A Comparison of Genetic
Operations to Produce Musical

Structures

Project Report

Submitted by:

Damian A. Padron Abrante

At the

Institute for Electronic Music and Acoustics (JEM)
Graz University of Music and Dramatic Arts
A-8010 Graz, Austria

In SS 2005

Supervisor: Mag. Gerhard Nierhaus

Abstract

My work for this project concerns genetic algorithms in the area of algorithmic
composition.

Starting with a historical overview, a profound introduction into the principles of these
algorithms is given, followed by a detailed description of important research in that field.
The main focus of this work is to compare the effectiveness of different genetic operations

by reconstructing already composed musical material.

Contents

1. Evolutionary Computation

1.1 Introduction

...

1.2 Evolutionary Programming

1.3 Evolution Strategies

1.4 Genetic Programming

1.4.1 Example of LISP Structurecooooiviin

1.4.2 Example of 11-Multiplexer Problem with
LISP Structures 7
1.5 Genetic Algorithm

...

1.5.1 Principal Elements of Genetic Algorithms

1.5.2 DEefINItIONS ..voviririeeeeeee et ere e

2. Evolutionary Computation in Musical Composition

2.1 Classification

2.1.1 Interactive Systems

2.1.2 System Based on Artificial Neural
Networks (ANN)
2.1.3 Rule-Based Systems

2.1.4 Coevolution and Cellular Automata

2.1.5 Hybrid Systems

3. Different Chromosome Representations

4. Summary of Former Results

..

5. Comparison of Genetic Operations......................cccevveeen33

5.1 Fitness Function Selectioncccoeveiieiiiiiiiiinn, 33

5.2 Chromosome Representation and Main Characteristics.......36

5.3 The Fitness Valueccoocoiiiiiiiiiiiiicceiie e 37

5.4 Application of the Genetic Algorithm 38

5.4.1. Design of the Algorithm.........ccccoooeviviiiiinninrninnn. 38

5.4.2 How are the genetic operations applied?................... 39

5.5 How does the program wWork? ..., 41

6. Statistical ReSultscoooiiii 44
7. CONCIUSIONS ... oottt 52
APPENAIX T ... 54
Appendix IT: Pascal Code ... 56

BibLOGraphyccocooiiiiinrrceicni e 95

1. Evolutionary Computation

1.1 Introduction

The field of Evolutionary Computation (short: EC) can be divided in four different groups,
although all these parts are inspired by the principles of evolution enunciated by Charles
Darwin'. In his book, Darwin propounded the theory that all species are originated by
means of the process of natural evolution and introduced the elemental concepts of

genotype, phenotype, expression, selection and reproduction with variations.

The genotype is the genetic encoded information for the formation of an individual. The
phenotype is the individual itself. Expression is a process by which a phenotype is
produced from a genotype. The process of selection depends on the kind of procedure by
which the fitness® of phenotypes is stipulated. Reproduction is the process by which a new
genotype is generated from an existing genotype. The reproduction with variations leads
the evolution of a population towards a higher level of fitness. These variations are called
mutation and crossover. The mutation mildly modifies a single gene’ to produce a new

gene. Crossover exchanges information between two genes to produce two new genes.

Cienotype Phenotype
€

FIGURE [1]: genotype and phenotype [Gonzalez 2003, pp. 5]

! [Darwin 1859]
2 Numerical index that expresses the ability of an organism to reproduce and survive.
3 Section of a chromosome which transmits a peculiar hereditary characteristic.

EC is made up of four fields: Evolutionary Programming (short: EP), Evolution Strategies
(short ES), Genetic Programming (short: GP) and Genetic Algorithms (short GA).

1.2 Evolutionary Programming

EP was proposed by Lawrence Fogel® while examining the use of simulated evolution as a
way of developing artificial intelligence (short: Al).

Evolutionary Programming stresses phenotypic adaption. They emphasize the link between
the parent chromosomes and their descendants. Every chromosome identifies the behaviour
of a Finite State Machine (short: FSM). An FSM is a [...] “machine defined in terms of a
finite alphabet of possible input symbols, a finite alphabet of possible output symbols, and
some finite number of possible different internal states” [...] [Fogel 1966, p.12]. Each state
is showed as a node in a network and the network entail indicates the input / output state

transitions.

BH

FIGURE [2]: Example of a weather predicting Finite State Machine (FSM). The
nodes indicate states and the links indicate input / output state transitions. [Collins 2000, pp. 5]

Steps for a basic algorithm with EP:
- Generate an initial population randomly.
- Apply mutation.
- Calculate the fitness of every child, and afterwards selection is carried out by means
of tournament.

For example, a finite automaton can be changed through mutation to identify some inputs.

*[Fogel 1966]

Mutation can change an output symbol, change a transition, add a state, delete a state and

change the initial state.

Actual State AlA{B B |C|C

Input symbol |0 |1 |0 |1 |0 |1

Next state BI|C|B|C|B|C

Output symbol [N [N |Y [N [N |Y
FIGURE [3]

1.3 Evolution Strategies

The concept of ES was developed by Ingo Rechenberg’ and Hans Paul Schwefel®. They
were working on the quest of the optimum forms of bodies in a fluid. In its early stages, ES
were not concrete algorithms to be used with computers but a way to discover optimal

parameters in laboratory experiments. The ES are focused on phenotypic transformation.

Hans Paul Schwefel worked on the first computer implementations based on ES’. Between
1977 and 1985 small works were done in this field. Nevertheless, during the 1990’s, ES
investigation was revived® due to financial support. In principle, these strategies were used
to optimize hydro-dynamical complex problems, like minimizing the drag of a joint plate’,
or the optimization of structures'®. These ES were developed by means of a series of
discrete adaptations, such as mutations, to an experimental structure. After each adaptation,
the new structure (offspring) was compared and evaluated with respect to the previous
structure (parents). The better of both, was chosen and utilized in the next cycle. As
selection in this cycle is made from one parent and one offspring, the algorithm is known as

a(l+1)-ES.

5 [Rechenberg 1973]
¢ [Schwefel 1977]
7 [Schwefel 1975]
¥ [Schwefel 1995]
® [Rechenberg 1965]
10 1Schwefel 1968]

- One parent generates only one offspring. The offspring was kept only if it was better than

his parent.
- A new individual is generated introducing Gaussian Noise Xi+1= X+ N (0,0), where N is

an independent number Gaussian array, with zero average, and standard deviation ‘0’.
For example, supposing the next function is to be optimized: f (x,5%,) = 100(X Z-X,)2,
where —2048 < x,,x, <2048.

At the same time, the next individual randomly generated (-1,1) and the next mutations are

given:

x™ =x' +N(0,1.0)=-1.0+0.61=-0.39
x," =x,' +N(0,1.0)=1.0+0.57 =1.57
fx)=r-11)=4
flx,,)=7(-0.39,1.57)=201.416

Rechenberg introduced the concept of population in which M parents generate one
offspring''. Schwefel introduced the utilization of multiple offspring, where it is possible to
choose the better “M” offspring or the M better individuals, considering the parents and the
offspringlz.

Furthermore, Rechenberg formulated one rule to adjust the standard deviation during the
evolutionary processB. Its name is “1/5 success rule”, and it says: 1/5 must be the rate

between successful mutations and global mutations.

1.4 Genetic Programming

John Koza is the author of the genetic programming domain. He began writing about this
area in 1990, and demonstrated that GP operated on an extended number of Al problems

and published varied papersM.

! [Rechenberg 1973]
12 1Schwefel 1977]
13 [Rechenberg 1973]

GP offers a solution through computer programs based on methods of natural selection. In

fact, GP is a modification of GA to develop computer programs, like, for instance, simple

bit-strings.

In accordance with Koza', a definition of genetic programming can be the evolution of

tree-structures. This is a rigorous definition. There is other definition given in the work of

Banzhaf'®, which affirms the following:

1.

The term GP includes all systems which constitute or include explicit references to
programs or to programming language expressions.

The definition of genetic programming contains all ways of representing programs.
Algorithms which are not primarily programs, like artificial neural networks,
shouldn’t be excluded from this definition.

This definition is not limited to the use of crossover; all systems which use a

population of programs or algorithms for the good of search are incorporated.

Before employing genetic programming in a problem, we must take the next steps:

1.

2
3.
4
5

Define the set of terminals.

Choose the set of primitive functions.
Define the fitness function.

Determine the parameters to control the run.

Select a method for developing a result of the run.

Any computer program is a sequence of operations16 applied to values'’, but distinct

programming languages allow including different kinds of operations and statements, and

having distinct syntactic restrictions. The principal language for genetic programming is

LISP, because it enables a computer program to be manipulated as data and the recently

created data to be executed as a program.

1 [Koza 1992]

' [Banzhaf 1998]
16 Functions

7 Arguments

LISP has a symbol-oriented structure. Its basic data structures are atoms'® and lists'®. The

more used representation is the program tree.

FIGURE [4]: Different kinds of tree representations, [Torres 2005, pp. 17]; [Velikonja 2003, pp. 12-13].

1.4.1 Example of LISP Structure

If next list is given:

(-(*AB)C)

It calls for the application of the subtraction function (-) to two arguments, particularly the
list (* A B) and the atom C. First, the LISP language, applies the multiplication function (*)
to the atoms A and B.

Once the list (* A B) is evaluated, LISP applies the subtraction function (-) to the two

arguments, and therefore evaluates the entire list: (-(* A B) C).

'8 Smallest indivisible element of the LISP syntax
' Object composed of atoms and/or other lists

FIGURE [5]

1.4.2 Example of 11-Multiplexer Problem with LISP Structures

This a problem described by Koza®®. The problem consists of creating a Boolean function
(or circuit) which implements a Boolean 11-multiplexer. The multiplexer possesses 11
inputs and one output.

The inputs a0, al and a2, are the address lines and describe the binary representation of an
integer number between 0 and 7. This integer chooses which of the 7 inputs identified as
do, d1, d2, d3, d4, d5, d6 and d7 is selected. The correct input is located in the line
indicated by the address line. In the figure [6], the address line selects the integer 6, in such
a manner that the output should be the input on line d6, which is 1.

Then, there are 2'! possible inputs to this function, and all these inputs can be tested. The
raw fitness is the number of cases for which the output is correct, and the standardized

fitness is 2048 less the raw function.

a2t

20—

fip

do—L—
452 Ouiput
2

FIGURE [6]: 11-multiplexer with an input of 11001000000 and output of 1. [Koza 1992, pp. 171]

K oza 1992]

The inputs to the function are the terminals. The non-terminals are AND, OR, NOT, IF.
Koza used a population size of 4000.

Next, the worst-of-generation individual for generation O is shown:

(OR (NOT A1) (NOT (IF (AND A2 A0) D7 D3)))

This individual had a standardized fitness of 1280 (the raw fitness is only of 768), but its
functioning was really bad for all 2048 combinations of the 11 terminals. 23 individuals in
this initial population bound up with the highest score of 1280 matches on generation 0.

One of these high scoring individuals was the S-expression:

(IF A0 D1 D2).

Afterwards, in the generation 1, the raw fitness of the best-of-generation individual went up

to 1408. Only one in the population achieved this high score, namely

(IF AO (IF A2 D7 D3) DO).

The generations continued, and a solution was discovered in generation 9. This solution is:

(IF AO (IF A2 (IF A1 D7 (IF A0 D5 D0))
(IF A0 (IF Al (IF A2 D7 D3) D1) D0))
(IF A2 (IF A1 D6 D4)
(IF A2 D4 (IF Al D2 (IF A2 D7 D0)))))

Koza justifies crossover by describing the crossover occurrence that produced the best
individual:

“[...] Even though neither parent is perfect, these two imperfect parents contain
complementary, co-adapted portions which, when mated, produce a 100%-correct offspring

individual. [...]” [Koza 1992, p.185]

1.5 Genetic Algorithm

Genetic algorithms were invented by John Holland*', and they are techniques based on
genetics and the mechanics of natural selection, including an exchange of structured and
randomized information bringing about survival of the fittest within a population of string
structures. The main Holland’s innovation was the introduction of a population-based
algorithm with inversion, crossover and mutation. Besides, Holland was the first person to
try to present computational evolution as a solid theoretical basis.

These are the central dogmas of genetic algorithms by Holland*':

» Schema processing

* Schema theorem

» Implicit parallelism

» Building block hypothesis
» K-armed bandit analogy

» Schema Processing
There are high dimensional search spaces, like binary strings of length “I”. The GA use
predisposed sampling to search high dimensional spaceszz.

The schemas take regularities in the search space:

0|1]0(0]1}1
11070111 |1
x|x|xjx |11
x| x!0[x{x|x
x|x|0x|x|1
x|x|0|x|1]1
FIGURE [7]

In accordance with Schema Theorem, the crossover and reproduction guarantee

exponentially increasing samples of the studied best schemas. The order of a schema is

*'[Holland 1975]
22 Independent sampling or selection search towards high fitness areas. Number of defined bits.

O(s)23 while D(s) is the distance between the bits of the extremes.

* Schema Theorem
Example of a schema theorem:
S is a schema in a population at time t. Then, N(s,t) will be the number of cases of s at time

t. The expected number of offspring(x) will be:

offspring (x) = ?(()f)l

Ignoring mutation and crossover, this is the expected N(s, t +1)

N(s,t+1) = ;(0) x N(s,1).

Mutation and crossover handled as loss term:
ﬂ(S D(S)) 0(s)
N(s,t+1 x N 1-p,
(st +1) == 0 (5.1)(- p. 1= p,)°]

In a population consisting of N individuals and each individual is L bits long, in one
generation, there will be a number of sampled schemas by the population between the

values: 2%and Nx2"

e Implicit Parallelism
In the implicit parallelism, one individual samples many schemas simultaneously, and this
makes GA a very effective optimization algorithm. Its greatest advantage is the ability to

find approaching solutions to different combining problems.

e Building Block Hypothesis

1. At first, GA locates biases in low order schemas: GA gets fine estimates of schema
average fitness by sampling strings.

2. The information from low order schemas is combined through crossover, and

3. GA locates biases in high order schemas, casually converging on the fittest region of the

space.

10

* K-armed Bandit Analogy

The two armed bandit is based on adaptive control and statistical decision theory.

Suppose N coins are given to play a slot machine with two arms (A; and Aj). The arms
have variances s; and s,, and have a mean payoff per attempt which rates between m; and
mp.

The payoff procedures of the two arms are static and totally independent of each other. The
wagerer does not know these payoffs, and can value them only by playing coins on distinct
arms.

If the player wants to maximize total payoff, he has to find the best strategy, that is,
maximize payoffs during N attempts (on line payoff) or determine which arm possesses the
highest payoff rate (off line payoff). The optimum strategy is to exponentially increase the

sampling rate of the studied best arm, as more samples are gathered.

In 1975, De Jong finalized his dissertation®*. De Jong’s study combined Holland’s theory
and his own careful computational experiments and applied GA to function optimization.
This work is concerned with the analysis and design of adaptive systems, especially in the
field of adaptive computer software. The central characteristic of the evaluation process is
fastness: the capacity of an adaptive system to quickly reply to its environment in an ample
range of situations. A new class of genetic adaptive systems is established for analysis and
evaluation. These artificial genetic systems25 produce adaptive responses by simulating the

information obtained in natural systems through the mechanism of evolution.

Tn 1989, David Goldberg®® finished his most important book?’. This text presented the GA
as an approach to resolve search problems of several kinds. It presented the genetic
algorithm as a problem solving tool. In accordance with Goldberg, the GAs are “[...] search
algorithm with some of the innovative flair of human search [...]” [Goldberg 1989]. He
collates conventional search methods with GA, concluding: “[...] while our discussion has

been no exhaustive examination of the myriad methods of traditional optimisation, we are

2% [De Jong 1975].

%% Called reproductive plans

2 A John Holland's early student.
2 [Goldberg 1989].

11

left with a somewhat unsettling conclusion: conventional search methods are not robust.
[...]” [Goldberg 1989, p.5]

His book starts with an introduction to genetic algorithms, in which a simple genetic
algorithm, simulations by hand, which are different from traditional methods, and some
problems are presented. Afterwards, the fundamental concepts like fundamental theorem,
Schema Processing, the two-armed and k-armed bandit problem or building block
hypothesis are explained. All these concepts have been explained in the paragraph 1.5.
Next, he explains how to implement a genetic algorithm, starting with the data structures
like the data type declarations. Next, he implements a reproduction (by selection), a single-
point crossover, a single bit point mutation, a generation of a new population, a decoding
(he decodes a binary string like a single), and a main program for this simple GA, all in

Pascal code. He offers two principles for choosing a GA coding:

- Principle of meaningful building blocks [Goldberg 1989, p. 80]:

“[...] The user should select a coding so that short, low-order schemata are relevant to the

underlying problem and relatively unrelated to schemata over other fixed positions.[...]”

- Principle of minimal alphabets:

“[...] The user should select the smallest alphabet that permits a natural expression of the

problem.[...]”

He gives different coding routines to use in GA, and explains the discretization of
parameters and the constraints. Besides, he enumerates some applications of genetic
algorithms like biological cell simulation, function optimization, optimization of pipelines
systems, etc....

In this point, Goldberg, deepening into other fields, introduces a series of more difficult
concepts related to advanced operators and techniques in genetic search (dominance,
diploidy, abeyance, micro-operators, parallel processors, etc) and other terms related to
genetics based on machine learning (classifier system, rule and message system,

development of the first classifier system and current applications).

12

The book ends with several interesting appendixes: a review of combinatorics and
elementary probability; an introduction to the Pascal Language (simples codes, functions,
procedures) and a lot of distinct genetic algorithms in Pascal, like a simple genetic

algorithm, a simple classifier system or partition coefficient transforms for problem-coding

analysis.

function select (popsize:integer; sumfitness:real;
var pop:population): integer;

var rand,partsum: real

jiinteger;

begin

partsum:= 0.0;

j=0;

rand := random * sumfitness;
repeat

=i+

partsum:=partsum + popljl.fitness;

function mutation(alleleval:aliele; pmutation:real;
var nmutation:integer):ailele;

var mutate:boolean;
begin
mutate:=flip(pmutation);
if mutate then begin
nmutation:=nmutation+1;
mutation:= not alleleval;
end else
mutation:=alleleval;

end;

until (partsum >=rand) or (j=popsize),
select:=j;
end;

FIGURE [8a]:Reproduction (select).[Goldberg 1989, pp.63]. FIGURE [8b]: Single bit, point mutation.[Goldberg 1989, pp.65]

procedure crossover(var parent1,parent2, child1,child2:chromosome;
var Ichrom,ncross,nmutation jcross:integer;

var pcross,pmutation:real);

var jiinteger;

begin

if flip(pcross) then begin

jeross:=rnd(1,lchrom - 1);

ncross:= ncross + 1;

end else

jeross:=lchrom;

for j:=1 to jcross do begin

child1[j]:= mutation(parent1[j],pmutation,nmutation);
child2{j]:= mutation(parent2[j],pmutation,nmutation);
end;

if jcross <> Ichrom then

for j:= jeross+1 to Ichrom do begin

child1[j] := mutation(parent2[j],pmutation,nmutation),
child2[j] := mutation(parent1[j],pmutation,nmutation);
end;

end;

FIGURE [9]: Single-point crossover. [Goldberg 1989, pp. 64]

13

1.5.1 Principal Elements of Genetic Algorithms

The might of genetic algorithms is situated in its fitness function®® and genetic encodingzg.
GAs differ from classic algorithms in four ways3°:
1. GAs usually work with a coding of the parameter set, not with the parameters
themselves.
2. GAs search on a population of points, not on a single point.
3. GAs use payoff (objective function) information, not derivatives or other
auxiliary knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

In a general manner, a genetic algorithm consists of the next steps’
1. Create an initial population of solutions
2. Evaluate each solution and assign it a fitness value
3. Select “parents” of the next generation of solutions based on these fitness values
4. Generate “children” from these parents using crossover, cloning, and mutation.

