
The Kinect distance sensor as
human-machine-interface
in audio-visual art projects

Matthias Kronlachner

P RO J EC T R EP O RT

Advisor:

DI IOhannes m Zmoelnig

Institute of Electronic Music and Acoustics
University of Music and Performing Arts Graz

Electrical Engineering - Audio Engineering

Graz, January 2013

institute of electronic music and acoustics

ii

Abstract

For several years now, the entertainment and gaming industry has been providing
multifunctional and cheap human interface devices which can be used for artistic appli-
cations.
Since November 2010 a sensor called Kinect™ for Microsoft’s XBox 360™ is avail-

able. This input device is used as color camera, microphone array, and provides as an
industry-first, a depth image camera at an affordable price.
As part of the project Pure Data/Gem externals have been developed which allow

access to the video and audio streams of the Kinect sensor. By including a framework
for Natural Interaction (OpenNI), methods can be used for user identification or the
extraction of skeletal models from the depth image.
The video streams and motion data produced by the sensor, in combination with the

software, is used in multimedia art projects for controlling sounds and video projections.
The documentation of these art projects and examples of the usage concerning the
developed Pure Data externals make up the practical part of this project.

Kurzfassung

Die Unterhaltungs- und Spieleindustrie liefert schon seit einigen Jahren multifunk-
tionale und günstige Eingabegeräte welche für künstlerische Anwendungen gebraucht
werden können und werden. Seit November 2010 ist der für die Microsoft Spielekonsole
XBox 360™ entwickelte Sensor Kinect™ erhältlich. Dieser Sensor dient als Farbkamera,
Mikrofonarray und liefert zum ersten Mal eine Tiefenbildkamera zu einem erschwinglichen
Preis.
Im Rahmen der Projektarbeit werden Pure Data/Gem Externals entwickelt welche

den Zugriff auf die Video und Audio Streams des Kinect Sensors ermöglichen. Durch
die Einbindung eines Frameworks für Natural Interaction (OpenNI) können Verfahren
wie Personenerkennung und die echtzeitfähige Extraktion von Skelettmodellen aus dem
Tiefenbild verwendet werden.
Die vom Sensor gewonnen Videostreams und Bewegungsdaten werden in künstlerischen

Projekten zur Steuerung von Klängen und Videoprojektionen eingesetzt. Die Dokumen-
tation dieser Kunstprojekte sowie die Beispiele zur Anwendung der Pure Data Externals
bilden den praktischen Teil dieser Projektarbeit.

Contents

1 Introduction 1

2 Kinect specifications 3
2.1 RGB camera . 4
2.2 Depth sensor . 5
2.3 Microphone array . 7

3 Accessing the Kinect 10
3.1 libfreenect . 10
3.2 OpenNI / NiTE . 11
3.3 Microsoft Kinect SDK . 12

4 Pure Data / GEM externals 13
4.1 Representation of depth data . 13

4.1.1 pix_depth2rgba . 14
4.2 pix_freenect . 14

4.2.1 Creation Arguments . 15
4.2.2 Messages/Settings . 17
4.2.3 Inlets/Outlets . 17

4.3 freenect . 18
4.4 freenect_audio . 19
4.5 pix_openni . 19

4.5.1 Creation Arguments . 20
4.5.2 Messages/Settings . 20
4.5.3 Inlets/Outlets . 20
4.5.4 Recording/Playback . 20
4.5.5 pix_openni and tracking . 22
4.5.6 Hand tracking . 23
4.5.7 User generator . 24
4.5.8 Skeleton tracking . 26

4.6 pix_threshold_depth . 30
4.7 pix_head_pose_estimation . 31

5 Application 34
5.1 ICE - IEM Computermusic Ensemble 34
5.2 vertimas - übersetzen - for dancer, sound and projection 36

6 Conclusion 39

Bibliography 40

iii

1 Introduction

For several years now, the entertainment and gaming industry has been providing multi-
functional and cheap human interface devices which can be used for artistic applications.
Since November 2010 a sensor called Kinect™for Microsoft’s Xbox 360 is available.

This input device is used as color camera, microphone array, and provides - as an industry-
first - a depth image camera at an affordable price. Soon after the release of the Xbox-only
device, programmers from all over the world provided solutions to access the data from
a multitude of operating systems running on ordinary computers.
This work outlines the functionality of a low budget sensor device and it’s application

within Pure Data1.
Multiple Pure Data/Gem externals2 and application examples are introduced which

allow the full access to the functionality of the Kinect sensor including video (Fig. 1.1)
and audio streams. Examples, source code and precompiled binaries can be found at the
Authors’ GitHub repository [Kro12a].
So far no special colorspace is existent in Gem that describes the distance of every

pixel in relation to the camera. Therefore, possible solutions are presented to interpret
and work with depth pixel data.
By integrating a framework for "natural interaction" (OpenNI), it is possible to do

user identification or extract skeletal models from the depth image.
Other solutions exist to acquire skeleton data, for example OSCeleton3. However, the

presented externals enable the access to video streams and tracking data simultane-
ously inside Pure Data without the need of additional computer programs. This allows
maximum flexibility.
The documentation of the externals include usage examples like distance measure-

ment, outline extraction, background subtraction, hand, user and skeleton tracking, head
pose estimation as well as gathering audio streams from the 4 channel microphone array.
For showing the practical application in art projects, the piece übersetzen - verti-

mas[Kro12b] for dancer, sound and video projection (Fig. 1.2) as well as the usage for
a concert with the IEM Computer Music Ensemble is presented.
The advantage of using Kinect for projects include independence from visible light due

to operation in the infrared spectrum and no need for calibration to gather movement
data of people.

1Pure Data is a visual programming environment used for computermusic and interactive multimedia
applications. Gem stands for Graphics Environment for Multimedia and extends Pure Data to do
realtime OpenGL based visualizations.

2Externals provide additional object classes to extend the functionality of Pure Data.
3OSCeleton is a standalone application to gather skeleton data from OpenNI/NITE framework and
sends it over Open Sound Control (OSC) to a host.

1

1. Introduction 2

gemhead

pix_texture pix_texture

gemhead

gemhead for rgb and for depth

rgb

pix_freenect 0 1 1

pix_separator

pix_texture

depth-raw

color-gradient mapping

angle $1

rectangle 2 1.5 rectangle 2 1.5 rectangle 2 1.5

pix_separator

t a a a

pix_threshold_depth

300 1200

pix_texture

rectangle 2 1.5

separator

separator

separator

translateXYZ 2 0 0 translateXYZ 6 0 0translateXYZ -6.2 0 0 translateXYZ -2.1 0 0

pix_depth2rgba 7000 pix_depth2rgba 1220

background subtraction

2

Figure 1.1: Kinect videostreams within Pure Data

Figure 1.2: Bodyprojection with help of the Kinect

2 Kinect specifications

The Israeli company Primesense developed the technology for the Kinect device and
licensed it to Microsoft. The Kinect sensor is connected by USB1 2.0 with additional
power supply and features a standard RGB webcam, a depth sensor and a four channel
microphone array (Fig. 2.1). It’s head can be tilted ±27◦, a three axis accelerometer is
measuring the orientation and a three color LED may be used for visual feedback.

