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Abstract

The Short Time Fourier Transform (STFT) is not only an important tool for
analyzing non-stationary audio signals. As a linear, computational efficient and in-
vertible transformation, it also provides the framework for many other algorithms.
In various applications it would be favorable to employ algorithms that are only
given the magnitude of the STFT. However, under absence of phase information
we cannot invert the spectrogram back to a time signal. Assuming zero phase
would leave us with a severely corrupted signal. Thus, magnitude-only spectro-
gram inversion requires to retrieve the missing phase information.

Until now, phase retrieval is most often based on the algorithm proposed by Grif-
fin and Lim in 1984. The algorithm only works offline and is not suitable for a
continuous stream of audio signals.

Primal signal retrieval is meant to provide a solution for multichannel applications
requiring to gather spectral signal content from several distributed microphones of
unclear phase inter-relations. Negative interference might destroy spectral infor-
mation when just summing up the microphone signals. It can be entirely circum-
vented by superimposing magnitude-only spectrograms, yielding the spectrogram
magnitude of the primal signal.

What is the spectrogram phase of the primal signal and how can we get it in
real time?



Kurzfassung

Abgesehen von seiner wichtigen Funktion als Analysewerkzeug für den Verlauf
von Audiosignalen, dient das Betragsspektrogramm auch als Grundlage für viele
andere Algorithmen zur Amplitudenmodifikation im Frequenzbereich, für die es
vorteilhaft wäre, eine klangtreue Rücktransformation in den Zeitbereich zu erhal-
ten. Klangtreue ist aber ganz ohne Phaseninformation oder mit nur schlechter
Phaseninformation nicht erreichbar. Einfache Annahmen über die Phase, wie z.B.
Nullphasigkeit in jedem Transformationsfenster, würden das Signal hörbar ver-
ändern. Gelungene Spektrogramm-Inversion erfordert die Gewinnung konsistenter
Phaseninformation.

Bisher basieren alle Phasengewinnungsalgorithmen auf jenem von Griffin und Lim
aus dem Jahr 1984. Dieser Algorithmus arbeitet offline und ist für einen kontinu-
ierlichen Audio-Stream nicht geeignet.

Die Ursignalgewinnung soll es ermöglichen, viele verteilte Mikrofone unklarer Pha-
senverhältnisse in einem Spektrogramm zusammenzufassen. Durch einfaches Auf-
summieren würde man destruktive Interferenzen erzeugen und somit das Ursignal
verfälschen. Das kann allerdings vermieden werden, wenn man den Absolutbetrag
der einzelnen Mikrofonspektrogramme addiert.

Was ist nun die Phase des Ursignals und wie erhält man sie in Echtzeit?



Statutory Decleration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources, and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

——————————————— ———————————————-

date signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

——————————————— ———————————————-

Ort und Datum Unterschrift



Danksagung

Ich bedanke mich bei meinem Betreuer Franz Zotter für seine Unterstützung und den
Einführungskurs in strukturierter Programmierung. Danke Christian Schörkhuber für das
mentale Aufbauen und deine schnelle Hilfe, wann immer ich sie gebraucht habe.
Generell Danke an das IEM und alle seine Mitarbeiter, es ist nicht nur unglaublich, wie
viel ich hier gelernt habe, sondern vor allem auch was. Besonders bedanken möchte ich
mich bei Gerhard Nierhaus für die mentalistische Unterstützung und die Gespräche, die
mich oft (und dann meist mehr als nur) ein Stückchen weiter gebracht haben. Danke
auch an Daniel Mayer für unzählige gemeinsame Konzertbesuche und das Teilen deiner
unvoreingenommenen klaren Sicht auf Musik und das Leben drumherum. Danke IO-
hannes Zmölnig dafür, dass du mich immer wieder bei Laune gehalten hast. Mit der
Danksagung an Thomas Musil könnte ich eine eigene Arbeit füllen und darum fange ich
hier gar nicht erst an.

Großer Dank geht an meine Eltern und meinen Bruder Marc, die immer für mich da wa-
ren und mir klar gemacht haben, dass es wurscht ist, wenn die Dinge genau so schlimm
sind, wie sie Anfangs aussehen, wenn man nur irgendwie weitermacht. Meinen Großeltern
danke ich für ihren Glauben an mich und ihre bedingungslose Präsenz in meinem Leben.

Jami - mein Lebensmensch.
Danke an Nadine und Rudi für geteilte Freude, Panik, Verzweiflung und Angst. Außer-
dem bedanke ich mich bei meinen Kolleginnen vom Institut für Elektronik, besonders
Reinhard und Sandra für die unterhaltsame Gestaltung der Wartezeit auf "Katzenmann
Rising". Danke Oli und Teresa, vor Allem für die Pizza, aber auch dafür, dass ihr immer
da seid wenn ich euch brauche und Michi, Stefan sowie allen Leuten von der IAESTE
für Zusammenarbeit, Spass, Action, Erfolge, Niederlagen und Freundschaft über viele
Jahre - besonders euer Alumni-Service ist super. Und danke Sabrina fürs Erinnern, dass
es auch noch etwas anderes im Leben gibt.
Robert und Susi, die unzähligen Gespräche, Kaffees und Zigaretten mit euch zu jeder
erdenklichen Tages- und Nachtzeit haben die Inffeldgasse erst so richtig zu meinem Zu-
hause gemacht.
Das Fertigstellen dieser Arbeit wäre wohl ohne das ausgezeichnete Essen in der "Geidorf-
Stub’n" schwer möglich gewesen (Öffnungszeiten: Montag-Samstag, ab 17:00), danke
Kathi!

Danke Denise, besser wirds nicht. Carmen, ich weiß nicht, was ich schreiben soll. Der
Unterschied ist jedenfalls eklatant. Danke Magdalena, dass ich von dir noch immer so
viel lernen kann. Den rudimentären Rest, der über die Jahre von meiner Allgemeinbildung
erhalten geblieben ist schreibe ich voll und ganz deinem Einwirken zu. Danke David und
die Waupies, wenn ich schon erwachsener werden musste, dann wenigstens mit euch -
es war eine großartige Zeit!



5

Contents

1 Introduction 7

2 The Spectrogram 11

2.1 Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Hopsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 DFT-Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 The Spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Notation in Vector Form . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Spectrogram Inversion 22

3.1 Relevant Properties of the STFT . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Spectrogram Consistency . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Unicity of Representation . . . . . . . . . . . . . . . . . . . . . 25

3.1.3 DFT Magnitude-Phase Relations . . . . . . . . . . . . . . . . . 25

3.2 Spectrogram Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 The Griffin and Lim Algorithm . . . . . . . . . . . . . . . . . . . . . . . 27

4 Real Time Spectrogram Inversion 31

4.1 Real-Time Iterative Spectrogram Inversion (RTISI) . . . . . . . . . . . . 31

4.2 RTISI Extended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Fundamental Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Implementation 37

5.1 Basic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Experiments, Results and first Evaluation . . . . . . . . . . . . . . . . . 38

5.3 The Real-Time Constraint . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 RTISI Restructured . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Considerations on Realtime Capability . . . . . . . . . . . . . . . . . . . 45



6

6 Outlook and Conclusion 48

A Characteristics of Audio Signals 51

B Fast Fourier Transform 53

C TSM: Operating directly on the STFT 56

C.1 Time Scale Modification . . . . . . . . . . . . . . . . . . . . . . . . . . 56

C.2 Phase Vocoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

C.3 Phase-locked Vocoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

C.4 Overlapp-Add Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



7

1 Introduction

For audio signal analysis it is often convenient and even more often necessary to display
a signals evolution in the time and frequency domain at the same time. For discrete-time
signals, this can be done by computing the discrete Fourier transform for each time-step
n and realigning the thus obtained sequence in time. One usual side-constraint when
doing so is preserving equivalence to the standard Fourier transform (and thus invertibil-
ity to the time-domain), a goal that can be easily achieved when certain conditions on
the STFT’s structure are met (for details, see Chapter 2).

The Spectrogram

From an analysis point of view, the STFT literally opens up a new dimension of signal
representation: while time and frequency are displayed on the coordinate systems ab-
scissa and ordinate, the z-axis is dedicated to the signals amplitude, usually represented
by the intensity or color of each point. Taking the STFTs squared absolute value in dB
corresponds to frequency intensity and displays a signal’s energy distribution per Hertz.
This kind of signal representation is often referred to as the classical (positive and real-
valued) Spectrogram.

Due to its computational simplicity, the STFT has become one of the most important
analysis tools of nowadays signal processing.

Spectrogram Inversion

Unfortunately, in most cases one will not only want to analyze the audio signal but rather
desires to change something about it. Signal modification in the Fourier domain is often
simpler and in addition computationally more efficient than in the time-domain. There-
fore the standard workflow in audio signal processing usually consists of the following
steps:

– the time-domain signal undergoes a Fourier analysis,
– its magnitude is processed,
– it is retransformed to the time-domain and
– played back.

Since audio signals are often non-stationary, the computationally simpler discrete Fourier
transform is extended to the STFT. In order to gain a playback signal after the STFT
and the processing step, the signal needs to be re-transformed to the time-domain. The
audio signal processing workflow using STFT is shown in figure 28.
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Figure 1: Audio signal processing workflow using STFT

Typical processing steps include operations like time scale modification, pitch shifting,
equalizing or denoising. Within this context, one typically aims at preserving as much of
the input signal as possible while achieving some improvement on certain features.

