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Abstract

This thesis deals with the extraction of singing voice signals from 2-channel polyphonic
musical recordings. The proposed method consists of 2 steps. First, the assumption is
used that singing voice is very likely positioned in the center of the stereo panorama.
Using a similarity measure, this „center“ part is extracted and the resulting monophonic
signal represents the basis for the subsequent processing. Second, voiced singing voice
and unvoiced singing voice are extracted separately and summed up in a final step, to
form the extracted singing voice. The extraction of the voiced singing voice is realized
by detecting the fundamental frequency f0 of singing voice, along with its corresponding
partials. Using a sinusoidal model, all partial frequencies are then synthesized. The
extraction of the unvoiced singing voice is realized by segmenting the monophonic signal
in Time-Frequency-Units. Those that can be associated with singing voice are extracted.

Preprocessing the stereophonic recording, improves the accuracy of the voiced singing
voice extraction process by 12%, and the accuracy in extracting the unvoiced singing
by 7%. The detection of the singing voice f0 is based on the Diploma Thesis of A.
Rahimzadeh. We propose modifications and results show, that the average accuracy in
detecting the f0 is improved by 16%. The proposed method to extract singing voice has
been evaluated using blind source separation performance measures and yields a average
Source to Distortion Ratio of 35.1dB, which is an improvement of 5-10dB compared to
state of the art methods. The average Source to Distortion Ratio results in -2.4dB.
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Kurzfassung

Ziel dieser Arbeit ist die Extraktion der Gesangsstimme aus einer polyphonen Stereoauf-
nahme. Die vorgeschlagene Umsetzung besteht aus 2 Verarbeitungsschritten. Zunächst
wird die Annahme verwendet, dass sich die Gesangsstimme in der Mitte des Stere-
opanoramas befindet. Unter Verwendung eines Ähnlichkeitsmaßes wird jener Teil aus
der Stereoaufnahme extrahiert. Das resultierende Mono-Signal stellt das Ausgangssignal
für die weitere Verarbeitung dar. Zweitens, wird der stimmhafte und der stimmlose Anteil
des Gesangs separat extrahiert. Der extrahierte Gesang setzt sich dann aus der Summa-
tion beider genannten Anteile zusammen. Die Extraktion des stimmhaften Anteils beruht
auf der Detektion der Grundfrequenz f0 des Gesangs und der dazugehörigen Obertöne.
Unter Verwendung des „Sinusoidal Model“ werden alle Partialtöne des Gesangs syn-
thetisiert. Zur Extraktion des stimmlosen Anteils des Gesangs, wird das Mono-Signal in
der Zeit-/Frequenzdomäne in Segmente unterteilt. Jene Segmente welche dem Gesang
zugeordnet werden können, werden dann extrahiert.

Die Vorverarbeitung des Stereo-Signals verbessert die mittlere Genauigkeit der Extraktion
des stimmhaften Gesangs um 12% und jene des stimmlosen Gesangs um 7%. Die Detek-
tion der Gesangs f0 basiert auf der Diplomarbeit von A. Rahimzadeh. Die vorgeschlage-
nen Änderung verbessern die mittlere Genauigkeit um 16%. Die Qualität der Extraktion
der Gesangsstimme wurde mit Hilfe üblicher Maße evaluiert und erreicht eine mittlere
„Source to Distortion Ratio“ von 35.1dB. Dies stellt eine Verbesserung um 5-10dB zu
aktuell verwendeten Methoden dar. Die mittlere „Source to Distortion Ratio“ liegt bei
-2.4dB.

III



1 Introduction

1 Introduction

1.1 Motivation

In recent years, digital music libraries have rapidly grown due to the significant increase
in distribution of musical content, e.g. by online platforms. With this development
comes the need for tools to extract descriptive features for individual musical pieces
which can be further processed and linked, e.g to build user recommendations systems.
Music information retrieval aims in extracting such information from musical content.
Singing voice is of particular interest because of its highly informative character. Many
methods dealing with singing voice were proposed over the years, especially in the case
of separating the voice from other musical sources. Although the separation quality has
increased, it has become not better than satisfactory and thus is still subject of active
research.

Separated singing voice is of great interest, since it contains not only the lyrics, which by
themselves include a very high amount of information, but also influences significantly
the mood or the genre of a song. Furthermore, the extracted singing voice can be used
in a variety of applications, e.g. automatic lyrics recognition and alignment, singer iden-
tification and remixing applications. To directly extract information from a polyphonic
recording is a very challenging task. The more sources present in a recording the more
likely misinterpretations will happen or, technically speaking, the more „robust“ the al-
gorithm needs to be against interferences. Therefore, methods to separate or at least
attenuate sources in general and singing voice in particular are of high interest. Besides
the already mentioned benefits in having the separated singing voice, one motivation
behind attenuating the singing voice, from a commercial standpoint is, to build karaoke
versions of already established musical recordings without having to re-record the whole
piece, which could either be very expensive or might even not be possible, for example,
if the artist deceased or the previously used equipment is no longer available.

Sebastian Rieck, Singing Voice Extraction 1



1 Introduction 1.2 Objective

1.2 Objective

Singing voice separation can have mainly to objectives. First, to leave the accompani-
ment intact while removing the singing voice (e.g. karaoke applications) and second, to
preserve the singing voice and to remove the accompaniment. The latter is the subject
of this thesis. Theoretically, if one is able to extract solely the singing voice, one could
simply subtract the singing voice from the original recording to gain the accompaniment
signal, which we consider a possible additional benefit.

The goal of this thesis is to investigate and implement a suitable algorithm for the
task of singing voice extraction using MATLAB®. The input signal is considered to
be a 2 channel polyphonic audio-recording in 16bit resolution and sampled at 44.1kHz.
Furthermore, we assume the recording to be western music.

Sebastian Rieck, Singing Voice Extraction 2
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1.3 Singing Voice Characteristics

In order to cope with the challenging tasks involved in extracting the singing voice, let
us first revisit the main properties of singing voice.

Sounds produced by the human voice can be considered to consist of two parts, voiced
sounds and unvoiced sounds. Voiced sounds consist of narrowband sinusoids and un-
voiced sounds of broadband or stochastic components. Speech and singing voice share
this property, although there are distinct differences, as shown in table 1. Due to the fact
that singers intentionally stretch the voiced parts to match accompanying instruments,
the singing voice exhibits significantly less unvoiced sounds than speech. For the voiced
part, the difference between speech and singing voice lies in the pitch range and the
pitch evolution over time. For speech the pitch range is smaller, pitch evolves slower
over time and usually drifts down towards the end of a sentence. In contrast, singing
voice has a wide pitch range and may exhibit rapid pitch changes.

Property Speech Singing Voice
pitch range 80 - 400Hz 80 (bass) - 1400Hz (soprano)
pitch evolution slow drift down, piecewise constant,
over time smooth changes abrupt changes in between
voiced sounds „60% „90%
unvoiced sounds „40% „10%
interferences mostly uncorrelated to mainly harmonic, broadband

target speech and correlated with singing

Table 1: Properties of singing voice compared to speech, from [LW07]

Voiced singing voice

The presence of a fundamental frequency f0, usually referred to as pitch, and moreover its
evolution over time differs between singing voice and instruments. For instance, singing
voice exhibits a higher f0 variability then other musical sources, which makes this a very
important property to use in the classification process [Rah09]. Another important prop-
erty of singing voice is the occurrence of vibrato (Frequency-modulation) and tremolo
(Amplitude-modulation) as shown in figure 1. The average vibrato frequency is around 6
Hz [RP09] and the extent ranges between 0.3-1 semitones [KD06]. Additionally, since a
singer is not able to produce an f0 of arbitrary frequency (compare figure 2), algorithms
dealing with vocal pitch estimation [Rah09], Besides the existence of f0 and its proper-

Sebastian Rieck, Singing Voice Extraction 3



1 Introduction 1.3 Singing Voice Characteristics

ties, the spectrum of singing voice is of importance. First, it can be assumed to be to
harmonic, i.e. each partial frequency is a integer multiple of f0 [KD06]. Second, singing
voice may exhibit accentuated frequency regions called the singer’s formant. Figure 3
depicts that this formant can be observed mainly for operatic singers. The reason being,
that the perceived loudness of a singers increases by matching the formant frequency
with the fundamental frequency [KD06]. In popular music, this is usually not necessary
since they rarely perform acoustically. [RVPK08], [Rao09] restrict possible vocal pitches
usually within the range 100Hz and 1kHz.

Figure 1: A) The fundamental frequency trajectory and B) the loudness trajectory mea-
sured from a note A4 (440 Hz) performed by a female singer. The f0 curve clearly shows
vibrato, whereas the loudness curve shows tremolo. (from [KD06])

Zangger Borch D & Sundberg J: Spectral distribution of solo voice … 
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Table 1. Instruments used in the different 
accompaniment sounds analyzed. 

 

No. Instruments playing 

1 Drums, Electrical bass, Percussion, 
Electrical guitar with distorted sound 
played single string, Tenor saxophone 
and Digital piano. 

2 Drums, Electrical bass, Electrical guitar 
with distorted sound played single-
string, Digital piano. 

3 Drums, Electrical bass, Electrical guitar 
with distorted sound played with power 
chords, Tenor saxophone, Percussion 

4 Drums, Electrical bass, Electrical guitar, 
Digital piano, Percussion, Tenor saxo-
phone. 

5 Drums, Electrical bass, Electrical guitar 
with distorted sound played with power 
chords, Tenor saxophone. 

6 Drums, Electrical bass, Percussion, 
Electrical guitar, Tenor saxophone. 

 
four different pop singers’ performances of the 
solo voice of different songs from the pop reper-
toire; and (4) copies of excerpts from com-
mercial recordings of classical orchestral music 
by WA Mozart, L Beethoven, P Tschaikovsky, 
and R Wagner. 

Six excerpts representing different examples 

of common pop music styles were selected from 

the “Fasching” material and digitized (Table 1). 

All excerpts were examined by means of 
long-term-average spectrum (LTAS) analysis 

(Jansson & Sundberg, 1976a and b), using the 

Soundswell workstation program package 

(Ternström, 1992). As the upper limit of the 

pitch range typically reaches A4, the analysis 

bandwidth was 400 Hz. 

The reproducibility of LTAS was tested by 
comparing analyses of 20, 30 and 40 s duration 

of singing and a typical example of accom-

paniment. The results show that for singing and 

also for orchestral sound, a stable LTAS was 

obtained after about 20 s (Figure 1). The LTAS 

of instrumental music , however, varied con-

siderably depending on the combination of 

instruments played, as expected. 

Results 
Figure 2 compares LTAS of the pop singer and 

an operatic tenor who sang the same excerpt in 

the same key, duration 17 s, approximately. 

Both singers used tempo and phrasing of their 

own choice. In the graph, both spectra were 

normalized such that the highest LTAS level 
was set to zero dB. The greatest difference 

between these two voices concerned the singer’s 

formant.  

In the case of the operatic singer, the level 

below the singer’s formant peak is lower than in 

the case of the pop singer. This would reflect a 

higher frequency of the third formant combined 
with a lower frequency of the second formant in 

front vowels. A high third formant adds to the 
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Figur 1. Reproducibility of LTAS as demonstrated by analyses of 20, 30 and 40 s duration of singing 

and a typical example of pop music accompaniment. Figure 2: Long-Term-Average Spectrum of singing voice (left figure) and accompaniment
(right figure) in pop music for different averaging durations, from [ZBS02]
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prominence of the singer’s formant peak and a 

low second formant in front vowels reduces the 

vowel dependence of the singer’s formant peak 

and thus contributes to timbral equalization of 

vowels (Sundberg, 2001). The pop singer 

showed a considerably higher level near 3.5 kHz 
than the opera singer. This would be due to 

higher frequencies of the fourth and fifth 

formants. 

The same pop singer’s LTAS can be 

compared with the LTAS of four other pop 

singers in Figure 3. The curves vary within a 

range of about ±3 dB between 2.5 and 4 kHz. 

None of the curve exhibits a peak similar to the 
tenor’s singer’s formant. Rather, the curves are 

characterized by a set of two or three, less 

prominent peaks and a more continuous overall 

decrease of level with increasing frequency. 

Also, all curves show a peak somewhere 

between 3.5 and 4.5 kHz. The figure shows that 

all these pop singers lacked a singer’s formant. 
Furthermore, LTAS of the pop singer shown in 

Figure 2 does not deviate from those of the other 

voices in any remarkable way. This indicates 

that this singer was reasonably representative for 

pop singers in general. 

The singer’s formant has been found to 

increase the perceptibility of a singer’s voice in 
the presence of a loud orchestral accompani-

ment; a long-term average spectrum of a 

classical symphonic orchestra typically shows a 

peak near 0.5 kHz and a rather steep slope above 

this frequency (Sundberg, 2001). This implies 

that the singer’s formant is located in a 

frequency region where the competition from 

the accompaniment is moderate. In a sense, 
then, the operatic singing voice and the 

accompaniment seem to be mutually optimized. 

Hence, it is interesting to examine long-term 

average spectra of accompaniments that are 

typically used in pop music. 

Figure 4a shows LTAS of a variety of 

instrumentations typically occurring in pop 
music, see Table 1. For the sake of comparison, 

the levels have been normalized with respect to 

the highest level, which mostly occurred in the 

vicinity of 100 Hz. In the case of example 4, a 

peak appeared near 0.6 kHz, which was 

produced by a solo tenor saxophone. The mean 

relative level at 3 kHz varied considerably 
between the examples. Instrumentations 5 and 2 

presented the highest and lowest relative levels 

in this frequency region, amounting to –25 dB 

and –44 dB, respectively. 

For comparison, Figure 4b shows LTAS of 

five excerpts from commercial recordings of 

loud sections from classical music played by 

symphonic orchestras. The levels are normalized 
as in Figure 4a. In these cases, high levels 

occurred up to about 400 Hz, and above this 

frequency the LTAS contour sloped rather 

steeply toward higher frequencies. The relative 

level near 3 kHz is similar to those found for the 

pop music examples. 

The normalization of the curves in Figure 4 
depended on a peak in the bass range near 100 

Hz. The sound level at these low frequencies 

are, however, not likely to have a great influence 

on the masking of a singer soloist’s voice. Of 

greater interest would be the mean LTAS slope 

above 0.5 kHz. Table 2 compares the average 

LTAS slope in the frequency range 1-5 kHz. For 

the pop ensembles, the mean slope varies 
between –7 and –12 dB while for the classical 

examples the mean slope varies between –13 
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Figure 2. LTAS of a pop singer and an 

operatic tenor singer who sang the same 

excerpt in the same key. 
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Figure 3. LTAS of the pop singer shown in Fig. 
2 and of four other pop singers performing 

songs of more than 60 s duration. 

Figure 3: Long-Term-Average Spectrum of a pop singer and a operatic tenor

Unvoiced singing voice

The structure of unvoiced sounds for singing voice and speech can be assumed very
similar, if not identical. In the context of this thesis, phonemes consisting of fricatives
are of main interest. They usually reside in the frequency range above 2kHz and can
exhibit significant energy up to 10kHz [Ter98]. An example of 3 different fricatives and
their spectrum is shown in figure 4. In addition, the occurrence of unvoiced sounds is
usually very short in duration, i.e. a few 10ms [Ter98].

Figure 4: Fourier Intensity Spectrum for 3 different fricatives, from [Ter98]
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1.4 Singing Voice Separation

In recent years, many methods in the field of Singing Voice Separation (SVS) have been
presented. Although music recordings of last years are predominantly produced in stereo,
most of the SVS methods deal with monaural recordings, which is considered to be the
more challenging problem. Generally speaking, the underlaying principles can be roughly
divided into:

1) Vectorization or Base Vector Decomposition
The goal of this quite common principle is to find all linearly independent com-
ponents of a signal. Examples are Principle Component Analysis (PCA), Com-
putational Auditory Scene Analysis [Mel91], Non-negative Matrix Factorization
(NMF) [CR08] and Independent Component Analysis (ICA) [VB05].