Figure 2.1: Position of the sensors [Mic12]

The block diagram of the reference design is shown in Fig. 2.2. The Primesense
PS1080 System-on-Chip (SoC) provides a synchronized depth image, color image and
audio streams. All depth acquisition algorithms are running on the PS1080 SoC, therefore
no computational load is added to the host. [Pri12] Higher level functions like scene
analysis and tracking have to be done on the host.
A similar sensor device using the Primesense reference design is available from Asus

(Fig. 2.3). The Xtion and Xtion Live from Asus do not have a motor for controlling the
tilt. Therefore they do not need an additional power adapter and can be operated from
the USB power supply. The Xtion series includes a two channel microphone array instead
of the four channels provided by the Kinect sensor. The Xtion is equipted without RGB
camera, the Xtion Live includes an RGB camera like the Kinect.

1Universal Serial Bus

3

2. Kinect specifications 4

Figure 2.2: Primesense reference design [Pri12]

Figure 2.3: Asus Xtion Live sensor

The following sections will describe the different sensor elements of the Kinect in
detail.

2.1 RGB camera

The RGB camera of the Kinect features a standard resolution of 640x480 pixels operating
at a framerate of 30 Hz. A high resolution mode offering 1280x1024 pixels can be used.
But the framerate drops to about 15 Hz when using the high resolution mode. The
native output of the RGB camera is encoded as Bayer pattern2 image, but the available
frameworks (Sec. 3) can convert the raw information to a standard RGB image.

2A Bayer filter is a color filter mosaic enabling an array of monochrome image sensors to record color
images.

2. Kinect specifications 5

The pipeline of the RGB stream can also be used to output the raw stream of the
infrared (IR) camera. Unfortunately the RGB stream and the IR stream can not be used
in parallel.

2.2 Depth sensor

The depth sensor consists of a 830nm wavelength infrared laser projecting a specific
dot pattern onto it’s field of view (Fig. 2.4). An infrared camera records these patterns
on the objects and an on-board Digital Signal Processor (DSP) computes the distance
by correlating the live image with stored reference patterns (Fig. 2.5). More informa-
tion about the Light Coding™ technologie can be found in Patent US 2010/0118123
A1 [FSMA10] and the PrimeSense Homepage[Pri12].

Figure 2.4: Infrared dot pattern on wall [fut10]

The output of the depth sensor is a 640x480 pixel video stream. Each pixel is holding
11 bit of depth information, therefore 2048 (211) different values for representing distance
are possible. Due to internal computational reasons the rightmost eight pixel columns in
the image do not contain data. Therefore the usable resolution is reduced to 632x480.
The libraries for accessing the Kinect depth stream (Sec. 3) support converting the

11 bit raw depth values to real world coordinates in millimeter.
Due to the horizontal displacement of the infrared projector and the infrared camera,

the projector and the camera do not share exactly the same field of view. Therefore a
shadow especially for objects near to the camera is visible (Fig. 1.1, second and third
image from the left).

2. Kinect specifications 6

Figure 2.5: Depth sensor flow chart [Pri12]

Range of the depth sensors

The range of the Kinect depth sensor covers approximately 0.7 to 7 meters. The optimum
range is given by the manufacturer from 1.2 to 3.5 meters. The field of view covers 58◦

horizontal, 45◦ vertical and 70◦ diagonal (Fig. 2.6).

Latency of the depth sensor

As A. Bernin [[Ber11]Sec. 6.2] has pointed out in his master thesis, the average latency
of the depth sensor is 72.98 ms (Fig. 2.7). This latency indicates about 2 frames delay
at a framerate of 30 images per second. (t = 2

30[Hz]
= 66.6[ms]) This value does not

include the computation of higher level functions out of the depth video. It was measured
with a resolution of 640x480 pixels and a framerate of 30 frames per second.

Using multiple Kinect devices

Using multiple Kinect devices onto the same scene can cause unrecognized regions in
the depth image due to overlapping infrared dot patterns.
A possible solution by adding independent motion to each of the sensors is proposed

in [MF12]. Applying vibration to the Kinect senors results in a blurry dot pattern of the
interfering Kinect sensors. This can be done by attaching a motor with an eccentric mass
to the bottom of the Kinect (Fig. 2.8). The rotation of the motor and its attached mass
induces a tiny vibration in the device. As the infrared laser and camera are attached to
the same housing, they see their own pattern clearly and undistorted. The depth value
can be estimated and recognition is not disturbed by other Kinect sensors. (Fig. 2.9)

2. Kinect specifications 7

Figure 2.6: Depth sensor field of view 58◦ H, 45◦ V, 70◦ D

Apart from overlapping patterns, the USB 2.0 bandwidth has to be considered when
using multiple Kinect devices with one computer. Tests showed that two Kinect sensors
with activated RGB and depth stream occupy one USB bus. Therefore, additional USB
controllers have to be added to the system for operating more than two Kinect sensors.

2.3 Microphone array

The Kinect sensor includes a 4 channel microphone array with ADCs3 running at 16 kHz
sampling rate and 24 bit resolution.
Due to its rather low sampling rate and therefore about 8kHz cut off frequency it is

mainly intended for recording speech. Basic sound source localization and beam forming
algorithms can be used to separate multiple speakers in front of the Kinect sensor.
However, those algorithms are not provided by the device itself.
The four omnidirection electret microphones are located behind a grill on the bottom

of the sensor bar. (Fig. 2.10)
Following the Primesense reference design (Fig. 2.2), the Kinect supports receiving a

four channel audio stream for performing echo cancellation. In practice, the (surround)
loudspeaker feeds for the room are sent to the Kinect. The PS1080 SoC subtracts the
loudspeaker signals from the microphone signal which results in a better signal-to-noise

3ADC - Analog to digital converter

2. Kinect specifications 8

Figure 2.7: Latency of Kinect depth sensor using OpenNI [[Ber11]Sec. 6.2]

Figure 2.8: DC motor with eccentric mass attached to the Kinect for inducing vibration.
[MF12]

ratio.
In the project report Audio for Computer Gaming [MM12], Mayer and Meißnitzer took

a closer look at the Kinect microphone array including measurements of the impulse
responses and beam accuracy using the Microsoft Kinect SDK (Sec. 3.3).

2. Kinect specifications 9

Figure 2.9: A - Depth map of room using a single Kinect. B - Depth map with 5 Kinect
sensors overlapping the view, causing interferences and failures in estimation.
C - Depth map with 5 overlapping Kinects while applying motion to every
sensor. [MF12]

Figure 2.10: Four channel microphone array

3 Accessing the Kinect

Soon after the release of the Xbox-only device in November 2010, programmers from
all over the world provided solutions to access the data from a multitude of operating
systems running on ordinary computers. In the beginning, Microsoft did not support the
movement of using the Kinect for other purposes. Also the license does not allow using
the Xbox Kinect for other purposes than playing with the Microsoft gaming console.
After the big success in the Open-Source community, Microsoft changed their policy
and released their own Software Development Kit (SDK) for Windows. They released
another version of the Kinect sensor called Kinect for Windows in January 2012. This
version includes minor hardware changes (a shorter USB cable), but has a more open
license.
The following chapter should introduce the available libraries and their different func-

tionality for accessing Kinect data streams at application developer level. An overview is
given in table 3.1.