However, conventional inversion of such a modified STFT is not guaranteed to yield an
audio signal as an output - let alone a signal related in any way to the primary input.
Therefore, an estimate for the respective STFTs inversion needs to be found and applied
(Chapter 3).

As far as spectrograms are concerned, in order to perform the absolute value computation
in the complex domain which is necessary to obtain them, all explicit phase information
is discarded. Still, the spectrogram is assumed to contain all or at least most of the
information originally present in the signal. However, the question where exactly which
information is contained has not been solved yet. Due to this total lack of phase infor-
mation, spectrogram inversion probably is the worst-case scenario of STFT-inversion.

Reconstructing a phase-shifted signal from its spectrogram by inverse Fourier transform
leads to the result shown in figure 2.

This reconstruction may not be called perfect. In fact, an arbitrary signal cannot be re-
constructed by means of an inverse Fourier transform when only its magnitude is known.
While nowadays storing the phase information presents a minor challenge since most
computer systems enable the user to keep all computational results, in some cases being
able to operate directly on the spectrogram is still required.

Real-Time Spectrogram Inversion

The motivational example for this thesis is primal signal retrieval (see figure 3). IEM
owns a 64-channel spherical microphone array capable of recording the directional sound
radiation of any subject placed within it. Playback of a single-channel sound representing
the entire set of all 64 channels in terms of an audio signal would be useful to have.
If accomplished in a way without destructive interference and in real-time the design of
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Figure 2: Reconstruction of a signal from its Spectrogram assuming zero-phase
(green...input signal, blue...its poor reconstruction)

adaptive filters representing the directivity would largely be simplified. This approach is
hoped to improve the audio quality of known SIMO/MIMO identifications approaches.

Figure 3: The Concept of Primal Signal Retrieval (from [Sue11])

In order to do so without the risk of interferences destroying or corrupting the audio-
data, the magnitudes of all channels are averaged, yielding - a spectrogram.

Luckily, Griffin and Lim developed an algorithm that accomplishes signal reconstruction
from STFT-magnitude [Sue11]. However, Griffin and Lim’s algorithm opposes real time
computation and therefore the question remains open: What is the spectrogram phase
of the primal signal and how can we get it in real time?



The Spectrogram

– How to compute the STFT and the Spectrogram?
– Which constraints must be met in order to gain an STFT preserving all information

on the time signal?
– Can all this be simplified with regards to applications in audio signal processing?
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2 The Spectrogram

Since in this work all signals are assumed being sampled and bandlimited, the STFT can
be defined by means of the DFT:

X(m,ωk) =
N−1∑
n=0

x[n+mR]w[n]e−jωkn (1)

with ωk = 2πk
K
, k ∈ Z. Starting from a time sequence x[n], the STFT can be derived

using the following steps:

1. split x[n] into M overlapping sections of length N and let the hopsize R denote
the shift between two neighbouring sections

Xm =
[
xT0 , x

T
1 , ..., x

T
M−1

]T (2)

2. weight each section xm by a window-function w[n]

3. optionally append this windowed xm by K −N zeros

4. calculate the K-point discrete Fourier transform

So in summary, the STFT depends on the following parameters:

– the window function w[n]
– the hopsize R
– the length K of the Fourier transform

Basically, this chapter aims to give more detailed insights on how this parameters need to
be chosen in order to obtain an STFT that preserves all parameters necessary for perfect
reconstruction when processing audio signals. The constraints derived in this section
allow not only the derivation of a more compact vector-formulation of the STFT but
will also be exploited later in this work in order to obtain a realtime capable algorithm
for spectrogram inversion.

2.1 Windows

In most cases, the period of the signal under investigation will not match the DFTs. In
order to smooth discontinuities that arise due to the DFTs circular nature, a window
function is applied that then undergoes the Fourier transform the same way as the input
signal does.

Audio signals are real signals, yielding a symmetric and therefore redundant Fourier
transform. So apart from being non-zero at all coefficients for simplicity, the window-
function should be real-valued.

There are many different kinds of windows to choose from and no general assumption
can be made on their usefulness as this highly depends on the application. Within a focus
on audio signals, it seems impossible to determine a single best suited window. Choosing
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the window function involves always a trade-off between rather resolving equal-strength
components with similar frequency values as opposed to resolving those with diverging
characteristics. Especially some cosine-type windows, namely the Hanning and the Ham-
ming window are situated in the middle of this trade-off and therefore are extensively
applied for narrow-band applications (e.g. telephone channels).

Since those cosinge-type windows are widely used, they are also likely to suit within the
context of spectrogram inversion and will therefore be dealt with in more depth. For
further information on windows for audio signal processing it is referred to [Nut81,Smi14,
OS99]. Starting from the basic rectangular window, this section discusses cosine-type
windows, their impact on signal representation in the time-frequency domain and the
resulting application areas for audio signal processing.

The Rectangular Window

Defined as ’1’ (or sometimes, constant) from −M−1
2

to M−1
2

and zero elsewhere, the
rectangular window is the simplest case of a window. Its DFT can be derived as:

W (ωk) =
N−1∑
n=0

w[n]e−jωkn (3)

= Nsincc(ωk), (4)

with ωk = 2πk
K
, k ∈ Z and N the window-length

The Fourier transform of the rectangular window yields an output sincc that strongly
ressembles a sinc-function but due to the sampling in the time-domain which is necessary
for the DFT, aliasing in the frequency domain cannot be prevented. However, assum-
ing the sampling frequency in the time-domain going to infinity, the distorted sincc(ω)
reaches sinc(ω).

Investigation of this periodic sinc-function’s magnitude- and phase-spectrum shows that
not all of the window’s energy is concentrated in the center, but there are additional
non-zero areas. Being solely dependent on the sharpness of the windows transition to
zero-values, the side-lobes are likely to corrupt time-frequency relations since multiple
sinusoids at various frequencies can become indistinguishable in the spectral domain.

As far as the centered main lobe is concerned, its width

dML =
4π

M
(5)

depends on the window-length M only.

Thus, choosing a shorter window generally leads to a higher ambitus in frequency reso-
lution, while on the other hand, a shorter window might not be capable to catch the full
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Figure 4: Time and Frequency Distribution of a Rectangular Window

waveform of a lower frequency component which might corrupt the frequency information
present within the window’s borders.

Spectral leakage is often referred to as a window’s dynamic range [Smi14]. While the
rectangular window is very capable of resolving sinusoids of equal strength, when am-
plitudes differ, it is a poor choice since the different side-lobes make it impossible to
determine the respective sinusoids origin.

In figure 4, a rectangular window is displayed in time and frequency domain.

Cosine-Type Windows

In order to reduce the side lobe level, the abrupt transition between zero and one of
the rectangular window needs to be smoothed. The Hamming window family can be
produced by multiplication of the rectangular window with one period of a cosine or,
equivalently, superposition of three sinc-functions in the frequency domain.

Coming from this approach, the Hamming window can be expressed as three shifted
rectangular windows W :

Wct(ω) = αW (ω) + βW (ω − ωS) + βW (ω + ωS) (6)

with ωS being the frequency shift. The shift invariance of the DFT then leads to the
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Figure 5: Construction of a hamming window via rectangular windows (from [Smi14])

cosine-type window families standard generating formula:

wct = αw[n] + βw[n]e−jωSn + βw[n]ejωSn (7)

= w[n](α + 2β cos(
2πn

M
)). (8)

Some combinations of α and β have become known under specific names.

wct = w[n](
1

2
+

1

2
cos(

2πn

M
)) = w[n] cos2(

πn

M
) (9)

yields the Hanning window. The magnitude of its side-lobes decreases about three times
as fast as that of the rectangular window. Combined with the very smooth transition
from one to zero it is a suitable window for most audio-processing purposes.

The Hamming window however cancels the first side-lobe completely as α is chosen as
α = 1− β. Even though this affects the continuity of the transition from the window’s
ends to zero, the hamming window often is the window of choice for low-quality audio
processing as its side-lobes ("ripples") are all of equal magnitude and lie right below the
quantization noise floor of an 8-bit codec (approximately 40 dB lower than the main
lobe’s peak).

When instead of three shifted rectangular windows an arbitrary number is used, the
resulting window type is called Blackman-Harris window. Thus, the cosine-type window
family can be generalized (with w[n]/W the rectangular window) via:

wct[n] = w[n]
L−1∑
l=0

αl cos(l
2π

M
n) (10)
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or, equivalently in the frequency domain:

Wct(ω) =
L−1∑

k=−(L−1)

αkW (ωk
2π

M
). (11)

This generalization is usually referred to as the Blackman-Harris window-type. Each
added rectangular window provides another degree of freedom for either side-lobe mini-
mization providing a possible improvement to windows in Hamming style, or optimization
of the magnitude decrease - the roll-off factor, as is the goal in the Hanning window case.
This goes at the expense of frequency resolution, as the window’s main lobe widens with
each rectangular window added.
Generally spoken, the more elaborated windows tend to support a larger spectral dynamic
range -a property that is sometimes necessary in audio processing in order to enforce
especially higher frequency components.

