Marian Weger, BSc

Kollabs/DS - a state-saving system
with scene morphing functionality for

-

kunst
uni
graz

PureData

Project Report

Graz University of Music and Performing Arts

Institute of Electronic Music and Acoustics

Supervisor: DI IOhannes m Zmoelnig

Graz, September 2014

institute of electronic music and acoustics M

Abstract

Nowadays, most professional music production software or hardware equipment
implies the ability to store and recall presets of all its settings. Also cross-fading
between different scenes is now widely-used, especially in stage lighting. However,
in theater productions, shows or installations, it is often required to create custom
software solutions for sound and video processing or for controlling special hardware.
To enhance the possibilities of the graphical data-flow programming environment
Pure Data in such applications, there arises the need for an appropriate state-saving
system.

This work documents the design and evaluation process of Kollabs/DS, a scene-
based state-saving solution for Pd, featuring versatile transition features and
play-lists. Through bidirectional communication via OSC, MIDI, etc., it can also
be used to control other hard- or software, such as synthesizers or digital mixing
consoles.

Kollabs/DS is based entirely on Pd-Vanilla abstractions and can therefore easily
be used on any platform and operating system, which Pd supports. It is part of the
Kollabs library, which aims to become a complete solution for not only state-saving,
but also general data management and communication.

Kurzfassung

Professionelle Software oder Hardware Equipment fiir Musikproduktionen beinhaltet
heutzutage meist eine Moglichkeit zum Speichern und Wiederherstellen samtlicher
Einstellungen. Auch das Uberblenden zwischen verschiedenen Szenen ist mittler-
weile weit verbreitet, besonders bei Biihnenbeleuchtung. Nichtsdestotrotz ist es
bei Theaterproduktionen, Shows und Installationen oft nétig, spezielle Software
zu entwickeln, um besonderen Wiinschen in Audio- und Videoverarbeitung oder
der Steuerung spezieller Hardware nachzugehen. Um die Mdglichkeiten der graphi-
schen Datenfluss-Programmierumgebung Pure Data fiir solche Anwendungsfille zu
erweitern, ist auch hierfiir ein geeignetes Speicher-System notwendig.

Diese Arbeit beschreibt den Entwicklungs- und Evaluierungsprozess von Kollabs/DS,
einer szenen-basierten Speicherldsung fiir Pd, die auch vielfiltige Moglichkeiten fiir
Playlists und Uberblendungen zwischen einzelnen Szenen bietet. Durch bidirektionale
Kommunikation tiber OSC, MIDI, etc. kann das System auch genutzt werden, um
externe Hard- oder Software, wie z.B. Digitalmischpulte, zu steuern.

Kollabs/DS basiert ausschlieRlich auf Pd-Vanilla Abstraktionen und kann daher auf
jeder Plattform genutzt werden, die von Pd unterstiitzt wird. Das System ist Teil der
Kollabs Library, mit der versucht wird, eine einheitliche Lésung, nicht nur fiir Sze-
nenspeicher, sondern auch fiir generelles Daten-Management und Kommunikation,
zu schaffen.

Contents

Abstract i
Kurzfassung iii
I. Development 1
1. The problem with state-saving in PureData 2
2. What a state-saving system should provide 3
2.1. What needstobestored 3
2.2. Scenetransitions 3
2.3. Re-structuring scene-sets L. 4
2.4, Sequencing 4

3. Available solutions 6
3.1. State-saving in modern lighting consoles 6
3.2. State-saving in Pure Data 7
321, sssad 8

322, saveeme.mmb 9

323. presethub 9

4. The design of Kollabs/DS 11
4.1. Surveillance of the variable states 11
4.2. Multiple instances 13
4.3. Scene transitions 13
44, Fileformat 13
45, Usability 14

Contents

5. The implementation of Kollabs/DS
5.1. Basic functionality
5.1.1. Surveillance of the variable state
5.1.2. Storing/recalling scenes to/from memory
5.1.3. Saving/loading scene-sets to/from disk
5.2. Scene management
5.2.1. Scene-set editing (copy, paste, etc.) L.
5.2.2. Scheduling and naming scenes
5.3. Scenetransitions
53.1. Morph/Fade
532. Delay
5.3.3. What if last transition is still active?
5.3.4. Dynamic creation of transition functionality
Il. User Manual
6. What is Kollabs/DS
7. Requirements
8. How to add Kollabs to Pd
8.1. Insideapatch
8.2. Through arguments for Pd
83. Inside Pd
9. General patching principles
9.1. Working with sends and receives
9.2. Naming guidelines
10.Syntax

10.1. The different storage layers
10.2. File layout
10.3. Creation arguments and flags

11.File reference

11.1. Main abstractions

11.1.1. [ds logic|.

15
15
15
16
16
17
17
17
18
18
19
20
21

Contents

11.1.2.[ds_transition| 33
11.1.3.|ds_scheduler| 34

11,14, [ds_reg| 34
11.1.5. ’ds_reg_global‘ 37
11.2. Graphical User Interface 38
1120 [ds_guil o oo 38
11.2.2. ’ds_transition_gui‘ 45
11.2.3. ’ds_scheduler_gui‘ 53
12.Using Kollabs/DS 57
12.1. Creating a storage domain 57
12.2. Registering variables oo 57
12.2.1. Generalo 57
1222, Tables 58
12.2.3. Global variables 58
12.3. Store/Recall, Save/Load 59
12.3.1.Store 59
1232 Recall 59
12.33.Save . . . L 60
1234, Load 60
12.4. Advanced scene editing 60
12.4.1. Erasescenedata 61
12.4.2. Copy/Cut 61
1243. Paste 61
12.4.4. Insert blank scene 61
12.5. Working with multiple domains 62
12.5.1. Multiple domains side-by-side 62
12.5.2. Overlapping domains 62
12.5.3. Nested domains 63
12.6. Scene transitions 63
12.6.1. General work-flow 63
12.6.2. Scene transition dialog 64
12.6.3. Stop an active transition 68
12.7. Time-line editing / Play-lists 68
12.8. Load fileonstartup 69

Vi

Contents

12.9. Additional tools
12.9.1. Route current value of variable
12.9.2. Update / re-send current value
12.9.3. Print current value to the Pd window

I1l. Discussion

13.Using Kollabs/DS in real-world scenarios
13.1. Extended View Toolkit
13.2. Monster
133.InCaelum
13.4. Orpheus & Eurydice
13.5.3x cosi fantutte
13.6. Der Druckauftrag

14.Kollabs in the future

14.1. Planned features for Kollabs/DS
14.1.1. Recall mix of multiple scenes
14.1.2. Load and draw user fade curves
14.1.3. Morph between lists and tables
14.1.4. Manual cross-fade between scenes

14.2. Extensions of the Kollabs library

14.2.1. OSC, MIDI, DMX

14.2.2. Bank management for control surfaces

15.Conclusion

Bibliography

Vii

72

73
73
74
75
76
77
78

79
79
79
80
80
80
80
81
81

82

84

Part |.

Development

1. The problem with
state-saving in PureData

As Pure Data (short: Pd) is no ready-to-use program, but rather a versatile graphical
data-flow programming language, it does not provide an applicable system for saving
the state of variables and tables. A Pd-patch can easily store the algorithm and
one initial state for all the variables, but out of the box, it is not possible to store
different variations of these.

There is rudimentary state-saving built into tables and some of the graphical objects,
but these store only the current status of the patch. There is no possibility to
recall the data during a running patch, or to store different scenes. However, for
installations, shows or theater productions, there is the need of storing and recalling
different static scenes during the performance, and even fading/morphing between
them.

This approach has been implemented in many commercial products such as lighting
and sound mixing consoles and synthesizers, both hardware and also software. There
are also several solutions available for Pd, which implement the most basic functions.
These shall also be examined in terms of sufficiency in the next chapters.

2. What a state-saving system
should provide

2.1. What needs to be stored

Stored should be preferably anything that can be sent as messages through
and [receive]. Pd distinguishes between numbers (all numbers are treated as
floating point numbers) and symbols. There are also lists, which can be built out
of arbitrary combinations of numbers and symbols.

Additionally, tables should be handled by the state-saving system. In fact, they can
be seen as lists of numbers too, but need to be treated differently.

2.2. Scene transitions

For shows and installations, there is the need to not only store different scenes,
but also morph between them. This means, there must be some kind of smooth
transition from the values in one scene to the values in another scene. To be
prepared for all possible situations, an individually adjustable transition for every
variable and every scene is considered necessary.

However, smooth transitions are only meaningful for numbers, and not for symbols.
A possibility to morph between lists of numbers, which also includes tables, would
be a nice feature, but not a primary goal, as small lists can always be split into
single numbers and stored individually.

2. What a state-saving system should provide
2.3. Re-structuring scene-sets

Another goal would be to edit the list of scenes, how it is common in file browsers
and other computer software. The most basic functions include copy, paste, cut and
delete individual scenes. When pasting scenes, two cases should be distinguished:
Pasting in between two scenes and pasting by overwriting one existing scene.
Spreadsheet software, like Microsoft Excel® or LibreOffice Calc® should act as a
guideline for this behavior.

2.4. Sequencing

By now, most Modern Digital Audio Workstations (DAWSs) and mixing consoles
provide time-line-editing of their own parameters, and also of external controllers
via MIDI. As the MIDI specification is a relatively old standard, which uses only
limited resolution, some protocols, like the Mackie protocol, were developed, which
build on top of MIDI, but are able to use better resolution for critical parameters,
such as volume control. Anyway, these have to deal with the extremely limited
bandwidth of MIDI.

In the meantime, some companies rely on their own proprietary protocols, which
use for example common Ethernet cables to connect control surfaces to the DSP
unit or PC. However, such protocols, like EuCon?, are no open standard and can
therefore only be used under some restrictions.

Some DAWSs can handle OSC messages, which is sometimes seen to be the successor
of MIDI, but as an OSC message can contain various types of data, the handling
is a bit more complicated. The DAW software REAPER* supports OSC and can
even use its time-line editing view for such data, but for a live setup, most DAWs
or MIDI-sequencers do not seem to be the perfect solution.

LExcel is a registered trademark of Microsoft Inc. and part of the Microsoft Office suite.

2Calc is part of the free and open source office suite LibreOffice, developed by The Document
Foundation.

3 EuCon protocol: http://euphonix.avid.com/pro//music/eucon. php

4REAPER is a digital audio workstation by Cockos Inc.: http://reaper.fm/

http://euphonix.avid.com/pro//music/eucon.php
http://reaper.fm/

2. What a state-saving system should provide

As there should not be a limitation in the type of variables, which are stored (see
2.1), a graphical time-line editing, like in a DAW or MIDI-sequencer, would be a
rather difficult task. But for shows, which require an exact time-schedule, there is
the need for pre-programmed scenes, which are triggered automatically in some
sort of play-list.