3.1 libfreenect

The OpenKinect community released the multi-platform open source library libfreenect
[Ope11a], allowing access to all data streams of the Kinect. Libfreenect supports multiple

libfreenect OpenNI / NiTE MS Kinect SDK
rgb X X X
depth X X X
infrared X X X
audio Xa X
accelerometer X X
led X X
motor tilt X X
scene analysis X X
hand tracking X X
skeleton tracking X X
face tracking X
beam forming X
sound source localization X

alibfreenect audio support only for Linux

Table 3.1: Comparison of Kinect libraries

10

3. Accessing the Kinect 11

Figure 3.1: OpenNI layers [Ope11b]

Kinect devices and allows to identify them by there unique serial number1.
No higher level functions like Scene Analysis and Tracking are included, but there is

the separate open source project Skeltrack [Roc12], focusing on skeletal tracking.
Libfreenect is very lightweight, cross-plattform and easy to install. Therefore, it is the

library of choice for tasks that do not need built in tracking functionality. The library
should also work with the Asus Xtion Series (Fig. 2.3), but this has not been tested by
the authors.

3.2 OpenNI / NiTE

Primesense, the company that developed the technology for Kinect, founded the non-
profit organization OpenNI to support the interoperability of Natural Interaction devices.
OpenNI is an cross-platform open source framework allowing applications to interface
with different sensor devices and accessing higher level functions (called middelware) like
skeleton tracking.
The structure of OpenNI covers three layers (Fig. 3.1). The first is the application

layer providing the functionality of OpenNI to host applications. The second layer acts
as communication layer between the host software, (multiple) hardware sensor input and
(multiple) middleware, which analysis data from the sensor. The bottom layer shows dif-
ferent hardware devices attached to the OpenNI framework by specific drivers. [Ope11b]

1A Kinect serial number may look like this: A00362807917045A

3. Accessing the Kinect 12

As OpenNI relies on hardware driver modules for connecting to a specific device, an
unofficial driver module avin2-SensorKinect[avi10] has to be installed for using the frame-
work with the Kinect sensor. This driver currently does not support audio, accelerometer,
led and motor tilt access.

OpenNI features recording and playing back data streams of an attached sensor device.
This can be very handy for rehearsal and development situations.

NiTE

The higher level functionality in OpenNI has to be provided by the so called middleware.
An example implementation of such a middleware is NiTE by Primesense and provides
gathering of the position of numerous standing people, tracking of a detailed skeleton of
two people as well as performing hand gesture detection and tracking. NiTE is closed-
source and available as precompiled binary for Windows, Mac OS X and Ubuntu Linux
from the OpenNI Homepage [Ope11b].

3.3 Microsoft Kinect SDK

In June 2011 Microsoft released their Kinect Software Development Kit (SDK) [Mic12].
This Windows only SDK has the most complete feature set for interfacing with the
Kinect sensor. It allows position estimation of up to six standing people and extracting
the detailed skeleton of two people. It features higher level functions for the microphone
array like sound source localization, beam forming and speech recognition.
The Microsoft Kinect SDK has not been used in this project due to its non-cross-

plattform compatibility which is a major point when working with Pure Data.

4 Pure Data / GEM externals

The need for custom Kinect Pure Data/GEM externals came out of the wish to access
all streams and functionality of the Kinect in parallel within one piece of software.
Two different open-source and multi-plattform libraries are used for interconnecting

with a Kinect device. Based on libfreenect (Sec. 3.1) pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

(Sec. 4.2) offers access
to all features provided by the Kinect sensor. The OpenNI (Sec. 3.2) interface for Pure
Data is implemented in

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

(Sec. 4.5). This external does not provide access to
the motor tilt, accelerometer, LED and the audio streams. But it features higher level
functionality like skeleton and hand tracking.
To incorporate the missing functions of the OpenNI based external, specific externals

based on libfreenect have been developed to access the accelerometer, motor tilt, LED
and audio streams (freenect , freenect_audio). These externals can be used in parallel to

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

.
The externals expr

expr~

and

expr

expr~ offer a very flexible way for manipulating float messages
or audio samples by entering mathematical formulas. Currently there is no

pix_separator

accel

info

pix_head_pose_estimation

pix_expr

pix_multiblob

avail-
able, which makes it difficult to operate with color values in a flexible way. Therefore the
externals

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

(Sec. 4.6) and

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba (Sec. 4.1.1) for manipulating
depth streams have been developed.
The source code as well as precompiled binaries of all developed externals can be

found at the GitHub repository [Kro12a].

4.1 Representation of depth data

So far no Gem colorspace exists which describes the distance of a pixel in relation to the
camera. Therefore a solution is proposed using RGBA or YUV colorspace for representing
16 bit depth data. For RGBA output the 16 bit depth data is divided into the upper
eight most significant bits and the lower eight significant bits. These eight bit values
are stored in the red (R) and the green (G) channel respectively. The blue channel (B)
is used for additional information about the pixel. For example, if a user is present in
that specific pixel, the specific user-id is encoded into the blue (B) channel. The alpha
channel (A) is set to 255.
The YUV colorspace uses 4 bytes per 2 pixels and therefore can store the 16 bit

per pixel depth information, but additional values like user-ids can not be included.
This output mode was implemented for saving main memory and computation time, but
currently no additional externals are provided to manipulate YUV depth maps. Therefore
it is recommended to stick to the RGBA depth output.
Depending on the numerical representation of color values, depth information can be

13

4. Pure Data / GEM externals 14

R G B A
3/8 msb 8 lsb 0 or userid (OpenNI) 255

Table 4.1: RGBA output of depth data

YUV422 (2 bytes per pixel)
11 bit/16bit depth values

Table 4.2: YUV output of depth data

obtained with the following formulas1.

distance = Rint ∗ 28 +Gint (4.1)

distance = Rfloat ∗ 216 +Gfloat ∗ 28 (4.2)

RGB data for one specific pixel can be obtained by pix_data . An example how to
compute the distance value of one pixel within Gem is shown in Fig. 4.1.
To extract certain parts of an depth image you can use

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

(Sec. 4.6).

4.1.1 pix_depth2rgba

For development and visualization purposes it is handy to map distance values onto
a color gradient (Fig. 4.2). For this purpose the external

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba (Fig. 4.3) has
been developed. The creation argument defines the maximum range of the gradient in
millimeter. This value can also be changed by the rightmost inlet.
The second inlet allows to change the internal mapping mode from 16 bit depth data

in [mm] (default) to 11 bit raw depth data. This is just needed if the depth output of
pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

is set to raw mode.
Sending zero or one to the first inlet deactivates or activates the conversation.

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba changes the pix buffer of the image. If the unchanged image is needed
for other purposes in parallel, the buffer has to be copied using pix_separator

accel

info

pix_head_pose_estimation

pix_expr

pix_multiblob

(Fig. 1.1).

4.2 pix_freenect

The external pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

is based on libfreenect (Sec. 3.1) and offers access to RGB
and depth streams (Fig. 1.1). It allows gathering of accelerometer data, controlling the

1Gem internally handles color values as 8 bit integers (0-255), but on user level (eg. output of pix_data)
normalized floats (0.0-1.0) are used.

4. Pure Data / GEM externals 15

gemhead gemhead

pix_data

x-pos

0.5

y-pos

0.5

unpack 0 0 0

* 65536 * 256 * 256

+

mm807.1

print userid

pix_openni 0 1 1

(if usergen)

Figure 4.1: Computing distance out of depth image using pix_data.

Figure 4.2: Gradient for displaying depth data - near to far

tilt of the head and changing the LED color. Multiple devices can be accessed by their
unique serial number. Due to the limited bandwidth of USB 2.0 a maximum number of
two Kinects can be accessed by one USB controller.