In summary, the used window-function is real-valued for simplicity (in order to preserve
the symmetric output spectrum of the DFT inherent to real signals) , of the same length
as xm and without zero coefficients. Hamming and Hanning windows exhibit a relatively
fine frequency resolution and an agreeable dynamic range in the frequency domain and
are therefore extensively used in audio signal processing.

2.2 Hopsize

For deriving an AIP-STFT, one single constraint on hopsize and window function must
be met:

If for the window function
∞∑
j=0

w[n− jR] = 1,∀n ∈ Z, (12)

then the sum of all STFT-frames corresponds to the DFT of the whole signal and the
window is said to have the constant overlap-add property. A signals retransformation
into the time-domain while not fulfilling this requirement results in a different weighting
of the output signals’ amplitude. Although for some applications, especially when mere
signal analysis is required, the constant overlap-add constraint may be relaxed, such
corruption of the signal leads to perceptible artifacts (amplitude modulation) and thus
is usually undesired in audio signal processing.

The exact amount of overlap in samples is determined by the used window-function.

It can be concluded that for windows other than the rectangular window which exhibits
far too many drawbacks for practical usage, a hopsize 0 < R ≤ N is required and
therefore, an overlap must exist. Also, for simplicity, the overlap is assumed to be
constant.
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2.3 DFT-Length

In practice however, the DFT is replaced by the computational more efficient FFT, usu-
ally applying the Cooley-Tukey algorithm (for more information, see Appendix) which
operates in its optimum at a signal length K = 2p, p ∈ Z. Therefore, most STFT-
implementations either perform internal zero-padding up to the next power of two or
require the input signals xm being of length 2p in the first place.
In addition, the DFT exhibits the already mentioned redundancy for real signals permit-
ting to keep only the first N

2
+ 1 values for input signals of even length.

So for further considerations the DFT-length can be assumed to exactly match the length
of the input section xm with N = K = 2k, thus preventing the need for zero-padding.

2.4 The Spectrogram

Invented at Bell Laboratories during World War II [Smi14,KC92], the spectrogram has
become the most important tool for displaying signals in a mixed time- and frequency-
domain. Its entries refer to the (pointwise) absolute value of the STFT X according
to

Pmk =
√
Re(Xmk)2 + Im(Xmk)2

for k = 1, 2, ..., K and m = 1, 2, ...,M , with P the spectrogram and Re/Im its real
and imaginary components. It can be seen as a usually dB-scaled intensity plot of the
STFTs’ magnitude and is defined by the parameters:

Parameter Effect
window-type side-lobe suppression
window-length frequency resolution
hopsize R sampling factor time-domain
FFT-length N sampling factor frequency domain

Table 1: Summary of Spectrogram Parameters and their effects

Since the window type controls the side-lobe suppression, it is also responsible for the
often-mentioned time-frequency smearing. While the hopsize R determines the down-
sampling in the time-domain, its minimum is a sliding FFT with R = 1. In summary
for the choice of R, on the one hand the perfect reconstruction criterion with regard
to the used window type has to be fulfilled, while on the other hand, in order to avoid
redundancy one will usually try to make it as large as possible.
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2.5 Notation in Vector Form

In [Yan08], a framework for general-purpose STFT and ISTFT vectorization is proposed.
With regards to the conditions and constraints derived in this chapter, this framework is
compactly represented here to fit the application of spectrogram inversion.

Describing the transformation itself is straight forward using the DFT-matrix:

F = 1√
N


1 1 1 ... ... 1
1 φ φ2 φ3 ... φN−1

1 φ2 φ4 φ6 ... φ2(N−1)

1 φ3 φ6 φ9 ... φ3(N−1)

: : : : :
1 φN−1 φ2(N−1) φ3(N−1) ... φ(N−1)(N−1)

 (13)

with φ = e−
j2π
N .

In a next step, the window function can be written as a diagonal matrix with the window
coefficients wn. Clearly, both matrices are square and for analysis of a signal x[n] with
length N , of the dimension [N ×N ].

W =


w1 0 0 ... ... 0
0 w2 0 0 ... 0
0 0 w3 0 ... 0
0 0 0 w4 ... 0
: : : : :
0 0 0 0 ... wN

 (14)

The remaining question now is how to denote the overlap-procedure. The overlap matrix
O consists from identity matrices shifted against each other according to the respective
hopsize:
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Figure 6: The overlap matrix

Assuming the input signal x[n] to be split into M sections of length N (and therefore
being of length (M − 1)R+N) gives an overlap matrix O (see figure 6) of dimension-
ality [MN × (M − 1)R + N ] and covers the whole signal while the Fourier transform
matrix F and the window matrix W of dimensionality N × N cover only one section
xm. Figure 7 shows the relation between x[n] and its overlapped version.

After splitting x[n], the sections xm needs to be windowed and subsequently undergo a
Fourier transform. The M sets of decoupled equations can be summarized within two
matrices WBlock and FBlock. The Kronecker tensor product of a matrix and an identity
matrix

C = A ◦B = (aij ·B) =

a11B . . . a1nB
. . . . . . . . .
am1B . . . amnB

 (15)

which need not necessarily be of the same dimension gives a matrix in the desired block
structure. Considering the Kronecker tensor product of two matrices I and Q with I
the identity matrix gives

I ◦Q =

1 0 0
0 1 0
0 0 1

 ◦ [6 7
8 9

]
=


1 ·
[
6 7
8 9

]
0 0

0 1 ·
[
6 7
8 9

]
0

0 0 1 ·
[
6 7
8 9

]


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Figure 7: Splitting a signal x[n] into M overlapping sections of length N

and the desired block diagonal structure is obtained. Applying this operation on F and
W yields the desired block-diagonal matrix FBlock and the diagonal matrix WBlock, both
of dimension [MN ×MN ].

The overall STFT is resumed in figure 8. Notably the STFTs output X in the frequency
domain is obtained as a vector rather than in the usual matrix form. In short:

X = FBlockWBlockOx (16)
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Figure 8: The STFT



Spectrogram Inversion

This chapter deals with STFT inversion in general.
– Which conditions must be met in order for an STFT or Spectrogram to be invertible?
– And what is the role of phase?
In addition, equivalently to chapter 2, a vector notation for inversion of the Short-Time
Fourier Transform will be given and the baseline for any subsequent work on spectrogram
inversion, the Griffin and Lim algorithm, will be introduced.
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3 Spectrogram Inversion

3.1 Relevant Properties of the STFT

When dealing with spectrogram inversion, we need to answer some basic questions con-
cerning the STFT:

– Is there a time-domain signal x for any array of complex numbers? And subsequently:
What are the conditions for a set of real non-negative numbers being called a spec-
trogram?

– Does spectrogram inversion generally lead to a unique time-domain representation of
the signal? If not so, which constraints must be met?

– Are there any known magnitude-phase relations that can be applied in order to simplify
reconstruction?

– Is the spectrogram phase-variant at all? Does phase really matter?

Apart from the fact that there are many works [Pal03,CSD10,NQL83], suggesting the
perceptional importance of phase, the third question can easily be answered by conduct-
ing a simple experiment: If spectrograms of real signals were phase-invariant, considering
a cosine-signal s = A cos(wt+ φ) and varying the phase φ from 0 to 2π should always
give the same resulting spectrogram provided this spectrogram is always computed for
the same parameters. A first non-informed visual inspection of the following two spec-
trograms where N designates the FFT-length and M refers to time reveals that this
obviously is not the case:

Figure 9: Normalized Spectrogram for
φ = 0, with overlap=4, fft-bins=64

Figure 10: Normalized Spectrogram for
φ = π/4, with overlap=4, fft-bins=64

Another interesting observation is that the difference introduced by the phase shift is not
concentrated on the concerned frequency band but rather affects the whole spectrogram.
To describe the differences more precisely, the difference between the spectrograms was
computed as ||S| − |Sπ∗d|| with d = 0 : π/4 : 2π. The resulting errors’ energy is far
from negligible and can be seen in figure 11.
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Figure 11: Gathered magnitude of two spectrograms due to phase varying from φ = 0
to φ = 2π

Thus, phase does matter and this section addresses the three remaining questions giv-
ing a summary on what is known about the mathematical conditions under which a
spectrogram inversion is theoretically possible.

3.1.1 Spectrogram Consistency

In the previous chapter, the STFT was defined as

X(m,ωk) =
N−1∑
n=0

x[n+mR]w[n]e−jωkn

where R is the hopsize of adjacent frames. Its reciprocal, STFT−1 will further be
defined as ISTFT (Inverse Short-Time Fourier Transform).

Given a set of real non-negative numbers P ∈ RN×M
+ , this set is a spectrogram

if P =
√
XX∗, where X∗(ωk) is the complex conjugate of the subset of STFTs

X(ωk) = STFT (ISTFT (X(ωk))). Thus for reconstruction, two equations must be
verified:

P =
√
X(ωk)X∗(ωk) (17)

C = X(ωk)− STFT (ISTFT (X(ωk))) (18)
= X − FWO(FWO)+X = 0 (19)

For many applications the spectrogram P might not be consistent in the above defined
sense due to interference from other sources (source separation), corruption by noise
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(denoising) or simply bad interpolation algorithms (pitch shifting) [SD11]. In such cases,
P can be approximated by minimization of C(X|X̂) with regard to some norm (usually
the Froebenius norm) in order to find another STFT-subset X̂(ωk) verifying both P =√
X̂X̂∗ and the consistency criterion.

