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introduction

‣ What is musical structure?

‣  Musically „relevant“ sections

‣ Repeating, distinct parts of a composition

‣ Intro – Verse – Chorus – Verse etc. 

‣ How can we describe it?

‣ Musical point-of-view: 

‣ harmonic progression

‣ Perceptional PoV: 

‣ spectral properties

./the idea > overview 
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introduction

‣ Read Audio

‣ Perform beat tracking

‣ Compute spectral features

‣ Calculate similarities

‣ Roughly estimate segment borders

‣ Refine those borders

./the idea > overview 



4
features

‣ What are appropriate features for

‣ harmonic progression?

‣ rasterize spectrum into semitone bands 

 → Constant-Q Transform

‣ treat all octaves equally 

 → Chroma (Harmonic Pitch Class Profile)

‣ determine a musically meaningful sequence of chords 

 → define a Hidden Markov Model (HMM)

‣ perceptional information?

‣ Mel-Frequency Cepstral Coefficients (MFCC)

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Constant-Q Transform

‣ linear resolution of STFT does not match human perception  too much „effort“ in →
HF area

‣ summarize energy of semitone bands into scalar values

‣ time domain: convolution with complex kernel

‣ to reduce computational costs  multiplication in frequency domain instead of time domain→

./general > cqt > chroma > tuning > chord detection > mfcc



6
features

‣ Chroma = Harmonic Pitch Class Profile

‣ chords do not carry information about tonal distribution within octaves

‣ summarize energy of all octaves of a tone into a scalar

‣ e.g. … B + b + b' + b'' + b''' … 

‣ 12 dimensional vector

 

‣ M … number of octaves involved

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Spectrogram vs. Constant-Q-gram vs. Chromagram

Spectrogram

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Spectrogram vs. Constant-Q-gram vs. Chromagram

ﾱ

CQT-gram

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Spectrogram vs. Constant-Q-gram vs. Chromagram

Chromagram

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ What if the song is not tuned to 440Hz?

‣ observe a' at 440Hz +/- ¼ tone

‣ sum distributed energy over time

‣ pick maximum to detect tuning center

‣ use center as basis for Constant-Q

Transform 

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Intro of „Beatles – Strawberry Fields Forever“ BEFORE tuning:

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Intro of „Beatles – Strawberry Fields Forever“ AFTER tuning:

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Chord Detection

‣ 2 commonly used methods based on chroma:

1. correlation with a chord pattern

2. Hidden Markov Model

‣ Requirements for the resulting sequence:

‣ musically meaningful

‣ consistent

‣ not necessarily perfect while consistent over time

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Method I: direct correlation with chord patterns

‣ generate pattern for all major and minor chords 

‣ considdering n harmonics  improves performance→

‣ too many harmonics  overdefined system →

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Analysis:

‣ PRO:

‣ performace realtively good

‣ quick and easy implementation

‣ CON:

‣ patterns only include 3 tones  real life harmonies often contain tensions→

 → ambiguities  false detections: →

e.g.  F6 =?= d7

‣ no intelligence concerning sequence of chords

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Method II: Hidden Markov Model

‣ introduces additional intelligence 

‣ formal description:

Q … set of available sates

A … transition probabilities

O … observations

B … observation/emission probabilities

 … initial probabilitiesπ

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Defining the model:

‣ Available states Q:

‣ 12 major chords C, C#, D, D#, E, F, F#, G, G#, A, A#, B

‣ 12 minor chords c, c#, d, d#, e, f, f#, g, g#, a, a#, b

‣ Transition probabilities A:

‣ derived from circle of fifths

‣ defined distances determine probability 

of transition

‣ close relatives: fifth, major/minor third 

 → higher probabilities for transitions

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Defining the model:

‣ Observation probabilities B:

‣ derived from chord patterns

‣ Gaussian Mixture Models (GMMs)

‣ each chord is modeled as multivariate 

Gaussian mixture

 → 24 12 dimensional mean vectors µ

 → 24 12x12 covariance matrices Σ

‣ order of GMMs determines computational costs – yet costly only once as no learning

‣ Initial probabilities π

‣ equally distributed

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Means: µ matrix

‣ 24 vectors for each chord in major an minor

‣ basic 3 tones of a chord extended with n overtones

‣ major and minor

‣ same as used in direct correlation method

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Covariance matrices:

‣ variance between pairs of feature dimensions

‣ define 'form' of gaussian in 12 dimensional 
feature space

‣ each µ vector has a corresponding covariance 
matrix

‣ eg. in 2d: 

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ Letting the model work...