4.2.1 Creation Arguments

The creation arguments of pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

allow to turn on/off streams and select a specific
Kinect device, if multiple are used.
pix_freenect <device id/serial number> <rgb on/off> <depth on/off>.
Kinect device ids are assigned by the libfreenect library and start with zero. When

using multiple Kinect devices its better to address them by their unique serial number
(Fig. 4.5). Libfreenect does not guarantee to assign the same id to the same device when
being restarted. The Kinect serial numbers can be listed by sending the

pix_separator

accel

info

pix_head_pose_estimation

pix_expr

pix_multiblob

message
to pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

(Fig. 4.5). This will print the serial numbers of all Kinect devices to the
Pure Data terminal window (List. 4.1).

4. Pure Data / GEM externals 16

mode

pix_texture

alpha

on/off

0 -> 11 bit raw kinect data
1 (default) -> 16 bit mm depth data

max-distance-in-mm

1000

arg: max distance to display in color

use it to scale color gradient
in mm!

gemheadgemhead

pix_freenect 0 1 1

rectangle 4 3

pix_depth2rgba 7500

Figure 4.3: pix_depth2rgba patch

(a) gradient range 1000mm (b) gradient range 7500mm

Figure 4.4: pix_depth2rgba output with different range settings

pix_freenect A00362807917045A 1 1

info

Figure 4.5: Open specific Kinect device by serial number and activate RGB and depth
stream by creation arguments

4. Pure Data / GEM externals 17

1 ::freenect status::
2 [pix_freenect]: Number of devices found: 1
3 [pix_freenect]: Device 0 serial: A00362807917045A
4 [pix_freenect]: libfreenect supports FREENECT_DEVICE_MOTOR (3)
5 [pix_freenect]: libfreenect supports FREENECT_DEVICE_CAMERA (3)

Listing 4.1: Pure Data terminal output of pix_freenect

4.2.2 Messages/Settings

Internal settings can be changed by sending messages to the first inlet. An overview of
available settings can be found in table 4.3.

accel send acceleration data to third outlet
info output kinect serial numbers and libfreenect info to terminal
angle <f>a change the tilt of the head (float −30◦ → 30◦)
led b change the color of the LED (int 0→ 5)
rgb activate (1) / deactivate (0) the rgb stream
depth activate (1) / deactivate (0) the depth stream
depth_output <i>c output depthmap as RGBA (0) or YUV (1) image
depth_mode <i> depthmap in [mm] (0), rgb-aligned [mm] (1) or 11 bit raw (2)
video_mode <f> output rgb image (0) or infrared image (1)
resolution <i> rgb resolution - 320x240 (0), 640x480 (1), 1280x1024 (2)

a<f> float number
b boolean - 0 or 1
c<i> integer

Table 4.3: Messages/settings for pix_freenect

4.2.3 Inlets/Outlets

The Kinect externals output two different image streams. Therefore the decision was
made to implement two separate gemhead inlets and corresponding outlets (Fig. 1.1). The
leftmost inlet/outlet pair is used for the RGB stream, the second inlet/outlet is used for
the depth stream. The third outlet is used for accelerometer data output. Sending the

pix_separator

accel

info

pix_head_pose_estimation

pix_expr

pix_multiblob

message to pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

(Fig 4.7) triggers the output of three messages (accel,
tilt_angle and tilt_status) at the third outlet (Tab. 4.4).

accel <f> <f> <f> raw accelerometer data for x-, y- and z-axis
tilt_angle <i> raw tilt motor angle encoder information
tilt_status <i> motor stopped (0), reached limit (1), currently moving (4)

Table 4.4: Output at third outlet for accel message

4. Pure Data / GEM externals 18

led $1

0

angle $1

-30

0

GREEN

OFF

RED

YELLOW

BLINK_GR
BLINK_R_Y

1 1

rgb $1 depth $1

activate/deactivate streams
save cpu power by just activating necessary streams!

0

depth_output $1

b = 0, a = 0

properties for pix_freenect

DEPTH OUTPUTSTREAMSLED, ANGLE

r->3 msbits, g ->8 lsbitsRaw YUV (2 bytes) |

Raw RGBA -> 11 bit output in r&g channel

0 0

depth_mode $1

11bit raw

set depth output colorspace

set output formats

mm aligned to rgb (16 bit)
mm unaligned (16 bit)

video_mode $1

RGB

IR

s $0-prop

s $0-prop

s $0-prop

s $0-prop

2

resolution $1

MEDIUM (default)

RGB RESOLUTION

HIGH (restart rgb stream!)

LOW (not displaying correctly)

pd notes

Figure 4.6: Properties dialog of pix_freenect helpfile

1

unpack 0 0 0

0.119739 9.84257 0.227505 accelerometer data for X, Y, Z -axis

Raw tilt motor angle encoder information

expr sqrt($f1*$f1+$f2*$f2+$f3*$f3)

9.845 gravity acceleration should be 9.81

route accel tilt_angle tilt_status

0
Motor status - 0 stopped
1 limit reached, 4 moving

pix_freenect 0 0 0

accel

accel

metro 500

Figure 4.7: Sending accel message to pix_freenect

4.3 freenect

The external freenect was developed for parallel use with

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

which lacks access
to motor tilt, LED and accelerometer data. These functions are similar implemented as
in pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

and listed in table 4.5. A screenshot of the helpfile can be seen in figure
4.8.

4. Pure Data / GEM externals 19

accel send acceleration data to third outlet
bang output kinect serial numbers and libfreenect info to terminal
angle <f> change the tilt of the head (float −30◦ → 30◦)
led <i> change the color of the LED (int 0→ 5)

Table 4.5: Messages for freenect - arguments: <f> float, <i> int

www.matthiaskronlachner.com

(C)2011/2012 Matthias Kronlachner

bang

angle $1

0

led $1

accel

-1

unpack 0 0 0

0.227 9.507 -0.15

metro 200

freenect A00362807917045A
freenect 0

1st argument: Device ID or Serial Number eg.
A00362807917045A

show serial numbers

-30 to 30 deg

accelerometer data to outlet

of connected devices
in output window

GREEN

OFF

RED

YELLOW

BLINK_GR
BLINK_R_Y and libfreenect available subdevices

freenect 0.2 gives you access to led, motor and
accelerometer of Microsoft Xbox Kinect via libfreenect

route tilt_angle accel tilt_status

0
1 limit reached, 4 moving
Motor status - 0 stopped,

tilt angle

Figure 4.8: freenect help patch

4.4 freenect_audio

Libfreenect audio support is exclusively available for Linux. Therefore the external
freenect_audio is currently working just with the Linux operating system.
When sending a bang to the inlet, each of the four outlets will output a list of

floats, representing the samples of the corresponding microphone signal. The list will
contain the samples that arrived from the Kinect device since the last bang . An internal
buffer is responsible for caching the incoming samples. This buffer can overload if the
time between two output triggers is too long. Currently resampling has to be done in
the Pure Data message domain. A good approach would be to include the adaptive
resampling described by Fons Adriaensen [Adr12] into a freenect~ external.

4.5 pix_openni

Based on OpenNI (Sec. 3.2) and NiTE middleware by Primesense, the external

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

features some higher level functionality. Besides gathering the RGB and depth streams it

4. Pure Data / GEM externals 20

is possible to do hand tracking, user tracking and skeleton tracking (Fig. 4.15). Currently
it is not possible to get accelerometer data, control the tilt and the color of the LED as
well as receiving the audio streams. Therefore the libfreenect based externals freenect

(Sec. 4.3) and the currently Linux only freenect_audio (Sec. 4.4) have been developed
to be used simultaneously with

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

and provide the missing features.

