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Abstract

This thesis develops a general concept for microphone arrays located on
a partial spherical surface, which is enclosed by rigid angular boundaries.
These partial spherical arrays inherently capture only sound sources from
directions within the rigid boundaries. Thus they are especially suitable for
scenarios where only sources within this directional range are of interest.
The theoretical foundation of partial spherical microphone arrays is the
solution of the Helmholtz equation in spherical coordinates, with boundary
conditions in azimuth and zenith angle. The angular solutions form a
complete set of orthonormal functions on the partial spherical surface.
These allow for a modal decomposition of the sound field within the lim-
ited directional range, similar to the spherical harmonics decomposition
used with spherical microphone arrays. Due to the lower number of basis
functions for the partial spherical surface, a lower number of microphones
is sufficient to achieve a similar spatial resolution as for a conventional
spherical array over all directions. The challenges which come along with
practical implementations of a partial spherical microphone arrays are
discussed in detail. Based on acoustical measurements of a prototype
array, the directivity of modal beamforming is investigated. To facilitate
the reproduction on surrounding loudspeaker layouts with standard tech-
niques, we present an approach to convert the modal representation of a
partial spherical array into spherical harmonics. The performance of this
conversion is evaluated using perceptually motivated error measures.
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Kurzfassung

In dieser Dissertation wird ein allgemeines Konzept für Mikrofonarrays ent-
wickelt, die auf einer Teilkugelfäche angeordnet und durch schallharte Be-
randungen im Winkel abgeschlossen sind. Solche Teilkugel-Mikrofonarrays
erfassen nur Schallquellen aus dem von den Berandungen eingeschlosse-
nen Winkelbereich. Sie sind daher besonders geeignet für Anwendungen,
in welchen nur Quellen aus diesen Richtungen von Interesse sind. Die
theoretische Grundlage für Teilkugel-Mikrofonarrays ist die Lösung der
Helmholtz-Gleichung in Kugelkoordinaten mit Randbedingungen in Azi-
mut und Zenitwinkel. Die winkelabhängigen Lösungsanteile ergeben einen
vollständigen Satz von orthonormalen Funktionen auf der Teilkugelfläche
und ermöglichen eine modale Zerlegung des Schallfeldes im eingeschränkten
Winkelbereich, ähnlich der Schallfeldzerlegung in Kugelfächenfunktionen
bei konventionellen Kugelmikrofonarrays. Durch die geringere Anzahl von
Basisfunktionen auf der Teilkugelfläche ist mit weniger Mikrofonen eine
ähnliche räumliche Auflösung erreichbar, wie bei Kugelmikrofonarrays
über alle Richtungen. Die Herausforderungen, die sich bei der praktischen
Umsetzung von Teilkugel-Mikrofonarrays ergeben, werden in dieser Arbeit
ausführlich diskutiert. Anhand der akustischen Vermessung eines Proto-
typarrays wird die Richtchwirkung von modalem Beamforming untersucht.
Für die einfache Wiedergabe von Schallszenen auf umgebenden Lautspre-
cheranordnungen mit Standardverfahren wird einen Ansatz gezeigt, mit
dem die modale Repräsentation eines Teilkugelmikrofons in Kugelflächen-
funktionen konvertiert werden kann. Die Eigenschaften dieser Konversion
werden anhand von perzeptiv motivierten Fehlermaßen evaluiert.
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Chapter 1

Introduction

Spatial audio recording and reproduction has a long and fascinating history1, and
today’s cutting-edge spatial recording devices are compact spherical microphone arrays
[ME02; Raf05]. Recordings with spherical microphone arrays allow for a modal, field-
based representation of the sound scene, which originates from the mathematical
formulation of acoustic waves in spherical coordinates. These modal components are
the coefficients of the truncated spherical harmonics expansion of the microphone
signals and also known as Ambisonics signals. The name Ambisonics and the idea of
spatial audio recording and playback based on a spherical harmonics representation
traces back to the 1970s [Ger73]. However, back then recording was limited to first
order2, which is achievable by coincident standard microphones, whereas capture of
higher order components requires spherical microphone arrays.

The spatial resolution of spherical microphone arrays is uniform over all directions
and directly related to its capable maximum order, whereby the number of spherical
harmonics and thus the minimum number of required array elements grows quadrat-
ically with increasing order. A uniform resolution is clearly a desirable property,
however, there are scenarios where not all directions are of interest. On the one
hand, reproduction facilities are frequently not capable to reproduce sound from every
direction, e.g. loudspeakers are very rarely positioned in the half-space below the
audience as this requires costly constructions like a raised gridded floor. In this case,
the superfluous information associated with sources from directions not covered by
the playback facility is necessarily removed, either explicitly by regularization, e.g.
[PZS09; ZPN12], or implicitly, e.g. by including a non-existing loudspeaker into the

1For a brief historical overview on spatial audio, the interested reader may revere to e.g. [Dav03].
2The spherical harmonics are categorized in orders, whereby the four components up to first order

are represented by an omni-directional pattern and three perpendicular figure-of-eight patterns.
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arrangement [ZF12]. On the other hand, within a recorded sound scene all relevant
sound sources might be anyway withing a particular angular range, e.g. talking persons
which are sitting or standing around the array. With these considerations, it seems
worthwhile to investigate recording approaches which inherently capture only sound
from a particular range of directions, while achieving a similar spatial resolution as
with a spherical array, but with a reduced number of transducers.

It has been shown in [LD05], that the restriction of the angular range to a
hemisphere can be achieved by using a hemispherical setup above a rigid surface at
the horizontal plane. The rigid planar boundary restricts the physical wave field to
those spherical harmonics components, which are even-symmetric with respect to
the horizontal plane. In this simple case, the reflections due to the boundary can be
regarded in terms of mirror sources. This thesis presents the generalization of this
approach to partial spherical arrays bounded by arbitrary rigid boundary conditions
in azimuth and zenith angle. In contrast to a boundary at the horizontal plane, the
angular solutions of other angular boundary value problems are not a subset of the
spherical harmonics. However, the solutions are of a similar structure and allow for
a modal representation of a spatial sound field in a similar manner. The underlying
theory for this generalization as well as its the practical issues are investigated in this
thesis, which is organized as follows:

Chapter 2 reviews the theoretical foundations of spherical microphone arrays.
Starting from the physics of sound waves, the solution of the Helmholtz equation
in spherical coordinates naturally leads to modal sound field decomposition with
spherical microphone arrays. The practical limitations using spherical microphone
arrays are briefly discussed as well as beamforming and the reproduction of spatial
sound scenes based on the modal representation captured by as spherical microphone
array.

Chapter 3 develops the solutions of the angularly dependent differential equations,
arising from the separation of the Helmholtz equation, with sound-soft or sound-hard
boundary conditions. These solutions form a complete set of orthogonal basis functions
on an interval in azimuth, respectively zenith angle, between the points where the
boundary conditions are posed. This includes the solutions used in chapter 2 as special
cases. To set the scene for these considerations, the Helmholtz equation in spherical
coordinates is revisited, its general solution is discussed thoroughly, and a fundamental
overview on the theory of Sturm-Liouville problems is given.

Chapter 4 shows the description of sound fields in regions of R3 bounded by rigid
coordinate surfaces in spherical coordinates, such as cones and half-planes. Therefore

2



the orthogonal sets of basis functions for both angular variables, developed in chapter 3,
are combined with the solutions of the radius depending differential equation. The
angular dependent part of the solutions is combined to partial spherical harmonics
yielding a complete orthogonal basis on the surface of the partial-sphere bounded by
the rigid angular boundary conditions.

Chapter 5 addresses the practical application of the theoretical results from
chapters 3 and 4. The concept of modal sound field decomposition and beamforming is
generalized to microphone arrays located on partial spherical surfaces bounded by rigid
angular boundary conditions. The issues and limitations of a practical implementation
regarding spatial sampling and the regularization of the radial filters are investigated,
and the results of a prototype array are shown. Furthermore an approach is presented
to convert the modal representation captured by a partial spherical array into spherical
harmonics, in order to allow for reproduction on conventional surrounding loudspeaker
arrays.

Chapter 6 summarizes the findings of this work, draws a conclusion, and addresses
open problems for future work.
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Chapter 2

Capturing spatial sound scenes
with spherical microphone arrays

This chapter starts with a brief review of the physics of sound waves and their time-
independent description by the Helmholtz equation. The solution of the Helmholtz
equation in spherical coordinates is the theoretical background for capturing spatial
sound scenes with spherical arrays and naturally leads to modal sound field decom-
position. Finally, a brief overview is given on beamforming and the reproduction of
sound scenes based on their modal representation.

2.1 The Helmholtz equation

Consider the propagation of sound waves in a medium in R3, where the medium
is an ideal, resting gas in a state of thermodynamic equilibrium, i.e. it possesses a
static velocity of v0 = 0, a static pressure of p0 = constant, and a static density of
ρ0 = constant. Furthermore, we assume the gas to be lossless, i.e. inviscid, that there
is no heat transfer, i.e. an isentropic process, and that the perturbations of the static
state are small. Under these conditions the motion of the gas can be described using
the following equations, whereby we denote the perturbation of velocity, density and
pressure at location r = [x, y, z]T ∈ R3 and time t by v(r, t), ρ(r, t), p(r, t), and
the vector differential operator by ∇ =

[
∂
∂x
, ∂
∂y
, ∂
∂z

]
. The governing equations are the

linearized Euler’s equation, cf. [CK13]

ρ0
∂v(r, t)
∂t

= −∇p(r, t), (2.1)

5



which represents the conservation of momentum, the linearized equation of continuity,
cf. [CK13]

∂ρ(r, t)
∂t

= −ρ0 ∇ · v(r, t), (2.2)

which represents the conservation of mass, and the linearized isentropic relation for
an ideal gas, cf. [Mös09],

p(r, t) = κ
p0

ρ0
ρ(r, t), (2.3)

where κ is the ratio of specific heats or also known as adiabatic index. Deriving
eq. (2.2) with respect to time and inserting ∂v(r,t)

∂t
in terms of eq. (2.1) as well as ρ(r, t)

in terms of eq. (2.3) yields the linear lossless wave equation,
(

∆− 1
c2
∂2

∂t2

)
p(r, t) = 0, (2.4)

where ∆ := ∇ ·∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplace operator and c =
√
κp0
ρ0

is the
speed of sound. The static pressure and density values are related by the equation
of state of an ideal gas, p0

ρ0
= R

M
T0, where R ≈ 8.234 JK−1mol−1 is the universal gas

constant, M is the molar mass of the medium and T0 is the static temperature. Hence,
c =

√
κ R
M
T0 and depends on the material constants and the static temperature; at

20◦C for dry air with κ = 1.4 and M = 28.97 g/mol we get c ≈ 343 m/s.
Within this work we define the Fourier transform by

p(r, ω) :=
+∞∫
−∞

p(r, ω)e−iωtdω, (2.5)

where ω = 2πf , and f is the frequency. The Fourier transform of eq. (2.4) yields the
frequency-domain equivalent of the wave equation,

(
∆ + k2

)
p(r, ω) = 0, (2.6)

which is usually referred to as the Helmholtz equation and the abbreviation k = ω
c
is

called the wavenumber. A relation for pressure and velocity in the frequency domain
is achieved by the Fourier transform of eq. (2.1) yielding

− iρ0ck v(r, ω) = −∇p(r, ω). (2.7)

6



Figure 2.1: Definition of the spherical coordinate system as used within this work; radial distance r,
azimuthal angle φ, and polar angle θ.

2.2 Solution of the Helmholtz equation in spheri-
cal coordinates

In spherical coordinates a point in R3 is specified by its distance to the origin r and
two angles, the azimuth angle φ between the x-axis and the projection of the point
onto the x-y plane, and the zenith angle θ between the z-axis and the point, cf. fig. 2.1.
Expressing the position vector r in terms of the coordinate triple (r, φ, θ) yields

r = r [cosφ sin θ, sinφ sin θ, cos θ]T . (2.8)

In the following we will frequently use the abbreviation θ := [cosφ sin θ, sinφ sin θ, cos θ]T

for the direction vector of unit length. The unit sphere is therewith defined by

S2 := {θ}. (2.9)

2.2.1 Homogeneous solution

The Helmholtz equation, cf. eq. (2.6), is separable in spherical coordinates. By a
product ansatz the partial differential equation can be split in three ordinary differential
equations, each of which depending on r, φ, or θ, only. Multiplying the solutions of
these differential equations achieves a solution of the Helmholtz equation. The full
details of deriving the solution are provided in chapter 3.

Assume a homogeneous region Ω := {r ∈ R3 : re ≤ r ≤ ri} where all sources are

7



Figure 2.2: Sorce free spherical shell Ω :=
{
r ∈ R3 : re ≤ r ≤ ri

}
either located within an arbitrary small ball of radius re or outside an arbitrary large
ball of radius ri, see Figure 2.2, then any solution of eq. (2.6) can be expressed by,

p(r) =
∞∑
n=0

n∑
m=−n

(
bnm jn(kr) + cnm h

(2)
n (kr)

)
Y m
n (θ), (2.10)

whereby Y m
n (θ) are the combined angular solutions, which are called spherical har-

monics of order n and degree m; the radial solutions are the spherical Bessel functions
jn(x) and spherical Hankel functions of the second kind h(2)

n (x), and bnm, cnm are
coefficients that determine the solution. The functions involved in the solution are
depicted in fig. 2.3.

The spherical harmonics may be equivalently defined either as real or complex
valued functions and also their normalization can differ. We use the following real
valued definition, normalized to the unit sphere,

Y m
n (θ) = N |m|n P|m|n (cos θ)

cos(mφ) for m ≥ 0,
sin(mφ) for m < 0.

(2.11)

whereby Pmn (x) denotes the associated Legendre function of the first kind, and Nm
n is

the normalization constant,

Nm
n = (−1)m

√
(2n+1)(2−δm0)(n−m)!

4π(n+m)! . (2.12)

The spherical harmonics are orthonormal on the unit sphere, i.e.
∫
S2
Y m
n (θ)Y m′

n′ (θ) dθ = δnn′δmm′ , (2.13)

8



where
∫
S2
dθ :=

2π∫
φ=0

π∫
θ=0

sin θ dθ dφ denotes the surface integral over the unit sphere

and δij denotes the Kronecker delta, δij :=

1 for i = j

0 for i 6= j
. Furthermore, the set of

spherical harmonics is complete such that any square integrable function on S2 can be
expressed by the series expansion

f(θ) =
∞∑
n=0

n∑
m=−n

φnmY
m
n (θ), (2.14)

where the expansion coefficients are

φnm =
∫
S2
f(θ)Y m

n (θ)dθ. (2.15)

Furthermore, orthogonality and completeness imply Parseval’s relation,

∫
S2
|f(θ)|2 =

∞∑
n=0

n∑
m=−n

|φnm|2, (2.16)

and the closure relation
∞∑
n=0

n∑
m=−n

Y m
n (θ)Y m

n (θ′) = δ(θ − θ′). (2.17)

Interior and exterior problems

There are two limiting cases of the above problem. For ri → ∞, the homogeneous
region Ω is the exterior of a ball with radius re and thus a purely exterior problem,
see fig. 2.4b. For re → 0, Ω is the interior of a ball with radius ri and thus this is a
purely interior problem, see fig. 2.4a.

Interior problems. From fig. 2.3c it is seen that the spherical Hankel functions
have a pole of order n+ 1 at kr = 0, cf. the limiting form given in [DLMF, §10.52(i)].
Clearly, functions of the form eq. (2.10) involving h(2)

n (kr) do not fulfill eq. (2.6) at
kr = 0. Thus for an interior problem the homogeneous solution reduces to

p(r) =
∞∑
n=0

jn(kr)
n∑

m=−n
Y m
n (θ)bnm. (2.18)

9
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Figure 2.3: Functions involved in the solution of the Helmholtz equation in spherical coordinates:
(a) balloon plots of spherical harmonics, (b) spherical Bessel functions, and (c) magnitude of the
spherical Hankel function; for n = 0 . . . 5.
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(a) (b)

Figure 2.4: Special cases: (a) interior problem and (b) exterior problem.

Exterior problems. From a physical view point, a solution to such a problem must
be purely radiating, meaning that it consist of traveling waves only, which propagate
and diverge for r → ∞. These solutions are singled out by Sommerfeld’s radiation
condition, [Som49, §28]. For R3 and the time dependency as defined in eq. (2.5), the
radiation condition takes the form

lim
r→∞

r

(
∂

∂r
+ ik

)
p(r) = 0. (2.19)

In eq. (2.10) only the terms involving h(2)
n (kr) fulfill the above condition, whereas the

terms involving jn(kr) do not. This can be easily proofed inserting the limiting forms
of the spherical Bessel and Hankel functions, cf. [DLMF, §10.52(i)], in eq. (2.19). Thus
for an exterior problem the homogeneous solution reduces to

p(r) =
∞∑
n=0

h(2)
n (kr)

n∑
m=−n

Y m
n (θ)cnm. (2.20)

Considering the general homogeneous solution, cf. eq. (2.10), as a superposition of
these two special cases, it is obvious that the homogeneous field inside of a source-free
spherical shell Ω with ri <∞, re > 0 consists of two components: the incident field
due sources located outside a ball of radius ri, which is represented by the coefficients
bnm and the radiating field due to sources located within a ball of radius re, which is
represented by the coefficients cnm.

11



2.2.2 Inhomogeneous solution, Green’s function and plane
waves

The inhomogeneous Helmholtz equation writes as

∆p(r, ω) + k2p(r, ω) = −f(r), (2.21)

where f(r) is the force distribution exciting the field. One may solve the above
equation directly for a particular excitation. However, it is more convenient to use
Green’s function. Green’s function of a differential equation is the particular solution
to the inhomogeneous equation excited by Dirac’s delta distribution. In case of the
Helmholtz equation in spherical coordinates, the problem writes as

∆G(r, r0) + k2G(r, r0) = δ(r − r0), (2.22)

where Dirac’s delta distribution in R3 expressed by spherical coordinates is δ(r−r0) =
δ(φ− φ0)δ(θ − θ0) sin−1(θ)δ(r − r0)r−2, such that

∫
R3 δ(r − r0)dr = 1.

KnowingG(r, r0), the solution for the inhomogeneous Helmholtz equation, Eq.(2.21),
with an arbitrary excitation f(r) is determined by1

p(r) =
∫
R3
G(r, r0)f(r0) dr0, (2.23)

where
∫
R3
u(r) dr =

2π∫
φ=0

π∫
θ=0

∞∫
r=0

u(r, φ, θ) r2 sin θ dr dθ dφ denotes the volume integral

over R3 in spherical coordinates.

Green’s function. Green’s function is not uniquely defined by the differential
equation and requires additional boundary conditions. As we consider a free-field
problem there are no boundaries in the literal sense. However, the solution is implicitly
required to be physically feasible. Thus, G(r, r0) has to fulfill eq. (2.22) at the origin,
where the differential equation is singular, and Sommerfeld’s radiation condition, cf.

1 This is easily proofed considering that the Helmholtz differential operator LH := ∆ + k2 with
respect to r can be interchanged with the integral operator over r0,

LH p(r) = LH
∫
R3
G(r, r0)f(r0) dr0 =

∫
R3
LH G(r, r0)︸ ︷︷ ︸

=δ(r−r0)

f(r0) dr0 = f(r).

12



eq. (2.19). With these conditions Green’s function yields,

G(r, r0) = −ik
∞∑
n=0

n∑
m=−n

Y m
n (θ)Y m

n (θ0)

jn(kr)h(2)
n (kr0) for r ≤ r0,

jn(kr0)h(2)
n (kr) for r ≥ r0.

(2.24)

A detailed derivation is given in appendix A.
Evaluating the above equation at the origin yields G(r,0) = e−ikr

4πr , as all spherical
Bessel functions are zero at r = 0, except j0(0) = 1, cf. fig. 2.3b, and h(2)

0 (kr) = −ie−ikr
kr

,
Y 0

0 (θ) = 1√
4π . Due to the free field condition, the solution of the Helmholtz equation is

invariant for a shifted origin of the coordinate system, i.e. G(r, r0) = G(r+r′, r0 +r′),
and it follows

G(r, r0) = e−ik‖r−r0‖

4π‖r − r0‖
. (2.25)

Plane waves. Expanding ‖r − r0‖ into a Taylor series2 yields the asymptotic
expressions3 ‖r− r0‖ ∼ r0 and e−ik‖r−r0‖ ∼ e−ik(r0−θT

0 r) for r0 →∞. Therewith, from
eq. (2.25) follows the asymptotic expression for Green’s function

G(r, r0) ∼ e−ikr0

4πr0
eikθ

T
0 r, r0 →∞. (2.26)

The sound pressure of a plane wave from direction θ0 yields, cf. [Wil99, p. 23],

p(r) = eikθ
T
0 r. (2.27)

Comparing the above equation to eq. (2.26) shows that the expression of a plane wave
is achieved by taking the limiting form of Green’s function for r0 → ∞ multiplied
by 4πr0e

ikr0 . Hence, from eq. (2.24) and the asymptotic equivalent of the spherical
Hankel function, h(2)

n (x) ∼ in+1x−1e−ix as x→∞, cf. [DLMF, §10.52(ii)], eq. (2.27) is
equivalently expressed by

p(r) = 4π
∞∑
n=0

injn(kr)
n∑

m=−n
Y m
n (θ)Y m

n (θ0). (2.28)

2From the Taylor series of
√

1 + x follows

‖r − r0‖ = r0

√
1 + r2

r2
0
− 2θ

T
0 r

r0
=
∑∞
n=0

(−1)n(2n)!
(1−2n)(n!)24n r

1−n
0

(
r2

r0
− 2θT

0 r
)n

3A function g(x) is asymptotically equivalent to f(x) for x → b if lim
x→b

f(x)
g(x) = 1. We denote

asymptotic equivalence by f(x) ∼ g(x) for x→ b.
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2.3 Modal sound field decomposition using spher-
ical microphone arrays

The solution of an interior problem, cf. eq. (2.18), shows that the sound field due
to surrounding sources is uniquely determined by the modal coefficients bnm. Each
of these coefficients can be determined formally from the pressure distribution on a
spherical surface, as long as the radial solution is non-zero. This follows from the
orthogonality of the spherical harmonics.

In practical applications, the sound pressure is well accessible by microphones,
so that it seems natural to use a spherical microphone array to capture surrounding
sound scenes. Clearly, using a microphone array, the pressure data is only accessible
on discrete points. In the following subsections we will consider how this discretization
affects the decomposition.

Note that in a similar fashion eq. (2.20) suggest to determine the field of radiating
sources by a surrounding microphone array. This is applicable in radiation analysis of
musical instruments [Zot09a] or sound power measurements [PSB+16].

2.3.1 Formulation of the problem

A spherical microphone array consists of a number of M microphones located on the
surface of a sphere with radius rm, and a surrounding sound scene is the field produced
by an arbitrary number of sources which are all located outside of the volume enclosed
by the array. As discussed in section 2.2.1, this constitutes an interior problem, cf.
fig. 2.4(a), and hence the sound pressure distribution at the location of the array
yields, cf. eq. (2.18),

p(rmθ) =
∞∑
n=0

jn(krm)
n∑

m=−n
Y m
n (θ) bnm. (2.29)

For notational convenience we express the infinite sum in the above equation by the
infinite matrix product,

p(rmθ) = yT(θ) diag{j(krm)} b, (2.30)
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whereby

y(θ) := [Y 0
0 (θ), . . . , Y m

n (θ), . . .]T,
j(krm) := [j0(krm), . . . , jn(krm), . . . , jn(krm)︸ ︷︷ ︸

2n+1

, . . .]T,

b := [b00, . . . , bnm, . . .]T.

(2.31)

The array microphones sample the sound pressure pattern p(rmθ) at M discrete
positions θi, i = 1, . . . ,M. We denote the discretized pressure pattern by the vector
p := [p(rmθ1), . . . , p(rmθM)]T yielding

p = Y diag{j(krm)}b, (2.32)

whereby
Y := [y(θ1), . . . ,y(θi), . . . ,y(θM)]T. (2.33)

A sound scene is fully represented by the coefficient vector b, however it is more
convenient for most applications to characterize the sound scene in terms of a continu-
ous spherical source distribution f(θ) located at some radius rs > rm. Plugging this
source distribution as an excitation f(r) = f(θ)δ(r − rs) r−2 in eq. (2.23) and using
eq. (2.24) yields for r < rs,

p(r) = −ik
∞∑
n=0

jn(kr)h(2)
n (krs)

n∑
m=−n

Y m
n (θ)

∫
S2
Y m
n (θ0)f(θ0)dθ0. (2.34)

The remaining integral
∫
S2 Y m

n (θ)f(θ)dθ = φnm in the above equation represents
the expansion coefficients of the spherical harmonics series expansion of the source
distribution, cf. eqs. (2.14) and (2.15). Comparing the above equation with the solution
of the interior problem, cf. eq. (2.18), shows the connection between the coefficients of
the incident field and the spherical source distribution,

bnm = −ikh(2)
n (krs)φnm. (2.35)

This allows to express eq. (2.32) in terms of the source distribution,

p = Y diag{w(k, rm, rs)}φ, (2.36)
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whereby

φ := [φ00, . . . , φnm, . . .],
w(k, rm, rs) := [w0(k, rm, rs), . . . , wn(k, rm, rs), . . . , wn(k, rm, rs)︸ ︷︷ ︸

2n+1

, . . .]T,

wn(k, rm, rs) := −ikjn(krm)h(2)
n (krs).

(2.37)

We assume that the spherical source distribution is in the far field, as this is
appropriate in most practical applications and so we get rid of the dependency of
rs. In this case, the h(2)

n (krs) can be replaced by its large argument equivalent
h(2)
n (x) ∼ in+1x−1e−ix; furthermore we omit the common delay and gain factor e−ikrs

rs
.