The following graphic (modified from [SD11] and [LKOS10]) illustrates the inter-domain
relations for STFT-processing:

Figure 12: Domains involved for Spectrogram Computation

In summary, only consistent STFTs lead to specific real-valued time-domain signals xi
and an array of complex numbers can only be referred to as a consistent STFT X, if it
was computed from a time-domain signal x according to

X = FBlockWBlockOx

whereas a consistent spectrogram can only be derived from a consistent STFT via

P =
√
XX∗
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or
P = |FBlockWBlockOx| (20)

3.1.2 Unicity of Representation

The spectrogram corresponds to the absolute value of the STFT (e.g. |STFT [x]| =
|STFT [−x]|). Therefore, there are always at least two signals fulfilling the consistency
criteria on the spectrogram potentially preventing the spectrogram inversion algorithm
from convergence. In literature, this phenomenon is called stagnation [FW86].

Extensive research on the conditions under which a unique signal reconstruction is pos-
sible has been done by Nawab et al. [NQL83]. According to them, for a hopsize R > 1
unique signal reconstruction can be achieved under the following conditions:

1. since each window changes a signals time-frequency relation in a different way, the
spectrograms window function w(n) must be known

2. R ≤ N , so the STFT contains at least the same amount of information as the
original signal does

3. the window function is required not to contain any zeros within [0; N-1], otherwise
information on the signal might get lost

4. one of the signals’ boundaries must be defined (e.g. one-sided signal), which is not
of practical importance to audio signals since there would be too many changes
in-between the boundaries to predict any phase-related behavior [SD11] just from
knowing a starting point

5. the first R samples of the signal must be known (starting from the first non-zero
sample)

6. there must not be more than R consecutive zero-samples within the signal
In [SD11], Sturmel et al. invalidated the latter two conditions stating that they resulted
from Nawab’s goal to successively interpolate the signal and that there are many cases
where they are neither necessary nor sufficient.

3.1.3 DFT Magnitude-Phase Relations

Even though the Bode-Theorem uniquely links phase and magnitude under minimum-
phase conditions [DH04], no satisfying connection for mixed-phase signals has been
provided so far, even though many works exploited magnitude-phase relations trying to
reconstruct intelligible signals from one of the two. Hayes [HLO80] already stated in
1980, that:

A sequence which is known to be zero outside the interval 0 ≤ n ≤ (N − 1) is uniquely
specified to within a scale factor by (N - 1) distinct samples of its phase spectrum in
the interval 0 < w < π if it has a z-transform with no zeros on the unit circle or in
conjugate reciprocal pairs.
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This statement has been verified by others (e.g. [AKP07], [YSK84], [OS99]) and thus
it can be concluded that under the presence of phase information, especially when the
sign is known, a signal can be reconstructed perfectly up to a scale factor. Unluckily, for
the case where only magnitude information is available, things are getting more complex
due to the ambiguities and stagnation issues already outlined.
For some signal-classes, such as speech and images, being able to regain the correct
phase seems to be of less importance, as the frequency spectrum of speech on the
one hand, is relatively predictable as compared to music and although additional phase
information is likely to increase intelligibility, the aesthetical requirements as far as the
reconstructed signals’ sound quality is concerned are different. Furthermore, it has been
shown [Pal03] that modelling speech as an Auto-Regressive process provides a lot of
information on the signals’ nature facilitating computation. (for more details on the
spectral differences between speech and music see: Appendix). As far as images are
concerned, the signal under reconstruction is positive per definition [LKOS10] and thus,
phase-sign indeterminacies vanish.
Yegnanarayana et al. [YSK84], explored the importance of group delay as a linking
factor from magnitude to phase and derived algorithms for different amounts of previous
knowledge on the signal to reconstruct, but for arbitrary (i.e. mixed-phase) signals,
according to them, full knowledge of phase and magnitude is required in order to provide
a reconstruction.

3.2 Spectrogram Inversion

An intuitively comprehensible formulation for the ISTFT can be easily derived solving
the STFTs matrix notation for x:

X = FBlockWBlockOx

OT (WBlockFBlock)
−1X = OT (WBlockFBlock)

−1(FBlockWBlock)Ox

x = OT (WBlockFBlock)
−1X

Still, as x is clearly overdetermined byX, there is no exact inverse to the STFT operation
matrix

H = (FBlockWBlock)O. (21)

A very common approach to such problems is the application of the least squares solution
in order to derive an estimate:

X = Hx

xLS = (HHH)−1HHX

= (OTWBlockF
H
BlockFBlockWBlockO)−1OT (WBlockF

H
Block)X

and since for the DFT-matrix FH = F−1,

xLS = (OTWBlockWBlockO)−1OT (WBlockF
−1
Block)X. (22)
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This solution corresponds to the expression derived for the ISTFT,

x = OT (WBlockF
−1
Block)X

except for the additional term

(OTWBlockWBlockO)−1.

Closer investigation of this latter expression (here assuming N = 2 for simplicity) yields

(OTWBlock)(WBlockO)−1 =

w1 0 0 0
0 w2 w1 0
0 0 0 w2

 ·

w1 0 0
0 w2 0
0 w1 0
0 0 w2

 =

=

w1 · w1 0 0
0 w2 · w2 + w1 · w1 0
0 0 w2 · w2

 .
So the Least Squares solution for x can be interpreted as an ISTFT weighted by the
overlapping sum of the squared window function.

Based on this least squares solution, in 1984 Griffin and Lim [GL84] presented the first
global approach to phase estimation from spectrograms. Intended as an improvement
for Time-Scale-Modification, due to its simplicity and perceptually good results it has
established itself as the baseline for any subsequent work.

3.3 The Griffin and Lim Algorithm

Generally spoken, the Griffin and Lim algorithm relies on a two-domain constraint: while
on the one hand, the given absolute values of the estimated STFT are kept fixed in
the spectral domain, phase coherence is enforced in the time-domain. The basic aim is
finding a time-domain counterpart for the modified -and therefore probably inconsistent-
spectrum Y (ω) by a least squares approach.

In other words, an update rule that minimizes the Euclidean Distance

D[x[n]|Y [m, k]] =
∞∑

m=−∞

1

2π

∫ π

ω=−π
|X[m, k]− Y [m, k]|2dω (23)

between two frequency spectra is proposed according to:

x[n] =

∑∞
m=−∞w[mR− n]y[mR,n]∑∞

m=−∞w
2[mR− n]

= ISTFTm (24)
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which leads to a slightly modified ISTFTm quite similar to that derived in the previous
section where y[n] explicitly needs to be windowed before the overlap-add procedure and
additionally, a squared window normalization term needs to be applied which corresponds
to the solution derived in the previous section.

Apart from that, using

H = (FBlockWBlock)O.

the algorithm is quite straight-forward, as it basically consists of repeated ISTFT and
STFT sequences that enforce the given spectrograms magnitude.

Algorithm 1 Phase Reconstruction Algorithm derived by Griffin and Lim
1: X0 : |FWOx| ; Phase: arbitrary
2: for i = 1 to I do
3: X i,m ←H [(HHH)−1HH

1 ]X i−1,m
4: X i ← X0e

j∠Xi ...element-wise
5: end for

The given spectrogram (Step 1) is transformed to the time-domain and then again a
fourier transform is applied (Step 3) in order to combine the phase-information with the
initial spectrogram X0 (Step 4). When applied for a certain number of iterations [GL84]
the minimum mean squared error (minMSE) between X0 and X i decreases. A summary
on the vector spaces involved for Griffin and Lims algorithm is shown in figure 13.

As the gradient ofD is strictly monotonically decreasing [GL84], this algorithm is capable
of reducing the distance at every iteration step though convergence to a global minimum
cannot be guaranteed.

Figure 13: Vector spaces involved in the computation of the Griffin and Lim algorithm
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Even though the obtained signals usually are perceptually close to their originals’, as
far as their structure in the time-domain is concerned, they often look different . In
addition, the algorithm has three major drawbacks:
– at every iteration step, ISTFT and STFT need to be computed for the whole signal;

this requires offline processing and increases computation time
– depending on the material, it can take a long time (i.e. a huge number of iterations)

until convergence is reached
– the algorithm does not take any local information into account, this often results in a

corrupted output signal (i.e. pre-echos, additional delays, phasyness)
Nonetheless, the algorithm provided by Griffin and Lim remains the core of nearly every
state-of-the-art phase recovery process.



Real Time Spectrogram Inversion

The Griffin and Lim algorithm has one major drawback: in each iteration a DFT and an
IDFT need to be performed over the whole signal. This not only increases computational
cost but also requires knowledge of the whole signal in advance. Therefore this algorithm
is not suited for many real-time applications. Some of it extensions , real-time capable
at least structurally, will be presented in this chapter.
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4 Real Time Spectrogram Inversion

4.1 Real-Time Iterative Spectrogram Inversion (RTISI)

The main drawback of the Griffin and Lim algorithm is the necessity of performing both a
Fourier synthesis and analysis over the whole signal at each iteration step. Based on the
assumption of spectrogram consistency in overlapping areas (a constraint that must be
given in order to make perfect reconstruction possible), Zhu et al. [ZBW07] restructured
the basic algorithm in order to make it real-time capable by restricting computations to
one frame per iteration rather than transforming the whole signal.

