – and finally understanding meanings of – compiler
messages, one feels extremely relieved when the code finally compiles without errors. The
result is then pulled into a favourite host application to see how it looks... and BOOM!!
Your host application crashes and you are desperate and clueless as to what went wrong.
And believe me – a lot can go wrong, even if the code compiles flawlessly!

Fortunately, there are ways to debug the plugin during runtime. This is something
Projucer didn’t take care of for once – you need to set it up yourself. However, it created
a debug exporter for you. You simply need to make some changes in the configuration –
but this time not within the Projucer, this time in your IDE. I will show the process for
Visual Studio 2017. Similar settings can be made in Xcode, CodeBlocks etc.

Select Debug mode (let platform set itself) and choose Gemischt (Mixed) debugging

Mixed mode is important, otherwise the debugger won’t notice break points you set
in your plugin code as the host application loads and uses it. Now, how do I make the
debugger interact with my favourite host application (e.g. Reaper)?

Right-click on the bold-faced project
name in the solution explorer (the
startup project that is being built by
default) and select Properties (Eigen-
schaften).

In the configuration settings, go to Debug-
ging and modify Command (Befehl) to con-
tain the path to the .exe of the desired plugin
host application (e.g., Reaper in this case). In
Command arguments directly below, you
need to hand the compiled .dll over to the
host → ($ProjectName).dll. The type of
debugger is set to Mixed here as well, accord-
ing to what was set in the first step above.

39

If you now compile in debug mode and start the (local Windows) debugger, the host
application will start automatically – and check for newly added plugins. If you have set
a break point within your plugin’s constructors code, your IDE will pop up and suspend
operation of the host application until you continue or step through etc. If the plugin’s
initial check by the host turns out to be fine, you can go ahead and try to load the
plugin into an audio track. This will cause the debugger to become active again. Now
you test what your plugin does in live action. If something comes up during runtime,
you will usually get assert messages or exceptions. The recent history (stack frame =
Stapelrahmen) prior to the bug gives you hints about what may have caused the problem.

The screenshot shows an example debug session. A break point is set in the plugin
class constructor before the parameter polar_angle is created. Reaper.exe is currently
running, but halted due to the break point. The stack frame (Stapelrahmen) shows
which function in the code is currently in execution (it’s the VBAP plugin constructor)
and lists other function calls that happened before, leading to the plugin’s constructor
function. These may be functions of your own written code, or of code included by
external headers (e.g., the JUCE framework, wrapping your code to fit the VST spec-
ifications in this example) or machine code of the host application (which obviously
is not shown to you as actual code, because has been compiled).

Briefly: An issue came up while debugging, concerning the auto-generated code of the
Projucer’s GUI Editor feature: As components such as buttons or sliders are added in the
Subcomponents tap, they are automatically registered as being listened to by the main
GUI component (e.g., polarslider->addListener (this);). To avoid bugs, it is recommended
to manually un-register those listeners in the user-defined section of the GUI’s destructor:
//[Destructor_pre] ... polarslider->removeListener(this);

Remark: If you run into asserts, the JUCE code is very well commented in those code
areas where programmers are expected to end up. For example, when it comes to string
coding, all kinds of platform-dependent issues may occur. Then JUCE comments explain
how to achieve the correct symbols avoiding misinterpretations.

40

8 Conclusion
The plugin is up and running. Looking back, I realise that the code solutions I came up
with may not be the most efficient, most readable, most maintainable or most elegant way
of design or implementation. More experienced programmers may even throw their hands
up in despair. Having attended some lectures and laboratories involving C programming
and assembler, this project is my first adventure towards C++. I started familiarising
myself with the C++ language basics (advancements since C) by writing tiny tutorial
programs.

When I felt confident enough I started reading Designing Audio Effect Plug-Ins in
C++ [7] and did most of the examples discussed in the book, which are focussing on the
core DSP processing for the greater part. But the resulting plugins kept conveying the
impression to be tied to the associated host program RackAFX written by the author,
Will Pirkle, additionally the compiled dll files were huge, containing more than 80% un-
necessary content in my specific case of application.