5. Repeat steps 2-4 until finished.

INITIALISE POPULATION WITH RANDOM ALLELES

——— EVALUATE ALL INDIVIDUALS TO DETERMINE THEIR FITNESSES

REPRODUCE {COPY] INDIVIDUALS ACCORDING T0 THEIR FITNESSES
INTO 'MATING POOL’ (HIGHER FITNESS = MORE COPIES OF AN INDIVIDUAL}

RANDOMLY TAKE TWO PARENTS FROM 'MATING POOL' <—
USE RANDOM CROSSOVER TO GENERATE TWO OFFSPRING
RANDOMLY MUTATE OFFSPRING
PLACE OFFSPRING INTO POPULATION
HAS POPULATION BEEN FILLED WITH NEW OFFSPRING?

| ves

{S THERE AN ACCEPTABLE SOLUTION YET?
NO (OR HAVE x GENERATIONS BEEN PRODUCED?)

| vEs
FINISHED

NO

FIGURE [10]: The simple genetic algorithm [Bentley 1997, pp. 3]

28 Provides the set of possible solutions and the reproduction operators for this set.
2 1t shows if the genetic algorithm is directing in the right guidance.

#¥[Goldberg 1989]

! [Mc Auley 2004]

14

1.5.2 Definitions

- Child: a gene32 that is the result of a reproduction operator

- Parent: incoming gene to a reproduction operator.

- Genotype: representation of a gene, like a bit-string or a list of values. Other definition
would be: genetic encoded information for the conception of an individual.

- Phenotype: solution corresponding to a particular gene; [...] “the individual itself, or the
form that results from the developmental rules and the genotypes” [...] 33

- Decode: transformation of a genotype into the respective phenotype.

Genoty pe Phenuotype

.........

Thronading

InmrrOation

FIGURE [11]: Decoding process [Gonzalez 2003, pp. 10]

- Fitness: is a numerical indicator expressing the capacity of an organism to reproduce and
survive.

- Fitness function: supplies a measure of the quality of a chromosome.

- Encode: transform a phenotype to the respective genotype. A common form of encoding
is the bit string.

- Population: is composed of encoded representations of possible solutions. The
population develops by means of reproduction operators.

- Selection Probability: Probability of a gene to be selected for reproduction. It’s based on
the rank of its fitness into the population.

- Competition: In accordance with the selection probability, gives advantage to genes with

32 The basic structure manipulated by the GA which depicts a particular solution to the problem that we want
to solve.
33 [Moroni 2000].

15

elevated fitness versus genes with inferior fitness.

- Generational update: Replacing the complete population, but before recalculating
fitness and permitting new genes to reproduce.

- Steady state update: Replacing a small number of genes, recalculating fitness and
permitting new genes to reproduce.

- Reproduction: Is the process by which new genes are generated from old genes.

- Reproduction operator: A genetic operator takes a small group of genes (generally 1 or

2) and generates an actualized group of genes. There are two classes of genetic operators:

- Crossover: operator that interchanges bits between two genes. There are,
principally, three types of crossover: 1-point crossover, 2-point crossover and the

uniform crossover.

=» One Point

Crossover =»

FIGURE [12a]

=>Two Point ...

Crossover =

FIGURE [12b]

= Uniform ...

Crossover =

FIGURE [12¢]

- Mutation: operator that modifies a single gene lightly to produce a new gene. In

other words, mutation takes a chromosome and changes part of it in a random way.

FIGURE [13]

16

a. selection

1. take the individual with the highest fitness

2, choose another individual from the population at random, irrespective of filness,
for sexyal reproduction

3. add the fittest individual to the new population

fittest individual (highast rank) other individual
i1 3y 4 5 8
initial genome $61101010010011110101020

encoded weights -.3 -.17 -.37 .93 .17 .17

b. reproduction

crossover point crossover point

00110341010010011110103010

00110 ' 010010011110101016¢

mutation

010010011130101030

10010011110L01019

¢. development s, S gene expression

FIGURE [14]: Example of selection and reproduction [Pfeifer 2003, pp.9]
a) Selection: After their final fitness values have been determined, individuals are selected for reproduction.
b) Reproduction: The crossover point is chosen at random. The entire population is subjected to a small mutation.

¢) Development: After reproduction, the new genome is expressed to become the new individual.

17

2. Evolutionary Computation in Musical Composition

In this paragraph, some of the important works about GAs applied to the musical
composition are presented in chronological order.

Horner carries out the first work aimed at musical composition34, but in a minimalist way.
He uses the genetic algorithms for thematic bridging among simple melodies. In the work
of Takala® it is possible to find the use of physically-based models and GA for functional
composition of sound signals synchronized to animated motion. He represents sound
signals as general functional compositions, whose name is timbre trees™®.

Jacob applies the GA to the problem of composing music®’. He presents a system called
“The Variations”, and describes different examples and Biles describes the use of an IGA™®
into his “GenJam” system to generate jazz solos on an input chord progression”.

Damon Horowitz presents a genetic algorithm for the generation of thythmical textures and
percussive material®®. In McIntyre’s system a GA generates a four-part Baroque
harmonisation of a melody given by the user'!. He used only the C major scale.

In the year 1995, Ralley uses a GA system to generate tunes from an input melody, given
by the user. These melodies are restricted to 12 notes™.

. . 4
Later, Biles presents another version of “GenJam” 3

, in which a group of people criticizes
the solos produced by the system, and the search of a neural network fitness function for
the implementation of a musical interactive GA™,

Werner shows in his work®® a co-evolutionary forming approach to signal design to probe
signal patterns in birds. In the same year, Papadopoulos and Wiggins use a symbolic GA to
search in a space of potential solutions™. The objective is to get a system that generates

jazz melodies based on an input chord progression.

3% [Horner 1991]

3% [Takala 1993]

3 These are LISP expressions, internally implemented as C++ structures
57 [Jacob 1994]

%8 Interactive Genetic Algorithm.
% [Biles 1994]

40 [Horowitz 1994].

41 [Mc Intyre 1994]

42 [Ralley 1995].

 [Biles 1995]

* [Biles 1996].

* [Wemer 1997]

% [Papadopoulos 1998]

18

In a new Biles’ paper47, a new version of the GenJam system is provided.

The Moroni’s paper48, describes the use of IGA in composition, centring on strategies used
in the “Vox Populi” system to supply control of the fitness function in order to value
harmonic and melodic features. Towsey describes several melodic features utilized as the
basis for a GA fitness function and for different mutation procedures49.

Gartland Jones’™ first document shows a generative music system that uses a specific
domain; knowledge abundant in GA, and other utilizations through the development of GAs
use.

In Pigg’s’' document, an implementation of a genetic musician is created by means of two
different genetic algorithms, having the goal of producing a piece of coherent music.

And, in the year 2003, Gartland Jones presents two papers. The first™? describes the design
and construction of another generative music system, a real-time composition system called
“Music Blox”. In the second’, he investigates some aspects of using GAs for musical
composition and their limitations, and presents the “Indago Sonus” system as one possible

application.

2.1 Classification >*

In a musical composition system, two roles can be distinguished: creator and critic (author
and public). The different works have been organized in accordance with the critic, being

the creator, in all the instances, represented by an EC system.

2.1.1 Interactive Systems

In these systems the critic is directly a user. In a system of this kind, the user aesthetically
values each song or composition, guiding its evolution. The system takes into account this
appreciation in the creation of the next compositions. In its easier form, these systems

present the problem of temporal cost (or bottleneck) that implicates the human participation

7 [Biles 1998]

8 [Moroni 2000b]

[Towsey 2001]

%% [Gartland-Jones 2002)

51 [Pigg 2002]

52 [Gartland-Jones 2003a]

> [Gartland-Jones 2003b]

3% Classification based on Santos’ paper [Santos 2000].

19

[Biles 1994], [Papadopoulos 1999]. Besides, this problem can cause tiredness in the user.
On the other hand, these methods have a high level of subjectivity.

Into this category, the works of Jacob®® can be included. He invents “The Variations”
system to implement his composition via interacting modules, and it was planned to
reproduce very strictly the creative procedure that the author utilizes when composing
music. In these works exist various layers. In the first place, an evolutionary critic is
interactively adjusted through evaluation by the critic and the user of musical pieces.
Immediately, the critic chooses, as input to other module, fragments produced via
stochastic process or provided by the user. This second evolutionary module includes an
adjustment done by the user and the evolution of each type of module is executed
separately, by means of human user fitness feedback.

This process is similar to writing cannon. The system makes simple the music organization
working at the level of motives. It’s easier to produce structures in a piece working at a
higher level than trying to work at the notes level. Next, the steps followed by Jacob for the

construction of his algorithm56 are explained:

1. Define a number of primary themes (motives) to be used in the composition.

2. Compose phrases by creating motives and adding them one by one to the
phrase. At each step, judge the quality of the resultant phrase and remove the
last motive if the combination is unsuitable.

3. Create motives by selecting at random from the primary themes and motives
already in the phrase, and producing variations upon the selection.

4. Once there are a large number of phrases, join them together into larger

frameworks.

In Biles’’’work, the “GenJam Populi” system is presented. He tries to face the fitness
bottleneck by patterning a system that enables multiple users to work in parallel to value

the fitness of population members. This system generates a series of musical motives

55 [Jacob 19941, [Jacob 1996]
%8 [Jacob 1996]
37 [Biles 1995]

20

beginning with the evaluation of a user that occupies the censor role and a set of genetic
operators adapted to the musical domain. Having as a base these motives, and starting from
improvisations of Jazz solos interpreted by other user (who plays the interpreter role), it
generates new solos.

The GenJam’s interface utilizes easily attainable components to implement the following
design. This system permits a single mentor to supply real-time feedback while “GenJam”
extemporizes solos. There are various switches available, one for every mentor. Each box
supplies a ‘good’ and a ‘bad’ switch. The switch boxes are connected to a microcontroller
which maps the switch clicks to MIDI control change messages. This MIDI control sends
them, by means of a standard MIDI cable, to the Yamaha MU-80 tone generator’s MIDI IN
station and, through the MU-80, to the host computer.

There is another train of works which not utilizes initial musical information. Various
works of this class tackle the problem of the rhythmic composition. Horowitz presents in
his work®® different approximations to the rhythmical texture generation through GAs. The
users listen to and value collection of thythms that have already been developed through
some generations of rule-based fitness evaluation. In the system, each generated piece can
be evaluated and the wanted piece can be defined according to high level musical
parameters (syncopation, density, beat repetition downbeat, etc...)

He gives us a group of constraining suppositions from which a big number of rhythms can
be produced and his system utilizes an IGA to discover the user’s criteria for differentiating
between thythms. The system evolves an increasingly precise model of the function that
symbolizes the user’s selection; the quality of all the generated rhythms is enhanced to fit
the user’s taste. The IGA are suitable to find a solution for this problem because they
permit a user to perform a fitness function, that is, to select which rhythms he likes. And
due to this reason, the user has not necessarily understanding of the parameters or details of
this function.

Another work in the rhythmic domain is “Tribe”*, which is a system inspired in more

primitive music. This system permits to model music tribes. Every tribe musician is

58 [Horowitz 1994]
> [Pazos 1999a], [Pazos 1999b], [Pazos 1999c¢]

21

associated to an instrument and he can only relate with other musicians that possess the

same instrument. The user evaluates the whole piece.

| Level 2 GA F(USER) Tebes ané
. Model 1
/ j \ E:} DB
T, T T, ‘
(n) Trein
2
Level 2 GA F(ANN)
Model 2 {(M,,) (‘j
/ / \ ANN.
T T T,
(b)

FIGURE [15]: Tribe system, relation between the interactive model (a) and the automatic model (b). [Pazos 1999c¢, pp 1]

The genetic algorithm selects the worst tribes as individuals to be removed. At the same
time, it selects those tribes which will be used as parents. The system uses a random
function for this selection so that each tribe has a probability proportional to its
punctuation. The novel tribe is created by crossing the parent with every individual.
Subsequently, mutation takes place in the produced individuals. The information added to
the system (scores bestowed by the users, the several tribes created, etc) are registered in a

database.

2.1.2 System Based on Artificial Neural Networks (ANN)

This subsystem is normally constituted by an ANN which is trained by theme songs. These
theme songs are examples extracted from some musical style, concrete author or pieces

created by interactive systems.

22

S

FIGURE [16]: The user introduces a succession of examples in order to train the ANN that will work fike a critic of the
evolutionary system’s compositions. [Santos 2000, pp. 2]

classifies thythmic songs or drum patterns from distinct styles of music (disco, funk, rock,
fusion, etc...) originated from rhythm boxes. This ANN realizes a classification of
thythmic sequences adding new categories if the song doesn’t enter in none of the existing
class.

Other examples of this type are the Spector and Alpen’s works®!, that incorporate genetic
programming created by Koza®. In these systems, the individuals are functions that, from
previous fragments, generate a new fragment. The music-making programs could catch
examples of melodies from the case-base and alter them with a series of predetermined
functions (invert, transpose, augment...) They use five critical functions from jazz
improvisation rules to evaluate the response, and run their system with five Charlie Parker

song pieces of four bars each one.

5 [Burton 1998]
¢! [Spector 1995]
62 [Koza 1992]

23

(+ (IF-LESS (IF-LESS 18 14 35 86)
(CASE-RESPONSE-COPY 38 1 i)
(IF-LESS 57 33 60 i)
(ADFO 1 39 8))
(CASE-RESPONSE-COPY
(TRANSPOSE 1 i i)
(IF-LESS 1 67 94 88)
95))
(ADF1 78 86 41)
(DO-TIMES (IF-LESS
20
(DO-TIMES 10 i)
(TRANSPOSE 1 11 1)
(CASE-RESPONSE-COPY 1 83 1))
(COPY 28 (ADFO 67 1 i) (+ 1 i)

FIGURE [17]: Example of genetic programming [Koza 1992] in Spector’s system [Spector 1995, pp. 5].

The GP system is run with the networks as fitness functions, generating response-producing
programs.

They use a three stratus network with 192 inputs units (one for every note value and one for
each articulation), 2 outputs units and an only layer of 96 hidden units. They trained the
networks with four different categories of inputs:

“[...] The first category consisted of two-measure fragments of Charlie Parker melodies,
the second consisted of single measures of Charlie Parker followed by single measures of
silence, the third consisted of single measures of Charlie Parker followed by single
measures of random melody, and the fourth consisted of single measures of Charlie Parker
followed by reversed and randomly manipulated Charlie Parker continuations [...]” 6
Their networks are trained to reply in a clear way the inputs for the first category. The goal
is to train the networks to identify logical continuations to logical parts of jazz melodies.
Also, Biles realizes a version of this system64 that incorporates a Multi Layer Perceptron
with three strata for the evaluation. This system uses a set of high level musical parameters

extracted from sequences generated in order to train the ANN. An integer representation of

this system is explained in section 3 (Different chromosome representations).

#[Spector 1995]

8 [Biles 1994].

24

2.1.3 Rule-Based Systems

In the rule-based systems the critic is built upon a set of rules that directs the system.

This set of rules is obtained by means of musical knowledge or musical research.

Examples about these systems are located in Wiggins and Phon-Amnuaisuk’s works®.
They harmonize chorales and utilize as reference the soprano’s melody that the user
contributes. The system makes another three voices that would be the alto, tenor and bass.
The notes are represented according to the scale and the octaves are differentiated through
integer associated. It utilizes operators adapted to the musical domain. The next picture

shows a diagram of a Four-Voice Harmony Chromosome.

chromosvize length

Sopranoe TI0.03] 003 [202] [003] [L03] [50.2]
Ao 12021 [2021 [202] [202] [402] [L02]
Tenor | [4.0.1] 4017 [201] [002] [7011 [Lo1]
Bass | [2.01] [0011 [001] [401] 4011 [7.00]
Duration 1 3 1 I

FIGURE [18]: Schematic Diagram of a Four-Voice Harmony Chromosome. [Phon- Amnuaisuk 1999a, pp. 3]

In their implementation, they use different reproduction operators®®, and here, it is
described in musical terms®”:

Splice: Selects a crossover point amid followed notes of a melody and parallel chords.
Perturb: Mutate by allowing bass, tenor and alto to move up or down by one tone o
semitone.

Swap: Mutate by interchanging two randomly selected voices between bass, tenor or alto.
This creates the effect of changing the chord between distinct closed and open positions.
Rechord: Mutate to a distinct chord kind. This type of mutation generates a new chord
starting in the melody data. This chord is created with the soprano note as base, 314 or 5™,
Doubling can be in any location.

PhraseStart: Mutate the start of every phrase to begin with root position on a down beat.

55 [Wiggins 1999], [Phon- Amnuaisuk 1999a], [Phon- Amnuaisuk 1999b]
Crossover and mutation.
%7 [Phon- Amnuaisuk 1999a]

25

PhraseEnd: Mutate the ending of every phrase to conclude with a chord in root position.

In the GA configuration, the strings were initialized by randomly selected chords including

the soprano pitch. Moreover, a population size over 50 was utilized, with the use of binary

tournament selection.

sa [

TR

;It

I i IWI IV, ity Vy 1

FIGURE [19]: Harmonisation of the first line of Joy to the World [Wiggins 1999, pp. 7].

In figure [19] the harmonisation of the initial eight notes of “Joy to the World”, carried out
by the system, is shown. Different experiments were performed with assorted GA
parameter settings, as shown in figure [18]. Other parameters, as mutation rate, crossover
rate and other selection schemes, seem to influence the time taken for the population to
converge, but do little for the solution quality. This is because the fitness function
determines the knowledge in the system concerning what does compose a good song or
does not compose a good piece of music; the other parameters determine the search
strategy.