The most promising work-flow would be the way how modern lighting consoles
operate. They provide storable cues, which can each contain a small sequence,
which can individually be edited in a time-line view. This way, the best of the two
worlds, cue lists and sequences, are combined.

3. Available solutions

3.1. State-saving in modern lighting consoles

Because of their versatile state-saving and transition functionality, modern stage
lighting consoles act as a benchmark for Kollabs/DS. Even very simple lighting
controllers have the ability to blend smoothly between two independent scenes.
Fig. 3.1 shows such a manual two-scene preset board, with control for two states of
12 individual lights (two layers of 12 faders each) and master faders to mix between
these two.

Figure 3.1.: The SmartFade Console by Electronic Theatre Controls (ETC): http://wwu.
etcconnect.com/

Such basic boards are often used for small venues. Anyway, for bigger productions,
with lots of complex lighting scenes, computerized consoles have become standard.
In these, the amount of available scenes is almost infinite, with the drawback of being
less intuitive in operation. In state-of-the-art consoles, such as the GrandMA series
by MA Lighting (see Fig. 3.2), complex scenes can also contain movements, which

http://www.etcconnect.com/
http://www.etcconnect.com/

3. Available solutions

are edited in a time-line-view known from sequencers. The scenes can be triggered
by hand or scheduled to be played back automatically. This way, a whole show can
be pre-produced and played back identically in every performance, minimizing the
chance for human failure.

Figure 3.2.: The GrandMAZ2 console by MA Lighting: http://www.malighting.com/

More information on stage lighting can be obtained online in the Stage Lighting
Primer by Salzberg and Kupferman, 2013.

3.2. State-saving in Pure Data

There are already many different state-saving solutions available for Pure Data. In
this chapter, some of the most popular will be examined in terms of functionality
and usability.

http://www.malighting.com/

3. Available solutions

3.2.1. sssad

A very popular system is sssad (see Barknecht, 2008), the Stupidsupersimplistic
State Saving ADVANCED. It has been used by many people in different projects,
and has proved to be very stable and efficient. As it is built entirely in Pd-Vanilla, it
does not need any external libraries and runs on all operating systems, for which Pd
is available - even Android' and iOS?, through libpd>. However, it provides only
basic scene-based state-saving with no transitions, scheduling or editing features.

Save

T SSSAD_ADMIN

Restore

also received inside sssad

Hint: get creative with the [OSCroute] external!

Figure 3.3.: Saving and recalling in sssad.

L Android is a trademark of Google Inc.: http://www.android.com/

2j0S is a registered trademark of Cisco and used under license by Apple Inc.: http://www.
apple.com/ios/

3ibpd: https://github.com/libpd

http://www.android.com/
http://www.apple.com/ios/
http://www.apple.com/ios/
https://github.com/libpd

3. Available solutions

Sssad sllﬁr LOCAL SAVING using abstraction's $0.
u;/// | sssliders-local /x sssliders-local /x

rw
bl

~
@

sssliders /x

W [Tist prepend add]

W [Tist prepend addq]

—

sssliders /y

/x/sl 38.7458; /x/sl 32.2881;

Figure 3.4.: The help patch for sssad.

3.2.2. save.me.mmb

The state-saving system from the mmb library (see Moser-Booth, 2011) provides
similar functionality as sssad, but seems to be a bit less spread in the Pd-community,
and has therefore not been tested as extensively. Other than sssad, it depends on
several externals from the Pd-extended distribution and can not be used with the
pure Pd-Vanilla version. There is also no possibility for creating scene transitions.

3.2.3. preset hub

The Pd-L20rk distribution (see Bukvic, n.d.) provides a promising state-saving
system, called preset hub. It is highly integrated into Pd-L20rk and therefore
can not be used in the pure Pd-Vanilla version. This could make it difficult to use
it on uncommon operating systems. Out-of-the-box, it lacks the ability to morph

3. Available solutions

Save2 Fave
E) OT I
Save.me.mmb vslider $0 3| %ymb Save.me.mmb symbolbox $0

3><Eave.me.mmb numberbox $0

pd multiple.parameters

<-- see inside

Toute clear

tabset $0-array

clear

Sa¥e.me.mmb multiple. par:ameters=$7‘?I

Figure 3.5.: The help patch for save.me.mmb.

between scenes, but has a nice feature of loading mixtures of different scenes: there
can be given specific amounts in percent for every scene.

10

4. The design of Kollabs/DS

As Pd is lacking a suitable solution for morphing between scenes, there is the

need of a whole new state-saving system. This chapter describes the design of
Kollabs/DS.

4.1. Surveillance of the variable states

To save the state of variables, and write (recall) values back to them, they somehow
need to be addressed.

In control flow programming languages, such as C or SuperCollider, it is common
to declare and initialize variables like this:

int a = 1;

and then use them anywhere else in the program with the aid of their unique
name:

int b = a + 2;

As Pd has a data-flow design, a more ore less equal result can only be achieved
with some workarounds (See Fig. 4.1). There is no practicable possibility to define
variables directly, but only the resulting data-flow can be given a unique name. The
possibility of using any number of [send] and [receive] objects with the same name
to organize the data-flow, leads to the solution of how this stream of data can be
surveyed.

11

4. The design of Kollabs/DS

Figure 4.1.

It makes only sense to save variables, which can be controlled by some kind of
graphical user interface (GUI) or hardware controller, so it would be sufficient to
just observe the (bidirectional) data-stream between GUI and the actual signal
processing (DSP). To be sure, that there is always such a data stream available,
GUI and DSP should be strictly separated. The simplified communication structure

can be seen in Fig. 4.2.
GUI<_¢—> DSP

Kollabs

Figure 4.2.: Communication structure of Kollabs/DS

The patch shown in Fig. 4.1 already implies, how Kollabs/DS can hook into the
patch to get the data streams of the individual variables. The data-flow between
two objects in Pd can be cut and sent “wireless” with the [send|/[receive] objects,

as shown in Fig. 9.1.

12

4. The design of Kollabs/DS
4.2. Multiple instances

To have multiple instances working properly side-by-side, it must be possible to
distinguish between them. They could generate a unique identifier by themselves,
but to address them, it seems convenient to just give simple and memorizable names.
It has been decided, that the first creation argument of the main abstractions of
the state-saving system is always this so-called domain. Each variable can then be
assigned to one of them.

The domain name should not be written to the saved file, so that one domain can
load the file of another.

The possibility of having multiple domains in one patch can be useful, for example
when some settings deal with the technical environment of a show, and others with
the actual artistic content. To not mix them up, they can then be saved to different
domains and saved/recalled individually.

4.3. Scene transitions

For the scene transitions, some important decisions have to be made. There is
one big problem: In a defined sequence of scenes, there is always one transition
between two successive scenes. But if scenes are played back in undefined order,
also the transitions can not easily be defined. The number of possible transitions
would then be the factorial of the number of scenes.

To simplify usage and also implementation, the scene transitions are limited to one
per scene. Most important for me is the transition to a scene, so this should be
the one editable. This means, each scene can have only one transition, which leads
to itself, from whatever origin.

4.4. File format

The file format of the saved data is also a critical point, which needs to be discussed
carefully. As all the saved data can be perfectly described in plain text format, it is

13

4. The design of Kollabs/DS

obvious, that it should be saved as a text file.

Sometimes it might be handy to edit some data by hand, so it would be nice to
have the data format as human-readable as possible. It seems convenient to use a
new line for each variable, with a blank space for separation between the variable
name and the corresponding data.

To have one show in a single file, multiple scenes of one domain should fit into. To
separate between different scenes and also types of data, some unique header lines
must be inserted.

It is also necessary to store the scene transition settings in the text file. These
settings are individual for each scene, so they must be saved accordingly. To
distinguish between transition settings and the actual scene data, there must be
additional header lines for those two parts. The transition data should better be
placed at the beginning of each scene, as these variables must be read first in any
case.

4.5. Usability

Despite its complexity, using this state-saving system must remain simple and
intuitive. A variable should be registered by only one simple abstraction, giving both
the storage domain and variable name as creation arguments. Also the main logic
must be put in one single abstraction, with a separated corresponding GUI, which
can optionally be omitted. For most users, this will be sufficient. For more complex
features, such as scene transitions, additional modules can be added, which link
automatically in the system.

14

5. The implementation of
Kollabs /DS

This chapter describes, how the core of Kollabs/DS is implemented.

5.1. Basic functionality

5.1.1. Surveillance of the variable state

The variables are surveyed by using their unique send- and receive-name (see 9).
Inside the according register [ds_reg|, the current value of the variable is always
stored by a object (See Fig. 5.1).

r /ds/<domain>/fetch/data r <name>

a

Tis

[Tist prepend <name>

% /ds/<domain>/fetched

Figure 5.1.: The principle for surveying and fetching variables inside .

15

5. The implementation of Kollabs/DS

5.1.2. Storing/recalling scenes to/from memory

The individual scenes are stored in a dynamically created slot, consisting mainly
of one object. To store a scene to memory, all registered variables of a
specific domain are fetched from the registers to the main storage logic

by sending a trigger signal to /ds/<domain>/fetch/data (See Fig. 5.1).

For each variable, its name and value are then sent to /ds/<domain>/fetched
and then forwarded to the according object, where each variable is stored

in one individual line of the buffer.

To recall the scenes from memory, the buffer inside the according of the
scene is emitted line by line and the values are routed to their send/receive name

(See Fig. 5.2).

inlet list] <-- format: <name> <valuel> <value2> ...

ist split

<-- filter out empty lists

[s

Figure 5.2.: The principle of routing stored values back to the variables (recalling).

5.1.3. Saving/loading scene-sets to/from disk

Whole scene-sets are saved to disk by multiplexing all the single scene buffers to
one “master” object, whose contents are then saved to a plain text file
on the hard drive. The scenes are separated by a header line:

16

5. The implementation of Kollabs/DS

SCENE <nr>

The scene-sets can be loaded back from disk into the main buffer and are then
routed to their individual scene-buffers according to their header.

5.2. Scene management

5.2.1. Scene-set editing (copy, paste, etc.)

To have the ability to respond fast to changes in the scene order, or built a new
scene on top of an already existing one, there is the need of basic scene-editing
features, such as copy, paste, cut, etc. There is one scene-buffer extra, which serves
as a clipboard. Scene contents can be copied to it or forwarded to another buffer.

If a scene gets completely deleted, the contents of the subsequent buffers are
routed one-by-one to the preceding buffer. This obviously very inefficient action is
used, because it is relatively easy to implement and the affected editing actions are
usually not used during a running show. The simple changing of the scene numbers
for the buffers would also introduce a higher risk of addressing errors.