2) Probabilistic Approaches
For instance, Bayesian Models [OPB07], Gaussian Mixture Models [OPGB05],
which are usually applied on the STFT to model spectral shapes corresponding to
different sources.

3) Grouping of Segments
Initially segments are build, often in the time-frequency domain, which then are
classified and grouped to form a mask [CL08], [HJT08], [LW07].

4) Parametric Approach
First a signal model is defined, say a sinusoidal model. Then the parameters of
this model are estimated, often introducing a kind of „best-match“ criterion. This
approach is used for Vocal Melody Transcription [RVPK08], [Rah09]. The final
separation is then based on the estimated vocal melody.

There are of course many methods which do not use solely one distinct approach, but
rather a combination. Nevertheless, each approach has its restrictions. For instance a
particular problem arises when using NMF which is inability to separate non-stationary
sources. Although efforts have been made to extend the model, where an individual non-
stationary source is characterized by a set of time-dependent spectral bases (non-negative
matrix deconvolution [P.04]), the problem remains challenging and not completely solved.
ICA on the other hand requires that the number of sensors (observed mixtures) must be
larger or equal to the number of sources. The number of sensors is generally limited to
one or two (mono or stereo) channels which is always less than the number of sources,
if we assume that singing voice is usually accompanied by more than one other musical
source. Probabilistic methods like Bayesian Models require all relevant probability values

Sebastian Rieck, Singing Voice Extraction 6



1 Introduction 1.5 Outline

to be known, which again is only true very rarely. Signal model driven approaches often
suffer under noisy conditions, like reverberant mixtures.

Methods to separate singing voice from stereophonic recordings in particular, often use
spatial cues to locate the position of singing voice in the stereo panorama [SAP10],
[BL04], [Ave03] or make use of the assumption that singing voice is very likely positioned
in the center of the stereo panorama [CL08].

Apart from considering stereo or monaural recordings, extracting the unvoiced compo-
nent of singing voice has enjoyed little attention [HJT08], mainly because it is regarded to
contain a low amount of information, which we belive depends on the intended purpose
for extracted singing voice signals.

1.5 Outline

This thesis is organized as follows:
– Chapter 2

describes the proposed method including the differences in processing voiced and
unvoiced singing and the use of panning information.

– Chapter 3
explains how the used classifiers are trained and how the used ground truth is build.

– Chapter 4
represents the evaluation of the proposed method

– Chapter 5
discusses the results

– Chapter 6
summarizes this thesis by suggesting possible improvements for future work.

Sebastian Rieck, Singing Voice Extraction 7



2 Proposed Method

2 Proposed Method

2.1 Overall Structure

We assume that the extraction of the singing voice from a polyphonic mix can be divided
into two separate extraction tasks. First, extracting the voiced and second, extracting the
unvoiced component of singing voice. The former is solved by locating the appropriate
vocal pitches evolving over time and re-synthesizing them and the latter is realized by
calculating a time-frequency mask. As shown in figure 5, as a first step, we incorporate
the panning information of a stereo recording by assuming that singing voice is very
likely to be panned around the center. Next, the voiced and the unvoiced components
of singing voice are processed separately and finally the resulting time domain signals
are summed up to form the extracted singing voice.

panning

preprocessing

voiced singing

processing

unvoiced singing

processing

extracted 

singing voice+

x[n] PI[n]

harm./perc.

decomposition

harm./perc.

remixing

2-ch polyphnic 

audiorecording

Figure 5: Overall structure of the proposed method

2.2 Panning Preprocessing

Since this thesis deals with polyphonic stereo signals, the panning of individual sources
represents an important information which can be used in the task of singing voice
extraction. In a multi-track environment, different tracks are mixed using amplitude
panning to create a stereophonic effect. Normally, the lead vocal tracks are panned to
the center, hence this processing stage tries to benefit from this assumption.
Methods dealing with stereo input signals often initially compute some sort of mono
signal in order to reduce the amount of information that needs to be processed. In most
cases, both channels are simply summed up, such that frequencies present in both chan-
nels are reinforced, assuming they are in phase. In our case, we would like to preserve
all frequencies coming from the center, while attenuating those coming from either side
with more precession and/or flexibility.
A method to derive such a signal based on the panning is described by Cobos and
Lopez [CL08] and consists of the following steps.

Sebastian Rieck, Singing Voice Extraction 8



2 Proposed Method 2.2 Panning Preprocessing

If we assume a simplified signal model, with N sources s1ptq, ..., sNptq, than the left x1ptq

and the right channel x2ptq can be formulated as follows:

xlptq “
N
ÿ

j“1

aljsjptq, l “ 1, 2, (1)

where alj are the mixing coefficients which, in most of the Audio Workstations, follow
the energy preserving law:

a1j “ cos

ˆ

Φπ

2

˙

(2)

a2j “ sin

ˆ

Φπ

2

˙

(3)

a2
1j ` a

2
2j “ 1, (4)

where Φ is the stereo panning knob value.
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Figure 6: (a) mixing coefficients versus panning knob Φ, (b) similarity and panning index
versus panning knob Φ

The relationship between mixing coefficients and panning knob can be seen in figure 6a.
Given the linearity of the Short Time Fourier Transform (STFT), the model in Equation
(1) can be rewritten such that,

Sebastian Rieck, Singing Voice Extraction 9



2 Proposed Method 2.2 Panning Preprocessing

Xlrk,ms “
N
ÿ

j“1

aljSjrk,ms, l “ 1, 2, (5)

where k is the frequency index, m being the time index and Xlrk,ms and Sjrk,ms are,
respectively, the STFT of xlptq and sjptq.

Next, a similarity measure is defined

ψrk,ms “ 2
|X1rk,msX

˚
2 rk,ms|

|X1rk,ms|2 ` |X2rk,ms|2
, (6)

where * denotes the complex conjugation. The function reaches its minimum of zero if
the source is panned completely to either side, whereas if the source is panned to the
center, the function will attain its maximum value of one. Because of the quadratic
components, an ambiguity in knowing the lateral direction of the source is introduced.
To resolve this, partial similarity measures are calculated

ψirk,ms “
|Xirk,msX

˚
j rk,ms|

|Xirk,ms|2
, i ‰ j (7)

and their difference
∆rk,ms “ ψ1rk,ms ´ ψ2rk,ms (8)

which is then expanded to form the ambiguity-resolving function

∆̂rk,ms “

$

’

’

’

&

’

’

’

%

1, ∆rk,ms ą 0

0, ∆rk,ms “ 0

´1, ∆rk,ms ă 0

(9)

The panning index Ψrk,ms finally results in

Ψrk,ms “ r1´ ψrk,mss∆̂rk,ms, (10)

which identifies the panning locations of all time-frequency components. Theoretically
one could simply pick all components for Ψ “ Ψ0, but this would have two main
drawbacks. First, due to possible interference of different sources and their corresponding
partials, the desired source may have significant energy for Ψ ‰ 0. Second, extracting
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2 Proposed Method 2.2 Panning Preprocessing

only components at Ψ0 would very likely lead to „musical noise 1“.
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Figure 7: weighting factor versus Panning Index value, window width Ψw “ 0.5

Thus a Gaussian Window Θrk,ms (Figure 7) is applied to let components with Ψ0 pass
unmodified and weight components near Ψ0.

Θrk,ms “ υ ` p1´ υqe
´pΨrk,ms´Ψ0q

2

2ζ , (11)

where υ is a floor value to prevent musical noise and ζ controls the window width. It
can be calculated as follows:

ζ “ ´
pΨc ´Ψ0q

2

2logA
, (12)

where Ψc is the panning index value where the window reaches the gain value A. For
future reference, we define the window width Ψw to be

Ψw “ 2 ¨Ψc (13)

The specific values were set to Ψw “ 0.5 and A “ ´6 dB leading to the gaussian
window shown in figure 7. For a detailed evaluation of the gaussian window width Ψw

the reader is referred to chapter 4.1 on page 52.

Next, the individual panning filtered signals can be computed by

x1lrns “ IFFT tXlrk,msΘpΨrk,msqu l “ 1, 2; k “ 1, .., N ;m “ 1, ..,M (14)

1. The term „musical noise“ describes the randomly fluctuating spectral components
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2 Proposed Method 2.2 Panning Preprocessing

for every frequency k and every frame m, where N is the FFT length and M the total
amount of frames. The filtered left and right channel can then be summed up to form
the resulting signal used for the subsequent analysis

PIrns “
1

2
px11rns ` x

1
2rnsq (15)

The STFT settings used for the panning index preprocessing are a 4096-point („92ms)
Hann window with a hopsize of 1024 samples („23ms). Figure 2.2 gives an example for
the processed panning index values and the resulting weighting factors for a pop music
track.
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(a) Panning index

(b) weighting factor

Figure 8: Panning Index example, (a) shows the computed panning index values for each
frequency bin and (b) the resulting weighting factors for a pop music track (@44.1kHz,
16bit, stereo)
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2.3 Voiced Singing

The extraction of the voiced singing voice is based on the Diploma thesis of A. Rahimzadeh
[Rah09], where the author presents the idea to detect and track the vocal pitches, i.e.
f0, using an auditory motivated approach. Since the results were quite promising, we in-
corporated the key principles of his work along with further improvements. An overview
of the proposed method can be seen in figure 9. After processing the stereo input
signal with the presented panning index preprocessing, the resulting spectrum is now
passed through the auditory processing stage, modeling principles of the human pitch
perception. Next, multiple pitch estimates are extracted and their evolution over time is
tracked. The decision whether a pitch track belongs to the lead vocals or not takes place
in the classification stage, incorporating a Support Vector Machine (SVM). Finally, the
time-varying amplitudes, frequencies and phases of the vocal f0 trajectory along with its
corresponding partials are estimated from the original input spectrum and synthesized
using Spectral Modeling Synthesis (SMS) (adapted from previous work [Rie09]) to form
the voiced singing time domain signal.
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Figure 9: Voiced singing processing stages
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2 Proposed Method 2.3 Voiced Singing

2.3.1 Auditory Preprocessing

The vocal f0 estimation using an auditory motivated approach has been used and studied
in detail by Rahimzadeh. Hence, we present a short summary of the essential principles,
for detailed informations the reader is referred to [Rah09], [Kla08].

Generally speaking, the auditory preprocessing intends to model the human pitch per-
ception. The proposed computational model [Rah09] that tries to mimic this behavior
incorporates the stages shown in figure 10.

Auditory 
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Preprocessed

Signal
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Subband

Spectrum

Auditory 

Preprocessed
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Rectification

& Low-pass

.
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channels

Figure 10: Auditory Preprocessing stages

First, the input signal, in our case the panning preprocessed signal, is passed through a
bank of bandpass filters which model the frequency selectivity of the inner ear. These
filters are called auditory filters and are realized as gamma-tone filters. A total of 70
filters are used, with center frequencies ranging from 65Hz up to 5.2kHz. These center
frequencies are logarithmically spaced, i.e. uniformly distributed on a critical-band scale.
The magnitude response for every 3rd filter is shown in figure 11. We use the same
filter-implementation proposed by [Rah09], which consists of a cascade of 4 second-
order infinite impulse response (IIR) filters.
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Figure 11: Magnitude response of gamma-tone filters used in Auditory Preprocessing,
every 3rd filter is displayed for better readability

To model the inner hair cells and their contribution to the auditory nerve, each filter
output (called auditory channel) is now processed separately. First by compression, then
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halve-wave rectification (HWR), and lastly low-pass filtering. The latter is performed to
suppress frequency components at twice the auditory channel center frequency induced by
HWR. Finally, all channels are summed up to build what Rahimzadeh calls the Summary
Subband Spectrum, which is the basis for the subsequent analysis.

Apart from improvement in using the auditory preprocessing in the task of pitch esti-
mation, which was presented by [Rah09] and [Kla08], we would like to emphasize one
important property. As figure 12 illustrates, the HWR has the effect of generating spec-
tral components not only at multiples of the channel center frequency, but also in the
base band. These arise from beating components which corresponds to the frequency
intervals between partials. For a strictly harmonic tone complex, this frequency interval
is constant and corresponds to the f0. Even if the tone complex is not strictly harmonic,
the most prominent interval will usually correspond to the f0. Thus, if a harmonic source
lacks in f0 for some reasons, after auditory preprocessing it will be detectable by the
pitch estimation stage.
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Figure 12: Auditory Preprocessing example for an artificial harmonic tone complex with
missing f0 “ 200 Hz (red circle)

Sebastian Rieck, Singing Voice Extraction 18



2 Proposed Method 2.3 Voiced Singing

2.3.2 Multi Pitch Estimation

The Multi Pitch Estimation (MPE) stage performs the detection of the most prominent
pitches. In this process, all estimated pitches are initially considered to be pitch candi-
dates, which are then reduced by specific criteria to build the final pitch estimates. Since
vocal melodies are restricted by pitches a singer is able to produce (see chapter 1.3),
the MPE is performed within a restricted frequency range of 100Hz („G#) to 800Hz
(„g2), in accordance to [Rah09]. In order to detect the frame-wise pitch candidates,
the following steps are performed. To provide better readability the time (frame) index
is omitted.

Firstly, peaks in the summary sub-band magnitude spectrum Xs are detected by taking
its 1st order difference

X 1
srks “ Xsrk ` 1s ´Xsrks (16)

where k is the frequency index. By evaluating sign changes, a peak is considered detected
if

X 1
srks ą 0 and X 1

srk ` 1s ă 0 (17)

Next, all peak frequencies along with their corresponding amplitudes are refined using
parabolic interpolation (Fig. 13). This is done in using the information of the neighboring
bins next to a detected peak.

In using the frequencies

x1 “ f1 “ pk ´ 1q ¨fs{N

x2 “ f2 “ k ¨fs{N

x3 “ f3 “ pk ` 1q ¨fs{N

(18)

and magnitudes

y1 “ 20log10|Xrk ´ 1s|

y2 “ 20log10|Xrks|

y3 “ 20log10|Xrk ` 1s|

(19)

as well as the parameters α and γ

α “
y2 ´ y1

px2 ´ γq2 ´ px1 ´ γq2
(20)
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γ “
1

2
¨
py3 ´ y1qpx2 ´ x1qpx2 ` x1q ´ py2 ´ y1qpx3 ´ x1qpx3 ` x1q

py3 ´ y1qpx2 ´ x1q ´ py2 ´ y1qpx3 ´ x1q
(21)

originating from the parabolic function

ypxq “ αpx´ γq2 ` β (22)

the refined magnitude X 1
magrks can be calculated by

X 1
magrks “ y2 ´ αpx2 ´ γq

2 (23)

while the refined frequency is represented by γ. All candidates with frequencies outside
the restricted vocal f0 range are discarded.3 Der Analyse/Synthese Algorithmus 3.3 Peakdetektion

x1 x2 x3

y1

y2

y3

X �
mag

Abbildung 5: Parametrierung der Parabel zur Amplitudenkorrektur

Im allgemeinen, kontinuierlichen Fall lässt sich die korrigierte Frequenz f �
p aus der gemes-

senen Frequenz fp des Partialtons folgendermaßen berechnen:

f �
p =

1

2π
· |FT i+1(fp)|

|FT i(fp)|
bzw. im hier verwendeten diskreten Fall:

f �
p =

1

2π
· |DFT 1[mp]|
|DFT 0[mp]|

(15)

mit mp = N ·fp/fs und N der Fensterlänge. Weiters bezeichnet DFT 1 die diskrete Fourier
Transformation DFT der ersten Ableitung des Zeitsignals.

DFT 1 = DFT

��
N−1�

k=0

x[n + 1] − x[n]

�
w[n]

�
(16)

Eine wichtige Eigenschaft der Gleichung (15) ist, dass sich der Einfluss des Fensters w[n]
auf die Spektren durch die Division kompensiert, sofern beide Male das selbe verwendet
wurde. Dies wurde in der Implementierung berücksichtigt.

3.3.4 Phasenkorrektur

Durch das Analysefenster entsteht eine Phasenmodulation in Abhängigkeit des Abstandes
der tatsächlichen Frequenz f �

p zur Frequenz fbin des nächstgelegenen Bins.

