
1

CHROMA AND MFCC BASED
PATTERN RECOGNITION IN AUDIO FILES

UTILIZING
HIDDEN MARKOV MODELS

AND DYNAMIC PROGRAMMING

Alexander Wankhammer
Peter Sciri

2
introduction

‣ What is musical structure?

‣ Musically „relevant“ sections

‣ Repeating, distinct parts of a composition

‣ Intro – Verse – Chorus – Verse etc.

‣ How can we describe it?

‣ Musical point-of-view:

‣ harmonic progression

‣ Perceptional PoV:

‣ spectral properties

./the idea > overview

3
introduction

‣ Read Audio

‣ Perform beat tracking

‣ Compute spectral features

‣ Calculate similarities

‣ Roughly estimate segment borders

‣ Refine those borders

./the idea > overview

4
features

‣ What are appropriate features for

‣ harmonic progression?

‣ rasterize spectrum into semitone bands

 → Constant-Q Transform

‣ treat all octaves equally

 → Chroma (Harmonic Pitch Class Profile)

‣ determine a musically meaningful sequence of chords

 → define a Hidden Markov Model (HMM)

‣ perceptional information?

‣ Mel-Frequency Cepstral Coefficients (MFCC)

./general > cqt > chroma > tuning > chord detection > mfcc

5
features

‣ Constant-Q Transform

‣ linear resolution of STFT does not match human perception too much „effort“ in →
HF area

‣ summarize energy of semitone bands into scalar values

‣ time domain: convolution with complex kernel

‣ to reduce computational costs multiplication in frequency domain instead of time domain→

./general > cqt > chroma > tuning > chord detection > mfcc

6
features

‣ Chroma = Harmonic Pitch Class Profile

‣ chords do not carry information about tonal distribution within octaves

‣ summarize energy of all octaves of a tone into a scalar

‣ e.g. … B + b + b' + b'' + b''' …

‣ 12 dimensional vector

‣ M … number of octaves involved

./general > cqt > chroma > tuning > chord detection > mfcc

7
features

‣ Spectrogram vs. Constant-Q-gram vs. Chromagram

Spectrogram

./general > cqt > chroma > tuning > chord detection > mfcc

8
features

‣ Spectrogram vs. Constant-Q-gram vs. Chromagram

ﾱ

CQT-gram

./general > cqt > chroma > tuning > chord detection > mfcc

9
features

‣ Spectrogram vs. Constant-Q-gram vs. Chromagram

Chromagram

./general > cqt > chroma > tuning > chord detection > mfcc

10
features

‣ What if the song is not tuned to 440Hz?

‣ observe a' at 440Hz +/- ¼ tone

‣ sum distributed energy over time

‣ pick maximum to detect tuning center

‣ use center as basis for Constant-Q

Transform

./general > cqt > chroma > tuning > chord detection > mfcc

11
features

‣ Intro of „Beatles – Strawberry Fields Forever“ BEFORE tuning:

./general > cqt > chroma > tuning > chord detection > mfcc

12
features

‣ Intro of „Beatles – Strawberry Fields Forever“ AFTER tuning:

./general > cqt > chroma > tuning > chord detection > mfcc

13
features

‣ Chord Detection

‣ 2 commonly used methods based on chroma:

1. correlation with a chord pattern

2. Hidden Markov Model

‣ Requirements for the resulting sequence:

‣ musically meaningful

‣ consistent

‣ not necessarily perfect while consistent over time

./general > cqt > chroma > tuning > chord detection > mfcc

14
features

‣ Method I: direct correlation with chord patterns

‣ generate pattern for all major and minor chords

‣ considdering n harmonics improves performance→

‣ too many harmonics overdefined system →

./general > cqt > chroma > tuning > chord detection > mfcc

15
features

‣ Analysis:

‣ PRO:

‣ performace realtively good

‣ quick and easy implementation

‣ CON:

‣ patterns only include 3 tones real life harmonies often contain tensions→

 → ambiguities false detections: →

e.g. F6 =?= d7

‣ no intelligence concerning sequence of chords

./general > cqt > chroma > tuning > chord detection > mfcc

16
features

‣ Method II: Hidden Markov Model

‣ introduces additional intelligence

‣ formal description:

Q … set of available sates

A … transition probabilities

O … observations

B … observation/emission probabilities

 … initial probabilitiesπ

./general > cqt > chroma > tuning > chord detection > mfcc

17
features

‣ Defining the model:

‣ Available states Q:

‣ 12 major chords C, C#, D, D#, E, F, F#, G, G#, A, A#, B

‣ 12 minor chords c, c#, d, d#, e, f, f#, g, g#, a, a#, b

‣ Transition probabilities A:

‣ derived from circle of fifths

‣ defined distances determine probability

of transition

‣ close relatives: fifth, major/minor third

 → higher probabilities for transitions

./general > cqt > chroma > tuning > chord detection > mfcc

18
features

‣ Defining the model:

‣ Observation probabilities B:

‣ derived from chord patterns

‣ Gaussian Mixture Models (GMMs)

‣ each chord is modeled as multivariate

Gaussian mixture

 → 24 12 dimensional mean vectors µ

 → 24 12x12 covariance matrices Σ

‣ order of GMMs determines computational costs – yet costly only once as no learning

‣ Initial probabilities π

‣ equally distributed

./general > cqt > chroma > tuning > chord detection > mfcc

19
features

‣ Means: µ matrix

‣ 24 vectors for each chord in major an minor

‣ basic 3 tones of a chord extended with n overtones

‣ major and minor

‣ same as used in direct correlation method

./general > cqt > chroma > tuning > chord detection > mfcc

20
features

‣ Covariance matrices:

‣ variance between pairs of feature dimensions

‣ define 'form' of gaussian in 12 dimensional
feature space

‣ each µ vector has a corresponding covariance
matrix

‣ eg. in 2d:

./general > cqt > chroma > tuning > chord detection > mfcc

21
features

‣ Letting the model work...

‣ very appropriate results

‣ not perfect but very
consistent

 → necessary for pattern
recognition

./general > cqt > chroma > tuning > chord detection > mfcc

22
features

‣ so why don't we use a trained HMM?

‣ Baum-Welch (EM) algorithm trains transition and observation probabilities

‣ need for an appropriate training corpus

‣ training smoothing→

‣ loss of detailed information

‣ decreases performance

of pattern recognition

(also for human)

‣ example:

REM – Automatic For The

People

‣ untrained vs. trained

./general > cqt > chroma > tuning > chord detection > mfcc

23
features

‣ MFCC:

‣ commonly used in speech signal processing

‣ measure to describe spectral properties of signal

‣ adapted to human perception

‣ compact/efficient measure

‣ 10 MFCC components used in algorithm

./general > cqt > chroma > tuning > chord detection > mfcc

24
time base

‣ possible „borders“

‣ fixed number of frames

‣ onsets ignored large influence of transient events→

‣ onsets (onset detection)→

‣ spectral flux, lpc-error signal, complex flux, …

‣ very large diversity in duration

‣ beats (beat detection)→

‣ musically stable sections

‣ (almost) constant (almost) same time instances for comparison→

./possible borders > beat detection > re-alignment

25
time base

‣ approach by Dan Ellis

‣ maximization of a decision cost function

‣

‣ t
i
 → best scoring time sequence (position of „best“ beat borders)

‣ O(t
i
) → perceived onset positions

‣ F(t
i
-t

i-1
,

τ

p
) → locally-constant inter onset intervalls F(t

i
-t

i-1
,

τ

p
) O(t) and target period τ

p
 as input

./possible borders > beat detection > re-alignment

τ
p

26
time base

‣ onset strengths envelope → O(t)

‣ 40 Mel Bands 1→ st order difference

./possible borders > beat detection > re-alignment

27
time base

‣ onset strengths envelope → O(t)

‣ 40 Mel Bands 1→ st order difference

./possible borders > beat detection > re-alignment

28
time base

‣ target tempo

‣ autocorrelation perceptual weighting window (→ τ
0
, σ) primary tempo→

‣ 2 beat estimates secondary tempo period (→ 0.33, 0.5, 2, 3)

‣ use largest peak of secondary tempo compare to primary tempo use faster one→ →

2nd tempo

1st tempo

./possible borders > beat detection > re-alignment

29
time base

‣ output

‣ indices of the optimal set of beat times

‣ best scoring time sequence t
i

‣

./possible borders > beat detection > re-alignment

30
time base

sample borders

align to frame borders

¾ overlap of frames

frame merging
feature averaging

segment borders

./possible borders > beat detection > re-alignment

31
pattern detection

‣ detect repeated patterns (within feature sequences)

‣ segmentation of feature (vector) sequence V[1, n]

‣ overlapped segments of fixed length s
i
 = V[j, j+N-1]

‣ match each segment (s
i
 = V[j, j+N-1]) with feature sequence starting from this

segment V[j, n]

 → find repetitions

./sequences > distances > dynamic programming

32
pattern detection

‣ calculation of distances

‣ chord sequences (scalar numbers) one dimensional→

‣ mfcc vectors 10 dimensional vectors→

./sequences > distances > dynamic programming

33
pattern detection

‣ calculation of distances

‣ „one dimensional“ features (e.g. chord numbers)

‣

multidimensional features (e.g. mfcc vectors)

‣

‣ normalized dot-product modified cosine distance→

13

12

14

11

...