Therewith wn(k, rm, rs) reduces to

wn(krm) = injn(krm). (2.38)

Clearly, eq. (2.36) is formally highly underdetermined due to the infinite length of
φ, which prevents a direct inversion without further assumptions. As the degrees
of freedom of the array are limited by the number of microphones, and considering
all practical imperfections, the maximum achievable result is an optimal estimate
φ̂N := [φ̂00, . . . , φ̂NN]T of the first (N + 1)2 coefficients φ from the sampled pressure
distribution p, where (N + 1)2 ≤ M. Thereby we assume that only these components
of the spherical source distribution contribute to the pressure pattern at the array
surface, i.e. p(rmθ) is spatially band-limited with a maximum order of N. To simplify
the following considerations, we choose M = (N + 1)2. In this case eq. (2.36) has
formally a unique solution,

φN = diag{wN(krm)}−1Y −1
N p, (2.39)

whereby YN := [yN(θ1), . . . ,y(θM)]T with yN(θ) := [Y 0
0 (θ), . . . , Y N

N (θ)]T, and
wN(krm) := [w0(krm), . . . , wN(krm)]T. However, the data in p is likely corrupted
by errors such as gain mismatch and self-noise in the microphones, positioning errors,
etc. Hence, YN and diag{wN(krm)} are both required to be well-conditioned, as
otherwise the huge amplification of errors renders the result useless.

2.3.2 Design and implementations issues

The practical applicability of eq. (2.39) depends to a great extent on the design of a
spherical microphone array. Typical design parameters are the radius of the sphere,
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type and number of microphones as well as their distribution, and the configuration
of spherical surface.

Array surface and microphone type. If one implements a spherical microphone
array on an open spherical surface, a mayor drawback is that wn(krm) is proportional
to jn(krm) and thus has zeros for some frequencies, depending on the array radius.
Thus for krm > 2 the inversion of eq. (2.39) is problematic, as illustrated in fig. 2.5a.
This problem can be avoided either by using directive microphones, e.g. cardioid
capsules [Ple09], or by using a rigid material for the array surface. In both cases the
design change alters the solution of the Helmholtz equation in a way that wnm(krm) is
free of zeros. The problem with cardioid microphones is, however that their directivity
patterns are rarely ideal and frequency independent. Therefore we focus within this
work on the simple and robust solution using rigid spherical microphone arrays.

The pressure field due to a spherical source distribution in the presence of a sound
hard sphere, centered at the origin, is obtained in the same way as eq. (2.34), using
Green’s functions fulfilling the respective boundary condition. If we require ∂G(r,r0)

∂r
= 0

at r = rm we get for r ≤ r0, cf. appendix A,

G(r, r0) = −ik
∞∑
n=0

h(2)
n (kr0)

(
jn(kr)− j′n(krm)

h′(2)
n (krm)

h(2)
n (kr)

)
n∑

m=−n
Y m
n (θ)Y m

n (θ0).

(2.40)
Using the above equation in eq. (2.23), excited by a spherical source distribution,
results in an equation similar to eq. (2.36), where only the radius depending part
is changed to wn(k, rm, rs) = −ikh(2)

n (krs)
(
jn(krm)− j′n(krm)

h′
(2)
n (krm)

h(2)
n (krm)

)
. Using the

Wronskian relation W
{
jν(kr), h(2)

ν (kr)
}

= jν(kr)h′(2)
ν (kr)−h(2)

ν (kr)j′ν(kr) = −i(kr)−2,
the radius depending part simplifies to

wn(k, rm, rs) = − h(2)
n (krs)

(krm)2h′(2)
n (krm)

. (2.41)

Assuming the sources to be in the far field, rs →∞, and omitting the common delay
and gain factor e−ikrs

rs
, the above equation further reduces to

wn(krm) = in−1

(krm)2h′(2)
n (krm)

. (2.42)

This function has no zeros and hence is less problematic in the inversion, see fig. 2.5b.
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Figure 2.5: Magnitude of the inverted radial function for (a) an open spherical array, according to
eq. (2.38), and (b) a rigid spherical array, according to eq. (2.42).
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Frequency limits. Another critical aspect concerning the inversion of the radial
functions is evident from the plots in fig. 2.5: For high orders n and low frequencies
the inversion would require huge gains. Using the asymptotic equivalent h(2)

n (x) ∼
i(2n− 1)!!x−n−1 for x→ 0, cf. [DLMF, §10.52(i)], shows that w−1

n (krm) grows towards
low frequencies asymptotically with w−1

n (krm) ∼ i−n(2n − 1)!!(n + 1)(krm)−n. In
practical applications, this problem is usually considered by defining a maximum
gain for the filters that implement the inverted radial functions to avoid inadequately
high error amplification. This maximum filter gain, together with the array radius,
determines the lower frequency limit, down to which modal sound field decomposition
with a certain maximum order is applicable. Clearly, the lower frequency limit shifts
down by reducing the maximum order and therewith the spatial resolution, see e.g.
[Lös14; BPSW11].

The upper frequency limit is usually estimated by the rule of thumb krm = N , cf.
[Raf05]. Beyond this limit higher order components of the source distribution start to
contribute significantly to the pressure distribution at the array surfaces. Thus the
decomposition problem becomes underdetermined and this leads to a misinterpretation.
The modal components of order n > N cannot be resolved by the array and are mapped
into lower order components, whereby the particular mapping depends on the sampling
distribution, cf. [RWB07]. These errors are referred to as spatial aliasing. For far field
sources the contribution of higher orders is similar to the error of plane wave sound
fields reproduced by loudspeakers, cf.[WA01], which leads to the approximate rule of
thumb stated above.

Spherical sampling. The values in the matrix YN, and hence its numerical condi-
tion, are determined by the location of the microphones. A well-conditioned matrix
is crucial for modal sound field decomposition. Therefore the choice of the sampling
points deserves particular attention. A sampling configuration shall be efficient in
terms of the number of sampling points, and robust to additive errors arising from
measuring the sampled quantity, e.g. microphone self-noise. The robustness is usually
measured in terms of the condition number of the matrix, which is the ratio of the
largest to the smallest singular value of the matrix. The condition number of YN repre-
sents the upper bound of the relative error amplification in p, caused by multiplication
with Y −1

N in eq. (2.39). For a comprehensive overview on sampling strategies for the
sphere see [Zot09b], where also many references to available literature are found.
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2.4 Beamforming and reproduction of sound scenes

The modal representation of a sound scene, achieved from a spherical microphone
array using modal sound field decomposition, is usually used either for beamforming
or to reproduce the captured sound scene with an surrounding spherical loudspeaker
array. A brief description of these applications is given in the following subsections.

2.4.1 Beamforming

In general, the goal of beamforming is to capture sources arriving from a desired target
direction and to optimally suppress sources from all other directions. We assume
that all sources are far away from the array and arrive as plane waves, i.e. far-field
beamforming. Furthermore we assume an ideal spherical microphone array operating
in its feasible frequency range, i.e. it gives access to the modal coefficients of the
spatially band-limited source distribution φN.

Beamforming is accomplished simply by a weighted sum of the modal coefficients.
In matrix notation this yields

s = γT(θb)φN, (2.43)

whereby γ(θb) is a vector containing the weights for a desired target direction θb. To
deduce suitable beamforming weights, we first consider how these affect the directivity
of the beamformer. Comparing eq. (2.28) and eq. (2.18) shows that for a plane wave
from direction θ the modal coefficients are bnm = 4πinY m

n (θ). Using eq. (2.35) and
the far field equivalent of the Hankel function leads to the coefficients of a spherical
source distribution. Omitting constant delay and gain factors this yields φ = y(θ).
Inserting this in eq. (2.43) yields a function, which represents the direction dependent
far-field gain of the beamformer, i.e. its directivity pattern,

d(θ) = γT(θb)yN(θ). (2.44)

The above equation shows that the beamformer weights are the coefficients of the
spherical harmonics expansion of the directivity pattern, cf. eq. (2.14). Based on this
relation, the beamforming weights are determined by specifying some optimization
criterion. For example, the maximum directivity beamformer results in, cf. [SYS+10]

γ(θb) = yN(θb). (2.45)

Optimizing the beam pattern due to other criteria, e.g. minimum side lobes [SYS11]
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or parametric designs like Dolph-Chebyshev [KR09], result simply in direction-
independent additional order weights,

γ(θb) = diag{aN}yN(θb), (2.46)

where aN = [a0, . . . , an, . . . , an︸ ︷︷ ︸
2n+1

, . . . , aN]T.

2.4.2 Reproduction of sound scenes

For simplification, we assume the excitation force due to a loudspeaker being concen-
trated in a single point. Therewith, the force distribution of a surrounding spherical
loudspeaker setup yields f(r) = f(θ) δ(r − rs) r−2, where

f(θ) =
L∑
l=1

gl δ(θ − θl), (2.47)

is the spherical source distribution representing the loudspeaker setup, and gl are the
driving gains of the loudspeakers. Inserting the above equation in eq. (2.15), and
expressing the delta function by the closure relation, cf. eq. (2.17), yields the expansion
coefficients φnm = ∑L

l=1 glY
m
n (θl), which is equivalent expressed in matrix notation by

φ =
L∑
l=1

gl y(θl). (2.48)

Stacking the loudspeaker gains in a vector, g = [g1, . . . , gL]T, we get φ = Y g. From
a spherical microphone array we expect only the spatially band-limited part of a
surrounding source distribution. Hence for the loudspeaker side, we also consider only
the lower order components with the same spatial band-limit,

φN = YN g. (2.49)

To simplify the following consideration, we assume that the number of loudspeakers
equals the number of modal components, i.e. L = (N + 1)2. In this case the driving
gains for the loudspeakers, which achieve the same excitation pattern as captured by
the spherical microphone array, can be formally determined by inverting the above
equation,

g = Y −1
N φN. (2.50)
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Note that we silently assume here that the radius of the spherical loudspeaker distri-
bution is equal to the radius of the surrounding source distribution used in the modal
sound field decomposition.

In practice, there are several potential weaknesses when applying eq. (2.50) to
reproduce captured sound scenes. First of all, the inversion requires a good condition
of the matrix YN, as otherwise large loudspeaker gains due to errors render the result
useless. A good condition is here much harder to achieve as for a microphone array.
Arranging loudspeakers in a room is subject to many restrictions, e.g. doors, windows,
ect., and in many cases only hemispherical setups are achievable as a fully spherical
distribution is not manageable.

As shown in [WA01], for the spatially band-limited approximation of a plane wave,
i.e. omitting all terms for which n > N in eq. (2.28), the normalized mean squared
error on a sphere of radius r = N

k
is about 4% and rapidly increases with r. This

clearly shows that an accurate reproduction is only achieved in rather small area
around the origin, even for a good condition of YN. The size of this area depends on
frequency and the particular spatial band-limit.

Approaches similar to eq. (2.50) are nonetheless used for 3D audio reproduction
with moderate numbers of loudspeakers, i.e. a spatial band-limit of typically N = 1
to 5. These reproduction approaches are usually referred to as Ambisonics [Ger73;
Fel75]. In Ambisonics terminology, the mapping from the modal signals to driving the
signals of the loudspeakers is referred to as decoding,

g = DφN, (2.51)

where D is called the decoder matrix. Obviously, eq. (2.50) is achieved for setting
D = Y −1. This type of decoding is referred to as mode-matching, cf. [ZPF09].
Carefully designed decoders are able to provide a plausible and convincing perception,
also for larger audience areas and irregular loudspeaker distributions. Naturally,
such decoding strategies require to disengage the problem from a physically accurate
synthesis of the sound field.

In the last decade, several decoding strategies have been presented, which aim
at a perceptually optimal reproduction and cope with non-uniform loudspeaker dis-
tributions. In [EJZ14; BHL10; MW10], non-linear optimization techniques are used
to minimize cost functions in terms of perceptual relevant parameters [Ger92]. The
energy-preserving decoder proposed in [ZPN12] achieves a regularization of eq. (2.50)
by reducing the number of basis functions, similar to spherical Slepian functions, cf.
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[ZP12]. This is especially applicable for loudspeaker layouts covering only a part of
the sphere, e.g. hemispherical setups. The all-round Ambisonics decoder (AllRAD),
cf. [ZF12], achieves decoding to virtually any loudspeaker distribution by a two-step
approach. First, an ideal virtual loudspeaker setup is considered, i.e. a discrete source
distribution with a high number of sampling points located such that Y T = Y −1, and
the modal signals are decoded to these virtual loudspeakers. In a second step, the
virtual loudspeaker signals are distributed to the real loudspeakers by vector based
amplitude panning (VBAP), cf. [Pul97]. A comparison of the latter two approaches
and their particularities is shown in [ZFP13].
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Chapter 3

Helmholtz equation revisited

The modal decomposition of a sound field, as discussed in the previous chapters, is
based on spherical harmonics. These functions form a complete, orthonormal set of
functions on the two-dimensional sphere S2. Hence, any square integrable function
on S2 can be expanded in a series of spherical harmonics. However, if one considers
not the entire surface of the sphere, but only a partial spherical surface, the spherical
harmonics loose this important property.

As we will show within this chapter, there are complete sets of orthonormal
functions for certain partial spherical surfaces. Similarly to the spherical harmonics,
these functions are based on the solution of the Helmholtz equation in spherical
coordinates and are combinations of orthogonal functions in azimuth and zenith angle.
For example, reducing the set of spherical harmonics to those, which are either even-
or odd-symmetric with respect to the horizontal plane, yields a complete orthogonal
set of functions on the hemisphere. In fact, the even- and odd-symmetric spherical
harmonics are the eigenfunctions of the angular part of the Helmholtz equation for a
Neumann respectively a Dirichlet boundary condition at the horizontal plane. The
fundamental theory behind this is known as Sturm-Liouville theory. Its main tenet
states that the eigenfunctions of certain second-order differential equations, which
fulfill a two-point boundary condition, form a complete orthogonal sequence. Beyond
many other classical differential equations, the differential equations resulting from
the separation of the Helmholtz equation in spherical coordinates are of this form.
Also the full set of spherical harmonics is covered by the Sturm-Liouville theory as a
special case. It shows that the trigonometric functions result from a periodic boundary
condition, claiming continuity and periodicity in the azimuth. The associated Legendre
functions of the first kind, with integer degree and order, are the eigenfunctions of
the associated Legendre differential equation for singular boundary conditions in the
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zenith angle, claiming that the solution does not diverge at θ = 0◦, θ = 180◦.
The aim of this chapter is to provide the theoretical foundations of complete

orthogonal function sets resulting from solutions of the Helmholtz equations in spherical
coordinates. First, we discuss the general solution of the Helmholtz equation, which,
by separation of variables, splits up in three ordinary differential equations of second
order. In the second section provides an introduction to the Sturm-Liouville theory.
Finally, the application of the Sturm-Liouville theory to the Helmholtz equation is
show and the respective orthogonal function sets are established.

Chapter 4 shows the combination of the solution in azimuth and zenith angle to
complete sets of orthogonal functions for partial spherical surfaces. These orthogonal
function sets, together with the corresponding radial solutions, yield the solutions
of the Helmholtz equation in regions bounded by sound-hard coordinate surfaces in
φ and θ. Modal sound field decompositions based on these solutions is discussed in
chapter 5.

3.1 General solution of the Helmholtz equation in
spherical coordinates

The Helmholtz equation is the partial differential equation, cf. section 2.1,

∆p(r) + k2p(r) = 0 , (3.1)

whereby in spherical coordinates, as defined in section 2.2, the Laplace-Operator ∆
yields, cf. [BSMM07, p. 658],

∆ = 1
r2

∂

∂r

(
r2 ∂

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1
r2 sin2 θ

∂2

∂φ2 . (3.2)

We assume that the solution is of the form

p(r, φ, θ) = R(r)Φ(φ)Θ(θ). (3.3)

As shown in appendix B, with the above ansatz the Helmholtz equation in spher-
ical coordinates splits into the following three homogeneous second order ordinary
differential equations (ODE),

d2Φ
dφ2 + µ2Φ = 0 , (3.4)
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1
sin θ

d

dθ

(
sin θdΘ

dθ

)
+
[
ν (ν + 1)− µ2

sin2 θ

]
Θ = 0 , (3.5)

1
r2

d

dr

(
r2dR

dr

)
+ k2R− ν(ν + 1)

r2 R = 0 , (3.6)

whereby ν and µ are arbitrary constants resulting from the separation. As we will
see later in sections 3.2 and 3.3, the values of the parameters ν and µ are determined
by the choice of boundary conditions and are real-valued for all types of boundary
conditions considered within this thesis. It is easy to see that the above differential
equations are unchanged when replacing µ by −µ or ν by −ν−1. Accordingly, without
loss of generality, the parameter ranges can be restricted to

µ ≥ 0, µ ∈ R, (3.7)
ν ≥ −1

2 , ν ∈ R. (3.8)

Equation (3.4) is a second order ODE with constant coefficients, eq. (3.5) is called
the associated Legendre equation, and eq. (3.6) is known as the spherical Bessel
equation. Since eqs. (3.4) to (3.6) are a second order ODEs, the general solution
for each ODE is formed by a weighted sum of two linearly independent solutions, cf.
[Kre99, Ch.2]. The choice of basis solutions is obviously not unique, as any pair of
linearly independent solutions serves as a basis. However, there are certain pairs of
standard solutions that are usually adopted as a basis.

General solution of eq. (3.4). As a general solution of eq. (3.4) we choose

Φµ(φ) = A sin(µφ) +B cos(µφ) , (3.9)

where A, B, are the weights for a particular solution. Another popular choice is
Φµ(φ) = Aeiµφ +B e−iµφ, however it is convenient to adopt real valued functions as a
basis.

General solution of the associated Legendre equation. The substitution x :=
cos(θ) in eq. (3.5) yields the associated Legendre equation in standard form,

(
1− x2

) d2Θ
dx2 − 2xdΘ

dx
+
(
ν(ν + 1)− µ2

1− x2

)
Θ = 0. (3.10)

Note that in general this differential equation is solved for unrestricted, complex-valued
x, ν, µ, and the standard solutions are called associated Legendre functions, cf. [Olv74,
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Ch.12; EMO+53, Ch.3]. We are interested in solutions of eq. (3.10), which are real
valued on the interval x ∈ [−1, 1], i.e. θ ∈ [0, π], for µ, ν ∈ R. This is not necessarily
the case for the associated Legendre functions. The standard solutions defined to
fulfill these requirements are called Ferrers functions or associated Legendre functions
on the cut, [Olv74, p. 186; DLMF, §14.3(i)], and yield

Pµν (x) =
(1 + x

1− x

)µ
2

F
(
ν + 1,−ν

1− µ ; 1− x
2

)
, (3.11)

Qµ
ν (x) = π

2 sin (µπ)

[
cos (µπ)

(1 + x

1− x

)µ
2

F
(
ν + 1,−ν

1− µ ; 1− x
2

)

−Γ (ν + µ+ 1)
Γ (ν − µ+ 1)

(1− x
1 + x

)µ
2

F
(
ν + 1,−ν

1 + µ
; 1− x

2

)]
, (3.12)

where Γ (x) is the gamma function, and F
(
a,b
c

;x
)

= F(a,bc ;x)
Γ(c) is Olver’s hypergeometric

function. Thereby F
(
a,b
c

;x
)

= ∑∞
l=0

(a)l(b)l
(c)l l!

xl is Gauß’ hypergeometric function, and
Pochhammer’s symbol (or rising factorial) is defined as (a)l = a(a+ 1) . . . (a+ l− 1) =
Γ(a+l)
Γ(a) , with (a)0 := 1 and l ∈ Z+.
However, the Ferrers functions are not applicable as a pair of standard solutions

for all possible values of ν and µ. On the one hand, Qµ
ν (x) is undefined for ν + µ =

−1,−2,−3, . . . , which is due to the gamma function in the denominator in eq. (3.12).
This case is avoided by restricting the parameter values as in eqs. (3.7) and (3.8). On
the other hand, Pµν (x) and Qµ

ν (x) are linearly dependent for ν − µ = −1,−2,−3, . . .,
as their Wronskian is zero, cf. [DLMF, eq. 14.2.4],

W {Pµν (x) ,Qµ
ν (x)} = Γ(ν + µ+ 1)

Γ(ν − µ+ 1) (1− x2) . (3.13)

As eq. (3.5) is unchanged by replacing µ with −µ, clearly P−µν (x) is further solution.
From the Wronskians, cf. [DLMF, eq. 14.2.6, eq. 14.2.7],

W
{
P−µν (x) ,Qµ

ν (x)
}

= cos(µπ)
1− x2 , (3.14)

W
{
P−µν (x) ,Pµν (x)

}
= 2 sin(µπ)
π (1− x2) , (3.15)

it follows that P−µν (x), Qµ
ν (x) are linearly independent for µ 6= 1

2 ,
3
2 ,

5
2 , . . . , and P−µν (x),

Pµν (x) linearly independent for µ 6= 0, 1, 2, 3, . . .
There is no single pair of standard solutions that can be used for all values of ν and

µ. However it is feasible to let the choice of standard solutions for eq. (3.5) depend
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on µ only. Therefore, we choose P−µν (cos θ) as one standard solution and, depending
on µ, either Qµ

ν (cos θ) or Pµν (cos θ) as a second standard solution. Hence, the general
solution of eq. (3.5) yields

Θµ
ν (θ) = C P−µν (cos θ) +D

Qµ
ν (cos θ) for µ 6= 1

2 ,
3
2 ,

5
2 , . . . ,

Pµν (cos θ) for µ = 1
2 ,

3
2 ,

5
2 , . . . ,

, (3.16)

where C, D, are the weights for a particular solution.

General solution of the spherical Bessel-equation. As a general solution of
eq. (3.6) we choose

Rν(r) = E jν(kr) + F h(2)
ν (kr), (3.17)

where E, F are the weights for a particular solution, and jν(kr), h(2)
ν (kr) are the spher-

ical Bessel function and the spherical Hankel function of the second kind, respectively.
Other popular choices are Rν(r) = E jν(kr) + F yν(kr), with yν(kr) being the

spherical Neumann function, or Rν(r) = E h(1)
ν (kr) + F h(2)

ν (kr), with h(1)
ν (kr) being

the spherical Hankel function of the first kind. The choice of eq. (3.17) is convenient,
as for an interior problem we achieve F = 0, and for a radiating problem we achieve
E = 0, see section 2.2.1. A detailed derivation of the solution of eq. (3.6) is given in
Appendix C.

3.2 Sturm-Liouville theory

The purpose of this section is to provide the reader with the basic properties of
Sturm-Liouville problems. We will discuss the problems as far as they are relevant for
this thesis. A more elaborate introduction into the theory of Sturm-Liouville problems
can be found in the monograph by Anton Zettl [Zet05].

3.2.1 Sturm-Liouville problems

A Sturm-Liouville problem with self adjoint boundary conditions possesses mathemat-
ical properties similar to a Hermitian (or self-adjoint) matrix:

• The eigenvalues are all real.

• The eigenfunctions associated with distinct eigenvalues are orthogonal.

• The set of eigenfunctions forms a complete orthogonal basis
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The Sturm-Liouville equation. Many second order ODEs can be written in
Sturm-Liouville form,

d

dx

[
p(x)dy

dx

]
+ [λw(x)− q(x)] y = 0, x ∈ (a, b), (3.18)

where (a, b) is an open interval on R, {p, q, w} are the Sturm-Liouville coefficients and
λ is a spectral parameter. We assume that the set of coefficients satisfies the following
conditions1, cf.[BEZ01]:

p, p′, q, w ∈ C(a, b) and p(x), w(x) > 0 for all x ∈ (a, b), (3.19)

where C(a, b) is the space of continuous functions on (a, b). Obviously, any solution y of
eq. (3.18) has to be a two-times continuously differentiable function, i.e. y(x) ∈ C2(a, b).
Furthermore, we require the solution to be square integrable2, i.e. y ∈ L2(a, b) where
b∫
a
|f(x)|2dx < +∞ for all f ∈ L2(a, b).
The differential equations resulting from the separation of the Helmholtz equation

in spherical coordinates, eqs. (3.4), (3.5) and (3.6) are put into Sturm-Liouville form
by a simple variable substitution. These substitutions, the Sturm-Liouville coefficients
p, q, w and the spectral parameter λ are listed in table 3.1 below.

equation substitution p(x) q(x) w(x) λ

(3.4) x = φ 1 0 1 µ2

(3.5) x = cos(θ) 1− x2 µ2/(1− x2) 1 ν(ν + 1)
(3.6) x = r x2 ν(ν + 1) x2 k2

Table 3.1: Transformation of eqs. (3.4), (3.5) and (3.6) in Sturm-Liouville form.

Self-adjoint problems. A self-adjoint Sturm-Liouville problem is determined by
eq. (3.18) and a self-adjoint homogeneous two-point boundary condition at the end-
points a and b. A solution yi(x) of eq. (3.18) satisfying the boundary condition is
called an eigenfunction and the according λi is called an eigenvalue of the problem.

1Note that there are weaker conditions, cf. [BEZ01], but the differential equations within this
work fulfill eq. (3.19). The positive sign restriction on p and w is not necessary in general, but with
this condition the eigenvalues are necessarily real.