So I briefly tried IPlug, but since there were no tutorials or guides on how to start
or proceed (there is a framework documentation though), so I ran into the brick wall of
lacking programming skills.

Things went on much smoother on my next attempt in JUCE. It took quite some
time finding my way around the API documentation and JUCE’s coding paradigms. In
the process, I have learned to very much appreciate what JUCE has to offer, and have
finished the VBAP project using this framework. I also have to acknowlegde the most
helpful capabilities of Visual Studio 2017 which go way beyond syntax highlighting – and
which made me write large portions of code in VS2017 instead of the Projucer (even
though I advised against it earlier in this documentation). Superior features like Intel-
liSense, advanced code search and navigation just make a programmers life so much easier.

This project spanned the time of almost a year from its announcement to its com-
pletion; it has been interrupted by unfortunate personal events, superceded by more im-
portant tasks and put on hold because of knowledge and skill troughs. But in the end I
completed the plugin, learning a great deal about programming in general and C++ plus
the VST environment in particular. For all people who want to take on the adventure of
VST plugin programming, I gathered information and descriptions in this project docu-
mentation (and also in the appendix (8) Q&A) in order to ease their path – so they shall
not end up spending a whole year like me ⌣̈

I deem this project to be at least a great personal success and hope that it may be of
use to others in the future.

41

References
[1] V. Pulkki, “Virtual Sound Source Positioning Using Vector Base Amplitude Pan-

ning”, Laboratory of Acoustics and Audio Signal Processing, Helsinki University of
Technology, FIN-02015 HUT, Finland, 1997. [Online]. Available: http://lib.tkk.
fi/Diss/2001/isbn9512255324/article1.pdf.

[2] TERAGON, How to make VST plugins in Visual Studio, Online, 2012. [Online].
Available: http://teragonaudio.com/article/How-to-make-VST-plugins-in-
Visual-Studio.html.

[3] TERAGON, How to make your own VST host, Online, 2012. [Online]. Available:
http://teragonaudio.com/article/How-to-make-your-own-VST-host.html.

[4] Steinberg, Virtual Studio Technology Plug-In Specification 2.0 Software Development
Kit, Media Technologies GmbH, 1999. [Online]. Available: http://jvstwrapper.
sourceforge.net/vst20spec.pdf.

[5] RedwoodAudio, JUCE 4.x for VST Plugin Development, 2012. [Online]. Available:
http://www.redwoodaudio.net/Tutorials/juce_for_vst_development__intro.
html.

[6] D. A. Sinclair, A 3D Sweep Hull Algorithm for computing Convex Hulls and Delaunay
Triangulation, Online, 2016. [Online]. Available: http://www.newtonapples.net/
paper/NewtonWrapper.pdf.

[7] W. Pirkle, Designing Audio Effect Plug-Ins in C++. Taylor & Francis, 2012, isbn:
9781136699764. [Online]. Available: https://books.google.at/books?id=QddcxHLavrMC.

[8] JUCE, API documentation, online, 2017. [Online]. Available: https://www.juce.
com/doc/classes.

42

http://lib.tkk.fi/Diss/2001/isbn9512255324/article1.pdf
http://lib.tkk.fi/Diss/2001/isbn9512255324/article1.pdf
http://teragonaudio.com/article/How-to-make-VST-plugins-in-Visual-Studio.html
http://teragonaudio.com/article/How-to-make-VST-plugins-in-Visual-Studio.html
http://teragonaudio.com/article/How-to-make-your-own-VST-host.html
http://jvstwrapper.sourceforge.net/vst20spec.pdf
http://jvstwrapper.sourceforge.net/vst20spec.pdf
http://www.redwoodaudio.net/Tutorials/juce_for_vst_development__intro.html
http://www.redwoodaudio.net/Tutorials/juce_for_vst_development__intro.html
http://www.newtonapples.net/paper/NewtonWrapper.pdf
http://www.newtonapples.net/paper/NewtonWrapper.pdf
https://books.google.at/books?id=QddcxHLavrMC
https://www.juce.com/doc/classes
https://www.juce.com/doc/classes