‣ very appropriate results

‣ not perfect but very 
consistent 

 → necessary for pattern 
recognition

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ so why don't we use a trained HMM?

‣ Baum-Welch (EM) algorithm trains transition and observation probabilities

‣ need for an appropriate training corpus

‣ training  smoothing→

‣ loss of detailed information

‣ decreases performance 

of pattern recognition

(also for human)

‣ example: 

REM – Automatic For The

People 

‣ untrained vs. trained

./general > cqt > chroma > tuning > chord detection > mfcc
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features

‣ MFCC:

‣ commonly used in speech signal processing

‣ measure to describe spectral properties of signal

‣ adapted to human perception

‣ compact/efficient measure

‣ 10 MFCC components used in algorithm

./general > cqt > chroma > tuning > chord detection > mfcc
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time base

‣ possible „borders“

‣ fixed number of frames

‣ onsets ignored  large influence of transient events→

‣ onsets (  onset detection)→

‣ spectral flux, lpc-error signal, complex flux, …

‣ very large diversity in duration

‣ beats (  beat detection)→

‣ musically stable sections

‣ (almost) constant  (almost) same time instances for comparison→

./possible borders > beat detection > re-alignment
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time base

‣ approach by Dan Ellis

‣ maximization of a decision cost function

‣

‣ t
i
 → best scoring time sequence (position of „best“ beat borders)

‣ O(t
i
) → perceived onset positions

‣ F(t
i
-t

i-1
,
 
τ

p
) → locally-constant inter onset intervalls F(t

i
-t

i-1
,
 
τ

p
) O(t) and target  period τ

p
 as input

./possible borders > beat detection > re-alignment

τ
p
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time base

‣ onset strengths envelope → O(t)

‣ 40 Mel Bands  1→ st order difference

./possible borders > beat detection > re-alignment
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time base

‣ onset strengths envelope → O(t)

‣ 40 Mel Bands  1→ st order difference

./possible borders > beat detection > re-alignment
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time base

‣ target tempo

‣ autocorrelation  perceptual weighting window (→ τ
0
, σ)  primary tempo→

‣ 2 beat estimates  secondary tempo period (→ 0.33, 0.5, 2, 3)

‣ use largest peak of secondary tempo  compare to primary tempo  use faster one→ →

2nd tempo

1st tempo

./possible borders > beat detection > re-alignment
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time base

‣ output

‣ indices of the optimal set of beat times

‣ best scoring time sequence t
i

‣

./possible borders > beat detection > re-alignment
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time base

sample borders

align to frame borders

¾ overlap of frames

frame merging
feature averaging

segment borders

./possible borders > beat detection > re-alignment
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pattern detection

‣ detect repeated patterns (within feature sequences)

‣ segmentation of feature (vector) sequence V[1, n]

‣ overlapped segments of fixed length s
i
 = V[j, j+N-1]

‣ match each segment (s
i
 = V[j, j+N-1]) with feature sequence starting from this 

segment V[j, n]

 → find repetitions

./sequences > distances > dynamic programming
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pattern detection

‣ calculation of distances

‣ chord sequences (scalar numbers)  one dimensional→

‣ mfcc vectors  10 dimensional vectors→

./sequences > distances > dynamic programming
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pattern detection

‣ calculation of distances

‣ „one dimensional“ features (e.g. chord numbers)

‣

multidimensional features (e.g. mfcc vectors)

‣

‣ normalized dot-product   modified cosine distance→

13

12

14

11

...

1

2

24

3

...

A  F:→ 19 – 11 =  8
A  C#: → 12 – mod(19 – 3 ,12) =  8

19

......