Regarding one single frame xm of length N within the context of matrix-notation H =
FBlockWBlockO enlightens why the naive approach of simplifying FBlock to F (with
dimension [N x N]) and WBlock to W (with dimension [N x N]) is not sufficient for
spectrogram inversion. Reconsidering the least squares solution derived in the previous
chapter

xLS = (OTWBlockWBlockO)−1OT (WBlockF
−1
Block)X.

reveals that the overlap matrix is preserved through the term (OTWBlockWBlockO)−1

which corresponds to division of the time-domain signal xm through the sum of all
window functions squared (although for practical computational purposes, this sum can
be limited to the dimension covered by xm afterwards). Figure 14 shows the dimension
obtained for an overlap of 1 sample and a signal length N = 2.

Figure 14: Simplified least Squares solution for N=2

Obviously, the result does not equal the output obtained by simply applying an IDFT.
Therefore, when considering the STFT vector X0 as a stream of M overlapping (and
therefore buffered) sections Xm with M = N

R
− 1 , the algorithm can be summarized

quite similarly to the Griffin and Lim algorithm:
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Algorithm 2 Basic RTISI as proposed by Zhu et al.
1: X0 : |Hx| ; Phase: arbitrary
2: for frames: m = 1 to M do
3: for i = 1 to I do
4: X i,m ←H [(HHH)−1HH

1 ]X i−1,m
5: X i,m ← X0e

j∠Xi,m ...element-wise
6: end for
7: Xm ← X i,m

8: end for
9: X0[m]← Xm

10: xout ← (HHH)−1HHX0

The starting point is a highly overlapping STFT of the signal x, a known window function
w, then the phase estimate of the current frame xm can be obtained by performing a
DFT on the sum of the windowed overlapping time-domain signals present at this frame
(Step 1). Then again, Griffin and Lims’ update rules are applied on the respective frame
m (Step 2-5).

Figure 15: Basic Framework for RTISI with Overlap 4

Due to the lack of look-ahead, RTISI performed slightly worse than the original Griffin and
Lim algorithm, since the signal could be optimized with regard to the already processed
frames only without any knowledge about future frames. So RTISI was extended to a
look-ahead stage RTISI-LA [ZBW06], where all overlapping frames with that currently
under investigation are summed up in order to perform the phase updates. In the
same work it was shown that assuming the number of look-ahead frames L is given
by R − 1, with R the hopsize gives an optimal trade-off between computation time
and reconstruction quality. RTISI-LA requires a slightly different framework, as the L
subsequent frames to the one under processing are also updated according to Griffin and
Lim, thus ensuring a phase estimate that corresponds to both, past and future values of
the signal.

The algorithms structure remains the same if the respectives matrices depth M is as-
sumed to range from m− (N

R
− 1) to m+ (N

R
− 1).
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Figure 16: Framework for RTISI with Look-Ahead 3

4.2 RTISI Extended

Taking into account the respective STFT structure, further work has been done by
Gnann and Spiertz [GS10], providing the RTISI with an unwrapped phase initialization
and processing the respective frames according to their energy order rather than just
sequentially. Also, they used different frame-lengths aiming to achieve a better temporal
resolution for transients by assigning them a smaller frame [GS09]. Basically this latter
approach could be extended to any integer multiple of the frame-length, thus allowing
maximum freedom in the trade-off between time- and frequency-resolution by simply
replacing the basic, longest frame with an arbitrary sequence of smaller ones where
appropriate. Since RTISI is an iterative algorithm, using the phase information already
available from the frames overlapping to the one under reconstruction for initalization
seems to be a promising approach. So instead of setting the current frame to zero,
initialization can be done by interpolating and unwrapping the phase of the buffer-sum.
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Algorithm 3 RTISI Extended with Look-Ahead
1: X0 : |FWOx| ; Phase: arbitrary
2: for m = 1 to M do
3: estimate frame-wise energy content E
4: for i = Emax to Emin do
5: perform transient detection
6: if transient then
7: initialize phase as ∠Xm = ∠FOx
8: split frames
9: for j = i− la to i+ la do

10: X i,m ←H [(HHH)−1HH ]X i−1,m
11: X i,m ← X0e

j∠Xi,m ...element-wise
12: end for
13: Xm ← X i,m

14: else
15: initialize phase as ∠Xm = ∠FOx
16: for j = i− la to i+ la do
17: X i,m ←H [(HHH)−1HH ]X i−1,m
18: X i,m ← X0e

j∠Xi,m ...element-wise
19: end for
20: Xm ← X i,m

21: end if
22: X0[m]← Xm

23: end for
24: end for
25: xout ← (HHH)−1HHX0

4.3 Fundamental Issues

Due to the sign indetermination of the phase, the algorithm might get stuck between
∠(x) and ∠(−x)-the already mentioned stagnation. Occuring in all presented algo-
rithms, this phenomenon generally provoques the largest reconstruction error and can
only be encountered by knowing the sign in advance. Since the phase of overlapping
lower frequencies changes less, this phenomenon also is frequency selective and gets
more and more evident as frequency increases (as shown in [SD11]).

Generally, convergence remains an uncertain issue, both for the Griffin and Lim algorithm
itself and for all extensions and modifications. The quadratic cost function usually causes
convergence to happen in practice (at least in most cases), but it is neither be proven
mathematically nor can an effective duration in steps be given for when convergence
starts or is finished and at the moment nobody can say at which Signal-to-Error level
the one or the other is at least likely to happen.
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In addition, the circular nature of the DFT might lead to convergence happening on a
frame’s translated version introducing a time-shift on the original signal.
Another problem arises through the windowing necessary in STFT computation: usually
many spectral components contribute to one frequency bin, thus forming a linear system
that only finds a convenient solution when STFT-overlap and DFT-oversampling factors
are high and the used window produces enough spectral leakage [Por79,SD11]. For prac-
tical conditions however, usually the contrary is desired in order to reduce computation
time and data amount.



Implementation
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5 Implementation

As outlined in the previous chapter, in order to implement RTISI, signal-buffering is
an absolute necessity. Starting from a buffer similar to the one in figure (16), Spiertz
and Gnann summarised the steps necessary in order to implement a RTISI with Look-
Ahead [GS10]:

1. initialize last buffer row

2. calculate the sum of all buffer rows and limit it to the part covered by the last row

3. this sum has undergone a huge amount of analysis- and synthesis windowing,
therefore compensate the window-sum error

4. calculate the phase spectrum of the sum by means of a DFT

5. combine the phase of the sum with the corresponding magnitude spectrum stored
in the buffer

6. transform this combination into the time-domain

7. perform steps 2-7 on all frames required for look-ahead

8. perform steps 2-8 up to a certain number of iterations

9. commit the frame stored in the commit-frame row

While this list provides a good starting point for RTISI-implementation, during the course
of this work it has become necessary to extend it by some considerations:

5.1 Basic Considerations

Step 1: Gnann and Spiertz [GS10] suggest that initialization depends on the application
required and propose for general usage initialization with the unwrapped phase obtained
after 3. However, despite its theoretical importance, initialization has not shown to
affect the algorithms’ output in any way, neither as far as the quality of the reconstruc-
tion nor as far as convergence time is concerned. On the other hand, when considering
the trade-off between smooth phase aligning and relative-phase preservation shown in
the vocoder-example in the Appendix, where an initialization with the unwrapped phase
from the previously estimated blocks would correspond to the usual vocoder-approach
without phase-locking, it might be, that this simply is the wrong approach in order to
improve convergence.
Also, the overlap-add criterion, which usually guarantees STFT-consistence lives from
its emergence. If enforcing the previous frame’s phase contribution via according initial-
ization of the current frame -without prior knowledge on the signal- really represents a
suitable solution for the RTISI’s convergence issues remains an open topic.

As far as 4 is concerned, for computational efficiency the suggested DFT will be re-
placed with the FFT in most cases. Since the FFT operates in its optimum on power
of 2-length signals, and therefore most algorithms zero-pad signals up to the desired
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length thus causing dimension inconsistencies and smearing for the latter RTISI oper-
ations, it should be considered to adapt the frame length accordingly. Moreover, this
point leads to reconsiderations on the starting conditions: as already stated in chapter
2, establishing an overlap is necessary for assuming spectrogram consistency and thus
being able to apply the Griffin and Lim approach in the first place. On the other hand,
slicing an existing STFT in the spectral domain interrupts the overlapping-sequence and
thus corrupts magnitude information. In the best case, an amplitude-modulated output
signal is the result. So when the algorithm’s goal is perfect reconstruction of the input
signal, the frame-length must correspond to one FFT-length.
The same is true to a lesser degree for the relation of buffer-overlap and STFT-overlap.
Changing the buffer-overlap with respect to that of the STFT corresponds to compar-
ing two spectrograms with different parameters and some smearing will be inevitable.
In summary, it is necessary to perform an STFT with known parameters on the time-
domain signal and taking its absolute value before re-transformation and writing it into
a buffer that has been constructed with the same characteristics as the spectrogram.

The number of iterations required is another important criterion for the algorithm’s real-
time capability: it ranges from 8 to 30 in literature [GS10,ZBW07,SD11]. In addition,
since RTISI is not proven to converge and the duration until convergence starts varies
and seems to be strongly dependent on the input, it can well be that for a certain signal
and certain conditions an iteration number far greater than 100 is required. However,
an iteration number of about 20 seems to suffice for most applications.