2 This requirement is necessary for self-adjoint problems. The concept of self-adjoint operators
requires a inner product space, as shown in the next paragraph. Beyond mathematics, this requirement
complies with the general assumption in physics that any system is of finite energy.
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Defining the Sturm-Liouville differential operator as

L := d

dx

(
p(x) d

dx

)
− q(x), (3.20)

eq. (3.18) is denote in compact form by

Ly + λwy = 0. (3.21)

The adjoint operator of L, denote by LH, fulfills by definition [WA03; AlG08],

〈Lf, g〉 = 〈f,LHg〉 for all f, g ∈ C2(a, b) ∩ L2(a, b), (3.22)

where 〈f, g〉 =
b∫
a
f(x)ḡ(x)dx denotes the inner product, and the bar denotes the

complex conjugate. The operator is said to be self adjoint if LH = L. With eq. (3.20)
and applying integration by parts to the left side of eq. (3.22), it shows that

〈Lf, g〉 = 〈f,Lg〉+ p [f ′ḡ − fḡ′]|ba . (3.23)

Hence, the operator is self-adjoint if p [f ′ḡ − fḡ′]|ba vanishes for all f, g ∈ C2(a, b) ∩
L2(a, b). Defining [f, g](x) := p(x) [f ′(x)ḡ(x)− f(x)ḡ′(x)], this condition can be
written in compact form

[f, g](a)− [f, g](b) = 0. (3.24)

In general, the above condition does not hold for all f, g ∈ C2(a, b) ∩ L2(a, b). This
condition depends only on the behavior of the solutions f, g, their derivatives, and p at
the endpoints a, b. It shows that eq. (3.24) is satisfied if f, g fulfill adequate boundary
conditions. Such boundary conditions, under which the problem is self-adjoint, are
called self-adjoint boundary conditions.

Orthogonality of eigenfunctions. The eigenfunctions of a self-adjoint Sturm-
Liouville problem associated with distinct eigenvalues are orthogonal on the interval
x ∈ (a, b) with respect to the weight function w(x) [WA03, p. 498],

∫ b

a
yi(x)ȳj(x)w(x) dx = 0, for i 6= j. (3.25)
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It is a simple matter to verify the above equation. Inserting two distinct eigenfunctions
yi(x) 6= yj(x) in eq. (3.23) yields

∫ b
a (Lyi ȳj − yiLȳj) dx = 0. Applying eq. (3.21) gives

(λi − λj)
∫ b
a yi ȳjw dx = 0, and thus for λi 6= λj the integral must vanish.

The eigenfunction yi corresponding to the eigenvalue λi is unique, up to a scalar
multiple. So we choose the eigenfunctions to be normalized

∫ b

a
|yi(x)|2w(x) dx = 1. (3.26)

With this normalization, the sequence of eigenfunctions (yi) forms an orthonormal set
with respect to w(x).

Note that in case of periodic boundary conditions two distinct eigenfunctions may
correspond to the same eigenvalue. These two functions are not necessarily orthogonal
but can always be orthogonalized, e.g. by Gram-Schmidt orthogonalization [WA03].

Completeness of eigenfunctions. The sequence of orthonormal eigenfunctions
(yi) forms a complete set in the weighted Hilbert space L2

w(a, b) with the weighted

inner product 〈f, g〉w =
b∫
a
f(x)ḡ(x)w(x) dx . Thus, for any f ∈ L2

w(a, b) the following
relation holds,

lim
l→∞

∫ b

a

[
f −

l∑
i=0
〈f, yi〉w yi

]2

w dx = 0. (3.27)

Proofs of the completeness relation are given e.g. in [AlG08, p.79; CH24, p.342; CL55,
p.197; MF53, p. 738]. The above relation is equivalent to the identity

f =
∞∑
i=0
〈f, yi〉w yi, (3.28)

where equality holds in the sense of convergence in L2
w(a, b). Furthermore, eq. (3.27)

is equivalent to Parseval’s relation,

∫ b

a
|f |2w dx =

∞∑
i=0
|〈f, yi〉w|2. (3.29)

If we denote the weighted inner product in integral form and interchange the order of
summation and integration, eq. (3.28) writes as

f(x) =
∫ b

a
f(x′)

[ ∞∑
i=0

ȳi(x′)yi(x)w(x′)
]
dx′. (3.30)
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Comparing this to the fundamental property of Dirac’s delta distribution, i.e. f(x) =∫ b
a f(x′)δ(x− x′)dx′, the following relation is evident,

w(x′)
∞∑
i=0

ȳi(x′)yi(x) = δ(x− x′). (3.31)

Endpoint classification. The form of suitable self-adjoint boundary conditions
depends on the interval (a, b) and the behavior of the Sturm-Liouville coefficients at
the endpoints a and b. The following classification of endpoints for Sturm-Liouville
problems is standard in literature, see e.g. [Zet05, p. 145], and useful for discussing
distinct cases of possible self-adjoint boundary conditions.

Regular endpoint. The endpoint a is regular (R) if the Sturm-Liouville coeffi-
cients satisfy for any c ∈ (a, b)

p−1, q, w ∈ L1(a, c], (3.32)

where L1(I) is the space of integrable functions on the interval I. It can be shown,
cf. [Zet05, p. 27 ], that all solutions have finite limits at a regular endpoint and are
bounded in the neighborhood. The endpoint a is singular (S) if it is not R. If a is S it
is further classified in the following sub-cases.

Limit-circle endpoint. The endpoint a is limit-circle (LC) if a is S, and all
solutions yi(x) of eq. (3.18) are square integrable towards a weighted by w(x),

c∫
a

|yi(x)|2w(x)dx < +∞ for all c ∈ (a, b). (3.33)

Limit-point endpoint. The endpoint a is limit-point (LP) if it is not LC, i.e.
there exists at least one solutions yi(x) of eq. (3.18) such that

c∫
a

|yi(x)|2w(x)dx = +∞. (3.34)

Let f, g be two arbitrary solutions of eq. (3.18), then if a is LP following equation
holds

[f, g](a) = 0 for all f, g ∈ L2((a, b);w). (3.35)
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A proof is given in [Nai68, p. 78].
The endpoint b of the interval (a, b) is classified similarly into R, LC, and LP.

Table 3.2 contains the endpoint classification for the differential equations resulting
from the separation of the Helmholtz equation in spherical harmonics, eqs. (3.4)
to (3.6). Classifications for many other classical differential equations are given e.g. in
[Eve05].

Endpoint Classification
−∞ LP
+∞ LP

(a)

Endpoint Parameter Classification
−1 0 ≤ µ < 1 LC
−1 1 ≤ µ LP
+1 0 ≤ µ < 1 LC
+1 1 ≤ µ LP

(b)

Endpoint Parameter Classification
0 0 ≤ ν < 1

2 LC
0 1

2 ≤ ν LP
+∞ 0 ≤ ν < +∞ LP

(c)

Table 3.2: Endpoint classification for (a) the Fourier equation in L2(−∞,+∞), (b) the associated
Legendre equation in L2(−1,+1), and (c) the spherical Bessel equation in L2(0,+∞).

3.2.2 Boundary conditions for regular problems

In general, a boundary condition for a regular Sturm-Liouville problem is expressed by

α1y(a) + α2y
′(a) + α3y(b) + α4y

′(b) = 0,
β1y(b) + β2y

′(b) + β3y(a) + β4y
′(a) = 0,

(3.36)

where αi, βi ∈ R and ∑
i
|αi|2 > 0, ∑

i
|βi|2 > 0 , cf. [Rab72; AlG08, p. 44].

The necessary condition for the problem to be self-adjoint, eq. (3.24), can be
reformulated in terms of the coefficients involved in the boundary condition. Inserting
eq. (3.36) in eq. (3.24), we get after some rearrangements

p(a) (α3β2 − α4β1) = p(b) (α1β4 − α2β3) . (3.37)

The general form of regular boundary conditions, eq. (3.36), has several special
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cases. In the following we will discuss two of those, which are of special interest for
this work. These are separated and periodic boundary conditions. A more detailed
discussion of self-adjoint boundary conditions can be found in [BEZ01; Zet05].

Separated boundary conditions. The general boundary condition, eq. (3.36),
reduces to a separated one by setting α3 = α4 = β3 = β4 = 0,

α1 y(a) + α2 y
′(a) = 0,

β1 y(b) + β2 y
′(b) = 0, (3.38)

Such boundary conditions are called separated as one condition involves values of y
and y′ at the endpoint x = a, only, while the other condition involves only values at
the endpoint x = b. Otherwise the boundary conditions are called coupled. A problem
with separated boundary conditions satisfies eq. (3.24) for arbitrary choices of the
coefficients α1,2, β1,2 and is hence self-adjoint.

A Sturm-Liouville problem with separated boundary conditions possesses an infinite,
but discrete, sequence of eigenvalues, which is bounded below. The eigenvalues can be
ordered and index to satisfy −∞ < λ0 < λ1 < . . . < λi < . . . , with λi →∞ as i→∞,
cf. [Zet05, p. 209]. Hence, there is only a finite number of negative eigenvalues.

Each eigenvalue λi is simple, i.e. it is associated with a single eigenfunction yi,
which is uniquely determined up to a constant factor. This eigenfunction has exactly i
zeros in the open interval x ∈ (a, b). Furthermore, the eigenvalues are all nonnegative
if the following conditions are satisfied, cf. [Rab72, p.258]:

α1α2 ≤ 0, β1β2 ≥ 0,
q(x) ≥ 0 for x in [a, b].

(3.39)

A proof is given in appendix D.

Homogeneous Dirichlet and Neumann boundary conditions. There are
two special cases of separated boundary conditions, which are of particular interest
within this work. The Dirichlet boundary condition specifies solely the values of the
solution at endpoint a or b, i.e. α2 = 0 or β2 = 0 in eq. (3.38). The Neumann boundary
condition solely specifies the values of the derivative of the solution at endpoint a or
b, i.e. α1 = 0 or β1 = 0 in eq. (3.38). If q(x) ≥ 0 for x in [a, b] then eq. (3.39) holds
for both, Dirichlet and Neumann boundary conditions. This immediately implies that
all eigenvalues are non-negative.

35



Periodic boundary conditions. With α1 = −α3, β2 = −β4, and α2 = α4 = β1 =
β3 = 0, eq. (3.36) reduces to periodic boundary conditions,

y(a) = y(b),
y′(a) = y′(b).

(3.40)

For such boundary conditions eq. (3.24) is satisfied for p(a) = p(b), and in this case
the Sturm-Liouville problem is self-adjoint. In contrast to the separated boundary
conditions, this is an example for coupled boundary conditions.

The eigenvalues form a discrete sequence −∞ < λ0 ≤ λ1 ≤ . . . ≤ λi ≤ . . . with
λi → ∞ as i → ∞. In contrast to the eigenvalues of a problem with separated
boundary conditions, the eigenvalues may be simple or double. A double eigenvalue
λi = λj is associated with two linearly independent eigenfunctions yi 6= yj . If q(x) ≥ 0
for x in [a, b] then all eigenvalues are non-negative, cf. appendix D.

3.2.3 Boundary conditions for singular problems

In general, any combination of R, LC, and LP endpoints is possible. The case of
both endpoints regular was discussed in the previous subsection. A Sturm-Liouville
problem is said to be singular if at least one of the endpoints a or b is not regular. As
in the regular case, the boundary conditions may be separated or coupled. However,
coupled boundary conditions are only possible if non of the endpoints is LP.

In the following we will discuss only separated singular boundary conditions, which
are of special interest within this thesis. Hence, it is sufficient to investigate the
boundary condition at each endpoint of the interval (a, b) separately. The problem is
self-adjoint if the condition

[f, g](d) = 0 (3.41)

is met for all solutions f, g that satisfy the boundary condition at the endpoint d = a

and d = b. Together with the separated regular boundary conditions at a and/or b,
eq. (3.38), all possible combinations of R, LC, and LP endpoints are covered.

LP endpoints. If d is LP, the two-point boundary condition is vacuous at this
endpoint. This follows directly from eq. (3.35) as eq. (3.41) is fulfilled for all solutions
f, g ∈ L2((a, b);w) of eq. (3.18). Thus only at the non-LP endpoint a boundary
condition is posed. No boundary condition is necessary if both endpoints are LP.
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Furthermore, if both endpoints a, b are LP, q(x) ≥ 0 for x ∈ [a, b], and there exist
a principal solution at both endpoints for all λ, the Sturm-Liouville problem possesses
an infinite, discrete series of non-negative, simple eigenvalues, i.e. 0 ≤ λ0 < λ1 < . . . <

λi < . . . with λi → ∞ as i → ∞. The same holds true if one endpoint is LP and
there exist a principal solution for all λ at this endpoint, while the other endpoint is
either R and eq. (3.39) holds at this endpoint, or it is LC and eq. (3.46) holds at this
endpoint. A proof can be found in appendix D.

Principal and non-principal solutions. For a certain λ, the solution u(x) of
eq. (3.18) is referred to as the principal solution at the singular endpoint d for this
value of λ, if

lim
x→d

u(x)
v(x) = 0, (3.42)

where v(x) is any solution, which is linearly independent to u(x), cf. [Zet05, p. 131;
Olv74, p. 155]; v(x) is referred to as a non-principal solution. This means that
at the endpoint the principal solution is recessive3, while the non-principal solution
is dominant. Clearly, the principle solution is unique up to scalar multiples, while
the non-principal solution is not unique. Note that the attributes principal and
non-principal are tied to the singular endpoint under consideration, i.e. a principal
solution at the singular endpoint a may be non-principal at the singular endpoint b
and vice versa.

LC endpoints. If d is LC then the boundary condition at this endpoint takes the
form

α1[y, u](d) + α2[y, v](d) = 0, (3.43)

where α1,2 ∈ R with |α1|2 + |α2|2 > 0, and {u, v} are a real, linearly independent basis
of solutions of eq. (3.18) with [u, v](d) 6= 0. Such pairs always exists if d is LC, see
[BEZ01; Zet05], and are called boundary condition basis at the endpoint d. If both
endpoints are LC, the bases are in general different at the two endpoints.

It is common practice to choose {u, v} such that u is the principal solution and
v is any non-principal solution of eq. (3.18) at d for some eigenvalue λi, see [BEZ01;
Eve05]. Clearly such a boundary condition basis is not unique. However, boundary
conditions expressed by {u, v} and α1,2 can be equivalently expressed by any other

3The terms recessive and dominant solution are used alternatively for principal and non-principal
solution, e.g. in the monograph of Frank Olver [Olv74].
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basis {ũ, ṽ} and α̃1,2, see [Zet05, p. 185].
Table 3.3 contains the boundary condition bases for the associated Legendre

equation, eq. (3.5), and the spherical Bessel equation, eq. (3.6). These can be found4

in [Eve05] as well as bases for many other classical differential equation.
If each endpoint is either R or LC and the boundary conditions are separated,

then the eigenvalues are simple, discrete and bounded below, i.e. −∞ < λ0 < λ1 <

. . . < λi < . . . , with λi →∞ as i→∞, cf. [Zet05, p. 209].

Parameter u v

µ = 0 1 ln
(1 + x

1− x

)
0 < µ < 1 (1− x2)µ2 (1− x2)−µ2

(a)

Parameter u v

0 ≤ ν < 1
2 xν x−ν−1

(b)

Table 3.3: Boundary condition basis for (a) the associated Legendre equation for the endpoints ±1,
and (b) the spherical Bessel equation for the endpoint 0.

Friedrichs boundary condition. It is named after K. Friedrichs, who termed
this boundary condition “ausgezeichnet” in his article [Fri36]. For many classical
differential equations, like for the Legendre and Bessel equation, see table 3.2, the
LP/LC classification of the singular endpoints depends on a parameter. Friedrichs’
intention was to single out a boundary condition for the LC case, which is automatically
fulfilled if the endpoint is LP. In singular eigenvalue problems of mathematical physics
this boundary condition is almost always implicitly applied [Rel50, p. 344]. However,
it seems that there is no explicit physical interpretation.

The Friedrichs boundary condition is a special case of eq. (3.43) with α2 = 0 and
u being a principal solution of the differential equation for some value of λ,

[y, u](d) = 0. (3.44)

It can be shown that if f is a principal solution at d for some eigenvalue λi and g is a
solution for a possibly different eigenvalue λj, then, cf. [MP95, Lemma 4],

[f, g](d)

= 0 if g is a principal solution at d,

6= 0 if g is a non-principal solution at d.
(3.45)

4Note that the boundary condition basis for the spherical Bessel equation is achieved from the
basis of the Bessel equation in Liouville form, see [Eve05, p.15], by substituting ŷ = xy and ν̂ = ν+ 1

2 .
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Thus the Friedrichs boundary condition is fulfilled only by solutions that are principal
at the singularity. Note that the Friedrichs boundary condition is independent of the
choice of λ, for which u is the principal solution.

Furthermore, if both endpoints a, b are LC, q(x) ≥ 0 for x ∈ [a, b], and the following
conditions hold,

p(a)u′(a)
u(a) ≥ 0,

p(b)u′(b)
u(b) ≤ 0,

(3.46)

then all eigenvalues are non-negative. The same holds true if one endpoint is LC while
the other endpoint is either R and eq. (3.39) holds at this endpoint, or it is LP and
there exist a principal solution at this endpoints for all λ. A proof can be found in
appendix D.

3.3 Eigenfunctions of the Helmholtz equation with
angular boundary conditions

As shown in the previous section, a complete set of orthogonal eigenfunctions emerge
naturally as solution of a self-adjoint Sturm-Liouville problem. The differential
equations arising from the separation of the Helmholtz equation in spherical coordinates
can be brought in Sturm-Liouville form. Together with homogeneous two-point
boundary conditions, complete orthogonal sets are achieved for each differential
equation.

The boundary conditions are specified for each differential equation and thus for
each coordinate separately. Setting one coordinate to a constant value, without any
restriction on the remaining two coordinates, yields a coordinate surface. Figure 3.15

shows the coordinate surfaces in spherical coordinates. A constant value of φ yields a
vertical half-plane, and a constant value of θ yields a semi-infinite cone, whose tip is
located at the origin and whose axis of rotation coincides with the z-axis. At these
surfaces the boundary conditions are specified, and they represent the boundaries
of the domain where the corresponding set of eigenfunctions is valid. Thereby the
boundary conditions specify the acoustical properties of these planes.

Within this work we only discuss Dirichlet/Neumann boundary conditions as
5Figure reprinted from [Wik17]
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Figure 3.1: Coordinate surfaces in spherical coordinates; the yellow half-plane corresponds to
φ = constant, the blue semi-infinite cone corresponds to θ = constant, and the red sphere corresponds
to r = constant .

well as boundary conditions, which result from the range of spherical coordinates.
Physically, a Dirichlet boundary condition represents a sound-soft surface and a
Neumann boundary condition represents a sound-hard surface, respectively.

In absence of a boundary surface, the boundary conditions result from the range
of spherical coordinates. If there is no boundary surface in φ the boundary condition
is a periodic one, with a periodicity of 2π, as the sound pressure and its derivative
are required to be continuous. In absence of a boundary surface in θ, the boundary
conditions are singular ones at θ = 0 and θ = π. If only a boundary surface at θ = θ1

is specified, then the remaining boundary condition is a singular one at either θ = 0
or θ = π, depending on whether the domain above or below the semi-infinite cone is
considered.

In the following subsections we discuss the eigenfunctions of the ordinary differential
equation arising from the separation of the Helmholtz equation in spherical coordinates
for angular boundary conditions in φ or θ.

3.3.1 Boundary conditions in φ

Equation (3.4) is the differential equation for the azimuth coordinate φ with the general
solution given in eq. (3.9). This differential equation together with a homogeneous
two-point boundary condition at φ1 and φ2, with 0 ≤ φ1 ≤ φ2 ≤ 2π, constitutes a
Sturm-Liouville problem.

The boundary conditions are either separated Dirichlet/Neumann boundary condi-
tions, corresponding to one or two sound-soft/-hard vertical half-planes, cf. fig. 3.2,
or periodic boundary conditions in absence of a boundary surface. As discussed in
section 3.2.2, such problems exhibit an infinite, but discrete set of real eigenvalues
λi = µ2

i . Furthermore, putting eq. (3.4) in Sturm-Liouville form, see table 3.1, it is
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Figure 3.2: Half-planes corresponding to a two-point boundary condition at φ = φ1,2.

seen that q(φ) ≥ 0 and thus all eigenvalues are non-negative. Hence the parameter µi
is real, and we restrict µi ≥ 0 by convention.

The associated eigenfunctions Φµi(φ) form a complete orthogonal basis on the
interval φ ∈ [φ1,φ2]. The eigenfunctions can always be normalized such that the
following relations holds,

∫ φ2

φ1
Φµi(φ)Φµi′

(φ)dφ = δii′ . (3.47)

Separated boundary conditions in φ. Specifying boundary conditions at φ1

and φ2 geometrically corresponds to two infinite vertical half-planes as sketched in
fig. 3.2. In the following we will discuss the eigenfunctions for sound-soft (Dirichlet)
and sound-hard (Neumann) boundary conditions.

Dirichlet boundary conditions. The eigenfunctions Φµi(φ) of eq. (3.4) fulfill-
ing Dirichlet boundary conditions at φ1,2,

Φµi(φ)
∣∣∣
φ=φ1,2

= 0,
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are determined by applying the boundary conditions to the general solution eq. (3.9).
This yields a pair of equations and written in matrix form we getsin(µiφ1) cos(µiφ1)

sin(µiφ2) cos(µiφ2)

 Ai
Bi

 = 0. (3.48)

The above equation only has a non-trivial solution, i.e. |Ai|+|Bi| 6= 0, if the determinant
of the involved matrix is zero. Calculating this determinant, and equating it to zero
yields

sin(µi(φ2 − φ1)) = 0. (3.49)

Obviously, the above condition is fulfilled for µi = πi
φ2−φ1

, with i = 0, 1, 2, 3, . . . ,∞.
For these values of µi, the rank of the matrix in eq. (3.48) equals 1. From the
rank-nullity theorem6 we know that there exists only one arbitrary scaled vector[
Ai, Bi

]T
= N

[
cos(µiφ1),− sin(µiφ1)

]T
, N ∈ R fulfilling eq. (3.48). Choosing Ai =√

2
φ2−φ1

cos(µiφ1) and Bi = −
√

2
φ2−φ1

sin(µiφ1), the eigenfunctions yield

Φµi(φ) =
√

2
φ2−φ1

sin
(

πi
φ2−φ1

(φ− φ1)
)
. (3.50)

The factor
√

2
φ2−φ1

is included for normalization such that relation eq. (3.47) holds.
Note that the eigenfunction for i = 0 is the zero function Φµ0(φ) = 0. Hence the set
of eigenfunctions is complete for i = 1, 2, . . . ,∞.

Neumann boundary conditions. Applying Neumann boundary conditions,

dΦµi(φ)
dφ

∣∣∣
φ=φ1,2

= 0,

to the general solution eq. (3.9) yields
− cos(µiφ1) sin(µiφ1)
− cos(µiφ2) sin(µiφ2)

Ai
Bi

 = 0. (3.51)

Equating the determinant of the above matrix to zero yields the same condition as in
case of Dirichlet conditions, see eq. (3.49), and thus to the same values µi = πi

φ2−φ1
,

with i = 0, 1, 2, . . . ,∞. We choose Ai =
√

2−δi
φ2−φ1

cos(µiφ1), Bi =
√

2−δi
φ2−φ1

sin(µiφ1),

6This theorem states that the rank and the nullity of a matrix add up to the number of columns
[Mey00], whereby nullity refers to the dimensions of the null space of the matrix.
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and the eigenfunctions yield

Φµi(φ) =
√

2−δi
φ2−φ1

cos
(

πi
φ2−φ1

(φ− φ1)
)
. (3.52)

These eigenfunctions form an orthonormal basis for φ ∈ [φ1,φ2] such that eq. (3.47)
holds and fulfill Neumann boundary conditions at both endpoints.

Periodic boundary conditions in φ. In contrast to separated boundary condi-
tions, in this case there are no local boundary surfaces where the values of the field
quantities take specified values. The natural periodicity of the azimuth coordinate is
2π. Thus for a sound field with no specified local boundary in φ the field quantities are
required to be continuous and smooth. This claim is identical to a periodic boundary
condition where the solution and its derivative are demanded to be periodic functions
with a period of 2π. For completeness, the derivation in the following is done for a
general periodic boundary condition,

Φµi(φ1) = Φµi(φ2),
dΦµi(φ1)

dφ
= dΦµi(φ2)

dφ
,

(3.53)

whereby the periodicity of 2π is a special case with φ1 = 0 and φ2 = 2π.
Applying these conditions, to the general solution eq. (3.9) yields the following

linear systemsin(µiφ1)− sin(µiφ2) cos(µiφ1)− cos(µiφ2)
cos(µiφ2)− cos(µiφ1) sin(µiφ1)− sin(µiφ2

 Ai
Bi

 = 0. (3.54)

Equating the determinant of the above matrix to zero yields

cos(µi(φ2 − φ1)) = 1, (3.55)

which is fulfilled for µi = 2πi
φ2−φ1

, with i = 0, 1, 2, 3, . . . ,∞. For these values of µi the
matrix in eq. (3.54) becomes the zero matrix. Hence its rank is zero and there are
two linearly independent coefficient vectors

[
Ai1,2 , Bi1,2

]T
fulfilling eq. (3.54). Thus

there are two eigenfunctions associated with one eigenvalue. Choosing Ai1 =
√

2
φ2−φ1

,
Bi1 = 0 and Ai2 = 0, Bi2 =

√
2−δi

φ2−φ1
the eigenfunctions yield
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Φµi1
(φ) =

√
2

φ2−φ1
sin

(
2πi

φ2−φ1
φ
)
,

Φµi2
(φ) =

√
2−δi

φ2−φ1
cos

(
2πi

φ2−φ1
φ
)
.

(3.56)

Eigenfunctions associated with the same eigenvalue are not necessarily orthogonal,
but always can be chosen to be orthogonal, cf. [Zet05, p.207]. In this case they are
already orthogonal; and the eigenfunctions form a complete biorthonormal basis for
φ ∈ [φ1,φ2] such that the following relations hold:

∫ φ2

φ1
Φµi1

(φ)Φµi′1
(φ)dφ = δii′ , (3.57)∫ φ2

φ1
Φµi2

(φ)Φµi′2
(φ)dφ = δii′ , (3.58)∫ φ2

φ1
Φµi1

(φ)Φµi′2
(φ)dφ = 0. (3.59)

Note that one eigenfunction for i = 0 is the zero function Φµ01
(φ) = 0 and thus the

eigenvalue µ2
0 is single whereas the eigenvalues µ2

i for i 6= 0 are double.