A similar system is showed by MclIntyre®®. In this system the musical pieces are
harmonized in accordance with the baroque harmony at four voices, using a voice inserted
by the user. One power of the algorithm is the ability to find several credible harmonies for
a given melody. The evaluation of the function contains three different layers. The first
layer analyzes the correction of the chord, the second one examines the harmonic

displacement amongst notes, and the last one the softness of chord changes.

68 [Mc Intyre 1994]

26

Another important author is Andrew Horner. He dedicates oneself principally to apply the
GAs to musical composition. Horner and Goldberg’s work®, constitutes a minimalist
musical composition system. This system consists of sequences of simple operations that
take an input composition and an output composition provided by the user. The system
produces a series of transformations between both compositions by means of an
evolutionary procedure. The operations can be note insertion, rotation and deletion. This
process follows a series of rules, concretely two, that determine the musical links between
the two sequences: the higher the scores obtained by an individual are, the nearer is the
result note group to the desired note group, and the closer is the actual number of alteration

steps to the wanted duration.

2.1.4 Coevolution and Cellular Automata:

In this case, the musical composition develops in an own way which does not necessarily
coincide with the human aesthetics.

In this kind of system, Peter M. Todd and his collaborator’s work”’could be mentioned.
This work develops a system based on the co-evolution, existing a set of elements that acts
as referee and others that act as compositions creators and both evolve jointly. They
research into coevolving individuals to produce rhythmic sequences and other sequences to
value them. In the preliminary model, they coevolve simulated ‘males’ who generate
thythmic songs together with selective ‘females’ who judge those songs and utilize them to
determine whom to pair with. The male song inventors and female song critics utilize
neural networks to direct their behaviour.

This neural model has a threshold, but summation of activation coming in the unit takes
place over multiple time steps. If the threshold is obtained, the unit shoots for one time step,
and its saved input is reset to zero. The output of every neuron is binary. The output signals
use one time step to generate a connection between neurons.

In a more recent simulation, they invent ‘dumbed-down’ male singers, each of whom has

genes that in a direct manner encode the notes of the composition. Each male song is

% [Horner 1991]
™ [Todd 1999], [Wemer 1997]

27

composed of 32 notes. These notes can be an only pitch chosen from a two-octave’ ' range.
Female’s genes encode a transition matrix that is used to evaluate transitions between notes
in male songs. The matrix is an N-N table, and N is the number of different possible pitches
the males can generate.

The population is composed of melody breeding males and females that would couple with
the males depending on how the females evaluate male songs. Females evaluate songs in
three distinct ways. In the first method, the female evaluates the transition as it takes place
in the song: she compares to what extent she expected that transition and she incorporates it
to the total score for the song. In the second method, a whole song has to be listened by the
female, who counts the different transition classes that appear in the song. As a result, she
builds a transition matrix for the song. Finally, she has to compare the transitions in the
matrix she has created with those expected ones. Therefore, the highest score will be given
to the song with the best. The third method is similar to the first one, but preference is
given to “surprising” results, those which did not have a big probability in the female’s
matrix.

Other works employ techniques related to evolutionary systems like artificial life and
cellular automata. Eduardo Miranda’® shows a granular synthesis system in which the user
explains a series of parameters like number of oscillator, waves to use, etc.

Granular synthesis labours by generating a fast series of very brief sound bursts called
granules that simultaneously form big sound events. The effects tend to show a huge sense

of movement and sound flow.

2.1.5 Hybrid Systems

Hybrid systems use more than one approximation in one system simultaneously (a
combination of Al strategies). And normally, these systems combine connectionist and
evolutionary methods. Spector and Alpern” utilize genetic programming to invent a
system with an ANN as a fitness evaluator of the response to a measure “call”. Biles, in

1996, in a new attempt to improve the efficiency of his old system’®, uses an ANN as

" 24 pitches
2[Miranda 1995]
73 [Spector 1995b]
7 [Biles 1994]

28

fitness function too, but it has no excessively good results. Burton and Vladimirova” use

an ART’® ANN to allot fitness measures to different rhythms produced by a GA. This ART
networks are efficient pattern recognizers. They classify patterns and identify pattern
categories without necessity of supervision. The fitness is allotted based on resemblance to
patterns, with new patterns stipulated for individuals that are in a sufficient manner

different from existing patterns.

"‘"‘9 O6°

FIGURE [20]: [Santos 2000, pp. 4]
LEFT: Different models in a single system.
RIGHT: Integration of methods from distinct approaches in a common field

3. Different Chromosome Representations

In the following picture there is an integer representation of Biles’ system’’. The number on
the left of the thick line is the fitness value, and the numbers on the right represents the
chromosome. The phrase 23 has a fitness value of -12. Its chromosome is the series of four
numbers, and each number is a pointer to the population. The population sizes are 64

measures and 48 phrases, and the chromosome of four pointers need 24 bits.

73 [Burton 1997]
7 Adaptive Resonance Theory
7 [Biles 1994].

29

=] Phrase
Population

------------ 23[111001{111001}001011]100110|

Measure
- Fopulation

FIGURE [21]: Phrase and its Measures. Chromosome at the Bit Level, [Biles 1994, pp. 5]

Ariza’ presents us the information as a list of three integers: divisor, multiplier and
note/rest-state. The duration of the rhythm-tuples in a chromosome is quantified in
reference to a beat-time or the valuation of pulse calculated in seconds. For the calculation
of the duration of the rhythm-tuple there are two steps:

First, divide the beat-duration by the divisor, afterwards multiply it by the multiplier. The

note/rest-state settles if the measured duration is a rest (0) or a note (1).

Figure 1.
(8,3,.1},(3,3,£),{3,1,@),{4;3,‘?)

9 " |
92 :

FIGURE [22]: Chromosome illustrated as a list of rhythmic-tuples and as a notated rhythm. [Ariza 2002, pp. 2]

Papadopoulos79 uses a degree-based representation. The chromosome represents the
degrees of the scale, concerning the prevalent chord. This approach uses the union of the
degree and its analogous chord to indicate the actual pitch of the melody. Besides, he uses
an extended-degree representation that consists of 21 distinct values which fit to 3 octaves
(for a 7 note scale). Therefore, the chromosome is a series of extended-degree duration

pairs, rest been discerned by the constant rest instead of the extended-degree.

78 [Ariza 2002]
7 [Papadopoulos 1998].

30

In Gartland Jones® system®, the genotype is a bit array that includes meta-data attributes
and a simple model is described next. It is constituted by two parts.

The section object is the external object typifying a piece of music. It has an array of notes
and characteristics for target match fitness.

The note object gives the values for a single note. It has target fitness (0-1) and
characteristics for pitch, duration and velocity.

In Manzolli’s approach®' the individuals are defined as chords of four notes. The notes of
these chords are randomly produced on the interval [0,127] (corresponding with the MIDI
note number). In every generation, a population of 30 chords is created and valued.
Internally, the chords are represented like a chromosome with 28 bits, compound of 4

words with 7 bits.

KT R TH IR T EEE

FIGURE [23]: The structure of a MIDI chromosome. [Manzolli 1999, pp.2]

In Pigg’s work™, an individual includes two groups of genomes. The first is associated to
the notes in the measurements, and it is composed of 12 possible notes, a rest and a hold.
The hold is used instead of a note, to permit distinct note-lengths in the song.

The second is associated to the octaves of the notes, and its alphabet is composed of four
octaves and a null octave, to fit the spaces in the measures where a rest or an extend is
exhibited.

In Jacob’s implementation®’, the alleles represent vertical pitch combinations. They are
similar to interval types, but they add any number of pitches (from 1 to 12). Every allele is
twelve bit long, symbolizing a group of semitones that can be played at the same time. Each
pair of contiguous alleles shows a valid transition. Like interval types, the twelve
transpositions of a valid pitch or the transition between two combinations, are allowed.

The system of Wiggins®*et al. uses for the implementation three sections of the GA:

% [Gartland-Jones 2003a]
8 [Manzolli 1999]

8 [Pigg 2002]

% [Jacob 1994]

3 [Wiggins 1999]

31

Chromosome representations: Chords and keys are the principal concepts in
harmonisation of occidental tonal music. To express the twelve semitones, the standard five
accidentals are used. To distinguish the different octaves an associated integer is used, and
the time intervals are represented as integers too. The chromosome representation is made
by means of a matrix.

Reproduction operators: In this implementation different kinds of mutation and crossover
operators are used (splice, perturb, swap, rechord, and phrase start, phrase end®).

Fitness function: Wiggins et al. do not permit progression to dissonant chord and leap of
minor and major 7ths of diminished and augmented intervals and of intervals bigger than
one octave. Among voices, they avoid parallel perfect Sths, parallel unison, and parallel

octaves. They prohibit progression from diminished 5th to perfect 5th and crossing voices.

4. Summary of Former Results

Genetic algorithms have been utilized to produce music structures based on different
approaches.

Horner and Goldberg® use genetic algorithms for thematic bridging among simple
melodies, and their work is revised by Todd and Werner®. McIntyre88 produces a four part

Baroque harmonisation of an input melody. Both use a knowledge-based fitness function.

Other authors use a human user as a fitness rater: Jacob® designs a composing system
using material produced from phrases supplied by the user as building blocks. Horowitz”’
employs interactive genetic algorithms to produce rhythmic patterns. Ralley’' proposes a
composition system that utilizes a strategy of data diminution to comprise two extremes of

individual fitness task and to elaborate melodies. Biles’’develops a system which uses GA

8 These operators have been explained in the section 2.1.3 (pp.27).
% [Horner 1991]

8 [Todd 1999]

8 [Mc Intyre 1994]

% [Tacob 1994], [Jacob 1996]

% [Horowitz 1994]

°l [Ralley 1995]

%2 [Biles 1994]

32

to imitate a jazz musician learning to improvise. Moroni’® evolves a system established on
evolutionary computation strategies for composing music in real time.

In other kind of system that uses a neural network as fitness function, Gibson and Byrne’s
works can be mentioned”, who make simple harmonizations, using the tonic subdominant

and dominant chords. Spector and Alpern”

use GP* to produce a one measure reply to a
one measure ‘“call”, by means of a neural network as a fitness estimator of the reply. Biles’’
tries to use a neural network to improve his first work. Papadopoulos98 designs a system for
the creation of jazz melodies over an input chord sequence. Burton and Vladimirova’
propose a method based on the clustering behaviour of an ART (Adaptive Resonance
Theory) to solve the problems of neural fitness operators.

Johanson and Poli!%

produce melodies by means of genetic programming. They use an
interactive system which permits users to develop little musical sequences and they present
an extension which utilizes a neural network to model the user’s choice.

101

Johnson °" develops a group of parameters for a granular synthesis machine.

5. Comparison of Genetic Operations

5.1 Fitness Function Selection

The algorithm fitness function is a set of melodies. It is important to bear in mind that the
aim of this work is not to produce melodies. The actual goal is to compare the different
kinds of genetic operations (short GO). These GOs have been divided in three groups,

defined in the following lines.

- Class 1: Classic genetic operations.

%3 [Moroni 2000]

% [Gibson 1991]

% [Spector 1995b]

% [Koza 1992])

°7 [Biles 1996]

%8 [Papadopoulos 1998]
% [Burton 1997]

190 1 Johanson 1998]

191 [Tohnson 1999]

33

- Mutation.
- One point crossover + mutation.

- Two point crossover + mutation.

Class 2: Classic genetic operations mixed with musical functions.

- One point crossover with:
transpose and classic mutation.
transpose and rhythm mutation.
reverse and classic mutation.
reverse and rhythm mutation.
mirror and classic mutation.
mirror and rhythm mutation.
- Two point crossover with:
transpose and rhythm mutation.
reverse and classic mutation.
reverse and rhythm mutation.
mirror and classic mutation .
mirror and rhythm mutation.
- One point crossover with mirror, reverse + mutation.
- Two point crossover with mitror, reverse + mutation.
- One point crossover with mirror, reverse, transposition + mutation.
- Two point crossover with mirror, reverse, transposition + mutation.
- One point crossover with mirror, reverse + rhythm mutation
- Two point crossover with mirror, reverse + rhythm mutation.
- One point crossover with mirror, reverse, transposition + rhythm
mutation.
- Two point crossover with mirror, reverse, transposition + rhythm

mutation.

Class 3: Musical functions

- Different kinds of mirror functions + mutation / thythm mutation.

34

- Different types of reverse functions + mutation / thythm mutation.
- Mirror and reverse + mutation / rhythm mutation.
- Different kinds of swap between notes + mutation / thythm mutation.

- Transpose + mutation / thythm mutation.

The fitness function consists of seven already composed melodies with similar structure
and tonality, which is taken as a reference to give a fitness value for each melody of the
population. The fitness value measures the similarity of the output of the GA and these

melodies. By means of this fitness value the different operation classes can be compared.

FIGURE [24]: Fitness function melodies. [Sundberg 1993, pp. 278]

Song variations are especially suitable to be used as fitness function because they have:
1. Same length.
2. Same tonality.

3. Similar structure.

35

Due to this reason, the fitness function is made up of seven variations of the Swedish folk
song “Ro, Ro till Fiskeskér” used in a paper from Sundberg'®® concerning the application of
generative grammars for producing Swedish nursery tunes.

All the variations have the same number of bars, which is an important aspect because, in
this way, this feature allows to represent all the songs in arrays with the same size and the
same number of integers.

As it was previously mentioned, all of them are similar, because there are variations of a
unique song. This is interesting, taking into account that the same structure is needed.

In these songs, a preference for half notes at the end of every melody is noticeable. The
entire songs finish on the fundamental of the tonic and all the even-numbered bars conclude

on this note of the fifth of the dominant.

5.2 Chromosome Representation'” and Main Characteristics
- Number of fitness function melodies: 7.
- Number of bars: 10 (4/4).
- Number of integers per bar: 8 integers
- Minimum duration of a note: quaver. This will be the smallest unit.
- Maximum duration of a note: minim.
- Lowest note: C#4 (61 midi-key-number)
- Highest note: A4 (69 midi-key-number)

- Integer representation of the notes:

Midi-key-number
61
D4 62
E4 64
F4 65
G4 67
A4
Rest

Prolongation
FIGURE [25]

192 ISundberg 1976]

% Even numbers where selected to allow easier later extensions of the program, for example to enlarge the
range pitch. If all the integers between 0 and 10 were selected, it would be exactly one scale. Then, the rest
and the prolongation values would continue being the same values that in this implementation.

36

- Examples:
0,2,4,6 = C#4, D4, E4, F4 (all quavers).
0,14,4,6 = C#4 (quarter note), E4 and F4 (quavers).
0,14,14,14 = C#4 (minim).
0,12,10,14 = C#4 (quaver), rest (quaver), A4(quarter note).

- Each melody will have 80 integers. (8 integers x 10 bars)

- Example of a fitness function melody (number 1, figure 24):
2,14,10,14,10,14,10,14 — 10,14,6,14,4,14,14,14 — 8,14,10,14,10,14,6,14 —
4,14,14,14,2,14,14,14 -6,14,2,14,4,14,6,14 —8,14,6,14,4,14,14,14 -
6,14,2,14,4,14,6,14 —8,14,6,14,4,14,14,14 --2,14,10,14,10,14,6,14 —
4,14,14,14,2,14,14,14.

5.3 The Fitness Value

The program uses a function to assign a fitness value to every melody. This function does a
note to note comparison with the seven melodies of the fitness function, which consists of
80 integers each one. Therefore, if a melody gets a fitness value of 80, this means that a
melody has been found.

The function takes the first melody, and compares it with every melody of the fitness
function. Hence, it will have 7 fitness values. This process is repeated with all the melodies
of the population. At this stage, there are 7 fitness values for every melody. The best

melody will be the one which has the highest fitness value.

37

5.4 Application of the Genetic Algorithm

5.4.1. Design of the Algorithm104

Example with a population size of 100 chromosomes (i.e. melodies), starting from two

Initial
1. Generation of 100 chromosomes (random : 100
. . .- N G P random
pitch and rhythm) in an initial population. P melodies
2. Application of the fitness function on the Fr vt rnens
. . i Initial :
population. Assignment of fitness value for |.....pp i 100 i Fitness
every chromosome of the population. ! random i ! Function i
- : melodies ¢ A

3. Take the 50 best melodies of initial
population, and copy to new population.

Initial
- . i S0best!
4, Delete the 50 worst melodies of “initial > DELETE

population”. {50 worst

Initial :

5. Generation of new 50 melodies (random |[....p. 5?0}’&
. 173 PP TS . 2 new
pitch and rhythm) on “Initial population”. randons
= melodies

6. Application of genetic operators or : Slgl;?s?ll :
musical functions between 50 best and 50 i -yl

new random melodies random

melodies

7. Copy the 50 best melodies from “Initial Initial | New
population” to the second part of “New > i S0bestl :
population” 50best2
. . . . New §
8. Go to step 2. This new population will be i 50best1

the initial population in the next generation

> i 50best2

104 Based on [Goldberg 1989]

38

5.4.2 How are the genetic operations applied?

If crossover (one and two point) is applied it works the following way. If the population
size is 100 (where the chromosomes from 1 to 50 are the best, and from 51 to 100 are
random), the crossover is applied between the chromosome n°1 and n°51; Chr2 and Chr52;
Chr3 and Chr53...

If the genetic operations are used after one point crossover, they will be applied from the
randomly chosen point until the end of the chromosome. In the two point crossover the

application affects the selected area (see below).

Class 1. Example of a two point crossover

The program selects two random positions, for example Pos1 = 4, and Pos2 = 7. Then:

Pos1 Pos2
4|212)8]14(14 |4]2|4 |4 41212110 |12 10 |412]|4/|4
Obtained
chromosomes
8112|810 12104 18({616 81121818 (14141418 |6 |6
Posl Pos2
FIGURE [26]

Class 2. Example with two point crossover and the reverse, transpose and mirror

functions'®

The two point crossover operations is applied in the same manner that in the first example,
therefore, starting from the chromosomes obtained. Afterwards the reverse is applied only

in the part situated between the two randomly selected positions.

1% The functions are every time applied in the order as they appear in the command line

39

—>

FIGURE [27]

The next step is the transposition of one value randomly selected by the program between 0
and 6 (range pitch).If the transpose value applied to a chromosome is 6, the resultant
chromosome would be equal to the initial chromosome. The following example106 shows

the results for a transpose value = 1:

—>

FIGURE [28]

The last step is the mirror function application. The mirror axis will be the first note
between Posland Pos2. As its name denotes, the axis functions as a “mirror”: the notes
under the axis are placed over it, and vice versa, always keeping a constant distance

between the notes and the axis.