5.2.2. Scheduling and naming scenes

By giving each scene a duration, the scenes can be scheduled in a play-list-like
behavior. A simple timer triggers the next scene, if the according duration has
passed. There are two clock sources available:

The first source is a object, whose rate (= precision) can be set in millisec-
onds. This clock source relies on the CPU time, which means it pauses if the CPU
has no resources available to calculate it. This could result in imprecise timing if
there is heavy CPU load.

Alternatively, a object can be placed after to improve the timing
precision. measures time according to time calculated by the operating
system.

17

5. The implementation of Kollabs/DS

The scene duration and also a scene name can be stored for each scene individually.
To do so, each scene is divided into different sections by specific headers, just like
the scenes separated when saved. Each scene consists of a properties section for
duration and name, and a data section for the actual data.

5.3. Scene transitions

In addition to the properties and data section in the individual scenes, there is a
settings section, which contains all the settings for scene transitions. To be able
to introduce transitions for each variable, they must not be routed directly to
their send/receive name on every recall, but first pass through more complex data
processing.

When a scene gets recalled, it is important that the transition settings are recalled
before the actual data. The data is then routed back in the individual register

abstractions for each variable, to apply individual transitions there.

5.3.1. Morph/Fade

A linear ramp from zero to one is generated by a object with the according
fade time. To enable curved fades the linear ramp is shaped by a small abstraction,

which is called [fadecurve]. It basically takes two parameters: shape and weight.

The influence of shape on the fade curve is described mathematically in the following
table:

18

5. The implementation of Kollabs/DS

shape f(x)

>2 abs(shape)

1 < shape < 2 1(1 — cos(Zx) + xabs(shape)
1 1 —cos(5x)

0 <shape <1 | L(sin®(3x)+1—cos($x))
0 sin?(Zx)

—1 < shape <0 | 3[cos(Z(1 —x)) + sin*(Zx)]

—1 cos(5(1—x))
—2 < shape < —1 | 1[1 — (1 — x)s(share) 4 cos(Z (1 — x))]
) 1— (1 . x)abs(shape)

This rather complex description is explained more simple in 12.6.2 Morph. Weight
additionally blends between the selected shape and a linear ramp.

The final shaped ramp (from zero to one) is then applied to the variable (from old
value to new value). As this type of fading does only make sense for numbers, it is
only applied to values of type “float” in Pd.

5.3.2. Delay

A delay is implemented by buffering the variable in a [1ist], which is then triggered
to output after a certain time has passed.

For a constant delay, a simple object is used (See Fig. 5.3). To chain a
recall to another one, which means recall only after another variable has finished its
transition, an additional external trigger input is introduced (See Fig. 5.4). Each
variable creates a trigger signal, when its transition has finished.

19

5. The implementation of Kollabs/DS

inlet

r delay-time

outlet

Figure 5.3.: The principle of delaying recalls for individual variables.

r trigger inlet
l_ -

[Tis
outlet

Figure 5.4.: The principle of triggering a delayed recall from an external trigger source.

5.3.3. What if last transition is still active?

If a scene is recalled during an active transition, there are two ways of handling
this problem:

The system could on the first hand just block all new commands, until the transition
has finished, or on the other hand stop the current transition and start the second
transition from that point. Both variants are implemented and switchable per
variable and scene or even globally.

20

5. The implementation of Kollabs/DS

5.3.4. Dynamic creation of transition functionality

As these transition features make the Pd-patch big and slow, they are dynamically
loaded only when needed. To enable scene transitions, a [ds_transition| module
must be created. Only if it exists, which means the bidirectional communication
with the individual registers succeeds, the corresponding modules are loaded inside

the registers.

21

Part IlI.

User Manual

22

6. What is Kollabs/DS

Kollabs/DS is a set abstractions aiming on scene-based state-saving for the data-flow
programming language Pure Data (Pd). It offers some advanced scene transition
features for each variable and scene, such as morphing, delaying, etc. and also basic
time-line editing for programming complete shows.

It is part of the more general abstraction library Kollabs, which also provides
solutions for MIDI* and OSC? communication.

'Musical Instrument Digital Interface: http://www.midi.org
20pen Sound Control: http://opensoundcontrol .org

23

http://www.midi.org
http://opensoundcontrol.org

7. Requirements

Kollabs/DS relies only on pure Pd-Vanilla', which means it does not need any
external libraries.

LPd-Vanilla is the most basic version of Pd, mainly written by Miller Puckette: http:
//msp.ucsd.edu/software.html

24

http://msp.ucsd.edu/software.html
http://msp.ucsd.edu/software.html

8. How to add Kollabs to Pd

Kollabs can be added to Pd in multiple ways.

8.1. Inside a patch

Open the patch in which you want to use Kollabs and add the following object:

‘declare -path /path/to/kollabs ‘

where "/path/to/kollabs" needs to be replaced by the absolute or relative path
to the "kollabs" folder. This is only applied after saving and re-opening the
patch.

8.2. Through arguments for Pd

The path can also be given directly to Pd by starting the program with additional
arguments from a terminal. For UNIX!-like operating systems, open a terminal and
run the command "/path/to/pd -path /path/to/kollabs".

"/path/to/pd" needs to be replaced by the absolute path of the Pd program.
"/path/to/kollabs" needs to be replaced by the absolute path of the "kollabs"
folder.

IThis includes Mac OS and Linux: http://en.wikipedia.org/wiki/Unix. UNIX is a
registered trademark of The Open Group. Mac OS is a registered trademark of Apple Inc.

25

http://en.wikipedia.org/wiki/Unix

8. How to add Kollabs to Pd

8.3. Inside Pd

An easy way to add a path is to use the Graphical User Interface (GUI) of Pd:
Click on Preferences—» Path. .. in the menu and add the absolute path through a

dialog.

26

9. General patching principles

Patches for Pd can be programmed in many ways. Anyway, Kollabs is based on
some basic patching principles that are explained below.

9.1. Working with sends and receives

One major principle, which should be considered is to separate the GUI controls
from the actual data processing. In Pd, this is done by using sends and receives
instead of line connections (See Figure 9.1).

Y [
[Send <name>

receive <name>
R LR

Figure 9.1.: Usage of sends and receives instead of line connections in Pure Data.

If a GUI parameter should communicate bidirectional, which means it receives and
sends at the same time, a feedback prevention is necessary to guard against endless
loops. The following objects have built-in feedback prevention:

Bang, [X] Toggle, Numberbox2, (] | Hslider [Vslider
and [B[_| Hradio/ Vradio.

Sends and receives can be set directly in their properties dialog (right-click —
Properties) under Send symbol and Receive symbol (See Figure 9.2). Kollabs relies
on the concept of GUI objects with identical Send symbol and Receive symbol. In

27

9. General patching principles

the following, such pairs of [send| and [receive] with the same name are treated as
variables.

amnn |vsl| Properties
P dimensions(pix}{pix}--------
width: 15 height: 128

——————————— output-range:-----—----—
bottom: 0 top: 127

(" lin) [Noinit) [Steady on click)

Messages

Send symbol:

Receive symbol: ||

Label

X offset 0 Y offset -9

| Monaco | Size: 10

Colors
) Background () Front () Label

(Compose color | |0=\ I=0||Test 'lube'l.|

€ Cancel

Figure 9.2.: Properties dialog of a GUI element in Pure Data

9.2. Naming guidelines

There is no special naming syntax needed for variables in Kollabs, but a beginning
with "/" is highly recommended to conform with the OSC standard. It is also
proposed to use variable names consisting only of lowercase letters and slashes, in
the form of "/<category>/<subcategory>/.../<name>". Anyway, in general,
variables can have any name that PD allows.

28

10. Syntax

10.1. The different storage layers

Kollabs uses five different storage layers, which are recalled in the following order:
global, properties, settings, tables, data. Each of these layers contains a different
part:

Global The global layer saves all data, that should stay the same for all scenes.
The other four layers contain data, that changes from scene to scene:

Properties The properties of the scene contain only two variables: Its name and
duration.

Settings Transition settings for the individual variables are located in the settings
layer.

Now comes the actual data:

Tables Tables can be found in the tables layer, before the other data.
Data The actual data of the individual variables is located in the data layer.

10.2. File layout

A scene-set is saved to a simple text file with the following structure (see listing
10.1). There is one section for the global variables, followed by the individual
scene sections, with each containing the four layers properties, settings, tables and
data.

29

10. Syntax

Listing 10.1: File Layout
1 GLOBAL
> <variable name 1> <value>
s <variable name 2> <value>

4 ...

5

6 SCENE <nr>
7 # PROPERTIES

s /name <value>

o /duration <value>

0 ...

11

w2 # SETTINGS

13 <setting name 1> <value>

1w <setting name 2> <value>

15 ...

16

v # TABLES

18 <table name 1> <valuel> <value2>
10 <table name 2> <valuel> <value2>
20 ...

21

22 # DATA
3 <variable name 1> <valuel> (<value2> <value3> ...)
2 <variable _name 2> <valuel> (<value2> <value3> ...)

25 ...

10.3. Creation arguments and flags

In general, objects inside Pd can take creation arguments, which have to be set at
their exact position:

[<object> <argl> <arg2> ...|

30

10. Syntax

In Kollabs, only the few mandatory creation arguments need to be given in the
right order. All following optional arguments are called flags and can be given in
any arbitrary order:

’<object> <argl> <arg2> ... <flagl> <flag2> ..w

For most abstractions of Kollabs/DS, the first creation argument is always the
domain. This is a unique identifier to define, which abstractions belong together to
the same instance of Kollabs/DS:

’<object> <domain> (<arg2> ...) (<flagl> <flag2> ...)‘

The creation arguments as well as the flags for the individual objects of Kollabs/DS
are explained further in the following file reference.

31

11. File reference

This library contains plenty of abstractions, with many of them being solely used
inside others and are irrelevant for the end-user. This chapter explains only the most
important ones, that cover all functionality being discussed in this document.

11.1. Main abstractions

All the data processing is happening in these main abstractions:

Provides the basic functionality.

[ds_transition| Needed for scene transitions.

[ds_scheduler| Play-list view. Needed for scheduling scenes.

Needed for registering variables to the system.
|ds_reg_global| Needed for registering global variables to the system.

11.1.1. |ds_logic

is the main abstraction, which creates a storage domain.

Creation arguments

There is only one creation argument:

|[ds_logic <domain>|

32

11. File reference

domain The first creation argument defines the storage domain, to which variables
can get registered to. It is possible to create multiple domains with different
names by adding additional instances of [ds_logic| but it is very important
that each domain exists only once, which means there are not two instances
with the same identifier.

Flags

There are two optional flags, that can be given in any order after the domain. Both
will bypass the transition features:

simple The data-stream is directly routed to its (assumed) receivers, without
further processing through the registers (all register settings will be bypassed).
This is useful, if only very basic state saving is required. This way, even
variables, that are not registered, can be recalled.

nodispatch If set, the data will not get dispatched on a recall. Nevertheless, at
every recall, the whole data-stream (variable names and values) gets dumped
to the first outlet. Get creative!