3.3.2 Boundary conditions in θ

The associated Legendre equation, eq. (3.5), is the differential equation for the zenith
angle θ. This differential equation together with a homogeneous two-point boundary
condition at θ1 and θ2, with 0 ≤ θ1 ≤ θ2 ≤ π, constitutes a Sturm-Liouville problem.
The boundary conditions are either one of the following:

• Separated Dirichlet/Neumann boundary conditions, corresponding to a sound-
soft/-hard infinite double cone, cf. fig. 3.3a.

• A Dirichlet/Neumann boundary condition at θ1 and a singular boundary condi-
tion, corresponding to a sound-soft/-hard semi-infinite cone, cf. fig. 3.3b. Thereby
the singular boundary condition is either posed at θ = 0 or θ = π, depending on
whether the domain above or below the semi-infinite cone is considered.

• A singular boundary condition at θ = 0 and θ = π, if there is no boundary
surface in θ.

As discussed in section 3.2.3, such problems exhibit an infinite but discrete set of
simple real non-negative eigenvalues λi = νi(νi + 1), if
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Figure 3.3: (a) semi-infinite cone and (b) infinite double cone.

1. the Sturm-Liouville parameter q(cos(θ)) ≥ 0 and

2. depending on the endpoint classification, cf. table 3.2b,

(a) there is a Dirichlet/Neumann boundary condition at a R end point, or

(b) there exists a principal solution at a LP end point, or

(c) eq. (3.46) holds in case of a LC end point.

The parameter µ is inherited from the Sturm-Liouville problem in φ and, as discussed in
section 3.3.1, it is real-valued and non-negative. Thus the first condition is met in any
case since q(cos(θ)) = µ2

sin2(θ) , cf. table 3.1. For a regular end point the second condition
is also met, since we consider only Dirichlet and Neumann boundary conditions.

In case of a LP end point it shows that there exist a principal solution at both
singular points θ = 0 and θ = π for any real µ. With µ ≥ 0 the principal solution at
θ = 0 is P−µν (cos θ), cf. [DLMF, §14.2(iii)]. As eq. (3.5) is unchanged when replacing θ
by π − θ, clearly P−µν (− cos θ) is also a solution, and obviously this is the principal
solution at θ = π.

The singular endpoints are LC for 0 ≤ µ < 1, and it shows that the left side of
eq. (3.46) vanishes for a = 0 and b = π, cf. tables 3.1 and 3.3a. Hence the third
condition is also met.
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The above consideration proof that the eigenvalues, and thus νi(νi + 1), are non-
negative in any case considered within this work. This implies νi ∈ (−∞,−1]∪ [0,∞),
and narrows the restriction of ν in eq. (3.8) to

ν ≥ 0, ν ∈ R. (3.60)

.
The associated eigenfunctions of the Legendre differential equation together with

the above described boundary conditions form a complete orthogonal basis on the
interval θ ∈ [θ1, θ2]. For the normalized eigenfunction Θµ

νi
(θ), the following relation

holds,
∫ θ2

θ1
Θµ
νi

(θ)Θµ
νi′

(θ) sin θdθ = δii′ . (3.61)

The general solution of the Legendre equation is given in eq. (3.16). For a shorter
notation we define

QPµν (cos θ) :=

Qµ
ν (cos θ) for µ 6= 1

2 ,
3
2 ,

5
2 , . . .

Pµν (cos θ) for µ = 1
2 ,

3
2 ,

5
2 , . . .

. (3.62)

Therewith eq. (3.16) is expressed by

Θµ
ν (θ) = C P−µν (cos θ) +DQPµν (cos θ). (3.63)

Separated boundary conditions in θ. Specifying Dirichlet or Neumann boundary
conditions at θ1 and θ2 geometrically corresponds to a sound-soft or sound-hard infinite
double-conical surface, as sketched in fig. 3.3.

Dirichlet boundary conditions. Applying Dirichlet boundary conditions,

Θµ
νi

(θ)
∣∣∣
θ=θ1,2

= 0, (3.64)

to the general solution eq. (3.63) yields
P−µνi (cos θ1) QPµνi(cos θ1)
P−µνi (cos θ2) QPµνi(cos θ2)

 Ci
Di

 = 0. (3.65)
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Equating the determinant of the above matrix to zero yields the following condition

P−µνi (cos θ1)QPµνi(cos θ2)− P−µνi (cos θ2)QPµνi(cos θ1) = 0. (3.66)

To determine the values νi, for which the above condition is met, corresponds to the
zeros of the term on the left side of the above equation with respect to ν. Within this
work, the zeros are determined numerically by a root-finding algorithm7.

Note that the zeros of the associate Legendre functions with respect to the order
were determined by similar numerical algorithms in [HC97; Bau86]. In [Van07] a
system of algebraic equations for the zeros of the associated Legendre functions is
presented, but the method requires the solution of a nonlinear system of coupled
differential equations.

As all eigenvalues are simple, the rank of the matrix in eq. (3.65) is always equal
to 1, and there exists only one arbitrary scaled vector,

[
Ci, Di

]T
= N

[
QPµνi(cos θ1),−P−µνi (cos θ1)

]T
, (3.67)

with N ∈ R, fulfilling eq. (3.65). Inserting these values for the weights C and D in
eq. (3.63), the eigenfunctions yield

Θµ
νi

(θ) = Nµ
νi

[
QPµνi(cos θ1) P−µνi (cos θ)− P−µνi (cos θ1)QPµνi(cos θ)

]
, (3.68)

whereby Nµ
νi

is chosen such that
θ2∫
θ1

(
Θµ
νi

(θ)
)2

sin θdθ = 1.

For the determination of the normalization constant Nµ
νi
, the definite integral

θ2∫
θ1

[
QPµνi(cos θ1) P−µνi (cos θ)− P−µνi (cos θ1)QPµνi(cos θ)

]2
sin θ dθ needs to be evaluated. This

may be done either numerically or, similar to [Smy50, p.156], a closed-form expression
can be derived. However, this closed-form expression involves parameter derivatives
of the associated Legendre functions with respect to ν.

Neumann boundary conditions. Applying Neumann boundary conditions,

dΘµ
νi

(θ)
dθ

∣∣∣∣∣
θ=θ1,2

= 0, (3.69)

7We used the MATLAB function fzero, which uses a combination of bisection, secant, and inverse
quadratic interpolation methods.
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to the general solution eq. (3.16) yields

dP−µνi (cos θ)

dθ

∣∣∣∣
θ=θ1

dQPµνi (cos θ)
dθ

∣∣∣∣
θ=θ1

dP−µνi (cos θ)
dθ

∣∣∣∣
θ=θ2

dQPµνi (cos θ)
dθ

∣∣∣∣
θ=θ2


Ci
Di

 = 0. (3.70)

Equating the determinant of the above matrix to zero yields

dP−µνi (cos θ)
dθ

∣∣∣∣
θ=θ1

· dQPµνi (cos θ)
dθ

∣∣∣∣
θ=θ2

− dP−µνi (cos θ)
dθ

∣∣∣∣
θ=θ2

· dQPµνi (cos θ)
dθ

∣∣∣∣
θ=θ1

= 0. (3.71)

The values of νi fulfilling the above conditions have to be determined. As discussed for
the Dirichlet boundary condition, this is done numerically by a root finding algorithm.
Obviously, the weights in eq. (3.70) result in Ci = QPµνi (cos θ)

dθ

∣∣∣∣
θ=θ1

, Di = − P−µνi (cos θ)
dθ

∣∣∣∣
θ=θ1

,
and inserting these values in eq. (3.63) yields the eigenfunctions

Θµ
νi

(θ) = Nµ
νi

[
dQPµνi (cos θ)

dθ

∣∣∣∣
θ=θ1

· P−µνi (cos θ)− dP−µνi (cos θ)
dθ

∣∣∣∣
θ=θ1

· QPµνi(cos θ)
]
, (3.72)

whereby the normalization constant Nµ
νi
is chosen such that

θ2∫
θ1

(
Θµ
νi

(θ)
)2

sin θdθ = 1.

Similar to the case of Dirichlet boundary conditions, the normalization constant is
computed either numerically or by a closed-form expression involving derivatives of
the associated Legendre functions with respect to ν.

Figure 3.4 shows exemplarily the first seven eigenfunctions Θµ
νi

(θ), for µ = 0 and
symmetric Dirichlet and Neumann boundary conditions at θ1 = 60◦ and θ1 = 120◦.
All functions, respectively their derivatives, are zero at the location of the boundary
conditions, which are indicated by the vertical black lines. At θ = 0◦, θ = 180◦, the
functions show a singular behavior.

Figure 3.5 shows the trajectories of the eigenvalue parameter νi for a symmetric
regular two point boundary condition, i.e. θ2 = 180− θ1, in dependence of θ1. The
solid lines correspond to a Neumann boundary condition, the dashed lines correspond
to a Dirichlet boundary condition, respectively. The different colors correspond to
the 1st (blue), 2nd (orange), 3rd (yellow), ect. eigenvalue. Subfigures (a) to (f) show
the results for m = 0, . . . , 5. For θ1 → 0◦, i.e. when the location of the symmetric
boundary condition approaches the singular points of the differential equation, the
eigenvalue parameters tend to integer values. The intersection of dashed vertical
line in fig. 3.5a with the trajectories corresponds to the eigenvalue parameters of the
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functions depicted in fig. 3.4.

Singular problems in θ. Choosing θ1 = 0 or θ2 = π, the respective endpoint is
singular. In the following we sub-divide these singular problems into two cases. The
first case covers boundary conditions with one endpoint singular and the other one
regular. Physically this corresponds to a semi-infinite cone with either a sound soft or
sound hard surface, depending on the boundary condition at the regular endpoint, see
fig. 3.3a. The second case covers boundary conditions with both endpoints singular.
Physically, this corresponds to a sound field with no specified local boundary condition
in θ.

Boundary conditions with one singular endpoint. Here we consider bound-
ary conditions with a singular endpoint θ1 = 0 and a regular endpoint 0 < θ2 < π.
Note that problems with a regular endpoint 0 < θ1 < π and a singular endpoint θ2 = π

are not considered separately. Such problems can be solved similarly by substitution.
Replacing θ by π − θ and θ2 by π − θ1, i.e. flipping the z-coordinate in Cartesian
coordinates, transforms a problem with a singular endpoint at π to a problem with a
singular endpoint at 0.

To determine the eigenfunctions we first consider the singular endpoint θ1 = 0,
which is either LC or LP depending on the value of µ, see table 3.2b. In the
LP case, i.e. µ ≥ 1, the boundary condition at the singular endpoint is vacuous.
However, the eigenfunctions are required to be square integrable on θ ∈ [0, θ2], i.e.
θ2∫
0
|Θµ

νi
(θ)|2 sin θdθ < +∞. Note that the sine function in the integral results from

the substitution x = cos θ to bring eq. (3.5) in Sturm-Liouville form, cf. table 3.1. It
shows that

θ2∫
0

|P−µν (cos θ)|2 sin θdθ < +∞ for µ > 0 and 0 < θ2 < π, (3.73)

and for µ ≥ 1, P−µν (cos θ) is the only linearly independent solution which is square
integrable on [0, θ2]. A proof is given in appendix E. In the LC case applies the
Friedrichs boundary condition, which is only fulfilled by the principal solution, cf.
section 3.2.3. The principal solution at the singulartiy θ = 0 is P−µν (cos θ) for µ ≥ 0,
cf. [DLMF, §14.2(iii)].

Hence in both cases, whether the singular endpoint is LC or LP, the eigenfunctions
are P−µνi (cos θ). The values of νi depend on the boundary condition at the regular
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Figure 3.4: Eigenfunctions Θµ
νi

(θ), with µ = 0, for (a) a symmetric Dirichlet and (b) a symmetric
Neumann boundary condition at θ1 = 60◦ and θ1 = 120◦. The location of the boundary conditions
are indicated by the vertical black lines.
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Figure 3.5: Parameter νi(θ1) for a symmetric regular two point boundary condition, i.e. θ2 = 180−θ1.
The solid lines correspond to a Neumann boundary condition, the dashed lines correspond to a
Dirichlet boundary condition, respectively. The different colors correspond to the 1st (blue), 2nd

(orange), 3rd (yellow), ect. eigenvalue. Subfigures (a) to (f) show the results for m = 0, . . . , 5.
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endpoint θ2. At this endpoint the eigenfunctions are required to fulfill either a Dirichlet
boundary condition

P−µνi (cos θ)
∣∣∣
θ=θ2

= 0, (3.74)

or a Neumann boundary condition

dP−µνi (cos θ)
dθ

∣∣∣∣∣
θ=θ2

= 0. (3.75)

As for regular boundary conditions, the zeros of these functions with respect to ν are
determined by a numerical root-finding algorithm. The normalized eigenfunctions
yield

Θµ
νi

(θ) = Nµ
νi

P−µνi (cos θ), (3.76)

whereby Nµ
νi

is chosen such that
θ2∫
0

(
Θµ
νi

(θ)
)2

sin θdθ = 1. Similar to separated regular
boundary conditions, the normalization constant is computed either numerically or by
a closed-form expression, involving derivatives of the associated Legendre functions
with respect to ν.

Figure 3.6 shows exemplarily the first seven eigenfunctions Θµ
νi

(θ), for µ = 0,
a singular boundary condition at θ1 = 0◦, and a Dirichlet respectively Neumann
boundary condition at θ2 = 120◦. All functions, respectively their derivatives, are
zero at the location of the regular boundary condition, indicated by the vertical black
line. At the singular endpoint θ = 180◦ the functions show a singular behavior.

Figure 3.7 shows the trajectories of the eigenvalue parameter νi for a singular
boundary condition at θ1 = 0◦ and a Dirichlet respectively Neumann boundary
condition at θ2, in dependence of θ2. The solid lines correspond to a Neumann
boundary condition, the dashed lines correspond to a Dirichlet boundary condition,
respectively. The different colors correspond to the 1st (blue), 2nd (orange), 3rd (yellow),
ect. eigenvalue. Subfigures (a) to (f) show the results for m = 0, . . . , 5. For θ2 → 180◦,
i.e. when the location of the regular boundary condition approaches the second singular
point of the differential equation, the eigenvalue parameters tend to integer values.
The intersection of dashed vertical line in fig. 3.7a with the trajectories corresponds
to the eigenvalue parameters of the functions depicted in fig. 3.6.
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Figure 3.6: Eigenfunctions Θµ
νi

(θ), with µ = 0, for a singular boundary condition at θ1 = 0◦ and (a)
a regular Dirichlet and (b) a regular Neumann boundary condition at θ1 = 120◦. The location of the
regular boundary condition is indicated by the vertical black line.
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Figure 3.7: Parameter νi(θ2) for a regular boundary condition at θ2 and a singular endpoint at
θ1 = 0◦. The solid lines correspond to a Neumann boundary condition, the dashed lines correspond
to a Dirichlet boundary condition, respectively. The different colors correspond to the 1st (blue), 2nd

(orange), 3rd (yellow), ect. eigenvalue. Subfigures (a) to (f) show the results for m = 0, . . . , 5.
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Boundary condition with both endpoints singular. In the following we
consider boundary conditions with both endpoint singular, i.e. θ1 = 0 and θ2 = π.
Both endpoints are either LC or LP depending on the value of µ, see table 3.2b.

If both endpoints are LP, i.e. µ ≥ 1, there is no boundary condition. In this
case every square integrable function on the interval [0, π] that fulfills eq. (3.5) is an
eigenfunction. Hence the eigenfunctions are required to fulfill

π∫
0
|Θµ

νi
(θ)|2 sin θdθ < +∞.

It shows that
π∫

0

|P−µµ+l(cos θ)|2 sin θdθ < +∞ for µ > 0 and l = 0, 1, 2, 3, . . . , (3.77)

and for µ ≥ 1, P−µµ+l(cos θ) is the only linearly independent solution which is square
integrable on [0, π]. A proof is given in appendix E. If both endpoints are LC, i.e.
0 ≤ µ < 1, Friedrichs boundary condition applies at each endpoint, which is only
fulfilled by the principal solution at the respective endpoint, cf. section 3.2.3. For
µ ≥ 0, the principal solutions at θ = 0 and θ = π are P−µν (cos θ) and P−µν (− cos θ),
respectively, cf. [DLMF, §14.2(iii)]. From the Wronskian of Pµν (x) and Pµν (−x), [DLMF,
§14.2(iv)], it shows that these solutions are linearly dependent if µ− ν = 0,−1,−2, . . .
Thus P−µµ+l(cos θ) with l = 0, 1, 2, 3, . . ., satisfies Friedrichs boundary condition at θ = 0
and θ = π, as it is the principal solution at both singular endpoints.

Hence in both cases, whether the singular endpoints are LC or LP, the eigenfunc-
tions are P−µµ+l(cos θ) and the normalized eigenfunctions yield

Θµ
µ+l(θ) = Nµ

µ+l P
−µ
µ+l(cos θ), (3.78)

whereby Nµ
µ+l is chosen such that

π∫
0

(
Θµ
νi

(θ)
)2

sin θdθ = 1. In this case there is a
closed-form expression for Nµ

µ+l. Following the approach in [LS75], one can find the
expression

π∫
0

(
P−µµ+l(cos θ)

)2
sin θdθ = 2l!

(2µ+ 2l + 1) Γ(2µ+ l + 1) , for l = 0, 1, 2, 3 . . . , (3.79)

from the recurrence relations of the associated Legendre functions, cf. [DLMF, §14.10]
and the definite integral

π∫
0

(
P−µµ (cos θ)

)2
sin θdθ = 2−2µ√π

Γ(1+µ)Γ( 2
3 +µ) . This definite integral

is achieved by integrating the expression P−µµ (x) = 2−ν (1−x2)
ν
2

Γ(1+ν) , given in [MOS66,
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Figure 3.8: Eigenfunctions Θµ
νi

(θ), with µ = 1.5, for a singular boundary condition at both endpoints.

p.172]. Therewith the normalization term yields

Nµ
µ+l =

√
(2µ+ 2l + 1) Γ(2µ+ l + 1)

2l! . (3.80)

Figure 3.6 shows exemplarily the first seven eigenfunctions Θµ
νi

(θ), for µ = 1.5 and a
singular boundary condition at both endpoints.
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Chapter 4

Solution of the Helmholtz equation
with rigid angular boundaries

Within this chapter we develop the solution of the Helmholtz equation in regions of
R3 bounded by coordinate surfaces in φ and θ. The applied homogeneous boundary
conditions could be either sound-soft (Dirichlet), sound-hard (Neumann) or any
combinations thereof. There are up to two boundary surfaces possible in both,
azimuth and zenith angle. Due to the variety of combinations, we considers here
sound-hard boundaries, only. Sound-soft boundaries are nearly not feasible to realize
in practice, and hence of minor relevance for microphone array applications.

4.1 Angular solutions

Combining the angular solutions of the Helmholtz equation fulfilling sound-hard
boundary conditions in azimuth and zenith angle, as described in the previous chapter,
yields orthonormal function sets on several partial spherical surfaces. Depending on
the boundary conditions, this allows for spherical zones, lunes or intersections of a
zone and a lune, cf. fig. 4.1. Within this work we use the term spherical quadrangle, as
there is no common name for the intersection of a spherical zone and lune, although
this is not a very accurate naming1.

In analogy to the terms spherical harmonics and spherical cap harmonics [Hai85],
the consistent naming for functions on a spherical zone would be spherical zone

1Occasionally, the term spherical quadrangle is used for a four sided spherical polygon, whereby
the term spherical quadrilateral is more common. However, a spherical polygon is defined as a surface
on the sphere formed by arcs of great circles; in contrast the intersection of a zone and a lune is
bounded by arcs of two great and two small circles.
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(a) spherical cap (b) spherical zone

(c) spherical lune (d) spherical quadrangle
(intersection of zone and lune)

Figure 4.1: Feasible partial spherical surfaces accomplished by angular boundary conditions.

harmonics. However, the term zonal spherical harmonics is frequently used in literature
for the subset of spherical harmonics, which do not depend on the zenith angle θ,
i.e. m = n. To avoid confusion, we use the term spherical segment harmonics for
orthogonal functions on a spherical zone. A spherical segment is the solid that remains
after cutting a sphere with two parallel planes, and the curved surface of a spherical
segment is a spherical zone.

4.1.1 Spherical cap harmonics.

These are the eigenfunctions of the Helmholtz equation fulfilling a 2π-periodic boundary
condition in the azimuth angle as well as a Neumann boundary condition at θ2, and
a singular boundary condition at the north pole, i.e. θ = 0. This set of boundary
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conditions corresponds to a semi-infinite rigid cone, cf. fig. 3.3a, and the partial surface
of the unit sphere enclosed by the boundary is a spherical cap, cf. fig. 4.1a.

Similar to the conventional spherical harmonics, the parameter µ of the azimuthal
eigenfunctions yields a non-negative integer due to the 2π-periodic boundary con-
dition, and every eigenvalue except µ2 = 0 is associated with two eigenfunctions,
cf. section 3.3.1. For notational convenience we define µ = m ∈ Z and the sign of
m is used to distinguish the two solutions, avoiding an additional index2. Thus the
normalized azimuthal eigenfunctions, cf. eq. (3.56), are denoted by

Φm(φ) =
√

2−δm
2π

sin (mφ) , for m < 0,

cos (mφ) , for m ≥ 0.
(4.1)

With the inherited parameter µ = m and for a singular boundary condition at θ = 0,
the normalized eigenfunctions in θ are denoted by, cf. eq. (3.76),

Θ|m|νl(|m|)(θ) =
√

1∫ θ2
0

∣∣∣P−|m|νl(|m|)
(cos θ)

∣∣∣2 sin θdθ
P−|m|νl(|m|)(cos θ), (4.2)

whereby for each m the infinite sequence
(
νl(|m|)

)
l∈N

, with νl(|m|) ≤ νl+1(|m|),
contains the values, for which the the Neumann boundary condition at θ = θ2 is

fulfilled, cf. section 3.3.2, i.e.
P−|m|
νl(|m|)

(cos θ2)
dθ

= 0, ∀l ∈ N.
Combining the normalized eigenfunctions in azimuth and zenith angle yields a

set of complete orthonormal functions on the spherical cap S2 ⊂ S2, with S2 :=
{θ : 0 ≤ θ ≤ θ2}. These functions are called spherical cap harmonics and are denoted
by

Y m
νl(|m|)(θ) = N

|m|
νl(|m|) P−|m|νl(|m|)(cos θ) ·

sin(mφ), for m < 0,

cos(mφ), for m ≥ 0,
(4.3)

whereby the normalization term is

N
|m|
νl(|m|) =

√√√√√ (2− δm)
2π
∫ θ2

0

∣∣∣P−|m|νl(|m|)(cos θ)
∣∣∣2 sin θdθ

. (4.4)

Orthogonality and completeness follows straight-forward from the Sturm-Liouville
theory, cf. section 3.2. Due to the proper normalization the following orthogonality

2This sign convention is similar to the usual notation of conventional spherical harmonics.
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Figure 4.2: Spherical cap harmonics for a conical sound-hard boundary condition at θ2 = 60◦; from
the infinite sequence, only functions with νl(|m|) ≤ 6 are shown.

relation holds, ∫
S2
Y m
νl(|m|)(θ)Y m′

ν′
l
(|m′|)(θ)dθ = δll′δmm′ (4.5)

and any square-integrable function on the spherical cap S2 can be expanded in a series
of spherical cap harmonics,

f(θ) =
∞∑

m=−∞

∞∑
l=1

flmY
m
νl(|m|)(θ), (4.6)

where flm =
∫
S2 f(θ)Y m

νl(|m|)(θ)dθ are the expansion coefficients.
Figure 4.2 shows exemplary the first few spherical cap harmonics with νl(|m|) ≤ 6

for a cap with a sound-hard boundary condition at θ2 = 60◦.

4.1.2 Spherical segment harmonics.

These are the angular solutions of the Helmholtz equation fulfilling a 2π-periodic
boundary condition in the azimuth and a two-point Neumann boundary condition in
the zenith angle at θ1, θ2. This set of boundary conditions corresponds to an infinite
rigid double-cone, cf. fig. 3.3b, and the partial surface of the unit sphere enclosed by
the boundaries is a spherical zone, cf. fig. 4.1b.

Due to the 2π-periodic boundary condition in φ the azimuthal eigenfunctions
are the same as for the spherical cap harmonics, cf. eq. (4.1). With the inherited
parameter µ = m from the azimuthal eigenfunctions and for the two-point Neumann
boundary condition at θ1,2, cf. eq. (3.72), the normalized eigenfunctions in θ yield

Θ|m|νl(|m|)(θ) =
√

1∫ θ2
θ1

∣∣∣P |m|νl(|m|)
(cos θ)

∣∣∣2 sin θdθ
P
|m|
νl(|m|)(cos θ), (4.7)

whereby for a compact notation we define

P µ
ν (cos θ) = dQPµν (cos θ)

dθ

∣∣∣
θ=θ1
· P−µν (cos θ)− dP−µν (cos θ)

dθ

∣∣∣∣
θ=θ1

QPµν (cos θ). (4.8)
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Figure 4.3: Spherical segment harmonics for a two conical sound-hard boundary conditions at
θ = 60◦ and θ = 120◦; from the infinite sequence, only functions with νl(|m|) ≤ 6 are shown.

The values of νl(|m|) are determined by the location of the Neumann boundary

conditions, cf. section 3.3.2, such that
dP
|m|
νl(|m|)

(cos θ)
dθ

∣∣∣∣∣
θ=θ1,2

= 0.