DFT �[xm] = DFT [xm] · e
−2πi(f �

p−fbin)

fs

(N−1)
2 (17)

Der Term e−j2π(N−1)/2 in Gleichung (17) entspricht einem zeitlichen Versatz des Fenster
um eine halbe Länge und stellt dadurch den Bezug des gemessenen Phasenwertes zum
Anfang des Fensters dar. Von der korrigierten Transformation DFT � wird abschließend
das Phasenspektrum gebildet und ausgelesen. Die korrigierte Phase φ�

0 ist dann:

φ�
0(f

�
p) = arg(DFT �[fbin · N/fs]) (18)

8

Figure 13: parabolic interpolation

Furthermore, we restrict the total amount of pitch estimates per frame to 10. Hence,
if more estimates were found those with highest amplitudes are kept. All remaining
candidates are considered to be valid pitch estimates and passed on to the pitch tracking
stage.

The pitch estimator introduced here represents a peak detection in the FFT domain.
Hence, it is important to mention its frequency discriminability. It depends on the FFT
window length and shape in addition to the sampling frequency. As already mentioned,
the pitch estimation is based on the summary sub-band spectrum Xs, which is obtained
using a N “ 4096 point Hann window at fs “ 44.1 kHz sampling rate. This results in
a frequency resolution of fs{N “ 10.77Hz. The Hann window itself has a main lobe
width of 2 bins, which degrades the resolution by 2 to 21.53 Hz. This means that we are
able to resolve a interval of 2 semitones («12%) for frequencies above „180Hz («Note
f). This seems a reasonable frequency resolution, since in popular music, intervals less
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than 2 semitones are rarely played together, as they would result in perceptually harsh
sounds, at least in this low frequency range.

Figure 14: Pitch Estimation Candidates (red), reference f0 (green), 10 candidates per
frame

2.3.3 Pitch and Partial Tracking

The frame-wise estimated pitch candidates are now grouped together to form continuous
pitch tracks. This stage is based on an adapted previous work. For a detailed description
the reader is referred to [Rie09]. Basically, for each frame, 3 different cases can be
distinguished, depending on the existence of pitch candidates and pitch tracks:

a) existing pitch candidates, but non-existing pitch tracks
This is the case if pitch candidates are detected for the first time or if all pitch tracks
were terminated in the previous frame. All pitch candidates are sorted by their frequency
in ascending order and processed one by one. In a first step, a pitch candidate p is
selected to form a new pitch track. Next, the frequency range ∆fp is computed, in
which other pitch candidates are considered to be possible candidates for the pitch track
under investigation.

∆fp “ ∆f ¨ fp with 0 ď ∆f ď 1 (24)

where fp is the frequency of pitch candidate p. If multiple candidates were found,
the one with highest amplitude is selected, while the others are excluded from the
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subsequent analysis. ∆f is empirically set to 0.045 (p“ 77 cents) and represents not
only the mentioned frequency range for possible candidates, but also the maximum
frequency deviation for a pitch track for successive frames.

b) existing pitch candidates and existing pitch tracks
First, existing pitch tracks are considered. Since the pitch track frequency will evolve
over time, the above-mentioned maximum frequency deviation ∆f (Eq. 24) is calculated
for each track. In this range, we try lo locate other pitch candidates and, if found, the
one with highest amplitude is selected. In case that two pitch tracks have overlapping
∆f regions, the selected pitch candidate is assigned to the track which has the highest
mean amplitude since birth. This is done to attenuate the importance of tracks with
low mean amplitude. Every other pitch estimate located within this range is excluded
from subsequent procedures. If no estimate was found, the pitch track under test will
be terminated. After all pitch tracks have been updated, remaining unassigned pitch
candidates are processed in the manner described in a).

c) non-existing pitch candidates, but existing pitch tracks
All existing pitch tracks are terminated.

The pitch tracking process is based on amplitude considerations (Figure 15), i.e a pitch
track follows the most prominent magnitude in its frequency neighborhood. This may in-
duce the following problem. If an instrument has a strong continuing spectral component
overlapping in frequency with a vocal pitch track, this track is continued, regardless if
the singer is still singing or not. Building pitch tracks containing both unwanted sources
and the desired source should be avoided or at least minimized, since this would decrease
the reliability of the resulting feature values. As a result those tracks would not allow a
distinct classification. We assume this problem is more likely to occur at time instances
related to the rhythmical structure of a musical piece, therefore propose a onset detec-
tion based on the spectral flux such that, on each onset every pitch track is split. The
resulting pitch tracks will then be classified separately.

The Spectral Flux measures the change in magnitude in each frequency bin and is defined
by

SF rns “

N
2
´1
ÿ

k“´N
2

Hr|PIrn, ks| ´ |PIrn´ 1, ks|s (25)

where N is the window length, PIrns being the panning index preprocessed signal at
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time instant n and Hrxs representing the rectifier function defined by

Hrxs “
x` |x|

2
(26)

Additionally, occurring onsets are restricted to have a minimum spacing of 400 ms
(500ms p“ 1/4 @ 120 BPM), to avoid that reliable tracks are split and then discarded
due to the Minimum Life Time (MLT) constraint. This constraint states, that pitch
tracks shorter than 50ms (60ms p“ 1/32 @ 120BPM) are discarded. Furthermore, pitch
tracks are also discarded if they have a low f0 salience. The f0 salience is calculated as
the mean f0 amplitude for each pitch track. It is compared to the local mean salience,
which is the mean f0 salience for tracks surrounding the track under test in a ˘ 1 sec
window. If the track has less than 50% of the local mean, it is discarded. The MLT and
f0 salience methods to increase pitch track reliability were described and introduced by
Rahimzadeh [Rah09], which we implemented accordingly.

To conclude, figure 15(b) gives an example of the presented post-processing which in this
case deleted „63% of all tracks. Additionally, figure 15(b) illustrates the improvement
in using onset based track splitting to separate unreliable parts of vocal pitch tracks.
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(a)

(b)

Figure 15: Example of pitch tracks and post-processing, (dashed white line) detected
onsets, every other vertical line marks the end of a pitch track, (green) reference f0
(a)(blue) 190 tracks build, (magenta) „59% of tracks deleted because of Minimum Life
Time, (cyan) „3% of tracks deleted because of low f0 salience
(b) remaining pitch tracks after post-processing, (red) unreliable part of track which
could be separated using onset based track splitting
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2.3.4 Pitch Track Classification

The task of the classification stage is to classify pitch tracks into the classes vocal or
music. There are many different classifiers currently used in the broad field of classi-
fication. One of the most powerful, when it comes to precision and performance, is
the Support Vector Machine (SVM), although training the model and finding the best
parameters can be challenging. The SVM used in this work, was compiled using the
online available LIBSVM source files provided by Chang, Lin [CL].

Due to the promising results achieved by Rahimzadeh, we incorporate his feature set
consisting of 27 features (for a detailed description the reader is referred to [Rah09](page
45-48)):

1) Absolute strength of harmonic series:
the sum of all partial amplitudes averaged over the track length

2) Mean Relative Salience:
ratio of spectral energy of partial tone series and remaining energy in the frequency
range of 300Hz - 2.5kHz

3) Mean f0

4) Summary partial standard deviation

5-10) Partial standard deviation:
standard deviation of every partial frequency trajectory

11-13) Summary delta-partial tone frequency:
the sum of absolute frequency difference between consecutive frames for every
partial tone, summed up for all partials

14-15) Absolute f0 range in frequency and amplitude:
difference of maximum and minimum f0 value

16) Relative f0 range:
absolute f0 range on a cent scale

17-20) ∆f0:
Difference in frequency from frame to frame

20) Mean ∆f0

21) ∆f0 Standard deviation

22) ∆f0 Variance

23) ∆f0 Maximum
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24-28) Mean partial amplitude ratio:
ratio of mean partial amplitude of pitch track under test and mean partial amplitude
of tracks surrounding ˘0.5 sec

Additionally we introduce:

29-31) Variance of deviation of partial amplitudes for partials 1-2, 1-3 and for all par-
tials:
first, the increase in amplitude for each partial for successive frames is calculated,
finally the variance which results for the partials 1-2, 1-3 and all partials is calcu-
lated

32-34) Average amplitude ratio of first 2, first 3 and all partials to the f0 amplitude

35) Spectral flux (Eq.25)

36-40) f0 Amplitude increase at the beginning of a pitch track for the first 5 frames

41-42) Average variance and standard deviation of f0 Amplitude

43-44) Average variance and standard deviation of f0 Frequency

45) f0 Vibrato range:
calculated as the difference between the maximum and minimum increase in f0

frequency, averaged over the pitch track length

46-48) Vibrato frequency [RP09] of first 3 partials

49-51) Tremolo [RP09] of first 3 partials

The complete feature set is decreased by calculating the Fisher’s Ratio (FR) (see equation
33 on page 44) and setting an empirically determined threshold to 0.1. In this way,
all features that examine a FR of ă 0.1 are not included in the final feature subset.
Figures illustrating each feature and its corresponding FR are presented in the chapter
3.1 „Training of Classifiers“ on page 47, where as the exact values can be studied in the
Appendix A.

Furthermore, a Principal Component Analysis (PCA) is performed. Experimental results
showed, that the classification performance significantly increases (5-10%) by using this
preprocessing step. For more details the reader is referred to Chapter 4.2.3 on page
63. It should be mentioned, that the PCA is used to transform the feature set onto
orthogonal feature space and not to investigate the amount of underlying components.
Experiments showed, that discarding components, as well as restricting the total variance
covered by them, only decreased the classification performance.

After pitch track classification, a post processing on the vocal pitch tracks is performed.
This is necessary, since we allow the SVM to classify multiple pitch tracks as class voice,
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which can overlap in time. Obviously, only one vocal pitch track can be present per time
instant. Hence, we have to decide after the classification process, which vocal pitch
track is more likely to be the true one.

Mainly, two different cases can be distinguished for the occurrence of overlapping vocal
pitch tracks. First, the overlapping tracks can actually be the 1st and 2nd partial of
the singing voice (figure 16). Since they originate from the same source, they exhibit
similar feature values. Second, only one track originates from singing voice. As a
possible solution to this problem, we propose a rule-based approach. First, we detect
the start and end point of the overlapping segment by so called split points M1 and M2

(green vertical lines in figure 16). Between those markers, the Summary Mean Spectral
Amplitude (SMSA) is calculated for each pitch track. The SMSA is the mean amplitude
of the first 4 partials during the overlapping segment and is calculated as follows:

SMSApiq “
1

M2 ´M1 ` 1

4
ÿ

p“1

M2
ÿ

m“M1

|Xpfp,i,mq| with fp,i “ p ¨ f0,i, (27)

where |Xrfp,i,ms| is the magnitude of partial-frequency fp,i of pitch track i between the
framesM1 andM2. The pitch track with the highest SMSA is chosen for the intersection
(lower red pitch tracks with highlight in core, figure 16). In the case of two singing voice
partials overlapping in time, the SMSA proved to be a good decision method during our
experiments, since the 2nd partial has usually less energy at its partial frequencies. Even
if the second overlapping pitch track originates from an instrument, the SMSA of the
true voice pitch track is usually higher. However, to account for the fact that there are
instances where the SMSA based approach choses the „wrong“ pitch track, we introduce
a second post-processing step.

If, for instance, in an overlapping segment of vocal pitch tracks the 2nd partial was chosen
over the 1st, the resulting final voice pitch track would examine a rapid f0 increase or
decrease at the initial overlapping boundaries. Therefore, we locate f0 increments or
decrements by more than 50Hz from frame to frame. At such time instances, the mean
f0 frequency is calculated in a ˘0.5 second window. Next, if multiple vocal pitch tracks
exist, the one with the least difference in frequency to the calculated mean f0 is chosen.
If only one vocal pitch track exists, the resulting final vocal pitch track is split to avoid
rapid frequency sweeps in re-synthesis.

Additionally, we allow the final vocal pitch track to drop out, i.e to be terminated and
reborn shortly after, for a predefined time interval called Maximum Rest Time (MRT)
of 20ms („4 frames) and still be continued (figure 17). In this case, the pitch track
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frequency is linearly interpolated to fill the gap.

Figure 16: Postprocessing of classification results by Summary Mean Spectral Amplitude
(SMSA), (red) pitch tracks of class voice, (blue) pitch tracks of class music, (green)
reference vocal pitch track, (green vertical lines) boundaries of overlapping vocal pitch
tracks, pitch track with the highest SMSA is chosen for the intersection, (red pitch tracks
with highlight in core) final voice pitch tracks after post processing
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Figure 17: Postprocessing of classification results by Maximum Rest Time (MRT), (red)
pitch tracks of class voice, (blue) pitch tracks of class music, (yellow) final voice pitch
tracks after post processing

2.3.5 Spectral Parameter Estimation

In order to increase the time resolution, a shorter window („23ms) and hopsize (5.8ms)
is used in comparison to the analysis process. Therefore, the classified vocal frequency
trajectory is interpolated using cubic splines. The trajectory values that have to be
interpolated are found by matching the temporal positions of the corresponding windows.

Furthermore, to extract the voiced singing voice, not only the f0 has to be known, but the
corresponding harmonics. We use the method proposed by Ryynanen et al. [RVPK08]
which consists of a Normalized Cross-Correlation NCC between a complex exponential
based on the partial frequency fp and the analysis frame. It can be calculated by

NCCrfps “

ř

PIrnsexppi2πnfp{fsqwrns
2

řnwrns2{2
(28)

where fs is the sampling frequency, PIrns the panning index preprocessed input signal
and wrns a Hamming window, centered at the temporal position of the analysis frame.
In order to get the amplitude ap and phase φp values for partial p, the magnitude and
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phase (angle) respectively is computed by

aprfps “ |NCCrfps| and φprfps “ =pNCCrfpsq (29)

It should be mentioned, that the partial frequency is restricted to integer multiples of
f0.

2.3.6 Re-Synthesis

This stage is based on previous work, hence only a short summary is presented here. For
a detailed description, the reader is referred to [Rie09].

The vocal f0 trajectory, along with its partials, estimated by the previous stage, is now
re-synthesized using Spectral Modeling Synthesis (SMS) [Ser97]. The SMS Model states
that a complex signal can be split up into an deterministic part and a stochastic part.
The deterministic part consists of single sinusoids, while the stochastic part consists of
noise or noise-like broadband components. Here, we focus only on the deterministic part,
since the stochastic part is covered by unvoiced singing processing stages. In our case,
the sinusoids are the partial frequency trajectories of singing voice.

For the purpose of readability, the following section describes the re-synthesis process
for the f0 trajectory, having in mind that that the steps are repeated for all partial
frequencies.

The vocal pitch track can basically match with one of these 3 states:

1) pitch track is born
If the vocal pitch track is born in the actual frame m, it is re-synthesized starting in
the previous frame m´ 1. The amplitude consists of a linear fade from 0 to the actual
amplitude value in frame m. The detected phase value φf0rms is used to determine the
zero-phase value in the previous frame

φtrm´ 1s “ φtrms ´ 2π
f0

fs
Nhop (30)

where fs is the sampling frequency and Nhop the hopsize in samples.

2) pitch track is terminated
If the vocal pith track is terminated, i.e. no longer present in the actual frame, it is
linearly faded-out in the previous frame.

3) pitch track continues
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The values for, frequency and phase in the actual frame and last frame are interpolated
using a cubic phase interpolation proposed by McAulay and Quatieri [MQ86]. The
amplitude values are linearly interpolated.

Again, the presented method to re-synthesize f0 is performed for all partial frequencies
with a frequency ă15 kHz . Additionally, since the analysis of the partial trajectories, i.e.
their actual amplitude, frequency and phase values, is performed every hopsize seconds,
the re-synthesis is also based on the length of one hopsize („6ms).