11.1.2. ds_transition

[ds_transition] provides scene-transition functionality to the registers. To enable
scene transitions for a storage domain, there must be created one [ds_transition]
abstraction with the same identifier.

Creation arguments

|ds_transition| takes only one creation argument:

|ds_transition <domain>|

domain This assigns the abstraction to a specific storage domain.

33

11. File reference

Flags

none.

11.1.3. ds_scheduler

By using [ds_scheduler| a play-list of scenes can be managed. Scenes can be
given a specific duration, after which the next scene will be recalled automatically.
|ds_scheduler| creates the whole needed logic for the time-line functions.

Creation arguments

|ds_scheduler| takes only one creation argument:

|ds_scheduler <domain>|

domain This assigns the abstraction to a specific storage domain.

Flags

none.

11.1.4. ds_reg

manages the surveillance of the individual variables and assigns them to a
storage domain:

|ds_reg <domain> <name>| registers a variable <name> to domain <domain>.

The state of the registered variable will then get tracked and can be stored in
different scenes.

34

11. File reference

Creation arguments
domain This defines the storage domain, to which the variables get registered.

name The second creation argument specifies the name of the variable, which is
to be registered.

Flags

The following optional flags can be given after the creation arguments in any
order:

nomorph The nomorph flag deactivates morphing for this register permanently. If
set, the corresponding parameters in the transition dialog will be grayed out.
They are still visible, but will not be stored anymore.
For some types of variables, it is never desired to morph between two states
(for example lists, symbols, toggles, etc.). To save computing power and
keep file sizes small, the morphing functionality should be turned off for such
variables.

delay <time/s> The delay settings can be set permanently by creation argu-
ments: The delay flag followed by a delay time in seconds will set the delay
time permanently. It is then not possible anymore to change the delay in the
register settings dialog. The according GUI controls will be grayed out. They
are still visible, but will no more be saved with the storage.
EXAMPLE: [ds_reg main variablel delay 5| will register variablel to do-
main main and delay all its recalls by five seconds.

nodelay turns off the delay permanently. It is not possible anymore to change the
delay in the register settings dialog. This has the same effect as "delay 0".
The according GUI controls will be grayed out. They are still visible, but will
no more be saved with the storage.

slave turns on slave mode permanently. It is not possible anymore to change it in
the register settings dialog. The according GUI controls will get grayed out

35

11. File reference

and will not be saved anymore with the scene.

noslave turns off slave mode permanently. It is not possible anymore to change
it in the register settings dialog. The according GUI controls will get grayed
out and will not be saved anymore with the scene.

occupy turns on occupy permanently. It is not possible anymore to change it in
the register settings dialog. The according GUI controls will get grayed out
and will not be saved anymore with the scene.

nooccupy turns off occupy permanently. It is not possible anymore to change it
in the register settings dialog. The according GUI controls will get grayed out
and will not be saved anymore with the scene.

direct direct = nomorph + nodelay + noslave + nooccupy. The direct flag is a
shortcut for nomorph, nodelay, noslave and nooccupy combined. This means,
most of the transition features will get bypassed permanently.

data prepend <symbol> Prepend any symbol to the recalled data.
EXAMPLE: |ds_reg main variablel data_prepend set| will register vari-
ablel to domain main and prepend the symbol set to the recall data. This
means, if the data was "0 8 15", it will become "set 0 8 15" when
recalled. This is especially useful when GUI elements without feedback pre-

vention are used ([s¥®°1) Symbol, T} Number).

data append <symbol> Append any symbol to the recalled data.
EXAMPLE: |ds_reg main variablel data_append foo| will register vari-
ablel to domain main and append the symbol foo to the recall data. This
means, if the data was "0 8 15", it will become "0 8 15 foo" when re-
called.

name_prepend <symbol> Prepend any symbol to the variable name for re-
calls.
EXAMPLE: ’ds_reg main variablel name_prepend foo/‘ will register vari-
ablel to domain main and prepend the symbol "foo/" to the variable
name for recalls. This means, the state of variablel will get recalled to
"foo/variablel".

36

11. File reference

name append <symbol> Append any symbol to the variable name for recalls.
EXAMPLE: ’ds_reg main variablel name_append /foo‘ will register vari-
ablel to domain main and append the symbol "/foo" to the variable
name for recalls. This means, the state of variablel will get recalled to
"variablel/foo".

change By default, saved variables always get dispatched, even if the recalled
value does not differ from the current value. To save some computing power,
the change flag can be set to load only the differences on every recall. This

function is similar to the object in Pd.

nochange Explicitly dispatch all values, even if the do not differ from the current
value. This flag is redundant, as it does not change the default behavior of

Kollabs/DS.
table This flag must be set, if the registered variable is a table.

resize If the variable is a table and the resize flag is set, it will get resized auto-
matically to the new size on every recall.

noresize If the variable is a table and the noresize flag is set, it will never get
resized automatically. This flag is redundant, as this is the default behavior
of Kollabs/DS.

11.1.5. |ds_reg global

With [ds_reg_globall, variables can be registered to the global layer of a scene-set
(See 10.1). For more information on global variables, see 12.2.3.

|ds_reg_global <domain> <name>| registers a global variable <name> to domain
<domain>. Its status will be saved with the scene-set and recalled when the scene-set
is loaded.

37

11. File reference

Creation arguments
domain This defines the storage domain, to which the variable gets registered.

name The second creation argument specifies the name of the variable, that
should be registered.

Flags

none.

11.2. Graphical User Interface

Some of the main abstractions have a corresponding Graphical User Interface (GUI)
to access the controls and settings self-explanatory. In general, the object name of
the GUI is constructed by appending "_gui" to the abstraction name. They all
have only one creation argument, which is the domain:

[<object>_gui <domain>]|creates the corresponding GUI for[<object> <domain>|.

The GUI objects follow the concept of identical send and receive names, which is
explained in 9.1. The address for the sends and receives always begins with the header
"/ds/<domain>", to which an extension in the form of "/name/subname" is added.
This leads to the full send/receive name "/ds/<domain>/name/subname".

Of course, it is possible to create more GUIs for the same object and domain.
Anyway, some dialog windows will only open once.

11.2.1. |ds_ gui

(see Figure 11.1) provides the GUI for [ds_logic| It contains all the

controls for the basic scene-based state-saving functionality.

38

11. File reference

ds_gui help
= S
@5) B =
) S
@b @ @+
.save

.load
7~ . ")
edlt advanced

Figure 11.1.: GUI for of domain help.

\

resave

reload

39

Main controls

11. File reference

GUI element

Address extension

Description

/ds/<domain>. ..
e /scene/current/prev Decrement current scene by 1.
Da) /scene/current Set current scene.

/scene/current/next

Increment current scene by 1.

/recall

Recall current scene from memory.

recall
=

/scene/selected/prev

Decrement selected scene by 1.

/scene/selected Set selected scene.

S /scene/selected/next Increment selected scene by 1.

@ store /store Store current scene to selected scene
in memory.

@ save /save Open save dialog: Save the whole scene-
set to disk.

@ resave /resave Save the whole scene-set to last speci-
fied filename on disk.

load /load Open load dialog: Load a scene-set from
disk.

reload /reload Load the last specified filename.

advanced | /advanced/vis Open the advanced settings dialog
(See 11.2.1 Advanced controls).

edit /edit/vis Open the file editing dialog

(See 11.2.1 Edit).

Advanced controls

The advanced controls (see Figure 11.2) are opened by clicking on [J advanced in

(See 11.2.1 Main controls).

40

11. File reference

Recall

g data D changes_only

IZtables
global

IZdispatch

Store

|Zdata
|Ztables

Print
Izinfo
|Zerrors
I:ldebug

I:ldatastream
Nei1i
cllpboard

)

all_scenes

N
selected_scene

N
recently loaded/saved

e ;
global_settlngs

e j g
reglsterillst

) i i
globalireglsterillst

System I:ldsp_muting

Figure 11.2.: Advanced controls for .

Recall

GUI element | Address extension Description

/ds/<domain>. ..
X data /recall/data/state If turned off, no data gets recalled.
Il /change If turned on, only changed variables will
changes only get dispatched.
X tables /recall/tables/state If turned off, no tables get recalled.
global /recall/global Click to recall the global variables.
dispatch /dispatch If turned off, nothing gets dispatched.

41

11. File reference

Store

GUI element | Address extension Description

/ds/<domain>. ..

data /store/data/state If turned off, no data gets stored.

tables /store/tables/state If turned off, no tables get stored.
Print

GUI Address extension Description

element /ds/<domain>. ..

info /print/info/state Print informational messages (i.e. store,

save, load, etc.).

errors /print/errors/state Print error messages.

[] debug /print/debug/state Print debug messages.

] /print/datastream/state Print the whole datastream on every

data-stream

recall.

clipboard

/print/buffer

Print the contents of the clipboard.

all scenes

/print/scenes

Print the contents of all scenes in mem-
ory.

selected
scene

/scene/selected/print

Print the contents of the currently se-
lected scene.

recently | /print/main Print the last loaded/saved data.

loaded /saved

global /print/global Print the current state of the global
settings.

/reg/print/dialog Open a list of all registered variables to

register list

print them individually.

global
register list

/reg/global/print/dialog

Open a list of all registered global vari-
ables to print them individually.

System
GUI element | Address extension | Description
/ds/<domain>. ..
[] DSP mut-| /dsp/mute If activated, the DSP gets always switched off
ing during dynamic patching within Kollabs.

42

11. File reference
Edit

A click on the [edit button in (see 11.2.1 Main controls) opens the edit
menu (See Figure 11.3). This dialog provides some file operations on the preset
file. It is possible to undo these operations by reloading the preset file from the
hard drive. To be able to use the destructive edit actions, it is always necessary to
unlock them.

all

.delete K{

selected IE

.clear
o ;
[ofe} aste overwrite
7| e
7~ \| [~ N\ .
nser

cut paste_l sert
.delete insert blank

N} -

@settings

@properties

Figure 11.3.: Edit menu for .

With exception of the delete function for the whole buffer in memory, all the editing
actions aim on the currently selected scene, which can also be set in this dialog. It
is also possible to specify, which storage layers should get pasted.

43

11. File reference

GUI Address extension Description

element /ds/<domain>. ..

X lock /edit/lock Unlock the edit actions.

@ delete all | /edit/clear Clear the whole memory.

@ clear /edit/scene/clear Clear contents of the selected
scene.

cut /edit/scene/cut Cut selected scene to clipboard.

A copy /edit/scene/copy Copy selected scene to clipboard.

B delete /edit/scene/delete Delete selected scene.