4l2l2l6 12141212144 4121216 1108 [10)2(414

Mirg)r axis l:::>
|

811218) 6 |14|14|1018|6|6 8112|8) 6 |14|14| 2 8|66

FIGURE [29]

19 See representation of the notes values, figure 25, pp. 36.

40

Class 3.
The study of the behaviour is not the main goal of this work, but it is important to know
that this musical functions are applied to the whole population107 without any crossover

operation. The explanation of every kind of function is given in the program menu.

5.5 How does the program work?

Genetic Algorithm

Damian Padrdén Abrante — 2685

Press a key to continue...

FIGURE [30]

1. After this presentation screen, when the program is executed, the first menu (see figure
31) displays some of the main algorithm features, and the user has the possibility of
choosing the number of generations. This number is recommended to be between 10 and

1000, but the user can test it with bigger numbers.

i
i

— Number of melodies/chromosomes: 1868 (hy default)
(can he modified in the code betueen 18-188>.

Number of bars: 18 <{4/4>

Number of mnelodies of the fitness function: ?
Minimum duration of a note: guaver.

Maximum duration of a note: minim.

Lowest note: G4 <(midi-numher-key

Highest note: A4 (midi—numbher-kew

IEEEEEEEEREEEREEE S
IEEEEEEEEEEERERE]

Introduce the number of generations (10-168@>:

FIGURE [31]

NOTE: Moreover, the population size can be changed, but only in the program
Code (line 6, pp. 57). Its maximum value is 180.

197 After the application of FF and selection like in the other classes

41

Program Final;

uses crt;

const
maxpop=100
maxstr=80;

maxmelod=7

The maximum population is 100 by
default.

FIGURE [32]

2. The second menu displays the different classes of operations that the user can select:

Introduce

Class 1 =
Class 2 =
Class 3 =

the kind of operators/functions that you want to use:

Classic operators (Ones/tuo point crossover — Mutation)
Classic operators mixed with musical Functions
Musical functiens

FIGURE [33]

3. a) Class 1: Classic operations. One point crossover and two point crossover are applied

between the first 50 % and the second 50 % of melodies.

Choose an option =

a) Mutation)
b> One point crossover and mutation
¢? Two point crossover and mutation

FIGURE [34]

3. b) Class 2: Classic operations mixed with musical functions.

an option :

point
point
point
point
point
point

point
point
point
point
point
point

point
point
peint
point
point
point
point
peint

crossover
crossover
cyYossaover
crossover
crossover
crossover

crossover
crossover
crossover
crossovexr
crossover
crossovey

crossover
crossover
crossover
crossovey
crossover
crossaver
crossover
crosgsover

with
with
with
with
with
uith

with
with
with
with
with
with

with
gith
with
with
[TERS
with
with
uith

transpose and classic mutation
transpose and rhythm mutation
reverse and classic mutation
reverse and rhythm mutation
nirror and classic mutatien
mirror and rhythn mutation

transpose and classic mutation
transpose and rhythn mutation
reverse and classic mutation
reverse and rhythn mutation
mirror and c¢lassic mutation
mirror and rhythm mutation

mirrer, reverse and classie mutation
mirror, reverse and classic mutation
mirror, reverse, transpose and classic mutation

‘mirrer, veverse, transpose and classic mutation

mirror,. reverse and rhythn mutation
mirror, reverse and rhythm mutation
mirror, reverse, transpose and rhythm mutation
mivror, reverse, transpose and rhythm mutation

FIGURE [35]

42

3. ¢) Class 3: Musical functions. Within this class, there are three different possibilities,
according to the chosen column character:

- The first one consists of the musical function itself.

- In the second one, the classic mutation is added to the musical function.

- The third one, the thythm mutation is added to the musical function.
—— L ,

There are three possibilities for each musical functions:

i First column character: The specified function.
! Second column character: Specified function adding the classic mutation{CMut).
l Third column character: Specified function adding the rhythm mutatien<RMut).

CMut RMut

- @) Mirror in each melody of the population (randon nirror axis?
Mirror in each melody of the population (first note as mirror axis)
Mirror in a wandom part of each melody (random mirror axis?
Mirror in a random part of each melody (first note as mirror axisd
Reverse in each melody of the population

Reverse in a random part of each melody of the populatien

Mirror + reverse in each melody {mirrer axis = first note?

Mirror + reverse in a part of each melody {(mirror axis=first note
Suwap the pitch of two adjacent notes

Suap all the adjacent integers of each melody of the population
Swap all the integers one place leftwards

Transpose seven melodies randomly selected of the populaticn
Tranzpose a part of each meledy of the population

B Tt e R D R
O O O S A B OO
N XEterau2Rlmo

[O T T O O OO A |

FIGURE [36]

4. When the processing time finishes, there are two possible results:
a) No identical melody to the fitness function is found.
In this case the highest fitness value of one melody of the population is given, based
on its resemblance to one of the fitness function melodies (the number of this fitness

function is also provided).
t No identical melody has been found...
But the most similar melody has a fitness value of: 21

With regard to the melody: 4

Press a key to continue...

FIGURE [37]

b) An identical melody to the fitness function is found.
In this case, the melody number and the found melody itself are shown.
Besides, the number of generations that the program has needed to find a solution is

also provided.

43

| The melody 7 have been found in 257 generations.

| This is the melody *

~14.14,14,16.14,14.14,18,1
ﬁ,2,2,14

’1

14,

FIGURE [38]

Next, the following screen displays how many identical melodies have been found in the

generation where the algorithm found the first solution.

Besides,in this generation, 6 identical melodies have been found.

Press a key to continue...

FIGURE [39]

5. The last screen contains two options:

that do vouw want to do?

a) Exit
bh> Restart the program

Choose an option:

FIGURE [40]

6. Statistical Results

The data showed in this section are the results obtained after testing the algorithm for class
1 and class 2. The selected population size is 100 chromosomes. The program has been run
ten times for all the following examples. The values shown in the graphics are the average
of the mentioned ten executions. When mutation (only) operation is mentioned, it always
performs by altering one randomly chosen integer (like in the classical GA, see figure 13,
pp. 16).

The rhythm mutation is performed by two different functions. The first of them, takes
groups of three adjacent integers in every chromosome and if none of them has a value=14
(prolongation), it changes the value of the first integer introducing a 14. Otherwise, it

changes the first integer giving it a random value. The second function takes a random

44

number of melodies of the population. Afterwards, it selects a random bar and turns the last
note into a minim.
For each class of genetic operations / musical function the following information is

presented:

- A diagram which shows the results progression as generation number increases.

- Numerical values table.

- A graphic which represents the generation number needed to find a solution.

- Class 1) Classic Genetic Operations

‘b) One point crossover + Mutation —@—c) Two point crossover + Mutation

Fitness
value

500 1000 Generation

number

GENERATION
GENETIC NUMBER

OPERATION:

b) One point crossover + Mutation
¢) Two point crossover + Mutation

45

209

Number of
generations
needed to find
a solution

b) One point crossover c¢) Two point crossover
+ mutation + mutation

FIGURE [41]

- Class 2) Musical functions with one-point crossover

Fitness
value

80
75
70
65
60
55
50
45
40
35
30
25
20
15
10

S

0

-—&— d) One point crossover with transpose and mutation
-~ @) One point crossover with transpose and rhythm mutation
=g f) One point crossover with reverse and mutation

- g) One point crossover with reverse and rhythm mutation
~&-h) One point crossover with mirror and mutation

—O—i) One point crossover with mirror and rhythm mutation

|

|

|

46

Generation
number

GENETIC

GENERATION
NUMBER

OPERATION:

d) One point erossover with
transpose and mutation

¢) One point crossover with

transpose and rhythm mutation

f) One point crossover with reverse

and mutation

g) One point crossover with reverse

and rhythm mutation

h) One point crossover with mirror

and mutation

i) One point crossover with mirror

and rhythm mutation

1437

o/ 730

377

d) One point) One point f) One point g) One point h) One point

crossover crossover
with with

transpose franspose and mutation and rhythm and mutation

and mutation and rhythm
rmutation

crossover crossover crossover
with reverse with reverse with mirror

mutation

FIGURE [42]

47

i) One point
crossover
w ith mirror
and rhythm
mutation

& Number of
generations
needed to
find a solution

- Class 2) Musical functions with two-point crossover

Fitness

—&—j) Two point crossover with transpose and mutation
=== K) Two point crossover with transpose and rhythm mutation
1) Two point crossover with reverse and mutation

m) Two point crossover with reverse and rhythm mutation
-~ n) Two point crossover with mirror and mutation

value —O--0) Two point crossover with mirror and rhythm mutation

80
75
70
65
60
55
50
45
40
35
30
25
20
15
10

5

0

GENERATION
GENETIC NUMBER
OPERATION:

j) Two point crossover with
transpose and mutation

k) Two point crossover with
transpose and rhythm mutation

1) Two point crossover with reverse
and mutation

m) Two point crossover with
reverse and rhythm mutation

n) Two point crossover with mirror
and mutation

0) Two point crossover with mirror
and rhythm mutation

48

Generation
number

3000 2601 —2829——
2500
2000
1500 1303 & Number of
generations
539 needed to
find a solution

j) Two point k) Two point |) Twopoint m)Two n) Two point o) Tw o point

crossover crossover — crossover point crossover crossover
with with with reverse crossover with mirror with mirror
transpose transpose and mutation with reverse and mutation and rhythm
and mutation and rhythm and rhythm mutation
mutation mutation
FIGURE [43]

- Serial Application of Class 2 musical functions with One/two point crossover and
mutation

—o—p) One point crossover + mirror + reverse + mutation

~g () TWo point crossover + mirror + reverse + mutation

Fitness -
value

80
75
70
65
60
55
50
45
40
35
30
25
20
15
10

5

0 T . l | . T

-r) One point crossover + mirror + reverse + transpose + mutation

--8) Two point crossover + mirror + reverse + transpose + mutation

Generation
number

49

GENERATION
NUMBER

GENETIC
OPERATION:

p) One point crossover + mirror +
reverse + mutation

q) Two point crossover + mirror +
reverse + mutation

r) One point crossover + mirror +
reverse + transpose + mutation

s) Two point crossover + mirror +
reverse + transpose + mutation

6000
5000
4000 - 3323
3000
2000
1000
0 .
p) One point) Two point r) One point s) Two point
crossover + crossover + crossover + crossover +
mirror + mirror + mirror + mirror +
reverse + reverse + reverse * reverse +
mutation mutation transpose + transpose +
mutation mutation
FIGURE [44]

50

B Number of
generations
needed to find
a solution

Serial Application of Class 2 musical functions with One/two point crossover and

rhythm mutation

Fitness
value

80
7%
70
65
60
55
50
45
40
35
30
25
20
15
10

5

0

—&—t) One point crossover + mirror + reverse + rhythm mutation
—&==U) Two point crossover + mirror + reverse + rhythm mutation
v) One point crossover + mirror + reverse + transpose + rhythm mutation

w) Two point crossover + mirror + reverse + transpose + rhyrhm mutation

GENERATION
GENETIC NUMBER
OPERATION:

t) One point crossover + mirror +
reverse + rhythm mutation

u) Two point crossover + mirror +
reverse + rhythm mutation

v) One point crossover + mirror +
reverse + transpose + rhythm mutation

w) Two point crossover + mirror +
reverse + transpose + rhythm mutation

51

Generation
number

4005

t) One point u) Two point v) One point w) Two point
crossover + crossover + crossover+ crossover +
mirror + mirror + mirror + mirror +
reverse + reverse + reverse + reverse +

rhythm rhythm transpose + transpose +

mutation mutation

rhythm rhythm

mutation mutation

FIGURE

- Mutation

[45]

Fitness

value —é—a) Mutation

0 Number of
generations
needed to
find a solution;

GENERATION
GENETIC NUMBER
OPERATION:

Generation
number

100 | 200 | 350 | 500 | 1000

43,2 1 63,8 | 73,2

a) Mutation _ 29,0

52

a) Mutation

FIGURE [46]

7. Conclusions:

In the next table the best genetic operations are presented:

8 Number of
generations
needed to
find a solution

Position Class Generation needed
to find a solution
1 One point crossover + mutation (Class 1) 329
2 One point crossover + mirror + mutation (Class 2) 377
3 Mutation (Class 1) 396
4 Two point crossover + mutation (Class 1) 509
5 Two point crossover + mirror + mutation (Class 2) 539
6 Two point crossover + transpose -+ mutation (Class 2) 656
7 One point crossover + transpose + rhythm mutation (Class 2) 730

The class 1 (see figure 41) provides optimum results since they are three of the four best
values (see figure 47). The results of this class are better than those of the class two (see

figures from 42 to 45) except for One point crossover + mirror + mutation, which provides

FIGURE [47]

the second best value.

Although before testing the program it was expected that the joint use of several musical

functions would provide better results than the use of each one separately, it is shown that

the classical GA performed better.

53

One point crossover - Two point crossover.

In the figures 44 and 45 diagrams, the two point crossover is always better than the one
point crossover, although the values are not good. If the figures 42 and 43 graphics are
compared, it is difficult to get an accurate conclusion. This is due to fact that the results
depend on the musical function which is applied (reverse, transpose or mirror).

Reverse — Transpose — Mirror.

The reverse musical function presents really poor values, regardless of the operation it is
mixed with. This is the main reason why the results obtained when different musical
functions are used at the same time are worse than expected (see figures 44 and 45). The
transpose function gives acceptable results in all cases, especially when is combined with
classical mutation. The mirror function provides very good values when is mixed with
mutation. When this function is mixed with rhythm mutation, the fitness values are also
acceptable although worse than the classic mutation (see figures 42 and 43).

Mutation — Rhythm Mutation.

The mutation is always better than the rhythm mutation except for the figure 43 graphic
(One point crossover mixed with only one musical function). This could be explained
because of the optimal results that the mutation provides when it is used in isolation (see

figure 46).

In further works it would be interesting to test the classic operations combined with various
musical functions but without the reverse function; because it is possible that the poor

results got in the figures 44 and 45 are due to the use of this function.

54

Appendix I

As it was previously mentioned, a third class is included in the program, although its study
is not the aim of this work. Nevertheless, the user can experiment with these musical
functions.

With regard to this class, the first column functions of the menu, supply very bad results
because they are not combined with the mutation operation. As an interesting datum, the
function: “Transpose seven melodies randomly selected” within this class, produced very

good results. Thus, the following graphics have been included.

y) Transpose seven melodies randomly selected + mutation

—&— 8) Transpose seven melodies randomly selected + rhythm mutation

GENERATION
GENETIC NUMBER
OPERATION:

y) Transpose seven melodies
randomly selected + mutation
&) Transpose seven melodies
randomly selected + rhythm
mutation

55

y) Transpose seven
melodies randomly
selected + mutation

&) Transpose seven
melodies randomly
selected + rhythm

mutation

FIGURE [48]

56

& Number of
generations
needed to find|
a solution

Appendix ITI: Pascal code

Program Final;
uses crt;
const
maxpop=100;
maxstr=80;
maxmelod=7;
type
melodies= array [1..maxstr] of integer;
population= array [1..maxpop] of melodies;
fitness=array [1..maxmelod] of melodies;
new=array [1..maxmelod] of integer;
fit_value = array [1..maxpop] of new;
mel pos = array [1..2] of integer;
allmel pos = array [1..maxpop] of mel pos;
const
mell:melodies=(2,14,10,14,10,14,10,14,10,14,6,14,4,14,14,14,8,14,10,14,
10,14,6,14,4,14,14,14,2,14,14,14,6,14,2,14,4,14,6,14,8,
14,6,14,4,14,14,14,6,14,2,14,4,14,6,14,8,14,6,14,4,14,14,
14,2,14,10,14,10,14,6,14,4,14,14,14,2,14,14,14) ;

mel2:melodies=(2,14,10,14,10,14,10,14,10,8,6,14,4,14,14,14,8,14,10,14,
10,14,8,14,6,14,14,14,4,14,14,14,6,14,2,14,2,14,2,14,4,
6,8,6,4,14,14,14,6,14,2,14,2,14,2,14,4,6,8,6,4,14,14,14,
2,14,10,14,10,8,6,14,4,14,14,14,2,14,14,14);

mel3:melodies=(2,14,2,14,10,14,10,14,10,14,10,14,8,6,4,14,6,14,8,14,10,
14,10,14,8,6,4,14,14,14,2,14,14,14,6,14,4,2,4,14,4,6,8,
14,8,6,4,14,14,14,6,14,4,2,4,14,4,6,8,14,8,6,4,14,14,14,
2,14,2,10,10,14,8,6,4,14,14,14,2,14) ;

mel4:melodies=(2,14,10,14,10,14,10,14,10,14,10,14,8,6,4,14,6,14,8,14,10,
14,10,14,8,6,4,14,14,14,2,14,14,14,6,14,2,14,4,14,4,6,8,
14,6,14,4,14,14,14,6,14,2,14,4,14,4,6,8,14,6,14,4,14,12,2,
2,14,10,14,10,14,6,14,4,14,14,14,2,14) ;

mel5:melodies=(10,14,14,14,10,14,10,14,10,14,6,14,4,14,14,14,4,14,6,14,8,
14,10,14,6,14,6,14,4,14,14,14,2,14,6,14,4,14,6,14,8,14,6,
14,4,14,14,14,2,14,14,14,4,14,6,14,8,14,6,14,4,14,14,14,2,
14,10,14,10,14,6,10,4,14,14,14,2,14,14,14);

mel6:melodies=(10,14,14,14,10,14,10,14,10,14,6,14,4,14,14,14,4,14,6,14,8,
14,10,14,6,14,6,14,4,14,14,14,6,14,2,14,0,14,0,2,4,14,6,14,
4,14,14,14,2,14,6,14,4,14,6,14,8,14,6,14,4,14,4,14,2,14,10,
14,10,14,6,14,4,14,14,14,2,14,14,14) ;

mel7:melodies=(2,14,14,14,10,14,14,14,10,14,8,6,4,14,2,14,2,14,4,14,4,2,2,
14,4,14,14,14,2,14,14,14,6,14,2,14,4,14,14,14,6,14,2,14,4,
14,14,8,6,14,4,2,4,14,14,8,6,14,4,2,4,14,14,4,8,14,10,14,10,
8,6,14,4,14,14,14,2,14,14,14);

var
f_function: fitness;
popl,pop2: population;
cont, proc,gener, i:integer;
optl,opt2,opt3,class,wait:char;
fin,punt: allmel_ pos;
value: fit_value;
label 1;
label 2;

57

{------oo-- fill the population melodies~----------------- }
procedure fill fitness(var ffunction:fitness);
begin

£ function{l1]:=mell;

f function[2] :=mel2;

f function([3] :=mel3;

f _function({4]:=mel4;

f function[5] :=mel5;

£ _function[6] :=mel6;