Experimental results showed that synthesizing partials up to 15kHz increases the intel-
ligibility, but also increases the likelihood that energy at such high frequencies belongs
to percussive sources. Therefore, the re-synthesized singing voice is decomposed into
its percussive and harmonic part and then remixed using a percussive to harmonic ratio
of -6dB. The decomposition is an essential part of processing unvoiced singing, thus is
explained in detail in the following chapter (page 34).
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2.4 Unvoiced Singing

The unvoiced singing stage is based on the principles proposed by [HJT08], which con-
sists of an unvoiced frame detection followed by dividing the signal in time and frequency
resulting in so called Time-Frequency-Units, which then are classified and finally ex-
tracted. Although, the author presented promising results, the computational costs were
very high. Therefore, we decided to decrease the complexity by reducing the necessary
amount of information, needed for the unvoiced singing extraction. As a first step, the
input signal is decimated by factor of 2, resulting in a sampling frequency of 22.05 kHz.

As shown in figure 18, the process of identifying and extracting the unvoiced singing voice
is again based on the panning index preprocessed signal. First a harmonic/percussive
decomposition [Fit10] is introduced and only the resulting percussive signal is used for
the subsequent processing. Next, this signal is high-pass filtered and passed through
a gamma-tone filter-bank and each channel of the filter-bank is split up into frames
resulting in Time-Frequency-Units (TFU). Only TFU’s from previously detected unvoiced
dominant frames are used in the subsequent feature-extraction and binary classification
using a SVM. After post-processing, the resulting mask is used to extract the unvoiced
singing TFU’s.
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Figure 18: Unvoiced singing processing stages
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2.4.1 Harmonic/Percussive Decomposition

To improve the subsequent analysis, the panning index preprocessed signal (see chapter
2.2) is further processed in 2 steps. First, by decomposing the PI signal in a harmonic
and percussive part and second by moving average subtraction.

A computational efficient method to perform this decomposition was proposed by FitzGer-
ald [Fit10]. Looking at a spectrogram as in fig 19, the general idea is that percussive
events can be identified by strong vertical lines, in contrast to harmonic events which
appear as horizontal lines. To separate one from the other, the signal is median filtered
two times. First, along each frequency bin and second, for each time instant (frame).
The former will result in a signal dominated by harmonic sources, while the latter will
preserve percussive events.
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ABSTRACT

In this paper, we present a fast, simple and effective method to sep-
arate the harmonic and percussive parts of a monaural audio signal.
The technique involves the use of median filtering on a spectro-
gram of the audio signal, with median filtering performed across
successive frames to suppress percussive events and enhance har-
monic components, while median filtering is also performed across
frequency bins to enhance percussive events and supress harmonic
components. The two resulting median filtered spectrograms are
then used to generate masks which are then applied to the origi-
nal spectrogram to separate the harmonic and percussive parts of
the signal. We illustrate the use of the algorithm in the context of
remixing audio material from commercial recordings.

1. INTRODUCTION

The separation of harmonic and percussive sources from mixed au-
dio signals has numerous applications, both as an audio effect for
the purposes of remixing and DJing, and as a preprocessing stage
for other purposes. This includes the automatic transcription of
pitched instruments,key signature detection and chord detection,
where elimination of the effects of the percussion sources can help
improve results. Similarly, the elimination of the effects of pitched
instruments can help improve results for the automatic transcrip-
tion of drum instruments, rhythm analysis beat tracking.

Recently, the authors proposed a tensor factorisation based al-
gorithm capable of obtaining good quality separation of harmonic
and percussive sources [1]. This algorithm incorporated an addi-
tive synthesis based source-filter model for pitched instruments,
as well as constraints to encourage temporal continuity on pitched
sources. A principal advantage of this approach was that it re-
quired little or no pretraining in comparison to many other ap-
proaches [2, 3, 4]. Unfortunately, a considerable shortcoming of
the tensor factorisation approach is that it is both processor and
memory intensive, making it impractical for use when whole songs
need to be processed, for example such as when remixing a song.

In an effort to overcome this, it was decided to investigate
other approaches capable of separating harmonic and percussive
components without pretraining, but which were also computa-
tionally less intensive. Of particular interest was the approach de-
veloped by Ono et al [5]. This technique was based on the intuitive
idea that stable harmonic or stationary components form horizon-
tal ridges on the spectrogram, while percussive components form
vertical ridges with a broadband frequency response. This can be
seen in Figure 1, where the harmonic components are visible as

∗ This work was supported by Science Foundation Ireland’s Stokes Lec-
turer Program

horizontal lines, while the percussive events can be seen as ver-
tical lines. Therefore, a process which emphasises the horizontal
lines in the spectrogram while suppressing vertical lines should re-
sult in a spectrogram which contains mainly pitched sources, and
vice-versa for the vertical lines to recover the percussion sources.
To this end, a cost function which minimised the L2 norm of the
power spectrogram gradients was proposed.

Figure 1: Spectrogram of pitched and percussive mixture

Letting Wh,i denote the element of the power spectrogram W
of a given signal at frequency bin h and the ith time frame, and
similarly defining Hh,i as an element of H the harmonic power
spectrogram and Ph,i as an element of P the percussive power
spectrogram, the cost function can then be defined as:

J(H,P) =
1

2σ2
H

X

h,i

(Hh,i−1 − Hh,i)
2

+
1

2σ2
P

X

h,i

(Ph−1,i − Ph,i)
2

(1)

where σH and σP are parameters used to control the weights of
the harmonic and percussive smoothness respectively. The cost
function is further subject to the additional constraints that

Hh,i + Ph,i = Wh,i (2)

DAFX-1

Figure 19: Spectrogram of pitched and percussive mixture, refer to [Fit10]

Experimental tests revealed, that the percussive signal can still contain tonal compo-
nents. Therefore, the percussive signal is filtered using moving average subtraction. The
moving average subtraction can be seen as a high pass filtering, where the filter length
is proportional to the resulting cutoff frequency. We implemented a moving average
subtraction corresponding to a high pass filter with a cutoff frequency of 2.2 kHz.

For the subsequent analysis only the high-pass filtered percussive signal is considered.
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2.4.2 Unvoiced Dominant Frame Detection

The Unvoiced Dominant Frame Detection (UVFD) is performed to decrease the amount
of frames considered in the subsequent classification process.

The identification of unvoiced dominant frames is realized by combining two parameters,
the presence of singing voice and the variance of the linear prediction error signal. The
presence of a singing voice f0 at a certain time instant is detected by the voiced singing
stage. Additionally, to account for the fact that unvoiced singing components are very
likely to occur prior and shortly after a singing voice f0 is detected, an additional time
window is introduced, which is referred to as pre- and post-listen respectively. This
dependency on the presence of singing voice is introduced for two reasons. First, we
assume that unvoiced singing components do not interrupt the detection of the singing
voice f0 trajectory, due to their short time duration in conjunction with the restricted
time-resolution of the voiced singing STFT processing. Second, restricting the final un-
voiced singing extraction to time instances that correlate with the presence of singing
voice will increase the audible quality. The second parameter to identify unvoiced domi-
nant frames, is the exceedance of a threshold on the error signal variance resulting from
a 5th order Linear Prediction (LP).

To summarize, if in a specific frame the variance of the LP error signal exceeds a
certain threshold and furthermore a singing voice f0 is present, including the mentioned
additional time window, this frame is considered to be unvoiced dominant. An example
can be seen in figure 20, where the red rectangle in the top row marks unvoiced dominant
frames.

The parameter settings where found empirically (see evaluation, page 68) and set ac-
cording to table 2.

Parameter Value
LPC error threshold 10´4.25

f0 pre-/post-listen 20 ms

Table 2: Parameter settings for Unvoiced Frame Detection
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Figure 20: Example for Unvoiced Dominant Frame Detection, (blue) singing voice time
domain signal, [top row] final unvoiced frame decision, [middle row] presence of singing
voice f0, [bottom row] (red) Linear prediction error variance and (black) resulting dom-
inance decision

2.4.3 Time-Frequency Units

In the next step, the signal is split up into several frequency bands which are distributed
on a critical band scale. A total amount of 7 gamma-tone filters are used with quasi-
logarithmically spaced center frequencies ranging from 2kHz to 9kHz, which is roughly
the frequency range where unvoiced sounds (fricatives, plosives etc.) can be expected
[Ter98]. Finally, each gamma-tone filter output is decomposed into overlapping frames
of „90ms in length. In that way the input signal is split into segments in frequency and
time, resulting in so called Time-Frequency-Units (TFU).
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2.4.4 TFU Classification

The previous UVFD separated the unvoiced from the voiced dominant frames. Now,
the classification has to decide whether an unvoiced dominant TFU originates from the
singing voice or from another source. In the case of singing voice the TFU gets labeled
voice and music otherwise.

In order to be able to discriminate between the classes a feature set is build. The
author of [HJT08] proposed 36 MFCCs consisting of 12 MFCCs and their delta and
double-delta values. To increase computational efficiency and decrease the necessary
amount of data, we use the Magnitude Modulation Spectrum (MMS) [GOO06] instead.
The MMS is based on the STFT interpretation as a subband filter-bank. Any subband
output then corresponds to a time series describing the amplitude and phase evolution
of a signal around the subband center frequency. The spectral analysis of this time series
results in the modulation frequency domain. This domain reveals amplitude modulation
components associated with the subband center frequency. As an example, if the input
signal consists of a single sinusoid with constant amplitude and a frequency equal to
the subband center frequency, the MMS would show only a DC component. If on the
other hand, the sinusoid is modulated in amplitude, the MMS will show a peak at the
modulation frequency. The Modulation Spectrum and its modification has been applied
in speech processing. Speech signals exhibit most of their energy in the lower modulation
frequency region around 3 to 4 Hz, which is the syllabic rate of spoken language. The
energy above 16 Hz is typically minimal and unimportant for speech signals. The use
of the MMS in case of unvoiced singing, comes from the assumption that unvoiced
sounds in singing and speech are likely to be very similar. In contrast, unvoiced sounds,
originating from instruments should have less energy in low modulation frequencies.

Therefore, the feature extraction consists of first lowpass-filtering and downsampling
each gamma-tone filter output by factor of 16, to further decrease the amount of used
information, then the frame-wise MMS are calculated as follows

XMMSrl, bs “

ˇ

ˇ

ˇ

ˇ

ˇ

N´1
ÿ

n“0

|brns|e´2πiln{N

ˇ

ˇ

ˇ

ˇ

ˇ

(31)

whereXMMSrl, bs is the magnitude of modulation frequency l and n being the time index
of the output of gamma-tone filter b. For each TFU 4 MMS coefficients are calculated,
resulting in a modulation frequency range from 0-20Hz with a frequency resolution of
5Hz. Figure 21 shows 10 MMS for the second gamma-tone filter with a center frequency
of 2.6kHz which is exited with the signals singing voice, accompaniment and speech.
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The similarity between speech and singing voice can be observed, as well as the lower
energy for the accompaniment signal.

Next, similar to the voiced singing stage, a PCA is performed to transform the feature-
set onto a orthogonal system. Finally, after the TFU classification using a SVM a binary
mask is formed, which is post-processed. Due to the very short effective length of a TFU
of „ 6ms the resulting mask is post-processed using the principles of Minimum Lifetime
(MLT “ 20ms) and Maximum Rest Time (MRT “ 20ms). Figure 22 gives an example
for postprocessing the classification results.

2.4.5 TFU Extraction

Once all TFU’s are classified into the classes voice or music, those belonging to the
class voice are extracted. To avoid disturbing noise at the beginning and ending of the
extraction of a specific TFU, its amplitude is multiplied with a linear fade (duration
„3ms). Since the TFU analysis is realized in overlapping frames with a hopsize of 256
samples („6ms), each extracted TFU is of that length.
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(a)

(b)

(c)

Figure 21: Example of Magnitude Modulation Spectrum for 3 different signals for
gamma-tone filter No. 2 with center frequency fc “ 2.6kHz
(a) Accompaniment Signal
(b) Singing Voice Signal
(c) Speech Signal
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(a)

(b)

Figure 22: Postprocessing of Time-Frequency-Units (TFU) class labels, (white) TFU of
class voice, (black) TFU of class music
(a)Classification Results
(b)After Postprocessing by Minimum Lifetime (MLT “ 20ms) and Maximum Rest Time
(MRT “ 20ms)
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3 Training of Classifiers

Due to the lack of datasets incorporating stereo audio-recordings with labeled vocal
pitches, we had to create one. The training of the SVM classifiers for the voiced and
unvoiced classification is based on this stereo-dataset. Additionally, to be able to present
comparable results, a second dataset is used which consists of 9 mono audio recording
from the MIREX 2005 training dataset - „vocal“.

Both datasets will be described below:

Stereo Dataset

This data set consists of 6 stereo audio-recordings (16bit, 44.1kHz) in excerpts of 1-5
seconds incorporating the genres Pop, Rock and Jazz. All recordings include a stereo
singing voice track as well as a stereo accompaniment track which are premixed with a
Vocal to Accompaniment Ratio (VAR) of 0dB.

We define the VAR to be
V AR “ 10log10

ř

|xvrns|
2

ř

|xarns|2
(32)

n being the discrete time index, xvrns and xarns are, respectively, the time domain
signals of singing voice and accompaniment. The VAR represents an average measure
thus, depending on the considered time window the ratio will differ. If the VAR is
calculated considering the full length time signals and set to be 0dB it is very likely
that there will be shorter time fragments where the ratio reaches less than 0dB. The
main reason being that the singing voice signal usually contains more silence than the
accompaniment signal (figure 23).

Next, the vocal pitches are labeled in a two step process. The initial pitch labeling is
performed in Sonic Visualiser v1.9 2 by applying an Audio Pitch Detector 3 which is based
on the YIN Frequency Estimation method. The estimator settings are a window length
of „46ms, a hopsize of 10ms and the vocal f0 is restricted within the range 100Hz to
800Hz. Subsequently, the resulting frequency trajectory is manually corrected for octave
errors.

2. Sonic Visualiser ©2005-2011 Chris Cannam and Queen Mary, University of London
3. Audio Pitch Detector v2, Marker: Paul Brossier (plugin by Chris Cannam)
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Figure 23: time domain signal of singing voice and accompaniment incorporating a Voice
to Accompaniment Ratio (VAR) of 0dB

Mono Dataset

This data set consists of 9 Songs from the MIREX 2005 training data set „vocal“, which
was originally used in the MIREX Audio Melody Extraction contest. All songs are mono
audio-recordings (16bit, 44.1 kHz) in excerpts of 24-34 seconds in duration. This dataset
include text-files with a manually annotated singing voice f0 trajectory in time increments
of 10ms, incorporating the genres Pop, Rock and Jazz.

SVM Parameters

The SVM classifiers for the Pitch Track classification and the Time-Frequency-Unit
classification have to parametrized i.e, the Kernel function and its parameters has to be
chosen. In general this can be done either automatically, i.e. by a search and optimizing
algorithm, or manually. Since finding a suitable optimization algorithm can be very time
consuming and therefor would exceed the timeframe for this thesis, we decided to follow
the instructions given by Hsu, Chang and Lin [HCL03]. The authors propose to find the
optimal parameter setting by following the subsequent steps:

1) Scaling of feature set
Mainly, this is done to avoid attributes in smaller numeric ranges to be dominated
by those in greater numeric ranges. Therefore, the feature set is linearly scaled to
the range r´1,`1s. Note that this is necessary not only for the training set but
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also the test set.

2) select Radial Basis Function (RBF) Kernel
The authors argue this to be reasonable choice because the RBF kernel:
– maps the feature values in a higher dimensional space, thus it enables good class

separation even if the classes were initially not linear separable. Additionally the
linear Kernel is a special case of the RBF kernel and the sigmoid kernel behaves
like RBF for certain parameters.