5.2 Experiments, Results and first Evaluation

In order to preserve a certain degree of comparability (especially to [GS10,GS09] , the
testing scenario has been derived slightly modified from the Sound Quality Assessment
Material (SQAM) from the EBU [Uni88].

– 25 random sweeps with noise
– sampling frequency 48 kHz
– Hamming window with window-length L=4R (overlap of 75%)
– 15 overall-iterations
– evaluation measure: SER = 10 · log

∑∞
m=−∞

∑L−1
k=0 |X[mR,k]|2∑∞

m=−∞
∑L−1
k=0 (|X[mR,k]|−|X′[mR,k]|)2

As this SER-measurement operates on the magnitude spectrum, it depends on its own
window-length. Unsurprisingly, the best results are achieved when the SER-window-
length corresponds to the RTISIs spectrogram-window length as RTISI exactly minimizes
the Mean-Squared Error between those borders given by its window length.

For 15 iterations, the standard RTISI achieved a comparable SER (about 20 dB) to
[GS09, GS10, ZBW07, ZBW06]. However, the average computation time it took was
about 66.348 seconds for an audio file of 1 second duration. As far as RTISI-LA is
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FFT length 256 512 1024 2048 4096
Overlap 4 14.87 17.96 22.43 26.02 32.43
Variance [%] 0.62 0.42 0.42 0.69 0.10
Overlap 8 21.03 24.11 28.24 29.48 35.75
Variance [%] 0.67 0.31 0.40 0.36 0.88

Table 2: RTISI: Average SER [dB] for 25 random sweeps (rounded at 2 digits)

FFT length 256 512 1024 2048 4096
Overlap 4 17.93 21.52 23.05 21.88 19.99
Variance [%] 0.27 0.09 0.09 0.92 0.98
Overlap 8 36.96 41.93 43.13 42.33 40.46
Variance [%] 0.03 0.06 0.03 0.04 0.07

Table 3: RTISI-LA: Average SER [dB] for 25 random sweeps (rounded at 2 digits)

concerned in order to achieve the same SER, the number of iterations can be decreased
to about 20 but computation time is still longer than for the standard RTISI (156.749
seconds). While the unwrapped phase initialization has not shown any improvement in
reconstruction quality, it did not affect the computation time either. As far as the energy-
order processing is concerned, computation time was increased at about 10 percent for
the standard RTISI and about 30 for RTISI-LA.

For the testing scenario of random sweeps, RTISI and RTISI-LA perform as expected
[ZBW07] with a reasonable variance for the mean SER averaged over the 25 output
signals.

Generally, the reconstructed signals look very similar to the input signals -especially in the
frequency domain. This is not surprising since the basic RTISI criterion states that the
error between two spectra is subject to mimimization. Also perceptually, the algorithm
delivers satisfying results. Unluckily this is not true for the computation time needed in
order to deliver those. For audio signals, a delay smaller than 30 ms would be tolerable
in order not to be perceptible by humans. Thus, RTISI fails the real-time requirement
in the used programming environment (MATLAB).

5.3 The Real-Time Constraint

Considering the basic computational terms, real time ability in general is a weak expres-
sion as it always depends on the respective application and its framework. None of the
papers dealing with RTISI (e.g. [ZBW07,GS09,GS10,SD11]) gives constraints required
to achieve capacities in terms of computational load per second. Nevertheless, compa-
rability of different algorithms with regard to real-time capacity is both desirable and a
necessary goal. As already mentioned, the proposed iteration numbers range from 8 to
20. A closer investigation reveals that Zhu et al. [ZBW07], who suggest the lowest iter-
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ation number, achieve an average SER of about 20 dB while Spiertz and Gnann obtain
slightly better results (up to 28 dB) with a slightly larger number of iterations (about 12).

Certainly the repeated computation of FFTs and IFFTs represents a certain temporal
challenge and moreover, the real advantage of using an FFT, the weak dependency
of its computational demand on large signal lengths, cannot be exploited within signal
(frame- lengths) of only about 2000 samples.

However, we also observed in some cases convergence not taking place immediately.
Even though this must rather be seen as an informal statement, as no studies dealing
explicitly with this topic were conducted, claiming that this is more an issue of the
standard Griffin and Lim algorithm and that the extensive frame-overlapping done in the
RTISI-context usually prevents the algorithm from diverging [ZBW07] seems justified.

5.4 RTISI Restructured

Pure Data is an object-oriented, graphical programming language in the tradition of
MAX/ISPW intended for real-time audio signal processing and computer music [Puc96].
It provides two scheduling layers:
– Signal-Layer: for direct manipulation of signals, works in real-time synchronous to the

computers’ soundcard
– Control-Layer: designing the sound-manipulation framework, works asynchronous on-

demand, suitable for more complex calculation processes

While signals need to be processed constantly in order to preserve soundcard synchronic-
ity, for control messages, there is no need for constant calculation and they are processed
as quickly as possible. The iemmatrix library delivers a suitable framework for doing cal-
culations in the control domain, while keeping them very similar to MATLAB structurally.
However, Pure Data processes one block of given size per DSP-cycle and therefore, the
buffer-structure slightly changed as shown in figure 17.

In order to gain real-time ability while preserving a certain flexibility in order to being able
to eventually include improvements and extensions to the code as well as to downsize it
accordingly if required, also the preparation step needs to be reconsidered thoroughly.

The main difference is, as already mentioned, instead of working with frames as the
smallest unit, this algorithm is working with blocks. Thus, a block is load into the buffer
and shifted until it reaches the limit-and-sum stage. There, RTISI is performed.

Preparations

At first some parameters are determined:
– the desired FFT length N
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Figure 17: Buffer-Structure for overlap=4 and 16 iterations

– the desired overlap-factor, which corresponds to the STFT-overlap, since RTISI has
been shown to deliver its best performance when those parameter match [ZBW07,
SD11]

– the desired number of iterations niter
Then the blocklength in PureData corresponds to the desired hopsize R and subsequently
N corresponds exactly to a frame-length of the other RTISIs. The basic idea is letting
a block (subsequently referred to as HOP) travel through the buffer, while updating it
at each stage.

Figure 18: Overlap-add stage
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This updating is performed via matrix multiplication, so at each step, all HOPs currently
within the buffer are processed. Therefore, the size of the resulting buffer corresponds
to (N × M) with N the FFT-length and M the number of FFTs performed at one
iteration. Since for RTISI, more frames than those under reconstruction are required
due to the overlap-add criterion not being fulfilled at the buffers borders, the number of
iterated HOPs per iteration is smaller than M .

The preparation steps can be summarized as follows:

1. load HOPs sequentially into a buffer of dimension [1, N], until this buffer then
corresponds to one FFT-frame

2. buffer those buffer-rows into a 2-dimensional buffer with the length N and a depth
M for every incoming HOP

3. perform row-wise FFT over the whole buffer

4. compute spectrogram via taking its absolute value

5. update the buffer for each new incoming HOP

The result is an absolute-valued STFT (i.e. a spectrogram), where the STFT-length
corresponds to overlap ·R = N , and the other dimensionM can be chosen with respect
to the desired number of RTISI-iterations and the tolerable time-delay. This finally is the
input sent into RTISI, which when shifted corresponds to the buffer structure presented
in chapter 4.

Figure 19: Full buffer
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Referring to figure 19, not only the youngest HOPs need to get to the overlap-add stage
in order to being processed correctly, but HOPs 1 - 3 can not be fully overlapped either,
therefore HOP 4 is the oldest signal slice updated and can be written out.

Figure 20: Full Buffer shifted

The RTISI algorithm

Basically, once a HOP enters the buffer, it is processed immediately since the whole
spectrogram-matrix undergoes the modified ISTFT already outlined in chapter 3, but at
the summing-up stage, as shown in figure 20, only the first HOP of the last row is taken
into account. In addition, it has to be taken care of preserving the magnitude spectrum
contained within the buffer somehow for combining it with the phase values obtained by
RTISI later on.

The size of the then resulting matrix corresponds exactly to the size of the overlap-add
stage in figure 19, summing up the signal from Block 4 to 10.

This sum is the buffered again, according to
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Figure 21: The summed-up sequence buffered again

In a next step, this matrix is retransformed into the Fourier domain, its phase is cal-
culated and combined with the input spectrogram matrix according to figure 19. For
the newest frame (i.e. the last buffer row), phase can be initialized arbitrarily. Then,
the next HOP is load into the buffer, all HOPs are shifted one position further and the
procedure is repeated.

The first difference as compared to the state of the art structure consists in providing a
reduced set of parameters without loss of generality. This enforces usability and ensures
a relatively simple structure of the algorithm since in addition to the window-type, in-
stead of previously seven, only three parameters need to be determined and two of them
are already given by the STFT in most cases.

Without any additional measures to conquer spectral smearing, window-type and -length
as well as the buffer’s framelength should correspond to the number of FFT bins anyway,
while RTISI has been shown to operate in its optimum when its overlap corresponds
to the STFT overlap [ZBW07, SD11]. Linking the number of iterations and thus the
time needed for computation to the buffer depth is a common approach in real-time
computation that enforces the universal applicability of an algorithm since it facilitates
up- and downsizing according to the respective’s host processors requirements.
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RTISI Parameters
STFT Overlap STFT OverlapBuffer Overlap
Buffer Blocklength

FFT length NFFT-length N
Window Size
Buffer Depth Number of IterationsNumber of Iterations

Table 4: RTISI Parameters and their conjunction in the algorithm

5.5 Considerations on Realtime Capability

For calculations involving a huge amount of floating point operations, at the moment
FLOPS (Floating Point Operations per Second) deliver the most accurate measure of
computer performance.