£ function[7] :=mel7;

end;
{(----------- Random generation of the population)--------- }
procedure Generate_ pop (var pop:population);
var
i,j:integer;
begin
randomize;
for i:=1 to maxpop do
begin
for j:=1 to maxstr do
begin
popli,jl:=random(15) ;
while popli,j] mod 2 <> 0 do
begin
popli,jl:= random(15) ;
end;
end;
end;
end;

{---Comparison note to note with every melody of the fitness function---}
procedure note_to_note(var pop:population;

var ffunction: fitness;

var ff value: fit_value);

var
i,3j,k:integer;
begin
for i:=1 to maxpop do
begin
for k:=1 to maxmelod do
begin
£ff valueli,k]:=0;
for j:=1 to maxstr do
begin
if popli,jl=£ffunctionlk,j] then
begin
ff valueli, k] :=ff_ valueli, kl+1;
end;
end;
end;
end;
end;
{------ Save the best fitness value and its position----}

procedure save_pos_mel (var f£ff_value: fit_value;
var pun: allmel pos);

var
i,j:integer;
begin
for i:=1 to maxpop do
begin

pun{i, 2] :=0;
for j:=1 to maxmelod do

58

begin
if £f valueli,j] > punli,2] then
begin
pun[i,2]:=ff valuel[i,jl;
punli,1]:=3;
end;
end;

{---------- take the 50 best melodies and copy to pop2---------------)
procedure bestt (var pun: allmel pos;
var pop,popp: population);
var
i,7j,max:integer;
pun_aux: allmel_pos;
begin
pun_aux:=pun;
for i:=1 to maxpop div 2 do
begin
max:=1;
for j:=1 to maxpop do
begin
if punimax,2] < pun(j,2] then
begin
max:=7j;
end
end;
popp [1] : =pop [max] ;
pun{j,max] :=0;

end;
pun:=pun_aux;
end;
{----- take the 50 best melodies and copy to the second part of pop2----}

procedure bestt2 (var pun: allmel pos;
var pop,popp: population);
var
i,Jj,max:integer;
pun_aux: allmel pos;
begin
pun_auX:=pun;
for i:=maxpop div 2 +1 to maxpop do
begin
max:=1;
for j:=1 to maxpop do
begin
if punlmax,2] < pun[j,2] then
begin
max:=j;
end
end;
popp [i] : =pop [max] ;
pun[j,max] :=0;

end;

pun:=pun_aux;
end;
(- shows punctuation-------=-=----=---—----- }
procedure shows_punct (var pun: allmel_pos);
var

i:integer;

begin

for i:=1 to maxpop do

59

begin
write (pun(i,2]);

if (i=20) or (i=40) or (i=60) or (i=80) or (i=100) or (i=120) or
(1i=140) or {(i=160) or (i=180) then
begin
writeln;
end
else
write (', ');
end;
end;
{~-vemmm- Copy the best 50 melodies from pop2 to popl------------- }
procedure copyl (var pop,popp:population) ;
var
i:Integer;
begin
for i:=1 to maxpop div 2 do
begin
pop[i] :=popp{i];
end;
end;
{-ommmmmmm e generate 50 new random melodies---------------- J
procedure Generate2 (var pop:population) ;
var
i,j:integer;
begin
randomize;
for i:=maxpop div 2 +1 to maxpop do
begin
for j:=1 to maxstr do
begin
popli,j]:=random(15)} ;
while popli,j] mod 2 <> 0 do
begin
popli,jl:= random(15) ;
end;
end;
end;
end;
{--------- Copy the pop2 in popl------------- }
procedure copy? (var pop,popp:population);
var
i:Integer;
begin
for i:=1 to maxpop do
begin
pop [1] :=popp [i] ;
end;
end;
R i Classl: one point Crossover--------------=------ }
procedure one_crossover (var pop:population);
var
i,j,aux,pos:integer;
begin
randomize;
for i:=1 to maxpop div 2 do
begin
pos:=0;
while pos=0 do
begin

60

pos :=random(maxstr) ;
end;
for j:=pos to maxstr do
begin
aux:= popli,jl;
popli,jl:= popli+maxpop div 2,jl;
pop [i+maxpop div 2,j]:=aux;

end;
end;
end;
{~mmmmmm e Classl: two-point CrosSSOVer-------==-----=c---———---=
procedure two_crossover (var pop: population);
var
i,7,aux,posl,pos2:integer;
begin
randomize;
for i:=1 to maxpop div 2 do
begin
posl:=0;
while posl = 0 do
begin
posl:=random(maxstr-1);
end;
pos2:=0;
while (pos2=0) or (pos2<=posl+l) do
begin
pos2:=random(maxstr+l) ;
end;
for j:=posl to pos2 do
begin
aux:= popli,jl;
pop (i, jl:= popli+maxpop div 2,3jl;
pop [i+maxpop div 2,j]:=aux;
end;
end;
end;
{---mmmmm - One point crossover + transpose----------------- }
procedure one_crossover_transp (var pop:population);
var

trans,mirr, i,j,k,1l,aux,pos:integer;
aux2:melodies;

begin
randomize;
for i:=1 to maxpop div 2 do
begin
pos:=0;
while pos=0 do
begin
pos:=random(maxstr) ;
end;
for j:=pos to maxstr do
begin
aux:= popli,jl;
popli,jl:= popli+maxpop div 2,3j];
pop [i+maxpop div 2,3j]:=aux;
end;

trans:=random(7) ;
trans:=trans*2;
for j:=pos to maxstr do
begin
if popli,j] <= 10 then
begin

61

popl(i,jl:=popl(i,jl+trans;
if popli,jl > 10 then
begin
pop[i/j] :=pop[ilj]—12;
end;
end;

end;

transg:=random(7) ;

trans:=trans*2;

for j:=pos to maxstr do

begin
if popli+maxpop div 2,j] <= 10 then
begin
pop [i+maxpop div 2,3j] :=pop [i+maxpop div 2,jl+trans;
if pop[i+maxpop div 2,j] > 10 then
begin
pop [i+maxpop div 2,3] :=pop [i+maxpop div 2,3]1-12;
end;
end;
end;
end;
end;
{------=---- One point crossover + reverse--------------

procedure one_ crossover_rever (var pop:population);
var

mirr,i,j,k,1l,aux,pos:integer;

aux2:melodies;

begin
randomize;
for i:=1 to maxpop div 2 do
begin
pos:=0;
while pos=0 do
begin
pos : =random (maxstr) ;
end;
for j:=pos to maxstr do
begin
aux:= popli,jl;
pop (i, j]:= popli+maxpop div 2,3];
pop [i+maxpop div 2,J]:=aux;
end;
k:=1;
for j:=maxstr downto pos do
begin
aux2 [k] :=pop[i,jl;
ki=k+1;
end;
k:=1;
for l:=pos to maxstr do
begin
pop[i, 1] :=aux2 [k];
k:=k+1;
end;
k:=1;
for j:=maxstr downto pos do
begin
aux2 [k] :=pop [i+maxpop div 2,j];
k:=k+1;
end;
k:=1;

for l:=pos to maxstr do

62

begin
pop [i+maxpop div 2,1] :=aux2[k];
k:=k+1;
end;
end;

{----memm- One point crossover + Mirror --------------
procedure one_crossover_mirr(var pop:population);
var

mirr,i,j,k,1l,aux,pos:integer;

aux2:melodies;

begin
randomize;
for i:=1 to maxpop div 2 do
begin
pos:=0;
while pos=0 do
begin
pos:=random(maxstr) ;
end;
for j:=pos to maxstr do
begin
aux:= popli,jl;
popli,jl:= popli+maxpop div 2,3j];
pop [i+maxpop div 2,3l :=aux;
end;

mirr:=pop[i,pos];
for j:=pos to maxstr do

begin
if (mirr <> 12) and (mirr <> 14) then
begin
if (mirr = 0) or (mirr = 6) then
begin

case popli,j] of
0: popli,jl:=0;
2: popli,jl:=10;
4: popli,jl:=8;
6: popli,jl:=6;
8: popli,jl:=4;
10: popli,jl:=2;
end;
end;
if (mirr = 2) or (mirr
begin
case popli,j] of
0: popli,jl:=
2: popli,jl:=
4: popli,jl:=
6: popli,jl:=
8:
1

8) then

O~

popli,jl:=
0: popli,jl:

I oK ok

O\ =

end;
end;
if (mirr = 4) or (mirr = 10) then
begin
case popli,j] of
0: popli,jl:=8;

2: popli,jl:=6;
4: popli,jl:=4;
6: popli,jl:=2;
8: pop[i/j]==0i
10: popli,jl:=10;

63

end;
end;
end;
end;
mirr:=pop[i+maxpop div 2,pos];
for j:=pos to maxstr do

begin
if (mirr <> 12) and (mirr <> 14) then
begin
if (mirr = 0) or (mirr = 6) then
begin
case popli+maxpop div 2,j] of
0: pop[i+maxpop div 2,j]:=0;
2: pop[i+maxpop div 2,j]:=10;
4: popli+maxpop div 2,3]1:=8;
6: pop li+maxpop div 2,7j]:=6;
8: popl[i+maxpop div 2,3l :=4;
10: popli+maxpop div 2,3j]:=2;
end;
end;
if {mirr = 2) or (mirr = 8) then
begin
case popli,j] of
0: pop[i+maxpop div 2,j]:=4;
2: popli+maxpop div 2,3j]:=2;
4: popli+maxpop div 2,3]:=0;
6: pop[i+maxpop div 2,3]:=10;
8: pop [i+maxpop div 2,j]:=8;
10: popli+maxpop div 2,7j]:=6;
end;
end;
if (mirr = 4) or (mirr = 10) then
begin
case pop [i+maxpop div 2,3] of
0: popli+maxpop div 2,j]:=8;
2: popli+maxpop div 2,j]:=6;
4: popli+maxpop div 2,7j]1:=4;
6: pop[i+maxpop div 2,3]:=2;
8: pop [i+maxpop div 2,j]:=0;
10: popli+maxpop div 2,3j]:=10;
end;
end;
end;
end;
end;
end;
{---=-------- One point crossover + mirror and reverse--------------

procedure one crossover mirr rever (var pop:population);
var

mirr,i,j,k,1,aux,pos:integer;

aux2:melodies;

begin

randomize;

for i:=1 to maxpop div 2 do

begin
pos:=0;
while pos=0 do
begin

pos:=random(maxstr) ;

end;
for j:=pos to maxstr do
begin

64

end;

mirr:
for j
begin

end;
k:=1;

aux:= popli,jl;
popli,jl:= popli+maxpop div 2,73];
pop [i+maxpop div 2,j]:=aux;

=pop [i,pos] ;

:=pos to maxstr do
if (mirr <> 12) and (mirr <> 14) then
begin
if (mirr = 0) or (mirr = 6) then
begin
case popli,jl of
0: pop[ilj]:=0;
2: popli,jl:=10;
4: popli,jl:=8;
6: popli,jl:=6;
8: popli,jl:=4;
10: popli,jl:=2;
end;
end;
if (mirr = 2) or (mirr = 8) then
begin
case popli,j]l of
0: popli,jl:=4;
2: popli,jl:=2;
4: pop[ilj]:=0;
6: popli,jl:=10;
8: pop[i:j]3=87
10: popli,jl:=6;
end;
end;
if {(mirr = 4) or (wmirr = 10) then
begin
case popli,jl of
0: popli,jl:=8;
2: popli,jl:=6;
4: popli,jl:=4;
6: pop[i:j]:=2i
8: pOp[i,j]::O;
10: popli,jl:=10;
end;
end;
end;

for j:=maxstr downto pos do
begin

end;
k:=1;

aux2 [k] :=pop[i,j];
k:=k+1;

for l:=pos to maxstr do
begin

end;

pop (i, 1] :=aux2{k];
k:=k+1;

mirr:=pop [i+maxpop div 2,pos];
for j:=pos to maxstr do
begin

if (mirr <> 12) and (mirr <> 14) then
begin
if (mirr = 0) or (mirr = 6) then
begin

65

case pop[i+maxpop div 2,3j] of

: pop [i+maxpop div 2,3j]:=0;
2: popl[i+maxpop div 2,7j]:=10;
4: popli+maxpop div 2,3} :=8;
6: popl[i+maxpop div 2,j]:=6;
8:
1

(=]

pop [i+maxpop div 2,j]:=4;
0: popli+maxpop div 2,3]:=2;

end;
end;
if (mirr = 2) or (mirr = 8) then
begin
case popli,jl of
0: pop li+maxpop div 2,3l :=4;
2: pop [i+maxpop div 2,j]:=2;
4: pop [i+maxpop div 2,3]1:=0;
6: pop [i+maxpop div 2,3]:=10;
8: popl[i+maxpop div 2,j]:=8;
10: popli+maxpop div 2,]j]:=6;
end;
end;
if (mirr = 4) or (mirr = 10) then
begin
case pop [i+maxpop div 2,j] of
0: pop li+maxpop div 2,j]:=8;
2: popli+maxpop div 2,j]:=6;
4: pop [i+maxpop div 2,j]:=4;
6: pop l[i+maxpop div 2,j]:=2;
8: pop[i+maxpop div 2,j]:=0;
10: popli+maxpop div 2,3]1:=10;
end;
end;
end;
end;
k:=1;
for j:=maxstr downto pos do
begin
aux2 (k] :=pop [i+maxpop div 2,3l;
k:=k+1;
end;
k:=1;
for l:=pos to maxstr do
begin
pop [i+maxpop div 2,1] :=aux2[k];
k:=k+1;
end;
end;
end;
{ ——————— One point crossover + mirror,reverse and transpose-------

procedure one crossover mirr rever_ transp(var pop:population);
var
trans,mirr,i,j,k,1l,aux,pos:integer;
aux2:melodies;
begin
randomize;
for i:=1 to maxpop div 2 do
begin
pos:=0;
while pos=0 do
begin
pos:=random (maxstr) ;
end;
for j:=pos to maxstr do

66

begin

aux:= popli,jl;
pop i, jl:= popli+maxpop div 2,3l;
pop [i+maxpop div 2,7]] :=aux;

end;

mirr:=popii,posl;

for j
begin

:=pos to maxstr do

if (mirr <> 12) and (mirr <> 14) then

or (mirr = 6) then

case popli,j] of

popli,jl:=0;
popli,jl:=10;
pop[i,jl:=8;
popli,jl:=6;
pOp[i,j]:=4;
popli,jl:=2;

or {mirr = 8) then

case popli,jl of

popli,jl:=
popli,jl:=
popli,jl:=
popli,jl:=
popli,jl:=

popli,jl:

I o oNk
o~

or (mirr = 10)

case popli,jl of

begin
if (mirxr = 0)
begin
0:
2:
4:
6:
8:
10:
end;
end;
if (mirr = 2)
begin
0:
2
4 :
6:
8:
10:
end;
end;
if (mirr = 4)
begin
0:
2
4:
6:
8:
10:
end;
end;

popli,jl:=8;
popli,jl:=6;
popli,jl:=4;
popli,jl:=2;
popli,jl:=0;

popli,jl:=10;

end;

end;

k:=1;

for j:=maxstr downto pos do

begin
aux2 [k] :=pop[i,7j];
k:=k+1;

end;

k:=1;

for l:=pos to maxstr do

begin
popli, 1] :=aux2 [k];
k:=k+1;

end;

trans:=random(7) ;

trans:=trans*2;

for j:=pos to maxstr do

begin

if popli,jl <= 10
begin

then

67

popli,jl:=popli,jl+trans;
if popli,j] > 10 then
begin
popli,jl:=popli,jl-12
end;
end;

end;

mirr:=pop [i+maxpop div 2,pos];

for j:=pos to maxstr do

begin
if (mirr <> 12) and {(mirr <> 14) then
begin
if (mirr = 0) or (mirr = 6) then
begin
case pop [i+maxpop div 2,31 of
0: popli+maxpop div 2,j]:=0;
2: popli+maxpop div 2,3j]1:=10;
4: popl[i+maxpop div 2,3]:=8;
6: popli+maxpop div 2,j]:=6;
8: pop [i+maxpop div 2,7]:=4;
10: popli+maxpop div 2,j]:=2;
end;
end;
if (mirr = 2) or (mirr = 8) then
begin
case popli,jl of
0: popli+maxpop div 2,j]:=4;
2: popli+maxpop div 2,3j]:=2;
4: popl[i+maxpop div 2,3]:=0;
6: popl[i+maxpop div 2,j]1:=10;
8: pop[i+maxpop div 2,j]:=8;
10: popli+maxpop div 2,3j]:=6;
end;
end;
if (mirr = 4) or (mirr = 10) then
begin
case pop [i+maxpop div 2,j] of
0: popli+maxpop div 2,j]:=8;
2: popli+maxpop div 2,3j]:=6;
4: popli+maxpop div 2,3]:=4;
6: popli+maxpop div 2,j]:=2;
8: popli+maxpop div 2,j]:=0;
10: popli+maxpop div 2,3]:=10;
end;
end;
end;
end;
k:=1;
for j:=maxstr downto pos do
begin
aux2 [k] :=pop [i+maxpop div 2,3l;
k:=k+1;
end;
k:=1;
for l:=pos to maxstr do
begin
pop [i+maxpop div 2,1] :=aux2[k];
k:=k+1;
end;

trans:=random(7) ;
trans:=trans+*2;

for j:=pos to maxstr do
begin

68

if popli+maxpop div 2,j] <= 10 then
begin
pop [i+maxpop div 2,7l :=pop[i+maxpop div 2,j]l+trans;
if pop [i+maxpop div 2,3j] > 10 then
begin
pop [1+maxpop div 2,7] :=pop [i+maxpop div 2,3j1-12;

end;
end;
end;
end;

end;

{----mm - two point crossover + transpose ------------ }
procedure two_crossover_transp(var pop:population);

var

trans,mirr,i,j,k,1l,aux,pos,pos2:integer;
aux2:melodies;

begin
randomize;
for i:=1 to maxpop div 2 do
begin
pos:=0;
while pos=0 do
begin
pos:=random(maxstr-1) ;
end;
pos2:=0;
while (pos2=0) or (pos2<=pos+l) do
begin
pos2:=random{maxstr+1) ;
end;
for j:=pos to pos2 do
begin

aux:= popli,jl;
popli,jl:= popli+maxpop div 2,3i];
pop [i+maxpop div 2,j] :=aux;

end;

trans:=random(7) ;

trans:=trans*2;

for j:=pos to pos2 do

begin
if popli,j]l <= 10 then
begin
popli,jl:=popli,jl+trans;
if popli,jl > 10 then
begin
popli,jl:=popli,jl-12;
end;
end;
end;

trans:=random(7) ;
trans:=trans*2;
for j:=pos to pos2 do

begin
if popli+maxpop div 2,j] <= 10 then
begin
pop [i+maxpop div 2,3j] :=pop[i+maxpop div 2,jl+trans;
if popli+maxpop div 2,3j] > 10 then
begin
pop [i+maxpop div 2,3l :=pop [i+maxpop div 2,j]1-12;
end;
end;
end;