./sequences > distances > dynamic programming
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pattern detection

‣ find (positions) of repeated patterns

‣ approximate pattern matching (hop = 2, segment length = 8)

‣ dynamic programming  sequence alignment→

‣ find best matches inside feature sequence

‣ insertions and delitions allowed

./sequences > distances > dynamic programming
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2 7 1 8 4 5 2 6 1 3 4 8 4 9 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 6 0 7 3 4 1 5 0 2 3 7 3 8 2

3 2.1 5 2.1 5 4.1 5 2.1 4 2.1 0 1.1 6.2 4.1 9 2.1

8 8.2 3.1 9.2 2.1 6.2 7.1 8.2 4.1 9.2 5.1 4 1.1 5.2 5.1 7.2

4 7.1 6.2 6.1 6.2 2.1 3.2 5.3 6.2 7.1 6.2 4.1 5.2 1.1 6.2 6.1

pattern detection

‣ dynamic programming matrix

‣ define cost of substitution, deletion and insertion

‣ cost of substitution = “distance” d
m,r

‣ cost of insertion and deletion

./sequences > distances > dynamic programming

D
i
[m-1, r-1]+d

m,r
D

i
[m-1,r]+e

D
i
[m, r-1]+e D

i
[m,r]

e = (0.1 + d
m,r

) e
0
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pattern detection

‣ matching functions

./sequences > distances > dynamic programming
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pattern detection

‣ matching matrix M[i,r]

‣ horizontal lines  → approach 1

‣ vertical blocks  → approach 2

./sequences > distances > dynamic programming
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

approach 1

1 2 3 4 5 6 7 8 9 x x x x x x x x x x x 1 2 3 4 5 6 7 8 9 x x x

1
1

1

‣ horizontal lines

./binary matrix > line detection > segment extraction
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approach 1

‣ line detection  find (almost exact) repetitions→
‣ detection of minima inside matching function  binary matrix→

‣ “1” at valley positions | “0” no valley

./binary matrix > line detection > segment extraction
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‣ detection matrix

‣ all detected valleys

approach 1
./binary matrix > line detection > segment extraction
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approach 1

‣ matrix „cleaning“

‣ delete „too short“ segments

‣ apply gaussian blurring-kernel to matrix

./binary matrix > line detection > segment extraction
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approach 1

‣ line detection

‣ connect segments and get mean row-index

‣ create segment vecotrs: [start, stop, shift]

start stop

shift

[37, 55, 130]

./binary matrix > line detection > segment extraction
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approach 1

‣ segment extraction

‣ extract segments

‣ merge segments basd on overlap/position [start, stop, shift, seg]

[10, 37, 290, 1]

[10, 35, 175, 1]

./binary matrix > line detection > segment extraction
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approach 1

‣ extracted segments  information stored in vectors→
‣ [start, stop, shift, seg]

‣ overlapping segments  “merge” segments automatically (if belonging to same song-segment)→

‣ compare more “important” (more detections) segments to others

‣ merge, if overlapping is big

‣ adapt segment number to number of „important segment“

[11,58,1;187,234,1]
[11,78,2;308,375,2]
[61,148,3;182,269,3]
[71,128,4;312,369,4]
[121,158,5;154,191,5]
[151,188,6;240,277,6]
[161,248,7;283,370,7]
[181,208,8;357,384,8]
[191,218,9;241,268,9]
[211,238,10;349,376,10]
[241,268,11;274,301,11]
[241,318,12;317,394,12]
[261,288,13;308,335,13]
[271,318,14;312,359,14]
[291,318,15;338,365,15]
[311,338,16;363,390,16]
[311,358,17;343,390,17]
[331,358,18;354,381,18]
[341,368,19;359,386,19]

[11,58,1;187,234,1]
[11,78,2;308,375,2]
[61,148,3;182,269,3]
[71,128,4;312,369,4]
[121,191,5]
[151,188,6;240,277,6]
[161,248,7;283,370,7]
[181,208,8;357,384,8]
[191,218,9;241,268,9]
[211,238,10;349,376,10]
[241,268,11;274,301,11]
[241,394,12]
[261,288,13;308,335,13]
[271,359,14]
[291,318,15;338,365,15]
[311,338,16;363,390,16]
[311,390,17]
[331,381,18]
[341,386,19]