4.5.1 Creation Arguments

The creation arguments of

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

allow to address multiple Kinect devices, turn
on/off streams and tracking functionality.

pix_openni <device id ≥ 1> <rgb on/off>
<depth on/off> <skeleton tracking on/off> <hand tracking on/off>.

Device IDs are assigned by the OpenNI hardware driver and start with one (≥ 1).
It can not be guaranteed that the same device will be addressed by the same id after
unplugging from the USB port. The Kinect OpenNI driver currently does not allow
addressing a specific device by the serial number.

1 [pix_openni]: pix_openni 0.12 - 2011/2012 by Matthias Kronlachner
2 [pix_openni]: chosen Kinect Nr: 2
3 [pix_openni]: OPEN NI initialised successfully.
4 [pix_openni]: The following devices were found:
5 [pix_openni]: [1] PrimeSense Sensor (0)
6 [pix_openni]: [2] PrimeSense Sensor (0)

Listing 4.2: Pure Data terminal output of pix_openni

4.5.2 Messages/Settings

Internal settings can be changed by sending messages to the first inlet. An overview of
available settings can be found in table 4.6.

4.5.3 Inlets/Outlets

The first two inlets/outlets of

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

are identical to pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

(Sec. 4.2.3) and
output a gem_state corresponding to the RGB and depth video stream. The third outlet
is used for the output of messages corresponding to tracking, status and playback data.
The output messages look differently depending on the osc_style_output setting (Sec.
4.5.5).

4.5.4 Recording/Playback

It is possible to record the RGB and depth stream from the Kinect sensor for later
playback. Therefore the OpenNI specific .oni file format is used. Tracking data is not

4. Pure Data / GEM externals 21

rgb a activate (1) / deactivate (0) the rgb stream
depth activate (1) / deactivate (0) the depth stream
usergen activate (1) / deactivate (0) user tracking
skeleton activate (1) / deactivate (0) skeleton tracking
hand activate (1) / deactivate (0) hand tracking
depth_output output depthmap as RGBA (0) or YUV (1) image
registration activate (1) / deactivate (0) depth to rgb image alignment
usercoloring activate (1) / deactivate (0) usercoloring
bang output available resolutions/framerates of streams
video_mode <i>b <i> <i> set rgb resolution/framerate
depth_mode <i> <i> <i> set depth resolution/framerate

real_world_coords (1) output real world coordinates tracking data (default 0)
osc_style_output (1) output osc style tracking data (default 0)
euler_output (1) output orientation angles of joints

start_user start skeleton tracking for all users
start_user <i> start skeleton tracking for specific user id
stop_user stop skeleton tracking for all users
stop_user <i> stop skeleton tracking for specific user
userinfo output userinfos at outlet (num_users, CenterOfMass,...)

auto_calibration (1) auto calibrate and start skeleton if user enters scene
skeleton_smoothing <f> skeleton tracking data smoothing (0.0-> 1.0) default 0.5
hand_smoothing <f>c hand tracking data smoothing (0.0-> 1.0) default 0.5

open <s>d open filename (.oni) for playback or recording
record start recording (prior send open message!)
play start playback (prior send open message!)
playback_speed <f> playback speed (1.0 = normal)
jump_image_frame <i> playback from specific image frame
jump_depth_frame <i> playback from specific depth frame

a boolean - 0 or 1
b<i> integer number
c<f> float number
d<s> symbol

Table 4.6: Messages/settings for pix_openni

4. Pure Data / GEM externals 22

recorded in the file. Nevertheless it will be computed in realtime if activated during
playback of a .oni file. One minute recording will use approximately 180 Megabytes of
disc space.
Sending a message in form of open myfile.oni to the first inlet (Fig. 4.9) will set the

filepath for recording as well as playback. Filenames without absolute path are relative to
the location of the Pd-patch (eg. recordings/my_recording.oni). An absolute path
could look like /tmp/my_recording.oni.

s $0-prop

OFF

ON

record $1

OFF

ON

play $1

playback_speed $1

0 0

jump_image_frame $1

0

jump_depth_frame $1

open testrecording.oni

record image and depth stream to .oni file and playback

start rec start play

s $0-prop s $0-props $0-prop

set the open/save filename/path

pix_openni

Figure 4.9: pix_openni record/playback patch

4.5.5 pix_openni and tracking

All tracking data provided by the

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

external will be sent to the rightmost outlet.
The messages have common properties.

x

z

y

Figure 4.10: coordinate system used for tracking data

In the coordinate system used by OpenNI +x points to the right, +y points up and
+z points in the direction of increasing distance (Fig. 4.10). The default scaling of all

4. Pure Data / GEM externals 23

coordinates is between 0.0 and 1.0 for the x and y axis, and between 0.0 and 7.0 for the
z axis. This can be changed by sending the message real_world_coords 1 to the first inlet.
This setting will change the coordinate output to real world representation in millimetre
[mm].

hand 1 0.456289 0.420714 0.648926

Listing 4.3: Normalized coordinate output (0 ≤ xy ≤ 1; 0 ≤ z ≤ 7)

hand 1 41.9625 50.7432 830.625

Listing 4.4: Realworld coordinate output in millimetre

The output format of the messages can be changed by sending osc_style_output 1 to

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

. The OSC style output can have some advantages if you like to route tracking
data directly to other applications or Pd instances through Open Sound Control. Please
refer to the Hand tracking section (4.5.6) and Skeleton tracking section (4.5.8) for the
specific output message syntax.

joint l_foot 1 0.311801 0.392408 2.78771 1

Listing 4.5: Skeleton default output style

/skeleton/joint/l_foot 1 0.311801 0.392408 2.78771 1

Listing 4.6: Skeleton OSC output style

4.5.6 Hand tracking

Hand tracking within

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

can be activated either by setting the fifth creation
argument to 1 or by sending the message hand 1 to the first inlet.
The hand gets detected by making a waving gesture. After the hand has been detected,

the tracking data can be received with Gem frame-rate through the third outlet. Tracking
data can be smoothed by adjusting the hand_smoothing 0.5 parameter between 0.0 and
1.0.
The output messages look like:

hand <id> <x> <y> <z>

or if osc_style_output 1 (Sec. 4.5.5)

/hand/coords <id> <x> <y> <z>

Multiple hand tracking has to be activated in the NiTE configuration file. You can
find it in /usr/etc/primesense/Hands_*/Nite.ini 2. Add or uncomment following
lines:

2The asterisk sign * notates, that multiples of this directory may exist. Change the configu-
ration file in every folder. For Windows the file can be found in C:\Program Files\Prime
Sense\NITE\Hands\Data

4. Pure Data / GEM externals 24

1 [HandTrackerManager]
2 AllowMultipleHands=1
3 TrackAdditionalHands=1

Listing 4.7: change Nite.ini for multiple hands support

gemhead gemhead

pix_openni 1 1 1 0 1

route hand

hand 1

route 1 2

unpack f f f

0.859 0.824 0.589

unpack f f f

0.486 0.789 0.636

gemwin

create, 1

hand 1-x,y,z hand 2-x,y,z

Figure 4.11: pix_openni multiple hand tracking

4.5.7 User generator

The user generator makes it possible to detect persons in the field of view. The number
of detected persons in the depth image as well as their centre of mass can be retrieved
by sending the message userinfo to the left inlet (Fig. 4.12).