Appendix
A: How to make a VST plugin? (Q&A)

43

How to make a VST plugin?
Q&A-style

This document addresses the issue of where to begin creating a self-made VST plugin. When I
found myself in this situation, I experienced that it is not at all easy to find hands-on information
on how to start, what is required in terms of knowledge and skills, but also in terms of programs
and additional components. Where to begin? What important aspects to consider?

Reading this Q&A will give you some ideas (and hopefully answers) about what VST plugin
programming is all about and provide you with a pool of material to proceed from.

This serves as an appendix to my Toningenieurs-Projekt university-related work at IEM Graz.
Tim Raspel, written in September 2017.

List of Questions

Q1: Which skills are useful if I want to make a VST plugin? . 2

Q2: I am an absolute beginner, are there very easy ways to make a VST plugin? 2

Q3: I am already a little experienced, are there very easy ways to make a VST plugin? 2

Q4: How do I proceed when developing a VST plugin? What are the steps? 3

Q5: What do I need to start programming a C++ VST plugin? 4

Q6: Programming errors everywhere! What do I do? . 4

Q7: May I publish/distribute/sell my VST plugin? . 4

Q8: Where can I find more information about VST plugin making?∗ 6

1

Q1: Which skills are useful if I want to make a VST plugin?

Making VST plugins is an interdisciplinary challenge. Having the idea of “I’d like to make my own
plugin now” may be quite challenging and depends on how much you already know. Basically
you require knowledge/experience in the following areas:

• Audio basics: What is sound (waves, frequencies etc.) and how is it represented digitally
(sampling, impulse trains, quantization, buffers)? If you’re not familiar in this field, there are
many helpful books out there, and even introductory PDF files or lecture slides1.

• Programming: The VST SDK is natively written in C++, so knowledge of C/C++ or similar
languages gives you an advantage. If you do not know how to program, it might not be the
best idea to start off with a VST plugin as a first project. In fact, many people advise against
this and recommend learning C/C++ before attempting a VST plugin. Literature and tons of
tutorials about learning C/C++ are widely available.

• Math: Depending heavily on what you are planning on doing in your plugin, having some
(or more... or less) knowledge of basic engineering math (like linear algebra, complex anal-
ysis) is a key aspect. Filter design requires at least fundamentals in Fourier (and similar)
transformations. Most of the time, solid math skills will be helpful, also for designing little
functions or algorithms along the way.

• Digital signal processing: You need some insight into how digital data is manipulated, what
common patterns are and what they do, e.g. FFT, number formats, quantization etc.

• Audio signal processing: You will require specific knowledge about digital signal processing
applied in the field of audio, e.g., filters, delays, dynamic processing, spatial processing,
reverb etc. – depending on what your plugin is supposed to do.

Q2: I am an absolute beginner, are there very easy ways to make a VST plugin?

Yes, there are. But you won’t plunge deep into the topic by choosing this approach: applications
like SynthEdit, Synthmaker/Flowstone or Reaktor allow for making a complete plugin by graphical
design – you can drag&drop elements, connect them, create your functionality this way.

If you want to dig a little deeper, I recommend Will Pirkle’s Designing Audio Effect Plugins in
C++. He supplies a freely downloadable software named RackAFX, which is basically a VST host
program plus added functionality for your plugin developement. The book has lots of example
code, starting with easy tasks like a gain fader, continuing with simple equalisers and advancing
with delay effects (e.g., flanger) and dynamic processing. All you need is RackAFX, a compiler
of choice (e.g., VisualStudio or CodeBlocks) and this book. You get to look at working C++ code
without instantly being forced to start coding on your own. When you’ve got used to the process,
the book gives you some do-it-on-your-own-tasks, but provides the solutions as well.
Pirkle has published another book about VST instruments, if you are more interested in that:
Designing Software Synthesizer Plug-Ins in C++.