B paste /edit/scene/paste-overwrite | Paste scene replacing the selected

overwrite scene.

insert /edit/scene/insert Insert blank scene before the se-

blank lected scene.

paste /edit/scene/paste-insert Insert scene from clipboard before

insert the selected scene.

settings /edit/scene/paste/settings Paste transition settings.

tables /edit/scene/paste/tables Paste tables.

data /edit/scene/paste/data Paste data.

X] properties

/edit/scene/paste/properties

Paste scene properties.

44

11. File reference

11.2.2. |ds_transition gui

ds_transition_gui <domain>
Individual: . register list

General: [
buffer

. [.] advanced

Figure 11.4.: GUI for [ds_transition|of domain <domain>.

|ds_transition_gui| (see Figure 11.4) provides the GUI for [ds_transition]. It
gives access to all controls needed for editing scene transitions for the individual
variables.

45

11. File reference

Main controls

GUI element | Address extension Description

/ds/<domain>. ..
(] /reg/dialog This button opens a list of all variables
register list that are registered with this domain.

Inside, click on a variable to get to
its scene transition dialog (See 11.2.2
Register list).

QA buffer /reg/settings/buffer The register settings buffer acts as a
clipboard for scene transition settings.
The individual registers can copy their
settings to it or take the contents of
the buffer. The buffer can also be
edited by hand.

stop /transition/stop Stop the current transition for the
whole domain. Turns green (@) when
a transition is finished, and orange
(@) when an unfinished transition
has been stopped.

resume /transition/resume Resume a stopped transition. Turns
red (@) during an active transition.

advanced /transition/advanced/vis | Open the advanced settings dialog
(See 11.2.2 Advanced controls).

46

11. File reference

Register list / Scene transition dialog

A click on the [@ register list button opens a list of all variables, that are registered
to this domain (See Figure 11.5).

Click on the button ([J) beneath the desired variable name to open its individual
scene transition dialog (See Figure 11.6). The parameters in there are stored
separately for each variable in every scene. They are saved in the settings layer of
the scene-set.

Register list for "help" /i/am/a/variable (help)

7y /; ;
() /i/am/a/variable .slave .COPY_to_buffer

™~ /i i
/i/am/a/delayed/variable Edelay/s

™ /i
Q /i/am/a/master

™ /;
Q /i/am/a/slave

.PASTE_from_buf fer

show_buffer

.morph time/s: —
/i/am/occupied

Y /i/am/another/morphing/variable _ — .ShOW
/4/an/a/morphing/variable | T T—

resolution time-grain/ms quality

b bm) (I
/i/am/a/source

/i/am/both Doccupy
/i/belong/to/both

MY
/l

/]

/what/am/i

/i/must/be/set Dchange I:ltable

/i/must/be/set/too Data Name

/i/am/no/morphing/variable CEEESIEY | 1 | 1

/i/got/changed SEEende | 1 | 1

/i/am/also/a/variable

M
N

/i/am/a/table Figure 11.6.: Scene transition dialog for variable

"/i/am/a/variable" of domain
Figure 11.5.: The register list for domain help. help

47

11. File reference

Scene transition dialog

GUI Address extension Description

element | /ds/<domain>...

B slave | <name>/slave Start recalling only after another
(master-) variable has completed its
transition. (See 12.6.2 Slave).

Do) <name>/delay To delay the recall of one variable,

delay/s a time in seconds can be entered.
(See 12.6.2 Delay).

B morph | <name>/morph Turn on morph to get a smooth fade
from the current value to the value
that is saved in the current scene.
(See 12.6.2 Morph).

Do) <name>/morph/time Set the fade time in seconds.

time/s (See 12.6.2 Morph).

<name>/morph/timegrain Set the data-rate of the fade in mil-

time- liseconds. (See 12.6.2 Morph).

grain/ms

show

<name>/morph/curve/vis

Show the current appearance of the
fade curve. (See 12.6.2 Morph).

Do) <name>/morph/curve/shape Shape lets you chose a shape for
shape the curve. (See 12.6.2 Morph).
Do) <name>/morph/curve/weight Weight is a mix factor between a
weight linear fade and the chosen shape.
(See 12.6.2 Morph).
<name>/morph/curve/resolution | Specify the resolution of the fade
resolution curve. (See 12.6.2 Morph).
m 1] <name>/morph/curve/quality Choose the quality (interpola-
quality tion type) in which the fade
curve will be applied: none (de-
fault), linear, 4-point polynomial.
(See 12.6.2 Morph).
] <name>/occupy If occupy is set, the variable
occupy will not respond to another scene

recall while it is transitioning.
(See 12.6.2 Occupy).

48

11. File reference

Copy&Paste (See 12.6.2 Copy transitions)

GUI Address extension Description

element /ds/<domain>. ..

copy <name>/settings/copy Copy all the settings from above to the
to buffer register settings buffer.

B paste <name>/settings/paste Paste the register settings buffer to this
from buffer register.

show /reg/settings/buffer Show the buffer window.

buffer (See 11.2.2 Buffer).

The following GUI elements only appear in this window for monitoring reasons.
They need to be set as flags for the individual registers (see 11.1.4):

Flag monitoring

data prepend

GUI element | Address extension Description
/ds/<domain>. ..

[] change <name>/change Shows, if the change flag is set. The
message will then only get recalled if
the new value differs from the old value.
Even if the stored variable is a list or
table.

[] table <name>/table Shows if the table flag is set, i.e. the
variable is a table.

) <name>/data_prepend Show if a symbol is prepended to the

recalled data.

|

data append

<name>/data_append

Show if a symbol is appended to the
recalled data.

|

name prepend

<name>/name_prepend

Show if a symbol is prepended to the
variable name for recalls.

|

name append

<name>/name_append

Show if a symbol is appended to the
variable name for recalls.

49

11. File reference

Buffer

A click on the [J buffer button opens a dialog for editing scene transitions for all
registers together (See Figure 11.7).

The controls of the buffer are the same as in the individual registers. You can copy
from the buffer to single registers or vice-versa in the individual scene transition
dialogs.

Transition Settings_Buffer for "help"

I:' slave send to_all registers

Edelay/s .

.morph time/s: _

I T o

resolution time-grain/ms quality
W T]

.occupy

Figure 11.7.: The scene transition buffer for domain help.

50

11. File reference

GUI Address extension Description
element | /ds/<domain>. ..
B slave | /reg/settings/buffer/slave See 11.2.2 Scene
transition dialog
Do /reg/settings/buffer/delay See 11.2.2 Scene
delay/s transition dialog
B /reg/settings/buffer/morph See 11.2.2 Scene
morph transition dialog
PO | /reg/settings/buffer/morph/time See 11.2.2 Scene
time/s transition dialog
/reg/settings/buffer/morph/timegrain See 11.2.2 Scene
time- transition dialog
grain/ms

show

/reg/settings/buffer/morph/curve/vis

See 11.2.2 Scene
transition dialog

PO | /reg/settings/buffer/morph/curve/shape See 11.2.2 Scene
shape transition dialog
PO | /reg/settings/buffer/morph/curve/weight See 11.2.2 Scene
weight transition dialog
/reg/settings/buffer/morph/curve/resolution | See 11.2.2 Scene
resolu- transition dialog
tion

m][] /reg/settings/buffer/morph/curve/quality See 11.2.2 Scene
quality transition dialog
] /reg/settings/buffer/occupy See 11.2.2 Scene
occupy transition dialog
GUI Address extension Description

element | /ds/<domain>. ..

B send | /reg/settings/buffer/paste/all | Paste the buffer settings from above
to all to all registers of the current domain.
registers All variables will then have the same

transition.

51

11. File reference

Advanced controls

In the advanced controls dialog (see Figure 11.8), some or all transition settings
can be switched off globally for all variables. It opens by clicking on [(J advanced

in |ds_transition_guil

Transition_ Settings

.state

recall
store

|:| occupy_override: |Z occupy

gmorph
|Z| delay
slave

Figure 11.8.: The advanced controls for ‘ds_transition_gui .

GUI Address extension Description

element | /ds/<domain>...

B state /transition/state Turn scene transitions on and off globally.

[] recall | /recall/settings/state | Recall transition settings on a scene recall.

[] store /store/settings/state | Store transition settings if a scene gets
stored.

[] occupy | /occupy/override Override the individual state of occupy glob-

override ally.

[] occupy | /occupy Set occupy status when occupy override is
active

[morph | /morph Turn parameter morphing on and off globally.

[] delay /delay Turn delays of parameters on and off globally.

B slave /slave Turn slave on and off globally.

52

11. File reference

11.2.3. |ds_scheduler gui

ds_scheduler gui help
ID DUR/s @
HDo EEN 23 [
1 TWEE 21
2 DRIE 42
3 0
4 0
5 0
6 0
7 0
8 0
9 0
o fem P) O
h - s s advanced
Elapsed: o_\o_\o_\ﬁ m
Remaining: [0 0 230 1

Figure 11.9.: [ds_scheduler guil.

[ds_scheduler_gui| (see Figure 11.9) provides the GUI for [ds_scheduler]|. It con-
tains all the controls for time-line-editing and scheduling scenes in a play-list
view.

Play-list

The play-list view shows all stored scenes and provides controls to browse through
them. There are additional controls to set an individual duration and name for each
scene.

53

11. File reference

GUI Address extension | Description

element /ds/<domain>. . .

|

/scene/current Marks the current scene (= cursor). Click inside

to recall a specific scene.

E_D ID - - - Shows the scene numbers.

R R Shows the scene names. Type in a scene name

NAME to set one.

DUR/s | - - - Shows the scene durations in seconds. Type in
a new duration to set one.

O

— /scene/selected | Marks the selected scene. Click inside to change

it. Turns grey during an active transition.

& previous

Scroll play-list backward by one slot.

Scroll through play-list.

next

<

Scroll play-list forward by one slot.

Transport

The transport section of |[ds_scheduler_gui| provides controls for playback of the

current scene-set.

54

11. File reference

GUI element | Address extension Description
/ds/<domain>. ..
Do) /scene/current Current scene.
[) /scene/current/name Name of the current scene. Type in a
NAME name to set it.
DUR/s | /scene/current/duration | Duration of the current scene in sec-

onds. Type in a new duration to set
it.

advanced

/scheduler/advanced/vis

Open the advanced settings dialog.
(See 11.2.3 Advanced).

backward | /backward Get to the previous scene.

W pause /pause Pause playback of the play-list. Colors
show status of transition when paused:
active,)

play /play Start playback of the play-list. Colors
show status of transition during play-
back: active, .

forward /forward Get to the next scene.