– has less hyperparameters as for example the polynomial kernel
– has less numerical difficulties

3) Cross-Validation and Grid-Search

The following sections will describe the training procedure to train the classifiers for the
voiced and the unvoiced classification stages.
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3.1 Pitch Track Classification

Since the SVM classifies pitch tracks rather than individual pitches, the training data
set (see page 41) incorporating the ground truth hast to be computed on basis of the
reference files. Therefore, all songs are passed through the processing stages APP, MPE
and PT. The resulting pitch tracks are then divided into two separate classes named
voice and music based on the overlap with the reference f0 trajectory. This concept was
introduced by Rahimzadeh [Rah09] which we implemented in accordance. The decision
boundaries for this assignment are shown in table 3.

overlap with reference class assignment

ě60% voice

ď10% music

>10% and <60% no assignment,

tracks are removed from ground truth

Table 3: Class assignment of pitch tracks based on overlap with reference pitch trajectory

If the overlap is between 10 % and 60 % the class assignment is skipped and the
corresponding pitch tracks are removed from the training data set. This is done to
avoid unreliability of tracks. Additionally, a pitch track is considered overlapping with
the reference, if its f0 is within the range of ˘ 3% to the reference pitch trajectory. An
example of such an assignment is shown in figure 24, along with the onset based pitch
track splitting (see chapter 2.3.3, page 21) and its improvement in the class assignment
task. As can be observed in figure 24(a) the first 2 pitch tracks overlapping with the
reference pitch track are rejected. Now, using the onset based track splitting the tracks
are divided into 4 separate tracks, where two tracks could be assigned to the class voice
and one track to the class music.

The Features for both classes of the assigned pitch tracks are than extracted and stored
in a database.

To make the features as robust and meaningful as possible the feature set proposed in
section 2.3.4 is studied in detail to find a suitable subset. Many methods make use of the
Fisher’s Ratio (FR), which is a measure for the inter-class scatter in comparison to the
intra-class scatter. The Fisher’s Ratio for each feature fn can be calculated as follows

FRfn “
pµfn,music ´ µfn,voiceq

2

σ2
fn,music ` σ

2
fn,voice

(33)
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(a)

(b)

Figure 24: Class assignment of pitch tracks based on overlap with reference f0 pitch
track (green), class voice (red), class music (blue), rejected tracks (magenta), detected
onsets (dashed line)
(a) class assignment without onset based pitch track splitting
(b) improvement in using onset based pitch track splitting
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Figure 25 shows an example of the FR for 3 different feature value distributions. Note
that for all examples the mean values remain constant, only the variances decrease. This
results in a higher ratio, which is also reflected in the overlap of the two classes.

Detection of singing voice signals in popular music recordings – Diploma Thesis – Amir Rahimzadeh – Nov. 2009 
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To get an idea of which features might be informative and which not, statistical testing is 

performed for individual features before feature combinations are tested. The discriminability 

of the features of the labeled training data has been studied in three different ways. On one 

hand statistical testing of individual features in terms of calculating Fisher’s Ratio has been 

performed. On the other hand the discriminative power of the whole feature set is 

investigated applying Linear Discriminant Analysis (LDA). Finally in Chapter 4 the 

generality of the features set will studied by means of simulation using the leave-one-out 

method. 

Fisher’s Ratio 

Fisher’s Ratio (FR) is calculated as the ratio between the inter-class variance and the intra-

class variance and is given for the classes C1 and C2 as follows: 

  

(Eq.: 3.20)  
 

It reflects the degree of overlap of the two distributions C1 and C2 and if the classes are 

separable in terms of the mean value and the variance of the distributions. To give an idea of 

the value range, FR has been exemplified in Fig. 3.21 for 3 distributions showing different 

degrees of overlap. 

 

 
 

Fig.: 3.21.: Fisher’s Ratio exemplified for different distributions. Note that the mean values  
remain the same for all examples while the variance decreases. 

 
Fisher’s Ratio has been calculated from the labeled training data for individual features of the 

feature set described before. Results are given in Table 1. 

 

 

F-Ratio = 0.55 F-Ratio = 0.8 F-Ratio = 1.6 

µ1 =  0.2 / σ2
1 = 0.15 

µ2 = -0.2 / σ2
2 = 0.15 

overlap: 46,6% 
 

µ1 = 0.2 / σ2
1 = 0.1 

µ2 =-0.2 / σ2
2 = 0.1 

overlap: 37,1% 

µ1 =  0.2 / σ2
1 = 0.05 

µ2 = -0.2 / σ2
2 = 0.05 

overlap: 20,6% 

Figure 25: Fisher’s Ratio for 3 different distributions and 2 different classes, Note that the
Mean values remain constant while the variance decreases resulting in a higher Fisher’s
Ratio, from [Rah09]

The actual FR values for the proposed feature set are shown averaged over all songs of
the stereo dataset in figure 26 and per song and feature in figure 27. The exact values
are listed in Appendix A.
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Figure 26: Average Fisher’s Ratio for each feature of the stereo training dataset, the
dashed red line represents the chosen threshold for excluding features

The threshold upon which a feature is excluded from the final sub set is chosen empirically
to be 0.1. One might assume this to be a rather low value, but experiments showed that
setting the threshold to higher FR values, decreased the classification performance, which
might be unexpected at first. Theoretically, the higher the ratio, the more significance
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Figure 27: Fisher’s Ratio for each feature and for each Song of the stereo training dataset

the resulting feature subset should have, i.e. the higher the discriminability. While this
is generally true, tests showed that the information loss introduced by excluding more
and more features prevails at a certain point, especially when using a powerful classifier
like the SVM. Powerful refers to the SVM’s capability to separate in non-linear feature
spaces. The final feature subset is then obtained by performing a Principal Component
Analysis (PCA) to transform the feature space onto an orthogonal system. It could
be observed that the classification performance increases significantly (5-10%) by using
PCA.

Next, the RBF parameters for the SVM have to be set. As mentioned on page 42, this is
realized by Cross-Validation and Grid-Search. In accordance to the mentioned steps, first
a coarse grid is used before performing a more precise grid search while incorporating a
6-fold cross-validation. After running the grid searches for each subset the mean values
are computed and shown in figure 28.

The optimal parameters C and γ are chosen by maximizing

maxptotal no# of TP´ total no# of FPq (34)

where the total numbers of true positives TP and false positives FP are obtained by
summation over all cross-validation subsets. The metrics along with the corresponding
confusion matrix are presented on page 63.

Finally, the chosen parameters C “ 214.75 and γ “ 21 are used to pre-train the SVM,
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Figure 28: Grid Search Results for Pitch Track Classification, Average of 6-fold cross-
validation

which decreases the amount of time necessary for the classification process.
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3.2 Time-Frequency-Unit Classification

To our knowledge there is a lack of training-sets for unvoiced singing voice. Therefore,
we used the previously presented stereo dataset (page 41). The necessary ground truth
for the TFU classification is created in a three-fold process.

1) Preprocessing

The singing voice signals and accompaniment signals are separately available as stereo
recordings. Based on a predefined Voice to Accompaniment Ratio (see eq. 32, page 41)
of 0dB, both signals are mixed to build what we call the premix.

The singing voice signal is now processed by the stages panning index preprocessing and
harmonic/percussive decomposition. Next, a moving average subtraction is performed on
the percussive signal. The moving average subtraction (filter length 17 samples) can be
seen as high-pass filtering with a filter cutoff frequency of „2.2 kHz. The filtering comes
from the assumption, that unvoiced singing is not present in lower frequency regions.
The filtered percussive signal then represents the unvoiced singing signal. Finally, the
unvoiced singing is subtracted from the premix. The last mentioned signals, the unvoiced
singing signal and the premix signal without the unvoiced singing, are used to build the
ground truth for the TFU classification.

Finally, the above described method to obtain the unvoiced component of the singing
voice signal is now applied to the premix signal. In this way the voiced and unvoiced
components are separated. These will be used to build the ground truth for the unvoiced
frame detection and referred to as unvoiced premix and voiced premix.

The next two paragraphs will describe how the specific labels are created based on energy
considerations. The Energy E of a signal xrns is calculated as follows:

Epxrnsq “

g

f

f

e

1

N

N
ÿ

n“1

xrns2 (35)

where N is the frame length in samples.

2) Unvoiced Dominant Frame Labels

The unvoiced premix and the voiced premix are compared frame-wise in energy to assign
the label unvoiced dominant or voiced dominant. Additionally, the time instances a
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singing voice f0 is present, is taken into account. As mentioned, the time instances where
a singing voice is detected by the voiced singing stages are extended by an additional
time window (pre-/post-listen).

In summary, this leads to the following decision rule:

Eppremixunvoicedq ą Eppremixvoicedq ^ voice f0 presentñ unvoiced dominant frame
(36)

3) TFU Class Labels

Now the energies of TFU’s are compared. In particular, the TFU Energies resulting from
unvoiced singing and the ones resulting from the premix without unvoiced singing. If
the following rule

EpTFU, unvoiced singingq ą EpTFU, premix without unvoiced singingq (37)

holds true for a particular TFU, then it is labeled as class voice and as class music
otherwise.

Processing the whole stereo dataset, 2278 training instances for the class voice and 2720
training instances for the class music are created.

SVM Training

Having build the ground truth, the SVM now is trained by:

1) panning index filtering and harmonic/percussive decomposition

2) moving average subtraction of percussive signal

3) splitting in frequency bands, using a gamma-tone filter-bank

4) time decomposition of every filter output in overlapping frames

5) extraction of 4 MMS coefficients (page 37) for each frame

6) perform PCA on the resulting feature set to transform it onto an orthogonal system

7) find the best SVM parameter set (page 42):
– scaling of feature set
– select RBF Kernel
– Cross-Validation and Grid-Search (figure 29)
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8) determination of the optimal RBF parameters, max(true positives - false positives),
eq. 34 on page 47

The optimal SVM RBF parameters were found to be C “ 22 and γ “ 25.

It should be noted, that only one SVM model is trained for all TFU’s. This means, the
classifier does not distinguish between different gamma-tone filters.

Figure 29: Grid Search Results for Time-Frequency-Unit Classification, Average of 6-fold
Cross-Validation
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4 Evaluation

Before we present a detailed evaluation, let us first revisit the evaluation measures namely
Precision, Recall, F-Measure and Accuracy.

The Precision is defined by:

P “
TP

TP ` FP
(38)

The Recall is defined by:

R “
TP

TP ` FN
(39)

The F-measure is defined by:

F “ 2
P ¨R

P `R
(40)

Finally, the Accuracy is defined by:

Acc “
TP ` TN

TP ` FP ` TN ` FN
(41)

How the metrics TP, FP, TN and FN are obtained varies thus, will be explained for each
evaluation section separately.

4.1 Panning Index Preprocessing

The panning index preprocessed signal PIrns and its effect on the subsequent processing
stages is compared to its common alternative, usually referred to as Center Signal (CS).
We define it to be

CSrns “
1

2
pxleftrns ` xrightrnsq (42)

representing a simple time domain summation of left channel xleft and right channel
xright.

As a quality measure, we study the Spectral Voice to Accompaniment Ratio (SVAR)
resulting from the different processing techniques. We define the SVAR to be:

SV ARrks “ 10log10

ˆ

|FFT pxvrnsq|

|FFT pxarnsq|

˙

(43)

where k is the frequency index. The singing voice signal and the accompaniment signal
is passed separately through the panning index preprocessing resulting in SV ARPI and
the center signal processing resulting in SV ARCS.
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First, let us consider a fixed window width Ψw for the PI preprocessing. The resulting
SVAR’s are shown in figure 30. Two observations can be made. First, both SV AR’s
decrease to low frequencies. This comes from the fact, that instruments that are usually
positioned in the center of the stereo-panorama, e.g. bass drum or double bass, introduce
significant energy in low frequencies, while the singing voice usually has less energy in
low frequencies (see figure 2). Second, the SV ARPI resulting from the panning index
processing is higher than the one from the center signal and reaches a maximum value
of 8dB. This maximum value however is dependent on the chosen window width. To
illustrate this dependency the ∆SV AR, i.e. the difference in SVAR resulting from
panning index preprocessing and center signal processing, is shown in figure 31.

The ∆SV AR is calculated as follows:

∆SV AR “ SV ARPIpΨwq ´ SV ARCS (44)
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Figure 30: Spectral Voice to Accompaniment Ratio for Center Signal and Panning Index
Preprocessing, Ψw “0.6

It can be seen that, as the window width decreases the ∆SV AR increases, while if the
window width increases the ∆SV AR decreases. This behavior is expected, since the
wider the window, the more energy from the accompaniment signal is preserved. How-
ever, it could be observed that by choosing a narrower window, not only the SV ARPI

increases, but the singing voice signal gets affected as well. If the singing voice is per-
fectly positioned in the center and moreover does not vary in position over time, it is
not affected by the chosen window width. However, if audio effects are applied to the
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Figure 31: ∆ Spectral Voice to Accompaniment Ratio (SVAR), calculated as the differ-
ence in SVAR between panning preprocessing and center signal processing

singing voice signal, e.g. reverb or delay based effects, its position in the panorama
changes slightly over time. Hence, the narrower the window the more likely the singing
voice is affected by the panning preprocessing by a significant amount. This effect is
quantified by comparing the panning preprocessing to the center signal processing where
both techniques are applied solely on the singing voice signal. Firstly a spectral com-
parison is realized by using the Panning Index to Center Signal Ratio (similar to eq.
43):

PICSRrks “ 10log10

ˆ

|FFT pPIvrnsq|

|FFT pCSvrnsq|

˙

(45)

where the subscript v marks the singing voice as basis for the different processing tech-
niques. Figure 32 shows that the PICSR decreases for narrower windows. The fact that
for Ψw ą0.2 the PICSR exceeds 0dB originates in the center signal processing, due to
the time domain summation of out of phase components and the resulting loss of energy.
To stress the fact that a narrow window evokes not just frequency dependent damping
of the singing voice signal, figure 33 depicts the loss of correlation by choosing a small
Ψw. The degree of correlation is represented by the correlation coefficient, which is
calculated by:

CCoeff “

n
ř

pPIvrns ´ PIvqpCSvrns ´ CSvq
b

ř

pPIvrns ´ PIvq2
ř

pCSvrns ´ CSvq2
(46)
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Figure 32: Panning Index to Center Signal Ratio (PICSR) and its dependency on the
panning index window width, PICSR calculation is based solely on singing voice signals

The presented evaluation results conclude that, the optimal window width should be as
narrow as possible to maximize the improvement in using the panning index preprocess-
ing, i.e. maximizing ∆SV AR. At the same time, the window width should be as wide
as necessary to minimize information loss induced by the processing. As can be expected
Ψw heavily effects the subsequent singing processing, thus the final decision on the exact
value is presented in the pitch track classification evaluation, chapter 4.2.3 on page 64.

It should be mentioned that the selected VAR, used in premixing singing voice and
accompaniment, does not have any effect on the resulting ∆SV AR values.
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4.2 Voiced Singing Voice

The evaluation of the voiced singing stages is based on the stereo data set presented on
page 41, which was created for the purpose of this thesis. Additionally, 9 songs from
the MIREX 2005 training set (page 44) are used solely to compare against the results
achieved by A. Rahimzadeh.

4.2.1 Multi Pitch Estimation

To evaluate the performance, the Raw f0 Accuracy is used which can be calculated as
follows:

RawAccf0 “
no# of correctly estimated vocal f0’s

total no# of frames containing singing voice
(%) (47)

A pitch is considered estimated correctly if its frequency is within ˘1
4
-note (« 3%) to

the reference f0.

The accuracy of the estimation process is mainly dependent on the number of extracted
estimates per frame, due to the fact, that the estimation relies on the vocal pitch to be
prominent in the magnitude spectrum. The relationship between the amount of pitch
estimates and the Raw Estimation Accuracy is shown in figure 34. As expected, the
more estimates being extracted, the higher the estimation accuracy which reaches its
maximum median value of 92.6% (CI ˘3.5%) for 15 and more estimates. This leaves „
7.4% of the vocal pitches undetected which could have 2 main reasons. Firstly, spectral
leakage and the resulting concealment of peaks in the magnitude spectrum and second,
some of the vocal pitches occur with very low amplitudes. Latter makes it very difficult
to detect the vocal pitches, especially if other sources have significant energy in the same
frequency region. Furthermore, figure 34 shows that if the amount of pitch estimates
is restricted to very few estimates, the estimation accuracy decreases rapidly while its
variance increases, since it is very likely that strong spectral components coming from
other sources will be detected instead.