1http://www.hep.upatras.gr/class/download/psi_epe_sim/1_Basics_DSP_AV_Intro.pdf
https://www.princeton.edu/˜cuff/ele201/kulkarni_text/signals.pdf

2

Q3: I am already a little experienced, are there very easy ways to make a VST plugin?

If you are already experienced in C++ programming in one way or another, there are other nice
existing tools – and using those won’t require you to start from zero. Frameworks like JUCE
or iPlug provide you with a C++ codebase that already implements many useful things when it
comes to VST programming, e.g., plugin templates you can start with and add your own code, or
background code that takes care of cross-platform issues for you.

If you are a C++ expert and want to dive in the direct way, read the Steinberg Virtual Studio Technology
Plugin Specification on how to use the AudioEffectX class.

Q4: How do I proceed when developing a VST plugin? What are the steps?

1. Vision: Come up with a unique idea. What is your plugin supposed to do? Is a similar plugin
already out there? Or maybe you want to create a plugin for learning purposes? Then choose
something simple to start with (usually a gain fader), and if you feel comfortable after that,
continue with a low order EQ etc.

2. Signal processing: Design the core of your plugin. In case of a gain fader, there needs to be a
multiplication, maybe two if you want stereo and so on. As it becomes more complicated, you
may want to test what’s happening in a nice environment like MATLAB and then translate
it to C++ later. You may need to find and #include some additional C++ libraries along the
way, as many MATLAB functionalities are high-level and do not have a direct C++ equivalent.
Maybe you need an FFT? Or you want to use special vectors in your plugin?

3. UI design: Which parameters of your processing is the user allowed to play with when using
the plugin? Or a bit advanced: Come up with a comfortable design in terms of interaction
and workflow – if you were the user, how would you like your plugin to be? Smooth and
easy... Colors, buttons & fancy images should be considered after defining the parameter
access!

4. UI developement: Create your UI. Connect it to the core processing of step 2. Using JUCE or
iPlug definitely cuts corners in this step!

5. UI refinement: Now, the elementary stuff should be working. Take some time to shine up
your UI (especially when planning on selling it as a product).

6. Optimization: Well, the plugin may be working, but some components/processes/elements
are slow. Identify those and improve their performance.

7. Testing: Is the plugin compatible with different operating systems (Windows XY) and/or
different host programs (Ableton, Cubase, Reaper...)? And there is the x86/x64 issue... This
step could take quite some time.

8. Maintenance: During testing or later use, bugs will appear that need fixing. Also, new
ideas or suggestions may pop in on how to improve/enhance the plugin’s functionalities.
Be prepared to go back to the earlier steps and revisit/modify your work. Think about
versioning.

3

9. Licensing & release: Licensing is important for commercial use as well as for public distri-
bution (see Q7)! Maybe you want some kind of copyright protection. There are options like
Pace iLok or Steinberg eLicenser.

Q5: What do I need to start programming a C++ VST plugin?

This website2 answers your question very well. It even describes how to set everything up and
gives hints about troubleshooting common problems.

The short answer is: you need

• the Steinberg VST SDK

• an IDE (integrated developement environment) = code editor + compiler

• skills mentioned in Q1

Q6: Programming errors everywhere! What do I do?

A solid C++ reference is always helpful. Check out if your syntax is correct when using certain
types, classes, functions, etc. Sometimes you get 43 errors just because you forgot to close a bracket
or something.

If you don’t know what the error message of the compiler wants to tell you, ask stackoverflow.
com/questions/tagged/c++. People before you have likely gone through the same ordeal.
If you really don’t find an answer, post your problem and maybe there’s someone who can help you.