LR /timer/elapsed/h Elapsed playback time of current scene:

Elapsed h hours

) /timer/elapsed/m Elapsed playback time of current scene:

Elapsed m minutes

) /timer/elapsed/s Elapsed playback time of current scene:

Elapsed s seconds

P) /timer/elapsed/cs Elapsed playback time of current scene:

Elapsed % centiseconds

P) /timer/remaining/h Remaining playback time of current

Remaining h scene: hours

) /timer/remaining/m Remaining playback time of current

Remaining m scene: minutes

) /timer/remaining/s Remaining playback time of current

Remaining s scene: seconds

) /timer/remaining/cs Remaining playback time of current

Remaining %

scene: centiseconds

55

11. File reference

Advanced

The advanced dialog (see Figure 11.10) is opened, when clicking on ad-
vanced in [ds_scheduler_guil|. There are some settings for the playback engine of
|ds_scheduler|.

Scheduler
resolution/ms

timebase
CPU
(0F5)

Figure 11.10.: TheadvancaﬂconUobibr‘ds_scheduler_gui.

GUI element | Address extension | Description

/ds/<domain>. ..

/resolution Set the time resolution of the playback engine

resolution/ms in milliseconds.

(]] /timebase Set the timebase of the playback engine.

timebase: (0) CPU: Rely only on the CPU time, created

CPU / OS by a object. This means, it will differ
from the actual passed time, depending on the
CPU load.

(1) OS: Rely only on the time calculated by
the operating system through the

object.

56

12. Using Kollabs/DS

This chapter shows, how Kollabs/DS is used. Unfortunately, not all use-cases can
be covered here, so some advanced options need to be figured out by looking into
the file reference in Chapter 11.

12.1. Creating a storage domain

A storage domain is created by adding a module to the patch. The
first creation argument defines the name of the domain: |ds_logic <domain>|
Additionally there are some flags (see 10.3), that can be set starting with the
second creation argument (See 11.1.1 for more information).

12.2. Registering variables

For each variable that should be registered to a storage domain, an individual
register needs to be created.

12.2.1. General

New variables can be registered to a storage domain with the module. Vari-
ables can be any type of messages (/ist, float, symbol), or even tables. Nevertheless,
the morphing features are only available for float values.

EXAMPLE: [ds_reg foo bar| registers variable bar to domain foo (See 11.1.4).

57

12. Using Kollabs/DS

In this context, variable bar can be created either through a pair of and
or by a GUI object with identical send and receive name (See 9.1).

12.2.2. Tables

To register a table to the storage, the table flag needs to be added to [ds_reg]
after the two creation arguments: [ds_reg <domain> <name> table| If the table
should be resized automatically to the new size, an additional resize flag can be set.
In contrast, noresize specifies, that the table should never be resized automatically,
which is the default behavior anyway.

EXAMPLE: creates a table. ‘ds_reg foo baz table noresize‘ Creates
a corresponding register with automatic resizing explicitly disabled. The order of
the two flags table and noresize does not matter.

For tables, the morphing functionality is deactivated, but other scene transition
features like delay or slave can be used.

12.2.3. Global variables

There is also the possibility to register a global variable. This means, its state stays
the same for all scenes and is saved and loaded with the scene-set. Global variables
can only be of type float.

There is a special register object for global variables: [ds_reg_global|. It works just

like [ds_reg], but there are no flags available for [ds_reg_global|

Global variables can be accessed just like normal variables through sends and
receives, but in addition, there is the possibility to communicate with them through

the object (See Figures 12.1 and 12.2).

58

12. Using Kollabs/DS

Ivalue /ds /<domain><name>/v|

iR

Figure 12.1.: Get the status of a global variable through the object.

Ivalue /ds /<domain><name>/v|

Figure 12.2.: Change the state of a global variable through the object.

12.3. Store/Recall, Save/Load

The most important thing in Kollabs/DS is saving scene-sets. For this, there are
some semantics to be explained. Single scenes can be stored to memory and recalled
from there. The memory is non-permanent, which means it will be lost, if the patch
is closed. Therefore the whole scene-set in memory must be saved to a permanent
text file on the hard drive, from where it can also be loaded again.

12.3.1. Store

To store the current status of all registered variables to a scene, select a target

scene in (see Figure 11.1), either directly or through [§ decrement
/ B increment.

Then [@ store the scene to memory.

12.3.2. Recall

A specific scene can then be recalled from memory by either entering its scene-
number P9) or through the decrement and increment buttons. If the

59

12. Using Kollabs/DS

current scene number gets changed, the according is recalled automatically. The
current scene can be recalled again by clicking on [@ recall.

12.3.3. Save

The whole scene-set with all scenes and global variables can be saved to a text
file on the hard drive. [l save opens a save dialog, where a path and filename can
be specified. If the scene-set has already been saved or loaded during the current
session, it can be re-saved to the last specified path via [@ resave.

12.3.4. Load

To load a previously saved scene-set from the hard disk to memory, click on the
load button to enter the load dialog. If the scene-set has already been saved or
loaded during the current session, the last specified path can be re-loaded via
reload.

12.4. Advanced scene editing

The [edit button in opens a dialog for advanced file operations. As these
could destroy much data if not used carefully, they need to get unlocked through
the [X] lock switch.

It is highly recommended to [@ save / @ resave the scene-set to the hard disk
before editing, so that it is always possible to undo an unwanted action through a
reload.

First, select the scene on which you want to perform an editing action via
selected scene. Then perform one of the actions, which are explained in the
following.

60

12. Using Kollabs/DS

12.4.1. Erase scene data

The data of a scene can be erased in two ways: [l clear wipes out all data in the
selected scene, but leaves the empty scene at its place. @] delete also deletes the
scene itself. The following scenes will then succeed by one slot to fill the gap.

To wipe out the whole scene-set completely, which means erase all scenes, click on
@ delete all.

12.4.2. Copy/Cut

The selected scene can be copied to the clipboard via [copy. In the Q advanced
dialog of [ds_guil, there is the possibility to print the current clipboard contents to
the Pd-window through the [clipboard button.

To additionally delete the selected scene, there is also a cut command. The
following scenes will then succeed by one slot to fill the gap.

12.4.3. Paste

The clipboard can be pasted in two different ways: Either by replacing the selected
scene ([l paste overwrite), or by creating a new scene and shifting the selected
and following scenes upwards by one slot ([J paste insert).

It can be specified, which layer of the scene in the clipboard should be pasted,
leaving the rest of the selected scene untouched. This could be useful, if only
the transition settings are to be replaced, but not the actual data. De-select the
layers which should be skipped on a paste: [X] settings, [X| data, [X] tables, [X]
properties.

12.4.4. Insert blank scene

To insert a new blank scene, click on [@ insert blank. The eventually already existent
scene at the selected slot and the following ones will succeed by one slot.

61

12. Using Kollabs/DS
12.5. Working with multiple domains

It is possible to have multiple storage domains at the same time, by creating
additional modules with different identifiers. The different domains can
either be used side-by-side, with no influence to each other, or also connected for
special applications.

12.5.1. Multiple domains side-by-side

Any number of domains can be created side-by-side without influencing each
other.

Create first storage domain: [ds_logic domaini|

Create second storage domain: [ds_logic domain2|

Register variablel to domainl: |ds_reg domainl variablel]

Register variable2 to domain2: |ds_reg domain2 variable2)]

12.5.2. Overlapping domains

It is also possible to register a variable to more than one domain at the same time.
Values and transitions will be saved independently. Anyway, most of the time you
probably don't want a variable to be part of multiple domains, as you might get in
big trouble.

Create first storage domain: [ds_logic domaini|

Create second storage domain: |[ds_logic domain2|

Register variablel to domainl: |ds_reg domainl variablel

Register the same variablel to domain2:|ds_reg domain2 variablel

62

12. Using Kollabs/DS

12.5.3. Nested domains

Sometimes it might be useful to nest one storage domain inside another. This way,
different presets can be created in a slave domain and arranged to a play-list by a
master domain. This is done by registering the current scene of the slave domain
to the master domain. The send/receive name of the current scene can be looked

up in the file reference of [ds_gui|in 11.2.1 Main controls.

Create a master domain: [ds_logic masterdomain|

Create a slave domain: [ds_logic slavedomain]

Register current scene of slavedomain to masterdomain:
‘ds_reg masterdomain /ds/slavedomain/scene/current ‘

Note, that only scene numbers of the slave domain will get stored in the master
domain. The actual data stays in the slave domain.

12.6. Scene transitions

12.6.1. General work-flow

Scene transitions are only activated, if a [ds_transition| module has been created
for the particular domain: [ds_transition <domain>|.

The scene transition settings are always stored with the destination scene. To add
a transition, first recall the scene, in which the transition should end, and wait until
it is completely recalled (the [stop button in [ds_transition_gui| turns green:

@)
HINT: To save time while editing, skip already programmed transitions: open the
advanced transition settings and turn off the global [Jl] state before recalling.

This way, many transitions can be programmed efficiently without waiting for them
to be done.

It is very important to store the scene after editing a transition. For example through

@ store in [ds_gui|

63

12. Using Kollabs/DS

12.6.2. Scene transition dialog

To edit the scene transition in a single variable, click on @ register list in
|ds_transition_gui| This opens a list of all variables that are currently regis-
tered to this domain (See Figure 11.5). Choose the desired variable by clicking
on the corresponding [(J <name> to open its scene transition dialog (See Figure
11.6).

If the scene transition should be the same for all registered variables, click on
buffer to open a general scene transition dialog. It has the same settings as
the individual registers and can be copied to all of them through @ send to all
registers. The settings in the buffer are the same as in the single variables.

Slave

The [l] slave option makes it possible to chain the recalls of single variables, to be
sure that dependent variables are recalled in the right order. If slave is set, the variable
will wait for an external trigger, that either arrives as a bang through the first inlet
of [ds_reg] (see Figure 12.3), or is sent to "/ds/<domain><name>/slave/start".
also outputs a trigger signal after each finished scene transition, so that
multiple registers can be chained (See Figures 12.4 and 12.5).

Each variable also sends a bang to "/ds/<domain><name>/dispatched", when
its transition has finished.

l’s‘end /ds/<domain><name>/s lave/startl

Figure 12.3.: Trigger a slave variable through a bang.

Els_reg help /i/am/a/master|

|
Els_reg help /i/am/a/slave|

Figure 12.4.: Chain registers by wire.

64

12. Using Kollabs/DS

E /ds /<domain><name>/dispatched|

]
l’s‘end /ds/<domain><name>/ slave/start|

Figure 12.5.: Chain registers by send/receive.

Delay

To delay the recall of a variable, set a constant [0) delay time in seconds.

Morph

The [ll morph toggle enables a fade from another scene to the current scene for
this variable.

The morph time can be set in seconds: PO time/s.

To apply a linear fade, set the weight parameter to zero:

[T P (0. 1)

With weight = 0, the parameters [EiEee] PO shape, reso-
lution and [M[_]_] quality have no effect.