In order to choose the optimal number of estimates one has to consider not only its
effect on the pitch estimation accuracy but on the subsequent processing. As already
mentioned, the ground truth used to train the pitch track classifier has to be computed
on the basis of the known reference vocal pitches. Therefore, the pitch estimation not
only effects the pitch track classification, but its training, i.e. the ground truth. Thus, a
way to maximize the ground truth is to maximize the significance of the resulting pitch
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trajectories used in training. By significance we mean the amount of valid vocal pitches a
pitch track, assigned to the class voice, contains. Maximizing the significance of the pitch
trajectories leads to maximizing the meaningfulness of the resulting feature values and
thereby allowing optimal classification performance. Thus, a measure is needed to decide
on the number pitch estimates, which we call the Raw Track Accuracy RawAcctrack.

It is defined as the number of correctly estimated vocal pitches divided by the true
amount of vocal pitches.

RawAcctrack “
no# of valid pitches in voiced ground truth
true no# of frames with active singing voice

(%) (48)

The goal is to have pitch tracks containing a maximum number of true vocal pitches.
The relationship between the track accuracy and the number of estimates is presented in
figure 35. First of all, it is important to note that the Raw Track Accuracy only increases
the reliability of the vocal pitch tracks, while having no effect on the pitch tracks of class
music. Therefore, it gives more a qualitative statement. Nevertheless, the large variances
for few estimates as well as for many illustrate that the number of estimates does not
affect all tracks. For the case of very few estimates, figure 35 illustrates that for some
songs there are other musical sources with significant energy in the vocal f0 frequency
range, thus the sources with higher amplitudes will be extracted instead of the vocal
pitches. The large variances for many extracted estimates show that there are sources
with a high amount of energy in close proximity to the vocal f0 trajectory. A good trade
off seems 10 estimates, since the variance seems acceptable and at the same time the
median accuracy is still high.

Initially more parameters were implemented to tune the MPE performance, e.g. the
number of partials that have to be detected, the allowed number of undetected partials
and the allowed deviation of partial frequencies to their perfect harmonic location. The
motivation was to pre-filter or decrease the number of estimates while preserving the
maximum amount of valid vocal pitch estimates. However, these concepts failed since
the identification of a partial, i.e. identifying the corresponding f0, and proved to be
unreliable. The first step would be, to have reliable information about the existence of
a particular partial, which again could not be achieved. To elaborate, let us consider
the partial frequency deviation. A partial frequency deviation of 0% means, that the
occurring magnitude at each multiple of f0 is considered to be a partial, regardless if a
local maximum could be detected. In contrast, if we allow a deviation, a local maximum
hast to be detected, otherwise the corresponding partial is considered to be missing.
Ideally we would always detect a partial if present, but practically this assumption holds
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Figure 33: Correlation coefficient (CCoeff) between panning preprocessed singing voice
and center signal processed singing voice
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Figure 34: Number of extracted pitch estimates per frame versus Raw f0 Estimation
Accuracy
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Figure 35: Number of pitch estimates per frame versus Raw Track Accuracy

not true, since we are restricted at least by the number of present sources in a mix and
their (partially) overlapping spectra. Experimental results confirmed the unreliability in
detecting the presence of a partial thus, the restriction in the amount of detected partials
along with their frequency location is left out of the process. Yet, we believe that having
a reliable mapping of partials to their corresponding f0 would improve the pitch track
classification performance significantly. Since the frequency location of partials, their
magnitude and evolution over time is one important distinctive property inherent to a
class of sources.

To conclude the evaluation, we present in table 4 the specific Raw Estimation Accuracies
in comparison to Rahimzadeh. Apart from minor individual variations the same overall
estimation accuracy is achieved.

Sebastian Rieck, Singing Voice Extraction 59



4 Evaluation 4.2 Voiced Singing Voice

file name proposed Rahimzadeh ∆
train01 97.7 96.9 0.8
train02 85.8 87.9 -2.1
train03 80.3 81.1 -0.8
train04 89.2 88.6 0.6
train05 98.0 97.1 0.9
train06 81.0 83.7 -2.7
train07 93.5 92.1 1.4
train08 95.6 93.1 2.5
train09 92.9 92.9 0
mean 90.45 90.38 0.06

Table 4: Multi Pitch Estimation Raw Accuracy in comparison to A. Rahimzadeh, all
values in %, evaluated on 9 songs MIREX 2005 training data set „vocal“ (see page 42)

4.2.2 Pitch and Partial Tracking

To evaluate the performance of the pitch tracker and illustrate how much information is
retained, i.e. the amount of correct vocal pitches, we present the Relative Pitch Tracking
Accuracy:

RelP itchAcc “
no# correct vocalf0’s in all pitch tracks
total no# of correctly estimated vocalf0’s

(%) (49)

Again, like in the MPE evaluation, a pitch is considered correctly estimated if its fre-
quency is within ˘1

4
-note (« 3%) to the reference f0. The Name Relative Accuracy

signifies the fact that the amount of correct vocal f0’s contained by all pitch tracks is
measured in relationship to the correctly estimated f0’s coming from the MPE. In that
way a Relative Pitch Tracking Accuracy of 100% means that none of the correct vocal
f0’s was discarded in the pitch tracking process.

Apart from the post-processing of pitch tracks, i.e. discarding unreliable pitch tracks
because of low MLT or low f0 salience (see page 21), the achievable accuracy mainly de-
pends on the chosen frequency deviation ∆f which a pitch track is allowed to change from
frame to frame. As a reminder, ∆f additionally defines the frequency range surrounding
the pitch track f0, within pitch estimates are considered to be possible candidates for
the particular pitch track.

Figure 36 shows the relationship between ∆f and the RelPitchAcc. A maximum me-
dian value of 97% is achieved for ∆f “4%, thus only 3% of the correct pitches are
discarded. Although 3% of the correct vocal pitches are lost, at the same time the
post-processing discards an average value of 73% (MLT“68%, f0 salience“5%) off all
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Figure 36: Relative Pitch Tracking Accuracy versus frequency deviation ∆f

pitch tracks increasing significantly the meaningfulness of the resulting feature set. The
decreasing RelPitchAcc for small ∆f values originates in the fact, that the pitch tracks
are terminated more quickly, if the frequency range within possible pitch candidates have
to be located is heavily restricted. Thus, the lower the ∆f the shorter the pitch tracks
become and the more pitch tracks will be discarded because they do not exceed the
Minimum Life Time. In contrast, for high ∆f ’s the mentioned frequency range widens
and the more likely that a pitch candidate coming from another source are assigned
to the vocal pitch track, especially if this source has significant energy in the vocal f0

frequency range. The implemented ∆f value was consequently set to 4%.

To conclude, we present a comparison based on the MIREX 2005 training set, of the
proposed pitch tracker to the one proposed by Rahimzadeh. Rahimzadeh introduced a
pitch tracker containing linear prediction, which intended to increase the performance,
i.e. increase the pitch track reliability, such that the pitch nearest to the predicted
pitch track frequency is assigned to the track. First, we changed the application of
the LPC such that, the frequency range within we consider possible pitch candidates is
extended to include the predicted track frequency. Experimental results showed, that
the prediction can not be considered reliable and furthermore decreased the raw pitch
tracking accuracy. The comparison between the accuracy achieved by Rahimzadeh, the
studied modified LPC and the final proposed pitch tracker without prediction is shown
in figure 37. The Raw Pitch Tracking Accuracy is similar to eq. 49 except correct vocal
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f0’s are now set in relationship to the total nunmber of frames containing singing voice:

RawPitchAcc “
no# correct vocalf0’s in all pitch tracks

total no# of frames containing singing voice
(%) (50)

Figure 37 shows, that the proposed pitch tracker outperforms Rahimzadeh’s pitch tracker
on all of the 9 songs from the MIREX 2005 training set by a mean value of „7%. The
biggest improvement is for song 4 with 12%, while the lowest is for song 9 with 3%.
The mean RawPitchAcc of the proposed pitch tracker reaches 90%.
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Figure 37: pitch tracking accuracy in comparison to A.Rahimzadeh, evaluated on 9 songs
from the MIREX 2005 training data set (see page 42)
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4.2.3 Pitch Track Classification

The Pitch Track Classification is evaluated in 2 steps. First, the benefit in using Panning
Index Preprocessing is shown and second, the achieved accuracies are compared to
Rahimzadeh.

As a measure for the classification performance, we define the Raw Classification Accu-
racy using eq. 41. The term „Raw“ states, that the metrics are calculated pitch wise
based on the known reference f0 while evaluating all classified pitch tracks.

Additionally, to focus on the singing voice pitch track we define the Final f0 Raw Accuracy
as the sum of TP and TN divided by the total amount of frames:

Finalf0RawAcc “
TP ` TN

total no# frames
(51)

where „Final“ states the fact, that it is calculated solely based on the final singing voice
pitch track after post-processing the classification results.

The confusion matrix presented in table 5 shows the assignment of the metrics. The
specific values can be calculated as follows:

TP “
no# of correctly classified vocal pitches
total no# frames containing singing voice

(52)

FP “
no# of pitches misclassified as vocal pitches
total no# frames not containing singing voice

(53)

TN “
no# of correctly classified musical pitches

total no# frames not containing singing voice
(54)

FN “
no# of pitches misclassified as musical pitches
total no# frames containing singing voice

(55)

predicted class
voice music

ground truth
voice TP FN
music FP TN

Table 5: Confusion matrix for pitch track classification, voiced singing

Table 5 shows, that the assignment of the metrics is based on the underlying ground
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truth. In this way, TP and FN as well as TN and FP will sum up to 100%.

Influence of Panning Index Preprocessing

To evaluate the effect of the panning index preprocessing on the classification, the
classifier is trained on the stereo dataset presented in chapter 3 on page 41 and evaluated
with 6-fold cross-validation. This data set incorporates 36 training instances for the class
voice and 692 instances for the class music.

Table 6 presents the ∆ Mean Accuracies between panning preprocessing and center
signal processing, which are generally calculated by:

∆Acc “ AccPI ´ AccCS (56)

∆Acc

MPE PT Raw Class. Results Final f0

Ψw Raw Raw Raw
Acc. Acc. P R F Acc.

0.1 -3.50 -5.92 -8.33 14.20 7.60 3.94
0.2 -1.42 -2.40 -1.35 -1.02 3.05 0.36
0.3 -0.16 -1.35 -6.22 11.51 8.25 6.93
0.4 -0.26 -0.94 -1.53 12.70 10.93 9.27
0.5 -0.13 -0.86 1.33 15.30 14.17 12.13
0.6 -0.12 -0.95 1.07 14.80 13.22 11.24
0.7 -0.02 -0.85 -4.23 14.98 9.77 9.57
0.8 0.37 0.11 -2.75 16.53 9.83 7.81

Table 6: ∆ Mean Accuracies between panning index preprocessing and center signal
processing depending on window width Ψw, all values in %, 6-fold cross-validation used

Leaving the narrowest window size (Ψw “ 0.1) aside, one can observe the Final f0

Raw Accuracy increasing for wider windows, reaching its maximum mean value of „12%
for Ψw “ 0.5 and then decreasing to even wider windows. As already mentioned in
chapter 2.2, very narrow windows effect the singing voice signal if its position in the
stereo-panorama varies slightly over time. The MPE and PT Accuracy for (Ψw ď 0.2)
reflect this fact. On the other hand, for very wide windows, more of the accompaniment
signal is preserved thus making the classification process harder. For 0.3 ď Ψw ď 0.4

the accompaniment signal is suppressed strongly, leading to rather short pitch tracks for
this class and thereby resulting in features values which are difficult to distinguish from
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the ones of class voice. A similar effect can be observed for very wide windows. Here
the pitch tracks of class music are longer, but the increasing amount of preserved energy
decreases the significance of the feature set. The underlying two main properties, the
feature set is aimed to capture, are the f0 variability and the relationship between partials
and their corresponding fundamental frequencies. Since the partial frequency locations
are restricted to be strictly harmonic, i.e. integer multiples of f0, the more energy is
preserved from the accompaniment the more likely that the partials and their extracted
features are getting unreliable. The lower accuracy for narrow and wide windows is also
reflected in fact, that more features are excluded from the final subset because they
examine a low Fisher’s Ratio. Another interesting finding is, that the pitch estimation
and tracking accuracy does not change significantly while the Final Raw Accuracy does.
This emphasizes the fact, that a high estimation accuracy does not guarantee high
classification accuracy.

MPE PT Raw Class. Results Final F0 raw acc.
Song raw raw
ID acc. acc. P R F PI CS PI-CS
1 74.1 71.8 44.1 49.2 46.5 55.3 56.7 -1.4
2 93.9 89.3 74.4 72 73.2 64.3 62.1 2.2
3 93.1 93.1 80.6 85.9 83.2 84.7 78.5 6.2
4 92 90.4 78.7 83.8 81.2 74.4 56.5 17.9
5 90.3 87.4 76.6 92.6 83.9 73.5 54.8 18.7
6 88.4 82.3 80.2 63.3 70.7 64.1 35 29.1

median 91.2 88.4 77.7 77.9 77.2 68.9 56.6 12.3
mean 88.6 85.7 72.4 74.5 73.1 69.4 57.3 12.1
CI ˘6.5 ˘6.8 ˘12.4 ˘14.2 ˘12.4 ˘9 ˘12.3 -3.3

Table 7: Accuracy evaluations results for panning index preprocessing window width
Ψw “0.5, all values in %, 6-fold cross-validation used on stereo dataset described on
page 52

Now that we can set the window width to Ψw “ 0.5, let us view the detailed perfor-
mance for this particular setting, which is shown in table 7. The highest improvement is
obviously achieved for the last 3 songs of the data set with up to „29%. The main rea-
son why the panning index preprocessing allows better classification accuracy for these
songs, lies in the fact that the panning index preprocessing is able to suppress the con-
curring sources and more importantly their partials by a higher amount than the center
signal processing. As already mentioned, the relationship of partials to their fundamen-
tal frequency is an important property captured by the feature set. Thus, damping the
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amplitudes of partials increases the discriminability between the two pitch track classes
significantly.

The mean final final f0 accuracy for the presented data set reaches „70%, which might
be considered a medium performance. However, it is important to point out two sig-
nificant facts. First, this data set only contains 17 seconds of audio in total, resulting
in „730 training instances where only 36 are of class voice. This represents a very
small data set, thus one can assume higher performance by incorporating more training
instances. Second, the data set was created by premixing the singing voice and accom-
paniment signals with a VAR of 0dB. This is a rather unusual ratio (normally +2 to
+5dB) which increases the difficulty for the classification process.

Classification Accuracy comparison

Table 8 shows the Raw Classification Accuracy achieved by Rahimzadeh compared to the
proposed method. A significant improvement in accuracy is achieved with a maximum
increase of 50%. The mean accuracy is improved by 16.3%, at the same time the
confidence interval (CI) is reduced by 7%. It should be mentioned that Rahimzadeh
used a k-nearest neighbor classifier which represents a very simple classifier compared to
the SVM.

Song Raw Classification Accuracy
ID Proposed Rahimzadeh Proposed-Rahimzadeh
1 95.6 89.8 5.8
2 84.9 66.3 18.6
3 75.6 55.1 20.5
4 82.1 69.2 12.9
5 91.3 88.4 2.9
6 90.4 40.2 50.2
7 93.1 78.9 14.2
8 91.5 83.6 7.9
9 86.0 66.5 19.5

median 90.4 69.2 23.9
mean 87.8 71.5 16.3
CI ˘4.3 ˘11.3 -7.0

Table 8: Raw Classification Accuracy comparison of the proposed method to
Rahimzadeh, all values in %, 9-fold cross-validation on „MIREX 2005 training data
set - vocal“
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4.2.4 Re-Synthesis

Due to the lack of a suitable data set to evaluate the performance of this stage, we
present the examined methods to increase the audible re-synthesis quality.