In case of VST plugins, there may be errors beyond compile-time, because the plugin is a .dll file.
That means that it will compile just fine, but when you load the plugin into your host, the host
crashes and you can’t tell why because the host’s crash dump file is even more cryptic. Modern
IDEs (like Visual Studio) have the possibility of running your dll in a debug mode involving the
host program. You need to set the path to your host program in the projects debug options. Then
just set your debug points in the code, compile a debug version and start the debugger. Your host
program will automatically start up and you can step through your code and find the root of all evil.

Also, if you are using additional frameworks or libraries, always consult the documentation.
Especially when using the JUCE API, you get an excellent description of everything in there.

Q7: May I publish/distribute/sell my VST plugin?

Licensing is quite an important point when juggling with source code. And it becomes an issue as
soon as you don’t just use your plugin on your personal computer, but start redistributing it in
some way.

2http://teragonaudio.com/article/How-to-make-VST-plugins-in-Visual-Studio.html

4

You need to take care if there are any restrictions on code snippets you copied from the internet (e.g.
GitHub), libraries you included in your project etc. The VST SDK will be a part of your project. Cur-
rently, it has a “dual-license”, making the SDK available for commercial developers as well as open
source use. The licensing may change from time to time, so check what the current license text says3.

There are basically two types of licensing: closed source and open source. The former restricts
the use of source code with the intention of commercial profits. Software developement is an
important industrial branch, thus there is an interest in preventing proprietary code from being
freely accessible. If you plan on releasing a software product (like a bundle of VST plugins for
example), you have to make sure the code you use is properly licensed for your purpose. It must
not contain anything licensed under GPL, which takes us to the latter type of licensing: open source.

GPL4 (general public license) aims at keeping code open source. It gives you the freedom to use the
software for any purpose, to modify it in any way you wish, and to share it (including mods) with
anybody you want (without breaking any other laws of course, e.g., export laws).
You can mod, mix (including with any other source code), match, run, compile... GPL code any
way you want without any obligation – as long as you don’t redistribute it. Note that you cannot
modify the license itself or sub-license the GPL code.

If you distribute an executable code that contains GPL code: Most often you must give access to
ALL the source code as well, including sources not originally under GPL:

• If two codes (interacting closely together) don’t have compatible licenses you cannot redis-
tribute them together. Period.

• If your GPL executable is distributed in order to run and interact closely with another code,
you must give access to both source codes to the users (in terms of VST: it is a DLL, so yes –
linking usually means interacting closely).

• Running your proprietary software written in PhP, on top of Linux and using MySQL does
not mandate any redistribution of your proprietary source code.

• The mere distribution of executables alongside each other on a medium (or through a network)
doesnt trigger any source-code-distribution contagion; for instance: a Linux distro commonly
contains many files under various licenses, sometimes incompatible with each other.

You can distribute GPL code any way you want (including for a fee) as long as getting the source
code is not made harder for the user than getting the executable. This means that:

• If users pay for the executable they cannot be charged more for getting the source.

• If a certain procedure has to be respected for accessing the executable then the procedure to
access the source cannot be substantially harder, longer, more complicated or expensive etc.

• Access to the source code should be given with enough information/tools/files including the
source code of appropriate libraries, so that it is reasonably easy to compile into a working
code.

3VST 3 SDK Licensing FAQ: https://sdk.steinberg.net/viewtopic.php?t=286
4see: blog.milkingthegnu.org

5

By authoring code under the GPL (including mods) you give away all patent rights that would
contradict the terms of the GPL (e.g., you cannot prevent people to use, mod, and share the code as
stated by the GPL). If you violate the terms of the GPL in good faith you can be re-established in
your rights after showing compliance.

This short and plain description of GPL is included here, because it is the most common license. Of
course it is not the only open source license. Some others are Apache, MIT (Expat/X11), BSD, MPL,
CC0, but there are dozens more5.

Important note: If source code does not carry a license to give users the four essential freedoms,
then – unless it has been explicitly and validly placed in the public domain – it is not free software.

Some developers think that code with no license is automatically in the public domain. This is
not true under today’s copyright law; rather, all copyrightable works are copyrighted by default.
This includes programs. In some countries, users that download code with no license may infringe
copyright merely by compiling it or running it. In order for a program to be free, its copyright
holders must explicitly grant users the four essential freedoms. The document with which they do
so is called a free software license (see the examples above). This is what free software licenses are
for.