69

(- two point Croosover + reversge---------------=---
procedure two_crossover_rever (var pop:population};
var

mirr,i,j,k,1l,aux,pos,pos2:integer;

aux2:melodies;

begin
randomize;
for i:=1 to maxpop div 2 do
begin
pos:=0;
while pos=0 do
begin
pos:=random(maxstr-1) ;
end;
pos2:=0;
while (pos2=0) or (pos2<=pos+l) do
begin
pos2:=random(maxstr+l) ;
end;
for j:=pos to pos2 do
begin
aux:= popli,jl;
popli,jl:= popli+maxpop div 2,3];
pop [i+maxpop div 2,j] :=aux;
end;
k:=1;
for j:=pos2 downto pos do
begin
aux2 [k] :=pop[i,]];
k:=k+1;
end;
k:=1;
for l:=pos to pos2 do
begin
pop[i, 1] :=aux2{k];
k:=k+1;
end;
k:=1;
for j:=pos2 downto pos do
begin
aux2 [k] :=pop [1+maxpop div 2,]l;
k:=k+1;
end;
k:=1;
for l:=pos to pos2 do
begin
pop [1+maxpop div 2,1] :=aux2[k];
k:=k+1;
end;
end;
end;
e it two point crossover + mirror--------------------
procedure two_crossover mirr (var pop:population) ;
var

mirr,i,j,.k,1,aux,pos,pos2:integer;
aux2:melodies;
begin
randomize;
for i:=1 to maxpop div 2 do

70

begin

pos:=0;
while pos=0 do
begin
pos:=random(maxstr-1) ;
end;
pos2:=0;
while (pos2=0) or (pos2<=pos+l) do
begin
pos2:=random(maxstr+l} ;
end;
for j:=pos to pos2 do
begin
aux:= popli,jl;
popli,jl:= popli+maxpop div 2,31;
pop [i+maxpop div 2,7j]:=aux;
end;

mirr:=pop[i,pos];
for j:=pos to pos2 do

begin
if (mirr <> 12) and (mirr <> 14) then
begin
if {(mirr = 0) or (mirr = &) then
begin
case popli,jl of
0: popli,jl:=0;
2: popli,jl:=10;
4: popli,jl:=8;
6: popli,jl:=6;
8: pop[ilj]:=4;
10: popli,jl:=2;
end;
end;
if (mirr = 2) or (mirr = 8) then
begin
case popli,jl of
0: pop[ilj]:=4;
2: popli,jl:=2;
4: popli,jl:=0;
6: popli,jl:=10;
8: popli,jl:=8;
10: popli,jl:=6;
end;
end;
if (mirr = 4) or (mirr = 10) then
begin
case popli,jl of
0: popli,jl:=8;
2: pOp[i,j]:=6;
4: popli,jl:=4;
6: pop[ilj]:=2;
8: popli,jl:=0;
10: popli,jl:=10;
end;
end;
end;
end;

mirr:=pop [i+maxpop div 2,pos];
for j:=pos to pos2 do
begin
if (mirr <> 12) and (mirr <> 14) then
begin
if (mirr = 0) or (mirr = 6) then

71

end;

end;

begin

case pop [i+maxpop div 2,3j] of

end;
end;
if (mirr
begin

(o]

2
4
6
8
1

: pop [i+maxpop div 2,3]:=0;

: pop {i+maxpop div 2,3j]:=10;
: pop [i+maxpop div 2,j]:=8;

: pop [i+maxpop div 2,]]:=6;

: popli+maxpop div 2,j]:=4;

0: popli+maxpop div 2,j]:=2;
2) or (mirr = 8) then

case popli,jl of
: pop [i+maxpop div

end;
end;
if (mirr
begin

o

2
4
6
8
1

pop [i+maxpop div
pop [i+maxpop div
pop [i+maxpop div
pop [i+maxpop div

2,31 :=4;
2:]] 1=2;
2,31:=0;
2,531 :=10;
2,31:=8;

0: popli+maxpop div 2,j]:=6;

4) or (mirr

10) then

case pop lit+maxpop div 2,j] of
0:

end;
end;
end;

2
4
6
8
1

pop [i+maxpop div
pop [1+maxpop div
pop [i+maxpop div
pop [i+maxpop div
pop [1i+maxpop div

2Ij] :=8;
2,31:=6;
21]] 1=4;
2,31 :=2;
2,31:=0;

0: popli+maxpop div 2,73]:=10;

two point crossover + mirror and reverse

procedure two_crossover mirr_ rever (var pop:population};

var

mirr,i,7,k,1l,aux,pos,pos2:integer;
aux2:melodies;

begin

rando

for i:=1 to maxpop div 2 do

begin

mize;

pos:=
while
begin

end;

pPoOs2:
while
begin

end;

0;
pos=0 do

pos:=random(maxstr-1) ;

=0;

(pos2=0) or (pos2<=pos+l) do

pos2:=random(maxstr+l) ;

for j:=pos to pos2 do

begin

end;
mirr:

aux:= popli,jl;
popli,jl:

pop [i+maxpop div 2,7]];

pop [i+maxpop div 2, 3] :=aux;

=pop [i,pos];

72

for j:=pos to pos2 do
begin

if (mirr <> 12) and (mirr <> 14) then

begin
if (mirr = 0)
begin
case pop

(@]

2
4:
6:
8:
10:

end;
end;

if (mirr = 2)
begin

or {mirr = 6) then

[i, 41 of
popl[i,jl:=0;
pop[i:j] :=10;
pop[i,j]:=8;
popli,jl:=6;
popli,jl:=4;
popli,jl:=2;

or (mirr = 8) then

case popli,jl of

0:

2:
4:
6:
8:
1

0:
end;

end;

if (mirr = 4)

begin

popli,jl:=
popli,jl:=
popli,jl:=
popli,jl:=
poplii,jl:=

popli,jl:

I oRroN P
O ~

O\ ~¢

or {(mirr

]

case popl[i,j] of

(=]

2:
4
6:
8:
10:
end;
end;
end;
end;
k:=1;
for j:=pos2 downto pos
begin
aux2 [k] :=pop[i,jl;
k:=k+1;
end;
k:=1;
for l:=pos to pos2 do
begin
popli, 1] :=aux2 [k];
k:=k+1;
end;
mirr:=pop [i+maxpop div
for j:=pos to pos2 do
begin

: popli,jl:=8;

popli,jl:=6;
popli,jl:=4;
popli,jl:=2;
pop (i, j]:=0;
popli,jl:=10;

do

2,posl];

10) then

if {(mirr <> 12) and (mirr <> 14) then

begin
if (mirr = 0)
begin

or (mirr = 6) then

case popl[i+maxpop div 2,j] of

0:

2
4:
6

pop [i+maxpop div

: pop [i+maxpop div

pop [i+maxpop div

: pop [i+maxpop div

73

2!j] :=0;
2,31:=10;
2,31 :=8;
2,3]1:=6;

8: pop [i+maxpop div 2,jl:=
10: popli+maxpop div 2,3]:=2;
end;
end;
if (mirr = 2) or (mirr = 8) then
begin
case popl[i,j]l of
0: popli+maxpop div 2,j]:=4;
2: pop[i+maxpop div 2,j]:=2;
4: popli+maxpop div 2,3]1:=0;
6: pop [i+maxpop div 2,3j]:=10;
8: pop l[i+maxpop div 2,3j]:=8;
10: popli+maxpop div 2,3j]:=6;
end;
end;
if (mirr = 4) or (mirr = 10) then
begin
case popl[i+maxpop div 2,3l of
0: pop[i+maxpop div 2,31:=8;
2: popl[i+maxpop div 2,j]:=6;
4: popli+maxpop div 2,7j]:=4;
6: pop[i+maxpop div 2,3]:=2;
8: pop [i+maxpop div 2,j]:=0;
10: popli+maxpop div 2,3]:=10;

end;
end;
end;
end;
k:=1;
for j:=pos2 downto pos do
begin
aux2 [k] :=pop [1+maxpop div 2,j];
k:=k+1;
end;
k:=1;
for l:=pos to pos2 do
begin
pop [i+maxpop div 2,1] :=aux2{k];
k:=k+1;
end;
end;
end;
{ ——————— two point crossover + mirror, reverse and transpose-------

procedure two_crossover mirr_rever_transp (var pop:population);
var

trans,mirr,i,j,.k,1,aux,pos,pos2:integer;

aux2:melodies;

begin
randomize;
for i:=1 to maxpop div 2 do
begin
pos:=0;
while pos=0 do
begin
pos:=random(maxstr-1) ;
end;
pos2:=0;
while (pos2=0) or (pos2<=pos+l) do
begin
pos2:=random(maxstr+l) ;
end;

for j:=pos to pos2 do

74

begin
aux:= popli,jl;
popli,jl := popli+maxpop div 2,3j];
pop [i+maxpop div 2,j] :=aux;

end;

mirr:=pop[i, pos];

for j:=pos to pos2 do

begin
if (mirr <> 12) and (mirr <> 14) then
begin
if (mirr = 0) or (mirr = 6) then
begin
case popli,jl of
0: popli,jl:=0;
2: popli,jl:=10;
4: popli,jl:=8;
6: popli,jl:=6;
8: popli,jl:=4;
10: popli,jl:=2;
end;
end;
if (mirr = 2) or (mirr = 8) then
begin
case popli,jl of
0: popli,jl:=4;
2: popli,jl:=2;
4: pOp[i,j]::O;
6: popli,j]:=10;
8: popli,jl:=8;
10: popli,jl:=6;
end;
end;
if (mirr = 4) or (mirr = 10) then
begin
case popli,jl of
0: popli,jl:=8;
2: popli,jl:=6;
4: popli,jl:=4;
6: popli,jl:=2;
8: pop[i:j]:=0i
10: popli,jl:=10;
end;
end;
end;
end;
k:=1;
for j:=pos2 downto pos do
begin
aux?2 [k] :=pop[i,jl;
k:=k+1;
end;
k:=1;
for l:=pos to pos2 do
begin
pop i, 1] :=aux2[k];
k:=k+1;
end;

trans:=random(7) ;
trans:=trans*2;
for j:=pos to pos2 do
begin

if popli,j] <= 10 then

75

begin

pop[i,jl:=popli,jl+trans;
if popli,jl > 10 then
begin
pop[i,jl:=popli,jl-12;
end;
end;
end;
mirr:=pop [i+maxpop div 2,posl;
for j:=pos to pos2 do
begin
if (mirr <> 12) and (mirr <> 14) then
begin
if (mirr = 0) or (mirr = 6) then
begin
case popl[i+maxpop div 2,j] of
0: popl[i+maxpop div 2,3]:=0;
2: pop[i+maxpop div 2,j]:=10;
4: pop [i+maxpop div 2,j]:=8;
6: pop [i+maxpop div 2,j]:=6;
8: pop [i+maxpop div 2,j]:=4;
10: popl[i+maxpop div 2,j]: 2;
end;
end;
if (mirr = 2) or (mirr = 8) then
begin
case popli,jl of
0: pop [i+maxpop div 2,j]:=4;
2: pop[i+maxpop div 2,jl:=2;
4: pop[i+maxpop div 2,7]:=0;
6: pop [i+maxpop div 2,3]:=10;
8: pop [i+maxpop div 2,j]:=8;
10: popli+maxpop div 2,j]:=6;
end;
end;
if (mirr = 4) or (mirr = 10) then
begin
case pop [i+maxpop div 2,3j] of
0: popli+maxpop div 2,j]:=8;
2: popl[i+maxpop div 2,3j]:=6;
4: pop[i+maxpop div 2,j]:=4;
6: popli+maxpop div 2,j]:=2;
8: pop [i+maxpop div 2,3]1:=0;
10: popli+maxpop div 2,31 :=10;
end;
end;
end;
end;
k:=1;
for j:=pos2 downto pos do
begin
aux2 [k] : =pop [i+maxpop div 2,3];
k:=k+1;
end;
k:=1;
for l:=pos to pos2 do
begin
pop [i+maxpop div 2,1]:=aux2{k];

k:=k+1;
end;
trans:=random(7) ;
trans:=trans*2;

for j:=pos to pos2 do

76

begin
if popli+maxpop div 2,j] <= 10 then
begin
pop [i+maxpop div 2,7l :=pop [i+maxpop div 2,jl+trans;
if popli+maxpop div 2,3j] > 10 then
begin
pop [i+maxpop div 2,3 :=pop [i+maxpop div 2,j]1-12;

end;
end;
end;
end;
end;
(- classl: simple mutation --------===--------=----- }
procedure mutation (var pop:population);
var
i,pos:integer;
begin
randomize;
for i:=1 to maxpop do
begin
pos:=0;
while pos = 0 do
begin
pos :=random (maxstr+l) ;
end;
pop [i,pos] :=random(15) ;
while popli,pos] mod 2 <> 0 do
begin
pop [i,posl:= random(1l5) ;
end;
end;
end;
{-------- Mutation rhythm in every melodie of the population-------- }
procedure Mutation_ rhythml (var pop:population);
var
i,j:integer;
begin
randomize;
for i:=1 to maxpop do
begin
Jj:=0;
while j=0 do
begin
j:=random(maxstr-2) ;
end;
if (popli,jl <>14) and (popii,j+1] <> 14) and (popli,j+2] <> 14) then
begin
pop[i,jl:=14;
end
else
begin
popli,jl:= random(1l5);
while popli,j] mod 2 <> 0 do
begin
popli,j]:= random(1l5) ;
end;
end;
end;
end;
{----Mutation rhythm2: Take a random bar of every melody and convert----

77

--in minim the last note (in randomly selected melodies of the population--}
procedure Mutation_rhythm2 (var pop:population);

var
i,bar:integer;
begin
randomize;
i:=0;
while i =0 do
begin
i:=random(12) ;
end;
while i < maxpop do
begin
bar:=random(10) ;
bar:=bar*8+1;
pop[i,bar+5] :=14;
pop (i, bar+6] :=14;
popli,bar+7] :=14;
i:=i+random(12) ;
end;
end;
{----mm-- Mirror taking the first note like base-----------
———————————— in every melody of the population--------------}
procedure wirror_first (var pop:population);
var
i,j,mirr:integer;
begin
for i:=1 to maxpop do
begin

mirr:=popli,1];
for j:=1 to maxstr do

begin
if (mirr <> 12) and (mirr <> 14) then
begin
if (mirr = 0) or (mirr = 6) then
begin

case popli,jl of

: popli,jl:=0;
2: popli,jl:=10;
4: popli,j]l:=8;
6: popli,jl:=6;
8:
1

[w]

popl(i,jl:=4
0: popli,jl:=2;
end;
end;
if (mirr = 2) or (mirr = 8) then
begin
case pop[i,j] of
: popli,jl:=
: popli,jl:=
: popli,jl:=

o

~

O -
-~

popli,jl:=
popli,jl:=
0: popli,jl:

I wERE oM

2
4
6
8
1

O\ ~»

end;
end;
if (mirr = 4) or (mirr = 10) then
begin
case popli,j] of
0: popli,jl:=8;
2: popli,jl:=6;
4: popli,jl:=4;

78

6: popli,jl:=2;
8: popli,jl:=0;
10: popli,jl:=10;

end;
end;
end;
end;
end;

end;

{--mmme - Mirror taking a random note like base-----------
—————————————— in every of the population----=--=---------}

procedure mirror_random (var pop:population);
var
i,j,mirr:integer;

begin
for i:=1 to maxpop do
begin
mirr:=random(1ll) ;
while mirr mod 2 <> 0 do
begin
mirr:= random(1l1l);
end;
for j:=1 to maxstr do
begin
if (mirr = 0) or (mirr = 6) then
begin
case popli,jl of
0: popli,jl:=0;
2: popli,jl:=10;
4: popli,jl:=8;
6: popli,jl:=6;
8: popli,jl:=4;
10: popli,jl:=2;
end;
end
else
if (mirr = 2) or (mirr = 8) then
begin
case popli,jl of
0: popli,jl:=4;
2: popli,jl:=2;
4: popli,jl:=0;
6: popli,jl:=10;
8: popli,jl:=8;
10: popli,jl:=6;
end;
end
else
if {(mirr = 4) or (mirr = 10) then
begin
case popli,j] of
0: popli,jl:=8;
2: popli,jl:=6;
4: popli,jl:=4;
6: popli,jl:=2;
8: popli,jl:=0;
10: popli,jl:=10;
end;
end;
end;
end;
end;

79

{------ Mirror between two random notes in all the population,taking----
—————————————————— the first note as a base-------------=-------------~
procedure mirror_first_ part (var pop:population);

var
i,j,mirr,posl,pos2:integer;
begin
randomize;
for i:=1 to maxpop do
begin
posl:=0;
while posl = 0 do
begin
posl:=random(maxstr-1);
end;
pos2:=0;
while (pos2=0) or (pos2<=posl+l) do
begin
pos2:=random(maxstr+l) ;
end;
mirr:=popl[i,1];
for j:=posl to pos2 do
begin
if (mirr <> 12) and (mirr <> 14) then
begin
if (mirr = 0) or (mirr = 6) then
begin
case popli,jl of
0: popli,jl:=0;
2: popli,jl:=10;
4: popli,jl:=8;
6: popli,jl:=6;
8: popli,jl:=4;
10: popli,jl:=2;
end;
end;
if (mirr = 2) or (mirr = 8) then
begin
case popli,jl of
0: popli,jl:=4;
2: popli,jl:=2;
4: popli,jl:=0;
6: popli,jl:=10;
8: pop[i:j]:=8/‘
10: popli,jl:=6;
end;
end;
if (mirr = 4) or (mirr = 10) then
begin
case popli,j] of
0: pOp[i,j]:=8;
2: popli,jl:=6;
4: popli,jl:=4;
6: popli,jl:=2;
8: popli,jl:=0;
10: popli,jl:=10;
end;
end;
end;
end;
end;
end;

80

{--~-Mirror taking a random note like base between two random notes----

———————————————— in every melody of the population--------------}
procedure mirror_random part (var pop:population);
var
i,j,mirr,posl,pos2:integer;
begin
randomize;
for i:=1 to maxpop do
begin
posl:=0;
while posl = 0 do
begin
posl:=random(maxstr-1);
end;
pos2:=0;
while (pos2=0) or (pos2<=posl+l) do
begin
pos2:=random(maxstr+1) ;
end;

mirr:=random(1ll) ;
while mirr mod 2 <> 0 do
begin

mirr:= random(11l);

end;
for j:=posl to pos2 do
begin
if (mirr = 0) or (mirr = 6) then
begin
case popli,j] of
0: popli,jl:=0;
2: popli,jl:=10;
4: popli,jl:=8;
6: popli,jl:=6;
8: popli,jl:=4;
10: popli,jl:=2;
end;
end
else
if (mirr = 2) or (mirr = 8) then
begin
case popli,j] of
0: popli,jl:=4;
2: pop[i/j]:=2;
4: popli,jl:=0;
6: popli,jl:=10;
8: popli,jl:=8;
10: popli,jl:=6;
end;
end
else
if (mirr = 4) or (mirr = 10) then
begin
case popli,j] of
0: popli,jl:=8;
2: popli,jl:=6;
4: popli,jl:=4;
6: popli,jl:=2;
8: pop[ilj]:=0;
10: popli,jl:=10;
end;
end;
end;

end;