The overall performance of a computer can be calculated as

FLOPS = cores× clock × FLOPs

cycle
(25)

and a typical processor nowadays can do about 4 FLOPs per cycle [Ver09]. Since
the algorithm has been implemented in Pure Data which is conceptually not capable
of multi-threading, only one core is used for processing. Assuming a 2.4 GHz clock,
this yields a theoretical performance of about 9.6 billion FLOPS. However, as far as
effective processing time is concerned this can rather be seen as a theoretical upper
limit since the complexity of current computer systems prevents from direct comparison
and equation 25 does not take into account practical issues related to the respective
hardware implementation.

The Multiply-Accumulate (MAC-) procedure where at each instruction a floating point
multiplication is computed and added to an accumulator, is very common in digital
signal processing due to its elementary importance for filtering operations. Typically it
is implemented as shown in figure 22 and is therefore computed as one single FLOP.
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Figure 22: MAC operation within one instruction cycle

Assuming an FFT-length N , one HOP undergoes the following processing Computing
one real FFT requires NldNMACs. At each position, the respective block undergoes
a real FFT and IFFT, therefore

#MACS = 2×NldN.

The number of HOP-positions depends entirely on the buffer-depth M , the FFT length
N and the hopsize R. The number of additions per iteration amounts to the number of
samples within the buffer N ·M decreased by the finished and void blocks yielding (for
even overlap factors)2 ·N · (R−1

2
) = N ·M −N · (R− 1).

In summary, this gives the following number of calculations:

Operations MACs
per iteration rfft 2 ·Nld(N)

rifft 2 ·Nld(N)
Overlap-Add N ·M −N · (R− 1)

# HOP-Positions N
R
·M

Since an iteration number of 25 has shown to be sufficient for many applications, an
estimate for the maximum HOPlength yields the result shown in figure 23:
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Figure 23: MACs required for respective FFT-lengths N

The black line designates the absolute upper limit of operations per second a state-of-
the-art processor is able to perform. Therefore, for an overlap of 4, the blocklength
should not exceed 256 samples. This yields a framelength of 1024 samples which seems
to be at least a good compromise between time- and frequency resolution [SD11].

Therefore, in general, realtime computation is possible with a high-level state-of-the art
computer system-especially when multithreading can be used, but it still is close to the
limit of typical computational capacities.
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6 Outlook and Conclusion

In this thesis, a framework for real-time iterative spectrogram inversion has been de-
signed and implemented.

Chapter 2 provides an in-depth revision on the theory of spectral signal processing with
a focus on the STFT and its computation. In order to facilitate further computation,
the STFT was derived in vector form.

In Chapter 3 the conditions under which spectrogram inversion is theoretically possible
are clarified. Derivation of a least squares approach leads to the Griffin and Lim algo-
rithm which is the core of most state-of-the-art applications.

Subsequently in chapter 4 its extensions to real-time capability and several improvements
concerning the adjustment of the respectives algorithms parameters with regard to the
signal under reconstruction are discussed.

Chapter 5 features the implementation of the Real-Time Iterative Spectrogram Inversion
algorithm (RTISI), an evaluation and gives a note on its realtime capability. In addition,
all the knowledge derived from the previous chapters is combined within the implemen-
tation of a simplified and more flexible, block-based and real-time capable framework.
Also, the provided structure favors down- and upsizing according to the respective plat-
forms’ processing capabilities and can thus be implemented on various devices.

After all, the algorithm still does not take into account any knowledge that might be
obtainable from the spectrogram. There are various low-level features that could be
applied on the spectrogram at negligible computational cost in order to pre-inform the
RTISI on its structure. For example, the last mentioned structure could be extended
to a dual resolution method using Miller Puckette’s pd˜-object [Puc09]. A transient
detection could be performed, deriving the optimal length for the respective block. Pd˜
could enable running two (or more) whole RTISI-buffers running simultaneously, one for
short and one for long blocklengths. A final overlap-add stage could then resynthesize
the signal according to its degree of harmonicity.

Momentarily, in order to ensure the real time requirement, enabling the algorithm to
multi-threading seems an absolute necessity since for the next couple of years processing
units are more likely to grow larger in number than in singular computational capabilities.

Further investigations could include the consistency criterion as an interpolation for
steady spectrogram components while transients could be estimated via the standard
RTISI thus saving further computation time.
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A Characteristics of Audio Signals

Generally spoken, there are two different kinds of audio signals: speech and music. Since
both are acoustic events and therefore belong to the realm of real signals and are equally
perceived by the human ear, it is not easy to find some characteristic differences. Even
worse. There are lots of systematic similarities, as all languages consist of phonemes
and all musical systems consist of notes. The specific sets thereof may vary, but from
psychoacoustics it is known that human perception works best in the spectrum from near
zero to about 3.5 kHz. This might be due to the reason that speech covers the same
range and in any case, is used by songwriters, composers, instrument manufacturers and
sound engineers in order to promote their music. For both audio waveforms is true that
most of the signal power is concentrated at lower frequencies.

Figure 24: Speech Signal

However, after closer investigation, some differences of the signal’s form and distribution
can be derived.

Figure 25: Music Signal

From a theoretical point of view, there are even more differences as a typical music
spectrum has about twice the bandwidth of a speech spectrum. Usually, there don’t
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occur any sounds between A1 (at about 27.5 Hz) and c8 (at 4186 Hz) in music although
musical instruments theoretically may cover more than the audible band.

Music tends to be composed of a multiplicity of tones, each with a unique distribution
of harmonics. This pattern should remain consistent regardless of the type of music
or instruments while in speech, much more emphasis is placed on voice tonality. Also,
speech exhibits an alternating sequence of noise-like segments while music alternates in
more tonal shape. Put differently, a speech signal is distributed through its spectrum
more randomly than music. This also explains the functionality of speech simulation as
an Auto Regressive process.

Speech has concentrated most of its power in frequencies lower than 4 kHz and is limited
to 8 kHz, whereas music can extend through the upper limits of the ear’s response at
20 kHz. But, as already mentioned, most of the signal power in music is concentrated
at lower frequencies as well.

Both signal types really differ as far as the power spectral distribution is concerned.
Usually the power of speech concentrates at low frequencies, then collapses very fast
through the higher values and contains no DC. For music, there is no such specific shape.
If a specific person talks alone, human tend to perceive the fundamental frequency al-
most accurately. This is not necessarily the case for a specific music instrument. A
instrument in general has many fundamental frequencies while the speech of a specific
person has only one. The same goes for the dominant frequency which also can only be
determined in its average when many musical instruments play simultaneously since the
amplitude reaches its maximum in a wide spectral range. For speech, this task is much
easier.

Excitation patterns for speech usually only cover a span of three octaves present, while
the fundamental music tones can span a range up to six octaves. Also the duration of
vowels in speech is limited by the talking person’s breath and is therefore very regular.
Not being constrained by the process of articulation, music exhibits a wider variation in
tone lengths.
Some additional generalizations can be made on the pattern speech exhibits: high-energy
conditions of voicing follow low-energy conditions. The envelope of music is unlikely to
exhibit such a shape -neither spectral nor temporal- and will be more continuous through
time. Also, in most cases, the zero-crossing rate in music will be greater than in speech.
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B Fast Fourier Transform

While the standard DFT delivers complexity O(N2) as the computation of N inner
products of length N is required, for an input signal of length N , where N is a power
of 2, the Cooley-Tukey algorithm delivers complexity O(NlgN). This can be achieved
by breaking up the original N-point signal into two sample-sequences of length N

2
. This

way, the length N-DFT is replaced by a several length-2 DFTs which can be computed
without any multiplication. This can be seen when rewriting the DFT in matrix-notation
X(ω) = Wx with x the input signal.


X[0]
X[1]
X[2]
X[3]
:

X[N − 1]

 =
1√
N


1 1 1 ... 1
1 φ φ2 φ3 ... φN−1

1 φ2 φ4 φ6 ... φ2(N−1)

1 φ3 φ6 φ9 ... φ3(N−1)

: : : : φ:

1 φN−1 φ2(N−1) φ3(N−1) ... φ(N−1)(N−1)




x[0]
x[1]
x[2]
x[3]
:

x[N − 1]


(26)

with φ = e−
j2π
N

For the case of the 2-point DFT this gives:[
X[0]
X[1]

]
=

1√
2

[
1 1
1 −1

] [
x[0]
x[1]

]
=

[
x[0] + x[1]
x[0]− x[1]

]
(27)

since according to Euler’s theorem:

ejθ = cos(θ) + jsin(θ) (28)

ej2πk = cos(2πk) + jsin(2πk) = 1∀k ∈ N

Those DFT-fractions can be recombined later via multiplication. Most FFT-algorithms
operate in their optimum when the input signal’s length is n2, usually the input is zero-
padded accordingly.