Combining the normalized eigenfunctions in azimuth and zenith angle yields a
set of complete orthonormal functions on the spherical zone S2 ⊂ S2, with S2 :=
{θ : θ1 ≤ θ ≤ θ2}. These functions are called spherical segment harmonics and are
denoted by

Y m
νl(|m|)(θ) = N

|m|
νl(|m|) P

|m|
νl(|m|)(cos θ) ·

sin(mφ), for m < 0,

cos(mφ), for m ≥ 0.
(4.9)

whereby the normalization term is

N
|m|
νl(m) =

√√√√√ (2− δm)
2π
∫ θ2
θ1

∣∣∣P |m|νl(m)(cos θ)
∣∣∣2 sin θdθ

. (4.10)

Like for the spherical cap harmonics, orthogonality and completeness follows
straight-forward from the Sturm-Liouville theory, cf. section 3.2. The orthogonality
relation and the series expansion on the spherical zone S2 are formally equal to
eqs. (4.5) and (4.6).

Figure 4.3 shows exemplary the first few spherical segment harmonics with νl(|m|) ≤
6 for a spherical zone bounded by a sound-hard symmetric double cone with θ1 = 60◦

θ2 = 120◦.

4.1.3 Spherical lune harmonics.

These are the angular solutions of the Helmholtz equation fulfilling a two-point
Neumann boundary condition in the azimuth angle at φ1, φ2, as well as singular
boundary conditions at the north and south pole. This set of boundary conditions
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corresponds to two semi-infinite rigid half-planes, cf. fig. 3.2, and the partial surface
of the unit sphere enclosed by the boundaries is a spherical lune, cf. fig. 4.1c.

For the two-point Neumann boundary condition in φ we assume for simplicity that
θ1 = 0. The normalized azimuthal eigenfunctions yield, cf. eq. (3.52),

Φµk(φ) =
√

2−δk
φ2

cos (µkφ) . (4.11)

where µk = πk
θ2
, with k = 0, 1, 2, . . . ,∞. With the inherited parameter µk from the

azimuthal eigenfunctions, the eigenfunctions in θ for the singular boundary conditions
yield, cf. eq. (3.78),

Θµk
µk+l(θ) =

√
(2µk+2l+1) Γ(2µk+l+1)

2l! P−µkµk+l(cos θ), (4.12)

Combining the normalized eigenfunctions in azimuth and zenith angle yield a
set of complete orthonormal functions on the spherical lune S2 ⊂ S2 with S2 :=
{θ : 0 ≤ φ ≤ φ2}. These functions are called spherical lune harmonics and are denoted
by

Y µk
µk+l(θ) = Nµk

µk+l cos(µkφ)P−µkµk+l(cos θ), (4.13)

whereby the normalization term is

Nµk
µk+l =

√
(2− δk)

φ2

(2µk + 2l + 1) Γ(2µk + l + 1)
2l! . (4.14)

With the orthogonality and completeness deduced from the Sturm-Liouville theory,
cf. section 3.2, the orthogonality relation and series expansion on the spherical lune
S2 are, ∫

S2
Y µk
µk+l(θ)Y µ′k

µ′
k
+l′(θ)dθ = δll′δkk′ , (4.15)

f(θ) =
∞∑
k=0

∞∑
l=1

flkY
µk
µk+l(θ), (4.16)

whereby flk =
∫
S2 f(θ)Y µk

µk+l(θ)dθ are the expansion coefficients.
Figure 4.4 shows exemplary the first few spherical lune harmonics with µk + l ≤ 6,

for a spherical lune bounded by sound-hard half-planes at φ1 = 0◦ φ2 = 120◦.

4.1.4 Spherical quadrangle harmonics.

These are the angular solutions of the Helmholtz equation fulfilling a two-point
Neumann boundary condition in both angular directions, at φ1, φ2 in the azimuth angle
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Figure 4.4: Spherical lune harmonics for two planar sound-hard boundary conditions at φ = 0◦ and
φ = 120◦; from the infinite sequence, only functions with µk + l ≤ 6 are shown.

and at θ1, θ2 in the zenith angle. The boundary conditions in the azimuth correspond
to two semi-infinite rigid half-planes, cf. fig. 3.2, and the boundary conditions in the
zenith angle correspond to an infinite rigid double-cone, cf. fig. 3.3b. The partial
surface of the unit sphere enclosed by these boundaries is the intersection of a spherical
zone and a spherical lune, cf. fig. 4.1d. For this partial spherical surface we use the
term spherical quadrangle.

As for the spherical lune harmonics, we assume for simplicity that θ1 = 0. As the
azimuthal eigenfunctions are independent of the boundary condition in the zenith
angle, they are identical to those for the spherical lune, cf. eq. (4.11). With the
inherited parameter µk from the azimuthal eigenfunctions, and for the two-point
Neumann boundary condition at θ1,2, cf. eq. (3.72), the normalized eigenfunctions in
θ yield

Θµk
νl(µk)(θ) =

√
1∫ θ2

θ1

∣∣∣Pµkνl(µk)(cos θ)
∣∣∣2 sin θdθ

P µk
νl(µk)(cos θ), (4.17)

where P µ
ν (cos θ) is defined in eq. (4.8). The values of νl(µk) are determined by the

Neumann boundary conditions, cf. section 3.3.2, such that
dP

µk
νl(µk)(cos θ)

dθ

∣∣∣∣∣
θ=θ1,2

= 0.

Combining the normalized eigenfunctions in azimuth and zenith angle yield a set
of complete orthonormal functions on the spherical quadrangle S2 ⊂ S2, with S2 :=
{θ : 0 ≤ φ ≤ φ2 and θ1 ≤ θ ≤ θ2}. These functions are called spherical quadrangle
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Figure 4.5: Spherical quadrangle harmonics for two planar sound-hard boundary condition at φ = 0◦,
φ = 120◦ and two conical sound-hard boundary conditions at θ = 60◦, θ = 120◦; from the infinite
sequence, only functions with νl(|m|) ≤ 6 are shown.

harmonics and are denoted by

Y µk
νl(µk)(θ) = Nµk

νl(µk) P
−µk
νl(µk)(cos θ) cos(µφ), (4.18)

whereby the normalization term is

Nµk
νl(µk) =

√√√√√ (2− δk)
φ2
∫ θ2
θ1

∣∣∣P µk
νl(µk)(cos θ)

∣∣∣2 sin θdθ
. (4.19)

The functions are orthonormal on the spherical quadrangle S2, i.e.
∫
S2
Y µk
νl(µk)(θ)Y µ′k

ν′
l
(µ′
k
)(θ)dθ = δll′δkk′ , (4.20)

and due to their completeness on S2 any square integrable function can be expanded
in the series

f(θ) =
∞∑
k=0

∞∑
l=1

flkY
µk
νl(µk)(θ), (4.21)

where flk =
∫
S2 f(θ)Y µk

νl(µk)(θ)dθ are the expansion coefficients.
Figure 4.5 shows exemplary the first few spherical quadrangle harmonics with

νl(µk) ≤ 6 for a spherical quadrangle bounded by sound-hard half-planes at φ1 = 0◦,
φ2 = 120◦, and a sound-hard symmetric double cone with θ1 = 60◦, θ2 = 120◦.

4.1.5 Uniform notation

To achieve a uniform notation of the series expansions in spherical cap, segment, lune,
and quadrangle harmonics, cf. eqs. (4.6), (4.16) and (4.21), we denote the respective
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combinations of order and degree as a set of ordered pairs N , where

N :=



{(νl(|m|),m) : l ∈ N,m ∈ Z} for Y m
νl(|m|)(θ) in eq. (4.3),

{(νl(|m|),m) : l ∈ N,m ∈ Z} for Y m
νl(|m|)(θ) in eq. (4.9),

{(µk+l, µk) : l ∈ N, k ∈ N0} for Y µk
µk+l(θ) in eq. (4.13),

{(νl(µk), µk) : l ∈ N, k ∈ N0} for Y µk
νl(µk)(θ) in eq. (4.18).

(4.22)

We use the linear index q ∈ N to index the parameter pairs (νq, µq) ∈ N in ascending
lexicographical order, i.e. νq < νq+1 or (νq = νq+1 and µq < µq+1). In doing so, allows
to express the series expansions on S2 ⊂ S2 in eqs. (4.6), (4.16) and (4.21) uniformly
by

f(θ) =
∞∑
q=1

fqY
µq
νq (θ), (4.23)

where Y µq
νq (θ) is either given by eq. (4.3), eq. (4.9), eq. (4.13), or eq. (4.18), respectively,

fq =
∫
S2 f(θ)Y µq

νq (θ)dθ are the corresponding expansion coefficients, and the partial
spherical surface is defined by

S2 :=



{θ : 0 ≤ θ ≤ θ2} for a spherical cap,

{θ : θ1 ≤ θ ≤ θ2} for a spherical zone,

{θ : 0 ≤ φ ≤ φ2} for a spherical lune,

{θ : 0 ≤ φ ≤ φ2 and θ1 ≤ θ ≤ θ2} for a spherical quadrangle.

(4.24)

We will refer to Y µq
νq (θ) as partial spherical harmonics whenever it is used generically

without specifying the particular case of boundaries. In this uniform notation, the
orthogonality relation on S2 writes as

∫
S2
Y µq
νq (θ)Y µ′q

ν′q
(θ)dθ = δqq′ . (4.25)

Equation (4.23) is equivalent to the completeness relation, cf. page 32,

∫
S2

f(θ)−
∞∑
q=1

fqY
µq
νq (θ)

2

dθ = 0, (4.26)

Parseval’s relation ∫
S2
|f(θ)|2dθ =

∞∑
q=1
|fq|2, (4.27)
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and the closure relation
∞∑
q=1

Y µq
νq (θ)Y µq

νq (θ′) = δ(θ − θ′), (4.28)

where δ(θ) = δ(cos θ − cos θ′) δ(φ− φ′) = 1
sin θδ(θ − θ

′) δ(φ− φ′).
Note that also the conventional spherical harmonics fit within this uniform notation,

which are in fact the angular solutions fulfilling a 2π periodic boundary condition in φ
as well as two-point singular boundary condition at θ1 = 0 and θ2 = π. Interchanging
the summation and substituting n = |m|+ l, the spherical harmonics expansion in
eq. (2.14) is equivalent to

f(θ) =
∞∑

m=−∞

∞∑
l=0

fnlY
m
|m|+l(θ), (4.29)

where fnl =
∫
S2 f(θ)Y m

|m|+l(θ)dθ.
Obviously from this unusual notation of the spherical harmonics expansion, the

set of ordered parameter-pairs yields N := {(|m|+ l,m) : l ∈ N0,m ∈ Z} and clearly
S2 := {θ} = S2. As above, by indexing the parameter-pairs in ascending lexicographi-
cal order, the spherical harmonics expansion is expressed by eq. (4.23), and eqs. (4.26)
to (4.28) hold. In contrast to the angular solutions on partial spherical surfaces, in
this case we can express the index q explicitly as a function of order and degree,
q = n2 + n+m+ 1, cf. [Zot09a, p. 67].

4.2 Homogeneous solution, interior and exterior
problem

This is the generalization of section 2.2.1. Having sound-hard boundaries at coordinate
surfaces in φ and/or θ, the homogeneous solution of the Helmholtz equation for
corresponding bounded region in R3 is of the general form

p(r) =
∞∑
q=1

(
bq jνq(kr) + cq h

(2)
νq (kr)

)
Y µq
νq (θ). (4.30)

This equation expresses any sound field in the source-free region Ω := {r ∈ R3 : re ≤
r ≤ ri, θ ∈ S2}, see fig. 4.6a, whereby the partial spherical surface S2 corresponds
to the angular boundary conditions, i.e. S2 can be either a spherical cap, zone, lune,
quadrangle, cf. eq. (4.24), or the unit-sphere S2.
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Interior problem. In case of re = 0, Ω includes the singular point of the spherical
Bessel differential equation at r = 0, see fig. 4.6b. Clearly, as for the integer order
functions, only the spherical Bessel functions fulfill the differential equation at r = 0
and hence eq. (4.30) reduces to

p(r) =
∞∑
q=1

bq jνq(kr)Y µq
νq (θ). (4.31)

Exterior problem. In case of ri =∞, see fig. 4.6c, the radial solutions are required
to fulfill the radiation condition, cf. eq. (2.19). Also in case of non-integer order, only,
the spherical Hankel functions of the second kind fulfill this requirement, and eq. (4.30)
reduces to

p(r) =
∞∑
q=1

cq h
(2)
νq (kr)Y µq

νq (θ). (4.32)

4.3 Green’s function and plane waves

Green’s function. Convolution with Green’s function is the inverse to the Helmholtz
operator, and hence the particular solution of the inhomogeneous Helmholtz equa-
tion, cf. eq. (2.21), fulfilling prescribed angular boundary conditions is determined by
convolving Green’s function for this problem with the excitation, see eq. (2.23). The
Green’s function fulfills the Helmholtz equation excited by a delta distribution, cf.
eq. (2.22), and the prescribed angular boundary conditions. The general construction
of Green’s function is shown in appendix A. Inserting eq. (A.24) in eq. (A.17) yields
Green’s function with no explicit boundary condition in r,

G(r, r0) = −ik
∞∑
q=1

Y µq
νq (θ)Y µq

νq (θ0)

jνq(kr)h
(2)
νq (kr0) for r ≤ r0,

jνq(kr0)h(2)
νq (kr) for r ≥ r0,

(4.33)

whereby Y µq
νq (θ) are the angular solutions according to the prescribed boundary

conditions in uniform notation, as established in section 4.1.5. This ensures that the
prescribed boundary conditions hold also for G(r, r0).

Scattered plane wave. Obviously, a ”pure“ plane wave can not expressed by the
series expansion eq. (4.31), as the solutions are fulfilling the prescribed boundary
conditions. However, the sound pressure due to a plane wave scattered by the
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(a) general problem

(b) interior problem (c) exteroir problem

Figure 4.6: Source-free region Ω (blue) for a double-conical boundary condition in θ for a (a) the
general problem, (b) interior problem and (c) exterior problem. The graphics show a cross section
in φ through the origin, whereby the bold arrows are the intersection lines with the rigid infinite
conical boundaries.

Figure 4.7: Sound pressure of plane wave scattered by a rigid infinite cone on a cross section in φ
through the origin. The gray surface indicates the cone; the arrows indicate the incident direction.
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angular boundary surfaces is derived in the same way as a plane wave in free field, cf.
section 2.2.2. Considering the asymptotic equivalent of the spherical Hankel function3,
h(2)
ν (x) ∼ iν+1x−1e−ix for x → ∞ [DLMF, §10.52(ii)], the asymptotic equivalent of

Green’s function follows from eq. (4.33),

G(r, r0) ∼ e−ikr0

r0

∞∑
q=1

iνqjνq(kr)Y νq
νq (θ)Y νq

νq (θ0), r0 →∞. (4.34)

Multiplying the right side of the above equation by Ar0e
ikr0 yields the sound pressure

of a scattered plane wave,

p(r) = A
∞∑
q=1

iνqjνq(kr)Y µq
νq (θ)Y µq

νq (θ0), (4.35)

where A =
∫
S2 dθ is the area of the fraction of the unit sphere enclosed by the

boundaries. For illustration, fig. 4.7 shows the sound pressure for a conical boundary
condition, on a cross section in φ through the origin .

3The properties and relations for the spherical Bessel and Hankel functions are frequently stated
only for ν = n, where n is an integer. However most of these relations hold for also for non-integer
parameters and can be derived from the corresponding relations for Jν(x) and Hν(x), which are
usually given without a restriction to integer parameters.
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Chapter 5

Partial spherical microphone arrays
with rigid angular boundaries

As shown in the previous chapter, the solutions of the Helmholtz equation in the
presence of rigid angular boundaries are structural similar to those of a free field. In
this chapter we will discuss the application of these theoretical results for modal sound
field decomposition with partial spherical arrays, i.e. a set of microphones suitably
distributed on a partial spherical surface S2 ⊂ S2 enclosed by the according rigid
coordinate surfaces. Within this work, we only consider partial spherical arrays on
a rigid partial spherical surface. Similarly as for spherical microphone arrays, open
partial spherical arrays using cardioid microphones or concentric dual partial spherical
arrays are also an option, but are not within the focus of this work.

5.1 Modal sound field decomposition

The sound pressure of an incident field, bounded by rigid angular boundary conditions
and a rigid partial spherical surface at r = rm, is derived from eqs. (4.31) and (4.32).
The radial boundary condition ∂p(r)

∂r

∣∣∣
r=rm

= 0 is fulfilled by setting

cq = −bq
j′νq(krm)
h′(2)
νq (krm)

. (5.1)

This yields

p(r) =
∞∑
q=1

bq

jνq(kr)− j′νq(krm)
h′(2)
νq (krm)

h(2)
νq (kr)

 Y µq
νq (θ). (5.2)
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Setting r = rm in the above equation yields the pressure distribution on the rigid
partial spherical surface and using the Wronskian relation W

{
jν(kr), h(2)

ν (kr)
}

=
jν(kr)h′(2)

ν (kr)− h(2)
ν (kr)j′ν(kr) = −i(kr)−2 we get

p(rmθ) = −i(krm)−2
∞∑
q=1

bq

h′(2)
νq (krm)

Y µq
νq (θ). (5.3)

For notational convenience, we express the infinite sum by an infinite matrix product

p(rmθ) = −i(krm)−2 yT(θ) diag{h′(krm)}−1b, (5.4)

whereby

y(θ) := [Y µ1
ν1 (θ), Y µ2

ν2 (θ), Y µ3
ν3 (θ), . . .]T,

h′(krm) := [h′(2)
ν1 (krm), h′(2)

ν2 (krm), h′(2)
ν3 (krm), . . .]T,

b := [b1, b2, b3, . . .]T.

(5.5)

The array microphones sample the pressure pattern p(rmθ) on the partial spherical
surface at M discrete positions θi, i = 1, 2, . . . ,M. The discretized pressure pattern
p := [p(rmθ1), . . . , p(rmθM)]T yields

p = −i(krm)−2 Y diag{h′(krm)}−1b, (5.6)

whereby
Y := [y(θ1), . . . ,y(θi), . . . ,y(θM)]T . (5.7)

Similar as for conventional spherical microphone arrays, it is convenient to charac-
terize the incident sound field by a continuous partial spherical source distribution
f(θ), θ ∈ S2, at some radius rs > rm. Typically, one chooses rs →∞ for characteriz-
ing the far-field directivity pattern of a beamformer, whereas rs is set to the radius of
a surrounding spherical loudspeaker array for reproducing the sound field. Expanding
the source distribution in partial spherical harmonics yields

f(θ) =
∞∑
q=1

φq Y
µq
νq (θ). (5.8)

Green’s function, G(r, r0), for the domain Ω, bounded by the rigid angular bound-
aries and the rigid partial spherical surface, is achieved by inserting eq. (A.23)
in eq. (A.17) and Ω := {r ∈ R3 : rs ≤ r ≤ rm, θ ∈ S2}. Evaluating the

72



sound pressure by convolving the source distribution with Green’s function, p(r) =∫
ΩG(r, r0)f(θ0)δ(r0 − rs) r−2 dr0, and comparing the result for r < rs to eq. (5.2),
reveals the connection between the coefficients of the incident field and the partial
spherical source distribution

bq = −ikh(2)
νq (krs)φq. (5.9)

Hence, eq. (5.6) is equivalently expressed in terms of a partial spherical source
distribution by

p = Y diag{w(k, rm, rs)}φ, (5.10)

whereby

w(k, rm, rs) := [wν1(k, rm, rs), wν2(k, rm, rs), wν3(k, rm, rs), . . .]T,

wνq(k, rm, rs) := −
h(2)
νq (krs)

kr2
mh
′(2)
νq (krm)

. (5.11)

In general, eq. (5.10) is formally highly undetermined and has an infinitude of solutions.
Hence a direct inversion of eq. (5.6) is not feasible without any further assumptions.

The objective of modal sound field decomposition is to determine an optimal
estimate φ̂N := [φ̂1, . . . , φ̂q, . . . , φ̂Q]T, νq ≤ N, of the first Q elements of φ from
the angularly sampled sound pressure distribution p. We assume that the pressure
distribution sampled by the array is spatially band-limited, i.e. modal components of
the source distribution with q > N do not contribute to the pressure distribution at
the array surface. Choosing M = Q, φN is related to p by a square matrix. In this
case the problem yields a unique solution, which is determined by matrix inversion,

φN = diag{wN(k, rm, rs)}−1 Y −1
N p, (5.12)

whereby YN := [yN(θ1), . . . ,y(θM)]T, with yN(θ) := [Y µ1
ν1 (θ), . . . , Y µQ

νQ (θ)]T, and
wN(k, rm, rs) := [wν1(k, rm, rs), . . . , wνQ(k, rm, rs)]T. Clearly, YN and diag{wN(k, rm, rs)}
are both required to be well-conditioned to achieve useful results under real-world
conditions, like e.g. additive noise.

The condition number of YN depends on the distribution of the sampling points over
the partial spherical surface. In contrast to sampling a spherical surface, where various
samplings strategies are available, see e.g. [Zot09b], there are rarely publications
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on sampling strategies for partial spherical surfaces. Sampling strategies for partial
spherical surfaces are discussed in more detail in section 5.2.

Frequency limits. A lower and an upper frequency limit can be defined for modal
sound field decomposition, which both are derived from wN(k, rm, rs). In the following
we assume that source distribution f(θ) is in the far field, i.e. rs → ∞. Using the
asymptotic equivalent of the spherical Hankel function, h(2)

ν (x) ∼ iν+1x−1e−ix for
x→∞ [DLMF, §10.52(ii)], we have

wνq(k, rm, rs) ∼
e−ikrs

rs
· iνq−1

(krm)2h′(2)
νq (krm)

. (5.13)

The first fraction on the right side in the above equation represents the common
attenuation and delay of all components. Therefore, we discard the first fraction,
define

wνq(krm) := iνq−1

(krm)2h′(2)
νq (krm)

, (5.14)

and replace wN(k, rm, rs) in eq. (5.12) by

wN(krm) := [wν1(krm), . . . , wνQ(krm)]T. (5.15)

In almost all cases this assumption holds also for sound field reproduction applications
as typically rs � rm.

Lower frequency limit. For a fixed array radius, wN(krm) depends on k, only,
i.e. it is frequency dependent, and its elements are a set of frequency responses.
The inverse of these frequency responses define the diagonal matrix in eq. (5.12),
as diag{wN(krm, )}−1 = diag{w−1

ν1 (krm), . . . , w−1
νQ

(krm)}, and w−1
νq (krm) is referred to

as radial filter. The rigid array surface ensures that wνq(krm) is invertible, as in
this case |wνq(krm)| > 0. In contrast, it shows that for an open array wνq(krm) has
isolated zeros in krm, as it involves the spherical Bessel function. From the asymptotic
equivalent of the spherical Hankel function, h(2)

ν (x) ∼ i 1√
π
2νΓ

(
ν + 1

2

)
x−ν−1 for x→ 0

[DLMF, §10.52(i)], it shows that

w−1
νq (krm) ∼ −i 1√

π
2νqΓ

(
νq + 1

2

)
(νq + 1) (krm)−νq for krm → 0. (5.16)

This reveals that the magnitude of w−1
νq (krm) grows towards low frequencies up to ∞,

except for νq = 0, and the growth rate is determined by νq. For a practical application
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|w−1
νq (krm)| has to be limited to a maximally acceptable filter gain. This determines the

lower frequency limit, down to which modal sound field decomposition is permissible
for a given maximum order νQ. Figure 5.1 depicts |w−1

ν (krm)| in dependence of krm
and νq. The black dashed contour lines server as examples for a maximal acceptable
filter gain. The gray dotted lines represent the estimated contour lines, determined
from low frequency approximation according to eq. (5.16). Obviously, the estimated
values deviate from the true contours for large values krm, as the approximation is
not valid for large arguments.

As it is common practice with spherical microphone arrays, the lower frequency
limit is shifted down by reducing the spatial resolution. This is achieved by step-wise
lowering the maximal decomposition order to νQ′ ≤ N′ < νQ, such that |wνQ′ (krm)−1|
does not to exceed the specified maximum gain down to a lower value of kr. The stable
implementation of wνq(krm)−1 as a discrete-time filter will be discussed in section 5.3.

Upper frequency limit. Conversely, there is an upper frequency limit above
which the wave spectrum of an incident field is not ensured to be spatially band-
limited, i.e. above this frequency limit there is a significant contribution of higher
order components. For spherical microphone arrays, krm ≤ N is usually used as a
rule of thumb to estimate the upper frequency limit. The motivation therefore is the
fact that |wn(kr)| decreases in n for a n > kr. Hence, the contribution of order larger
than N to the sound pressure on the array surface is expected to die down, and the
assumption of a spatially band-limited pressure distribution will be approximately
valid, cf. [Raf04].

As |wν(kr)| is a monotonically decreasing function in ν for about ν > kr, see fig. 5.2,
also the sequence (|wν1(kr)|, |wν2(kr)|, . . . , |wνq(kr)|, . . .) decreases for a particular
angular boundary condition, as we defined q such that νq ≤ νq+1. Hence, with the
same argumentation as for spherical arrays, the upper frequency limit for a partial
spherical microphone array is roughly estimated by the rule of thumb

krm ≤ νQ ≤ N. (5.17)

Note that for a detailed analysis of spatial aliasing the particular incident sound field
as well as the distribution of the sampling points have to be considered.
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Figure 5.1: Gain of the radial filter |w−1
ν (krm)| in dependence of ν and krm. The black dashed

contour lines server as examples for a maximal acceptable gain value. The gray dotted lines represent
the estimated contour lines determined from the low frequency approximation according to eq. (5.16).

Figure 5.2: |wν(krm)| normalized to |w0(krm)| as a function of ν and krm. The white dotted line
indicates ν = kr.
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5.2 Sampling partial spherical surfaces

A sampling strategy shall provide a set of discrete points on a partial spherical surface,
which allows for a discrete partial spherical harmonics transform of spatially band-
limited functions. Thereby the sampling is required to be efficient in terms of the
number of sampling points, and robust to additive errors arising from measuring the
sampled quantity, e.g. additive noise, positioning errors.