num_users <number>
user <id> <skeleton-tracking on/off> <x> <y> <z>

Listing 4.8: userinfo output syntax

4. Pure Data / GEM externals 25

usergen 1

gemhead

userinfo

route num_users user

1

metro 100

pix_openni 1 1 1 0 0

gemwin

create, 1

0 0.556 0.683

route 1 2 multiple users

skeleton, x, y, zunpack f f f f

0.661

gemhead

Figure 4.12: pix_openni user generator

num_users 1
user 1 0 0.405938 0.399831 0.912067

Listing 4.9: userinfo default output style

/skeleton/num_users 1
/skeleton/user 1 0 0.444361 0.4358 0.815637

Listing 4.10: userinfo OSC output style

User coloring

User coloring allows to write user ids into the blue color channel of the depthmaps’ RGBA
representation. For using this feature, the user generator (Sec. 4.5.7) has to be turned
on. The user generator will detect people in the depthmap. The pixels representing a
user will have a blue value B > 0 if user coloring is turned on. This functionality can be
used to filter recognized users (Fig. 4.13).
In figure 4.14 the blue channel value for the middle pixel and for the bottom left pixel is

extracted with pix_data , additionally the output messages of userinfo is used to overlay
the userid. The center pixel belongs to user 1, therefore the Blue channel holds the value
1. Gem uses normalized color values between 0.0 and 1.0, therefore a multiplication by
* 256 is necessary to get integer values. For better visual representation

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

dyes every detected user in a different color.

4. Pure Data / GEM externals 26

R G B A
depth data depth data userid 255

Table 4.7: RGBA output of depth data including userid in blue channel

gemhead

pix_texture

gemhead
r $0-prop

RGB Image

rectangle 1.5 1.15

pix_openni 1 1 1 0 0

translateXYZ -1.5 2 0

pix_texture

rectangle 1.5 1.15

translateXYZ 1.5 2 0

1 10 10

usercoloring 1, whitening 1

pix_threshold_depth

Figure 4.13: pix_openni user coloring, filtered by pix_threshold_depth

4.5.8 Skeleton tracking

After a user has been detected by the user generator (Sec. 4.5.7), it can start tracking 15
joints of the body (Fig. 4.15). Therefore skeleton has to be turned on either by setting
the fourth creation argument to 1 or by sending the skeleton 1 message to

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

.
Skeleton tracking will start automatically if a user enters the scene. This can be turned

off by the auto_calibration 0 setting. It is also possible to start and stop skeleton tracking
for all or just specific users (Fig. 4.16). Tracking data can be smoothed by adjusting the
skeleton_smoothing 0.5 parameter between 0.0 and 1.0.
OpenNI supports the output of 24 different joints. The NiTE middleware skeleton

tracking supports just 15 joints. The skeleton output of

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

will therefore have
additional joints with duplicated coordinates.
The tracking output for one frame looks like

joint <jointname> <user-id> <x> <y> <z> <confidence>

Listing 4.11: skeleton tracking output syntax

or for osc style output

4. Pure Data / GEM externals 27

gemhead gemheadr $0-prop

pix_openni 1 1 1 0 0

pix_texture

t a a

pix_data

metro 100

unpack 0 0 0

* 256

0.5

pix_separator

pix_data

unpack 0 0 0

* 256

0

userinfo

metro 100

pd draw-number

rectangle 4 3

pix_depth2rgba 7000

center pixel
color data

left bottom
pixel

output center of mass

int

1

int

0

R G B R G B

Figure 4.14: pix_openni user coloring and userinfo

/skeleton/joint/<jointname> <user-id> <x> <y> <z> <confidence>

Listing 4.12: skeleton tracking osc style output syntax

1 joint head 5 0.376254 0.158162 1.31012 1
2 joint neck 5 0.379469 0.300094 1.35346 1
3 joint torso 5 0.381939 0.416454 1.3511 1
4 joint waist 5 0.381939 0.416454 1.3511 0 (duplicate! not valid)
5 joint l_collar 5 0.381939 0.416454 1.3511 0
6 joint l_shoulder 5 0.442317 0.298091 1.39435 1
7 joint l_elbow 5 0.478067 0.420739 1.47322 1
8 joint l_wrist 5 0.478067 0.420739 1.47322 0 (duplicate! not valid)
9 joint l_hand 5 0.502907 0.580862 1.37264 1

10 joint l_fingertip 5 0.502907 0.580862 1.37264 0 (duplicate! not valid)
11 joint r_collar 5 0.502907 0.580862 1.37264 0 (duplicate! not valid)
12 joint r_shoulder 5 0.316621 0.302097 1.31258 1
13 joint r_elbow 5 0.291915 0.431105 1.37859 1
14 joint r_wrist 5 0.291915 0.431105 1.37859 0 (duplicate! not valid)
15 joint r_hand 5 0.243468 0.58301 1.26445 1
16 joint r_fingertip 5 0.243468 0.58301 1.26445 0 (duplicate! not valid)

4. Pure Data / GEM externals 28

17 joint l_hip 5 0.424873 0.531524 1.37506 1
18 joint l_knee 5 0.431999 0.783388 1.37493 1
19 joint l_ankle 5 0.431999 0.783388 1.37493 0 (duplicate! not valid)
20 joint l_foot 5 0.425306 0.991183 1.59826 1
21 joint r_hip 5 0.343947 0.534104 1.32241 1
22 joint r_knee 5 0.3335 0.777346 1.32825 1
23 joint r_ankle 5 0.3335 0.777346 1.32825 0 (duplicate! not valid)
24 joint r_foot 5 0.348461 0.954826 1.55574 1

Listing 4.13: Skeleton default style output for one frame

1 /skeleton/joint/head 5 0.376254 0.158162 1.31012 1
2 /skeleton/joint/neck 5 0.379469 0.300094 1.35346 1
3 /skeleton/joint/torso 5 0.381939 0.416454 1.3511 1
4 /skeleton/joint/waist 5 0.381939 0.416454 1.3511 0 (duplicate! not valid)
5 /skeleton/joint/l_collar 5 0.381939 0.416454 1.3511 0
6 /skeleton/joint/l_shoulder 5 0.442317 0.298091 1.39435 1
7 /skeleton/joint/l_elbow 5 0.478067 0.420739 1.47322 1
8 /skeleton/joint/l_wrist 5 0.478067 0.420739 1.47322 0 (duplicate! not valid)
9 /skeleton/joint/l_hand 5 0.502907 0.580862 1.37264 1

10 /skeleton/joint/l_fingertip 5 0.502907 0.580862 1.37264 0 (duplicate! not
valid)

11 /skeleton/joint/r_collar 5 0.502907 0.580862 1.37264 0 (duplicate! not valid)
12 /skeleton/joint/r_shoulder 5 0.316621 0.302097 1.31258 1
13 /skeleton/joint/r_elbow 5 0.291915 0.431105 1.37859 1
14 /skeleton/joint/r_wrist 5 0.291915 0.431105 1.37859 0 (duplicate! not valid)
15 /skeleton/joint/r_hand 5 0.243468 0.58301 1.26445 1
16 /skeleton/joint/r_fingertip 5 0.243468 0.58301 1.26445 0 (duplicate! not valid

)
17 /skeleton/joint/l_hip 5 0.424873 0.531524 1.37506 1
18 /skeleton/joint/l_knee 5 0.431999 0.783388 1.37493 1
19 /skeleton/joint/l_ankle 5 0.431999 0.783388 1.37493 0 (duplicate! not valid)
20 /skeleton/joint/l_foot 5 0.425306 0.991183 1.59826 1
21 /skeleton/joint/r_hip 5 0.343947 0.534104 1.32241 1
22 /skeleton/joint/r_knee 5 0.3335 0.777346 1.32825 1
23 /skeleton/joint/r_ankle 5 0.3335 0.777346 1.32825 0 (duplicate! not valid)
24 /skeleton/joint/r_foot 5 0.348461 0.954826 1.55574 1