For a curved fade, click on [@ show to open a graphic representation of the curve
(see Figure 12.6).

Figure 12.6.: Fade curve for a linear fade (weight=0).

Set weight to "1" and edit the shape parameter:

SN BE (-Inf .. .+Inf)

65

12. Using Kollabs/DS

A value of "0" produces a half sine wave (see Figure 12.7), "1" a quarter sine
wave (see Figure 12.8), and "2" leads to a x? function (see Figure 12.9). Float
values in between produce a linear blend between these three shapes (see Figure
12.11). For values greater than "2", an exponential x@eight function is applied (see
Figure 12.10). A negative sign inverts the shape (see Figure 12.12).

Figure 12.7.: Fade curve for a half sine fade (weight=1, shape=0).

Figure 12.8.: Fade curve for a quarter sine fade (weight=1, shape=1).

Figure 12.9.: Fade curve for a quadratic x> fade (weight=1, shape=2).

resolution sets the resolution of the fade curve.
W[[] quality sets how the curve is read:

(0) m[_T] No interpolation. Jumps to nearest value.
(1) m[] Linear (2-point) interpolation between two values.

66

12. Using Kollabs/DS

Figure 12.10.: Fade curve for an exponential x®i8"* fade (here: weight=1, shape=5).

Figure 12.11.: Fade curve for a weighted exponential x?¢8" fade (here: weight=0.5, shape=D5).

(2) W] 4-point polynomial interpolation.

Hint: for MIDI values, a resolution of 128 (7 bit) with no interpolation (quality=0)
is sufficient.

The sample-rate of the fade can be set through the timegrain parameter. The
default value is 20 milliseconds.

timegrain/ms
Occupy

If [[] occupy is set, the variable will not respond to another scene recall until its
transition is completed. By default, this option is deactivated.

Copy transitions

After editing the scene transition settings of one variable, you can [@ copy them
to the buffer. You can also open this buffer through [show buffer, and edit the

67

12. Using Kollabs/DS

Figure 12.12.: Fade curve for an inverted and weighted exponential x©¢8"* fade (here: weight=0.5,
shape=-5).

transition settings there. The buffer can then either be pasted into single variables
via [@ paste inside the individual scene transition dialogs, or into all variables
through the buffer window: @ paste to all registers.

12.6.3. Stop an active transition

If a scene transition is currently going on, the [0 resume button in [ds_transition_gui|
turns red: [@. When the transition has finished, the [J stop button turns green: [@.
An active transition can be stopped by clicking on [(J stop and continued any time
by clicking on [(J resume.

12.7. Time-line editing / Play-lists

To activate time-line-editing, a |[ds_scheduler| module and the according GUI
|ds_scheduler_gui| must be created for the specific storage domain:

|ds_scheduler <domain>|

|ds_scheduler_gui <domain>|

The play-list view in [ds_transition_gui|allows browsing through the scenes. Each
scene can be given an individual) name and duration. It is important
to note, that the durations include eventual scene-transitions of the variables.

The K@ play button allows playback of the scene-set starting at the current scene.
After the given duration, the next scene gets recalled. If the duration of a scene is

68

12. Using Kollabs/DS

set to zero, the playback will pause until you start it again. This way, manual cues
can be set inside a pre-programmed show.

The] pause button will pause playback at the given time. If a transition is currently
going on, it will be stopped too, and resumed again, if playback is resumed.

During playback, scenes can be skipped or started again through [|§ forward and
B backward. When the playback is paused, these controls have the same effect as

next and [prev in [ds_gui].

It is possible to set the time resolution of the playback engine in milliseconds through
resolution/ms, as well as the [W[_] timebase. There you can choose between
two time sources for the playback engine:

@[] (CPU) The time measured by the CPU of the computer.
[Tm (OS) The time calculated by the operating system.

For most cases, OS is the right choice.

12.8. Load file on startup

In some situations it is required, that the patch automatically loads a scene-
set and recalls a specific scene on startup. Send a message consisting of the
path and filename to "/ds/<domain>/loadfile", to load a scene-set from hard
disk to memory (See Figure 12.13). The path must be given relative to Kol-
labs. This means, if Kollabs lies in "/path/to/patch/libs/kollabs", and the
scene-sets are saved in "/path/to/patch/data", then the path must be set
as "../../data/<filename>". Afterwards recall the required scene by setting
"/ds/<domain>/scene/current" through a message. A delay should be intro-
duced to make sure, the scene-set is fully loaded and the patch is initialized before
recalling.

69

12. Using Kollabs/DS

Delay the load to make sure that the patch got fully
initialized.

/ds/help/loadfile ds_help.txt| file path (pathes relative to "./libs/kollabs"):

H [Use the "/ds/<domain>/loadfile" message to load a given

el 200 P, Delay the recall to make sure that the textfile got fully
loaded to RAM.
/ds/help/scene O[<---- Recall scene "0".

Figure 12.13.: Example: Load file on startup and recall scene.

12.9. Additional tools

There are many additional tools built in [ds_reg], that are used for some of the
internal functions. Some of them are also worth being used independently for special
tasks.

12.9.1. Route current value of variable

The current value of a registered variable can be sent to any destination by a route
command:

Sending a message "<target>" to "/ds/<domain>/<name>/route", sends the
current value of "<name>" to "<target>".

This may be useful for implementing copy & paste functionality outside of Kollabs/DS.

It is also possible to route the current values of all variables in a domain to one
destination through a global route command:

Sending a message "<target>" to "/ds/<domain>/route" sends the current
values of all registered variables of "<domain>" to "<target>".

This functionality is already built into [ds_reg], but can also be created for vari-
ables, that are not registered to a storage domain, through the [ds_route <name>|
object.

70

12. Using Kollabs/DS

12.9.2. Update / re-send current value

If the target for a route command should be the variable itself, there is a shortcut
available. It re-sends the current value of a registered variable to itself, which means
update its status:

Sending any message to "/ds/<domain>/<name>/resend" will send the current
value of "<name>" to itself.

This may be useful for updating GUI elements.
A global re-send for the whole domain can be ordered by a global resend command:

Sending any message to "/ds/<domain>/resend" sends the current values of all
registered variables of <domain> to themselves.

This functionality is already built into [ds_reg], but can also be created for vari-

ables, that are not registered to a storage domain, through the [ds_route <name>|
object.

12.9.3. Print current value to the Pd window
also provides the ability to print the current value of single variables to
the Pd window:

Sending a bang to "/ds/<domain>/<name>/print" will print the current value
of "<name>" to the Pd window.

This is sometimes useful for debugging. Single parameters can also be printed via

the advanced settings of (see 11.2.1 Advanced Controls).

71

Part IIl.

Discussion

72

13. Using Kollabs/DS in
real-world scenarios

Since its first implementation for Extended View Toolkit in 2010 (see 13.1),
Kollabs/DS has been used in various shows, installations and workshops. With each
application, the system has been refined to meet new requirements and eliminate
failures.

13.1. Extended View Toolkit

An early state-saving system had been developed in 2010 for the immersive media
installation Extended View Streamed at kunsthaus muerz'. The custom projection
software evolved further to the open-source project Extended View Toolkit (See
Fig. 13.1 and Venus and Weger, 2010). Since the first days, it has been closely
connected to Kollabs/DS.

The usage of Extended View Toolkit and Kollabs/DS has been taught in in several
workshops at universities and conferences, such as Joanneum University of Applied
Sciences Graz? (2010, 2011, 2013%), Pure Data Convention Weimar-Berlin* (2011),
Zurich University of the Arts® (2011), WORM Rotterdam® (2012), University

Lkunsthaus muerz: http: //www.kunsthausmuerz.at/

2FH Joanneum Graz: http://www.fh-joanneum.at/?lan=en

3http://ip2013.laras.be/planning-2013/

4PD Convention Weimar-Berlin 2011: http: //www.uni-weimar.de/medien/wiki/PDCON:
Conference/Extended_View_Toolkit

5Zurich University of the Arts: https://www.zhdk.ch/

6 WORM Rotterdam: http://www.worm.org/home/view/event /1873

73

http://www.kunsthausmuerz.at/
http://www.fh-joanneum.at/?lan=en
http://ip2013.laras.be/planning-2013/
http://www.uni-weimar.de/medien/wiki/PDCON:Conference/Extended_View_Toolkit
http://www.uni-weimar.de/medien/wiki/PDCON:Conference/Extended_View_Toolkit
https://www.zhdk.ch/
http://www.worm.org/home/view/event/1873

13. Using Kollabs/DS in real-world scenarios

setting

......

lmwmwl}-i} H [,
Ffepen [jreload

Figure 13.1.: Extended View Toolkit. Video: http://vimeo.com/51567993

of Florida - Digital Worlds Institute’ (2012) and Linux Audio Conference Graz®
(2013).

13.2. Monster

In 2012, the Kollabs/DS state-saving system was used for the mixed-media perfor-
mance Monster (See Fig. 13.2). The project was a collaboration with composer Wen
Liu and was performed several times in Vienna (Semperdepot®, Porgy & Bess'°
Odeon Theater!') and was featured in the opening concert of the International
Computer Music Conference 2012' in Ljubljana.

As a starting point for quick calibration of the projection mapping, different presets

" University of Florida - Digital Worlds Institute: http://www.digitalworlds.ufl.edu/
8Linux Audio Conference Graz 2013: http://lac.linuxaudio.org/2013/program
9Semperdepot / Academy of Fine Arts Vienna: http://www.akbild.ac.at/

0 porgy & Bess, Vienna: http://www.porgy.at/

1 0deon Theater, Vienna: http://www.odeon-theater.at/

12)cMC 2012, Ljubljana: http://www.icmc2012.s1/

74

http://vimeo.com/51567993
http://www.digitalworlds.ufl.edu/
http://lac.linuxaudio.org/2013/program
http://www.akbild.ac.at/
http://www.porgy.at/
http://www.odeon-theater.at/
http://www.icmc2012.si/

13. Using Kollabs/DS in real-world scenarios

needed to be saved and loaded. Detailed information about the project and its
artistic and technical realization can be obtained in my bachelor thesis (Weger,
2012).

Figure 13.2.: Monster. Video: vimeo.com/weger/monster-short-trailer

13.3. In Caelum

In Caelum (see Venus and Weger, 2012 and Fig. 13.3) is an immersive media
installation, which features a panoramic projection environment and ambisonic
sound. It is based around a 360 degree panoramic video camera system and data
from satellites, transmitted in realtime to control the installation. The installation is
inspired by the fact, that a lot of our daily communication is handled via satellites,
which are invisible and mostly unnoticed in the sky above us. In Caelum observes
the sky above us, visualizes and brings them to life acoustically.

Kollabs/DS has been used to store all settings of the projection mapping, sound
synthesis, etc. to automatically start with the computer every day of the exhibition
for one month.