81

{-----==-- Mirror + reverse in every melody of the population ------- }
procedure Mirror_ reverse_whole(var pop:population);
var

i,j,k,mirr:integer;
aux:melodies;

begin
for i:=1 to maxpop do
begin
mirr:=pop (i, 1];
for j:=1 to maxstr do
begin
if (mirr <> 12) and (mirr <> 14) then
begin
if (mirr = 0) or (mirr = 6) then
begin
case popli,jl of
0: popli,jl:=0;
2: popli,jl:=10;
4: popli,jl:=8;
6: popli,jl:=6;
8: popli,jl:=4;
10: popli,jl:=2;
end;
end;
if (mirr = 2) or (mirr = 8) then
begin
case popli,j] of
0: popli,jl:=4;
2: popli,jl:=2;
4: popli,jl:=0;
6: popli,jl:=10;
8: popli,jl:=8;
10: popli,jl:=6;
end;
end;
if (mirr = 4) or (mirr = 10) then
begin
case popli,jl of
0: pOp[i,j]::B;
2: popli,jl:=6;
4: popli,jl:=4;
6: popli,jl:=2;
8: popli,jl:=0;
10: popli,jl:=10;
end;
end;
end;
ki=j;
aux [maxstr-k+1] :=popl[i, jl;
end;
pop [i] :=aux;
end;
end;

{Mirror + reverse between two random notes in every melodie of the population}
procedure Mirror_ reverse_part (var pop:population) ;
var
i,j,k,mirr,posl,pos2,l:integer;
aux:melodies;
begin
randomize;

82

for i:=1 to maxpop do

begin

posl:=0;

while posl = 0 do

begin
posl:=random(maxstr-1) ;

end;

pos2:=0;

while (pos2=0) or (pos2<=posl+l) do

begin
pos2:=random(maxstr+l) ;

end;

mirr:=pop[i,1];
for j:=posl to pos2 do

begin
if {(mirr <> 12) and (mirr <> 14) then
begin
if (mirr = 0) or (mirr = 6) then
begin
case popli,jl of
0: popli,3l:=0;
2: popli,jl:=10;
4: popli,j]:=8;
6: popli,jl:=6;
8: popli,jl:=4;
10: popli,jl:=2;
end;
end;
if (mirr = 2) or (mirr = 8) then
begin
cage popli,j] of
0: popli,jl:=4;
2: popli,jl:=2;
4: popli,jl:=0;
6: popli,jl:=10;
8: popli,jl:=8;
10: popli,jl:=6;
end;
end;
if (mirr = 4) or (mirr = 10) then
begin
case popli,j] of
0: popli,jl:=8;
2: popli,jl:=6;
4: popli,jl:=4;
6: popli,jl:=2;
8: popli,jl:=0;
10: popli,jl:=10;
end;
end;
end;
end;
k:=1;
for j:=pos2 downto posl do
begin
aux (k] :=popli,jl;
k:=k+1;
end;
ke=1;
for 1l:=posl to pos2 do
begin
pop[i, 1] :=aux{k];
k:=k+1;

83

end;
end;
R Reverse in every melody of the population---------- }
procedure reverse(var pop:population);
var

i,3.,k,1l:integer;
aux:melodies;

begin
randomize;
for i:=1 to maxpop do
begin
k:=1;
for j:=maxpop downto 1 do
begin
aux [k] :=pop[i,j];
k:=k+1;
end;
k:=1;
for 1:=1 to maxstr do
begin
popli, 1] :=aux[k];
k:=k+1;
end;
end;
end;
{----mmm-- Reverse in a part of every melody of the population ----- }
procedure reverse_part (var pop:population);
var

posl,pos2,i,j,k,l:integer;
aux:melodies;

begin
randomize;
for i:=1 to maxpop do
begin
posl:=0;
while posl = 0 do
begin
posl:=random(maxstr-1);
end;
pos2:=0;
while (pos2=0) or (pos2<=posl+l) do
begin
pos2:=random(maxstr+l1) ;
end;
k:=1;
for j:=pos2 downto posl do
begin
aux (k] :=pop (i, jl;
k:=k+1;
end;
k:=1;
for l:=posl to pos2 do
begin
pop (i, 1] :=aux[k];
k:=k+1;
end;
end;
end;
{-------- transpose a random value 7 randomly selected melodies ------

84

procedure transpose (var pop:population);
var
i,3j,k,trans,melod: integer;
rep:new;
begin
randomize;
rep[1l] :=120;
for i:=1 to maxmelod do
begin
melod:=0;
while melod=0 do
begin
melod:=random(maxstr+1) ;
end;
for k:=1 to i do
begin
if melod =replk] then
begin
melod: =random(maxstr+1) ;
end;
end;
rep[i] :=melod;
trans:=random(7) ;
trans:=trans*2;
for j:=1 to maxstr do
begin
if poplmelod,jl <= 10 then
begin
pop [melod, j] :=pop [melod, j]l +trans;
if poplmelod,jl > 10 then
begin
pop [melod, j] :=pop [melod, §1-12;
end;

{---=mm--- Transpose a part of every melody a random value----------
procedure transpose part(var pop:population);
var
i,j,k,posl,pos2, trans:integer;
begin
randomize;
for i:=1 to maxpop do
begin
posl:=0;
while posl = 0 do
begin
posl:=random(maxstr-1) ;
end;
pos2:=0;
while (pos2=0) or (pos2<=posl+l) do
begin
pog2:=random(maxstr+l) ;
end;
for j:=posl to pos2 do
begin
if popli,jl <= 10 then
begin
popli,jl:=popli,jl+trans;
if popli,jl > 10 then
begin

85

popli,jl:=popli,jl-12;

end;
end;
end;
end;
end;
{~mmmmm e swap two adjacent notes in every melody------------ }
procedure swap_two(var pop:population);
var
i,j,pos,aux:integer;
begin
randomize;
for i:=1 to maxpop do
begin
pos:=0;
while (pos=0) or (popli,posl=14} do
begin
pos:=random(maxstr) ;
end;
aux:=pop [i,pos];
if popli,pos+l] <>14 then
begin
popli,pos] :=pop[i,pos+l];
popli,pos+1] :=aux;
end
else
begin
if popl(i,pos+2] <> 14 then
begin
pop [1,pos] :=pop [1,pos+2];
pop i, pos+2] :=aux;
end
else
pop [i,pos] :=pop[i,pos+3];
pop [1, pos+3] :=aux;
end;
end;
end;
{ ---swap all the adjacent notes of every melodie(1-2,3-4,5-6...----- }
procedure swap_all(var pop:population) ;
var
i,j,aux:integer;
begin
for i:=1 to maxpop do
begin
Jj:=1;
while j < maxstr do
begin
aux:=popli,jl;
popl[i,j]:=popli,j+1];
pop[i,j+1] : =aux;
Je=3+2;
end;
end;
end;
{-------m-- swap all the notes on position to the left ---------------
procedure swap_left (var pop: population);
var
i,j,aux:integer;
begin

86

for i:=1 to maxpop do
begin
aux:=popli,1];
for j:=1 to maxstr-1 do
begin
popli,jl :=popli,j+11;
end;
pop [1i,maxstr] :=aux;

{~mmmmm e Shows the melody founded--------==-------no--—-
procedure display best (var position:integer;
var ff_function: fitness);

var
i:integer;
begin
for i:=1 to maxstr do
begin
write (ff_function[position,il);
if (i=20) or (i=40) or (i=60) then
begin
writeln
end
else
write(', ")
end;
end;
{(---=----- Count procedure, and show if the melody is founded----- }

Procedure count (var gen:integer;
var pun: allmel pos;
var pop:population) ;
var
k: integer;
begin
k:=1;
while k <= maxpop do
begin
if punt [k,2]= maxstr then
begin
cont:=cont+1l;
if cont =1 then
begin
clrscr;
writeln;
write(' The melody ');
write (punt [k,1]);
write (' have been found in ');
write{gen) ;
writeln(' generations.');
writeln;
writeln(' This is the melody :');
writeln;
display_ best (k, f_function) ;
k:=81;
read (wait) ;
clrscr;
end;
end;
k:=k+1;
end;
end;

87

procedure menu(var generet:integer);

begin
writeln(!'
hhkkkhkkhkkkhhkkhkhkhhkhkhhdhhkhhhkhkhhhkkkhkhkkkhkkkhkhkhhhkkhkhikkkhkkkkk|) ;
writeln (' *
* l) :
writeln(’ * Genetic Algorithm
*1);
writeln (' *
* l) ;
writeln (' * Damian Padre¢n Abrante -
*1);
writeln (' *
* I) H
writeln ('
dkkkhhkhhkkdhkhkhkhhkhkhkhkdkhkhkhkhkxdhdhRhkdhkhhhhhbdddkdhkhdhkhkxxdhhrxkhhikik ') ;
writeln;
writeln(' Press a key to continue...');
read (wait) ;
clrscr;
writeln (' Kkkhkhkkkkkkkkkkkhhhkxhkkdkx MENU
'k**********************I) H
writeln (' *
*1)
writeln ("' * - Number of melodies/chromosomes: 100 (by default)
* 1) ;
writeln (' * (can be modified in the code between 10-180).
* l) :
writeln (' *
* ') :
writeln ('’ * - Number of bars: 10 (4/4)
* v) H
writeln (' *
* |) ;
writeln (' * - Number of melodies of the fitness function: 7
*1)
writeln (" *
* |) ;
writeln(’ * - Minimum duration of a note: quaver.
* I) H
writeln (* *
* l) ;
writeln (' * - Maximum duration of a note: minim.
* |) :
writeln ("' *
* l) H
writeln ("’ * - Lowest note: C#4 (wmidi-number-key = 61).
*l)
writeln (! *
*I) ;
writeln (' * - Highest note: A4 (midi-number-key = 69).
*1);
writeln (' *
* I) H
writeln ('
KkkhkhkkhhkhkhkhkrdhkhkdhkhAkrAF I AR TI XA hhkRkThrTXAA kX db A XAk hXkdhhxhhkhhixk l) ;
writeln;
writeln(' Introduce the number of generations (10-1000): ');

readln (gener) ;
end;

88

2005

R e T TR Menu 1 - Class l---------------mommmom e }
procedure Menul (var opt: char);

begin
writeln(' Choose an option : ');
writeln;
writeln(' a) Mutation ');
writeln(' b) One point crossover and mutation ');
writeln(' ¢) Two point crossover and mutation ');
readln (opt) ;

(e Menu2 - Class 2-----------=~=-= }
procedure Menu2 (var opt: char);

begin
writeln(' Choose an option : ');
writeln;
writeln(' d) One point crossover with transpose and classic mutation ');
writeln(' e) One point crossover with transpose and rhythm mutation’
writeln(' f) One point crossover with reverse and classic mutation '
writeln(' g) One point crossover with reverse and rhythm mutation ');
writeln(' h) One point crossover with mirror and classic mutation ')
writeln(' i) One point crossover with mirror and rhythm mutation');
writeln;
writeln(' j) Two point crossover with transpose and classic mutation ');
writeln(' k) Two point crossover with transpose and rhythm mutation') ;
writeln(' 1) Two point crossover with reverse and classic mutation ');
writeln(' m) Two point crossover with reverse and rhythm mutation ');
writeln(' n) Two point crossover with mirror and classic mutation ');
writeln(' o) Two point crossover with mirror and rhythm mutation');
writeln;
writeln(' p) One point crossover with mirror, reverse and classic mutation

) I
)i

I

l);

writeln(' gq) Two point crossover with mirror, reverse and classic
mutation') ;

writeln(' r) One point crossover with mirror, reverse, transpose and classic
mutation ‘') ;

writeln(' s) Two point crossover with mirror, reverse, transpose and classic
mutation ');

writeln(' t) One point crossover with mirror, reverse and rhythm mutation
I)I.

writeln(' u) Two point crossover with mirror, reverse and rhythm
mutation');

writeln(' v) One point crossover with wirror, reverse, transpose and rhythm
mutation ');

writeln(' w) Two point crossover with mirror, reverse, transpose and rhythm
mutation ');

readln (opt) ;
end;
(- Menu3 - Class 3---------------- }
procedure Menu3 (var opt: char);
begin
writeln('Choose an option : ');
writeln;
writeln(' NOTE: There are three possibilities for each musical function:');
writeln;

writeln(' First column character: The specified function.');

writeln(' Second column character: Specified function adding the classic
mutation{CMut).');

writeln(' Third column character: Specified function adding the rhythm
mutation (RMut).');

89

writeln;

writeln(® CMut RMut');
writeln(' a - n - 0) Mirror in each melody of the population (random mirror
axis)');
writeln(' b - o - 1) Mirror in each melody of the population (first note as
mirror axis)');
writeln(' ¢ - p - 2) Mirror in a random part of each melody (random mirror
axis)');
writeln(' d - g - 3) Mirror in a random part of each melody (first note as
mirror axis) ');
writeln(' e -~ r - 4) Reverse in each melody of the population ');
writeln(' £ - s - 5) Reverse in a random part of each melody of the
population ');
writeln(' g - t - 6) Mirror + reverse in each melody (mirror axis = first
note) ') ;
writeln(' h - u - 7) Mirror + reverse in a part of each melody {(mirror
axis=first note)');
writeln(' i - v - 8) Swap the pitch of two adjacent notes ');
writeln(' j - w - 9) Swap all the adjacent integers of each melody of the
population ');
writeln(' k - x - $) Swap all the integers one place leftwards ');
writeln(' 1 - y - &) Transpose seven melodies randomly selected of the
population ');
writeln(' m - z - #) Transpose a part of each melody of the population ‘');
readln (opt3) ;
end;
(- Main program -------------------—m-ooo—-- }
begin
1l: cont:=0;
while opt2 <> 'a' do
begin
clrscr;
menu (gener) ;
£ill fitness (f_function);
Generate_pop (popl) ;
writeln;
clrscr;
writeln(' Introduce the kind of operators/functions that you want to
use: ');
writeln;
writeln(' Class 1 Classic operators (One/two point crossover -
Mutation) ') ;
writeln(' Class 2 Classic operators mixed with musical functions');
writeln(' Class 3 Musical functions');
readln(class) ;
clrscr;
optl:='2?"';
case class of

end;

'1': menul (optl) ;
12': menu2 (optl);
'31: menu3l (opt3);

writeln;
clrscr;

write (!

Processing. ');

for i:=1 to gener do
begin

proc:=1i div 100;

if (proc mod 2= 0)

begin

write('. ');

end;

then

90

write;
note_to_note(popl, f_function,value);
save pos_mel (value,punt);
bestt (punt, popl, pop2) ;
if i=gener then
begin
fin:=punt;
end;
copyl (popl, pop2) ;
if optl <> '?' then
begin
case optl of
'a': mutation (popl) ;
'b': begin
one crossover (popl) ;
mutation (popl) ;
end;
‘ct': begin
two_crossover (popl) ;
mutation (popl) ;

end;

'd': begin
one_crossover_transp (popl) ;
mutation (popl) ;

end;

'e': begin
one_crossover_transp (popl) ;
mutation_rhythml (popl) ;
mutation rhythm2 (popl) ;

end;

tf1': begin
one_crossover_rever (popl) ;
mutation (popl) ;

end;

'g': begin
one_crossover_rever (popl) ;
mutation rhythml (popl) ;
mutation_rhythm?2 (popl) ;

end;

‘h': begin
one_crossover_mirr (popl) ;
mutation (popl) ;

end;

'i': begin
one_crossover_mirr (popl) ;
mutation_rhythml (popl) ;
mutation_rhythm2 (popl) ;

end;

'j': begin
Two_crossover_transp (popl) ;
mutation (popl) ;

end;

'k': begin
Two_crossover_transp (popl) ;
mutation rhythml (popl) ;
mutation rhythm2 (popl) ;

end;

'1': begin
Two_crossover_rever (popl) ;
mutation (popl) ;

end;

'm': begin
Two_crossover_rever (popl) ;

91

I5I:

end;
end
else

mutation_rhythml (popl) ;
mutation_rhythm2 (popl) ;

end;

begin
Two_crossover_mirr (popl) ;
mutation (popl) ;

end;

begin
Two_crossover_mirr (popl) ;
mutation_ rhythml (popl);
mutation_ rhythm2 (popl) ;

end;

begin
one_crossover_mirr rever (popl) ;
mutation (popl) ;

end;

begin
two_crossover mirr_rever (popl) ;
Mutation (popl) ;

end;

begin
one_crossover_mirr_rever_ transp (popl) ;
Mutation (popl) ;

end;

begin
two_crossover_mirr_rever_transp (popl) ;
Mutation (popl) ;

end;

begin
one_crossover_mirr_rever (popl) ;
Mutation_rhythml (popl) ;
mutation rhythm2 (popl) ;

end;

begin
two_crossover_mirr_rever (popl) ;
Mutation_ rhythml (popl) ;
mutation_rhythm2 (popl) ;

end;

begin
one_crossover mirr_rever_transp (popl);
Mutation_rhythml (popl) ;
Mutation (popl) ;

end;

begin
two_crossover_wmirr_rever_ transp (popl);
Mutation rhythml (popl) ;
mutation_rhythm2 (popl);

end

case opt3 of

tat:
'b':
tot .
Tqr .
[
L L
gt
tht'.
11,
Ijl:

mirror_random(popl) ;
mirror_first (popl);
mirror_random part (popl) ;
mirror_first_ part (popl);
reverse (popl) ;

reverse_part (popl) ;
Mirror_reverse_ whole (popl) ;
Mirror_reverse_part (popl) ;
swap_two (popl) ;

swap_all (popl) ;

92

Tk
L L
m':
nt:

Iol:

swap_left (popl) ;
transpose (popl) ;
transpose part (popl) ;
begin
mutation (popl) ;
mirror random(popl) ;

end;

begin
mutation (popl) ;
mirror_ first (popl);

end;

begin
mirror random part (popl) ;
mutation (popl) ;

end;

begin
mirror first _part (popl);
mutation (popl) ;

end;

begin
reverse (popl) ;
mutation (popl) ;

end;

begin
reverse_part (popl) ;
mutation (popl) ;

end;

begin
Mirror_reverse_whole{popl) ;
mutation (popl) ;

end;

begin
Mirror_ reverse_part (popl) ;
mutation (popl) ;

end;

begin
swap_two (popl) ;
mutation (popl) ;

end;

begin
swap_all (popl) ;
mutation (popl) ;

end;

begin
swap_left (popl) ;
mutation (popl) ;

end;

begin
transpose (popl) ;
mutation(popl) ;

end;

begin
transpose_part (popl) ;
mutation (popl) ;

end;