Listing 4.14: Skeleton OSC-style output for one frame

Status messages will be sent to the third outlet in case a user enters or leaves the
scene, calibration is starting or a new skeleton is available.

new_user <user-id>
/skeleton/new_user <user-id>

lost_user <user-id>
/skeleton/lost_user <user-id>

calib_started <user-id>
/skeleton/calib_started <user-id>

new_skel <user-id>

4. Pure Data / GEM externals 29

/skeleton/new_skel <user-id>

new_skel_failed <user-id>
/skeleton/new_skel_failed <user-id>

Listing 4.15: Skeleton status messages

gemhead gemhead

tracking and info output

pd DRAW-SKELETON

pix_openni 0 1 1 1 0

pd draw-images

Figure 4.15: pix_openni skeleton tracking

4. Pure Data / GEM externals 30

s $0-prop

0

skeleton specific

userinfo
userinfo to outlet

num_users [#]

stop_user stop_user $1

0

start_user

start_user $1

start calibration

OFF

ON

start calibration if user detected

auto_calibration $1

for all users

stop skeleton for

specific user
stop all skeletons

start calibration for

spec. user

default: ON

user [id] [is_tracking] x y z (com)

OFF

ON

euler_output $1

output orientation
euler angles per joint

skeleton_smoothing $1

0 0 - 1 default: 0.5

Figure 4.16: pix_openni skeleton settings

4.6 pix_threshold_depth

The external

pix_freenect

pix_openni

pix_threshold_depth

pix_depth2rgba

can be used to extract parts of a depth image. Therefore
minimum and maximum thresholds for the x-, y- and z-axis can be defined. All thresholds
must be given in millimeter. It can be seen as extraction of a cuboid out of the depth
image. This external can be used to do basic tracking using

pix_separator

accel

info

pix_head_pose_estimation

pix_expr

pix_multiblob or extracting
a projection stencil. The availability of

pix_separator

accel

info

pix_head_pose_estimation

pix_expr

pix_multiblob

would make this external redundant, as
described in the introduction to section 4.

a activate (1) / deactivate (0) computation
whitening (alt. 2nd inlet) passed pixels are set to white
invert invert the alpha mask
usercoloring let pass pixels with blue channel B 6= 0
lo_thresh <f>b (alt. 3rd inlet) set z-axis minimum (distance)
hi_thresh <f> (alt. 4th inlet) set z-axis maximum
trim act. (1) / deact. (0) x- and y-axis thresholds
y_min <f> set y-axis minimum (vertical)
y_max <f> set y-axis maximum (vertical)
x_min <f> set x-axis minimum (horizontal)
x_max <f> set x-axis maximum (horizontal)

a boolean - 1 or 0
b<f> float number

Table 4.8: Messages/settings for pix_threshold_depth

4. Pure Data / GEM externals 31

gemhead

pix_freenect 0 1 1

gemhead

pix_texture

pix_depth2rgba 7000

pix_threshold_depth

pix_texture

10 1200

t a a

pix_separator

separator

rectangle 4 3

rectangle 4 3

pix_depth2rgba 7000

translateXYZ -4 0 0
translateXYZ 4.1 0 0

Figure 4.17: pix_threshold_depth example patch

4.7 pix_head_pose_estimation

Based on a paper and software by Gabriele Fanelli [FWGG11] the external
pix_separator

accel

info

pix_head_pose_estimation

pix_expr

pix_multiblob

has been developed. It takes the depth map of the Kinect as
input and estimates the Euler angles and position of multiple heads detected in the
depth map. The estimator works with a reference database and covers a range of about
±75◦ yaw and ±60◦ pitch.
The second outlet ofpix_separator

accel

info

pix_head_pose_estimation

pix_expr

pix_multiblob

will output the following message for
every detected human head in the depth image.

head_pose <id> <x> <y> <z> <pitch> <yaw> <roll>

An example patch can be seen in Fig. 4.18. A comparison between real world and
estimation is shown in Fig. 4.19. This external is also available as standalone application

4. Pure Data / GEM externals 32

sending OSC messages directly to a definable host address.
Estimating the head pose is very useful in virtual reality applications. Chapter 5 of

[Kro12c] shows the practical application of the head pose estimation controlling an
Ambisonics Binaural Decoder (Fig. 4.20).

gemhead

pix_freenect 0 1 1

gemhead

pix_head_pose_estimation

route head_pose

route 0 1 2

unpack 0 0 0 0 0 0

-32.3x

-1.77y

745.6z

5.440pitch

1.019yaw

-0.42roll

Figure 4.18: pix_head_pose_estimation example patch

Figure 4.19: comparison between real world and head pose estimation

4. Pure Data / GEM externals 33

Soundfield
Rotation

Ambisonics
Decoder

Ambisonics
B-Format

head tracking
(Open Sound Control)

virtual
loudspeaker configuration

L L N

virtual
loudspeaker

signalsL… Number of Ambisonics Channels
N… Number of Virtual Loudspeakers

HRTF.. Head Related Transfer Function

HRTF
Convolution

Filter

left

right

headphone
signals

individual or general
HRTFs

Figure 4.20: controlling Ambisonics binaural decoder with head pose estimator [Kro12c]

5 Application

5.1 ICE - IEM Computermusic Ensemble

ICE1 is a group of electronic musicians, each playing with a notebook and individual con-
trollers. The target is to play contemporary music, adapted or written for computermusic
ensembles.
In March 2012 a network concert between Graz and Vilnius took place. One Kinect

sensor was used in Vilnius to track the skeleton of two musician. The tracking data
allowed each musician to play his virtual instrument without handheld controllers. Ad-
ditionally the Kinect video stream showing the stage in Vilnius was sent to Graz and
projected on a screen for the remote audience (Fig. 5.2). This application showed the
easy and diverse usability of the Kinect sensor. Of course the movement area is quite
limited if two people share the field of view (Fig. 2.6, Fig.5.3).
Due to performance reasons the Kinect tracking and video streaming was separated

from the audio process and done with an individual computer.
The IEM Computermusic Ensemble is built in a way that audio and control data are

streamed from the musician (clients) over network to the conductor (server) (Fig. 5.1).
Due to this structure network concerts with remote musician are easy to realise and
part of the concept. The use of the Ambisonics spatialisation technique allows different
loudspeaker arrangements in every concert venue.

1IEM - Institute of Electronic Music and Acoustics, Graz ICE: http://www.iaem.at/projekte/ice

34

http://www.iaem.at/projekte/ice

5. Application 35

Figure 5.1: ICE structure (by Winfried Ritsch)

Kinect and
Video Server

Instrument/
Audio Server

Audience & stage
Graz

OSC

Audience
Camera

RGB+depth

2 musician playing
with one Kinect

GÉANT
ACOnet, LITNET

screen

4 speakers
1st order

Ambisonics

tracking data

Internet

to/from Graz

Figure 5.2: ICE network concert - stage setup Vilnius

5. Application 36

Figure 5.3: ICE stage view Vilnius

5.2 vertimas - übersetzen - for dancer, sound and
projection

The piece übersetzen - vertimas[Kro12b] for dancer, sound and projection developed by
the author, features the Kinect sensor to translate body movements on stage into sound
and turns the dancers body into a hyperinstrument. Additionally, the depth video stream
is used to gather the outline of the dancer and project back onto her body in realtime
(Fig. 5.4).
Therefore an data-flow filtering and analysis library has been developed to enable

quickly adjustable methods to translate tracking data into control data for sound or
visual content (Fig. 5.5).
All graphics and sound generation was done within Pure Data. To solve the problem

with audible drop outs, two separate instances of Pure Data have been used. One instance
was responsible for visual rendering and skeleton extraction. The second instance was
responsible for audio and received the tracking data from the visual Pd instance via
OSC2 (Fig. 5.6).
The Extended View Toolkit [VW11] was used to align the virtual projection image to

the real projection surface.
Choreography for übersetzen - vertimas was done by Aira Naginevičiūtė, dancer Greta

2Open Sound Control (OSC) is a message based communication protocol for controlling multimedia
systems.