75

vimeo.com/weger/monster-short-trailer

13. Using Kollabs/DS in real-world scenarios

Figure 13.3.: In Caelum. Video: http://vimeo.com/weger/incaelum

13.4. Orpheus & Eurydice

In the dance theater project Orpheus & Eurydice (see Horvath, 2013 and Fig. 13.4),
the versatile scene-morphing functionality of Kollabs/DS has been used the first
time in a bigger show. All parameters of the interactive sound design, realized by

two computers (one running Mac OS X and one running Linux) were managed by
Kollabs/DS(See left display in Fig. 13.4).

The video projections were produced by Peter Venus, who also made extensive use
of Kollabs/DS. He worked with a computer running Linux, Pd and Extended View
Toolkit (See right display in Fig. 13.4. Scene transitions with very long fade times
(several minutes) were used to blend in video projections smoothly and precise. The
ability to trigger these transitions through one button proved to be practical and
error-safe.

As this was the first time, that very long transition times were used, it was never
before thought of a possibility for pausing and resuming transitions. This project
lead to the implementation of these advanced transition controls, which proved to
be essential for theater productions.

76

http://vimeo.com/weger/incaelum

13. Using Kollabs/DS in real-world scenarios

Figure 13.4.: Orpheus & Eurydice. Video: http://vimeo.com/78349033

13.5. 3x cosi fan tutte

The research project 3x cosi fan tutte in 2013 (see 3x Cosi fan tutte 2012) was
planned to be another testing environment for Kollabs/DS. The project involved
three individual performances of the opera “Cosi fan tutte” by Wolfgang Amadeus
Mozart, each with a completely different team. The productions were performed in

MUMUTH Graz'® and Deutsche Oper Berlin**

One version was produced by Michael von zur Miihlen and Christoph Ernst. Peter
Venus contributed the video projection and sound design, all realized with a computer
system running Linux, Pure Data and Extended View Toolkit. Peter Venus made
extensive use of the Kollabs/DS state-saving system to trigger scenes both for
video and sound. Unfortunately, the Pd-powered video projection setup was omitted
last-minute due to artistic decisions of the producer, despite of the software’s stable
functionality.

BMUMUTH Graz: http://www.mumuth. at
Y Deutsche Oper Berlin: www .deutscheoperberlin.de/

77

http://vimeo.com/78349033
http://www.mumuth.at
www.deutscheoperberlin.de/

13. Using Kollabs/DS in real-world scenarios

| contributed the sound design to the second team, lead by Margo Zalite and
Martin Miotk. Unfortunately, | had to drop my prepared Pd-patch for realtime
sound processing due to artistic decisions and needed to switch to Ableton Livel®,
which provided faster results for this special purpose. This way, only the very basic
functionality of Kollabs/DS was used for spatialization of Ableton Live's output
through Pd.

13.6. Der Druckauftrag

In the theater play Der Druckauftrag'® by the Graz-based group Zweite Liga fiir
Kunst und Kultur, Kollabs/DS had been used as part of Extended View Toolkit.

The display of a laptop computer on stage was mirrored to the external VGA output
and then sent to a video capture card in the projection server. The server was
running Linux and Extended View Toolkit to project the computer screen contents
onto a big projection screen above the stage. Extended View Toolkit was used to
cut off the task-bar and also calibrate the projection mapping and color. Scenes
were used to switch between different screen modes (i.e. full-screen video playback,
text mode) during the performance.

15 Apleton Live: https://www.ableton.com/en/live/
16 Der Druckauftrag: http://zweiteliga.weblog.mur.at/?page_id=506

78

https://www.ableton.com/en/live/
http://zweiteliga.weblog.mur.at/?page_id=506

14. Kollabs in the future

In the past, Kollabs has proved to be a stable and useful tool, but it is still far away
from being a finished product. At the moment, the state-saving system Kollabs/DS
is well documented, but there still many features planned, which need to be
implemented. The other parts of Kollabs, such as OSC and MIDI communication,
still lack a proper documentation or even need to be implemented.

14.1. Planned features for Kollabs/DS

There are still many features on the wish list, which need to be implemented in the
state-saving solution Kollabs/DS. Some of them are discussed in this section.

14.1.1. Recall mix of multiple scenes

For some use-cases, it would be nice to have the possibility to not only morph
between two presets, but load a mix of both. Right now, there is the workaround
to do a morph between the scenes, stop it at the desired point and then store this
mixture to a new scene. An aim would be to recall a mixture of an arbitrary number
of scenes by giving exact percentages of them.

EXAMPLE:

Sending a message "0.3 5 0.6 6 0.1 2" to "/ds/<domain>/scene/current"
will recall a mixture of the three scenes 2, 5 and 6, with specific factors: 0.3 times
scene 5, 0.6 times scene 6 and 0.1 times scene 2.

79

14. Kollabs in the future

14.1.2. Load and draw user fade curves

It is a shame, that tables can be stored with the state-saving system, but there
is no way to save individual fade curves for scene morphing. This is because the
storage of tables is a feature, which was implemented after the whole system of
scene morphing was done. To load and draw user fade curves, the whole system of
scene morphing must be rethought.

14.1.3. Morph between lists and tables

Morphing between lists is no primary goal, because they can easily be split up
into float values, if scene-morphing is required. However, as tables in Kollabs are
treated just like lists, this would additionally lead to the ability of morphing between
tables.

The implementation of this would demand splitting of lists with arbitrary length and
dynamic creation of an individual morph object for every list item. A problem arises,
when the list changes its size between two scenes, or contains symbols, which can
not be morphed in a meaningful way.

14.1.4. Manual cross-fade between scenes

During the presentation of this work, it came out, that | omitted one of the most
cool features of lighting consoles: To have a big cross-fader for manually fading
between two scenes. A possible work-flow could be as follows:

1. Select the next scene without recalling it
2. Use a fader to control the manual transition to that scene.

14.2. Extensions of the Kollabs library

By now, Kollabs/DS has made much progress, which means the other parts of the
Kollabs library need to catch up.

80

14. Kollabs in the future

14.2.1. OSC, MIDI, DMX

OSC and MIDI are already implemented very well, but need to be reworked and
documented. DMX is not even implemented yet, but as it works similar to MIDI,
the MIDI implementation could be adapted very easily. It is planned to integrate a
learn-mode into Kollabs, which makes it possible to map between OSC, MIDI and
DMX in a very fast and intuitive way.

14.2.2. Bank management for control surfaces

The conjunction of Kollabs/DSand Kollabs /MIDI is planned to be used for advanced
bank management for controllers with motorized faders or knobs with led-ring,
such as the Behringer BCF2000" controllers (See Fig. 14.1). These controllers
could integrate better with the software, if the whole bank-management would
be computed and stored together with the individual program. This would mean,
always the same bank in the controller is used, but different pages can be switched
in the computer.

Figure 14.1.: The Behringer BCF2000 DAW controller.

1 Behringer BCF2000: http: //www.behringer . com/EN/Products/BCF2000. aspx

81

http://www.behringer.com/EN/Products/BCF2000.aspx

15. Conclusion

With Kollabs/DS, a versatile tool for scene-based state-saving has been developed.
While there are many features still waiting for implementation, Kollabs/DS is
already more powerful than any other available state-saving solution for Pure Data.
It has been proved in many cases, that Kollabs/DS is a reliable tool for shows and
installations.

Anyway, like many open-source software projects, it will probably never be finished
completely. As this project aims on a universal solution, which suits many different
tasks, | am dependent on feedback of users to cover all aspects and eliminate
critical bugs.

This document shows only the current state at the time of writing. To stay up to
date, the following information channels can be used:

GitHub repository (main project host): https://github.com/m---w/kollabs

Project page on the Pure Data homepage: http://puredata.info/downloads/
kollabs

For further information, do not hesitate to contact me under mail@marianweger.com

82

https://github.com/m---w/kollabs
http://puredata.info/downloads/kollabs
http://puredata.info/downloads/kollabs
mailto:mail@marianweger.com

Appendix

83

Bibliography

3x Cosi fan tutte (2012). URL: http://www.kug.ac.at/news-veranstaltungen/
news/kug-aktuell/details/article/3-x-cosi-fan-tutte.html (cit.
on p. 77).

Barknecht, Frank (2008). sssad - Stupidsupersimplistic State Saving ADVANCED.
URL: http://puredata.info/downloads/sssad (cit. on p. 8).

Bukvic, Ivica Ico. L20rk. URL: http://12ork.music.vt.edu/main/ (cit. on
p. 9).

Horvath, Lisa (2013). Orpheus and Eurydike. URL: http://www.lisahorvath.
at/orpheus-eurydike/ (cit. on p. 76).

Moser-Booth, Mike (2011). mmb library. URL: https://github.com/dotmmb/
mmb (cit. on p. 9).

Salzberg, Jeffrey E. and Judy Kupferman (2013). Stage Lighting Primer. URL:
http://www.stagelightingprimer.com (cit. on p. 7).

Venus, Peter and Marian Weger (2010). Extended View Toolkit. URL: http :
//extendedview.mur.at (cit. on p. 73).

Venus, Peter and Marian Weger (2012). In Caelum. URL: http://marianweger.
com/projects/in_caelum.shtml (cit. on p. 75).

Weger, Marian (2012). “Monster - Ein interaktives Projektions-System fiir bewegte
Objekte bei Tanzperformances.” URL: http://iem.kug.ac.at/projects/
workspace /2012 /monster-ein- interaktives-projektions-system-
fuer-bewegte-objekte-bei-tanzperformances.html (cit. on p. 75).

84

http://www.kug.ac.at/news-veranstaltungen/news/kug-aktuell/details/article/3-x-cosi-fan-tutte.html
http://www.kug.ac.at/news-veranstaltungen/news/kug-aktuell/details/article/3-x-cosi-fan-tutte.html
http://puredata.info/downloads/sssad
http://l2ork.music.vt.edu/main/
http://www.lisahorvath.at/orpheus-eurydike/
http://www.lisahorvath.at/orpheus-eurydike/
https://github.com/dotmmb/mmb
https://github.com/dotmmb/mmb
http://www.stagelightingprimer.com
http://extendedview.mur.at
http://extendedview.mur.at
http://marianweger.com/projects/in_caelum.shtml
http://marianweger.com/projects/in_caelum.shtml
http://iem.kug.ac.at/projects/workspace/2012/monster-ein-interaktives-projektions-system-fuer-bewegte-objekte-bei-tanzperformances.html
http://iem.kug.ac.at/projects/workspace/2012/monster-ein-interaktives-projektions-system-fuer-bewegte-objekte-bei-tanzperformances.html
http://iem.kug.ac.at/projects/workspace/2012/monster-ein-interaktives-projektions-system-fuer-bewegte-objekte-bei-tanzperformances.html