: begin

mirror random(popl) ;
Mutation_rhythml (popl) ;
Mutation rhythm2 (popl) ;
end;
begin
mirror_ first (popl);

93

Mutation_rhythml (popl) ;
Mutation rhythm2 (popl) ;

end;

'2': begin
mirror_ random part (popl) ;
Mutation_rhythml (popl) ;
Mutation_rhythm2 (popl) ;

end;

'3': begin
mirror_ first part (popl);
Mutation_rhythml (popl) ;
Mutation_rhythm2 (popl) ;

end;

'4t: begin
reverse (popl) ;
Mutation_rhythml (popl) ;
Mutation_rhythm2 (popl) ;

end;

'5': begin
reverse_part (popl) ;
Mutation_rhythml (popl) ;
Mutation rhythm2 (popl) ;

end;

'6': begin
Mirror_ reverse_whole (popl) ;
Mutation_rhythml (popl) ;
Mutation_rhythm2 (popl) ;

end;

'7': begin
Mirror_reverse_part (popl) ;
Mutation_rhythml (popl) ;
Mutation_ rhythm2 (popl) ;

end;

'8': begin
swap_two (popl) ;
Mutation_rhythml (popl) ;
Mutation_rhythm2 (popl) ;

end;

'9': begin
swap_all (popl) ;
Mutation_rhythml (popl) ;
Mutation_rhythm2 (popl) ;

end;

'$': begin
swap_left (popl) ;
Mutation_rhythml (popl) ;
Mutation_rhythm2 (popl) ;

end;

'&': begin
transpose (popl) ;
Mutation_rhythml (popl) ;
Mutation_rhythm2 (popl) ;

end;

'#': begin
transpose_part (popl) ;
Mutation rhythml (popl) ;
Mutation_rhythm2 (popl) ;

end;

end;

generate2 (popl) ;

note_to note(popl, f_function,value);
save_pos_mel (value,punt);

bestt2 (punt,popl, pop2) ;

94

end.

end;

copy2 (popl, pop2) ;
count (i,punt,popl);
if cont > 1 then
begin
writeln;
write(' Besides,in this generation, ');
write(cont) ;
writeln(' identical melodies have been found.');

writeln;
writeln(' Press a key to continue... ');
readln(wait) ;
goto 2;
end;
end;
clrscr;
writeln(' No identical melody has been found... ');
writeln;

write (' But the most similar melody has a fitness value of:

writeln(fin(1,21);

writeln;

write (' With regard to the melody: ');
writeln(fin([1,1]);

writeln;

writeln(' Press a key to continue... ');
read (wait) ;

2: clrscr;

opt2:='2";
while (opt2 <> 'a') and (opt2 <> 'b') do
begin
writeln(' What do you want to do? ');
writeln;

writeln(' a) Exit ');
writeln(' b) Restart the program ');

writeln;
writeln(' Choose an option: ');
read (opt2) ;
if (opt2 <> 'a') and (opt2 <> 'b') then
begin
clrscr;
end;
end;
if opt2 = 'b' then
begin
goto 1;
end;

95

Bibliography:

[Ariza 2002] Ariza, Christopher: “Prokaryotic Groove Rhythmic Cycles as Real-Value
Encoded Genetic Algorithms.” In: Proceedings of the International Computer Music

Conference. San Francisco: International Computer Music Association. 2002. pp. 561-567.

[Banzhaf 1998] Banzhaf, Wolfgang; Nordin , Peter; Keller, Robert E; Francone, Frank D:
“Genetic Programming, An Introduction: On the Automatic Evolution of Computer

Programs and Its Applications.” Morgan Kaufmann Publishers, Inc. 1998.

[Bentley 1997] Bentley, Peter: “The Revolution of Evolution for Real-World
Applications”. In: Emerging Technologies '97: Theory and application of Evolutionary
Computation. University College London, UK. 1997. pp. 1-11.

[Biles 1994] Biles, J. A.: “GenJam: A genetic algorithm for generating jazz solos”. In:
Proceedings of the 1994 International Computer Music Conference. The International

Computer Music Association, San Francisco, CA. 1994. pp. 131-137.

[Biles 1995] Biles, J. A.: “GenJam Populi: Training an IGA via audience-mediated
Performance.” In: Proceedings of the 1995 International Computer Music Conference. The

International Computer Music Association, San Francisco, CA. 1995. pp. 347-348

[Biles 1996] Biles, J.A.; Anderson, P.G.; Loggi, L.W.: “Neural network fitness functions
for a musical GA”. In: Proceedings of the International ICSC Symposium on Intelligent
Industrial Automation (IIA’96) and Soft Computing (SOCO’96). Academic Press, Reading,
UK: ICSC.1996. pp. B39-B44.

[Biles 1998] Biles, J. A.: “Interactive GenJam: Integrating Real-Time Performance with a
Genetic Algorithm”. In: Proceedings of the 1998 International Computer Music

Conference. The International Computer Music Association, San Francisco, CA.1998. pp.

232-235.

96

[Burton 1997] Burton A., Vladimirova, T.: “Applications of Genetic Techniques to Musical
Composition”, Unpublished manuscript. Last Update: 1997, Last visit: 24.06.05, URL:

www.tony-b.freeuk.com/docs/cmjcompo_doc.uue,

[Burton 1998] Burton, A. R.: “A Hybrid Neuro-Genetic Pattern Evolution System Applied
to Musical Composition”, Ph.D. dissertation. University of Surrey. 1998.

[Collins 2000] Collins, Trevor D.: “The Application of Software Visualization Technology
to Evolutionary Computation: A Case Study in Genetic Algorithms”. Thesis. Chapter 2: An
Overview of Evolutionary Computation. Last Update: 2000, Last Visit: 31.03.05, URL:
http://kmi.open.ac.uk/people/trevor/archive/thesis/

[Darwin 1859] Darwin, C.: “On the origins of species by means of natural selection or the

preservation of favoured races in the struggle for life”. Murray, London, UK. 1859

[De Jong 1975] De Jong, K.A.: “An analysis of the behavior of a class of genetic adaptive
systems.” Ph.D. dissertation, University of Michigan, Ann Arbor.1975

[Fogel 1966] Fogel, L.; Owens, A; Wanls, M.: “Artificial Intelligence through Simulated
Evolution”. Wiley, New York. 1966.

[Gartland-Jones 2002] Gartland-Jones, A.: “Can a Genetic Algorithm Think Like a
Composer”. In: Proceedings of 5th International Conference on Generative Art, Politecnico

di Milano University, Milan. 2002. pp.14.1-14.12.

[Gartland-Jones 2003a] Gartland-Jones, A.: “MusicBlox: a Real-time Algorithmic
Composition System Incorporating a Distributed Interactive Genetic Algorithm”. In:
Proceedings of EvoWorkshops/EuroGP2003, 6th European Conference on Genetic
Programming. 2003. pp. 490-501.

97

[Gartland-Jones 2003b] Gartland-Jones, A.; Copley, Peter: “The Suitability of Genetic

Algorithms for Musical Composition”. In: Contemporary Music Review, VOL. 22, No. 3,
2003. pp. 43-55.

[Gibson 1991] Gibson, P. M.; Byrne, J. M.: “Neurogen: Musical composition using genetic
algorithms and cooperating neural networks”. In: Proceedings of the Second International

Conference on Artificial Neural Networks, London.1991. IEE. pp. 309-313

[Goldberg 1989] Goldberg, David E.: “Genetic Algorithms in Search, Optimization, and
Machine Learning”. Addison Wesley, 1989

[Gonzalez 2003] Gonzalez, Fabio, Ph.D.; Hermandez, German Ph.D.; Camargo, Carlos
M.Sc.: “Introducciéon a la Computacién Evolutiva”. Last update: 2003, Last Visit:
03.04.2005, URL: http://.dis.unal.edu.co/~fgonza/courses/2003/pmge/introEvol.pdf

[Holland 1975] Holland, John: “Adaptation in natural and artificial systems”. University of
Michigan Press, 1975.

[Horner 1991] Horner, A.; Goldberg, D. E.: “Genetic algorithms and computer-assisted
music composition”. In: Proceedings of the International Computer Music Conference,
1991. The International Computer Music Association, San Francisco, CA. 1991. pp. 479-
482.

[Horowitz 1994] Horowitz, D.: “Generating Rhythms with Genetic Algorithms”. In:
Proceedings of the International Computer Music Conference. The International computer

Music Association. San Francisco, CA. 1994. pp. 142-143.

[Jacob 1994] Jacob, Bruce L.: “Composing with Genetic Algorithms”. In: Proceedings of
the International Computer Music Conference. 1994. pp. 452-455.

98

[Jacob 1996] Jacob, Bruce L.: “Algorithmic Composition as a Model of Creativity”. In:
Organised Sound, vol. 1, no 3. December, 1996. pp. 157-165.

[Johanson 1998] Johanson, B.; Poli, R.: “Gp-music: An interactive genetic programming
system for music generation with automated fitness raters”. In: Proceedings of the 3rd
International Conference on Genetic Programming, GP’98. University of Wisconsin,

Madison, Wisconsin, USA. 1998. pp.181-186.

[Johnson 1999] Johnson, C.: “Exploring the Sound-Space of Synthesis Algorithms Using
Interactive Genetic Algorithms”. In: AISB’99 Symposium on Musical Creativity. Society
for Artificial Intelligence and the Simulation of Behaviour. Edinburgh. 1999. pp. 20-27.

[Koza 1992] Koza, John: “Genetic Programming: On the Programming of Computers by
Means of Natural Selection”. The MIT Press, Cambridge, MA. 1992.

[Mc Auley 2003] McAuley Tristan; Hingston, Philip: “Algorithmic Composition in
Contrasting Music Styles”. In: Proceedings of the ICMC 2003, International Computer
Music Conference. September 2003.

[Mc Intyre 1994] Mc Intyre, R. A.: “Bach in a Box: The Evolution of Four-Part Baroque
Harmony Using Genetic Algorithm”. In: Proceedings of the IEEE Conference on
Evolutionary Computation. IEEE Press. Washington DC. 1994. pp. 852-857.

[Miranda 1995] Miranda, E.: “Granular Synthesis of Sounds by Means of a Cellular
Automaton”. In: Leonardo, Vol. 28 (4). The MIT Press, Cambridge, MA.1995.

[Moroni 2000] Moroni, A.; Manzolli, J.; Von Zuben, Fernando: “Composing with

interactive genetic algorithms”. In: Proceedings of the SBC2000 - Congresso da Sociedade

Brasileira de Computagao. 2000.

99

[Moroni 2000b] Moroni, A.; Manzolli, J. ; Von Zuben, F. ; Gudwin, R.: “Vox Populi: An
Interactive Evolutionary System for Algorithmic Music Composition”, In: Leonardo Music

Journal - MIT Press, Vol. 10.San Francisco, USA. 2000. pp. 49-54.

[Papadopoulos 1998] Papadopoulos, George; Wiggins, Geraint: “A Genetic Algorithm for
the Generation of Jazz Melodies”. In: STeP’98, Jyviskyld, Finland. 1998.

[Papadopoulos 1999] Papadopoulos, G.; Wiggins, G.: “Al Methods for Algorithmic
Composition: A Survey, a Critical View and Future Prospects”. In: Proceeding of: AISB’99
Symposium on Musical Creativity. Society for Artificial Intelligence and the Simulation of

Behaviour, Edinburgh. 1999. pp. 110-117.

[Pazos 1999a] Pazos, A., Santos, A., Dorado, J., Romero, J. J.: “Adaptive Aspects of
Rhythmic Composition: Genetic Music”. Banzhaf, W; Daida, J; Fiben, A.E; Garzon,
M.H; Honavar, V; Jakiela, M; Smith, R.E. (Eds.). In: Proceedings of the Genetic and
Evolutionary Computation Conference GECCO'99. Vol. 2 (pp. 1794). Morgan Kaufmann.
San Francisco, CA. 1999.

[Pazos 1999b] Pazos, A., Santos, A., Dorado, J., Romero, J.: “Genetic Music Compositor”.
Angeline, P; Michalewicz, Z; Schoenhauer, M; Yao X; Zalzala, A. (Eds.). In:
Proceedings of the 1999 Congress on Evolutionary Computation Vol. 2. IEEE Press.
Washington DC. 1999. pp. 885 - 890.

[Pazos 1999c] Pazos, Alejandro; Romero-Carralda, J.J.: “Musical Adaptive Systems”. In:
Proceedings of the Student Workshop-Genetic and Evolutionary Computation Conference

1999 (GECCQ0'99). Morgan Kaufmann. San Francisco, CA. 1999. pp. 343- 344
[Pfeifer 2003] Pfeifer, Rolf;, Fend, Miriam; Krafft Martin F.: “Artificial Life”. Thesis.

Chapter 6: Artificial Evolution. Last update: 2004, Last Visit: 03.04.2005, URL:
http://www.ifi.unizh.ch/ailab/teaching/AL04/lecture/chap6.pdf.

100

[Phon- Amnuaisuk 1999a] Phon-Amnuaisuk, S.; Tuson, Andrew; Wiggins, Geraint A.:
“Evolving Musical Harmonisation”. In: Proceedings of the International Conference on

Adaptive and Natural Computing Algorithms, Porto Roz, Slovenia. 1999.

[Phon-Amnuaisuk 1999b] Phon-Amnuaisuk, S., Wiggins, G. A.: “The Four-Part
Harmonisation Problem: A comparison between Genetic Algorithms and a Rule-Based
System”. In: Proceedings of the AISB’99 Symposium on Musical Creativity. Society for
Artificial Intelligence and the Simulation of Behaviour. Edinburgh. 1999. pp. 28-34.

[Pigg 2002] Pigg, Paul: “Cohesive Music Generation with Genetic Algorithms.” Last
Update: 2002. Last Visit: 10.04.2005.URL:
http://web.umr.edu/~tauritzd/courses/cs401/fs2002/project/Pigg.pdf

[Ralley 1995] Ralley, David: “Genetic algorithms as a tool for melodic development”. In:
Proceedings of the 1995 International Computer Music Conference, San Francisco. 1995.

pp. 501-502.

[Rechenberg 1973] Rechenberg, Ingo.: “Evolutionsstrategie: Optimierung Technischer
Systeme nach Prinzipien der biologischen Evolution”. Stuttgart, Fromman-Holzboog

Verlag. 1973.

[Rechenberg 1965] Rechenberg, Ingo.: “Cybernetic solution path of an experimental
problem: Kybernetische Lésungsansteuerung einer experimentellen forschungsaufgabe”.
English translation of a German technical report RAE/LT-1122 (Report-C), Held by
Cranfield University. 1965.

[Santos 2000] Santos, Antonino; Arcay, Bernardino; Dorado, Julidn; Romero, Juan;
Rodriguez, Jose: “Evolutionary Computation Systems for Musical Composition”. In:
Mathematics and Computers in Modern Science, Worlds Scientific and Engineering

Society Press. 2000. pp. 97-102.

101

[Schwefel 1968] Schwefel, Hans Paul: “Experimentelle Optimierung einer
Zweiphasendiise”. Teil 1. Technical Report No. 35 of the Project MHD-Staustrahlrohr
11.034/68, AEG Research Institute, Berlin. 1968

[Schwefel 1975] Schwefel, Hans Paul: “Evolutionsstrategie und numerische Optimierung”.

Dissertation. Technische Universitat Berlin, Berlin. 1975.

[Schwefel 1977] Schwefel, Hans Paul: “Numerische Optimierung von Computer-Modellen

mittels der Evolutionsstrategie”. Basel, Birkenh&duser. 1977.

[Schwefel 1995] Schwefel, Hans Paul.: “Evolution and Optimum Seeking”. New York:
Wiley. 1995.

[Spector 1995] Spector, Lee: “Evolving Control Structures with Automatically Defined
Macros”. In: Working Notes of the AAAI Fall Symposium on Genetic Programming. The

American Association for Artificial Intelligence. 1995.

[Spector 1995b] Spector, Lee; Alpern, Adam: “Induction and Recapitulation of Deep
Musical Structure”. In: Proceedings of the: Working Notes of the IJCAI-95 Workshop on
Artificial Intelligence and Music. 1995. pp. 41-48.

[Sundberg 1976] Sundberg, Johan; Lindblom, Bjorn: “Generative Theories in Language
and Music Descriptions”. In: Schwanauer, Stephan M.; Levitt, David A.: Machine Models
of Music. The MIT Press, Cambridge, Massachusetts. London, England. 1993. pp. 263-
286.

[Takala 1993] Takala, Tapio; Hahn, James; Gritz, Larry; Geigel ,Joe; Won Lee, Jong:
“Using Physically-Based Models and Genetic Algorithms for Functional Composition of
Sound Signals, Synchronized to animated motion”. In: Proceedings of the International

Computer Music Conference. Tokyo, Japan. 1993. pp. 180-185.

102

[Todd 1999] Todd, Peter .M.; Werner, Gregory M.: “Frankensteinian methods for
evolutionary music composition”. In: Griffith, Niall; Todd, Peter .M. (Eds.): Musical

networks: Parallel distributed perception and performance Cambridge: The MIT Press.

1999. pp. 313-339.

[Torres 2005] Torres, Juan Esteban; Martinez, José Jesis: “Tutorial de Programacion
Genética”. Last update: 2005, Last Visit: 09.04.2005 URL:
http://platon.escet.urjc.es/~ciic05/ciic2005/enlaces/documentos/Tutorial%20PG.pdf

[Towsey 2001] Towsey, Michael; Brown, Andrew; Wright, Susan; Diederich, Joachim:
“Towards Melodic Extension Using Genetic Algorithms”. In: Educational Technology &
Society 4(2). 2001. pp. 54-65.

[Velikonja 2003] Velikonja, Peter: “Autonomous Music via Artificial Evolution”. Thesis.

Princeton University. 2003.

[Werner 1997] Werner, G.M. and Todd, P. M.: “Too many love songs: Sexual selection and
the evolution of communication”. In: Proceedings of the Forth European Conference on

Artificial Life. The MIT Press, Cambridge, MA. 1997. pp. 434-443.

[Wiggins 1999] Wiggins, Geraint; Papadopoulos, George; Phon-Amnuaisuk, Somnuk;
Tuson, Andrew: “Evolutionary Methods for Musical Composition”. In: Proceedings of the

International Journal of Computing Anticipatory Systems. 1999.

103