5. Application 37

Figure 5.4: stage setup vertimas - übersetzen

Grinevičiūtė. It’s first performance took place at the Jauna muzika festival 2012 in Vilnius,
Lithuania and was supported by the Lithuanian Academy of Music and Theatre.

5. Application 38

t a a

motion/median-3

get movement relative to body!

motion/gate_thresh 1 1

motion/rcv_2joints user1 r_foot torso 1 /skeleton/joint

s /sampler/15/player/15/gain s /sampler/15/player/15/speed

/ 2.1

motion/change-3d

motion/attack-release 100 1000

t f f

motion/comp-subtract2

motion/comp-subtract2

pd fit-range

filter zeros

get difference to last coordinates

get vector lengthmotion/comp-3d-length

truncate small values

3 point median filter

ar-envelope

retrieve r_foot and torso

Figure 5.5: example patch converting skeleton to audio control data

PD VISUAL Patch

✓ Skeleton Tracking
✓ Visual feedback
✓ Outline extraction
✓ Body projection

PD DSP Patch

✓ Movement analysis
✓ Sound synthesis
✓ Scenes

Extended View

local
OSC

projection adjustment sound control, scenes

4 speakers
2 subwoofers

Figure 5.6: software structure vertimas - übersetzen

6 Conclusion

This project report showed the numerous application possibilities of the Kinect sensor.
The different data streams of the sensor give many possibilities to create a bridge be-
tween art installations and their visitors just by using a single low-cost USB device. The
Kinect can be bought in almost every electronic shop around the world. Therefore easy
replacement during installations and tours is guaranteed.
Using Kinect allows skeleton tracking without the need of body mounted sensors or

reflectors. This makes the usually technoid flavour of an interactive performance invisible
and creates some more mysteries about the human-computer-interaction used.
Addressing a multifunctional device like the Kinect sensor rises the need of software,

capable of dealing with different kind of data streams. Pure Data emerged to be a stable,
easy to use and fast prototyping solution to deal with the video streams, tracking data
and audio streams provided by the Kinect. For complicated applications performance
problems using Pd may occur. A lower level language like openFrameworks1 or Cinder 2

could be a solution for CPU intensive applications.
The cons of using Kinect include the limited range and resolution, the possible in-

terference of other infrared light sources and the momentary dependance on non-open
source software for higher level functionality.

1openFrameworks is an open source C++ toolkit for creative coding. http://www.openframeworks.cc
2Cinder is a community-developed, open source library for creative coding in C++. http://libcinder.org

39

http://www.openframeworks.cc
http://libcinder.org

Bibliography

[Adr12] F. Adriaensen, “Controlling adaptive resampling,” in Linux Audio Conference
2012, Stanford University, California, April 2012.

[avi10] avin, “Sensorkinect openni driver module,” 12 2010. [Online]. Available:
https://github.com/avin2/SensorKinect

[Ber11] A. Bernin, “Einsatz von 3d-kameras zur interpretation von räumlichen gesten
im smart home kontext,” Master’s thesis, Hamburg University of Applied Sci-
ences, Hamburg, Germany, 2011.

[FSMA10] B. Freedman, A. Shpunt, M. Machline, and Y. Arieli, “Depth mapping using
projected patterns,” Patent US 2010/0 118 123 A1, 05 13, 2010. [Online].
Available: http://www.freepatentsonline.com/20100118123.pdf

[fut10] futurepicture.org, “Looking at kinect ir patterns,” 11 2010. [Online]. Available:
http://www.futurepicture.org/?p=116

[FWGG11] G. Fanelli, T. Weise, J. Gall, and L. V. Gool, “Real time head pose estimation
from consumer depth cameras,” in 33rd Annual Symposium of the German
Association for Pattern Recognition (DAGM’11), September 2011.

[Kro12a] M. Kronlachner, “Source code repository,” 08 2012. [Online]. Available:
http://github.com/kronihias

[Kro12b] ——, “übersetzen - vertimas - piece for dancer, sound and projection - trailer,”
Vilnius, Lithuania, 04 2012. [Online]. Available: http://vimeo.com/40919205

[Kro12c] ——, “Ambisonics binaural dekoder implementation als audio plug-in mit
headtracking zur schallfeldrotation,” Graz, Austria, 2012.

[MF12] A. Maimone and H. Fuchs, “Reducing interference between multiple structured
light depth sensors using motion,” IEEE Virtual Reality 2012, March 4-8, 2012.

[Mic12] Microsoft Developer Network, “Kinect SDK,” 09 2012. [Online]. Available:
http://msdn.microsoft.com

[MM12] F. Mayer and M. Meißnitzer, “Audio for computer gaming,” Institut für Sig-
nalverarbeitung und Sprachkommunikation, Graz, Tech. Rep., 2012.

[Ope11a] OpenKinect, “libfreenect,” 09 2011. [Online]. Available: http://openkinect.org

[Ope11b] OpenNI, 09 2011. [Online]. Available: http://www.openni.org

40

https://github.com/avin2/SensorKinect
http://www.freepatentsonline.com/20100118123.pdf
http://www.futurepicture.org/?p=116
http://github.com/kronihias
http://vimeo.com/40919205
http://msdn.microsoft.com
http://openkinect.org
http://www.openni.org

Bibliography 41

[Pri12] PrimeSense, “Primesense homepage,” 09 2012. [Online]. Available: http:
//www.primesense.com

[Roc12] J. Rocha, “Skeltrack,” 07 2012. [Online]. Available: http://github.com/
joaquimrocha/Skeltrack

[VW11] P. Venus and M. Weger, “Extended view toolkit,” 10 2011. [Online].
Available: http://extendedview.mur.at

http://www.primesense.com
http://www.primesense.com
http://github.com/joaquimrocha/Skeltrack
http://github.com/joaquimrocha/Skeltrack
http://extendedview.mur.at

	Introduction
	Kinect specifications
	RGB camera
	Depth sensor
	Microphone array

	Accessing the Kinect
	libfreenect
	OpenNI / NiTE
	Microsoft Kinect SDK

	Pure Data / GEM externals
	Representation of depth data
	pix_depth2rgba

	pix_freenect
	Creation Arguments
	Messages/Settings
	Inlets/Outlets

	freenect
	freenect_audio
	pix_openni
	Creation Arguments
	Messages/Settings
	Inlets/Outlets
	Recording/Playback
	pix_openni and tracking
	Hand tracking
	User generator
	Skeleton tracking

	pix_threshold_depth
	pix_head_pose_estimation

	Application
	ICE - IEM Computermusic Ensemble
	vertimas - übersetzen - for dancer, sound and projection

	Conclusion
	Bibliography