Q8: Where can I find more information about VST plugin making?∗

Generally nice sites to consult:
www.kvraudio.com/forum
www.teragonaudio.com/article/How-to-make-VST-plugins-in-Visual-Studio.html
www.willpirkle.com
www.plugindeveloper.com/tag/iplug
www.martin-finke.de/blog/articles/audio-plugins-001-introduction
www.image-line.com/support/FLHelp/html/plugins/Synthmaker.htm
www.synthedit.com
www.stackoverflow.com/questions/2581025/how-are-vst-plugins-made#2581339
www.asktoby.com/TobyNewman-Dissertation-howtowriteaVSTplugin.pdf
www.redwoodaudio.net/Tutorials/juce_for_vst_development__intro.html
www.quora.com/What-are-the-steps-to-writing-a-VST-plugin?share=1

C++ frameworks:
www.steinberg.net/en/company/developers.html
www.juce.com
www.taletn.com/wdl

PureData VST wrapper:
puredata.info/
github.com/pierreguillot/Camomile

∗ Sources: This FAQ summarizes information given in some of the listed links for the purpose of having
a short and clear overview on how to approach VST plugin programming.

5license list + GPL compatibility: https://www.gnu.org/licenses/license-list.en.html

6

B: VBAP plugin manual

VST PLUGIN MANUAL: VECTOR BASE AMPLITUDE PANNING
{ AUTHOR: TIM RASPEL, SUPERVISOR: FRANZ ZOTTER } KUNST-UNIVERSITAET GRAZ (IEM)

DESCRIPTION
With the Vector Base Amplitude Panning VST
Plugin you can position a monophonic sound
source (1 input channel) on 3D playback setups
with an arbitrary number of loudspeakers (max.
64 output channels). The DSP core of the plugin is
based on the VBAP method described in [1]. The
convex hull computation algorithm used is called
Newton Apple Wrapper [2]. JUCE framework and
Eigen template library are also included.

SETUP
Compile the project (VS2017) and copy the result-
ing VBAP.dll to your local VST Plugin folder (e.g.
C:\Program Files (x86)\Steinberg\VstPlugins).
If this path is known by your DAW, it will be
scanned on startup, showing Vector Base Ampli-
tude Panning as a newly found plugin. This plug-
in has been tested in Reaper. Other host programs
may cause previously undiscovered problems.

SOURCE POSITION CONTROLS

The main parameters of this plugin are the eleva-
tion and azimuth angle. They may be changed in
real-time, they are automatable.

Both blue and
yellow dot act
as a source po-
sition indica-
tor, each rela-
tive to its head
inside the cirle.
Imagine it is your head. Use the head’s perspec-
tive to visually deduce where the source is located.
The azimuth head is static. Moving the yellow dot
around the circle makes the audio circle around
you horizontally.

The elevation is also a full cirle, so you can move
the source around you vertically as well. How-
ever, the elevation angle is defined from (0◦) to
±90◦, spanning only half a circle. That is why you
need to move the blue dot around the circle 2 times
for one full vertical audio rotation.

Moving the elevation beyond 90◦ makes the yel-
low dot jump, because from the azimuth point of
view, the source is now behind the head. If you
now move the yellow dot to the front again, the
elevation head will react and jump to correct the
position relative to the blue dot.
To emphasize what is hap-
pening in the background:
You are in the centre of a bub-
ble, and the two angles rep-
resent one point on that bub-
ble’s surface. The internally
computed convex hull matches the chosen loud-
speaker coordinates to approximate the bubble’s
surface. The plugin then finds the loudspeakers
closest to that point and assigns them to play the
sound (weighted gains, see [1]).