1

2

24

3

...

A F:→ 19 – 11 = 8
A C#: → 12 – mod(19 – 3 ,12) = 8

19

......

./sequences > distances > dynamic programming

34
pattern detection

‣ find (positions) of repeated patterns

‣ approximate pattern matching (hop = 2, segment length = 8)

‣ dynamic programming sequence alignment→

‣ find best matches inside feature sequence

‣ insertions and delitions allowed

./sequences > distances > dynamic programming

35

2 7 1 8 4 5 2 6 1 3 4 8 4 9 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 6 0 7 3 4 1 5 0 2 3 7 3 8 2

3 2.1 5 2.1 5 4.1 5 2.1 4 2.1 0 1.1 6.2 4.1 9 2.1

8 8.2 3.1 9.2 2.1 6.2 7.1 8.2 4.1 9.2 5.1 4 1.1 5.2 5.1 7.2

4 7.1 6.2 6.1 6.2 2.1 3.2 5.3 6.2 7.1 6.2 4.1 5.2 1.1 6.2 6.1

pattern detection

‣ dynamic programming matrix

‣ define cost of substitution, deletion and insertion

‣ cost of substitution = “distance” d
m,r

‣ cost of insertion and deletion

./sequences > distances > dynamic programming

D
i
[m-1, r-1]+d

m,r
D

i
[m-1,r]+e

D
i
[m, r-1]+e D

i
[m,r]

e = (0.1 + d
m,r

) e
0

36
pattern detection

‣ matching functions

./sequences > distances > dynamic programming

37
pattern detection

‣ matching matrix M[i,r]

‣ horizontal lines → approach 1

‣ vertical blocks → approach 2

./sequences > distances > dynamic programming

38

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

approach 1

1 2 3 4 5 6 7 8 9 x x x x x x x x x x x 1 2 3 4 5 6 7 8 9 x x x

1
1

1

‣ horizontal lines

./binary matrix > line detection > segment extraction

39
approach 1

‣ line detection find (almost exact) repetitions→
‣ detection of minima inside matching function binary matrix→

‣ “1” at valley positions | “0” no valley

./binary matrix > line detection > segment extraction

40

‣ detection matrix

‣ all detected valleys

approach 1
./binary matrix > line detection > segment extraction

41
approach 1

‣ matrix „cleaning“

‣ delete „too short“ segments

‣ apply gaussian blurring-kernel to matrix

./binary matrix > line detection > segment extraction

42
approach 1

‣ line detection

‣ connect segments and get mean row-index

‣ create segment vecotrs: [start, stop, shift]

start stop

shift

[37, 55, 130]

./binary matrix > line detection > segment extraction

43
approach 1

‣ segment extraction

‣ extract segments

‣ merge segments basd on overlap/position [start, stop, shift, seg]

[10, 37, 290, 1]

[10, 35, 175, 1]

./binary matrix > line detection > segment extraction

44
approach 1

‣ extracted segments information stored in vectors→
‣ [start, stop, shift, seg]

‣ overlapping segments “merge” segments automatically (if belonging to same song-segment)→

‣ compare more “important” (more detections) segments to others

‣ merge, if overlapping is big

‣ adapt segment number to number of „important segment“

[11,58,1;187,234,1]
[11,78,2;308,375,2]
[61,148,3;182,269,3]
[71,128,4;312,369,4]
[121,158,5;154,191,5]
[151,188,6;240,277,6]
[161,248,7;283,370,7]
[181,208,8;357,384,8]
[191,218,9;241,268,9]
[211,238,10;349,376,10]
[241,268,11;274,301,11]
[241,318,12;317,394,12]
[261,288,13;308,335,13]
[271,318,14;312,359,14]
[291,318,15;338,365,15]
[311,338,16;363,390,16]
[311,358,17;343,390,17]
[331,358,18;354,381,18]
[341,368,19;359,386,19]