To analyze sampling efficiency and error sensitivity, we assume a spatially band-
limited function g(θ) on S2, i.e.

∫
S2 g(θ)Y µq

νq (θ)dθ = 0 for q > Q, where νQ ≤ N. The
discrete partial spherical harmonics series of g(θ), sampled angularly at {θi}i=1,...,M,
can be expressed by the matrix equation

g = YNγN, (5.18)

where g := [g(θ1), . . . , g(θM)]T is a vector containing the set of discrete angular
samples, γN := [γ1, . . . , γQ]T is a vector containing the expansion coefficients, and
YN is a M × Q matrix as defined for eq. (5.12). Equation (5.18) is overdetermined
for M > Q and underdetermined for M < Q. Hence M ≥ Q is required for a unique
solution. As we desire a most efficient sampling scheme, i.e. M = Q, we focus the
discussion on this case. The solution to eq. (5.18) is the discrete partial spherical
harmonics transform,

γN = Y −1
N g. (5.19)

The data in g is to some extend corrupted by measurement errors, and thus YN is
required to be well-conditioned. The problem is said to be well conditioned if the
ratio of the relative error in γN to the relative error in g is sufficiently small. If we
use the 2-norm as an error measure, the upper bound of this ratio is equivalent to the
ratio of the largest to the smallest singular value of YN, see [GV96, §2.7.2]. This value
is referred to as the condition number number,

κ (YN) = σmax(YN)
σmin(YN) ≥ 1, (5.20)

where {σi(YN)} is the set of singular values of YN. Hence an optimal sampling strategy
finds a set of sampling points {θi}i=1,...,M with M = Q, for which κ(YN) is minimal.

Minimizing the condition number. Minimizing the condition number of a Gram
matrix, defined by a polynomial basis and a set of points, is neither a convex nor a
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smooth problem. This is shown in [CWY11], and there is an example given, where
the condition number of the Gram matrix arising from sampled spherical harmonics
is minimized. Minimization the condition number for partial spherical harmonics is a
similar problem, and thus the properties of the cost function are the same. Interestingly,
the non-smoothness of the condition number is related to the singular values. The
condition number may be non-smooth if either the largest or the smallest singular
value is not simple, cf.[YZ13]. Due to the non-convexity of the problem, it is not
guaranteed that an optimization reaches the global minimum. The non-smoothness of
the problem implies that efficient gradient methods can not be applied, since the cost
function is not differentiable everywhere.

One strategy to avoid these problems is to minimize the condition not directly.
Instead, the sampling points are optimized due to other criteria, which are expected to
be related to a low condition number. In [Köß11], different approaches to optimize a
microphone distribution on a spherical cap have been compared to a direct minimization
of the condition number. The indirect optimization methods relied either on a minimum
energy approach, in terms of repellent charges, or on geometrical regularity, in terms
of Voronoi cells, whereby the minimum energy approach yielded insufficient results1.
Starting from the same initial point distribution, it showed that the geometrical
optimization achieved better results than the direct minimization. Obviously, the
direct minimization converges to some local minimum of condition number, depending
on the initial distribution. This illustrates the nonconvex nature of the problem.

Furthermore, an optimization approach using a fixed grid on spherical cap was
presented in [Köß11]. This approach was developed further in [Pau13], where it
was applied to find sampling points for spherical segment harmonics. In [Pau13] a
prototype of a microphone array on a rigid spherical zone bounded by a rigid double
cone was developed. Further details on this prototype are given in section 5.6. The
proposed optimization aims at more robustness against local minima and is based
on a fine discrete grid of points on the partial spherical surface. The initial point
set is distributed randomly on the grid. In the optimization, the condition number
tested for moving single points sequentially to all vacant grid positions, and then the
point is placed on the position with the lowest condition number. This operation is
repeated for all remaining sampling points in random order. If the condition number
of the point distribution after one such run, i.e. moving all points once, is lower than

1The author in [Köß11] suspected that better results can be achieved with a more suitable charge
distribution representing the angular boundary. However, the last example in [CWY11] reveals that
even for a full spherical surface the minimum energy points can have very large condition numbers.
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Figure 5.3: Intermediated results of the optimization algorithm proposed in [Pau13]. The right
column shows the perspective view on the spherical zone bounded by a double cone, and the left
column provides the unrolled surface of the zone. The rows represent different grid refinements,
whereby from top to bottom the number of grid points is 320, 1240 and 4796. The location of the
grid points is indicated by the intersection of the thin black lines in the perspective view. The red
circles, filled with blue, indicate the current sampling position. The black areas represent regions
where no sampling points are allowed due to constructive joints. The bottom row corresponds to the
final sampling positions, which achieve a condition number κ(YN) ≈ 2.3, [Pau13].

before, it is used as initial condition for the next run. If there is no improvement
between consecutive runs, the grid resolution is increased for the next run. If there
is no improvement with the denser grid, the optimization is aborted. Figure 5.3
illustrates the progress of the optimization. Regions on the partial spherical surface,
which are not feasible, e.g. due to constructional issues as in the vicinity of the angular
boundaries or joints of the rigid elements, are easily excluded from the discrete grid.
Clearly, this optimization is a kind of Greedy algorithm and it is not guaranteed
that it achieves the overall global minimum. This is the price payed for the reduced
complexity, but, as the results in [Pau13] suggest, the algorithm delivers a good local
minimum. However, to achieve the final result, the optimization algorithm was fed
with several random initial point sets, and the best result therefrom was used.
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Figure 5.4: Optimized sampling points on a spherical quadrangle. The blue circles, filled with red,
indicate the initial sampling points determined by Greedy selection, achieving κ(YN) ≈ 4, and the
green circles, filled with red, indicate the final sampling points achieved by direct minimization of
the condition number, achieving κ(YN) ≈ 1.45.

In [Kel15; KZ15], a direct minimization approach was applied to determine sampling
points on a spherical quadrangle. Although the target application is here the synthesis
of highly directive radiation patterns, the sampling problem is similar to a partial
spherical microphone array. The minimization of the condition number was conducted
by MATLAB’s unconstrained nonlinear least-squares algorithm, whereby the initial
distribution of sampling points was determined by a Greedy selection algorithm. For
the Greedy selection a fine grid of discrete points on the spherical quadrangle is used,
and one initial point is chosen. The next point is chosen such that the condition
number of the matrix of spherical quadrangle harmonics sampled at the chosen points
is minimal. In this way sampling points are added until the matrix is square. The
initial set of sampling points for a spherical quadrangle determined by Greedy selection,
and the final set achieved from direct minimization of the condition number are shown
in fig. 5.4. Constructional constraints as a minimum distance between the sampling
points and to the angular boundary were ensured in the direct minimization by adding
a strong penalty to the condition number.

As stated in [CWY11] and illustrated by the above examples, the nonconvex
problem of minimizing the condition number of a matrix, defined by a set of sampling
points and a set of orthogonal basis functions, typically has many local minima and
one has to settle for a good local minimum, which might not be the global one.
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5.3 Implementation of radial filters

Whereas the angular decomposition in eq. (5.12) is a frequency independent matrix
multiplication, the radial part is frequency dependent and for a practical application
requires a suitable implementation in terms of discrete time filter operations. These
radial filter shall approximate either w−1

νq (k, rm, rs), cf. eq. (5.11), or w−1
νq (krm), cf.

eq. (5.14), in case of assuming the source distribution to be in the far-field.
If ν = n ∈ N, as for a spherical microphone arrays, the explicit formula for spherical

Hankel function of the second kind is, cf. [DLMF, eq. 10.49.7],

h(2)
n (z) = −in e−iz

(iz)n+1

n∑
l=0

(n+ l)!
l!(n− l)!2l (iz)n−l (5.21)

The sum in the above equation represents a finite order polynomial, and this allows
for a very elegant infinite impulse response (IIR) filter implementation for spherical
arrays, see [Pom08; Lös14; BPF11].

The generalization of eq. (5.21) to non-integer values of ν is the relation

h(2)
ν (z) = e−iz ei(ν+1)π 2ν+1 zν U(ν + 1, 2ν + 2, 2iz), (5.22)

whereby U(a, b, z) is the confluent hypergeometric function of the second kind, cf.
[DLMF, §13]. The above relation is achieved by combining [DLMF, eq. 10.16.6] with
eq. (C.12). In general, U(ν + 1, 2ν + 2, 2iz) is an infinite series for ν 6= n. Hence, for
partial spherical arrays the radial filters can not be implemented in the same way as
for a spherical arrays.

Causality. Equation (5.22) reveals that the spherical Hankel function in general
contains the term e−iz, which represents a delay in the time domain, for z = kr.
To avoid acausal radial filters, we discard this delay and replace the radial term in
eq. (5.12) by either

wνq(krm) := iνq

k2h′(2)
νq (krm)

eikrm , or (5.23)

wνq(k, rm, rs) :=
h(2)
νq (krs)

kh′(2)
νq (krm)

eik(rm−rs), (5.24)

where in the latter definition we also dropped the constant factor −r−2
m .
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Regularization. Using the causal radial filters directly, i.e. wνq(krm)−1 or wνq(k, rm, rs)−1,
would lead to strong errors due to their huge magnitude at low frequencies, cf. the
discussion in section 5.1 on the condition number of diag{wN(krm)}. Therefore a
suitable gain limitation for the radial filters is required. This can be achieved, as for
conventional spherical microphone arrays, either by modifying the frequency domain
expressions adequately, see e.g. [BPSW11], before the discrete-time implementation,
or by using a suitable filter bank prior to the radial filters in the signal processing
chain, see e.g. [Lös14; BPF11].

Discrete-time filter implementation. The discrete-time implementation of the
radial filters is confined to simple approaches here, as this topic is not in the main focus
of this thesis. the frequency sampling method, cf.[PB87; Pau13], is the simplest and
most direct technique to implement the radial filters as finite impulse response filters
(FIR). Thereby the frequency response of the (regularized) radial filter is uniformly
sampled in the frequency domain and performing the inverse discrete Fourier transform
thereof yields the corresponding impulse response. The results are not optimal as the
response may deviate from what is desired between the samples and the FIR filter
length has to be chosen sufficiently long to avoid time-domain aliasing. An infinite
impulse response filter approximation can be achieved using a complex-curve fitting
algorithm as shown in [Köß11]. This algorithm is also based on sampling points in
the frequency domain. The quality of the result depends here on the location of the
sampling points and the maximal allowed filter order. However, for larger values of ν
satisfying results by a reasonable low filter order need a more elaborated distribution
of the sampling points over the frequency.

Example. Exemplarily, we show here radial filters for a microphone array on a
rigid spherical zone bounded by rigid double-cone. The array geometry is as for the
prototype presented in section 5.6. The simple FIR filter approximation of radial filters
for νq < 6 is shown in fig. 5.5. The implementation uses the regularization proposed
in [BPSW11], limiting the maximum gain to 30dB, and the FIR filter length is 4096
tabs. The dotted light-gray lines indicate magnitude and phase of the non-regularized
continuous-time radial filters w−1

νq (krm). The deviation between the frequency-domain
sampling points is in this case relatively low, but clearly visible especially for the
radial filter with ν = 0.661.
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Figure 5.5: Frequency responses of the regularized radial filters for a microphone array on a spherical
zone, realized as FIR filters with 4096 tab and a maximum gain of 30 dB. The dotted light-gay lines
indicate the frequency responses of the non-regularized continuous-time radial filters w−1

νq
(krm).
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5.4 Modal beamformer

We will use the term modal beamformer, similar as in [ME02], for the weighted sum
of the signal vector φN(t), containing the output signals of the modal sound field
decomposition, cf. eq. (5.12), and assuming a far-field source distribution. The output
signal of the modal beamformer is expressed by

s(t) = γT(θb) φN(t), (5.25)

where γ(θb)is the steering vector containing the beamformer weights for a desired
look-direction θb. The partial spherical harmonics of limited order are non-isotropic.
Therefore it is not feasible to calculate the beamformer weights for a single direction
and then steer the beam to any desired look-direction by a rotation, as shown for
spherical arrays in [ME02].

For the basic maximum directivity beamformer the calculation of the steering vector
is as simple as for a spherical array, cf. [SYS+10]. However, design methods of more
advanced beampatterns for spherical microphone arrays, like e.g. Dolph–Chebyshev
designs [KR09], are not directly applicable in the same way for partial spherical arrays.

Maximum-directivity. Assuming an ideal modal sound field decomposition, the
directivity pattern g(θ) for an arbitrary steering vector γT(θb) yields

d(θ) = γT(θb) yN(θ). (5.26)

The directivity factor D is the ratio of the sensitivity in look-direction to the sensitivity
to a random sound field with unit power, i.e. random plane waves from all directions
θ ∈ S2,

D = A|d(θb)|2∫
S2 |d(θ)|2dθ , (5.27)

where A =
∫
S2 dθ is the surface area of the unit partial spherical surface. Obviously,

the directivity factor is maximized by minimizing the denominator in eq. (5.27) while
holding the numerator constant. Inserting eq. (5.26) in the above equation yields the
following optimization problem, which is equivalent to maximizing the directivity:

min ‖γ‖2
2 , s.t. γTyN(θb) = 1. (5.28)
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This constrained minimization problem is solved straightforwardly by the method of
Lagrange multipliers, and its solution is

γ(θb) = yN(θb)
‖yN(θb)‖2

2
. (5.29)

5.5 Converting partial-sphere array recordings

Spherical arrays with rigid angular boundaries allow for a representation of the sound
field in terms of basis functions which are orthogonal on the corresponding partial
spherical surface. However, the spatially band-limited set of orthogonal functions
is non-isotropic due to rigid boundaries. Hence, direct rendering on a surrounding
loudspeaker setup might exhibit direction-dependent panning artifacts which might
disturb the perceived spatial image. This is in contrast to conventional Ambisonics
employing spherical harmonics, as the spatially band-limited set of spherical harmonics
yields an isotropic orthogonal basis on the sphere.

What is more, in conventional Ambisonics the recording setup is formally indepen-
dent of the playback setup. This independence is based on the assumption that within
both steps, recording and playback, the full angular range is considered. However,
a fully spherical loudspeaker setups requires an acoustically transparent floor in a
practical application for a large audience. Usually this is not feasible in existing rooms
and thus hemispherical setups are used. Therefore, there exist playback strategies
for partial spherical loudspeaker setups based on spherical harmonics, see e.g. [ZF12;
ZPN12]. To make use of these existing playback strategies and to maintain the
independence of recording and playback, a suitable conversion of the partial spherical
harmonics to conventional spherical harmonics is required.

Due to the angular boundary conditions, the source distribution captured by a
partial spherical array is space-limited, i.e.

f(θ) =

f̃(θ) for θ ∈ S2,

0 for θ /∈ S2.
(5.30)

Both the spherical harmonics as well as the set of partial spherical harmonics form a
complete set of orthogonal functions. Hence, any square integrable function on S2
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can be expressed by either set of basis functions,

f(θ) = yT(θ)φ =

y̆
T(θ)φ̆ for θ ∈ S2,

0 for θ /∈ S2,
(5.31)

where y(θ), y̆(θ) are infinite-dimensional vector functions containing the spherical
harmonics or the particular partial spherical harmonics, respectively, cf. eqs. (2.31)
and (5.5). Note that the symbol ˘ on top is used here to distinguish the partial
spherical harmonics. The corresponding coefficient vectors of infinite length are
φ =

∫
S2 y(θ)f(θ)dθ and φ̆ =

∫
S2 y̆(θ)f(θ)dθ.

Although both infinite series expansions are equivalent in L2, the equivalence does
not hold for the truncated series expansions, which express the respective spatially
band-limited source distribution, i.e.

fN(θ) = yT
N(θ)φN, (5.32)

and

f̆N̆(θ) =

y̆
T
N̆(θ)φ̆N̆ for θ ∈ S2,

0 for θ /∈ S2.
(5.33)

Modal sound field decomposition using a partial spherical microphone array pro-
vides the partial spherical harmonics coefficient vector φ̆N̆. We denote the conversion
to spherical harmonics generically by

φ̂N = C(φ̆N̆), (5.34)

where C is the conversion operator and φ̂N is the achieved estimator for the spherical
harmonics coefficient vector φN.

5.5.1 Performance measures

As an error-free conversion is not feasible, suitable error measures are required to
quantify the conversion performance. For a pragmatic use Ambisonics, is considered
as an amplitude panning approach rather than a highly accurate sound-field synthesis,
cf. [ZPN12; ZF12]. Therefore it is reasonable to investigate the conversion error in
terms of perceivable features.

In the following we will discuss perceptually motivated performance measures
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that correspond to mislocalization and direction-dependent loudness as well as source
width variations. The spatially discrete equivalents of these measures have proven to
be psychoacoustically relevant estimates for the performance of discrete amplitude
panning functions, cf. [Fra14].

The energy measure,
E =

∫
S2
|f(θ)|2dθ, (5.35)

is proportional to the perceived loudness of the surrounding source distribution,
cf. [Ger92]. The rE measure,

rE =
∫
S2 θ|f(θ)|2dθ

E
, (5.36)

is a vector pointing in the perceived direction of the surrounding source distribution,
cf. [Ger92], and its length is proportional to the angular spread which, corresponds to
the perceived source width, cf. [ZPN12]. Similarly as in [ZPN12], we define the angular
mapping error as the directional deviation of rE from the actual source direction θs,

εE = arccos θ
T
s rE

‖rE‖
, (5.37)

and the length ‖rE‖ is mapped to an angular spread by

σE = 2 arccos(‖rE‖). (5.38)

The source distribution for single plane wave impinging from direction θs cor-
responds to a Dirac delta distribution, f(θ)N = δ(1 − θTθs), and coefficients of
its spatially band-limited spherical harmonics expansion yield φN = yN(θs). In
this case f(θ)N is ideal in terms of the above proposed measures as, cf. [ZF12],
E = 1

4π
∑N
n=0 2n+ 1 and rE = θs

1
2πE

∑N−1
n=0 n+ 1. Hence, the energy measure and the

spread measure are direction independent and the directional deviation is zero. This
reflects the isotropic properties of the spherical harmonics.

max-rE weighting. The length of rE can be maximized by weighting the com-
ponents of each order by a suitable factor an, cf. [ZF12]. The spherical source
distribution with order weighting is f(θ) = yT

N(θ) diag{aN}φN, whereby the vector

aN = [a0, . . . ,
2N+1︷ ︸︸ ︷

aN, . . . , aN] contains the weights.
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Computation of rE. To compute the performance measures for an arbitrary spa-
tially band-limited excitation pattern, rE can be expressed in terms of the coefficient
vector φN, cf. appendix F,

rE =
√

4π√
3φH

NφN


φH

NG1,1,NφN

−φH
NG1,−1,NφN

φH
NG1,0,NφN

 , (5.39)

whereby the superscript H denotes Hermitian transpose and

Gnm,N =


Gm,0,0
n,0,0 , . . . , Gm,0,N

n,0,N
... . . . ...

Gm,N,0
n,N,0 , . . . , Gm,N,N

n,N,N

 (5.40)

is a matrix containing Gaunt coefficients. The Gaunt coefficient Gm,m′,m′′

n,n′,n′′ , introduced
by Gaunt in [Gau29], is the integral over the product of three spherical harmonics,

Gm,m′,m′′

n,n′,n′′ :=
∫
S2
Y m
n (θ)Y m′

n′ (θ)Y m′′

n′′ (θ)dθ. (5.41)

For more information on the efficient calculation of these integrals see e.g. [Séb98].

5.5.2 Basic linear conversion

Obviously, there is a linear mapping from infinite-dimensional partial spherical har-
monics to infinite-dimensional spherical harmonics. Multiplying eq. (5.31) by y(θ)
and integrating over S2 yields, due to the orthogonality of the spherical harmonics,

φ = Mφ̆, (5.42)

whereby M is the infinite matrix

M =
∫
S2
y(θ)y̆T(θ)dθ. (5.43)

However, only the spatially band-limited coefficient vector φ̆N̆ is provided by a
practical partial spherical array, and we are interested in an spatially band-limited
spherical harmonics series, only. Thus eq. (5.42) is truncated accordingly, yielding

φ̂N = MN,N̆φ̆N̆, (5.44)
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where
MN,N̆ =

∫
S2
yN(θ)y̆T

N̆(θ)dθ. (5.45)

Hence in this case the generic conversion operator C in eq. (5.34) is replaced by a
matrix multiplication.

Interestingly, this basic linear conversion can be also viewed as approximating
f̆N̆(θ) by f̂N(θ) in a least-squares-error sense, as eq. (5.44) is as well the solution of
the optimization problem,

min
∫
S2
|f̆N̆(θ)− f̂N(θ)|2dθ. (5.46)

The value of N̆ is given for a particular partial spherical array and a certain frequency,
but we have not specified the value of N, yet. For N→∞ it follows from eq. (5.46)
that in this case we have f̂(θ) = f̆N̆(θ). However, the aim of the conversion is to
achieve a spherical harmonics expansion of finite order. Thus the value of N shall be
close to N̆, and the pragmatic choice is the nearest integer, i.e. N = [N̆].

Conversion performance. The conversion performance of the basic linear conver-
sion is exemplarily shown for a hemispherical array and an array on a symmetrical
spherical zone with θ1 = 30◦, θ2 = 120◦, for different maximum orders N. Thereby
the arrays are assumed to be ideal, i.e. capturing the respective partial spherical
harmonics up to the maximum order N̆ without any error. The spatially band-limited
partial spherical harmonic coefficients of a plane wave impinging from direction θ are
converted to spherical harmonics according to eq. (5.44), and the performance mea-
sures for φ̂N are shown in figs. 5.6 and 5.8. Figures 5.7 and 5.9 show the performance
measures with max-rE weighting, applied after the conversion.

Note that the results are shown in dependence of the zenith angle of the incident
plane wave, only, as these representation are invariant under azimuthal rotation.
Furthermore, due to the symmetry of the spherical segment harmonics, the results
in figs. 5.8 and 5.9 are only shown for the upper half, i.e. θ = 60◦ . . . 90◦, and the
x-axis is reversed such that the location of the rigid boundary in the diagrams is on
the right side, as in figs. 5.6 and 5.7. The dashed lines in all subfigures (c) are shown
for comparison and represent the direction-invariant spread, obtained for the ideal
spatially band-limited spherical harmonics expansion, with or without max-rE weights,
respectively.

The energy measure and the spread measure of the converted partial spherical
harmonics representations are direction dependent, which is clearly visible for both
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Figure 5.6: Performance measures of a hemispherical array for the basic linear conversion of a plane
wave, in dependence of the incident zenith angle, for different maximum orders N.
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Figure 5.7: Performance measures of a hemispherical array for the basic linear conversion of a plane
wave, with max-rE weighting, in dependence of the incident zenith angle, for different maximum
orders N.
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Figure 5.8: Performance measures of a spherical zone array for the basic linear conversion of a plane
wave, in dependence of the incident zenith angle, for different maximum orders N.

92



60657075808590

 / deg

-4

-3

-2

-1

0

1

2

3

4

 E
 / 

dB

(a)

60657075808590

 / deg

0

5

10

15

20

25

30

e
 /d

eg

(b)

60657075808590

 / deg

0

20

40

60

80

100

120

140

e
 / 

de
g

(c)

Figure 5.9: Performance measures of a spherical zone array for the basic linear conversion of a plane
wave, with max-rE weighting, in dependence of its incident zenith angle, for different maximum
orders N.
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examples. Furthermore, the angular mapping error oscillates in θ, whereby it is zero in
the middle, i.e. at θ = 0◦ for the hemisphere, and θ = 90◦ for the spherical zone. The
largest mapping errors occur at the the boundaries. Generally, the mapping errors
decrease with increasing order. Interestingly, max-rE weighting reduces not only the
spread measure of the conversion results, but also improves the energy measure and
reduces the mapping errors for both examples.

The mapping errors for N = 1, 2 in figs. 5.8b and 5.9b linearly increase towards the
boundary, i.e. the conversion maps always to θ = 90◦ independent of the true source
direction. This results from the fact that for N = 1, 2 the order-limited spherical
segment harmonics representation contains only one component for each degree m,
which points to θ = 90◦.

The results of the basic linear conversion indicate that there will be perceivable arti-
facts when reproducing sound scenes captured with partial spherical arrays, especially
for low orders. This is an issue even for partial spherical arrays which are capable to
capture high-oder components, due to the frequency dependent spatial band-limitation,
which results from the regularization of the radial filters. For hemispherical arrays
better conversion results can be achieved by a non-linear conversion, which takes
the energy distribution of a plane wave over the spherical harmonic components into
account [PZ17]. These promising results suggest that better conversion results might
be achieved for general partial spherical harmonics representations by similar elaborate
non-linear conversions.

5.6 Design and evaluation of a prototype array on
a symmetrical spherical zone

This section is largely based on [PP14]. The practical applicability of modal sound
field decomposition using partial spherical arrays is demonstrated in the following by
means of modal beamforming based on acoustical measurements of a prototype array.

5.6.1 Prototype design

The prototype shown in fig. 5.10 was designed to cover a symmetrical spherical zone
S2 = {θ : 60◦ ≤ θ ≤ 120◦}, such that the surface of this spherical zone is half of the
surface of the full sphere.

Most of the following design parameters, such as the number of microphones and
most of the geometrical dimensions result from constructional and availability issues.
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Figure 5.10: Finished prototype: the large picture depicts the array mounted on a stand. The
smaller pictures show some construction details.