[11,58,1,1;187,234,1,1]
[11,78,2,1;308,375,2,2]
[61,148,3,3;182,269,3,1]
[71,128,4,3;312,369,4,2]
[121,191,5,5]
[151,188,6,5;240,277,6,1]
[161,248,7,1;283,370,7,2]
[181,208,8,1;357,384,8,2]
[191,218,9,1;241,268,9,1]
[211,238,10,1;349,376,10,2]
[241,268,11,1;274,301,11,2]
[241,394,12,2]
[261,288,13,1;308,335,13,2]
[271,359,14,2]
[291,318,15,2;338,365,15,2]
[311,338,16,2;363,390,16,2]
[311,390,17,2]
[331,381,18,2]
[341,386,19,2]

./binary matrix > line detection > segment extraction

detected segments real segments

0.0001   33.6456    1.0000

33.6457   47.5776    5.0000
47.5777   64.9461    1.0000
64.9462   82.3146    3.0000
82.3147  110.8752    5.0000
110.8753  124.1106   10.0000
124.1107  151.3244    4.0000
151.3244  156.7114   10.0000
156.7115  198.8324    1.0000
198.8325  206.0770         0

0.0000000       6.1448290 Intro
6.1448290      32.4530380 Verse
32.4530380    50.5065530 Bridge
50.5065530    68.4671880 Refrain
68.4671880    93.6376190 Verse
93.6376190    111.0641950 Bridge
111.0641950  128.9319500 Refrain
128.9319500  153.9514510 Verse
153.9514510  173.7116320 Refrain
173.7116320  193.3557140 Refrain
193.3557140  208.3451574 Refrain
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approach 1

‣ Bad... :(

./binary matrix > line detection > segment extraction
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approach 2 - stage 1

‣ block detection  no valley detection, no binary Matrix→
‣ global similarities

‣ transitions between highly and less similar patterns

./idea > repetitive flux > segment extraction
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approach 2 - stage 1

‣ find transitions between segments

‣ squared difference of columns

‣

‣ only use values larger than mean of column

‣

‣ sum up to the „repetitive flux“

‣

./idea > repetitive flux > segment extraction
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approach 2 - stage 1

‣ peak picking

‣ median window  sliding threshold→

‣ minimum distance of 8 beats

./idea > repetitive flux > segment extraction
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approach 2 - stage 1
./idea > repetitive flux > segment extraction
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approach 2 - stage 2

‣ feature sequence  beat averaged chroma vectors→
‣ new info (not directly used)

‣ spectral and timbral information

‣ beat  re-alignment possible (border correction)→

./idea > segment merging
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approach 2 - stage 2

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

4

4

4

1 2 3 1 2 3 4
No...

1+2+3 1 2 3 4 5 6 1 2

5 6 1 2

5 6 1 2

5 6 1 2

5 6 1 2

q

3

3

3

3

3

1

1

./idea > segment merging

A A B



52
approach 2 - stage 2

A A AA B B

‣ valley 
detection

‣ max. merging 
length

‣ hard/soft 
borders

./idea > segment merging



53
evaluation

‣ 32 songs

‣ 16 pop songs

‣ e.g. Alanis Morisette, Beastie Boys, Britney Spears, Eminem, …

‣ 16 Beatles songs

‣ „With the Beatles“ (full album)

‣ other songs

‣ reference segmentations by members of the MPEG-7 working group

‣ used by other authors (e.g. Levy and Sandler)

./testing corpus > ground truth > results
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evaluation

‣ ground truth problem

‣ Levy et al.

‣ Paualus et al.

‣ Levy et al.

‣ Paualus et al.

./testing corpus > ground truth > results
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evaluation

‣ evaluation measures

‣ precision

‣ recall

‣ f-measure

true positive false positive false negative

./testing corpus > ground truth > results

+/- 3 sec
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thank you!

THX!

Q?
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