In order to reduce an even signal of length N to its 2-point DFTs, the DFT-sum can be
split into its odd and even terms:

X(k) =
N−1∑
n=0

x[n]e−jwkn

=
N−2∑

neven=0

x[n]e−jwkn +
N−1∑
nodd=0

x[n]e−jwkn

=

N
2
−1∑

n=0

x[2n]e
−j2π k

N
2

n
+ e−j2π

k
N

N
2
−1∑

n=0

x[2n+ 1]e
−j2π k

N
2

n
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This splitting-approach is called decimation in time. When applied in the frequency-
domain by splitting the number of frequency bins (for the IDFT), it is called decimation
in frequency. For the case whereN = 2k, where k > 1 and an integer, this decomposition
can be done K − 1 times, yielding several length-2 DFTs for which no multiplication is
required. In fact, the only multiplies needed are (approximately) N ones for re-combining
the lgN time-decimation stages. Thus, the radix-2 Cooley-Tukey algorithm yields the
complexity O(N lgN).

Figure 26: Data-Flow Diagram for the FFT

The overall FFT-algorithm summarized:

Algorithm 4 Fast Fourier Transform
1: X0,...,N−1 ← DITfft2(x,N, s)
2: X0,...,N

2
−1 ← DITfft2(x,

N
2
, 2s)

3: XN
2
,...,N−1 ← DITfft2(x+ s, N

2
, 2s)

4: for k = 0 to N
2
− 1 do

5: t← Xk

6: Xk ← t+ e
−j2π k

N
X
k+N2

7: Xk+N
2
← t− e−j2π

k
N
X
k+N2

8: end for

Generally, there are also other algorithms for FFT-computation at hardly the same cost
(such as Bluestein’s, Rader’s, Bruun’s or the Prime-Factor FFT), but not all of them
are universally applicable and the Cooley-Tukey algorithm is the most commonly used
method.

Additional computation time can be saved when acomodating the fact that real signals
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satisfy the symmetry property
XN−k = X∗k (29)

where X∗ is the complex conjugate of X. Therefore, there is a lot of redundancy that
can be removed in order to make the FFT-computation more efficient and computation
effectively only needs to be performed on about half of the samples.
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C TSM: Operating directly on the STFT

A typical example for the problem of phase aligning is pitch-shifting (or, equivalently,
time-stretching). The frequency of a sound piece is changed either in order to correct
the pitch or to change the pieces tempo. This was also the application the first universal
phase estimation approach by Griffin and Lim [GL84] was dedicated to. As already
derived in the introduction, phase depends on the frequency and thus, has to be corrected
accordingly. The common standard approaches to do so will be discussed in this chapter.

C.1 Time Scale Modification

TSM aims to either change a sound files tempo without affecting its frequency content
(i.e. the perceived pitch) or to change the frequency content (e.g. changing the pitch)
without affecting the file’s temporal structure. The first is especially useful for speech
processing purposes since perceptually, the formant spacing is a measure of the talking
human’s vocal tract and therefore should not be affected by time-stretching or -squeezing
as the whole impression and characteristic of the speaker would be changed (Munchkin
Effect [Smi14]). But also music sounds natural only within certain limits of temporal
deviation [Smi10]. Changing the frequency content however, is usually a desired feature
in recording studios providing often the last possible method to correct a wrong note.

The basic implementation of TSM happens usually within the sines-noise-transient (S+N+T)
framework. When a transient is detected, it is translated to the new signal unchanged
only the harmonic (and noisy) parts of the signal undergo the desired modification.

Figure 27: Time Scaling using S+N+T

The time-scale modification itself can be efficiently done in the spectral domain based
on the STFT and its properties: At first the STFT is performed as outlined in chapter
2. Then, for resynthesis, the hopsize R is changed according to R

α
, where α denotes
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the desired scaling factor. Under the assumption of perfect transient detection for
time-squeezing purposes, no major error is to be expected, as the FFT of a continuous
harmonic is just shortened. When the time-scale needs to be stretched, however, spectral
interpolation becomes necessary, both for magnitude and phase. For the simplest case
of a rectangular window with no overlap, the first STFT frame will be resynthesized
normally, but the starting point for the second frame will be situated somewhere in-
between the first two frames and some magnitude information needs to be invented.
Linear magnitude interpolation gives perceptively good sounding results and can be
computed quite easily:

Xnew(ω) = [(1−mi−1 +mi)|Xi−1(ω)|+ (mi−1 −mi)|Xi(ω)|]ejθ(ω) (30)

with Xi and Xi−1 the STFT frames the new frames Xnew starting point is situated
in-between and where m is the "FFT-pointer" which is shifted each step by R

α
.

The question that arises now is how to choose a suitable phase ejθ(ω)? And how does it
evolve over time?

Interpolating phase is in fact not easy since on the one hand, what is known about the
relative phase at a certain bin k should be preserved in order to prevent attack-smearing.
On the other hand however, frame transitions should be smooth and therefore some
adjustment is inevitable. And as a third condition, the overlap-add property must not
be violated in order to ensure perfect reconstruction.

In the context of the S+N+T-model, it might be applicable to keep relative phase values
within the transient-section while taking care of a smooth phase continuation for the
harmonic parts of the signal. For a perceptual satisfying result it is neither possible nor
necessary to have continuos phase propagation for all harmonics within a signal.

Typically in literature, three approaches can be found for accomplishing the task of phase
aligning:

– aligning phase continuously: Phase-Vocoder
– preserving relative phase information: Phase-locked Vocoder
– operating in the time-domain: Overlap-Add TSM

C.2 Phase Vocoder

When proposed in 1928 [Dud39], the channel vocoder was initially intended to encode
speech electronically. Based on the assumption of computing the envelope from a smooth
sinusoidal signals, it consisted of filterbank driven by a relaxation oscillator and resistor
noise respectively for simulating voiced and unvoiced speech. It was reinvented as the
phase-vocoder in the 60ies of the previous century [Puc09]. Computer technology en-
abled its implementation as a sliding STFT and both, amplitude and phase values could
be computed, saved and modified. Soon thereafter, the phase vocoder became the tool
of choice for computer musicians performing additive synthesis and can be said to have
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pioneered the following subband-coders. Many variations and improvements have been
proposed and apart from the time scale modification referred to in this work, it has been
used in speech- and data compression and for many musical related applications such as
reverb suppression and frequency shifting.

Figure 28: Schematic of the Vocoder

The phase vocoder [Dud39, Ell02, Por76] does not keep any relative phase information
when continuously unwrapping the phase. As a result, the time-domain signal obtained
is severely corrupted as can be seen in the next figure.
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Figure 29: Time-Stretching using the Phase Vocoder - Time Domain

Further investigation in the frequency domain reveals that also the magnitude coherence
suffers from this approach. The incoherent amplitude values at the frames’ transition
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points lead to distortions in the frequency domain at multiples of the frame rate (figure
30).
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Figure 30: Time-Stretching using the Phase Vocoder - Frequency Domain

C.3 Phase-locked Vocoder

The improved vocoder naturally delivers a better result [Puc95,Sal07,Roe03]. Since rel-
ative phase values are kept, the frequency bins at frame transitions are phase-modulated,
but the temporal envelope is more or less preserved (figure 31). The spectral distortion
is negligible as compared to that of the standard phase-vocoder, but, as expected, the
signal spreads over the whole spectrum due to the modulation introduced (figure 32).
Primarily harmonic signals are affected by this kind of corruption.
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Figure 31: Time-Stretching using the Phase Locked Vocoder - Time Domain
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Figure 32: Time-Stretching using the Phase Locked Vocoder - Frequency Domain

C.4 Overlapp-Add Method

Since phase aligning in the frequency domain does not deliver completely satisfying re-
sults, for completeness the third method presented operates in the time-domain only.
Either, the respective S+N piece is cut, or it is looped by the desired factor. At the
transition points from one loop to another, the signal’s envelope is smoothed and cor-
relation is maximized in order to prevent sharp steps. This approaches solution is a
compromise between instantaneous phase preservation and phase unwrapping, the sig-
nal’s time-domain shape is not preserved as well as in the locked-vocoder case (figure
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33) but is neither as severely corrupted as the standard vocoder would do.
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Figure 33: Time-Stretching using the Overlap-Add Method - Time Domain

0 1000 2000 3000 4000 5000 6000 7000
10

−1

10
0

10
1

10
2

10
3

10
4

Frequency [samples]

In
p

u
t 

S
ig

n
a

l

Overlap−Add Method

0 1000 2000 3000 4000 5000 6000 7000
10

−1

10
0

10
1

10
2

10
3

10
4

Frequency [samples]

O
u

tp
u

t 
S

ig
n

a
l

Figure 34: Time-Stretching using the Overlap-Add Method - Frequency Domain

Since the signal under investigation did not contain any transients, the magnitude deliv-
ered by the algorithm is quite smooth (figure 34). In general, the algorithm should be
adjusted in order to not affect transients, otherwise the consequences both in the time
and in the frequency domain might become unpredictable.

For speech signals however, the latter (possibly modified or extended [QH95]) is often
the method of choice, since formant shapes get not affected by this approach. For music
however, artifacts caused by signal cutting and looping are usually perceptible.
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Apart from the fact, that signal reconstruction with those three approaches is far from
perfect, none of them can be trusted to deliver reliable results in any constellation and
situation. The methods introduced in the next chapter approach phase estimation from
a more elaborated point of view.