The array has been assembled with 64 digital microphones, which are commercially
available [Vis17]. Hence, the sound pressure distribution at the spherical zone is
angularly sampled at 64 points, which allows a decomposition into a number of Q = 64
spherical segment harmonics, cf. eq. (5.12). The truncation of the infinite set of basis
functions to Q components is illustrated in fig. 5.11. As Q = 64 is predetermined
by the microphone hardware, the maximum order results in N ≈ 9.9 ≥ νq. The first
29 spherical segment harmonics of this truncated set, for which νq ≤ 6, correspond
to those depicted in fig. 4.3. The distribution of the microphones on the spherical
segment was optimized by minimizing the condition number of the matrix, containing
the sampled spherical segment harmonics, based on a fixed grid and considering
some constructional restrictions. The optimization was conducted as described in
section 5.2. Figure 5.3 illustrates the progress of the optimization, whereby the bottom
row corresponds to the final sampling positions, which achieve a condition number
κ(YN) ≈ 2.3. This is sufficiently small for a robust modal decomposition. Further
details can be found in [Pau13], where also table of sampling positions is provided in
the appendix.

For the radius of the rigid spherical zone a value of rm = 0.1 m was chosen, which
corresponds to the minimal possible size such that the microphone units just fit in,
cf. [Pau13]. Therewith, the upper frequency limit of the array can be estimated using
eq. (5.17) by fu ≈ 5.4 kHz, with c = 343 m/s. For the lower frequency limit, also the
maximum gain of the radial filters has to be considered, cf. section 5.1. A maximum
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Figure 5.11: Parameter combinations νq and mq of the spherical segment harmonics fulfilling a
to the double conical boundary condition according to the geometry of the prototype. The black
dots indicate the 64 modal components, for which νq < N, the gray crosses indicate higher order
components and the red dashed line indicates the truncation boarder N = 9.95.

gain of 30 dB was chosen, to leave enough headroom for the signal dynamic in a
practical application. For the given value of N ≈ 9.9, the necessary gain for the radial
filters is less than 30 dB down a value of krm ≈ 7.8, cf. fig. 5.1. This yields a lower
frequency limit of fl ≈ 4.3 kHz. The radial filters were implemented as FIR filters as in
the design example given section 5.3, and the frequency responses of the gain-limited
radial filters for the first 29 modal components, with νq < 6, are shown in fig. 5.5.

The radial extent of the conical boundaries was chosen to be 0.4 m. This choice was
a compromise between a compact, transportable prototype and a sufficient acoustic
attenuation of sources from directions θ /∈ S2 at lower frequencies.

Hardware Implementation. The digital microphone hardware [Vis17] consist of
64 microphone units and an integration board. Each microphone unit contains an
electret capsule, a pre-amplifier and an analog-to-digital converter at a sampling rate
of 44.1 kHz. The microphone units are daisy-chained and connected to the integration
board, which transmits the microphone signals to a computer via USB. A local
carpenter built the cabinet of the prototype using a computerized numeric control
(CNC) machine. The two rigid cones where made of medium density fiber (MDF) and
the spherical zone was manufactured from polyurethane plastic plates. Finally, the
individual components were glued together and finished in black, cf. fig. 5.10. Further
constructional details are given in [Pau13].
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5.6.2 Evaluation

The feasibility of modal sound field decomposition with the prototype hardware is
investigated based on a beamforming application. Therefore, the spatial impulse
responses of the built microphone array were measured. Applying this measurement
data, the beamformer responses for different steering directions are analyzed.

Acoustic measurements. In the measurements we determined the transfer func-
tions to the array microphones from 576 position distributed on a centered, surrounding
spherical surface with a radius of rs = 1.4 m. This was achieved using 16 loudspeakers
arranged on a vertical semicircle. The loudspeakers were displaced in equal steps
of ∆θ = 11.25◦, as shown in fig. 5.12. Furthermore, the array was positioned on an
electronically controlled turntable. The turntable rotated the array in 36 equidistant
azimuthal steps of ∆φ = 10◦. In doing so, the 576 positions were measured sequentially.
The impulse responses of the transfer functions were measured using exponentially
swept sines [Far00], with a sweep length of 1.5 s. After the deconvolution, the impulse
responses were truncated to a length of 122 samples, which corresponds to a distance
of about 0.96 m at the used sampling frequency of 44.1 kHz. This is sufficiently short
to largely exclude possible reflections, due to e.g. the floor of the room, but sufficiently
long to preserve the acoustic influence of the rigid cones.

Results. The beamforming performance is investigated in terms of directivity pat-
terns. As described in section 5.1, the measured transfer functions are decomposed
into spherical segment harmonics applying eq. (5.12), and using regularized FIR
radial filters, cf. fig. 5.5. Then the beamforming according to eq. (5.25) is applied
using the weights given in eq. (5.29). This yields directivity patterns for arbitrary
steering directions θb ∈ S2. To achieve a smooth directivity pattern from the spatially
discretized measurement data, these are interpolated using spherical harmonics of
order 15.

As expected, the investigated patterns showed that the frequency-dependent
directivity of the beamformer is rotationally symmetric with φ and mirror symmetric
around the equatorial plane. Of course, this symmetry is not perfect, but only slight
deviations are noticeable, which mainly affect only the side lobes. Therefore, it is
sufficient to show directivity plots for steering directions θb for a fixed azimuth and
different zenith angles, ranging from 60◦ ≤ θb ≤ 90◦. All other steering directions can
be deduced by the geometrical symmetries.

Figure 5.13 shows the directivity and on-axis magnitude response of the beamformer
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Figure 5.12: Setup for spatial impulse response measurement.

for different steering directions. The decrease of magnitude towards lower frequencies
in fig. 5.13c obviously results from the limited maximum gain of the regularized radial
filters. Note that the magnitude responses in figs. 5.13f, 5.13i and 5.13l are plotted
relative to the on-axis response for θb = 90◦, cf. fig. 5.13c.

At 5 kHz the beam pattern is well shaped and the main lobe is nearly rotational
symmetric when pointing in the horizontal plane, i.e. θb = 90◦. When the beam is
steered towards the conical boundaries, the main lobe is deformed, and the direction
of maximum sensitivity does not coincide with the intended beam direction, but is
rather shifted away from the boundary. The deformation of the main lobe and shift of
the maximum gets more and more pronounced as the steering direction approaches
the boundary. This behavior agrees with the results for angular mapping error when
converting spherical segment harmonics to spherical harmonics, cf. fig. 5.8b.

The widening of the beam pattern for lower frequencies results from the limited
gain of the radial filters as higher order components are not sufficiently amplified.
Thus with decreasing frequency the maximum order of the effectively contributing
modal components decreases, which reduces the spatial resolution, i.e. the beam
pattern gets wider. Interestingly, the beam widening is different for the horizontal
and vertical beam width. Each modal component contains some amount of horizontal
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(c) θb = 90◦, on-axis response H90(f)
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(d) θb = 80◦, horizontal cut
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(f) θb = 80◦, on-axis response H80(f)
relative to H90(f)
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(g) θb = 70◦, horizontal cut
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(i) θb = 70◦, on-axis response H70(f)
relative to H90(f)
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(l) θb = 60◦, on-axis response H60(f)
relative to H90(f)
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Figure 5.13: Directivity pattern and on-axis response of the beamformer for different steering
directions in θ; the polar plots (a), (d), (g), (j) show the horizontal cut and (b), (e), (h), (k) show
the vertical cut of the directivity pattern relative to the steering direction, which coincides with the
0◦ direction of each plot. The light gray area indicates the range of the zenith angle covered by the
rigid cones. The diagram (c) depicts the on-axis magnitude responses for θb = 90◦ and the diagrams
(f), (i), (l) depict the on-axis magnitude responses for θb = 80◦, 70◦, 60◦, relative the response for
θb = 90◦.
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and/or vertical information. Due to the limited filter gain the higher order modal
components die out bit by bit towards lower frequencies, and also the amount of spatial
information is reduced bit by bit. If e.g. only the lowest 5 modal components with
νq < 2 contribute, cf. fig. 5.11, it shows that these functions contain only horizontal
and no vertical information, as all of them are nearly constant in θ, see the top row in
fig. 4.3. Thus also beam pattern would be nearly constant in the vertical direction
within the boundaries, independent of the steering direction, whereas in the horizontal
direction still a steering of the beam is possible.

The ripples in the relative on-axis responses above 500 Hz probably originate also
from the non-isotropic behavior of the spherical segment harmonics. These ripples
are roughly in the same range as the ripples in the energy measure when converting
spherical segment harmonics to spherical harmonics, cf. fig. 5.8a. The larger notch at
about 180 Hz may be caused by the finite length of the rigid cones.

The evaluation of the realized prototype showed that the beamforming algorithm
yields reasonable beam patterns, although an infinitely long double-cone is assumed
in the calculation of the beamformer weights. The beamforming approach relies on
a proper modal sound field decomposition. Thus the beamforming results imply
that modal sound field decomposition is feasible, and sound scenes recorded by the
prototype array can be rendered on a surrounding loudspeaker array using a suitable
conversion of the spherical segment harmonics to conventional spherical harmonics, cf.
section 5.5.
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Chapter 6

Conclusion

The main contribution of this work is the generalization of the concept of spherical
arrays to arrays on partial spherical surfaces. Similar to spherical arrays, this general-
ization is based on the solutions of the Helmholtz equation is spherical coordinates,
but additional angular boundary conditions are imposed. These boundary conditions
enclose the partial spherical surface, respectively restrict the angular range.

To provide a sound foundation of spherical microphone arrays, chapter 2 presented
the underlying acoustic theory and a brief review of beamforming, as well as capture
and reproduction of spatial sound scenes, using spherical arrays.

In chapter 3, the individual solutions of the angle dependent differential equations,
arising from the separation of the Helmholtz equation, have been investigated for
various types of boundary conditions. We showed that under these boundary conditions
the set of solutions always forms a complete orthogonal basis on the interval between
the points where the boundary conditions are imposed. This holds for both, the
azimuth and the zenith angle dependent differential equation. The eigenvalues of the
respective differential operator are determined by type and location of the boundary
conditions. These eigenvalues coincide with the separation constants of the Helmholtz
equation, and are usually denoted in terms of the parameters degree and order. For
the considered boundary conditions, we showed that these eigenvalues are real-valued,
positive, and form a discrete set. The free-field solutions fit in this framework as a set
of particular angular boundary conditions, although there are no tangible boundary
surfaces in this case. The azimuthal solution is required to be periodic, whereas the
solution in the zenith angle has to obey singular boundary conditions, which leads to
integer-valued eigenvalues.

Combining the angular solutions for a specific boundary condition in the azimuth
and zenith angle yields a complete set of orthogonal functions on the partial spherical
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surface enclosed by the boundaries. In chapter 4 we explored the combination
possibilities, which yields different partial spherical surfaces such as spherical caps,
zones, lunes and quadrangles. A uniform notation of the partial spherical harmonics
according to these combinations of boundary conditions was introduced, which allows
for a generalized representation of sound fields in source free regions enclosed by
angular boundaries, the according Green’s function, and the expression for plane
waves. This uniform notation also includes conventional spherical harmonics.

The theoretical results clearly show that the solutions under angular boundary
conditions exhibit the same structure as the free-field solution. Therefrom, the
idea of partial spherical microphone arrays with rigid angular boundary conditions
suggest itself, which has been investigated in chapter 5. The properties of the radial
solutions, which are similar for integer and non-integer order, confirm that the pressure
distribution on a partial spherical surface due to a plane wave is well approximated by
truncating the infinite partial spherical harmonics expansion. However, in contrast to
spherical harmonics, the truncated partial spherical harmonics series has a non-isotropic
point spread function, i.e. the truncated expansion of a Dirac delta distribution does
not have a uniform shape in all orientations. This is obviously a consequence of the
angular boundaries. The non-isotropy decreases when more functions in the truncated
expansion are used, and isotropy is only achieved by the infinite series representation,
i.e. the point spread function is a Dirac delta distribution.

Beyond all similarities, there are new challenges in the implementation of partial
spherical microphone arrays. Section 5.2 presents a synopsis of new strategies for
sampling points on partial spherical surfaces, which have been developed in master
projects related to this dissertation. Suitable distributions are achieved for minimizing
the condition number of the decomposition matrix by moving the sampling points
sequentially on a dense, equally spaced grid. For non-integer orders, the implementation
of the radial filters is similar as for the integer order case, and requires a limitation of
the maximum filter gain. An recursive discrete-time implementation is not feasible,
but a finite impulse response realization of suitable length is appropriate.

Maximum-directivity beamforming based on modal sound field decomposition is
achieved similar as for spherical arrays. The angle-dependent beam shape results
from the non-isotropy of the spatially band-limited partial spherical harmonics and is
evident for the above stated reasons.

Ambisonics related approaches for the reproduction of sound scenes with surround-
ing spherical loudspeaker arrays require a source distribution represented in spherical
harmonics. Therefore the spatially band-limited source distribution captured by a
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partial spherical microphone arrays need to be converted into a spherical harmonics.
The band-limited spherical harmonics representation of the true source distribution is
not achievable by a linear mapping. Like physically perfect sound field reproduction by
a surrounding loudspeaker distribution, such a perfect conversion is an overambitious
aim, and it is more reasonable to aspire the preservation of perceivable features. This
motivates perceptual measures of the conversion error in terms of loudness, mislocal-
ization and source width, which have been presented in section 5.5. By means of this
measures, the proposed basic linear conversion has been evaluated.

Finally, we have shown the design and implementation of a microphone array
located on a rigid spherical zone bounded by a symmetrical, rigid double-cone. The
beamforming performance of a prototype array was investigated by directivity mea-
surements.

The open problems identified during the course of this thesis lead to the follow-
ing recommendations for future work:

Advanced conversion to spherical harmonics. The results of the basic linear
conversion examined in section 5.5, indicate perceivable artifacts when reproducing
sound scenes captured with partial spherical arrays, especially for low order represen-
tations. As shown in [PZ17] for hemispherical arrays, better results can be achieved by
a non-linear conversion approach, which takes into account the energy distribution of
a plane wave over the spherical harmonic components. The underlying principle is not
directly applicable for other partial spherical harmonics representations. The transfer
of this advanced hemispherical conversion to general partial spherical harmonics and
the development of similarly elaborated non-linear conversions is an ongoing research
question.

Investigations on the effect of finite-length boundary conditions. The the-
oretical considerations are made for infinitely long rigid boundaries, which is clearly
not the case for any practical implementation. In the current work, we tacitly assumed
that a sufficient length of the boundary surfaces resembles infinity. Similar as in
[Mec09], finite length boundary conditions can be modeled by splitting R3 into a
spherical interior region with a radius according to length of the boundaries, and
an exterior region. The field within the exterior region is expressed by the free-field
solutions and the field within the interior region by the respective partial spherical
solutions. The coupling of the modal components is achieved by demanding equality
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of the sound pressure and its radial derivate at the joint partial spherical surface.
However, the pressure distribution on a large, rigid, circular plane due to a plane wave
shows fluctuations associated with Fresnel-zone interference patterns, cf. [JT65], also
in the center of the plane. Likewise, the pressure distribution on a large, rigid cone,
shows similar fluctuations. These Fresnel-zone fluctuations are not considered in the
modal sound field decomposition approach, and the investigation of the impact of
these effects remains an open question.
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Appendix A

Green’s function for the Helmholtz
equation

Here we derive Green’s function for the Helmholtz equation in spherical coordinates.
Therefore we first derive Green’s function of ordinary second order differential equations
and then trace back the problem of determining Green’s function for the Helmholtz
equation to such a problem by dimensional reduction.

Green’s function of ordinary second order differential equations. Green’s
function G(x, ξ) is the solution of the following inhomogeneous linear second order
differential equation x ∈ (x1, x2) under prescribed homogeneous boundary conditions
at the endpoints of the interval

LG(x, ξ) = −δ(x− ξ) (A.1)

where L := d
dx

(
p(x) d

dx

)
− q(x) is a formal self-adjoint linear differential operator with

p, p′ and q being continuous functions and p > 0 on the interval (x1, x2). Green’s
function fulfills the following conditions, [CH24, p. 275]

1. For a fixed value of ξ, G(x, ξ) is a continuous function of x in (x1, x2) and fulfills
the prescribed boundary conditions at x1 and x2.

2. Except for x = ξ, the first and second derivative of G with respect to x are
continuous everywhere in (x1, x2). At x = ξ, the first derivative has a jump
discontinuity given by

dG(x, ξ)
dx

∣∣∣∣∣
x=ξ+0

x=ξ−0
= − 1

p(x) (A.2)

105



3. G fulfills the homogeneous differential equation LG(x, ξ) = 0 everywhere in
(x1, x2) except for x = ξ.

Most of these properties of Green’s function are evident from the differential
equation and the boundary conditions. The fact that G(x, ξ) is continuous and its first
derivative shows a jump discontinuity at x = ξ can be shown as follows, see [CH24, p.
273]. Integrating eq. (A.1) in the limits of ξ − ε and ξ + ε, ε > 0 yields

∫ ξ+ε

ξ−ε

(
p(x)d

2G(x, ξ)
dx2 + p′(x)dG(x, ξ)

dx
− q(x)G(x, ξ)

)
dx = −1, (A.3)

and applying integration by parts we get
[
p(x)dG(x, ξ)

dx

]∣∣∣∣∣
x=ξ+ε

x=ξ−ε
−
∫ ξ+ε

ξ−ε
q(x)G(x, ξ)dx = −1. (A.4)

Obviously, if G(x, ξ) is a solution eq. (A.1), the above equation holds also for the
limit of ε→ 0. Hence, G(x, ξ) has to be continuous at x = ξ as otherwise the limit
of
[
p(x)dG(x,ξ)

dx

]∣∣∣x=ξ+ε

x=ξ−ε
for ε→ 0 does not exist. From the continuity of G(x, ξ) follows

that lim
ε→0

∫ ξ+ε
ξ−ε q(x)G(x, ξ)dx = 0. Furthermore follows from the limit of eq. (A.4) that

derivative of G(x, ξ) has to have a jump discontinuity at x = ξ determined by the
following relation:

lim
ε→0

dG(x, ξ)
dx

∣∣∣∣∣
x=ξ+ε

x=ξ−ε
= − 1

p(ξ) . (A.5)

Construction of Green’s function. Consider two solutions y1(x), y2(x) of
the homogeneous differential equation Ly(x) = 0, where y1(x) fulfills the prescribed
boundary condition at x = x1 and y2(x) fulfills the prescribed boundary condition at
x = x2. G(x, ξ) can be expressed in the following form, as it fulfills the homogeneous
equation almost everywhere except for x = ξ,

G(x, ξ) =

c1 y1(x) for x ≤ ξ,

c2 y2(x) for x ≥ ξ.
(A.6)
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Due to the continuity of G(x, ξ) and the jump discontinuity of its first derivative
according to eq. (A.2), we have

c1 y1(ξ) = c2 y2(ξ),

c1 y
′
1(ξ)− c2 y

′
2(ξ) = − 1

p(ξ) .
(A.7)

Solving for c1, c2 yields

c1 = −y2(ξ)
p(ξ) [y1(ξ)y′2(ξ)− y′1(ξ)y2(ξ)] ,

c2 = −ya(ξ)
p(ξ)[y1(ξ)y′2(ξ)− y′1(ξ)y2(ξ)] .

(A.8)

Inserting this in eq. (A.6) we get

G(x, ξ) = −1
p(ξ) [y1(ξ)y′2(ξ)− y′1(ξ)y2(ξ)]

y2(ξ) y1(x) for x ≤ ξ,

y1(ξ) y2(x) for x ≥ ξ.
(A.9)

Note that Green’s function only exists if y1(x) and y2(x) are linearly independent
solutions. Evidently, for solutions, i.e.. y1(x) = cy2(x), eq. (A.7) is contradicting since
if G(x, ξ) is continuous at ξ its first derivative can not have a jump discontinuity and
vice versa. However, one can define in this case a Green’s function in the generalized
sense, see [CH24, p. 280].

Dimensional reduction. In spherical coordinates, the problem of determining
Green’s function for the Helmholtz equation with separable boundary conditions
can be reduced to a one-dimensional problem in r for which the construction of
Green’s function has been shown above. To achieve this dimensional reduction, we
split the Laplace operator, cf. eq. (3.2), into ∆ = L1(r, ∂

∂r
) + 1

r2L2(φ, θ, ∂
∂φ
, ∂
∂θ

), where
L1 = 1

r2
∂
∂r

(
r2 ∂

∂r

)
and L2 = 1

sin θ
∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂φ2 . Green’s function is uniquely
defined by the inhomogeneous equation,

(
L1 + 1

r2L2 + k2
)
G(r, r0) = − 1

r2 sin θδ(r − r0)δ(φ− φ0)δ(θ − θ0) (A.10)

and a set of boundary conditions at the boundaries of the domain

Ω :=
{
r ∈ R3 : r1 ≤ r ≤ r2,φ1 ≤ φ ≤ φ2, θ1 ≤ θ ≤ θ2,

}
.
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As shown in chapter 3, the homogeneous problem is solved by a product ansatz and
any homogeneous solution can be expressed by the series expansion

p(r) =
∞∑
l=0

alY
µl
νl

(θ)Rνl(r), (A.11)

where Y µl
νl

(θ) are the angular solutions fulfilling the prescribed boundary conditions
at φ1,2, θ1,2, Rνl(r) = el jνl(kr) + fl h

(2)
νl

(kr) are the general radial solutions, and al
are the expansion coefficients. The coefficients el, fl as well as the values of the wave
number k are determined by the boundary conditions at r1,2. Obviously, Green’s
function has to fulfill the homogeneous equation almost everywhere in Ω except for
r = r0. Hence we make the following ansatz for Green’s function by analogy with
eq. (A.11):

G(r, r0) =
∞∑
l=0

alY
µl
νl

(θ)GR,νl(r, r0). (A.12)

Inserting this in eq. (A.10) yields

∞∑
l=0

al

(
Y µl
νl

(θ)
[
L1GR,νl(r, r0) + k2GR,νl(r, r0)

]
+GR,νl(r, r0) 1

r2L2Y
µl
νl

(θ)
)

=

− 1
r2 sin θδ(r − r0)δ(φ− φ0)δ(θ − θ0). (A.13)

Recalling the fact that Y µl
νl

(θ) are the eigenfunctions of L2 such that

L2Y
µl
νl

(θ) = −νl(νl + 1)Y µl
νl

(θ),

and the completeness relation of the angular solutions in the form of

∞∑
l=0

Y µl
νl

(θ0)Y µl
νl

(θ) = 1
sin θδ(φ− φ0)δ(θ − θ0),

eq. (A.13) is equivalent to

∞∑
l=0

alY
µl
νl

(θ)
[
L1GR,νl(r, r0) +

(
k2 − νl(νl + 1)

r2

)
GR,νl(r, r0)

]
=

− 1
r2 δ(r − r0)

∞∑
l=0

Y µl
νl

(θ0)Y µl
νl

(θ). (A.14)
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By multiplying both sides by Y µl
νl

(θ) and integrating
∫ φ2
φ1

∫ θ2
θ1

(· · · )Y µl
νl

(θ) sin θdθdφ, we
end up with a set of one-dimensional problems:

al

[
L1GR,νl(r, r0) +

(
k2 − νl(νl + 1)

r2

)
GR,νl(r, r0)

]
= − 1

r2 δ(r − r0)Y µl
νl

(θ0). (A.15)

Setting al = Y µl
νl

(θ0), and by multiplying both sides with r2 the above equation
simplifies to [

∂

∂r

(
r2 ∂

∂r

)
+ k2r2 − νl(νl + 1)

]
GR,νl(r, r0) = −δ(r − r0), (A.16)

which is the spherical Bessel differential equation. Recalling the ansatz in eq. (A.12),
Green’s function for the Helmholtz equation is expressed by

G(r, r0) =
∞∑
l=0

Y µl
νl

(θ0)Y µl
νl

(θ)GR,νl(r, r0), (A.17)

where GR,νl(r, r0) is the Green’s function of eq. (A.16) with the prescribed boundary
conditions at r1, r2.

We are mainly interested in solutions fulling Sommerfeld’s radiation condition and
a sound-hard, sound-soft or singular boundary condition in r. Hence we look for a
solution of eq. (A.16), fulfilling the radiation condition, i.e.

lim
r→∞

r

(
∂

∂r
+ ik

)
GR,νl(r, r0) = 0, (A.18)

and either a Dirichlet boundary condition, i.e. GR,νl(r, r0)|r=r1
= 0, or a Neumann

boundary condition, i.e. ∂GR,νl (r,r0)
∂

∣∣∣∣
r=r1

= 0. Note that for r1 → 0 the regular boundary
condition becomes a singular one.

The homogeneous solution fulfilling the radiation condition is the spherical Hankel
function of the second kind,

Rνl,2(r) = h(2)
νl

(kr). (A.19)

From the general solution of the homogeneous Bessel differential equation, is easy to
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see that following solution fulfill the considered boundary condition types at r1:

Rνl,1(r) =



jνl(kr)−
jνl (kr1)
h

(2)
νl

(kr1)
h(2)
νl

(kr) for a Dirichlet B.C. at r1,

jνl(kr)−
j′νl

(kr1)

h′
(2)
νl

(kr1)
h(2)
νl

(kr) for a Neumann B.C. at r1,

jνl(kr) for a singular B.C. at r1 = 0.