The main goal was to find a property, that allows to identify partials and their corre-
sponding fundamental frequency. The Motivation behind it was to exclude or discard
partials if their frequency or amplitude is uncorrelated with the corresponding f0. There-
fore, correlation based properties were studied. The occurring problem was to detect and
identify a set of corresponding partials in a reliable manner, only then particular prop-
erties can be studied. Experiments showed that the presented pitch estimation is not
able to accomplished this task, mainly because of concurring sources and their resulting
overlapping spectra.

Additionally, another method was studied, presented at the DAFX 2011 by Estefania
Cano et. al. [CSD10]. They proposed the use of the phase information in source
separation applications. The idea is, that partials from the same source not only relate
in frequency (frequency-locking), e.g. partial frequencies are at integer multiples of f0,
but in phase as well (phase-locking). They showed the informative character of this so
called phase-locking property for solo recordings of trumpet, clarinet, violin and piano.
We studied the phase-locking for the case of singing voice. Experiments with solo singing
voice recordings showed, that if a single note is sung, the phase values of partials exhibit
similar behavior. However, if vibrato is introduced the phase-locking property seems no
longer to be true, at least not in a strict sense. Therefore, further work has to be done
in order to integrate this property into the presented framework.

As a consequence of the experimental results, all methods presented here were rejected
because of their unreliability.
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4.3 Unvoiced Singing Voice

4.3.1 Unvoiced Dominant Frame Detection

The UVFD accuracy is presented here in dependency on the LP error threshold. The
question is, how well the LP error criteria, in conjunction with the presence of a singing
voice f0, is able to map the measured frame energies for unvoiced dominant frames, i.e.
the ability to map the ground truth. The Accuracy is calculated using eq. 41 along with
the following confusion matrix:

assigned class
unvoiced voiced

ground truth
unvoiced TP FN
voiced FP TN

Table 9: Confusion matrix for Unvoiced Dominant Frame Detection

As figure 38 shows, the median accuracy reaches its maximum value of 83% (max 86.6%,
min 43%) for a LP error threshold of 10´4.25. For this threshold all songs achieve a
minimum accuracy of 72%, except for song 2 (refer to table 10). For this particular
song the LP error seems to be a insufficient description. The reason being, that the LP
error variances are very low, especially in contrast to the other songs in the set. Thus,
the overall LP error threshold is not reflecting these particular low values, which leads
to a low UVFD accuracy.

−4.75 −4.5 −4.25 −4 −3.75 −3.5 −3.25 −3
20

30

40

50

60

70

80

90

100

LP Error Threshold (log
10

)

U
V

F
D

 A
c
c
u
ra

c
y
 (

%
)

 

 

median

confidence interval

25 and 75 percentile

Figure 38: Unvoiced Dominant Frame Detection Accuracy versus threshold on Linear
Prediction error
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Next, the Panning Index Preprocessing and its influence on the UFVD Accuracy is ex-
amined (table 10). To allow a fair comparison, the accuracy results achieved by Center
Signal Preprocessing are based on the ground truth, which was rebuild using the cen-
ter signal. The overall median accuracy does not change significantly if Panning Index
Preprocessing is performed. However, for song 6 and the case of center signal prepro-
cessing the unvoiced frame detection fails completely. The reason for this is 2-fold. First,
using CS preprocessing for this song, the ground truth that was build consists of 465
frames labeled as voiced dominant and only 15 frames labeled as unvoiced dominant.
This comes from the fact, that too much energy is preserved in the center signal and
the presented criteria to identify unvoiced dominant frames based on energy comparison
almost fails. Additionally, the detection of the presence of a singing voice f0, performed
by the voiced singing stages, shows a very low accuracy (ă 35%) for this song. Hence,
detecting unvoiced dominant frames by combining the LP error with the presence of a
singing voice f0 is unable to map the ground truth.

This leads to a mean accuracy improvement of 13.5% in using the panning index pre-
processing. If the VAR is increased to 5dB, the UVFD accuracy difference between PI
and CS decreases to mean value of 2.8%. This behavior is expected, since the unvoiced
singing components are more and more dominating the mix and the ability to damp the
accompaniment becomes less important. Thus, the higher the VAR the clearer unvoiced
dominant frames can be distinguished from voiced dominant frames.

Song UVFD Accuracy
ID PI CS PI-CS
1 86.6 83.1 3.5
2 43.0 46.2 -3.2
3 88.6 82.6 6.0
4 79.4 88.8 -9.4
5 72.0 76.1 -4.1
6 88.3 0 88.3

median 83 82.6 1.6
mean 76.3 62.8 13.5
CI ˘15.4 ˘30.0 -14.6

Table 10: Unvoiced Dominant Frame Detection Accuracy comparison for different pre-
processing strategies, Panning Index Preprocessing (PI), Center Signal Preprocessing
(CS), all values in %, V AR “ 0dB, 6-fold cross-validation
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4.3.2 TFU Classification

The metrics used here are based on the following confusion matrix:

predicted class
voice music

ground truth
voice TP FN
music FP TN

Table 11: Confusion matrix for Time-Frequency-Unit Classification

Table 12 presents the TFU Classification Accuracy along with the UVFD Accuracy. The
achieved median classification accuracy reaches 69%, which represents a good result.
In addition, it can be observed that the 3rd song exhibits a low classification accuracy
in particular. This is due to the fact, that only a single SVM model is used to classify
all TFU’s, regardless from which gamma-tone filter output (auditory channel) a TFU
originates. Experimental tests revealed, that the feature value distributions are not
consistent over all channels. This decreases the classification accuracy for this song in
particular, but also prevents higher accuracies for the whole set. This suggests, having
separate models for each auditory channel would increase the overall accuracy.

Song TFU Classification
ID TP FP TN FN P R F Acc.
1 43.1 0 100 56.9 100 43.1 60.2 71.5
2 36.7 0 100 63.3 100 36.7 53.7 68.4
3 44.1 53.2 46.9 56.0 41.0 44.0 42.4 45.4
4 55.7 16.7 83.3 44.3 85.2 55.7 67.4 69.5
5 79.9 32.5 67.5 20.1 34.9 79.9 48.6 73.7
6 77.9 47.1 52.9 22.2 49.8 77.9 60.7 65.4

median 49.9 24.6 75.4 50.2 67.5 49.9 57.0 69.0
mean 56.2 24.9 75.1 43.8 68.5 56.2 55.5 65.7
CI ˘16.3 ˘20.2 ˘20.2 ˘16.3 ˘26.3 ˘16.3 ˘8.0 ˘9.0

Table 12: Achieved accuracies for Time-Frequency-Unit Classification, all values in %,
V AR “ 0dB, 6-fold cross-validation, using panning index preprocessing

Next, the dependency of the classification accuracy on the preprocessing strategy is
presented. Table 13 shows the comparison between PI preprocessing and CS preprocess-
ing. Using the proposed PI preprocessing a median accuracy improvement of 9.8% is
achieved. The significant increase in accuracy in general and for the songs 1 and 5 in
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particular all arise from the same fact, which is the ability of the PI processing to sup-
press the accompaniment. Since the ground truth is build by comparing the occurring
energies in each TFU of unvoiced singing and the premix without the unvoiced singing,
the less energy is preserved from the accompaniment the more TFU’s are labeled as
class voice. If PI processing is used, 2251 TFU’s are labeled as class voice and for CS
processing it decreases to 1171, which represents a reduction by „50%. In addition,
not only the instances for the class voice are reduced but the overall amount of training
instances decreases by 35% as well, since less frames are labeled unvoiced dominant.
This significant reduction in training instances makes the classification task inevitably
more difficult.

Song TFU Classification Acc.
ID PI CS PI-CS
1 71.5 50.0 21.5
2 68.4 64.5 3.9
3 45.4 54.2 -8.8
4 69.5 63.9 5.6
5 73.7 59.5 14.2
6 65.4 58.9 6.5

median 69.0 59.2 9.8
mean 65.7 58.5 7.2
CI ˘9.0 ˘4.9 4.1

Table 13: Time-Frequency-Unit Classification Accuracy comparison for different prepro-
cessing strategies, Panning Index Preprocessing (PI), Center Signal Preprocessing (CS),
all values in %, V AR “ 0dB, 6-fold cross-validation

Finally, to put the classification accuracies in perspective, we would like to stress the fact
that this data set consists only of 17 seconds of audio recordings. Increasing the data
set would very likely increase the classification accuracy. Additionally, the computational
complexity was drastically reduced in contrast to [HJT08]. The authors proposed 36
MFCC values for 128 gamma-tone filters which would have resulted in more then 800¨103

training instances for our training set, whereas we decreased the training instances to
only „5000. Unfortunately, a comparison in classification accuracy to [HJT08] can not
be presented here since, neither their algorithm, nor their training set is available to us.
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4.4 Overall

To evaluate the overall singing voice separation quality, we use the BSS_EVAL Toolbox 4

for MATLAB®. This toolbox has gained a widespread use over the last years and is
used to measure the performance of various source separation algorithms. For a detailed
review the reader is referred to [VGF06]. The principle is to decompose a given estimate
ŝptq as sum of signals with allowed deformations

ŝptq “ stargetptq ` einterf ptq ` enoiseptq ` eartif ptq (57)

where stargetptq represents the target signal, einterf ptq accounts for the interferences of
the unwanted sources, enoiseptq represents perturbating noise, and eartif ptq is an „arti-
fact“ term that may correspond to artifacts of the separation algorithm. Having the
decomposed estimate, the following measures are calculated

Source to Distortion Ratio (SDR)

SDR “: 10log10
||starget||

2

||einterf ` enoise ` eartif ||2
(58)

Source to Interferences Ratio (SIR)

SIR “: 10log10
||starget||

2

||einterf ||2
(59)

Sources to Artifacts Ratio (SAR)

SAR “: 10log10
||starget ` einterf ` enoise||

2

||eartif ||2
(60)

Before we present the results, we would like to point out that the BSS_EVAL toolbox is
not designed to handle stereo signals therefore, all signals are converted to center signals
using Eq. 42.

Table 14 shows the resulting performance measures. Leaving song 2 aside, two observa-
tions can be made. First, all SDR and SAR values are negative, which indicates a high
amount of artifacts. Since the proposed system is designed to extract the singing voice

4. Version 2.0, C. Févotte, R. Gribonval and E. Vincent, BSS EVAL Toolbox User Guide, IRISA
Technical Report 1706, Rennes, France, April 2005. http://www.irisa.fr/metiss/bss eval/
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Song SDR SIR SAR
ID (dB) (dB) (dB)
1 -6.48 36.12 -6.48
2 4.69 34.65 4.70
3 -1.02 36.48 -1.02
4 -2.49 30.20 -2.48
5 -2.95 43.63 -2.95
6 -5.99 29.30 -5.98

mean -2.37 35.06 -2.37

Table 14: Evaluation of the proposed method for singing voice extraction using the
BSS_EVAL Toolbox

signal with a high precision in contrast to a high recall, all singing voice components that
are not extracted will be considered artifacts, after decomposition. Hence, the resulting
low values. Second, for all songs a very high SIR is achieved. This is a very good result,
since state of the art algorithms usually reside in the range of 5-30dB. Nevertheless, the
SIR has to be seen in relationship to the SDR and SAR. For Song 2 all the results are
in a desirable range and prove the potential of the proposed system.

To elaborate on the computational efficiency, we presented in table 15 the runtime for
the task of singing voice extraction, listed for each file of the stereo data set (page 41).
The test system was a MacBookPro 2.2GHz, Intel Core i7, 8 GB DDR3 RAM, MacOSX
10.6.8, MATLAB© R2009a (7.8.0.347).

Additionally, the time to train all classifiers including building the ground truth is pre-
sented in table 16. Since, especially in the case of grid-search and cross-validation the
needed time to train the classifiers heavily depends on the parameter increments used for
the grid search, the chosen grid-search represents a typical medium grid (7 ă ldpCq ă

19;´5 ă ldpγq ă 8). More precise grids could easily increase the runtime by factor of
2 and higher.
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Song duration execution time
ID (sec) (sec)
1 2.2 27
2 2 21
3 3.5 40
4 4.5 64
5 2.7 40
6 5.8 77

mean 3.5 44.8

Table 15: Singing Voice Extraction execution time for stereo data set

voiced singing unvoiced singing
(min) (min)

training 2.4 28.1
grid-search/cross-validation 3.5 70.1

total 5.9 98.2

Table 16: Singing Voice Extraction training runtime for stereo data set
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5 Conclusion

A framework to extract singing voice signals from 2-channel polyphonic popular music
recordings has been presented. Results show that the extraction of voiced singing voice
based vocal melody estimation and a sinusoidal model achieves good separation results.
The extraction of the unvoiced component needs to be further investigated.

The evaluation of individual processing stages and corresponding results have been pre-
sented separately. The panning index preprocessing increases the accuracy of the voiced
singing classification by 12% in average and the unvoiced singing classification by 7.2%
(median: 9.8%). The frame-wise pitch estimation yields 88.6% (median: 91.2%) on av-
erage for the presented stereo dataset. The presented partial tracker achieves a absolute
mean accuracy of 85.7% (median 88.4%), which signifies that only 2.9% of the vocal
pitches are discarded in the tracking process. In contrast to the pitch tracker proposed
by Rahimzadeh [Rah09], this represents an improvement of 7%. The pitch track clas-
sification accuracy yields a mean value of 69.4% (median: 69%) on the stereo dataset
and 87.8% (median: 90.4%) on 9 songs from the MIREX 2005 training set. The latter
represents a mean improvement of 16.3% as opposed to Rahimzadeh.

The unvoiced dominant frame detection, based on linear Prediction and vocal f0 pres-
ence, achieves 76.3% average accuracy. Panning Index preprocessing improves this
frame detection task by 13.5%. The necessary training instances for the unvoiced time-
frequency-unit classification are reduced by a factor of 1.6 ¨ 102 and the classification
accuracy reaches a mean value of 65.7% (median: 69%). The overall evaluation of
the proposed method for the task of singing voice extraction yields a average Source
to Interferences Ratio (SIR) of 35.1dB, while for every song of the set the SIR’s are
above 29dB. The average Source to Distortion Ratio (SDR) and Sources to Artifacts
Ratio (SAR) is -2.4dB. Weaknesses of the proposed method have been discussed and
suggestions for further improvements will be presented in the following chapter.
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6 Discussion and Outlook

Maybe the most essential necessity, before considering any improvements to the proposed
method, lies in expanding the dataset. Like for all supervised learning algorithms the
size and content of the training dataset is of the essence. Hence, increasing the amount
of training instances would certainly lead to higher classification accuracies and provide
a better generalization.

As presented, the use of Panning Index preprocessing proved to increase the overall
performance by preserving the singing voice signal and damping the accompaniment
signal. This benefit could be further improved if the actual position of the singer in the
stereo panorama is tracked, rather then assuming it to be constantly in the center. The
tracking of the position could be realized by a learning algorithm, either unsupervised or
supervised. This would allow the use of narrower windows for the spatial extraction of
singing voice and therefore increase the damping of the accompaniment signal. Hence,
the subsequent processing of voiced singing and unvoiced singing would benefit from
this result.

The performance of the voiced singing processing stages could be improved in multiple
ways. First, by increasing the amount of vocal pitch candidates and second by identifying
the underlying source of a particular partial. As evaluation results of the multi-pitch
estimation showed, increasing the number of pitch estimates per frame only increases
the amount of detected true vocal pitches up to a certain point. This suggests that the
limiting factor is likely to be the frequency resolution, i.e. the discriminability of occurring
peaks in the magnitude spectrum. Methods like Time-Frequency Reassignment [HW01]
or Multi-Resolution FFT [Dre06] could be considered to increase the effective frequency
resolution. On the other hand, to be able to map a particular partial to its source or
fundamental frequency would not only increase the pitch track classification accuracy
(and thus the significance of the feature set), but the re-synthesis of the voiced singing
voice as well. Specific partials could then be discarded from a pitch track if belonging
to different sources or excluded in the singing voice re-synthesis process.