REFERENCES

[1] V. Pulkki. Virtual Sound Source Positioning Using
Vector Base Amplitude Panning. JAES Volume 45 Is-
sue 6 pp. 456-466; June 1997

[2] D. A. Sinclair. A 3D Sweep Hull Algorithm for com-
puting Convex Hulls and Delaunay Triangulation.
www. newtonapples . net/paper/NewtonWrapper . pdf

TOGGLE BUTTONS

This button switches between using raw ampli-
tudes or square-root of amplitudes (intensity) for
the panning gain.

Only activate this button if
you are planning on mov-
ing the source really fast (e.g., jumps in automa-
tion). The plugin interpolates intermediate points
to improve sound movement using the principle
of orthodromic distance on the convex hull.

TEXTBOX BUTTONS

Processes current textbox content;
works only if Custom is selected
Displays information about setup,
gain, convex hull etc. in textbox
Deletes the current setup and
loads the default IEM Cube

INFORMATION DISPLAY
The upper box shows the current source position in Cartesian coordinates. The
plugin uses left-handed orientation. The reason: Moving the yellow slider dot
then correctly indicates the source position relative to the head image (which
represents the listener). The lower box displays the active loudspeaker’s IDs
(conform with your channel routing). Update rate is 20 fps.
1 ID = source at speaker position
2 IDs = source on a line between 2 speakers
3 IDs = source within triangle face of hull (most common)
4 IDs = source within rectangle face of hull
5+ IDs = source near virtual negative-Z-speaker. It distributes gains to the
ground level set of speakers.

PRESETS
The plugin provides 5 coordinate presets:
IEM Cube contains the speaker coordinates of the
institute’s main 3D audio performance space. It
has 4 top-level, 8 mid-level and 12 ground-level
speakers (the LFEs are controlled separately).
System H to Extended Surround (System D) are
standardised speaker setups defined in ITU-R
BS.2051-0 norm. Since it allows tolerance in posi-
tion, see project documentation for exact values.

(4 + 9 + 0) signifies the count of upper, middle
and bottom positions. Bottom is usually assigned
to LFEs only. This scheme does not apply to IEM
Cube, because it does not account for the addi-
tional mid layer.

USING CUSTOM COORDINATES
Select the Custom option in the menu. A helper
text gives you specific instructions.

Delete that text,
then paste your
coordinates (the
order will be
used as channel
order!).

Hit Verify Input.
The plugin will
check your input
and keep you
updated on the
process of the
computation.

Your own custom setup will be loaded when you
restore a saved project. Caution: Once you select
Custom again (or another preset), your pasted
coordinates will be lost!

C: Copyright and Licenses

Code templates for audio plugins have been generated by the PROJUCER, Copy-
right (c) 2015 - ROLI Ltd. (version: 5.0.2), underlying JUCE Personal license.

Modifications have been made to these templates, using mainly the JUCE API
building blocks, as well as:
- Newton Apple Wrapper Convex Hull algorithm (GPL v3)
- Eigen Vector/Matrix Algebra library (MPL v2)
- Rosetta Code "Combinations" function in C++ (GNU FDL v1.2)

The share of code written by the author is licensed under X11:

Copyright (c) 2017 Tim D. Raspel

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is fur
nished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the above copyright holder
shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Software without prior written authorization.

	1 Introduction
	1.1 Resulting VST plugin, availability, code
	1.2 Structure of the documentation

	2 VST: Virtual Studio Technology
	2.1 Applications
	2.2 Overview: History
	2.3 Coding details

	3 VST implementation via JUCE framework
	4 VBAP: Vector Base Amplitude Panning
	4.1 Basics: 2D Panning
	4.2 Extension to 3D

	5 VBAP: Implementation as VST plugin
	5.1 #include additional code
	5.2 Own classes
	5.3 Parameters
	5.4 Function members
	5.5 The GUI
	5.6 Algorithm: Hull computation
	5.7 Algorithm: VBAP real-time
	5.8 Algorithm: Orthodromic distances

	6 Instructions: Custom loudspeaker setup
	7 Plugin testing
	8 Conclusion
	References
	Appendix