(A.20)

The construction of GR,νl(r, r0) is carried out as derived in the previous paragraph. It
turns out that for every Rν,1(r) in eq. (A.20) and Rν,2(r) = h(2)

νl
(kr) holds

Rν,1(r)R′ν,2(r)−R′ν,1(r)Rν,2(r) = k
(
jν(kr)h′(2)

ν (kr)− j′ν(kr)h(2)
ν (kr)

)
= − 1

ikr2
(A.21)

as jν(z)h′(2)
ν (z)− j′ν(z)h(2)

ν (z) = − 1
iz2 . Comparing eq. (A.16) to the general form in

eq. (A.1) we have p(r) = r2. Hence, inserting eqs. (A.19) and (A.20) in eq. (A.9) we
get the following results for GR,νl(r, r0) for a radiating boundary condition and

• a Dirichlet boundary condition at r1

GR,νl(r, r0) = −ik


h(2)
νl

(kr0)
(
jνl(kr)−

jνl (kr1)
h

(2)
νl

(kr1)
h(2)
νl

(kr)
)

for r ≤ r0(
jνl(kr0)− jνl (kr1)

h
(2)
νl

(kr1)
h(2)
νl

(kr0)
)
h(2)
νl

(kr) for r ≥ r0

(A.22)

• a Neumann boundary condition at r1

GR,νl(r, r0) = −ik


h(2)
νl

(kr0)
(
jνl(kr)−

j′νl
(kr1)

h′
(2)
νl

(kr1)
h(2)
νl

(kr)
)

for r ≤ r0(
jνl(kr0)− j′νl

(kr1)

h′
(2)
νl

(kr1)
h(2)
νl

(kr0)
)
h(2)
νl

(kr) for r ≥ r0

(A.23)

• a singular boundary condition at r1 = 0

GR,νl(r, r0) = −ik

h
(2)
νl

(kr0) jνl(kr) for r ≤ r0,

jνl(kr0)h(2)
νl

(kr) for r ≥ r0,
(A.24)

Finally, inserting one of eqs. (A.22) to (A.24) in eq. (A.17) yields Green’s function of
the Helmholtz equation for the respective boundary conditions.
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Appendix B

Separation of the Helmholtz
equation in spherical coordinates

Using the Laplace operator in spherical coordinates, cf. eq. (3.2), the homogeneous
Helmholtz differential equation, cf. eq. (3.1),

∂2p(r)
∂r2 + 2

r

∂p(r)
∂r

+ cos θ
r2 sin θ

∂p(r)
∂θ

+ 1
r2 sin2 θ

∂2p(r)
∂θ2 + 1

r2 sin2 θ

∂2p(r)
∂φ2 + k2p(r) = 0 .

Inserting the product ansatz, cf. eq. (3.3) yields

ΦΘd
2R

dr2 + ΦΘ2
r

dR

dr
+ 1
r2RΦd

2Θ
dθ2 + cos θ

r2 sin θRΦdΘ
dθ

+ RΘ
r2 sin2 θ

d2Φ
dφ2 + k2 +RΦΘ = 0

∣∣∣∣∣ · r2

RΦΘ ,

r2

R

d2R

dr2 + 2r
R

dR

dr
+ 1

Θ
d2Θ
dθ

+ cos θ
sin θΘ

dΘ
dθ

+ 1
sin2 θΦ

d2Φ
dφ2 + k2r2 = 0.

Arranging the terms depending on r on the left side and the terms depending on φ, θ
on the right side of the equation, we can write

r2

R

d2R

dr2 + 2r
R

dR

dr
+ k2r2 = − 1

Θ
d2Θ
dθ
− cos θ

sin θΘ
dΘ
dθ
− 1

sin2 θΦ
d2Φ
dφ2 = C1,

where C1 is a constant. The above equation splits up in two differential equations.
The left side yields an ordinary differential equation in r,

r2

R

d2R

dr2 + 2r
R

dR

dr
+ k2r2 = C1.
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For notational convenience we replace C1 = ν(ν + 1), rearrange the terms and get

r2d
2R

dr2 + 2rdR
dr

+ k2r2R− ν(ν + 1)R = 0. (B.1)

The right side yields a partial differential equation in φ, θ

− 1
Θ
d2Θ
dθ
− cos θ

sin θΘ
dΘ
dθ
− 1

sin2 θΦ
d2Φ
dφ2 = ν(ν + 1).

Multiplying by sin2 θ and rearranging the terms yields

sin2 θ

Θ
d2Θ
dθ

+ sin θ cos θ
Θ

dΘ
dθ

+ ν(ν + 1) sin2 θ = − 1
Φ
d2Φ
dφ2 = C2,

where C2 is a constant. Thus the above equation splits up in two ordinary differential
equations, one in θ and one in φ. The ordinary differential equation in θ is

sin2 θ

Θ
d2Θ
dθ

+ sin θ cos θ
Θ

dΘ
dθ

+ ν(ν + 1) sin2 θ = C2.

Dividing by sin2 θ, multiplying by Θ and setting C2 = µ2 gives

d2Θ
dθ

+ cos θ
sin θ

dΘ
dθ
− µ2

sin2 θ
Θ + ν(ν + 1)Θ = 0. (B.2)

Similarly, the ordinary differential equation in φ results in

d2Φ
dφ2 + µ2Φ = 0. (B.3)
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Appendix C

Solving the spherical Bessel
differential equation

Equation (3.6) is equivalently expressed by

r2d
2R

dr2 + 2rdR
dr

+
[
k2r2 − ν(ν + 1)

]
R = 0 . (C.1)

Substituting z = kr, and thus r dR
dr

= kr dR
d(kr) = z dR

dz
, as well as r2 d2R

dr2 = z2 d2R
dz2 yields

z2d
2R

dz2 + 2zdR
dz

+
[
z2 − ν(ν + 1)

]
R = 0 . (C.2)

Substituting R(z) = z−
1
2S(z) for the solution transforms the equation above into the

Bessel differential equation,

z2d
2S

dz2 + z
dS

dz
+
[
z2 − (ν + 1

2)2
]
S = 0, (C.3)

which can be solved using the Frobenius method, cf. [Kre99]. The solutions yield

Jλ(z) = zλ
∞∑
m=0

(−1)mz2m

22m+λm! Γ(λ+m+ 1) , (C.4)

Yλ(z) = Jλ(z) cosλπ − J−λ(z)
sin λπ . (C.5)

with λ = ν + 1
2 . In the above equation, Jλ(z), Yλ(z) are the Bessel functions of the

first and second kind, respectively. If λ = l ∈ N the right hand side of eq. (C.5) is
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replaced by its limiting value

Yl(z) = lim
λ→l

Yλ(z) . (C.6)

which yields, cf. [DLMF, §10.8],

Yl(z) = −

(
1
2z
)−l
π

l−1∑
m=0

(l −m− 1)!
m!

(
1
4z

2
)m

+

2
π

ln
(

1
2z
)
Jl(z)−

(
1
2z
)l

π

∞∑
m=0

[ψ(m+ 1) + ψ(l +m+ 1)]

(
−1

4z
2
)m

m! (l + k)! , (C.7)

where ψ(x) = Γ′(x)
Γ(x) is the digamma function.

The solutions of the spherical Bessel differential equation, eq. (3.6), are the result
of back substitution,

jν(kr) =
√

π

2kr Jν+ 1
2
(kr) , (C.8)

yν(kr) =
√

π

2kr Yν+ 1
2
(kr) . (C.9)

These functions are called spherical Bessel functions of the first and second kind
whereby the term

√
π
2 is a convention.

Other standard solutions are the spherical Hankel functions of the first and second
kind. These can be expressed as a linear combination of the spherical Bessel functions,

h(1)
ν (kr) = jν (kr) + iyν (kr) , (C.10)
h(2)
ν (kr) = jν (kr)− iyν (kr) . (C.11)

Similar to eqs. (C.8) and (C.9), the spherical Hankel functions are related to the
Hankel functions by

h(1,2)
ν (kr) =

√
π

2kr H
(1,2)
ν+ 1

2
(kr). (C.12)
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Appendix D

Requirements for non-negative
eigenvalues in Sturm-Liouville
problems

Multiplying the Sturm-Liouville equation, see eq. (3.18), by ȳ, i.e. the complex
conjugate of y, and integrating from a to b yields

∫ b

a

d

dx
[py′] ȳdx+

∫ b

a
[λw − q] yȳdx = 0.

Applying integration by parts to the first integral in the above equation we get

p(b)y′(b)ȳ(b)− p(a)y′(a)ȳ(a)−
∫ b

a
py′ȳ′dx+

∫ b

a
[λw − q] yȳdx = 0.

With yȳ = |y|2 and some rearrangements we have

λ
∫ b

a
w|y|2dx =

∫ b

a
p|y′|2dx +

∫ b

a
q|y|2dx − p(b)y′(b)ȳ(b) + p(a)y′(a)ȳ(a). (D.1)

The integral on the left-hand side in the above equation is non-negative as w(x) > 0
for x ∈ (a, b), cf. eq. (3.19);

∫ b
a p|y′|2dx ≥ 0 follows from p(x) > 0 for x ∈ (a, b), cf.

eq. (3.19). If we assume that q(x) ≥ 0 for x ∈ (a, b) we have
∫ b
a q|y|2dx ≥ 0. Obviously,

for a solution yi(x) for which the following condition holds:

p(a)y′i(a)ȳi(a)− p(b)y′i(b)ȳi(b) ≥ 0, (D.2)
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the associated eigenvalue λi is in either case non-negative. Note that as the eigenvalue
and all integrals in eq. (D.1) are real-valued the term on the left side of the above
inequality is clearly real-valued.

The behavior of yi and its derivative at the endpoints a, b is determined by the
boundary conditions of the problem. We will show in the following for different types of
boundary conditions that eq. (D.2) holds for any solution of the problem if additional
requirements are satisfied and thus no negative eigenvalues exist. Note that these are
sufficient but not necessary conditions.

Periodic boundary conditions. In this case, cf. eq. (3.40), strict equality holds
in eq. (D.2) for any solution. Hence the additional requirement for non-negative
eigenvalues is simply q(x) ≥ 0 for x ∈ (a, b).

Separated boundary conditions. In this case both endpoints can be considered
separately and thus eq. (D.2) can be split an inequality for each endpoint:

p(a)y′(a)ȳ(a) ≥ 0, (D.3)
p(b)y′(b)ȳ(b) ≤ 0. (D.4)

The inequality for each endpoint holds and q(x) ≥ 0, for x ∈ (a, b), no negative
eigenvalues exist.

Regular endpoints. For a regular end point a we have a boundary condition
of the form, cf. eq. (3.38),

α1 y(a) + α2 y
′(a) = 0.

Multiplying by α1 ȳ(a) and rearranging yields

α1α2 y
′(a)ȳ(a) = −α2

1 |y(a)|2,

which implies the inequality
α1α2 y

′(a)ȳ(a) ≤ 0.

This shows that y′(a)ȳ(a) ≥ 0 when α1α2 < 0. As α1, α2 are restricted to be not
both zero, it follows for α1α2 = 0 that either y(a) = 0 or y′(a) = 0 is required by the
boundary condition; hence y′(a)ȳ(a) = 0. Finally, as p(x) > 0 for x ∈ (a, b), eq. (D.3)
holds for

α1α2 ≤ 0.

116



Similarly it can be shown that eq. (D.4) holds for

β1β2 ≥ 0.

LC end point with Friedrichs boundary condition. If either endpoint a or
b is LC and we apply Friedrichs boundary condition, cf. eq. (3.44), we have

p(d) (y′(d)ū(d)− y(d)ū′(d)) = 0,

for either d = a or d = b. Multiplying with ȳ(d) and rearranging yields

p(d)y′(d)ȳ(d) = |y(d)|2p(d)ū′(d)
ū(d) .

As the left side of the above equation is real-valued it follows that the ratio ū′(d)
ū(d) is

real-valued and the complex conjugation is obsolete. If endpoint a is LC, we have
d = a in the above equation. As the squared absolute value is strictly non-negative,
eq. (D.3) holds for

p(a)u′(a)
u(a) ≥ 0.

Similarly, if endpoint b is LC eq. (D.4) holds for

p(b)u′(b)
u(b) ≤ 0.

LP end points. If one or both of the endpoints a, b are LP then at these
endpoints no boundary conditions are needed or allowed. Hence no addition require-
ments can be derived directly from boundary conditions for which all eigenvalues are
non-negative.

However, Theorem 10.8.2 in [Zet05] states that in general the eigenvalues of a
sequence of regular Sturm-Liouville problems on truncated intervals1 converge to the
eigenvalues of the singular problem if its series of eigenvalues is bounded below and
discrete, i.e. σ = {λi : i ∈ N0}, −∞ < λ0 < λ1 < λ2 < · · · The boundary condition
applied to this series of regular problems are referred to as inherited boundary condition.
Near a LP endpoint the inherited boundary condition is the Dirichlet condition, cf.
[Zet05, Definition 10.8.1].

1Here the series of truncated intervals is (ar, br), with a < ar < br < b, r ∈ N and ar → a, br → b
as r →∞.
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If a is a regular endpoint with a Dirichlet boundary condition then α1 = 0 and
eq. (D.3) holds. It follows that eq. (D.3) also holds if a is LP if σ is bounded below
and discrete. Similarly, eq. (D.4) holds if b is LP σ is bounded below and discrete.

Thus it remains to investigate what the additional requirements are so that σ is
bounded below and discrete in case of a LP endpoint. It shows that σ is bounded
below if eq. (3.18) is non-oscillatory at a for some real λa and at b for some real λb
when p > 0 for x ∈ (a, b); this follows from Proposition 10.4.4. together with Theorem
10.5.1 in[Zet05].

An endpoint is called oscillatory if it is an accumulation point of zeros of a
nontrivial solution. This only happens at a singular endpoint and then all solutions
of the differential equation have infinitely many zeros in any right- respectively left-
neighborhood of the endpoint, see [Zet05; BEZ01]. Note that for LP endpoints it
depends on λ whether it is oscillatory or not, where for LC endpoints2 this classification
is independent of λ. There are several criteria to determine whether an endpoint is
oscillatory or not, as Zettl states in his monograph:

Many sufficient conditions are known for each of these classes (oscillatory
and non-oscillatory), there are also some necessary and sufficient conditions
known but there are no necessary and sufficient conditions known which
can be checked for all equations. Improving known sufficient conditions
and looking for checkable necessary and sufficient ones is today, 170 years
after the appearance of the seminal paper of Sturm, still a very active field
of research [Zet05, p. 133].

However, the endpoint a is non-oscillatory if and only if there exists a principal solution
at a, [Zet05, Theorem 6.2.1]. So if endpoint a is LP and there exist a principal solution
at a for some λa and endpoint b is either regular or LC, it follows that σ is bounded
below. Similarly, σ is bounded below if endpoint b is LP and there exist a principal
solution at b for some λb and endpoint a is either regular or LC, or in case of both
endpoints are LP, if there exist a principal solution at a for some λa and a principal
solution at b for some λb.

The eigenvalue spectrum σ may have a discrete part σd containing all isolated
eigenvalues and continuous part σe, which also called the essential spectrum. The
starting point of the continuous eigenvalue spectrum σ0 = infσe is as well the “oscilla-
tion point” of the equation. This means that for λ > σ0 the equation is oscillatory and

2The LC classification is usually further subdivided into two sub-cases: limit-circle non-oscillatory
(LCNO) and limit-circle oscillatory (LCO), see e.g. [Zet05]. Within the main part of this work we
did not introduce these sub-cases and we tacitly assume that a LC endpoint is non-oscillatory.
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for λ < σ0 the equation is non-oscillatory. Hence, if the equation is non-oscillatory for
all λ, i.e. σ0 =∞, the continuous spectrum is empty and the eigenvalues are discrete,
i.e. σ = σd.

If endpoint a is LP and there exists a principal solution at a for all λ and endpoint
b is either regular or LC, then the series of eigenvalues is discrete and bounded below
and thus eq. (D.3) holds, as shown above. Similarly eq. (D.4) holds if endpoint b is
LP and there exists a principal solution at b for all λ and endpoint b is either regular
or LC. If both endpoints are LP, there exists a principal solution at a for all λ, and
there exists a principal solution at b for all λ, then eqs. (D.3) and (D.4) hold.
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Appendix E

Square integrability of Ferrers
functions at the singularities

We investigate here which solutions of eq. (3.5) are square integrable on an interval
containing one or both of the singularities at ±1 depending on the values of the
parameters ν, µ. Therefore we first proof the following theorem:

Theorem 1 Let f(x) be a bounded, continuous, real-valued function on the interval
x ∈ [a, b) with a singularity at x = b, and let g(x) be a function that is asymptotic
equivalent to f(x) for x→ b, then

∫ b
a |f(x)|2dx <∞ if and only if

∫ b
c |g(x)|2dx <∞

for any c ∈ [a, b).

Proof. We assume that f(x) is a bounded, continuous function on the interval x ∈
[a, b) with a singularity at x = b. Furthermore we assume that g(x) is asymptotically
equivalent to f(x) for x→ b, i.e.

f(x) ∼ g(x)⇔ lim
x→b

f(x)
g(x) = 1.

As lim
x→b

f(x)r =
(

lim
x→b

f(x)
)r

for any real number r provided that lim
x→b

f(x) 6= 0, it
follows that

lim
x→b

f 2(x)
g2(x) = 1.

From the formal definition of the limit we know that,∣∣∣∣∣f 2(x)
g2(x) − 1

∣∣∣∣∣ < ε,
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for 0 < |x− b| < δ where δ > 0 and ε > 0 are real numbers. Considering the sign of
the term in the absolute value an rearranging the terms, the last inequality is identical
to

(1− ε)g2(x) < f 2(x) < (1 + ε)g2(x). (E.1)

Without loss of generality, we assume that δ is small enough that ε < 1 holds and
there is a c ∈ [a, b] such that b− δ < c < b. As f(x) is bounded and continuous for
x ∈ [a, b), it is obvious the integral

∫ b
a |f(x)|2dx =

∫ c
a |f(x)|2dx+

∫ b
c |f(x)|2dx converges

if
∫ b
c |f(x)|2dx converges. Due to eq. (E.1) it follows from the integral comparison test

that
∫ b
c |f(x)|2dx converges if and only if

∫ b
c |g(x)|2dx converges.

Behavior at singularities. The behavior of Ferrers functions at singularity x = 1
as x→ 1 from below is, see [DLMF, §14.8.(i); Olv74, p.186]

Pµν (x) ∼ 1
Γ(1− µ)

( 2
1− x

)µ/2
, µ 6= 1, 2, 3, . . . , (E.2)

Pmν (x) ∼ (−1)m (ν −m+ 1)2m
m!

(1− x
2

)m/2
, m = 1, 2, 3, . . . ,

ν 6= m− 1,m− 2, . . . ,−m, (E.3)

Qµ
ν (x) ∼ 1

2 cos(µπ) Γ(µ)
( 2

1− x

)µ/2
, µ > 0,

µ 6= 1
2 ,

3
2 ,

5
2 , . . . , (E.4)

Qµ
ν (x) ∼ (−1)µ+(1/2) π Γ(ν + µ+ 1)

2 Γ(µ+ 1) Γ(ν − µ+ 1)

(1− x
2

)µ/2
, µ = 1

2 ,
3
2 ,

5
2 , . . . ,

ν ± µ 6= −1,−2,−3, . . . ,
(E.5)

Q−µν (x) ∼ Γ(µ) Γ(ν − µ+ 1)
2 Γ(ν + µ+ 1)

( 2
1− x

)µ/2
, µ > 0

ν ± µ 6= −1,−2,−3, . . . (E.6)
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Qν(x) ∼ 1
2 ln

( 2
1− x

)
, ν 6= −1,−2,−3, . . . (E.7)

Square integrability. Let us first consider an interval [a, 1] including the singularity
at x = 1. It follows from the first fundamental theorem of calculus that

1∫
c
(1−x)rdx <∞

for r > −1, since the indefinite integral yields

∫
(1− x)rdx =

−
(1−x)r+1

r+1 for r ∈ R\ − 1

− ln(1− x) for r = −1
.

Keeping this in mind and applying theorem 1 to eqs. (E.2) to (E.6) it shows that
∫ 1

a
|Pµν (x) |2dx <∞ for µ < 1, (E.8)∫ 1

a
|Pmν (x) |2dx <∞ for m = 1, 2, 3, . . . , ν 6= m− 1,m− 2, . . . ,−m, (E.9)∫ 1

a
|Qµ

ν (x) |2dx <∞ for 0 < µ < 1, µ 6= 1
2 , (E.10)∫ 1

a
|Qµ

ν (x) |2dx <∞ for µ = 1
2 ,

3
2 ,

5
2 , . . . , ν ± µ 6= −1,−2,−3, . . . , (E.11)∫ 1

a
|Q−µν (x) |2dx <∞ for 0 < µ < 1, ν ± µ 6= −1,−2,−3, . . . (E.12)

Similarly, with the indefinite integral
∫

ln2
( 2

1− x

)
dx = (x− 1)

(
ln2
( 2

1− x

)
+ 2 ln

( 2
1− x

)
+ 2

)
,

and the limit
lim
x→1

(x− 1)
(

ln2
( 2

1− x

)
+ 2 ln

( 2
1− x

)
+ 2

)
= 0,

it shows that applying theorem 1 to eq. (E.7) yields
∫ 1

a
|Qν(x) |2dx <∞ for ν 6= −1,−2,−3, . . . (E.13)

Restricting the parameter values by m ≥ 0 and ν ≥ −1
2 , cf. eqs. (3.7) and (3.8), it

follows from eq. (E.8) that P−µν (x) is always square integrable. Furthermore, P−µν (x)
and Pµν (x) are linearly dependent for µ ∈ Z. For µ = ±1

2 ,±
3
2 ,±

5
2 , . . . P−µν (x) and Qµ

ν (x)
are linearly dependent. This follows from their Wronskians, cf. [DLMF, §14.2(iv)].
Thus, if the endpoint a is LP, cf. table 3.2b, and hence µ ≥ 1, all square integrable
solution on [a, 1] are scalar multiples of P−µν (x). Clearly, for 0 ≤ µ < 1, i.e. a is LC, it
follows from eqs. (E.8) to (E.12), eq. (E.13) and their Wronskians that there are two
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linearly independent solutions which are square integrable on [a, 1]. This complies
with the properties of LP and LC endpoints, see section 3.2.

Let us now consider an interval [−1, b] containing the singularity at x = −1. The
functions Pµν (−x), Qµ

ν (−x) are further solutions of eq. (3.5), cf. [DLMF, §14.2(ii)].
Obviously, integrating the square of these functions on [−1, b] yields the same parameter
restrictions as for integrating the square of Pµν (x), Qµ

ν (x) over [a, 1], as shown above.
Similarly as for the interval [a, 1], it shows that P−µν (x) is the only linearly independent
solution that is square integrable on [−1, b] for µ ≥ 1,i.e. if b is LP.

Let us now consider the interval [−1, 1] containing a singularity at both endpoints.
From the Wronskian of Pµν (x) and Pµν (−x) it shows that these solutions are linearly
dependent when µ − ν = 0,−1,−2, . . . The solution Pµµ+l(x), with l = 0, 1, 2, 3, . . .,
is square integrable on [−1, 1] as it is square integrable on [a, 1], −1 < a < 1, due
to eq. (E.8), and it is linearly dependent to Pµµ+l(−x), which is square integrable on
[−1, b], −1 < b < 1. Furthermore, if the endpoints ±1 are LP, i.e. µ ≥ 1, all square
integrable solution on [−1, 1] are scalar multiples of Pµµ+l(x).
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Appendix F

Expression of the energy vector in
terms of spherical harmonics
coefficients

Expressing the energy vector rE, cf. eq. (5.36), in terms of its x, y, and z component
yields,

rE = 1
E


∫
S2 sin(θ) cos(φ)|f(θ)|2dθ∫
S2 sin(θ) sin(φ)|f(θ)|2dθ∫

S2 cos(θ)|f(θ)|2dθ

 . (F.1)

The spherical harmonics coefficients of the squared source distribution are,

fnm =
∫
S2
|f(θ)|2Y m

n (θ)dθ (F.2)

where by the explicit expression of the spherical harmonics of order n = 1 is,

Y1,1(θ) =
√

3
4π sin(θ) cos(φ), (F.3)

Y1,−1(θ) = −
√

3
4π sin(θ) sin(φ), (F.4)

Y1,0(θ) =
√

3
4π cos(θ). (F.5)
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Comparing this to the integrals in eq. (F.1) reveals that the components of rE can be
expressed in terms of the first order spherical harmonics coefficients of |f(θ)|2:

rE = 1
E

√
4π
3


f1,1

−f1,−1

f1,0

 . (F.6)

Assuming a spatially band-limited source distribution, i.e.

f(θ) =
N∑
n=0

n∑
m=−n

φnmY
m
n (θ), (F.7)

its squared absolute value yields

|f(θ)|2 = f(θ)f̄(θ) =
N∑

n′=0

n′∑
m′=−n′

N∑
n′′=0

n′′∑
m′′=−n′′

φn′m′φ̄n′′m′′Y
m′

n′ (θ)Y m′′

n′′ (θ), (F.8)

where the bar denotes the complex-conjugate. Inserting this in eq. (F.2) yields

fnm =
N∑

n′=0

n∑
m′=−n′

N∑
n′′=0

n′′∑
m′′=−n′′

φn′m′φ̄n′′m′′G
mm′m′′

nn′n′′ , (F.9)

whereby Gmm′m′′
nn′n′′ denotes the integral over three spherical harmonics and is referred

to as Gaunt coefficient,

Gmm′m′′

nn′n′′ :=
∫
S2
Y m
n (θ)Y m′

n′ (θ)Y m′′

n′′ (θ)dθ. (F.10)

Equation (F.9) can be equivalently expressed by the matrix product,

fnm = φH
NGnm,NφN. (F.11)

whereby φN = [φ00, . . . , φnm, . . . , φNN]T is a vector containing the spherical harmonics
coefficients of the source distribution, the superscript H denotes Hermitian transpose,
and Gnm,N is a matrix containing Gaunt coefficients Gm,m′,m′′

n,n′,n′′ ,

Gnm,N =


Gm,0,0
n,0,0 , . . . , Gm,0,N

n,0,N
... . . . ...

Gm,N,0
n,N,0 , . . . , Gm,N,N

n,N,N

 . (F.12)

Inserting eq. (F.11) in eq. (F.6) and with E =
∫
S2 |f(θ)|2dθ = φH

NφN resulting from

126



the Parseval’s relation, the energy vector for a source distribution f(θ) is expressed in
terms of its spherical harmonics coefficients by

rE =
√

4π√
3φH

NφN


φH

NG1,1,NφN

−φH
NG1,−1,NφN

φH
NG1,0,NφN

 . (F.13)
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