Another way to increase the pitch track classification accuracy is to maximize the sig-
nificance of the derived ground truth. As presented, the ground truth class assignment
of a pitch track depends on the amount of overlap with the reference vocal pitch trajec-
tory. Hence, maximizing the overlap maximizes the significance of the resulting feature
values. The proposed onset detection proved to be helpful in this task, which suggests
that detecting onsets more precisely would be beneficial. On way could be to combine
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the onset detection with a tempo estimation method, such that occurring onsets would
reflect the rhythmic structure of a musical piece in a more accurate manner.

The detection and extraction of the unvoiced singing voice components could be im-
proved mainly in two ways. First, in defining the ground truth more precisely, and second
in introducing separate classifiers for each auditory channel. The former could be realized
by hand labeling unvoiced singing components, which would allow the investigation of
more suitable descriptive parameters for the unvoiced dominant frame detection. Fur-
thermore, having separate classifiers for each auditory channel would very likely increase
the classification accuracy, since it has been observed that the feature distributions are
not consistent over all channels.

Finally, as for many music information retrieval algorithms, introducing a musicological
model can improve the overall performance by providing a framework to put the analysis
and synthesis of musical content into perspective, so to speak.

Sebastian Rieck, Singing Voice Extraction 77



7 References

[Ave03] C. Avendano, “Frequency-Domain Source Identification And Manipulation In
Stereo Mixes For Enhancement, Suppression And Re-Panning Applications,”
Applications of Signal Processing to Audio and Acoustics, 2003 IEEE Work-
shop on., pp. 55–58, 2003.

[BL04] D. Barry and B. Lawlor, “Sound Source Separation: Azimuth Discriminiation
and Resynthesis,” Proc. of the 7th Int. Conference on Digital Audio Effects
(DAFX-04), 2004.

[CL] C. Chang and C. Lin, “Libsvm: a library for support vector machines.”
[Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[CL08] M. Cobos and J. López, “Singing Voice Separation Combining Panning In-
formation And Pitch Tracking,” AES Convention Paper 7397, 2008.

[CR08] A. Chanrungutai and C. Ratanamahatana, “Singing Voice Separation For
Mono-Channel Music Using Non-negative Matrix Factorization,” Advanced
Technologies for Communications, 2008. ATC 2008. International Conference
on, pp. 243–246, Oct. 2008.

[CSD10] E. Cano, G. Schuller, and C. Dittmar, “Exploring Phase Information In Sound
Source Separation Applications,” Proc. of the 13th Int. Conference on Digital
Audio Effects (DAFx-10), Graz, Austria, pp. 1–7, Jun 2010.

[Dre06] K. Dressler, “Sinusoidal extraction using an efficient implementation of a
multi-resolution FFT,” Proceedings of Ninth International Conference on . . . ,
2006.

[Fit10] D. FitzGerald, “Harmonic/Percussive Separation Using Median Filtering,”
Proc. of the 13th Int. Conference on Digital Audio Effects (DAFx-10), pp.
1–4, Sep 2010.

[GOO06] M. M. GOODWIN, “Frequency-Domain Algorithms For Audio Signal En-
hancement Based On Transient Modification,” AES Journal, vol. 54, no. 9,
pp. 1–14, 2006.

[HCL03] C. Hsu, C. Chang, and C. Lin. . . , “A Practical Guide To Support Vector
Classification,” Jan 2003.

Sebastian Rieck, Singing Voice Extraction 78

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


[HJT08] C. Hsu, J. Jang, and T. Tsai, “Separation Of Singing Voice From Music Ac-
companiment With Unvoiced Sounds Reconstruction For Monaural Record-
ings,” Convention Paper 125th AES Convention, San Francisco, pp. 1–6, Jul
2008.

[HW01] S. W. Hainsworth and P. J. Wolfe, “’Time-Frequency Reassignment for Music
Analysis’,” Proc. International Computer Music Conference, 2001.

[KD06] A. Klapuri and M. Davy, Signal Processing Methods For Music Transcription.
Springer-Verlag New York Inc, 2006.

[Kla08] A. Klapuri, “Multipitch Analysis Of Polyphonic Music And Speech Signals
Using An Auditory Model,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 16, no. 2, pp. 255–266, 2008.

[LW07] Y. Li and D. Wang;, “Separation Of Singing Voice From Music Accompani-
ment For Monaural Recordings,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. 15, no. 4, pp. 1475 – 1487, May 2007.

[Mel91] D. K. Mellinger, “Event Formation And Separation In Musical Sound,” Ph.D.
thesis, Stanford University, Department of Computer Science, 1991.

[MQ86] R. McAulay and T. Quatieri, “Speech Analysis/Synthesis Based On A Sinu-
soidal Representation,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 34, no. 4, pp. 744–754, 1986.

[OPB07] A. Ozerov, P. Philippe, and F. Bimbot, “Adaptation Of Bayesian Models
For Single-Channel Source Separation And Its Application To Voice/Music
Separation In Popular Songs,” Audio, 2007.

[OPGB05] A. Ozerov, P. Philippe, R. Gribonval, and F. Bimbor, “One Microphone
Singing Voice Separation Using Source-Adapted Models,” in IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics, 2005. IEEE,
2005, pp. 90–93.

[P.04] S. P., “Non-negative Matrix Factor Deconvolution; Extraction Of Multiple
Sound Sources From Monophonic Inputs,” in In Proc. 5th International Con-
ference on Independent Component Analysis and Blind Signal Separation,
Granada, Spain September 22â24, 2004.

[Rah09] A. Rahimzadeh, “Detection Of Singing Voice Signals In Popular Music
Recordings,” Diploma Thesis IEM, pp. 1–79, Nov 2009.

[Rao09] P. Rao, “Musical Information Extraction From The Singing Voice,”
ee.iitb.ac.in, Nov. 2009.

Sebastian Rieck, Singing Voice Extraction 79



[Rie09] S. Rieck, “Implementierung einer Ausfallsverschleierung mittels spektraler
Signalmodellierung,” Apr 2009, student project at the Institute of Electronic
Music and Acoustics, University of Music and Performing Arts Graz.

[RP09] L. Regnier and G. Peeters, “Singing Voice Detection In Music Tracks Using
Direct Voice Vibrato Detection,” Acoustics, Speech and Signal Processing,
2009. ICASSP 2009. IEEE International Conference on, pp. 1685–1688, Apr.
2009.

[RVPK08] M. Ryynänen, T. Virtanen, J. Paulus, and A. Klapuri, “Accompaniment Sepa-
ration And Karaoke Application Based On Automatic Melody Transcription,”
2008 IEEE International Conference on Multimedia & Expo, Jan 2008.

[SAP10] S. Sofianos, A. Ariyaeeinia, and R. Polfreman, “Singing Voice Separation
Based On Non-Vocal Independent Component Subtraction And Amplitude
Discrimination,” In: Proceedings of the 13th International Conference on
Digital Audio Effects,(DARx 2010), 2010.

[Ser97] X. Serra, “Musical Sound Modeling With Sinusoids Plus Noise,” Musical
signal processing, pp. 497–510, 1997.

[Ter98] E. Terhardt, "Akustische Kommunikation, Grundlagen mit Hoerbeispielen",
1998.

[VB05] S. Vembu and S. Baumann, “Separation Of Vocals From Polyphonic Audio
Recordings,” Proc. ISMIR, pp. 337–344, Nov. 2005.

[VGF06] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in
blind audio source separation,” IEEE Trans. on Audio, Speech and Language
Processing, vol. 14, no. 4, pp. 1462–1469, 2006.

[ZBS02] D. Zangger Borch and J. Sundberg, “Spectral Distribution Of Solo Voice
And Accompaniment In Pop Music,” speech.kth.se, Sep. 2002.

Sebastian Rieck, Singing Voice Extraction 80



List of Figures

1 A) The fundamental frequency trajectory and B) the loudness trajectory
measured from a note A4 (440 Hz) performed by a female singer. The f0

curve clearly shows vibrato, whereas the loudness curve shows tremolo.
(from [KD06]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Long-Term-Average Spectrum of singing voice (left figure) and accom-
paniment (right figure) in pop music for different averaging durations,
from [ZBS02] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Long-Term-Average Spectrum of a pop singer and a operatic tenor . . . 5

4 Fourier Intensity Spectrum for 3 different fricatives, from [Ter98] . . . . 5

5 Overall structure of the proposed method . . . . . . . . . . . . . . . . . 8

6 (a) mixing coefficients versus panning knob Φ, (b) similarity and panning
index versus panning knob Φ . . . . . . . . . . . . . . . . . . . . . . . 9

7 weighting factor versus Panning Index value, window width Ψw “ 0.5 . . 11

8 Panning Index example, (a) shows the computed panning index values
for each frequency bin and (b) the resulting weighting factors for a pop
music track (@44.1kHz, 16bit, stereo) . . . . . . . . . . . . . . . . . . . 13

9 Voiced singing processing stages . . . . . . . . . . . . . . . . . . . . . . 15

10 Auditory Preprocessing stages . . . . . . . . . . . . . . . . . . . . . . . 16

11 Magnitude response of gamma-tone filters used in Auditory Preprocess-
ing, every 3rd filter is displayed for better readability . . . . . . . . . . . 16

12 Auditory Preprocessing example for an artificial harmonic tone complex
with missing f0 “ 200 Hz (red circle) . . . . . . . . . . . . . . . . . . . 18

13 parabolic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

14 Pitch Estimation Candidates (red), reference f0 (green), 10 candidates
per frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

15 optional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



16 Postprocessing of classification results by Summary Mean Spectral Am-
plitude (SMSA), (red) pitch tracks of class voice, (blue) pitch tracks of
class music, (green) reference vocal pitch track, (green vertical lines)
boundaries of overlapping vocal pitch tracks, pitch track with the highest
SMSA is chosen for the intersection, (red pitch tracks with highlight in
core) final voice pitch tracks after post processing . . . . . . . . . . . . 28

17 Postprocessing of classification results by Maximum Rest Time (MRT),
(red) pitch tracks of class voice, (blue) pitch tracks of class music, (yel-
low) final voice pitch tracks after post processing . . . . . . . . . . . . . 29

18 Unvoiced singing processing stages . . . . . . . . . . . . . . . . . . . . 33

19 Spectrogram of pitched and percussive mixture, refer to [Fit10] . . . . . 34

20 Example for Unvoiced Dominant Frame Detection, (blue) singing voice
time domain signal, [top row] final unvoiced frame decision, [middle row]
presence of singing voice f0, [bottom row] (red) Linear prediction error
variance and (black) resulting dominance decision . . . . . . . . . . . . 36

21 optional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

22 optional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

23 time domain signal of singing voice and accompaniment incorporating a
Voice to Accompaniment Ratio (VAR) of 0dB . . . . . . . . . . . . . . 42

24 optional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

25 Fisher’s Ratio for 3 different distributions and 2 different classes, Note
that the Mean values remain constant while the variance decreases re-
sulting in a higher Fisher’s Ratio, from [Rah09] . . . . . . . . . . . . . . 46

26 Average Fisher’s Ratio for each feature of the stereo training dataset, the
dashed red line represents the chosen threshold for excluding features . . 46

27 Fisher’s Ratio for each feature and for each Song of the stereo training
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

28 Grid Search Results for Pitch Track Classification, Average of 6-fold cross-
validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

29 Grid Search Results for Time-Frequency-Unit Classification, Average of
6-fold Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



30 Spectral Voice to Accompaniment Ratio for Center Signal and Panning
Index Preprocessing, Ψw “0.6 . . . . . . . . . . . . . . . . . . . . . . . 53

31 ∆ Spectral Voice to Accompaniment Ratio (SVAR), calculated as the
difference in SVAR between panning preprocessing and center signal pro-
cessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

32 Panning Index to Center Signal Ratio (PICSR) and its dependency on
the panning index window width, PICSR calculation is based solely on
singing voice signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

33 Correlation coefficient (CCoeff) between panning preprocessed singing
voice and center signal processed singing voice . . . . . . . . . . . . . . 58

34 Number of extracted pitch estimates per frame versus Raw f0 Estimation
Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

35 Number of pitch estimates per frame versus Raw Track Accuracy . . . . 59

36 Relative Pitch Tracking Accuracy versus frequency deviation ∆f . . . . . 61

37 pitch tracking accuracy in comparison to A.Rahimzadeh, evaluated on 9
songs from the MIREX 2005 training data set (see page 42) . . . . . . . 62

38 Unvoiced Dominant Frame Detection Accuracy versus threshold on Linear
Prediction error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



List of Tables

1 Properties of singing voice compared to speech, from [LW07] . . . . . . 3

2 Parameter settings for Unvoiced Frame Detection . . . . . . . . . . . . . 35

3 Class assignment of pitch tracks based on overlap with reference pitch
trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Multi Pitch Estimation Raw Accuracy in comparison to A. Rahimzadeh,
all values in %, evaluated on 9 songs MIREX 2005 training data set
„vocal“ (see page 42) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Confusion matrix for pitch track classification, voiced singing . . . . . . . 63

6 ∆ Mean Accuracies between panning index preprocessing and center sig-
nal processing depending on window width Ψw, all values in %, 6-fold
cross-validation used . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Accuracy evaluations results for panning index preprocessing window
width Ψw “0.5, all values in %, 6-fold cross-validation used on stereo
dataset described on page 52 . . . . . . . . . . . . . . . . . . . . . . . 65

8 Raw Classification Accuracy comparison of the proposed method to Rahimzadeh,
all values in %, 9-fold cross-validation on „MIREX 2005 training data set
- vocal“ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9 Confusion matrix for Unvoiced Dominant Frame Detection . . . . . . . . 68

10 Unvoiced Dominant Frame Detection Accuracy comparison for different
preprocessing strategies, Panning Index Preprocessing (PI), Center Signal
Preprocessing (CS), all values in %, V AR “ 0dB, 6-fold cross-validation 69

11 Confusion matrix for Time-Frequency-Unit Classification . . . . . . . . . 70

12 Achieved accuracies for Time-Frequency-Unit Classification, all values in
%, V AR “ 0dB, 6-fold cross-validation, using panning index preprocessing 70

13 Time-Frequency-Unit Classification Accuracy comparison for different pre-
processing strategies, Panning Index Preprocessing (PI), Center Signal
Preprocessing (CS), all values in %, V AR “ 0dB, 6-fold cross-validation 71

14 Evaluation of the proposed method for singing voice extraction using the
BSS_EVAL Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

15 Singing Voice Extraction execution time for stereo data set . . . . . . . 74



16 Singing Voice Extraction training runtime for stereo data set . . . . . . . 74

17 Average Fisher’s Ratios (FR) for each feature, features that are included
in the final subset used in Pitch Track Classification are marked with x .



Appendix A

Average Fisher’s Ratio

Feat. No. FR included Feat. No. FR included
1 2.4294 x 27 2.8985 x
2 1.702 x 28 2.8963 x
3 0.035822 29 0.0043187
4 0.37023 x 30 0.0033997
5 0.37144 x 31 0.0033997
6 0.36715 x 32 0.16209 x
7 0.3692 x 33 0.21001 x
8 0.37404 x 34 0.14168 x
9 0.29172 x 35 1.0562 x
10 0.37061 x 36 0.031896
11 0.026523 37 0.053269
12 0.027551 38 0.10983 x
13 0.02502 39 0.11728 x
14 0.39862 x 40 0.15193 x
15 0.43488 x 41 0.080696
16 0.30686 x 42 0.0060718
17 0.0018045 43 0.023234
18 0.46457 x 44 0.086177
19 0.46339 x 45 0.048238
20 0.0014838 46 0.19057 x
21 0.0035455 47 0.14174 x
22 0.0074504 48 0.16576 x
23 0.07212 49 0.040649
24 1.5785 x 50 0.0015568
25 2.7387 x 51 0.0010712
26 3.3152 x

Table 17: Average Fisher’s Ratios (FR) for each feature, features that are included in
the final subset used in Pitch Track Classification are marked with x
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