[11,58,1;187,234,1]
[11,78,2;308,375,2]
[61,148,3;182,269,3]
[71,128,4;312,369,4]
[121,191,5]
[151,188,6;240,277,6]
[161,248,7;283,370,7]
[181,208,8;357,384,8]
[191,218,9;241,268,9]
[211,238,10;349,376,10]
[241,268,11;274,301,11]
[241,394,12]
[261,288,13;308,335,13]
[271,359,14]
[291,318,15;338,365,15]
[311,338,16;363,390,16]
[311,390,17]
[331,381,18]
[341,386,19]

[11,58,1,1;187,234,1,1]
[11,78,2,1;308,375,2,2]
[61,148,3,3;182,269,3,1]
[71,128,4,3;312,369,4,2]
[121,191,5,5]
[151,188,6,5;240,277,6,1]
[161,248,7,1;283,370,7,2]
[181,208,8,1;357,384,8,2]
[191,218,9,1;241,268,9,1]
[211,238,10,1;349,376,10,2]
[241,268,11,1;274,301,11,2]
[241,394,12,2]
[261,288,13,1;308,335,13,2]
[271,359,14,2]
[291,318,15,2;338,365,15,2]
[311,338,16,2;363,390,16,2]
[311,390,17,2]
[331,381,18,2]
[341,386,19,2]

./binary matrix > line detection > segment extraction

detected segments real segments

0.0001 33.6456 1.0000

33.6457 47.5776 5.0000
47.5777 64.9461 1.0000
64.9462 82.3146 3.0000
82.3147 110.8752 5.0000
110.8753 124.1106 10.0000
124.1107 151.3244 4.0000
151.3244 156.7114 10.0000
156.7115 198.8324 1.0000
198.8325 206.0770 0

0.0000000 6.1448290 Intro
6.1448290 32.4530380 Verse
32.4530380 50.5065530 Bridge
50.5065530 68.4671880 Refrain
68.4671880 93.6376190 Verse
93.6376190 111.0641950 Bridge
111.0641950 128.9319500 Refrain
128.9319500 153.9514510 Verse
153.9514510 173.7116320 Refrain
173.7116320 193.3557140 Refrain
193.3557140 208.3451574 Refrain

45
approach 1

‣ Bad... :(

./binary matrix > line detection > segment extraction

46
approach 2 - stage 1

‣ block detection no valley detection, no binary Matrix→
‣ global similarities

‣ transitions between highly and less similar patterns

./idea > repetitive flux > segment extraction

47
approach 2 - stage 1

‣ find transitions between segments

‣ squared difference of columns

‣

‣ only use values larger than mean of column

‣

‣ sum up to the „repetitive flux“

‣

./idea > repetitive flux > segment extraction

48
approach 2 - stage 1

‣ peak picking

‣ median window sliding threshold→

‣ minimum distance of 8 beats

./idea > repetitive flux > segment extraction

49
approach 2 - stage 1
./idea > repetitive flux > segment extraction

50
approach 2 - stage 2

‣ feature sequence beat averaged chroma vectors→
‣ new info (not directly used)

‣ spectral and timbral information

‣ beat re-alignment possible (border correction)→

./idea > segment merging

51
approach 2 - stage 2

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

4

4

4

1 2 3 1 2 3 4
No...

1+2+3 1 2 3 4 5 6 1 2

5 6 1 2

5 6 1 2

5 6 1 2

5 6 1 2

q

3

3

3

3

3

1

1

./idea > segment merging

A A B

52
approach 2 - stage 2

A A AA B B

‣ valley
detection

‣ max. merging
length

‣ hard/soft
borders

./idea > segment merging

53
evaluation

‣ 32 songs

‣ 16 pop songs

‣ e.g. Alanis Morisette, Beastie Boys, Britney Spears, Eminem, …

‣ 16 Beatles songs

‣ „With the Beatles“ (full album)

‣ other songs

‣ reference segmentations by members of the MPEG-7 working group

‣ used by other authors (e.g. Levy and Sandler)

./testing corpus > ground truth > results

54
evaluation

‣ ground truth problem

‣ Levy et al.

‣ Paualus et al.

‣ Levy et al.

‣ Paualus et al.

./testing corpus > ground truth > results

55
evaluation

‣ evaluation measures

‣ precision

‣ recall

‣ f-measure

true positive false positive false negative

./testing corpus > ground truth > results

+/- 3 sec

56
thank you!

THX!

Q?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

